<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 315631

(000)	, o , r o , a, . (000)											_		
		APPLICA	TION FOR	PERMIT T	O DRILL,	RE-EN	TER, DEEPEN	i, PLUGB	ACK,	OR ADD				
Operator Nan	ie and Address /BOURNE OIL C	0									2. OGRID	Number 14744		
	Box 5270	O									3. API Nu			
	os, NM 88241										3. API NU	30-025-5017	'2	
4. Property Cod			5. Property Nar	ne							6. Well N			
3256				RTH WILSOI	N DEEP UN	IIT						006H		
					7.	. Surface	Location							
UL - Lot	Section	Township	Range)	Lot Idn		eet From	N/S Line		Feet From		E/W Line	Count	у
G	17	21	S	35E		G	2370		N		1910	E		Lea
					8. Propos	sed Botto	om Hole Location	1						
UL - Lot	Section	Township	Range	1	Lot Idn		eet From	N/S Line		Feet From		E/W Line	Count	у
G	29	21	S	35E		G	2535		N	:	2050	E		Lea
					9	. Pool Inf	formation							
WILSON;BON	E SPRING, NOR	TH										97704		
					Δddit	ional We	II Information							
11. Work Type		12. Well Type		13. Cable/Ro		ional we	ii iiiioiiiiatioii	14. Leas	se Type		15 Groun	d Level Elevation	ın	
	Well	OIL		TO: Oublont	, tai y			11. 2000	State			3652		
16. Multiple		17. Proposed De	pth	18. Formatio	n			19. Cont	tractor		20. Spud Date			
N		2057	5	21	nd Bone Sp	ring San	d					6/6/2022		
Depth to Ground	l water			Distance from	n nearest fres	sh water we	ell				Distance to	o nearest surface	water	
We will be u	sing a closed-lo	op system in lie	u of lined pits	S										
				21	. Proposed	l Casing	and Cement Prog	gram						
Туре	Hole Size	Cas	ing Size	Ca	sing Weight/f	ft	Setting D	epth		Sacks of	Cement		Estimated	TOC
Surf	17.5		3.375		54.5		1930				40		0	
Int1	12.25		9.625		40		3750			84	-		0	
Prod	8.75	7	7.625		39		9312			69			355	
Liner1	6.125		4.5		13.5		2057	5		46	60	9112		2

Casing/Cement Program: Additional Comments

MOC proposed to drill & test the Bone Springs formation. H2S rule 118 does not apply because MOC has researched the area & no high concentrations were found. Will have on location & working all H2S safety equiptment before Yates formation for safety & insurance purposes. Will stimulate as needed for production.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer		
Annular	2000	1500	Schaffer		
Double Ram	3000	3000	Schaffer		
Annular	3000	1500	Schaffer		

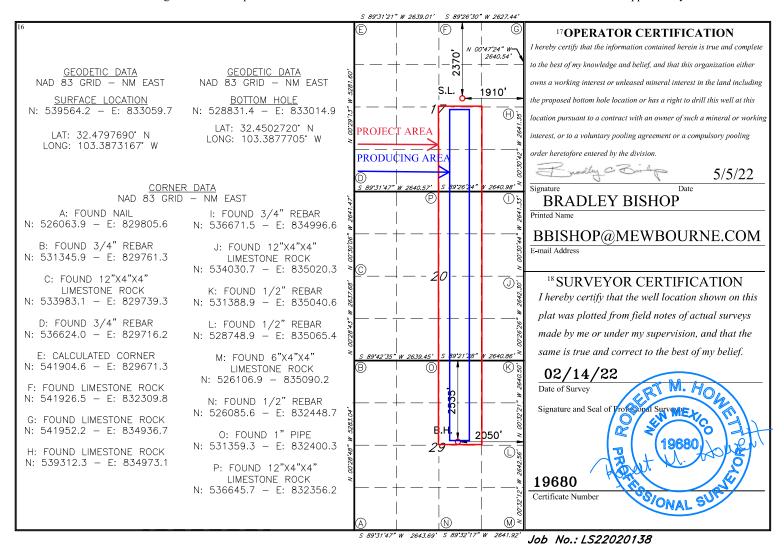
knowledge and be	lief.	s true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	ON DIVISION		
Printed Name:	Electronically filed by Monty Whe	etstone	Approved By:	Paul F Kautz			
Title:	Vice President Operations		Title:	Geologist			
Email Address:	fking@mewbourne.com		Approved Date:	5/25/2022	Expiration Date: 5/25/2024		
Date:	5/6/2022	Phone: 903-561-2900	Conditions of Approval Attached				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-025-	API Number 50172	r		² Pool Code 97704 WILSON; BONE SPRING, 1							NORTH	
⁴ Property Co 32567			•	NORTH WILSON DEEP UNIT							⁶ Well Number 6 H	
70GRID 1474				8 Operator Name MEWBOURNE OIL COMPANY							⁹ Elevation 3652'	
•					10 Surfa	ace Location						
UL or lot no.	Section	Township	Range	Lot Idn	Feet from t	he North/So	ıth line	Feet From the	East/W	est line	County	
G	17	21S 35E 2370 NORTH 1910 E									LEA	
	" Bottom Hole Location If Different From Surface											

UL or lot no. Section Lot Idn Feet from the North/South line Feet from the East/West line County Township Range 29 21S 2535 NORTH 2050 EAST LEA 35E 12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No. 320

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

<u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

		G	AS CAPTURE	PLAN				
Date: <u>5/25/2022</u>								
☑ Original	Operator & O	GRID No.: [14744] N	MEWBOURNE OIL CO					
☐ Amended - Reason for Amendment:	<u> </u>							
This Gas Capture Plan outlines action	ns to be taken by th	he Operator to reduce v	well/production facility	flaring/venting for ne	w completion (r	new drill, recor	mplete to new zone, re-frac) a	ctivit
Note: Form C-129 must be submitted	and approved pri	or to exceeding 60 day	s allowed by Rule (St	bsection A of 19.15.	18.12 NMAC).			
Nell(s)/Production Facility – Name o	of facility							
The well(s) that will be located at the	production facility	are shown in the table	below.					
Well Name		API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments	
NORTH WILSON DEEP UNIT #006	+	30-025-50172	G-17-21S-35E	2370N 1910E	10	None	ONLINE AFTER FRAC	
Vell(s) will be connected to a produce Enterprise Field Services, LLC Eddy County, New Mexico Enterprise Field Ser uture. In addition, MEWBOURNE Oleas from these wells will be process Mexico. The actual flow of the gas well in the product of the process of the service of the process of the service of the process of the	and will I . It will require 34 vices, LLC LCO and Enter sed at Enterprise	be connected to Enter 00' of pipeline to come a drilling, componise Field Services, LLC	prise Field Services, connect the facility to letion and estimated LC hav Processir	LC High Pressure irst production date to periodic conference g Plant located in Se	digh Pressure gathering system for wells that are calls to discussed. 17, Twn.	gathering gathering gam. MEWBOI general game game game game game game game game	g system located in <u>URNE OIL CO</u> provides o be drilled in the foreseeable o drilling and completion sche	e edule:
Flowback Strategy								
After the fracture treatment/completic will be monitored. When the produce production facilities, unless there are MEWBOURNE OIL CO's belief the	d fluids contain mi operational issue	inimal sand, the wells ves on Enterprise Field	vill be turned to produ Services, LLC		sales should sta	art as soon as	the wells start flowing through	
Safety requirements during cleanout ather than sold on a temporary basis	•	ne use of underbalance	ed air cleanout systen	s may necessitate tl	hat sand and no	on-pipeline qu	ality gas be vented and/or fla	red
Alternatives to Reduce Flaring								
Below are alternatives considered from	om a conceptual st	andpoint to reduce the	amount of gas flared					
Power Generation – On leaseOnly a portion of gas i		ating the generator, ren	nainder of gas will be	lared				

- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 315631

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-025-50172
P.O. Box 5270	Well:
Hobbs, NM 88241	NORTH WILSON DEEP UNIT #006H

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

Page 5

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 — Plan Description Effective May 25, 2021											
I. Operator:Mev	vbourne (Oil Co.	OGRID:	14744	Date: _	5/2/22					
II. Type: X Original	Amendment	due to □ 19.15.27.	.9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NMAC 🗆 (Other.					
If Other, please describe:											
III. Well(s): Provide the be recompleted from a s					wells proposed to	be drilled or proposed to					
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D					
North Wilson Deep Unit #6H		G 17 21S 35E	2370' FNL x 1910'	FEL 2000	3500	3500					
V. Anticipated Schedul proposed to be recomple Well Name	le: Provide the	North Wilson Dee following informa gle well pad or con Spud Date	tion for each nev	w or recompleted war delivery point. Completion Commencement	vell or set of wells						
North Wilson Deep Unit #6H		7/2/22		9/2/22							
North Wilson Deep Unit #6H 7/2/22 8/2/22 9/2/22 9/17/22 9/17/22 9/17/22 VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.											

production volume from the well prior to the date of first production.

for which confidentiality is asserted and the basis for such assertion.

 \square Attach Operator's plan to manage production in response to the increased line pressure.

Page 6

			Enhanced Plan E APRIL 1, 2022			
Beginning April 1, 2 reporting area must of			with its statewide natural g	as caj	oture requirement for the applicable	
Operator certifies capture requirement			ction because Operator is in	comp	liance with its statewide natural gas	
IX. Anticipated Nat	tural Gas Productio	on:				
We	ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF		
X. Natural Gas Gat	thering System (NG	GGS):				
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Av	railable Maximum Daily Capacity of System Segment Tie-in	
production operation	is to the existing or p	olanned interconnect of	location of the well(s), the are the natural gas gathering syst which the well(s) will be con	em(s)	ated pipeline route(s) connecting the , and the maximum daily capacity of d.	
XII. Line Capacity.	. The natural gas ga	thering system will [☐ will not have capacity to g	gather	100% of the anticipated natural gas	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

XIV. Confidentiality:

Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information Page 7

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

⚠ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Page 8

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act

Signature:	Bradley Bishop
Printed Name:	BRADLEY BISHOP
Title:	REGULATORY MANAGER
E-mail Address:	PRIORIED CALEAR CURAL COM
Date:	4/2/22
Phone:	575-393-5905
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of A	

Mewbourne Oil Company

Natural Gas Management Plan - Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.

Intent	t	As Dril	ed										
API#													
Ope	rator Nar	ne:				Property	Name:	•					Well Number
w.l.c	off Data.	(405)											
UL UL	Off Point	Township	Range	Lot	Feet	From	N/S	Feet		From	F/\\/	County	
				14/3	1661		110111	L/ VV					
Latitu	ıde				Longitu	ıde						NAD	
_	ake Poin		Danas	1	F		NI/C	F		F	F /\ \	Carrata	
UL	Section	Township	Range	Lot	Feet	From	N/S	Feet		From	E/VV	County	
Latitu	ıde				Longitu	ıde						NAD	
_	ake Poin												
UL	Section	Township	Range	Lot	Feet	From N/S	Feet		From E,	/W	Count	У	
Latitu	ide				Longitu	ıde					NAD		
							_		_				
Is this	well the	defining v	ell for th	e Hori:	zontal Sp	pacing Unit	?						
		611 112			7								
is this	well an i	nfill well?											
	l is yes pl ng Unit.	ease provi	de API if	availak	ole, Opei	rator Name	and v	vell n	umber	for D	efinir	ng well fo	r Horizontal
API#													
Ope	rator Nar	ne:				Property	Name:	<u> </u>					Well Number
													K7 06/20/2019

KZ 06/29/2018

Mewbourne Oil Company

Lea County, New Mexico NAD 83 North Wilson Deep Unit #6H

Sec 17, T21S, R35E

SHL: 2370' FNL & 1910' FEL, Sec 17 BHL: 2535' FNL & 2050' FEL, Sec 29

Plan: Design #1

Standard Planning Report

02 May, 2022

Hobbs Database: Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83

Site: North Wilson Deep Unit #6H Well: Sec 17, T21S, R35E

Wellbore: BHL: 2535' FNL & 2050' FEL, Sec 29

Design #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site North Wilson Deep Unit #6H

180.24

WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

Minimum Curvature

Lea County, New Mexico NAD 83 Project

Map System: Geo Datum:

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

North Wilson Deep Unit #6H Site

Northing: 539,564.00 usft Site Position: Latitude: 32.4797686 From: Мар Easting: 833,060.00 usft Longitude: -103.3873158

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 17, T21S, R35E

32.4797686 **Well Position** +N/-S 0.0 usft Northing: 539,564.00 usft Latitude: +E/-W 0.0 usft Easting: 833,060.00 usft Longitude: -103.3873158 **Position Uncertainty** 0.0 usft Wellhead Elevation: 3,680.0 usft **Ground Level:** 3,652.0 usft

0.51° **Grid Convergence:**

BHL: 2535' FNL & 2050' FEL, Sec 29 Wellbore

Declination Field Strength Magnetics **Model Name** Sample Date Dip Angle (°) (°) (nT) IGRF2010 48,433.22406161 12/31/2014 7.08 60.36

Design #1 Design **Audit Notes:** Phase: **PROTOTYPE** Tie On Depth: 0.0 Version: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

0.0

Plan Survey Tool Program Date 5/2/2022

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

0.0

0.0 20,574.8 Design #1 (BHL: 2535' FNL & 205

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,098.0	1.96	324.57	2,098.0	1.4	-1.0	2.00	2.00	0.00	324.57	
9,213.3	1.96	324.57	9,209.1	199.6	-142.0	0.00	0.00	0.00	0.00	
9,311.2	0.00	0.00	9,307.0	201.0	-143.0	2.00	-2.00	0.00	180.00	KOP: 2168' FNL & 20
10,200.1	88.87	179.49	9,880.0	-360.7	-138.0	10.00	10.00	0.00	179.49	
20,574.8	88.87	179.49	10,085.0	-10,733.0	-45.0	0.00	0.00	0.00	0.00	BHL: 2535' FNL & 20!

Hobbs Database: Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83 North Wilson Deep Unit #6H Site:

Well: Sec 17, T21S, R35E BHL: 2535' FNL & 2050' FEL, Sec 29 Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Minimum Curvature

Site North Wilson Deep Unit #6H WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

d Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
, ,			, ,			, ,	, ,	, ,	,
0.0		0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	FNL & 1910' FEL		100.0	0.0		0.0	0.00	0.00	0.00
100.0		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0		0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0		0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0		0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0		0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0		0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0		0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0		0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0		0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0		0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0		0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
		0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0 2,098.0		324.57	2,000.0	1.4	-1.0	-1.4	2.00	2.00	0.00
2,100.0		324.57	2,100.0	1.4	-1.0 -1.0	-1. 4 -1.4	0.00	0.00	0.00
2,100.0		324.57	2,100.0	4.2	-3.0	-1.4 -4.2	0.00	0.00	0.00
2,300.0		324.57	2,199.9	7.0	-5.0 -5.0	-4.2 -7.0	0.00	0.00	0.00
2,400.0		324.57	2,399.8	9.8	-7.0	-9.8	0.00	0.00	0.00
2,500.0		324.57	2,499.7	12.6	-8.9	-12.5	0.00	0.00	0.00
2,600.0		324.57	2,599.7	15.4	-10.9	-15.3	0.00	0.00	0.00
2,700.0		324.57	2,699.6	18.1	-12.9	-18.1	0.00	0.00	0.00
2,800.0	1.96	324.57	2,799.6	20.9	-14.9	-20.9	0.00	0.00	0.00
2,900.0	1.96	324.57	2,899.5	23.7	-16.9	-23.6	0.00	0.00	0.00
3,000.0	1.96	324.57	2,999.5	26.5	-18.9	-26.4	0.00	0.00	0.00
3,100.0	1.96	324.57	3,099.4	29.3	-20.8	-29.2	0.00	0.00	0.00
3,200.0		324.57	3,199.3	32.1	-22.8	-32.0	0.00	0.00	0.00
3,300.0	1.96	324.57	3,299.3	34.9	-24.8	-34.8	0.00	0.00	0.00
3,400.0	1.96	324.57	3,399.2	37.6	-26.8	-37.5	0.00	0.00	0.00
3,500.0		324.57	3,499.2	40.4	-28.8	-40.3	0.00	0.00	0.00
3,600.0		324.57	3,599.1	43.2	-30.7	-43.1	0.00	0.00	0.00
3,700.0		324.57	3,699.0	46.0	-32.7	-45.9	0.00	0.00	0.00
3,800.0		324.57	3,799.0	48.8	-34.7	-48.6	0.00	0.00	0.00
3,900.0	1.96	324.57	3,898.9	51.6	-36.7	-51.4	0.00	0.00	0.00
4,000.0		324.57 324.57	3,998.9	51.6 54.4	-36.7 -38.7	-51.4 -54.2	0.00	0.00	0.00
4,100.0		324.57	4,098.8	57.2	-36.7 -40.7	-54.2 -57.0	0.00	0.00	0.00
4,100.0		324.57	4,198.8	59.9	-40.7 -42.6	-59.8	0.00	0.00	0.00
4,300.0		324.57	4,298.7	62.7	-44.6	-62.5	0.00	0.00	0.00
4,400.0		324.57	4,398.6	65.5	-46.6	-65.3	0.00	0.00	0.00
4,500.0		324.57	4,498.6	68.3	-48.6	-68.1	0.00	0.00	0.00
4,600.0		324.57	4,598.5	71.1	-50.6	-70.9	0.00	0.00	0.00
4,700.0		324.57	4,698.5	73.9	-52.6	-73.7	0.00	0.00	0.00
4,800.0	1.96	324.57	4,798.4	76.7	-54.5	-76.4	0.00	0.00	0.00
4,900.0		324.57	4,898.3	79.4	-56.5	-79.2	0.00	0.00	0.00
5,000.0		324.57	4,998.3	82.2	-58.5	-82.0	0.00	0.00	0.00
5,100.0	1.96	324.57	5,098.2	85.0	-60.5	-84.8	0.00	0.00	0.00

Database: Hobbs
Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: North Wilson Deep Unit #6H
Well: Sec 17, T21S, R35E

Well: Sec 17, T21S, R35E
Wellbore: BHL: 2535' FNL & 2050' FEL, Sec 29

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site North Wilson Deep Unit #6H WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

Grid

Planned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
5,200	.0 1.96	324.57	5,198.2	87.8	-62.5	-87.5	0.00	0.00	0.00
5,300	.0 1.96	324.57	5,298.1	90.6	-64.4	-90.3	0.00	0.00	0.00
5,400	.0 1.96	324.57	5,398.0	93.4	-66.4	-93.1	0.00	0.00	0.00
5,500		324.57	5,498.0	96.2	-68.4	-95.9	0.00	0.00	0.00
5,600		324.57	5,597.9	99.0	-70.4	-98.7	0.00	0.00	0.00
5,700		324.57	5,697.9	101.7	-72.4	-101.4	0.00	0.00	0.00
5,800	.0 1.96	324.57	5,797.8	104.5	-74.4	-104.2	0.00	0.00	0.00
5,900	.0 1.96	324.57	5,897.8	107.3	-76.3	-107.0	0.00	0.00	0.00
6,000		324.57	5,997.7	110.1	-78.3	-109.8	0.00	0.00	0.00
6,100		324.57	6,097.6	112.9	-80.3	-112.5	0.00	0.00	0.00
6,200		324.57	6,197.6	115.7	-82.3	-115.3	0.00	0.00	0.00
6,300	.0 1.96	324.57	6,297.5	118.5	-84.3	-118.1	0.00	0.00	0.00
6,400		324.57	6,397.5	121.2	-86.3	-120.9	0.00	0.00	0.00
6,500		324.57	6,497.4	124.0	-88.2	-123.7	0.00	0.00	0.00
6,600		324.57	6,597.3	126.8	-90.2	-126.4	0.00	0.00	0.00
6,700		324.57	6,697.3	129.6	-92.2	-129.2	0.00	0.00	0.00
6,800	.0 1.96	324.57	6,797.2	132.4	-94.2	-132.0	0.00	0.00	0.00
6,900		324.57	6,897.2	135.2	-96.2	-134.8	0.00	0.00	0.00
7,000		324.57	6,997.1	138.0	-98.2	-137.5	0.00	0.00	0.00
7,100		324.57	7,097.1	140.7	-100.1	-140.3	0.00	0.00	0.00
7,200		324.57	7,197.0	143.5	-102.1	-143.1	0.00	0.00	0.00
7,300	.0 1.96	324.57	7,296.9	146.3	-104.1	-145.9	0.00	0.00	0.00
7,400		324.57	7,396.9	149.1	-106.1	-148.7	0.00	0.00	0.00
7,500		324.57	7,496.8	151.9	-108.1	-151.4	0.00	0.00	0.00
7,600		324.57	7,596.8	154.7	-110.0	-154.2	0.00	0.00	0.00
7,700		324.57	7,696.7	157.5	-112.0	-157.0	0.00	0.00	0.00
7,800	.0 1.96	324.57	7,796.6	160.3	-114.0	-159.8	0.00	0.00	0.00
7,900		324.57	7,896.6	163.0	-116.0	-162.6	0.00	0.00	0.00
8,000		324.57	7,996.5	165.8	-118.0	-165.3	0.00	0.00	0.00
8,100		324.57	8,096.5	168.6	-120.0	-168.1	0.00	0.00	0.00
8,200 8,300		324.57 324.57	8,196.4 8,296.4	171.4 174.2	-121.9 -123.9	-170.9 -173.7	0.00 0.00	0.00 0.00	0.00 0.00
8,400		324.57	8,396.3	177.0	-125.9	-176.4	0.00	0.00	0.00
8,500		324.57	8,496.2	179.8	-127.9	-179.2	0.00	0.00	0.00
8,600 8,700		324.57	8,596.2 8,696.1	182.5 185.3	-129.9	-182.0	0.00	0.00 0.00	0.00
8,800		324.57 324.57	8,796.1	188.1	-131.9 -133.8	-184.8 -187.6	0.00 0.00	0.00	0.00 0.00
8,900		324.57	8,896.0	190.9	-135.8	-190.3	0.00	0.00	0.00
9,000 9,100		324.57 324.57	8,995.9 9,095.9	193.7 196.5	-137.8 -139.8	-193.1 -195.9	0.00 0.00	0.00 0.00	0.00 0.00
9,100		324.57 324.57	9,095.9 9,195.8	190.5	-139.6 -141.8	-195.9 -198.7	0.00	0.00	0.00
9,213		324.57	9,209.1	199.6	-142.0	-190.7	0.00	0.00	0.00
9,300 9,311		324.57 0.00	9,295.8 9,307.0	201.0 201.0	-143.0 -143.0	-200.4 -200.4	2.00 2.00	-2.00 -2.00	0.00 0.00
· ·	.2 0.00 8' FNL & 2050' FEL		a,307.0	201.0	-143.0	-200.4	2.00	-2.00	0.00
9.350		179.49	9,345.8	199.7	-143.0	-199.1	10.00	10.00	0.00
9,400		179.49	9,345.6	194.1	-143.0	-199.1	10.00	10.00	0.00
9,450		179.49	9,444.4	184.3	-142.9	-183.7	10.00	10.00	0.00
9,500 9,550		179.49 179.49	9,492.4 9,539.0	170.2 152.0	-142.7 -142.6	-169.6 -151.4	10.00 10.00	10.00 10.00	0.00 0.00
9,550		179.49	9,539.0 9,583.7	152.0	-142.6 -142.4	-151.4 -129.2	10.00	10.00	0.00
9,650		179.49	9,626.4	103.8	-142.4	-123.2	10.00	10.00	0.00
9,700		179.49	9,666.7	74.1	-141.9	-73.5	10.00	10.00	0.00
5,. 00			-,000						

Database: Hobbs
Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: North Wilson Deep Unit #6H
Well: Sec 17, T21S, R35E

Wellbore: BHL: 2535' FNL & 2050' FEL, Sec 29

Design: Design #1

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Site North Wilson Deep Unit #6H WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,750.0	43.87	179.49	9,704.2	41.1	-141.6	-40.5	10.00	10.00	0.00
9,800.0	48.87	179.49	9,738.7	4.9	-141.2	-4.3	10.00	10.00	0.00
9,850.0	53.87	179.49	9,769.9	-34.1	-140.9	34.7	10.00	10.00	0.00
9,900.0	58.86	179.49	9,797.6	-75.7	-140.5	76.3	10.00	10.00	0.00
9,950.0	63.86	179.49	9,821.5	-119.6	-140.1	120.2	10.00	10.00	0.00
10,000.0	68.86	179.49	9,841.6	-165.4	-139.7	166.0	10.00	10.00	0.00
10,050.0	73.86	179.49	9,857.5	-212.8	-139.3	213.3	10.00	10.00	0.00
10,100.0	78.86	179.49	9,869.3	-261.3	-138.9	261.9	10.00	10.00	0.00
10,150.0	83.86	179.49	9,876.8	-310.7	-138.4	311.3	10.00	10.00	0.00
10,200.1	88.87	179.49	9,880.0	-360.7	-138.0	361.3	10.00	10.00	0.00
FTP/LP: 254	0' FSL & 2050' F	EL (17)							
10,300.0	88.87	179.49	9,882.0	-460.6	-137.1	461.2	0.00	0.00	0.00
10,400.0	88.87	179.49	9,883.9	-560.6	-136.2	561.1	0.00	0.00	0.00
10,500.0	88.87	179.49	9,885.9	-660.6	-135.3	661.1	0.00	0.00	0.00
10,600.0	88.87	179.49	9,887.9	-760.5	-134.4	761.1	0.00	0.00	0.00
10,700.0	88.87	179.49	9,889.9	-860.5	-133.5	861.1	0.00	0.00	0.00
10,800.0	88.87	179.49	9,891.9	-960.5	-132.6	961.0	0.00	0.00	0.00
10,900.0	88.87	179.49	9,893.8	-1,060.5	-131.7	1,061.0	0.00	0.00	0.00
11,000.0	88.87	179.49	9,895.8	-1,160.4	-130.8	1,161.0	0.00	0.00	0.00
11,100.0	88.87	179.49	9,897.8	-1,260.4	-129.9	1,261.0	0.00	0.00	0.00
11,200.0	88.87	179.49	9,899.8	-1,360.4	-129.9	1,360.9	0.00	0.00	0.00
				-1.460.4					
11,300.0	88.87	179.49	9,901.7	,	-128.1	1,460.9	0.00	0.00	0.00
11,400.0	88.87	179.49	9,903.7	-1,560.3	-127.2	1,560.9	0.00	0.00	0.00
11,500.0	88.87	179.49	9,905.7	-1,660.3	-126.3	1,660.8	0.00	0.00	0.00
11,600.0 11,700.0	88.87 88.87	179.49 179.49	9,907.7 9,909.6	-1,760.3 -1,860.3	-125.4 -124.5	1,760.8 1,860.8	0.00 0.00	0.00 0.00	0.00 0.00
11,800.0	88.87	179.49	9,911.6	-1,960.3	-123.6	1,960.8	0.00	0.00	0.00
11,900.0	88.87	179.49	9,913.6	-2,060.2	-122.7	2,060.7	0.00	0.00	0.00
12,000.0	88.87	179.49	9,915.6	-2,160.2	-121.8	2,160.7	0.00	0.00	0.00
12,100.0	88.87	179.49	9,917.5	-2,260.2	-120.9	2,260.7	0.00	0.00	0.00
12,200.0	88.87	179.49	9,919.5	-2,360.2	-120.0	2,360.6	0.00	0.00	0.00
12,300.0	88.87	179.49	9,921.5	-2,460.1	-119.1	2,460.6	0.00	0.00	0.00
12,400.0	88.87	179.49	9,923.5	-2,560.1	-118.3	2,560.6	0.00	0.00	0.00
12,500.0	88.87	179.49	9,925.4	-2,660.1	-117.4	2,660.6	0.00	0.00	0.00
12,600.0	88.87	179.49	9,927.4	-2,760.1	-116.5	2,760.5	0.00	0.00	0.00
12,700.0	88.87	179.49	9,929.4	-2,860.0	-115.6	2,860.5	0.00	0.00	0.00
12,800.0	88.87	179.49	9,931.4	-2,960.0	-114.7	2,960.5	0.00	0.00	0.00
12,900.0	88.87	179.49	9,933.3	-3,060.0	-113.8	3,060.4	0.00	0.00	0.00
13,000.0	88.87	179.49	9,935.3	-3,160.0	-112.9	3,160.4	0.00	0.00	0.00
13,100.0	88.87	179.49	9,937.3	-3,259.9	-112.0	3,260.4	0.00	0.00	0.00
13,200.0	88.87	179.49	9,939.3	-3,359.9	-111.1	3,360.4	0.00	0.00	0.00
13,300.0	88.87	179.49	9,941.3	-3,459.9	-110.2	3,460.3	0.00	0.00	0.00
13,400.0	88.87	179.49	9,943.2	-3,559.9	-109.3	3,560.3	0.00	0.00	0.00
13,500.0	88.87	179.49	9,945.2	-3,659.9	-108.4	3,660.3	0.00	0.00	0.00
13,600.0	88.87	179.49	9,947.2	-3,759.8	-107.5	3,760.2	0.00	0.00	0.00
13,700.0	88.87	179.49	9,949.2	-3,859.8	-106.6	3,860.2	0.00	0.00	0.00
13,800.0	88.87	179.49	9,951.1	-3,959.8	-105.7	3,960.2	0.00	0.00	0.00
13,900.0	88.87	179.49	9,953.1	-4,059.8	-104.8	4,060.2	0.00	0.00	0.00
14,000.0	88.87	179.49	9,955.1	-4,159.7	-103.9	4,160.1	0.00	0.00	0.00
14,100.0	88.87	179.49	9,957.1	-4,159.7 -4,259.7	-103.9	4,160.1	0.00	0.00	0.00
14,100.0	88.87	179.49	9,959.0	-4,259.7 -4,359.7	-103.0	4,260.1	0.00	0.00	0.00
,						,			
14,300.0 14,400.0	88.87 88.87	179.49 179.49	9,961.0 9,963.0	-4,459.7 -4,559.6	-101.2 -100.3	4,460.1 4,560.0	0.00 0.00	0.00 0.00	0.00 0.00
14,500.0	88.87	179.49	9,965.0	-4,659.6	-99.4	4,660.0	0.00	0.00	0.00

Database: Hobbs
Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: North Wilson Deep Unit #6H
Well: Sec 17, T21S, R35E

Wellbore: BHL: 2535' FNL & 2050' FEL, Sec 29

Design: Design#

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site North Wilson Deep Unit #6H WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

Grid

Planned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
14,600.0 14,700.0	88.87 88.87	179.49 179.49	9,966.9 9,968.9	-4,759.6 -4,859.6	-98.5 -97.6	4,760.0 4,859.9	0.00 0.00	0.00 0.00	0.00 0.00
14,800.0	88.87	179.49	9,970.9	-4,959.5	-96.7	4,959.9	0.00	0.00	0.00
14,900.0 15,000.0	88.87 88.87	179.49 179.49	9,972.9 9,974.8	-5,059.5 -5,159.5	-95.9 -95.0	5,059.9 5,159.9	0.00 0.00	0.00 0.00	0.00 0.00
15,100.0	88.87	179.49	9,976.8	-5,259.5	-94.1	5,259.8	0.00	0.00	0.00
15,200.0	88.87	179.49	9,978.8	-5,359.5	-93.2	5,359.8	0.00	0.00	0.00
15,300.0	88.87	179.49	9,980.8	-5,459.4	-92.3	5,459.8	0.00	0.00	0.00
15,400.0	88.87	179.49	9,982.7	-5,559.4	-91.4	5,559.7	0.00	0.00	0.00
15,500.0	88.87	179.49	9,984.7	-5,659.4	-90.5	5,659.7	0.00	0.00	0.00
15,600.0	88.87	179.49	9,986.7	-5,759.4	-89.6	5,759.7	0.00	0.00	0.00
15,700.0	88.87	179.49	9,988.7	-5,859.3	-88.7	5,859.7	0.00	0.00	0.00
15,800.0	88.87	179.49	9,990.7	-5,959.3	-87.8	5,959.6	0.00	0.00	0.00
15,900.0	88.87	179.49	9,992.6	-6,059.3	-86.9	6,059.6	0.00	0.00	0.00
16,000.0	88.87	179.49	9,994.6	-6,159.3	-86.0	6,159.6	0.00	0.00	0.00
16,100.0	88.87	179.49	9,996.6	-6,259.2	-85.1	6,259.5	0.00	0.00	0.00
16,200.0	88.87	179.49	9,998.6	-6,359.2	-84.2	6,359.5	0.00	0.00	0.00
16,300.0	88.87	179.49	10,000.5	-6,459.2	-83.3	6,459.5	0.00	0.00	0.00
16,400.0	88.87	179.49	10,002.5 10,004.5	-6,559.2	-82.4	6,559.5	0.00	0.00	0.00
16,500.0 16,600.0	88.87 88.87	179.49 179.49	10,004.5	-6,659.1 -6,759.1	-81.5 -80.6	6,659.4 6,759.4	0.00 0.00	0.00 0.00	0.00 0.00
16,700.0	88.87	179.49	10,008.4	-6,859.1	-79.7	6,859.4	0.00	0.00	0.00
16,800.0	88.87	179.49	10,010.4	-6,959.1	-78.8	6,959.3	0.00	0.00	0.00
16,900.0	88.87	179.49	10,012.4	-7,059.1	-77.9	7,059.3	0.00	0.00	0.00
17,000.0	88.87	179.49	10,014.4	-7,159.0	-77.0	7,159.3	0.00	0.00	0.00
17,100.0 17,200.0	88.87 88.87	179.49 179.49	10,016.3 10,018.3	-7,259.0 -7,359.0	-76.1 -75.2	7,259.3 7,359.2	0.00 0.00	0.00 0.00	0.00 0.00
17,300.0	88.87	179.49	10,020.3	-7,459.0	-74.3	7,459.2	0.00	0.00	0.00
17,400.0	88.87	179.49	10,022.3	-7,558.9	-73.4	7,559.2	0.00	0.00	0.00
17,500.0	88.87	179.49	10,024.2	-7,658.9	-72.6	7,659.1	0.00	0.00	0.00
17,600.0	88.87	179.49	10,026.2	-7,758.9	-71.7	7,759.1	0.00	0.00	0.00
17,700.0	88.87	179.49	10,028.2	-7,858.9	-70.8	7,859.1	0.00	0.00	0.00
17,800.0	88.87	179.49	10,030.2	-7,958.8	-69.9	7,959.1	0.00	0.00	0.00
17,900.0	88.87	179.49	10,032.1	-8,058.8 9.159.9	-69.0	8,059.0	0.00	0.00	0.00
18,000.0 18,100.0	88.87 88.87	179.49 179.49	10,034.1 10,036.1	-8,158.8 -8,258.8	-68.1 -67.2	8,159.0 8,259.0	0.00 0.00	0.00 0.00	0.00 0.00
18,200.0	88.87	179.49	10,036.1	-0,256.6 -8,358.7	-66.3	8,359.0	0.00	0.00	0.00
18,300.0	88.87	179.49	10,040.1	-8,458.7	-65.4	8,458.9	0.00	0.00	0.00
18,400.0	88.87	179.49	10,040.1	-8,558.7	-64.5	8,558.9	0.00	0.00	0.00
18,500.0	88.87	179.49	10,044.0	-8,658.7	-63.6	8,658.9	0.00	0.00	0.00
18,600.0	88.87	179.49	10,046.0	-8,758.7	-62.7	8,758.8	0.00	0.00	0.00
18,700.0	88.87	179.49	10,048.0	-8,858.6	-61.8	8,858.8	0.00	0.00	0.00
18,800.0	88.87	179.49	10,049.9	-8,958.6	-60.9	8,958.8	0.00	0.00	0.00
18,900.0	88.87	179.49	10,051.9	-9,058.6	-60.0	9,058.8	0.00	0.00	0.00
19,000.0	88.87	179.49	10,053.9	-9,158.6	-59.1	9,158.7	0.00	0.00	0.00
19,100.0	88.87	179.49	10,055.9	-9,258.5	-58.2	9,258.7	0.00	0.00	0.00
19,200.0	88.87	179.49	10,057.8	-9,358.5	-57.3	9,358.7	0.00	0.00	0.00
19,300.0	88.87	179.49	10,059.8	-9,458.5	-56.4	9,458.6	0.00	0.00	0.00
19,400.0	88.87	179.49	10,061.8	-9,558.5	-55.5	9,558.6	0.00	0.00	0.00
19,500.0	88.87	179.49	10,063.8	-9,658.4	-54.6	9,658.6	0.00	0.00	0.00
19,600.0	88.87	179.49	10,065.7	-9,758.4	-53.7	9,758.6	0.00	0.00	0.00
19,700.0	88.87	179.49	10,067.7	-9,858.4	-52.8	9,858.5	0.00	0.00	0.00
19,800.0	88.87	179.49	10,069.7	-9,958.4	-51.9	9,958.5	0.00	0.00	0.00
19,900.0	88.87	179.49	10,071.7	-10,058.3	-51.0	10,058.5	0.00	0.00	0.00

Database: Hobbs
Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: North Wilson Deep Unit #6H
Well: Sec 17, T21S, R35E

Wellbore: BHL: 2535' FNL & 2050' FEL, Sec 29

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site North Wilson Deep Unit #6H WELL @ 3680.0usft (Original Well Elev) WELL @ 3680.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,000.0	88.87	179.49	10,073.6	-10,158.3	-50.2	10,158.4	0.00	0.00	0.00
20,100.0	88.87	179.49	10,075.6	-10,258.3	-49.3	10,258.4	0.00	0.00	0.00
20,200.0	88.87	179.49	10,077.6	-10,358.3	-48.4	10,358.4	0.00	0.00	0.00
20,300.0	88.87	179.49	10,079.6	-10,458.3	-47.5	10,458.4	0.00	0.00	0.00
20,400.0	88.87	179.49	10,081.5	-10,558.2	-46.6	10,558.3	0.00	0.00	0.00
20,500.0	88.87	179.49	10,083.5	-10,658.2	-45.7	10,658.3	0.00	0.00	0.00
20.574.8	88.87	179.49	10.085.0	-10.733.0	-45.0	10.733.1	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 2370' FNL & 1910' - plan hits target cen - Point	0.00 ter	0.00	0.0	0.0	0.0	539,564.00	833,060.00	32.4797686	-103.3873158
KOP: 2168' FNL & 2050' - plan hits target cen - Point	0.00 ter	0.00	9,307.0	201.0	-143.0	539,765.00	832,917.00	32.4803245	-103.3877737
FTP/LP: 2540' FSL & 20 - plan hits target cen - Point	0.00 ter	0.00	9,880.0	-360.7	-138.0	539,203.30	832,922.03	32.4787806	-103.3877736
BHL: 2535' FNL & 2050' - plan hits target cen - Point	0.00 ter	0.00	10,085.0	-10,733.0	-45.0	528,831.00	833,015.00	32.4502708	-103.3877701