<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 305215

Manufacturer

Cameron

	APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE												
1. Op	1. Operator Name and Address COG OPERATING LLC								2. OGRID Number 229137				
	600 W Illinois Ave Midland, TX 79701									3. API Number 30-025-49652			
4. Pro	4. Property Code 5. Property Name REDTAIL STATE COM						6. Well N	lo. 506H					
	7. Surface Location												
UL - I	Lot M	Section	Township 23S	Range 32E	Lot Idn	М	Feet From 365	N/S Line	Feet From	70	E/W Line W	County	Lea

8. Proposed Bottom Hole Location UL - Lot Section Township Range Lot Idn Feet From N/S Line Feet From E/W Line County 330 D 23S 32E Ν Lea

9. Pool Information

RED TANK;BONE SPRING 51683

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation	
New Well OIL			State	3716	
16. Multiple 17. Proposed Depth		18. Formation	19. Contractor	20. Spud Date	
N	15908	Bone Spring		12/31/2021	
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water	

We will be using a closed-loop system in lieu of lined pits

Туре

Annular

Date:

12/15/2021

21. Proposed Casing and Cement Program

Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	54.5	1300	750	0
Int1	12.25	9.625	40	4800	1500	0
Prod	8.75	5.5	17	15908	2400	2000

Casing/Cement Program: Additional Comments

Drill 17-1/2" hole to 1,300' into the Rustler. Run 13-3/8" 54.5# J55 STC casing to TD and cement to surface in one stage. Will set in Rustler and cover water depth. Drill 12-1/4" hole to ~4,800' with Brine. Run 9-5/8" 40# J-55 casing to TD and cement to surface in one stage. Drill 8-3/4" vertical hole, curve & lateral to 15,908' with Cut Brine. Run 5-1/2" 17# P110 BTC casing to TD and cement to 2,000' in one stage.

> 22. Proposed Blowout Prevention Program Working Pressure Test Pressure

> > 3000

Conditions of Approval Attached

3000

Phone: 432-685-4385

7 tillatar 0000				0000	Gameron
knowledge and b	belief. I have complied	nation given above is true and complete to the best of my with 19.15.14.9 (A) NMAC and/or 19.15.14.9 (B) NMAC		OIL CONSERV	ATION DIVISION
Signature:					
Printed Name:	Electronicall	y filed by Robyn Russell	Approved By:	Paul F Kautz	
Title:	Supervisor I	Delaware Regulatory	Title:	Geologist	
Email Address:	robyn.m.rus	sell@conocophillips.com	Approved Date:	12/17/2021	Expiration Date: 12/17/2023

Form C-102

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

State of New Mexico Energy, Minerals & Natural Resources Department CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR.

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

Revised August 1, 2011 Submit one copy to appropriate District Office

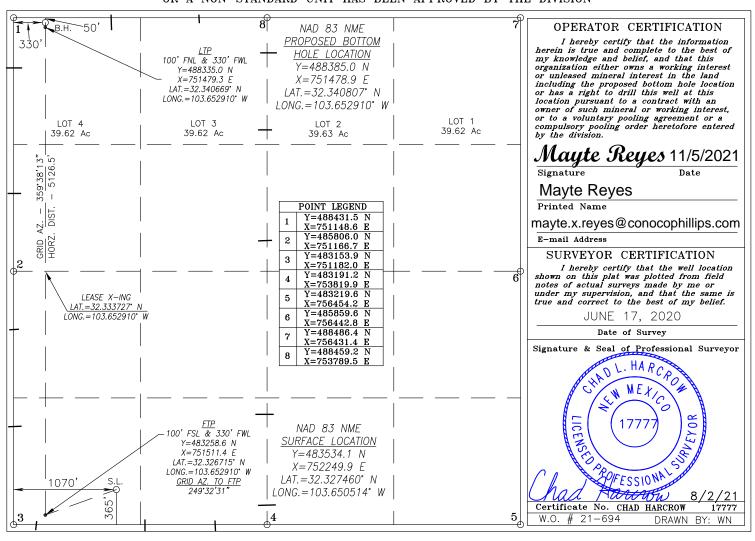
Santa Fe, New Mexico 87505

□ AMENDED REPORT

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

WELL LOCATION AND ACREAGE DEDICATION PLAT

	WELL LOCATION AND	ACKEAGE DEDICATION LEAT				
API Number	Pool Code	Pool Code Pool Name				
	51683	Red Tank; Bone Spri	ng			
Property Code	Prop	Property Name				
312818	REDTAIL	REDTAIL STATE COM				
OGRID No.	Oper	ator Name	Elevation			
229137	COG OPE	RATING, LLC	3716.3'			


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	om the North/South line Feet from the		East/West line	County
M	2	23-S	32-E		365	SOUTH	1070	WEST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	ownship Range		Feet from the	North/South line	Feet from the	East/West line	County
4 2		23-9	S 32-E		50	NORTH	330	WEST	LEA
Dedicated Acre	s Joint o	r Infill	Consolidation	Code Or	der No.				•
329.29									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Comments

Permit 305215

PERMIT COMMENTS

Operator Name and Address:	API Number:
COG OPERATING LLC [229137]	30-025-49652
600 W Illinois Ave	Well:
Midland, TX 79701	REDTAIL STATE COM #506H

Created By	Comment	Comment Date
mreyes4	OIL: COG Operating has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that	12/15/2021
	any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore we do not believe that	
	an H2S Contingency Plan would be necessary.	

Form APD Conditions

Permit 305215

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
COG OPERATING LLC [229137]	30-025-49652
600 W Illinois Ave	Well:
Midland, TX 79701	REDTAIL STATE COM #506H

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	1) SURFACE & INTERMEDIATE CASING - Cement must circulate to surface 2) PRODUCTION CASING - Cement must tie back into intermediate casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

If Other, please describe:

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: COG Operating LLC OGRID: 229137 Date: 11/05 / 21

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.

III. Well(s): Provide the be recompleted from a s					wells pi	roposed to b	e dril	lled or proposed to			
Well Name	API	ULSTR	Footages	Anticipated	Anticipated			Anticipated			
				Oil BBL/D	Gas	MCF/D	Pr	roduced Water BBL/D			
Redtail State Com 506H	30-025-	M-2-23S-32E	365 FSL & 1070 FWL	± 1633	± 2	026		± 2336			
IV. Central Delivery Point Name: [See 19.15.27.9(D)(1) NMAC]											
V. Anticipated Schedu proposed to be recompl					vell or s	set of wells p	ropo	sed to be drilled or			
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date		First Production Date			
Redtail State Com 506H	Pending	7/20/2022	± 25 days from spud	11/17/2022		2 11/27/2022		12/2/2022			
VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.											

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section. Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area. IX. Anticipated Natural Gas Production: Well			<u>EFFECTIV</u>	<u>E APKIL 1, 2022</u>	
IX. Anticipated Natural Gas Production: Well				with its statewide natural g	as capture requirement for the applicable
Well API Anticipated Average Natural Gas Rate MCF/D Gas for the First Year MCF Natural Gas Rate MCF/D Anticipated Volume of Natural Gas for the First Year MCF				tion because Operator is in	compliance with its statewide natural gas
Natural Gas Rate MCF/D Gas for the First Year MCF X. Natural Gas Gathering System (NGGS): Operator	IX. Anticipated Natural	Gas Producti	on:		
Operator System ULSTR of Tie-in Anticipated Gathering Start Date of System Segment Tie-in XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected. XII. Line Capacity. The natural gas gathering system will will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production. XIII. Line Pressure. Operator does does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s). Attach Operator's plan to manage production in response to the increased line pressure. XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information	Well		API		-
XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected. XII. Line Capacity. The natural gas gathering system will will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production. XIII. Line Pressure. Operator does does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s). Attach Operator's plan to manage production in response to the increased line pressure. XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information	X. Natural Gas Gatherii	ng System (NC	GGS):		
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected. XII. Line Capacity. The natural gas gathering system will will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production. XIII. Line Pressure. Operator does does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s). Attach Operator's plan to manage production in response to the increased line pressure. XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information	Operator	System	ULSTR of Tie-in	-	
	production operations to the segment or portion of XII. Line Capacity. The production volume from to XIII. Line Pressure. Operatural gas gathering system Attach Operator's plant XIV. Confidentiality: Section 2 as provided in F	he existing or particle the natural gas gas natural gas gas he well prior to crator does lem(s) described to manage produced of the described aragraph (2) or particle of the described of the d	planned interconnect of the gathering system(s) to we thering system will be the date of first product does not anticipate the dabove will continue to eduction in response to the erts confidentiality pursuff Subsection D of 19.15.2.	the natural gas gathering system which the well(s) will be considered will not have capacity to go don. It its existing well(s) connect meet anticipated increases in the increased line pressure. Leant to Section 71-2-8 NMS 27.9 NMAC, and attaches a second which we will be considered increased at the considered with the con	tem(s), and the maximum daily capacity of smected. gather 100% of the anticipated natural gas ted to the same segment, or portion, of the n line pressure caused by the new well(s). SA 1978 for the information provided in

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

one hundred percent of	Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, aking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or										
hundred percent of the a into account the current	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one inticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following:										
Well Shut-In. ☐ Opera D of 19.15.27.9 NMAC	tor will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection; or										
	lan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential es for the natural gas until a natural gas gathering system is available, including: power generation on lease; power generation for grid; compression on lease; liquids removal on lease;										
(e) (f) (g) (h)	reinjection for underground storage; reinjection for temporary storage; reinjection for enhanced oil recovery; fuel cell production; and										

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

VII. Operational Practices

Actions Operator will take to comply with the requirements below:

B. Drilling Operations

- During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

C. Completion Operations

- During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- Individual well test separators will be set to properly separate gas and liquids. A
 temporary test separator will be utilized initially to process volumes. In addition,
 separators will be tied into flowback tanks which will be tied into the gas processing
 equipment for sales down a pipeline.

D. Venting and flaring during production operations

- During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
- During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
- Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.

E. Performance standards for separation, storage tank and flare equipment

 All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8
 Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
 - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
 - All measurement devices installed will meet accuracy ratings per AGA and API standards.
 - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.

VIII. Best Management Practices

- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Mayte Reyes								
Printed Name: Mayte Reyes								
Title: Sr. Regulatory Coodinator								
E-mail Address: mayte.x.reyes@conocophillips.com								
Date: 11/05/2021								
Phone: 575-748-6945								
OIL CONSERVATION DIVISION								
(Only applicable when submitted as a standalone form)								
Approved By:								
Title:								
Approval Date:								
Conditions of Approval:								

Redtail State Com #506H

Casing and Cement

String	Hole Size	Csg OD	<u>PPF</u>	Depth	Sx Cement	TOC
Surface	17-1/2"	13-3/8"	54.5#	1,300'	750	0'
Intermediate 2	12-1/4"	9-5/8"	40#	4,800'	1500	0'
Production	8-3/4"	5-1/2"	17#	15,908'	2,400	2,000'

Well Plan

Drill 17-1/2" hole to 1,300' into the Rustler. Run 13-3/8" 54.5# J55 STC casing to TD and cement to surface in one stage. Will set in Rustler and cover water depth.

Drill 12-1/4" hole to ~4,800' with Brine. Run 9-5/8" 40# J-55 casing to TD and cement to surface in one stage.

Drill 8-3/4" vertical hole, curve & lateral to 15,908' with Cut Brine. Run 5-1/2" 17# P110 BTC casing to TD and cement to 2,000' in one stage.

Well Control

After setting 13-3/8" casing and installing 3000 psi casing head, NU 13-5/8" Cameron BOP. Test annular and casing to 1500 psi and other BOP equipment to 3000 psi.

After setting 9-5/8" casing and installing 3000 psi casing spool, NU 13-5/8" Cameron BOP. Test annular to 1500 psi and other BOP equipment to 3000 psi.

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel:
 Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program:
 The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
 All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication:Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH COG OPERATING LLC FOREMAN AT MAIN OFFICE

COG OPERATING LLC

1-575-748-6940

EMERGENCY CALL LIST

	<u>OFFICE</u>	<u>MOBILE</u>
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

Intent	t	As Dril	ed										
API#													
Ope	rator Nar	ne:			Property	Name:	•					Well Number	
w.l.c	off Data.	(405)											
UL UL	Off Point	Township	Range	Lot	Feet	From	N/S	Feet		From	F/\\/	County	
		TOWNSHIP	Nange	LOT			14/3	1661		110111	L/ VV		
Latitu	ıde				Longitu	ide						NAD	
_	ake Poin		Danas	1	F		NI/C	F		F	F /\ \	Carrata	
UL	Section	Township	Range	Lot	Feet	From	N/S	Feet		From	E/VV	County	
Latitu	ıde				Longitu	itude NAD							
_	ake Poin												
UL	Section	Township	Range	Lot	Feet	From N/S	Feet		From E,	/W	Count	У	
Latitu	ide				Longitu	ıde					NAD		
							_		_				
Is this	well the	defining v	ell for th	e Hori:	zontal Sp	pacing Unit	?						
		611 112			7								
is this	well an i	nfill well?											
	If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.												
API#													
Ope	rator Nar	ne:				Property Name:						Well Number	
													K7 06/20/2019

KZ 06/29/2018

DELAWARE BASIN EAST

BULLDOG PROSPECT (NM-E) REDTAIL FED COM PROJECT REDTAIL STATE COM 506H

OWB

Plan: PWP1

Standard Survey Report

04 August, 2021

Survey Report

Company: DELAWARE BASIN EAST Project: **BULLDOG PROSPECT (NM-E)** Site: REDTAIL FED COM PROJECT Well: **REDTAIL STATE COM 506H**

Wellbore: **OWB** PWP1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database:

Well REDTAIL STATE COM 506H

KB=30' @ 3746.3usft (TBD) KB=30' @ 3746.3usft (TBD)

Minimum Curvature **EDT 15 Central Prod**

Project BULLDOG PROSPECT (NM-E)

Map System: US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)

Geo Datum: Map Zone:

New Mexico East 3001

Mean Sea Level **System Datum:**

REDTAIL STATE COM 506H Well

Well Position 0 0 usft 32° 19' 38.411 N +N/-S Northing: 483.474.20 usft Latitude:

103° 39' 0.106 W +E/-W 0.0 usft Easting: 711,066.80 usft Longitude: **Position Uncertainty** 3.0 usft Wellhead Elevation: usft **Ground Level:** 3,716.3 usfl

Wellbore **OWB Magnetics Model Name** Sample Date Declination **Dip Angle** Field Strength (°) (°) (nT) BGGM2021 8/4/2021 6.60 60.03 47,761.21895425

Design PWP1 **Audit Notes:**

Version: Phase: **PLAN** Tie On Depth: 0.0

Direction Vertical Section: Depth From (TVD) +N/-S +E/-W (usft) (usft) (usft) (°)

0.0 0 0 0.0 350.97

Survey Tool Program Date 8/4/2021 From

To (usft) (usft) Survey (Wellbore) **Tool Name** Description

0.0 15,908.2 PWP1 (OWB) MWD+IFR1+FDIR OWSG MWD + IFR1 + FDIR Correction

Planned Survey Vertical Vertical Measured **Dogleg** Build Turn Depth Inclination Depth +N/-S +E/-W Section Rate Rate Rate **Azimuth** (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (usft) (usft) (°) (°) 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 100.0 0.00 100.0 0.0 0.0 0.00 0.00 0.00 0.0 0.00 200.0 0.00 0.00 200.0 0.0 0.0 0.0 0.00 0.00 0.00 300.0 0.00 0.00 300.0 0.0 0.0 0.0 0.00 0.00 0.00 400.0 0.00 400.0 0.0 0.00 0.0 0.0 0.00 0.00 0.00 500.0 0.00 0.00 500.0 0.0 0.0 0.0 0.00 0.00 0.00 600.0 0.00 0.00 600.0 0.0 0.0 0.0 0.00 0.00 0.00 700.0 0.00 0.00 700.0 0.0 0.0 0.0 0.00 0.00 0.00 800.0 0.00 0.00 0.008 0.0 0.0 0.0 0.00 0.00 0.00 900.0 0.00 0.00 900.0 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.00 1,000.0 0.00 0.00 1,000.0 0.00 0.00 1,100.0 0.00 0.00 1,100.0 0.0 0.0 0.0 0.00 0.00 0.00 1,200.0 0.00 0.00 1,200.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 0.00 0.00 1,300.0 0.00 1,300.0 0.0 0.0 0.00 0.00 1,400.0 0.0 0.0 0.00 0.00 1,400.0 0.00 0.0 0.00

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: REDTAIL FED COM PROJECT

Well: REDTAIL STATE COM 506H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method: Database:

Well REDTAIL STATE COM 506H KB=30' @ 3746.3usft (TBD) KB=30' @ 3746.3usft (TBD)

Grid

Minimum Curvature EDT 15 Central Prod

coigii.	••••			Databast	· ·		201 10 00111	di i iod	
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
			•						
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build									
2,600.0	2.00	248.35	2,600.0	-0.6	-1.6	-0.4	2.00	2.00	0.00
2,700.0	4.00	248.35	2,699.8	-2.6	-6.5	-1.5	2.00	2.00	0.00
2,772.7	5.45	248.35	2,772.3	-4.8	-12.1	-2.8	2.00	2.00	0.00
Start 7718	.8 hold at 2772	2.7 MD							
2,800.0	5.45	248.35	2,799.5	-5.7	-14.5	-3.4	0.00	0.00	0.00
2,900.0	5.45	248.35	2,899.0	-9.2	-23.3	-5.5	0.00	0.00	0.00
3,000.0	5.45	248.35	2,998.6	-12.8	-32.1	-7.6	0.00	0.00	0.00
3,100.0	5.45	248.35	3,098.1	-16.3	-41.0	-9.6	0.00	0.00	0.00
3,200.0	5.45	248.35	3,197.7	-19.8	-49.8	-11.7	0.00	0.00	0.00
3,300.0	5.45	248.35	3,297.2	-23.3	-58.6	-13.8	0.00	0.00	0.00
0.400.0	5.45	0.40.05	2 202 7	00.0	07.5	45.0	0.00	0.00	0.00
3,400.0	5.45	248.35	3,396.7	-26.8	-67.5	-15.9	0.00	0.00	0.00
3,500.0	5.45	248.35	3,496.3	-30.3	-76.3	-17.9	0.00	0.00	0.00
3,600.0	5.45	248.35	3,595.8	-33.8	-85.1	-20.0	0.00	0.00	0.00
3,700.0	5.45	248.35	3,695.4	-37.3	-94.0	-22.1	0.00	0.00	0.00
3,800.0	5.45	248.35	3,794.9	-40.8	-102.8	-24.2	0.00	0.00	0.00
3,900.0	5.45	248.35	3,894.5	-44.3	-111.6	-26.3	0.00	0.00	0.00
4,000.0	5.45	248.35	3,994.0	-47.8	-120.5	-28.3	0.00	0.00	0.00
4,100.0	5.45	248.35	4,093.6	-51.3	-129.3	-30.4	0.00	0.00	0.00
4,200.0	5.45	248.35	4,193.1	-54.8	-138.2	-32.5	0.00	0.00	0.00
4,300.0	5.45	248.35	4,292.7	-58.4	-147.0	-34.6	0.00	0.00	0.00
4,400.0	5.45	248.35	4,392.2	-61.9	-155.8	-36.6	0.00	0.00	0.00
4,500.0	5.45	248.35	4,491.8	-65.4	-164.7	-38.7	0.00	0.00	0.00
4,600.0	5.45	248.35	4,591.3	-68.9	-173.5	-40.8	0.00	0.00	0.00
4,700.0	5.45	248.35	4,690.9	-72.4	-182.3	-42.9	0.00	0.00	0.00
4,800.0	5.45	248.35	4,790.4	-75.9	-191.2	-44.9	0.00	0.00	0.00
4,900.0	5.45	248.35	4,890.0	-79.4	-200.0	-47.0	0.00	0.00	0.00
5,000.0	5.45	248.35	4,989.5	-82.9	-208.8	-49.1	0.00	0.00	0.00
5,100.0	5.45	248.35	5,089.1	-86.4	-217.7	-51.2	0.00	0.00	0.00
5,200.0	5.45	248.35	5,188.6	-89.9	-226.5	-53.3	0.00	0.00	0.00
5,300.0	5.45	248.35	5,288.1	-09.9 -93.4	-235.3	-55.3	0.00	0.00	0.00
			•						
5,400.0	5.45	248.35	5,387.7	-96.9	-244.2	-57.4	0.00	0.00	0.00
5,500.0	5.45	248.35	5,487.2	-100.4	-253.0	-59.5	0.00	0.00	0.00

Survey Report

Company: DELAWARE BASIN EAST Project: BULLDOG PROSPECT (NM-E) Site: REDTAIL FED COM PROJECT REDTAIL STATE COM 506H Well:

Wellbore: OWB

PWP1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Database:

Well REDTAIL STATE COM 506H

KB=30' @ 3746.3usft (TBD) KB=30' @ 3746.3usft (TBD)

Minimum Curvature EDT 15 Central Prod

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,600.0	5.45	248.35	5,586.8	-103.9	-261.8	-61.6	0.00	0.00	0.00
5,700.0	5.45	248.35	5,686.3	-107.5	-270.7	-63.6	0.00	0.00	0.00
5,800.0	5.45	248.35	5,785.9	-111.0	-279.5	-65.7	0.00	0.00	0.00
5,900.0	5.45	248.35	5,885.4	-114.5	-288.3	-67.8	0.00	0.00	0.00
6,000.0	5.45	248.35	5,985.0	-118.0	-297.2	-69.9	0.00	0.00	0.00
6,100.0	5.45	248.35	6,084.5	-121.5	-306.0	-72.0	0.00	0.00	0.00
6,200.0	5.45	248.35	6,184.1	-125.0	-314.8	-74.0	0.00	0.00	0.00
6,300.0	5.45	248.35	6,283.6	-128.5	-323.7	-76.1	0.00	0.00	0.00
6,400.0	5.45	248.35	6,383.2	-132.0	-332.5	-78.2	0.00	0.00	0.00
6,500.0	5.45	248.35	6,482.7	-135.5	-341.4	-80.3	0.00	0.00	0.00
6,600.0	5.45	248.35	6,582.3	-139.0	-350.2	-82.3	0.00	0.00	0.00
6,700.0	5.45	248.35	6,681.8	-142.5	-359.0	-84.4	0.00	0.00	0.00
6,800.0	5.45	248.35	6,781.4	-146.0	-367.9	-86.5	0.00	0.00	0.00
6,900.0	5.45	248.35	6,880.9	-149.5	-376.7	-88.6	0.00	0.00	0.00
7,000.0	5.45	248.35	6,980.4	-153.0	-385.5	-90.6	0.00	0.00	0.00
7,100.0	5.45	248.35	7,080.0	-156.6	-394.4	-92.7	0.00	0.00	0.00
7,100.0	5.45	248.35	7,000.0	-160.1	-403.2	-94.8	0.00	0.00	0.00
7,300.0	5.45	248.35	7,179.5	-163.6	-412.0	-94.8 -96.9	0.00	0.00	0.00
7,400.0	5.45	248.35	7,378.6	-167.1	-420.9	-99.0	0.00	0.00	0.00
7,500.0	5.45	248.35	7,478.2	-170.6	-429.7	-101.0	0.00	0.00	0.00
7,600.0	5.45	248.35	7,577.7	-174.1	-438.5	-103.1	0.00	0.00	0.00
7,700.0	5.45	248.35	7,677.3	-177.6	-447.4	-105.2	0.00	0.00	0.00
7,800.0	5.45	248.35	7,776.8	-181.1	-456.2	-107.3	0.00	0.00	0.00
7,900.0	5.45	248.35	7,876.4	-184.6	-465.0	-109.3	0.00	0.00	0.00
8,000.0	5.45	248.35	7,975.9	-188.1	-473.9	-111.4	0.00	0.00	0.00
8,100.0	5.45	248.35	8,075.5	-191.6	-482.7	-113.5	0.00	0.00	0.00
8,200.0	5.45	248.35	8,175.0	-195.1	-491.5	-115.6	0.00	0.00	0.00
8,300.0	5.45	248.35	8,274.6	-198.6	-500.4	-117.7	0.00	0.00	0.00
8,400.0	5.45	248.35	8,374.1	-202.1	-509.2	-119.7	0.00	0.00	0.00
8,500.0	5.45	248.35	8,473.7	-205.7	-518.0	-121.8	0.00	0.00	0.00
8,600.0	5.45	248.35	8,573.2	-209.2	-526.9	-123.9	0.00	0.00	0.00
8,700.0	5.45	248.35	8,672.7	-212.7	-535.7	-126.0	0.00	0.00	0.00
8,800.0	5.45	248.35	8,772.3	-216.2	-544.6	-128.0	0.00	0.00	0.00
8,900.0	5.45	248.35	8,871.8	-219.7	-553.4	-130.1	0.00	0.00	0.00
9,000.0	5.45	248.35	8,971.4	-223.2	-562.2	-132.2	0.00	0.00	0.00
9,100.0	5.45	248.35	9,070.9	-226.7	-571.1	-134.3	0.00	0.00	0.00
9,200.0	5.45	248.35	9,170.5	-230.2	-579.9	-136.3	0.00	0.00	0.00
9,300.0	5.45	248.35	9,270.0	-233.7	-588.7	-138.4	0.00	0.00	0.00
9,400.0	5.45	248.35	9,369.6	-237.2	-597.6	-140.5	0.00	0.00	0.00
9,500.0	5.45	248.35	9,469.1	-240.7	-606.4	-142.6	0.00	0.00	0.00
9,600.0	5.45	248.35	9,568.7	-244.2	-615.2	-144.7	0.00	0.00	0.00
9,700.0	5.45	248.35	9,668.2	-247.7	-624.1	-146.7	0.00	0.00	0.00
9,800.0	5.45	248.35	9,767.8	-251.2	-632.9	-148.8	0.00	0.00	0.00

Survey Report

Database:

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: REDTAIL FED COM PROJECT
Well: REDTAIL STATE COM 506H

Wellbore: OWB

Design:

PWP1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:

KB=30' @ 3746.3usft (TBD)
KB=30' @ 3746.3usft (TBD)
Grid
Minimum Curvature

Well REDTAIL STATE COM 506H

EDT 15 Central Prod

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,900.0	5.45	248.35	9,867.3	-254.8	-641.7	-150.9	0.00	0.00	0.00
10,000.0	5.45	248.35	9,966.9	-258.3	-650.6	-153.0	0.00	0.00	0.00
10,100.0	5.45	248.35	10,066.4	-261.8	-659.4	-155.0	0.00	0.00	0.00
10,200.0	5.45	248.35	10,166.0	-265.3	-668.2	-157.1	0.00	0.00	0.00
10,300.0		248.35	10,265.5	-268.8	-677.1	-159.2	0.00	0.00	0.00
10,400.0	5.45	248.35	10,365.1	-272.3	-685.9	-161.3	0.00	0.00	0.00
10,491.6	5.45	248.35	10,456.2	-275.5	-694.0	-163.2	0.00	0.00	0.00
	12.00 TFO 111								
10,500.0	5.18	258.88	10,464.6	-275.7	-694.7	-163.3	12.00	-3.29	124.77
10,600.0	12.15	335.11	10,563.6	-267.0	-703.6	-153.3	12.00	6.97	76.23
10,700.0	23.57	347.77	10,658.7	-237.8	-712.3	-123.1	12.00	11.42	12.66
10,800.0	35.36	352.34	10,745.6	-189.4	-720.5	-74.0	12.00	11.80	4.57
10,900.0		354.82	10,820.6	-123.9	-727.7	-8.2	12.00	11.89	2.49
11,000.0		356.50	10,880.4	-44.2	-733.6	71.4	12.00	11.93	1.68
11,100.0		357.80	10,922.3	46.2	-738.1	161.5	12.00	11.94	1.30
11,200.0		358.92	10,944.6	143.5	-740.8	258.0	12.00	11.95	1.12
11,267.3		359.64	10,948.0	210.6	-741.7	324.4	12.00	11.95	1.07
	1.1 hold at 1126								
11,300.0	91.11	359.64	10,947.4	243.3	-741.9	356.7	0.00	0.00	0.00
11,400.0	91.11	359.64	10,945.5	343.3	-742.5	455.6	0.00	0.00	0.00
11,500.0	91.11	359.64	10,943.5	443.3	-743.1	554.4	0.00	0.00	0.00
11,600.0	91.11	359.64	10,941.6	543.3	-743.8	653.3	0.00	0.00	0.00
11,700.0	91.11	359.64	10,939.6	643.3	-744.4	752.1	0.00	0.00	0.00
11,800.0		359.64	10,937.7	743.2	-745.0	850.9	0.00	0.00	0.00
11,900.0		359.64	10,935.8	843.2	-745.6	949.8	0.00	0.00	0.00
12,000.0		359.64	10,933.8	943.2	-746.3	1,048.6	0.00	0.00	0.00
12,100.0		359.64	10,931.9	1,043.2	-746.9	1,147.5	0.00	0.00	0.00
12,200.0	91.11	359.64	10,929.9	1,143.1	-747.5	1,246.3	0.00	0.00	0.00
12,300.0	91.11	359.64	10,928.0	1,243.1	-748.2	1,345.1	0.00	0.00	0.00
12,400.0	91.11	359.64	10,926.1	1,343.1	-748.8	1,444.0	0.00	0.00	0.00
12,500.0	91.11	359.64	10,924.1	1,443.1	-749.4	1,542.8	0.00	0.00	0.00
12,600.0		359.64	10,922.2	1,543.1	-750.0	1,641.7	0.00	0.00	0.00
12,700.0	91.11	359.64	10,920.2	1,643.0	-750.7	1,740.5	0.00	0.00	0.00
12,800.0		359.64	10,918.3	1,743.0	-751.3	1,839.3	0.00	0.00	0.00
12,900.0		359.64	10,916.4	1,843.0	-751.9	1,938.2	0.00	0.00	0.00
13,000.0		359.64	10,914.4	1,943.0	-751.6	2,037.0	0.00	0.00	0.00
13,100.0		359.64	10,912.5	2,043.0	-753.2	2,135.8	0.00	0.00	0.00
13,200.0	91.11	359.64	10,910.5	2,142.9	-753.8	2,234.7	0.00	0.00	0.00
13,300.0	91.11	359.64	10,908.6	2,242.9	-754.4	2,333.5	0.00	0.00	0.00
13,400.0	91.11	359.64	10,906.7	2,342.9	-755.1	2,432.4	0.00	0.00	0.00
13,500.0		359.64	10,904.7	2,442.9	-755.7	2,531.2	0.00	0.00	0.00
13,600.0		359.64	10,902.8	2,542.9	-756.3	2,630.0	0.00	0.00	0.00
13,700.0		359.64	10,900.8	2,642.8	-756.9	2,728.9	0.00	0.00	0.00
13,800.0	91.11	359.64	10,898.9	2,742.8	-757.6	2,827.7	0.00	0.00	0.00

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: REDTAIL FED COM PROJECT
Well: REDTAIL STATE COM 506H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method: Database:

Well REDTAIL STATE COM 506H KB=30' @ 3746.3usft (TBD)

KB=30' @ 3746.3usft (TBD)

Minimum Curvature EDT 15 Central Prod

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	•		+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,900.0	91.11	359.64	10,897.0	2,842.8	-758.2	2,926.6	0.00	0.00	0.00
14,000.0	91.11	359.64	10,895.0	2,942.8	-758.8	3,025.4	0.00	0.00	0.00
14,100.0	91.11	359.64	10,893.1	3,042.8	-759.5	3,124.2	0.00	0.00	0.00
14,200.0	91.11	359.64	10,891.1	3,142.7	-760.1	3,223.1	0.00	0.00	0.00
14,300.0	91.11	359.64	10,889.2	3,242.7	-760.7	3,321.9	0.00	0.00	0.00
14,400.0	91.11	359.64	10,887.3	3,342.7	-761.3	3,420.8	0.00	0.00	0.00
14,500.0	91.11	359.64	10,885.3	3,442.7	-762.0	3,519.6	0.00	0.00	0.00
14,600.0	91.11	359.64	10,883.4	3,542.7	-762.6	3,618.4	0.00	0.00	0.00
14,700.0	91.11	359.64	10,881.4	3,642.6	-763.2	3,717.3	0.00	0.00	0.00
14,800.0	91.11	359.64	10,879.5	3,742.6	-763.8	3,816.1	0.00	0.00	0.00
14,900.0	91.11	359.64	10,877.6	3,842.6	-764.5	3,914.9	0.00	0.00	0.00
15,000.0	91.11	359.64	10,875.6	3,942.6	-765.1	4,013.8	0.00	0.00	0.00
15,100.0	91.11	359.64	10,873.7	4,042.5	-765.7	4,112.6	0.00	0.00	0.00
15,200.0	91.11	359.64	10,871.7	4,142.5	-766.4	4,211.5	0.00	0.00	0.00
15,300.0	91.11	359.64	10,869.8	4,242.5	-767.0	4,310.3	0.00	0.00	0.00
15,400.0	91.11	359.64	10,867.9	4,342.5	-767.6	4,409.1	0.00	0.00	0.00
15,500.0	91.11	359.64	10,865.9	4,442.5	-768.2	4,508.0	0.00	0.00	0.00
15,600.0	91.11	359.64	10,864.0	4,542.4	-768.9	4,606.8	0.00	0.00	0.00
15,700.0	91.11	359.64	10,862.0	4,642.4	-769.5	4,705.7	0.00	0.00	0.00
15,800.0	91.11	359.64	10,860.1	4,742.4	-770.1	4,804.5	0.00	0.00	0.00
15,900.0	91.11	359.64	10,858.2	4,842.4	-770.7	4,903.3	0.00	0.00	0.00
15,908.4	91.11	359.64	10,858.0	4,850.8	-770.8	4,911.7	0.00	0.00	0.00
TD at 15908	8.4								

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (REDTAIL ST (- plan hits target o - Rectangle (side:	center		.,	4,850.8	-770.8	488,325.00	710,296.00	32° 20' 26.461 N	103° 39' 8.729 W
LTP (REDTAIL ST CO - plan misses targ - Point			10,858.0 5858.4usft	4,800.8 MD (10859.0	-770.5 D TVD, 4800	488,275.00 .8 N, -770.5 E)	710,296.30	32° 20' 25.966 N	103° 39' 8.729 W
FTP (REDTAIL ST Co - plan misses tard - Circle (radius 50	get center by		10,948.0 t 10897.0us	-275.5 sft MD (1081	-738.4 8.6 TVD, -12	483,198.70 26.1 N, -727.5 E)	710,328.40	32° 19' 35.731 N	103° 39' 8.731 W

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: REDTAIL FED COM PROJECT
Well: REDTAIL STATE COM 506H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database:

Well REDTAIL STATE COM 506H KB=30' @ 3746.3usft (TBD) KB=30' @ 3746.3usft (TBD)

Grid

Minimum Curvature EDT 15 Central Prod

Plan Annotations					
Measured Depth (usft)	Vertical Depth (usft)	Local Coor	+E/-W	Comment	
(usit)	(usit)	(usft)	(usft)	Comment	
2500	2500	0	0	Start Build 2.00	
2773	2772	-5	-12	Start 7718.8 hold at 2772.7 MD	
10,492	10,456	-275	-694	Start DLS 12.00 TFO 111.11	
11,267	10,948	211	-742	Start 4641.1 hold at 11267.3 MD	
15,908	10,858	4851	-771	TD at 15908.4	

Checked By:	Approved By:	Date:
1	''	

Project: BULLDOG PROSPECT (NM-E)
Site: REDTAIL FED COM PROJECT Wellbore: OWB

LTP (REDTAIL ST COM 506H)

FTP (REDTAIL ST COM 506H) 10948.0

Received by OCD: 12/17/2021 11:46:53 AM


ConocoPhillips

Start 4641.1 hold at 11267.3 MD

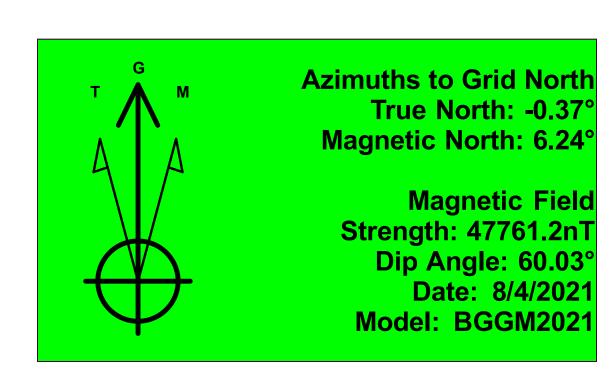
FTP (REDTAIL ST COM 506H)

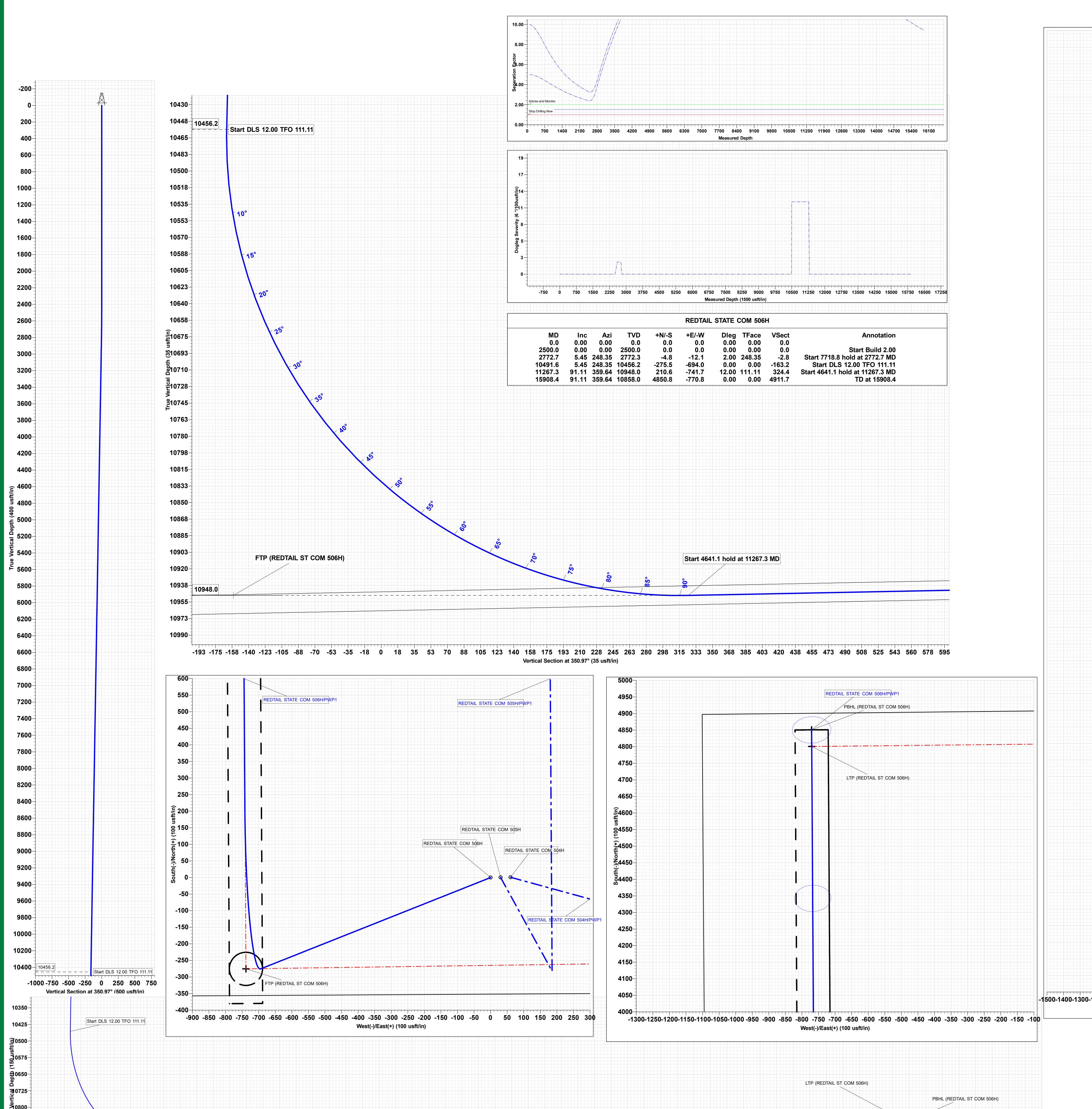
11025-

Well: REDTAIL STATE COM 506H Design: PWP1 GL: 3716.3 KB=30' @ 3746.3usft (TBD)

-770.8 488325.00

-738.4 483198.70 710328.40


DESIGN TARGET DETAILS Longitude 103° 39' 8.729 W -770.5 488275.00


32° 20' 26.461 N

32° 19' 35.731 N

103° 39' 8.729 W

103° 39' 8.731 W

REDTAIL STATE COM 506H/PWP1