| Form 3160-3
(June 2015) | | | | OMB N | APPROV
No. 1004-01
anuary 31, | 137 | |---|------------------|--|----------------------|----------------|-------------------------------------|-------------------| | UNITED STA | | | | | | 2010 | | DEPARTMENT OF TH
BUREAU OF LAND MA | | | 5. Lea | se Serial No. | | | | APPLICATION FOR PERMIT TO | DRILL O | R REENTER | 6. If Ir | ndian, Allotee | e or Tribe N | Name | | | | | | | | | | 1a. Type of work: DRILL | REENTER | | 7. If U | nit or CA Ag | greement, N | Vame and No. | | 1b. Type of Well: Oil Well Gas Well | Other | | 0.7 | | | | | 1c. Type of Completion: Hydraulic Fracturing | Single Zone | Multiple Zone | 8. Lea | se Name and | l Well No. | | | 1. Type of completion: I Typicalite Flacturing | | Multiple Zone | | I | 39981] | | | 2. Name of Operator [215099] | | | 9. API | Well No. | 30- | 025-50293 | | 3a. Address | 3b. Phon | e No. (include area code | | eld and Pool, | or Explora | atory [98180 | | 4. Location of Well (Report location clearly and in accordan | ice with any St | tate requirements.*) | 11. Se | c., T. R. M. c | or Blk. and | Survey or Area | | At surface | | | | | | | | At proposed prod. zone | | | | | | | | 14. Distance in miles and direction from nearest town or post | office* | | 12. Cc | ounty or Paris | sh | 13. State | | 15. Distance from proposed* | 16. No o | f acres in lease | 17. Spacing Unit | dedicated to | this well | | | location to nearest
property or lease line, ft.
(Also to nearest drig. unit line, if any) | | | | | | | | 18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. | 19. Prop | osed Depth | 20. BLM/BIA Bo | nd No. in file | e | | | 21. Elevations (Show whether DF, KDB, RT, GL, etc.) | 22. Appr | oximate date work will s | tart* 23. Es | timated dura | tion | | | | 24. At | tachments | | | | | | The following, completed in accordance with the requiremen (as applicable) | ts of Onshore | Oil and Gas Order No. 1, | and the Hydrauli | c Fracturing | rule per 43 | CFR 3162.3-3 | | Well plat certified by a registered surveyor. A Drilling Plan. | | 4. Bond to cover the Item 20 above). | operations unless | covered by a | nn existing | bond on file (see | | 3. A Surface Use Plan (if the location is on National Forest S SUPO must be filed with the appropriate Forest Service O | | he 5. Operator certifica
6. Such other site spe
BLM. | | and/or plans a | s may be re | equested by the | | 25. Signature | Na | me (Printed/Typed) | | | Date | | | Title | - | | | | ' | | | Approved by (Signature) | Na | me (Printed/Typed) | | | Date | | | Title | Of | fice | | | | | | Application approval does not warrant or certify that the applicant to conduct operations thereon. Conditions of approval, if any, are attached. | licant holds leg | gal or equitable title to the | ose rights in the su | ıbject lease v | which woul | d entitle the | | Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 121 of the United States any false, fictitious or fraudulent stateme | | | | | any depart | ment or agency | | NGMP Rec 06/07/2022 | | | | | ,,, | | | | | - covnIT | ONS | 06/ | <z
/30/202</z
 | 2 | | SL | OVED V | ITH CONDIT | | | | | | (Continued on page 2) | WILL | | - | *(Ir | etruction | is on page 2 | Released to Imaging: 6/30/2022 3:32:44 PM Approval Date: 04/19/2022 ## **Additional Operator Remarks** #### **Location of Well** 0. SHL: SESE / 390 FSL / 1160 FEL / TWSP: 25S / RANGE: 33E / SECTION: 29 / LAT: 32.095383 / LONG: -103.589523 (TVD: 0 feet, MD: 0 feet) PPP: SESE / 390 FSL / 1204 FEL / TWSP: 25S / RANGE: 33E / SECTION: 29 / LAT: 32.095383 / LONG: -103.589665 (TVD: 12315 feet, MD: 12809 feet) BHL: NENE / 100 FNL / 1204 FEL / TWSP: 25S / RANGE: 33E / SECTION: 29 / LAT: 32.108552 / LONG: -103.589658 (TVD: 12315 feet, MD: 16871 feet) #### **BLM Point of Contact** Name: Priscilla Perez Title: Legal Instruments Examiner Phone: (575) 234-5934 Email: pperez@blm.gov District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 # State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office ☐ AMENDED REPORT #### WELL LOCATION AND ACREAGE DEDICATION PLAT | | 30-025-50293 | 98180 | 98180 WC-025 G-09 S253309P; UPR WOI | | | | | | |---|---------------------------------|-------|-------------------------------------|----------------------------------|--|--|--|--| | ĺ | 4 Property Code
39981 | | operty Name
DE 29 FEDERAL | ⁶ Well Number
74H | | | | | | | ⁷ OGRID №.
215099 | | perator Name
EX ENERGY CO. | ⁹ Elevation
3397.5 | | | | | | _ | | ~ | 0 7 | | | | | | #### ¹⁰ Surface Location | UL or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | |---------------|---------|----------|-------|---------|---------------|------------------|---------------|----------------|--------| | P | 29 | 25S | 33E | | 390 | SOUTH | 1160 | EAST | LEA | #### "Bottom Hole Location If Different From Surface | UL or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | |-------------------------|---------|-----------------|----------|----------------|---------------|------------------|---------------|----------------|--------| | A | 29 | 25S | 33E | | 100 | NORTH | 1204 | EAST | LEA | | 12 Dedicated Acr
320 | es 13 | Joint or Infill | 14 Conso | olidation Code | 15 Order No. | | | | | No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. I. Operator: Cimarex Energy Company ## State of New Mexico Energy, Minerals and Natural Resources Department Submit Electronically Via E-permitting **Date:** __6__/_7___/_2022 Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 #### NATURAL GAS MANAGEMENT PLAN This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. ## Section 1 – Plan Description Effective May 25, 2021 **OGRID:** 215099 | II. Tÿpĕ: ĎOriginal | ☐ Amendmen | t due to □ 19.15.27. | 9.D(6)(a) NMA | AC □ 19.15.27.9.D | 0(6)(b) NMAC □ | Other. | | |--|---|---------------------------|------------------|--------------------------|--------------------------|----------|---------------------------------| | If Other, please describe | »: | | | | | | | | III. Well(s): Provide to be recompleted from a | | | | | wells proposed | to be d | rilled or proposed | | Well Name | API | ULSTR | Footages | Anticipated
Oil BBL/D | Anticipated
Gas MCF/D | Pi | Anticipated roduced Water BBL/D | | Cascade 29 Federal 74H 3 | 0-025-50293 | P, Sec 29 T25S, R33E | 390 FSL/1160 | FEL 1900 | 3800 | | 4500 | | V. Anticipated Schedu
or proposed to be recom
Well Name | | single well pad or co | | | nt.
Initial | Flow | First Production Date | | Cascade 29 Federal 74H 30 | -025-50293 | 5/20/2025 | 6/11/2025 | 11/1/2025 | 1/1/20 | | 1/1/2026 | | VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Management during active and planne | tices: ☑ Attacl
of 19.15.27.8 Int Practices: ☑ | h a complete descripNMAC. | otion of the act | tions Operator will | I take to comply | with the | ne requirements of | # Section 2 – Enhanced Plan | | | | E APRIL 1, 2022 | | | |--|--|--|---|---|---------| | Beginning April 1, 2 reporting area must c | | | with its statewide natural g | as capture requirement for the appl | icable | | Operator certifies capture requirement | - | - | tion because Operator is in | compliance with its statewide natur | al gas | | IX. Anticipated Nat | ural Gas Producti | on: | | | | | We | ·11 | API | Anticipated Average
Natural Gas Rate MCF/E | Anticipated Volume of Nati
Gas for the First Year MC | | | | | | | | | | X. Natural Gas Gat | hering System (NC | GGS): | | | | | Operator | System | ULSTR of Tie-in | Anticipated Gathering
Start Date | Available Maximum Daily Capao
of System Segment Tie-in | city | | | | | | | | | production operations the segment or portion XII. Line Capacity. | s to the existing or point of the natural gas. The natural gas ga | planned interconnect of the gathering system(s) to v | he natural gas gathering systewhich the well(s) will be conditionally will not have capacity to g | ticipated pipeline route(s) connections(s), and the maximum daily capacinected. ather 100% of the anticipated nature | city of | | | | | | ed to the same segment, or portion, line pressure caused by the new we | | | ☐ Attach Operator's | plan to manage pro | oduction in response to the | ne increased line pressure. | | | | Section 2 as provided | l in Paragraph (2) o | | 27.9 NMAC, and attaches a f
 SA 1978 for the information providual description of the specific inform | | | | | | | | | | | | | | | | # Section 3 - Certifications Effective May 25, 2021 | Operator certifies that, at | fter reasonable inquiry and based on the available information at the time of submittal: | |---|---| | one hundred percent of t | to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering | | hundred percent of the arinto account the current a | able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one naticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following: | | Well Shut-In. □ Operate
D of 19.15.27.9 NMAC; | or will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection or | | | an. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential as for the natural gas until a natural gas gathering system is available, including: | | (a) | power generation on lease; | | (b) | power generation for grid; | | (c) | compression on lease; | | (d) | liquids removal on lease; | | (e) | reinjection for underground storage; | | (f) | reinjection for temporary storage; | | (g) | reinjection for enhanced oil recovery; | # other alternative beneficial uses approved by the division. 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud: fuel cell production; and (h) (i) (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or **Section 4 - Notices** - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement. - 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud. I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. | Printed Name: Sarah Jordan | |---| | Title: Regulatory Analyst | | E-mail Address: sarah.jordan@coterra.com | | Date: 6/7/2022 | | Phone: 432/620-1909 | | OIL CONSERVATION DIVISION | | (Only applicable when submitted as a standalone form) | | Approved By: | | | | Title: | | Title: Approval Date: | | | | Approval Date: | | Approval Date: | | Approval Date: | | | #### From State of New Mexico, Natural Gas Management Plan **VI. Separation Equipment:** Attach a complete description of how Operator will size separation equipment to optimize gas capture. #### **XEC Standard Response** Standard facility gas process flow begins at the inlet separator. These vessels are designed based off of forecasted rates and residence times in accordance with, and often greater than, API 12J. The separated gas is then routed to an additional separation vessel (ie sales scrubber) in order to extract liquids that may have carried over or developed due to the decrease in pressure. The sales scrubber is sized based on API 521. From the sales scrubber, the gas leaves the facility and enters the gas midstream gathering network. ## **Cimarex** # VII. Operational Practices Cimarex values the sustainable development of New Mexico's natural resources. Venting and flaring of natural gas is a source of waste in the industry, and Cimarex will ensure that its values are aligned with those of NMOCD. As such, Cimarex plans to take pointed steps to ensure compliance with Subsection A through F of 19.15.27.8 NMAC. Specifically, below are the steps Cimarex will plan to follow under routine well commissioning and operations. - 1. Capture or combust natural gas during drilling operations where technically feasible, using the best industry practices and control technologies. - a. All flares during these operations will be a minimum of 100ft away from the nearest surface-hole location. - 2. All gas present during post-completion drill-out and flow back will be routed through separation equipment, and, if technically feasible, flare unsellable vapors rather than vent. Lastly, formal sales separator commissioning to process well-stream fluids and send gas to a gas flow line/collection system or use the gas for on-site fuel or beneficial usage, gas as soon as is safe and technically feasible. - 3. Cimarex will ensure the flare or combustion equipment is properly sized to handle expected flow rates, ensure this equipment is equipped with an automatic or continuous ignition source, and ensure this equipment is designed for proper combustion efficiency. - 4. If Cimarex must flare because gas is not meeting pipeline specifications, Cimarex will limit flaring to <60 days, analyze gas composition at least twice per week, and route gas into a gathering pipeline as soon as pipeline specifications are met. - 5. Under routine production operations, Cimarex will not flare/vent unless: - a. Venting or flaring occurs due to an emergency or equipment malfunction. - b. Venting or flaring occurs as a result of unloading practices, and an operator is onsite (or within 30 minutes of drive time and posts contact information at the wellsite) until the end of unloading practice. - c. The venting or flaring occurs during automated plungerlift operations, in which case the Cimarex operator will work to optimize the plungerlift system to minimize venting/flaring. - d. The venting or flaring occurs during downhole well maintenance, in which case Cimarex will work to minimize venting or flaring operations to the extent that it does not pose a risk to safe operations. - e. The well is an exploratory well, the division has approved the well as an exploratory well, venting or flaring is limited to 12 months, as approved by the division, and venting/flaring does not cause Cimarex to breach its State-wide 98% gas capture requirement. - f. Venting or flaring occurs because the stock tanks or other low-pressure vessels are being gauged, sampled, or liquids are being loaded out. - g. The venting or flaring occurs because pressurized vessels are being maintained and are being blown-down or depressurized. - h. Venting or flaring occurs as a result of normal dehydration unit operations. - i. Venting or flaring occurs as a result of bradenhead testing. - j. Venting or flaring occurs as a result of normal compressor operations, including general compressor operations, compressor engines and turbines. - k. Venting or flaring occurs as a result of a packer leakage test. - l. Venting or flaring occurs as a result of a production test lasting less than 24 hours unless otherwise approved by the division. - m. Venting or flaring occurs as a result of new equipment commissioning and is necessary to purge impurities from the pipeline or production equipment. - 6. Cimarex will maintain its equipment in accordance with its Operations and Maintenance Program, to ensure venting or flaring events are minimized and that equipment is properly functioning. - 7. Cimarex will install automatic tank gauging equipment on all production facilities constructed after May 25, 2021, to ensure minimal emissions from tank gauging practices. - 8. By November 25, 2022, all Cimarex facilities equipped with flares or combustors will be equipped with continuous pilots or automatic igniters, and technology to ensure proper function, i.e. thermocouple, fire-eye, etc... - 9. Cimarex will perform AVO (audio, visual, olfactory) facility inspections in accordance with NMOCD requirements. Specifically, Cimarex will: - a. Perform weekly inspections during the first year of production, and so long as production is greater than 60 MCFD. - b. If production is less than 60 MCFD, Cimarex will perform weekly AVO inspections when an operator is present on location, and inspections at least once per calendar month with
at least 20 calendar days between inspections. - 10. Cimarex will measure or estimate the volume of vented, flared or beneficially used natural gas, regardless of the reason or authorization for such venting or flaring. - 11. On all facilities constructed after May 25, 2021, Cimarex will install metering where feasible and in accordance with available technology and best engineering practices, in an effort to measure how much gas could have been vented or flared. - a. In areas where metering is not technically feasible, such as low-pressure/low volume venting or flaring applications, engineering estimates will be used such that the methodology could be independently verified. - 12. Cimarex will fulfill the division's requirements for reporting and filing of venting or flaring that exceeds 50 MCF in volume or last eight hours or more cumulatively within any 24-hour period. # VIII. Best Management Practices to minimize venting during active and planned maintenance Cimarex strives to ensure minimal venting occurs during active and planned maintenance activities. Below is a description of common maintenance practices, and the steps Cimarex takes to limit venting exposure. #### • Workovers: - o Always strive to kill well when performing downhole maintenance. - o If vapors or trapped pressure is present and must be relieved then: - Initial blowdown to production facility: - Route vapors to LP flare if possible/applicable - Blowdown to portable gas buster tank: - Vent to existing or portable flare if applicable. #### • Stock tank servicing: - o Minimize time spent with thief hatches open. - When cleaning or servicing via manway, suck tank bottoms to ensure minimal volatiles exposed to atmosphere. - Connect vacuum truck to low pressure flare while cleaning bottoms to limit venting. - o Isolate the vent lines and overflows on the tank being serviced from other tanks. #### • Pressure vessel/compressor servicing and associated blowdowns: - o Route to flare where possible. - o Blow vessel down to minimum available pressure via pipeline, prior to venting vessel. - Preemptively changing anodes to reduce failures and extended corrosion related servicing. - When cleaning or servicing via manway, suck vessel bottoms to ensure minimal volatiles exposed to atmosphere. #### • Flare/combustor maintenance: - Minimize downtime by coordinating with vendor and Cimarex staff travel logistics. - Utilizing preventative and predictive maintenance programs to replace high wear components before failure. - Because the flare/combustor is the primary equipment used to limit venting practices, ensure flare/combustor is properly maintained and fully operational at all times via routine maintenance, temperature telemetry, onsite visual inspections. The Cimarex expectation is to limit all venting exposure. Equipment that may not be listed on this document is still expected to be maintained and associated venting during such maintenance minimized. #### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Well Name: CASCADE 29 FEDERAL # Drilling Plan Data Report 05/25/2022 APD ID: 10400073019 Submission Date: 04/14/2021 Highlighted data reflects the most recent changes **Operator Name: CIMAREX ENERGY COMPANY** Well Number: 74H Well Type: OIL WELL Well Work Type: Drill **Show Final Text** ## **Section 1 - Geologic Formations** | Formation ID | Formation Name | Elevation | True Vertical | Depth | Lithologies | Mineral Resources | Producing
Formatio | |--------------|-----------------|-----------|---------------|-------|-------------------------|-------------------|-----------------------| | 3706283 | RUSTLER | 3398 | 994 | 994 | ANHYDRITE,
SANDSTONE | USEABLE WATER | N | | 3706284 | TOP OF SALT | 2070 | 1328 | 1328 | ANHYDRITE | NONE | N | | 3706285 | LAMAR LS | -1522 | 4920 | 4920 | SANDSTONE | NONE | N | | 3706286 | BELL CANYON | -1556 | 4954 | 4954 | SANDSTONE | NATURAL GAS, OIL | N | | 3706287 | CHERRY CANYON | -2616 | 6014 | 6014 | SANDSTONE | NATURAL GAS, OIL | N | | 3706288 | BRUSHY CANYON | -4110 | 7508 | 7508 | SANDSTONE | NATURAL GAS, OIL | N | | 3706289 | BONE SPRING | -5650 | 9048 | 9048 | LIMESTONE | NATURAL GAS, OIL | N | | 3706290 | AVALON | -6325 | 9723 | 9723 | SHALE | NATURAL GAS, OIL | N | | 3706291 | BONE SPRING 2ND | -7017 | 10415 | 10415 | SANDSTONE | NATURAL GAS, OIL | N | | 3706292 | BONE SPRING 3RD | -7656 | 11054 | 11054 | SANDSTONE | NATURAL GAS, OIL | N | | 3706293 | WOLFCAMP | -8781 | 12179 | 12179 | SHALE | NATURAL GAS, OIL | Y | #### **Section 2 - Blowout Prevention** Pressure Rating (PSI): 10M Rating Depth: 16871 Equipment: A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor. Requesting Variance? YES Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Cimarex requests a 5M annular variance for the 10M BOP system. See Well Name: CASCADE 29 FEDERAL Well Number: 74H #### attached procedure **Testing Procedure:** A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### **Choke Diagram Attachment:** Cascade_29_Federal_74H_10M_Choke_20210414132654.pdf #### **BOP Diagram Attachment:** Cascade 29 Federal 74H 10M BOP 20210414132702.pdf Pressure Rating (PSI): 5M Rating Depth: 12434 **Equipment:** A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor. Requesting Variance? YES **Variance request:** Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. **Testing Procedure:** A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### **Choke Diagram Attachment:** Cascade 29 Federal 74H 5M Choke 20210414132624.pdf #### **BOP Diagram Attachment:** Cascade 29 Federal 74H 5M BOP 20210414132634.pdf Well Name: CASCADE 29 FEDERAL Well Number: 74H ## **Section 3 - Casing** | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing
length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------
--------------------------------|------------|--------|------------|-------------|----------|---------------|-----------|--------------|-----------| | 1 | SURFACE | 14.7
5 | 10.75 | NEW | API | N | 0 | 1050 | 0 | 1050 | 3398 | 2348 | 1050 | J-55 | 40.5 | BUTT | 3.47 | 6.88 | BUOY | 14.7
9 | BUOY | 14.7
9 | | 2 | PRODUCTI
ON | 6.75 | 5.5 | NEW | API | Υ | 0 | 11750 | 0 | 11750 | 3398 | -8352 | 11750 | L-80 | 23 | LT&C | 1.16 | 1.2 | BUOY | 1.88 | BUOY | 1.88 | | 3 | INTERMED
IATE | 9.87
5 | 7.625 | NEW | API | N | 0 | 12434 | 0 | 12266 | 3398 | -8868 | 12434 | HCL
-80 | 29.7 | BUTT | 2.46 | 1.17 | BUOY | 1.87 | BUOY | 1.87 | | 4 | PRODUCTI
ON | 6.75 | 5.0 | NEW | API | Υ | 11750 | 16871 | 11750 | 12315 | -8352 | -8917 | 5121 | P-
110 | 18 | BUTT | 1.68 | 1.7 | BUOY | 57.0
3 | BUOY | 57.0
3 | #### **Casing Attachments** Casing ID: 1 String SURFACE **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Cascade_29_Federal_74H_Casing_Assumptions_20210414133943.pdf Well Name: CASCADE 29 FEDERAL Well Number: 74H **Casing Attachments** Casing ID: 2 String **PRODUCTION** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Cascade_29_Federal_74H_Tapered_Specs_20210414132740.pdf Casing Design Assumptions and Worksheet(s): Cascade_29_Federal_74H_Casing_Assumptions_20210414133047.pdf Casing ID: 3 String INTERMEDIATE **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Cascade_29_Federal_74H_Casing_Assumptions_20210414133209.pdf Casing ID: 4 String **PRODUCTION** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Cascade_29_Federal_74H_Tapered_Specs_20210414133116.pdf Casing Design Assumptions and Worksheet(s): Cascade_29_Federal_74H_Casing_Assumptions_20210414133135.pdf **Section 4 - Cement** Well Name: CASCADE 29 FEDERAL Well Number: 74H | String Type | Lead/Tail | Stage Tool
Depth | Тор МD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|-----------| | PRODUCTION | Lead | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | SURFACE | Lead | | 0 | 1050 | 408 | 1.72 | 13.5 | 701 | 45 | Class C | Bentonite | |--------------|------|------|---|------|-----|------|------|------|----|---------------|----------------| | SURFACE | Tail | | 0 | 1050 | 109 | 1.34 | 14.8 | 146 | 45 | Class C | LCM | | INTERMEDIATE | Lead | 4920 | 0 | 4920 | 795 | 1.88 | 12.9 | 1494 | 39 | 35:65 (POZ C) | Salt Bentonite | | INTERMEDIATE | Lead | 4920 | 4920 | 1243
4 | 577 | 3.64 | 10.3 | 2100 | 47 | Tuned Light | LCM | |--------------|------|------|------|-----------|-----|------|------|------|----|---------------|---| | INTERMEDIATE | Tail | | 4920 | 1243
4 | 198 | 1.36 | 14.8 | 269 | 47 | Class C | Retarder | | PRODUCTION | Lead | | 0 | 1687
1 | 657 | 1.3 | 14.2 | 853 | 25 | 50:50 (POZ H) | Salt Bentonite Fluid
Loss Dispersant SMS | # **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with Onshore Order #2: Diagram of the equipment for the circulating system in accordance with Onshore Order #2: **Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials will be kept on location at all times in order to combat lost circulation or unexpected kicks. In order to run DSTs, open hole logs, and casing, the viscosity and water loss may have to be adjusted in order to meet these needs. Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring ## **Circulating Medium Table** Well Name: CASCADE 29 FEDERAL Well Number: 74H | Top Depth | Bottom Depth | Mud Type | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | ЬН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-----------|--------------|----------------------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------| | 0 | 1050 | OTHER : Fresh
Water | 7.83 | 8.33 | | | | | | | | | 1050 | 1243
4 | OTHER : Brine
Diesel Emulsion | 8.5 | 9 | | | | | | | | | 1243
4 | 1687
1 | OIL-BASED
MUD | 12 | 12.5 | | | | | | | | ## **Section 6 - Test, Logging, Coring** List of production tests including testing procedures, equipment and safety measures: No DST Planned List of open and cased hole logs run in the well: GAMMA RAY LOG, DIRECTIONAL SURVEY, COMPENSATED NEUTRON LOG, Coring operation description for the well: N/A #### **Section 7 - Pressure** Anticipated Bottom Hole Pressure: 8004 Anticipated Surface Pressure: 5294 Anticipated Bottom Hole Temperature(F): 191 Anticipated abnormal pressures, temperatures, or potential geologic hazards? YES #### Describe: Lost circulation may be encountered in the Delaware mountain group. Abnormal pressure as well as hole stability issues may be encountered in the Wolfcamp. #### Contingency Plans geoharzards description: Lost circulation material will be available, as well as additional drilling fluid along with the fluid volume in the drilling rig pit system. Drilling fluid can be mixed on location or mixed in vendor mud plant and trucked to location if needed. Sufficient barite will be available to maintain appropriate mud weight for the Wolfcamp interval. Contingency Plans geohazards Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations Cascade_29_Fed_74H_H2S_Plan_20210414134338.pdf Well Name: CASCADE 29 FEDERAL Well Number: 74H #### **Section 8 - Other Information** #### Proposed horizontal/directional/multi-lateral plan submission: Cascade_29_Federal_74H_AC_Report_20210414134405.pdf Cascade_29_Federal_74H_Directional_20210414134416.pdf #### Other proposed operations facets description: #### Other proposed operations facets attachment: Cascade_29_Fed_74H_Gas_Capture_Plan__1__20210414134431.pdf Cascade_29_Federal_74H_Drilling_Plan_20210414134446.pdf #### **Other Variance attachment:** Cascade_29_Federal__Well_Control_10M_w_5M_annular_Plan_20210413124407.pdf Cascade_29_Federal_74H_Multibowl_20210414134502.pdf Cascade_29_Federal_74H_Flex_Hose_20210414134522.pdf #### 1. Geological Formations TVD of target Pilot Hole TD N/A MD at TD Deepest expected fresh water | Formation | Depth (TVD) from KB | Water/Mineral Bearing/Target Zone | Hazards | |--------------------|---------------------|-----------------------------------|---------| | Rustler | 994 | Useable Water | | | Top Salt | 1328 | N/A | | | Lamar | 4920 | N/A | | | Bell Canyon | 4954 | Hydrocarbons | | | Cherry Canyon | 6014 | Hydrocarbons | | | Brushy Canyon | 7508 | Hydrocarbons | | | Bone Spring | 9048 | Hydrocarbons | | | Upper Avalon Shale | 9723 | Hydrocarbons | | | 2nd Bone Spring | 10415 | Hydrocarbons | | | 3rd Bone Spring | 11054 | Hydrocarbons | | | Wolfcamp | 12179 | Hydrocarbons | | #### 2. Casing Program | | • | Casing
Depth To | Setting
Depth TVD | Casing
Size | Weight
(lb/ft) | Grade | Conn. | SF Collapse | SF Burst | SF Tension | |--------|-------|--------------------|----------------------|----------------|-------------------|------------|-------------|-------------|----------|--------------------| | 14 3/4 | 0 | 1050 | 1050 | 10-3/4" | 40.50 | J-55 | BT&C | 3.47 | 6.88 | 14.79 | | 9 7/8 | 0 | 12434 | 12266 | 7-5/8" | 29.70 | HCL-80 | BT&C | 2.46 | 1.20 | 1.87 | | 6 3/4 | 0 | 11750 | 11750 | 5-1/2" | 23.00 | L-80 | LT&C | 1.16 | 1.20 | 1.88 | | 6 3/4 | 11750 | 16871 | 12315 | 5" | 18.00 | P-110 | BT&C | 1.68 | 1.70 | 57.03 | | | | | | | BLM | Minimum Sa | fety Factor | 1.125 | 1 | 1.6 Dry
1.8 Wet | TVD was used on all calculations. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Request Variance for 5-1/2" x 7-5/8" annular clearance. The portion that does not meet clearance will not be cemented ## Cimarex Energy Co., Cascade 29 Federal 74H | | Y or N | |--|--------| | Is casing new? If used, attach certification as required in Onshore Order #1 | Υ | | Does casing meet API specifications? If no, attach casing specification sheet. | Υ | | Is premium or uncommon casing planned? If yes attach casing specification sheet. | Y | | Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | Υ | | Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? | Y | | Is well located within Capitan Reef? | N | | If yes, does production casing cement tie back a minimum of 50' above the Reef? | N | | Is well within the designated 4 string boundary. | N | | Is well located in SOPA but not in R-111-P? | N | | If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing? | N | | Is well located in R-111-P and SOPA? | N | | If yes, are the first three strings cemented to surface? | N | | Is 2nd string set 100' to 600' below the base of salt? | N | | Is well located in high Cave/Karst? | N | | If yes, are there two strings cemented to surface? | N | | (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? | N | | Is well located in critical Cave/Karst? | N | | If yes, are there three strings cemented to surface? | N | | Is AC Report included? | N | #### 3. Cementing Program | Casing | | Wt.
lb/gal | Yld
ft3/sack | H2O
gal/sk | 500#
Comp.
Strength
(hours) | Slurry Description | |----------------------|-----|---------------|-----------------|---------------|-----------------------------------|--| | Surface | 408 | 13.50 | 1.72 | 9.15 | 15.5 | Lead: Class C + Bentonite | | | 109 | 14.80 | 1.34 | 6.32 | 9.5 | Tail: Class C + LCM | | | | | | | | | | Intermediate Stage 1 | 577 | 10.30 | 3.64 | 22.18 | | Lead: Tuned Light + LCM | | | 198 | 14.80 | 1.36 | 6.57 | 9.5 | Tail: Class C + Retarder | | | | | | | | | | Intermediate Stage 2 | 795 | 12.90 | 1.88 | 9.65 | 12 | Lead: 35:65 (Poz:C) + Salt + Bentonite | | | | | | | | | | Production | 657 | 14.20 | 1.30 | 5.86 | 14:30 | Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS | | | | • | | • | | | DV tool with possible annular casing packer as needed is proposed at a depth of \pm 4,920'. | Casing String | тос | % Excess | |----------------------|-------|----------| | Surface | 0 | 45 | | Intermediate Stage 1 | 4920 | 47 | | Intermediate Stage 2 | 0 | 39 | | Production | 12234 | 25 | Cimarex request the ability to perform casing integrity tests after plug bump of cement job. #### 4. Pressure Control Equipment A variance is requested for the use of a diverter on the surface casing. See attached for schematic. | BOP installed and tested before drilling which hole? | Size | Min Required WP | Туре | | Tested To | |--|--------|-----------------|------------|---|-------------------------| | 9 7/8 | 13 5/8 | 5M | Annular | Х | | | | | | Blind Ram | | | | | | | Pipe Ram | Х | 5M | | | | | Double Ram | Х | | | | | | Other | | | | 6 3/4 | 13 5/8 | 10M | Annular | Х | 50% of working pressure | | | | | Blind Ram | | | | | | | Pipe Ram | Х | 10M | | | | | Double Ram | Х | | | | | | Other | | | BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics. | Х | Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i. | | | | | | |---|--|---|--|--|--|--| | Х | A vai | riance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart. | | | | | | | N | Are anchors required by manufacturer? | | | | | #### 5. Mud Program | Depth | Туре | Weight (ppg) | Viscosity | Water Loss | |------------------|-----------------------|---------------|-----------|------------| | 0' to 1050' | Fresh Water | 7.83 - 8.33 | 28 | N/C | | 1050' to 12434' | Brine Diesel Emulsion | 8.50 - 9.00 | 30-35 | N/C | | 12434' to 16871' | ОВМ | 12.00 - 12.50 | 50-70 | N/C | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The Brine Emulsion is completely saturated brine fluid that ties diesel into itself to lower the weight of the fluid. The drilling fluid is completely salt saturated. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---|-----------------------------| | | | #### 6. Logging and Testing Procedures | Logg | Logging, Coring and Testing | | | | | | | | |------|--|--|--|--|--|--|--|--| | | Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. | | | | | | | | | | No logs are planned based on well control or offset log information. | | | | | | | | | | Drill stem test? | | | | | | | | | | Coring? | | | | | | | | | Additional Logs Planned | Interval | |-------------------------|----------| | | | #### 7. Drilling Conditions | Condition | | |----------------------------|----------| | BH Pressure at deepest TVD | 8004 psi | | Abnormal Temperature | No | Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM. H2S is present H2S plan is attached #### 8. Other Facets of Operation #### 9. Wellhead A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8" BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendor's representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi. All casing strings will be tested as per Onshore Order No.2 to atleast 0.22 psi/ft or 1,500 whichever is greater and not to exceed 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### Schlumberger Alert #### Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 Anti-Collision Summary Report Analysis Date-24hr Time: October 29, 2020 - 13:06 Client: Cimarex Energy Field: MM Lea County (NAD 83) Structure: Cimarex Cascade 29 Federal #74H Slot: New Slot Well: Cascade 29 Federal #74H Cascade 29 Federal #74H Borehole: Scan MD Range: 0.00ft ~ 16871.24ft ISCWSA0 3-D 95.000% Confidence 2.7955 sigma, for subject well. For offset wells, error model version is specified with each well respectively. Offset Trajectories Summary Trajectory Error Model: Separation Offset Selection Criteria Wellhead distance scan: Offset Trajectory Not performed! Selection filters: Definitive Surveys - Definitive Plans - Definitive surveys exclude definitive plans - All Non-Def Surveys when no Def-Survey is set in a borehole - All Non-Def Plans when no Def-Plan is set in a borehole Allow Sep. Controlling Reference Trajectory Analysis Method: Reference Trajectory: 3D Least Distance Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 (Non-Def Plan) Depth Interval: Every 10.00 Measured Depth (ft) NAL Procedure: D&M AntiCollision Standard S002 Min Pts: All local minima indicated. Risk Level Version / Patch: 2.10.821.3 US1153APP452.dir.slb.com\drilling-NM Lea County 2.10 Database \ Project: | Offset Trajectory | | Separation | | Allow | Sep. | Controlling | Reference 1 | Trajectory | | Risk Level | | Alert | Status | |---|------------------|------------|----------|-----------|-----------|-----------------|-------------|------------|-----------------|------------|-------|-------------|---------------| | | Ct-Ct (ft) | MAS (ft) | EOU (ft) | Dev. (ft) | Fact. | Rule | MD (ft) | TVD (ft) | Alert | Minor | Major | | | | | 01 01 (11) | | LOO (II) | Dev. (it) | i act. | ituic | WID (II) | 140 (11) | Aicit | MILIO | major | | | | Results highlighted: Sep-Factor | or separation <= | : 1.50 ft | Cimarex Cascade 29 Federal | | | | | | | | | | | | | | | 7H XEM+MWD Survey 0ft - | | | | | | | | | | | | | | | 14306'MD (Def Survey) | | | | | | | | | | | | | Fail Minor | | 14306 MD (Del Survey) | | | | | | | | | | | | | rali Minor | | | 4560.17 | 32.81 | 4558.19 | 4527.37 | N/A | MAS = 10.00 (m) | 0.00 | 0.00 | | | | Surface | | | | 4560.16 | 32.81 | 4558.18 | 4527.35 | 675388.72 | MAS = 10.00 (m) | 23.00 | 23.00 | | | | WRP | | | | | | | | | | | | | | | ***** | | | | 4558.00 | 32.81 | 4552.98 | 4525.20 | 1495.46 | MAS = 10.00 (m) | 740.00 | 740.00 | | | | MinPts | | | | 4539.05 | 32.81 | 4522.29 | 4506.24 | 307.08 | MAS = 10.00 (m) | 3360.00 | 3360.00 | | | | MinPts | | | | 427.09 | 131.44 | 338.80 | 295.65 | 4.93 | OSF1.50 | 9460.00 | 9460.00 | OSF<5.00 | | | Enter Alert | | | | 199.97 | | 000.00 | 200.00 | 1.44 | | | | 001 40.00 | | | | | | | 199.97 | 208.89 | 60.05 | -8.92 | | OSF1.50 | 9740.00 | 9740.00 | | OSF<1.50 | | Enter Minor | | | | 164.09 | 244.41 | 0.49 | -80.32 | 1.00 | OSF1.50 |
9850.00 | 9850.00 | | | | MinPts | | | | 200.67 | 207.31 | 61.80 | -6.64 | 1.45 | OSF1.50 | 9970.00 | 9970.00 | | OSF>1.50 | | Exit Minor | | | | 428.22 | | 340.83 | 298.12 | 4.99 | OSF1.50 | 10250.00 | 10250.00 | OSF>5.00 | 00171.00 | | Exit Alert | | | | | 130.09 | 010.00 | | | | | | USF>5.00 | | | | | | | 2447.79 | 83.89 | 2391.20 | 2363.89 | 44.79 | OSF1.50 | 12920.00 | 12315.00 | | | | MINPT-O-EOU | | | | 2437.21 | 77.94 | 2384.59 | 2359.27 | 48.09 | OSF1.50 | 13380.00 | 12315.00 | | | | MinPt-O-ADP | | | | 2437.03 | 77.73 | 2384.56 | 2359.31 | 48.22 | OSF1.50 | 13410.00 | 12315.00 | | | | MINPT-O-EOU | | | | | | | | | | | | | | | | | | | 2436.94 | 77.45 | 2384.64 | 2359.48 | 48.39 | OSF1.50 | 13450.00 | 12315.00 | | | | MinPt-CtCt | | | | 2439.03 | 73.91 | 2389.10 | 2365.12 | 50.82 | OSF1.50 | 13910.00 | 12315.00 | | | | MinPt-O-ADP | | | | 2439.00 | 73.88 | 2389.09 | 2365.12 | 50.84 | OSF1.50 | 13920.00 | 12315.00 | | | | MINPT-O-EOU | | | | | | | | | | | | | | | | | | | 2438.98 | 73.84 | 2389.09 | 2365.14 | 50.87 | OSF1.50 | 13940.00 | 12315.00 | | | | MinPt-CtCt | | | | 2434.12 | 73.19 | 2384.66 | 2360.92 | 51.23 | OSF1.50 | 14400.00 | 12315.00 | | | | MinPt-CtCt | | | | 2434.13 | 73.24 | 2384.65 | 2360.90 | 51.20 | OSF1.50 | 14410.00 | 12315.00 | | | | MINPT-O-EOU | | | | | | | | | | | | | | | | | | | 2434.17 | 73.28 | 2384.66 | 2360.89 | 51.16 | OSF1.50 | 14420.00 | 12315.00 | | | | MinPt-O-ADP | | | | 2434.22 | 73.29 | 2384.70 | 2360.93 | 51.16 | OSF1.50 | 14430.00 | 12315.00 | | | | MinPt-O-SF | | | | 2430.75 | 74.15 | 2380.65 | 2356.60 | 50.48 | OSF1.50 | 14690.00 | 12315.00 | | | | MinPt-CtCt | | | | 2430.85 | | | | | | | | | | | | | | | | 74.37 | 2380.61 | 2356.48 | 50.33 | OSF1.50 | 14730.00 | 12315.00 | | | | MINPT-O-EOU | | | | 2431.14 | 74.73 | 2380.66 | 2356.41 | 50.09 | OSF1.50 | 14790.00 | 12315.00 | | | | MinPt-O-ADP | | | | 2429.88 | 85.68 | 2372.10 | 2344.20 | 43.51 | OSF1.50 | 15810.00 | 12315.00 | | | | MinPt-CtCt | | | | 2430.06 | 86.21 | 2371.93 | 2343.85 | 43.24 | OSF1.50 | 15850.00 | 12315.00 | | | | MINPT-O-EOU | | | | | | | | | | | | | | | | | | | 2430.28 | 86.48 | 2371.97 | 2343.80 | 43.11 | OSF1.50 | 15870.00 | 12315.00 | | | | MinPt-O-ADP | | | | 2538.92 | 97.34 | 2473.37 | 2441.58 | 39.90 | OSF1.50 | 16760.00 | 12315.00 | | | | MinPt-O-SF | | | | 2568.78 | 98.37 | 2502.54 | 2470.41 | 39.94 | OSF1.50 | 16871.24 | 12315.00 | | | | TD | | | | 2300.70 | 30.31 | 2302.34 | 2470.41 | 33.34 | 0311.30 | 10071.24 | 12313.00 | | | | 10 | | | | | | | | | | | | | | | | | | Cimarex Energy Cascade 29 | | | | | | | | | | | | | | | Federal #75H Rev0 RM | | | | | | | | | | | | | | | 29Oct20 (Non-Def Plan) | | | | | | | | | | | | | Warning Alert | | | 19.99 | 16.25 | 18.70 | 3.74 | N/A | MAS = 4.95 (m) | 0.00 | 0.00 | CtCt<=15m<15.00 | | | Enter Alert | | | | | | | 3.74 | | | | 23.00 | 0.0014=10.00 | | | WRP | | | | 19.99 | 16.25 | 18.70 | | N/A | MAS = 4.95 (m) | 23.00 | | | | | | | | | 19.99 | 16.25 | 9.66 | 3.74 | 2.07 | MAS = 4.95 (m) | 1500.00 | 1500.00 | | | | MinPts | | | | 20.01 | 16.25 | 9.63 | 3.76 | 2.06 | MAS = 4.95 (m) | 1510.00 | 1510.00 | | | | MINPT-O-EOU | | | | 20.15 | 16.25 | 9.68 | 3.90 | 2.05 | MAS = 4.95 (m) | 1530.00 | 1530.00 | | | | MinPt-O-SF | | | | | | | | | | | | | | | | | | | 54.86 | 17.41 | 42.82 | 37.45 | 4.98 | OSF1.50 | 1950.00 | 1950.00 | OSF>5.00 | | | Exit Alert | | | | 470.00 | 99.43 | 403.28 | 370.56 | 7.16 | OSF1.50 | 11810.00 | 11810.00 | | | | MINPT-O-EOU | | | | 470.08 | 99.52 | 403.30 | 370.56 | 7.16 | OSF1.50 | 11820.00 | 11819.99 | | | | MinPt-O-ADP | | | | 471.64 | 100.05 | 404.51 | | 7.14 | | 11880.00 | 11879.60 | | | | MinPt-O-SF | | | | | | | 371.58 | | OSF1.50 | | | | | | | | | | 571.56 | 172.63 | 456.04 | 398.93 | 4.99 | OSF1.50 | 16240.00 | 12315.00 | OSF<5.00 | | | Enter Alert | | | | 571.56 | 190.03 | 444.44 | 381.53 | 4.53 | OSF1.50 | 16870.00 | 12315.00 | | | | MinPt-CtCt | | | | 571.56 | 190.07 | 444.41 | 381.49 | 4.53 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPts | | | | 37 1.30 | 190.07 | 444.41 | 301.49 | 4.03 | O3F 1.50 | 10071.24 | 12313.00 | | | | wifiPtS | | | 0. 5 0 | | | | | | | | | | | | | | | Cimarex Energy Cascade 29 | | | | | | | | | | | | | | | Federal #73H Rev0 RM | | | | | | | | | | | | | | | 29Oct20 (Non-Def Plan) | | | | | | | | | | | | | Warning Alert | | | 20.00 | 16.26 | 18.71 | 3.74 | N/A | MAS = 4.96 (m) | 0.00 | 0.00 | CtCt<=15m<15.00 | | | Enter Alert | | | | 20.00 | 16.26 | 18.71 | 3.74 | 42114.99 | MAS = 4.96 (m) | 23.00 | 23.00 | | | | WRP | | | | | | | | | , | | | | | | ***** | | | | 20.00 | 19.47 | 6.59 | 0.53 | 1.54 | OSF1.50 | 1990.00 | 1990.00 | | | | MinPt-CtCt | | | | 20.02 | 19.63 | 6.50 | 0.39 | 1.53 | OSF1.50 | 2010.00 | 2010.00 | | | | MINPT-O-EOU | | | | 20.07 | 19.70 | 6.51 | 0.37 | 1.53 | OSF1.50 | 2020.00 | 2020.00 | | | | MinPts | | | | 72.86 | 23.03 | 57.08 | 49.83 | 4.94 | OSF1.50 | 2610.00 | 2610.00 | OSF>5.00 | | | Exit Alert | | | | | | | | | | | | U3F>0.00 | | | | | | | 542.03 | 99.67 | 475.15 | 442.36 | 8.24 | OSF1.50 | 12140.00 | 12111.64 | | | | MinPt-CtCt | | | | 542.03 | 99.74 | 475.11 | 442.29 | 8.24 | OSF1.50 | 12150.00 | 12119.15 | | | | MinPts | | | | 542.56 | 99.91 | 475.53 | 442.65 | 8.23 | OSF1.50 | 12180.00 | 12140.89 | | | | MinPt-O-SF | | | | | | | | | | | | | | | | | | | 574.97 | 95.18 | 511.09 | 479.79 | 9.17 | OSF1.50 | 12809.28 | 12315.00 | | | | MinPt-CtCt | | | | 574.97 | 173.47 | 458.90 | 401.51 | 5.00 | OSF1.50 | 16420.00 | 12315.00 | OSF<5.00 | | | Enter Alert | | | | 574.97 | 186.06 | 450.51 | 388.91 | 4.66 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPts | | | | 0 | .00.00 | 100.01 | 555.51 | 00 | 33. 1.30 | | .20.0.00 | | | | wall to | | | Ci F C 1 | | | | | | | | | | | | | | | Cimarex Energy Cascade 29
Federal #72H Rev0 RM | Marning Mort | | 29Oct20 (Non-Def Plan) | | | | | | | | | | | | | Warning Alert | | | 39.99 | 32.25 | 38.71 | 7.74 | N/A | MAS = 9.83 (m) | 0.00 | 0.00 | CtCt<=15m<15.00 | | | Enter Alert | | | | 39.99 | 32.25 | 38.70 | 7.74 | 13400.39 | MAS = 9.83 (m) | 23.00 | 23.00 | | | | WRP | | | | 39.99 | 32.25 | 27.84 | 7.74 | 3.56 | MAS = 9.83 (m) | 1790.00 | 1790.00 | | | | MinPts | | | | | | | | | | | | | | | | | | | 40.01 | 32.25 | 27.75 | 7.76 | 3.53 | MAS = 9.83 (m) | 1810.00 | 1810.00 | | | | MINPT-O-EOU | | | | 40 | 00.5- | 00 | | 0.5 | | 4050.00 | 4050.55 | | | | A F D C C C | | 1850.00 2160.00 11740.00 11750.00 OSF>5.00 1850.00 2160.00 11740.00 11750.00 MAS = 9.83 (m) MAS = 9.83 (m) OSF1.50 OSF1.50 4.98 MinPt-O-SF MINPT-O-EOU MinPt-O-ADF Exit Alert 62.38 32.25 | Offset Trajectory | | eparation | | Sep. | Controlling | Reference T | | ı | Risk Level | T | Alert | Status | |--|--|---|---|---|--|--
--|----------------------|------------|-------|--|---------------| | | 900.10
1025.89 | 96.37 835.43
197.51 893.79 | Dev. (ft) F
803.73
828.38 | 14.18
7.83 | Rule
OSF1.50
OSF1.50 | MD (ft)
11820.00
16871.24 | TVD (ft)
11819.99
12315.00 | Alert | Minor | Major | MinPt-O-SF
MinPts | | | Cimarex Cascade 29 Federal
4H XEM+MWD 0ft to 14230ft | 1020.00 | 333.73 | 620.00 | 7.00 | 551 1.55 | 10071.24 | 12010.00 | | | | | | | MD (Def Survey) | 4580.94
4580.93
4580.47
4580.54
4609.92
4600.93
4610.16
781.10
766.20
781.34
2540.93
2540.93
2539.74
2537.79
2537.79
2532.69
2532.67
2519.86
2489.05
2489.05
2489.05 | 32.81 4578.96 32.81 4578.93 32.81 4579.93 32.81 4595.49 32.81 4594.73 236.34 622.87 242.25 598.02 247.63 94.16 2476.82 94.16 2476.82 94.16 2476.95 86.33 2479.72 86.13 2479.72 81.62 2477.64 81.59 2477.63 81.53 2476.95 91.55 2427.20 92.07 2427.01 99.81 2509.62 100.76 2537.04 | 4547.66
4547.73
4577.11 | N/A
6713.38
9779.52
7785.21
369.95
354.61
342.71
4.97
40.87
41.30
41.74
45.10
45.20
47.66
47.66
47.66
47.63
49.72
41.65
41.36
39.48 | MAS = 10.00 (m) OSF1.50 | 0.00 23.00 150.00 180.00 2860.00 2980.00 9700.00 9880.00 13050.00 13120.00 13260.00 13460.00 14170.00 14170.00 14160.00 16000.00 16000.00 16050.00 16670.00 | 0.00 23.00 150.00 180.00 2860.00 2860.00 2980.00 3080.00 9700.00 9880.00 102315.00 12315.00 12315.00 12315.00 12315.00 12315.00 12315.00 12315.00 12315.00 12315.00 12315.00 | OSF-5.00
OSF-5.00 | | | Surface WRP MinPts MINPT-O-EOU MinPts MinPts MinPt-O-EOU Enter Alert MinPt-O-EOU Enter Alert MinPt-O-ADP MINPT-O-EOU MinPt-O-ADP MINPT-O-EOU MinPt-O-ADP MINPT-O-EOU MinPt-O-ADP MINPT-O-EOU MinPt-O-SF MinPt-Cict MinPt-O-SF MinPt-CO-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-EOU MinPt-O-ST TD | Warning Alert | | Tenneco Oil Company H W
Jenning Federal #1 (Offset)
Plugged Blind Oft-5401ft (Def
Survey) | 4519.52
4519.52
4519.52
4519.52
4519.52
5008.08
7867.30
7867.30
8086.45 | 32.81 4500.47
32.81 4497.58
1357.94 3613.79
1666.02 3408.41
1666.81 3407.89
1504.67 4004.54
725.94 7382.90
725.99 7382.90
808.31 7547.15 | 4486.71
4486.71
3161.58
2853.50
2852.72
3503.41
7141.36
7141.34
7141.33 | 254.44
218.75
5.00
4.07
4.07
5.00
16.28
16.28
15.03 | MAS = 10.00 (m) MAS = 10.00 (m) OSF1.50 OSF1.50 OSF1.50 OSF1.50 OSF1.50 OSF1.50 OSF1.50 OSF1.50 | 0.00
23.00
4240.00
5220.00
5230.00
7380.00
15000.00
15010.00
16871.24 | 0.00
23.00
4240.00
5220.00
5230.00
7380.00
12315.00
12315.00
12315.00 | OSF-5.00
OSF>5.00 | | | Surface WRP Enter Alert MinPt-Citcl MinPts Exit Alert MinPT-C-COU MinPt-C-C-DU MinPt-O-ADP MinPt-O-SF | Warning Alert | | Cimarex Energy Cascade 29
Federal #71H Rev0 RM
29Oct20 (Non-Def Plan) | | | | | | | | | | | | Pass | | | 59.99
59.99
60.01
61.41
1568.01
1565.39
1565.62
1572.03 | 32.81 58.71
32.81 49.73
32.81 49.64
32.81 50.66
84.38 1511.33
102.78 1496.44
102.82 1496.65
193.01 1442.93 | 27.18
27.18
27.18
27.21
28.60
1483.63
1462.61
1462.80
1379.02 | N/A
6422.51
6.54
6.46
6.35
28.28
23.12
23.11
12.29 | MAS = 10.00 (m) OSF1.50 OSF1.50 OSF1.50 | 0.00
23.00
1490.00
1510.00
1590.00
9060.00
12290.00
12320.00
16871.24 | 0.00
23.00
1490.00
1510.00
1590.00
9060.00
12208.95
12224.02
12315.00 | | | | Surface WRP MinPts MINPT-O-EOU MinPt-O-SF MinPt-O-SF MinPts MinPt-O-SF MinPts MinPt-O-SF | | | Cimarex Cascade 29 Federal
#3H XEM+MWD 0ft to 14241f
MD (Def Survey) | t | | | | | | | | | | | Pass | | | 4705.65
4705.65
4705.67
4705.17
4706.28
4707.50
4711.38
4711.44
4716.53
1090.82
2645.26
2634.48
2666.30
2650.4
2656.13
2764.97 | 32.81 4704.37
32.81 4704.34
32.81 4702.21
32.81 4699.76
32.81 4697.51
32.81 4697.61
32.81 4697.61
32.81 4700.33
236.73 932.32
109.66 2571.73
104.80 2574.35
97.28 2569.20
89.22 2601.49
88.54 2600.90
88.29 2599.88
91.34 2593.54
91.87 2593.56
107.98 2692.55 | 4672.36
4673.47
4674.69
4675.93 | N/A
2532.77
2809.95
900.51
601.78
473.59
380.72
375.35
316.10
6.96
36.60
38.30
41.15
45.38
45.71
45.82
44.20
43.95
43.34 | MAS = 10.00 (m) (m | 0.00
23.00
400.00
1190.00
1760.00
2840.00
2840.00
9860.00
13410.00
13460.00
14470.00
14590.00
15540.00
1560.00
1680.00 | 0.00
23.00
400.00
1190.00
1280.00
2280.00
22840.00
22860.00
34110.00
12315.00
12315.00
12315.00
12315.00
12315.00
12315.00
12315.00
12315.00 | | | | MinPts WRP MinPts MinPts MinPts MinPts MinPt-O-EOU MinPts MINPT-O-EOU MinPts MinPt-O-EOU MinPts MinPt-Cict MinPts MinPt-Cict MinPts MinPts MinPts MinPt-O-SF MinPt-O-SF | | | Cimarex Cascade 29 Federal
#2H Extreme+MWD 0ft to
14248ft (Def Survey) | | | | | | | | | | | | Pass | | , | 5075.56
5076.45
5060.34
5061.41
5062.41
5068.18
5068.49
2000.14
2000.14
3091.84
3089.76
3089.34
3095.28
3144.35
3144.35 | 32.81 5074.25 32.81 5074.03 32.81 5052.64 32.81 5050.71 32.81 5050.74 32.81 5051.50 32.81 5051.50 32.81 5051.50 32.81 5051.51 32.83 1847.10 228.32 1847.03 144.08 2995.34 139.51 2995.90 122.38 3013.26 121.87 3073.31 105.81 3073.35 105.84 3073.40 105.97 3073.57 | 5042.64 3i
5027.53
5028.60
5029.60
5035.37 | 6897.13
8973.83
789.52
538.06
474.76
329.15
315.32
13.27
32.46
33.23
33.51
38.32
38.48
45.12
45.09
45.04 | MAS = 10.00 (m) (m | 0.00
23.00
1460.00
2440.00
2440.00
3510.00
9860.00
9870.00
12970.00
13050.00
13740.00
15110.00
15110.00 | 0.00
23.00
1460.00
2440.00
3510.00
3660.00
9860.00
9870.00
12315.00
12315.00
12315.00
12315.00
12315.00
12315.00
12315.00 | | | | Surface WRP MinPts MINPT-O-EOU MINPT-O-EOU MINPT-O-EOU MinPt-O-EOU MinPt-CICt MinPts MINPT-O-EOU MinPt-O-SF | | | Offset Trajectory | | Separation | | Allow | Sep. | Controlling | Reference | Trajectory | | Risk Level | | Alert | Status | |--|--------------------|----------------|--------------------|--------------------|-------------------|------------------------------------|--------------------|--------------------|-------|------------|-------|----------------------------|--------| | | Ct-Ct (ft) | MAS (ft) | EOU (ft) | Dev. (ft) | Fact. | Rule | MD (ft) | TVD (ft) | Alert | Minor | Major | | | | | 3143.93 | 105.12 | 3073.43 | 3038.82 | 45.40 | OSF1.50 | 15310.00 | 12315.00 | | | | MinPt-O-SF | | | | 3129.51 | 110.67 | 3055.30 | 3018.84 | 42.90 | OSF1.50 | 16070.00 | 12315.00 | | | | MinPt-CtCt | | | | 3129.73 | 111.24 | 3055.14 | 3018.49 | 42.68 | OSF1.50 | 16110.00 | 12315.00 | | | | MINPT-O-EOU | | | | 3129.85 | 111.38 | 3055.16 | 3018.47 | 42.63 | OSF1.50 | 16120.00 | 12315.00 | | | | MinPt-O-ADP | | | | 3216.75 | 120.75 | 3135.82 | 3096.00 | 40.38 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPt-O-SF | | | Cimarex Energy Cascade 29 | | | | | | | | | | | | | | | Federal #18H Rev0 RM
29Oct20 (Non-Def Plan) | | | | | | | | | | | | | Pass | | | 3698.85 | 32.81 | 3697.57 | 3666.05 | N/A | MAS = 10.00 (m) | 0.00 | 0.00 | | | | Surface | | | | 3698.85 | 32.81 | 3697.56 | 3666.05 | 339632.27 | MAS = 10.00 (m) | 23.00 | 23.00 | | | | WRP | | | | 2063.14 | 106.92 | 1990.59 | 1956.21 | 29.95 | OSF1.50 | 12470.00 | 12275.01 | | | | MinPt-CtCt | | | | 2062.82 | 200.68 | 1927.77 | 1862.14 | 15.69 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPts | | | | | | | | | | | | | | | | | | Cimarex Cascade 29 Federal
#5H Extreme+MWD 0ft to | | | | | | | | | | | | | | | 14373ft MD (Def Survey) | | | | | | | | | | | | | Pass | | | 5778.91 | 32.81 | 5776.93 | 5746.10 | N/A | MAS = 10.00 (m) | 0.00 | 0.00 | | | | MinPts | | | | 5778.93 | 32.81 | 5776.90 | 5746.12 | 118848.34 | MAS = 10.00 (m) | 23.00 | 23.00 | | | | WRP | | | | 5775.31
5775.40 | 32.81 | 5768.92
5768.83 | 5742.50
5742.59 | 1308.04 | MAS = 10.00 (m) | 990.00 | 990.00 | | | | MinPts | | | | 5775.40
5773.88 | 32.81
32.81 | 5768.83
5764.49 | 5742.59
5741.07 | 1257.84
779.04 | MAS = 10.00 (m) | 1030.00
1590.00 | 1030.00
1590.00 | | | | MINPT-O-EOU
MinPts | | | | 5773.88
5774.02 | 32.81
32.81 | 5764.49
5764.37 | 5741.07
5741.21 | 779.04
753.41 | MAS = 10.00 (m)
MAS = 10.00 (m) | 1590.00
1650.00 | 1590.00
1650.00 | | | | MinPts
MINPT-O-EOU | | | | 5775.81 | 32.81 | 5764.77 | 5743.00 | 636.93 | MAS = 10.00 (m) | 1960.00 | 1960.00 | | | | MINPT-O-EOU | | | | 2938.56 | 240.13 | 2777.34 | 2698.43 | 18.60 | OSF1.50 | 9850.00 | 9850.00 | | | | MinPt-CtCt | | | | 2938.57 | 240.14 | 2777.34 | 2698.43 | 18.60 | OSF1.50 | 9860.00 | 9860.00 | | | | MinPts | | | | 2938.68 | 240.14 | 2777.45 | 2698.53 | 18.60 | OSF1.50 | 9880.00 | 9880.00 | | | | MinPt-O-SF | | | | 3783.84 | 167.45 | 3671.55 | 3616.39 | 34.28 | OSF1.50 | 12850.00 | 12315.00 | | | | MinPt-O-ADP | | | | 3782.16 | 165.51 | 3671.16 | 3616.64 | 34.67 | OSF1.50 | 12940.00 |
12315.00 | | | | MINPT-O-EOU | | | | 3780.11 | 161.45 | 3671.82 | 3618.66 | 35.54 | OSF1.50 | 13070.00 | 12315.00 | | | | MINPT-O-EOU | | | | 3778.49 | 156.36 | 3673.58 | 3622.12 | 36.69 | OSF1.50 | 13300.00 | 12315.00 | | | | MinPt-CtCt | | | | 3769.45 | 118.47 | 3689.81 | 3650.99 | 48.51 | OSF1.50 | 15310.00 | 12315.00 | | | | MinPt-CtCt | | | | 3769.48 | 118.57 | 3689.77 | 3650.90 | 48.47 | OSF1.50 | 15340.00 | 12315.00 | | | | MINPT-O-EOU | | | | 3769.54 | 118.65 | 3689.78 | 3650.89 | 48.44 | OSF1.50 | 15360.00 | 12315.00 | | | | MinPt-O-ADP | | | | 3782.33 | 121.29 | 3700.81 | 3661.04 | 47.53 | OSF1.50 | 15890.00 | 12315.00 | | | | MinPt-O-SF | | | | 3880.07 | 133.31 | 3790.53 | 3746.75 | 44.29 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPt-O-SF | | | Cimarex Cascade 29 Federal | | | | | | | | | | | | | | | #1H (offset) Gyro+MWD 0ft to
14296ft (Def Survey) | | | | | | | | | | | | | Pass | | | 5923.10 | 32.81 | 5921.11 | 5890.29 | | MAS = 10.00 (m) | 0.00 | 0.00 | | | | Surface | | | | 5923.08 | 32.81 | 5921.03 | 5890.27 | 87011.44 | MAS = 10.00 (m) | 23.00 | 23.00 | | | | WRP | | | | 5922.82 | 32.81 | 5920.13 | 5890.01 | 8376.48 | MAS = 10.00 (m) | 200.00 | 200.00 | | | | MinPts | | | | 5909.30 | 32.81 | 5895.99 | 5876.49 | 521.26 | MAS = 10.00 (m) | 2440.00 | 2440.00 | | | | MinPts | | | | 5906.05
5906.45 | 32.81
32.81 | 5890.34
5889.94 | 5873.24
5873.64 | 429.96
406.47 | MAS = 10.00 (m) | 3020.00
3210.00 | 3020.00
3210.00 | | | | MinPts
MINPT-O-EOU | | | | 5906.45
5909.07 | 32.81
32.81 | 5889.94
5890.70 | 5873.64
5876.26 | 406.47
360.48 | MAS = 10.00 (m)
MAS = 10.00 (m) | 3210.00
3660.00 | 3210.00
3660.00 | | | | MINPT-O-EOU
MINPT-O-EOU | | | | 3719.71 | 250.06 | 3552.34 | 3469.65 | 22.48 | OSF1.50 | 9830.00 | 9830.00 | | | | MinPts | | | | 3719.71 | 250.06 | 3552.53 | 3469.82 | 22.48 | OSF1.50 | 9870.00 | 9870.00 | | | | MinPt-O-SF | | | | 4462.43 | 157.90 | 4356.51 | 4304.53 | 42.91 | OSF1.50 | 13800.00 | 12315.00 | | | | MinPt-CtCt | | | | 4466.79 | 146.04 | 4368.77 | 4320.75 | 46.49 | OSF1.50 | 14210.00 | 12315.00 | | | | MINPT-O-EOU | | | | 4459.82 | 138.97 | 4366.52 | 4320.75 | 48.81 | OSF1.50 | 14540.00 | 12315.00 | | | | MinPts | | | | 4457.73 | 136.96 | 4365.77 | 4320.77 | 49.51 | OSF1.50 | 14690.00 | 12315.00 | | | | MinPts | | | | 4456.42 | 134.72 | 4365.95 | 4321.70 | 50.34 | OSF1.50 | 14870.00 | 12315.00 | | | | MinPts | | | | 4457.22 | 132.05 | 4368.53 | 4325.17 | 51.38 | OSF1.50 | 15050.00 | 12315.00 | | | | MinPt-O-ADP | | | | 4457.11 | 131.92 | 4368.50 | 4325.19 | 51.43 | OSF1.50 | 15080.00 | 12315.00 | | | | MINPT-O-EOU | | | | 4457.05 | 131.77 | 4368.54 | 4325.28 | 51.49 | OSF1.50 | 15120.00 | 12315.00 | | | | MinPt-CtCt | | | | 4457.94 | 129.12 | 4371.20 | 4328.82 | 52.57 | OSF1.50 | 15480.00 | 12315.00 | | | | MinPts | | | | 4452.45 | 127.00 | 4367.12 | 4325.45 | 53.40 | OSF1.50 | 15610.00 | 12315.00 | | | | MinPt-O-SF | | | | 4452.01 | 126.69 | 4366.88 | 4325.31 | 53.52 | OSF1.50 | 15620.00 | 12315.00 | | | | MinPts | | | | 4408.34 | 132.80 | 4319.14 | 4275.54 | 50.52 | OSF1.50 | 16350.00 | 12315.00 | | | | MinPt-CtCt | | | | 4408.59 | 133.52 | 4318.92 | 4275.07 | 50.25 | OSF1.50 | 16400.00 | 12315.00 | | | | MINPT-O-EOU | | | | 4408.83 | 133.82 | 4318.96 | 4275.01 | 50.14 | OSF1.50 | 16420.00 | 12315.00 | | | | MinPt-O-ADP | | | | 4434.80 | 140.20 | 4340.68 | 4294.60 | 48.11 | OSF1.50 | 16871.24 | 12315.00 | | | | MinPt-O-SF | | | | | | | | | | | | | | | | | #### Schlumberger #### Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 Proposal **Geodetic Report** (Non-Def Plan) Report Date: Client: October 29, 2020 - 01:05 PM Cimarex Energy Field: NM Lea County (NAD 83) Cimarex Cascade 29 Federal #74H / New Slot Structure / Slot: Cascade 29 Federal #74H Borehole: Cascade 29 Federal #74H UWI / API#: Unknown / Unknown Survey Name: Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 Survey Date: October 28, 2020 Tort / AHD / DDI / ERD Ratio: 91.328 ° / 4795.039 ft / 5.778 / 0.389 Coordinate Reference System: NAD83 New Mexico State Plane, Eastern Zone, US Feet Location Lat / Long: N 32° 5' 43.37855", W 103° 35' 22.28165" Location Grid N/E Y/X: N 399231.480 ftUS, E 771673.750 ftUS 0.3952° CRS Grid Convergence Angle: Grid Scale Factor: Version / Patch: 0.99996986 2.10.821.3 TVD Reference Datum: **Gravity Model:** TVD Reference Elevation: Seabed / Ground Elevation: Magnetic Declination: Total Gravity Field Strength: Survey / DLS Computation: Vertical Section Azimuth: Vertical Section Origin: Total Magnetic Field Strength: Magnetic Dip Angle: Declination Date: Magnetic Declination Model: North Reference: Grid Convergence Used: Total Corr Mag North->Grid North: Local Coord Referenced To: Minimum Curvature / Lubinski 359.630 ° (Grid North) 0.000 ft, 0.000 ft RKB 3420.500 ft above MSL 3397.500 ft above MSL 6.486 ° 998.4310mgn (9.80665 Based) GARM 47611.704 nT 59.668° October 28, 2020 HDGM 2020 Grid North 0.3952° 6.0908° Well Head | Comments | MD
(ft) | Incl
(°) | Azim Grid | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting
(ftUS) | Latitude
(N/S ° ' ") | Longitude
(E/W ° ' ") | |----------------|--------------------|-------------|------------------|-------------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|------------------------|--|----------------------------------| | SHL [390' FSL, | 0.00 | 0.00 | 359.10 | 0.00 | 0.00 | 0.00 | 0.00 | N/A | 399231.48 | | N 32 5 43.38 | | | 1160' FEL] | 100.00 | 0.00 | 346.22 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 200.00 | 0.00 | 346.22 | 200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 300.00 | 0.00 | 346.22 | 300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 400.00
500.00 | 0.00 | 346.22
346.22 | 400.00
500.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 600.00 | 0.00 | 346.22 | 600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 700.00 | 0.00 | 346.22 | 700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 800.00 | 0.00 | 346.22 | 800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 900.00 | 0.00 | 346.22 | 900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1000.00
1100.00 | 0.00 | 346.22
346.22 | 1000.00
1100.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 1200.00 | 0.00 | 346.22 | 1200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1300.00 | 0.00 | 346.22 | 1300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1400.00 | 0.00 | 346.22 | 1400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1500.00 | 0.00 | 346.22 | 1500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1600.00
1700.00 | 0.00 | 346.22
346.22 | 1600.00
1700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 1800.00 | 0.00 | 346.22 | 1800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 1900.00 | 0.00 | 346.22 | 1900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2000.00 | 0.00 | 346.22 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2100.00 | 0.00 | 346.22 | 2100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2200.00 | 0.00 | 346.22 | 2200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2300.00
2400.00 | 0.00 | 346.22
346.22 | 2300.00
2400.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 2500.00 | 0.00 | 346.22 | 2500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2600.00 | 0.00 | 346.22 | 2600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 2700.00 | 0.00 | 346.22 | 2700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2800.00 | 0.00 | 346.22 | 2800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 2900.00
3000.00 | 0.00 | 346.22
346.22 | 2900.00
3000.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 3100.00 | 0.00 | 346.22 | 3100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 3200.00 | 0.00 | 346.22 | 3200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 3300.00 | 0.00 | 346.22 | 3300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 543.38 | W 103 35 22.28 | | | 3400.00 | 0.00 | 346.22 | 3400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 3500.00 | 0.00 | 346.22 | 3500.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 3600.00
3700.00 | 0.00 | 346.22
346.22 | 3600.00
3700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28 | | | 3800.00 | 0.00 | 346.22 | 3800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 3900.00 | 0.00 | 346.22 | 3900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 4000.00 | 0.00 | 346.22 | 4000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 4100.00 | 0.00 | 346.22 | 4100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 4200.00
4300.00 | 0.00 | 346.22
346.22 | 4200.00
4300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 4400.00 | 0.00 | 346.22 | 4400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | |
 W 103 35 22.28 | | | 4500.00 | 0.00 | 346.22 | 4500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 4600.00 | 0.00 | 346.22 | 4600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 4700.00 | 0.00 | 346.22 | 4700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 4800.00
4900.00 | 0.00 | 346.22
346.22 | 4800.00
4900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 5000.00 | 0.00 | 346.22 | 5000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 5100.00 | 0.00 | 346.22 | 5100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 5200.00 | 0.00 | 346.22 | 5200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 5300.00 | 0.00 | 346.22 | 5300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 5400.00 | 0.00 | 346.22 | 5400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 5500.00
5600.00 | 0.00 | 346.22
346.22 | 5500.00
5600.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 5700.00 | 0.00 | 346.22
346.22 | 5700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 5800.00 | 0.00 | 346.22 | 5800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 5900.00 | 0.00 | 346.22 | 5900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 6000.00 | 0.00 | 346.22 | 6000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 6100.00 | 0.00 | 346.22 | 6100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 6200.00 | 0.00 | 346.22 | 6200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 6300.00
6400.00 | 0.00 | 346.22
346.22 | 6300.00
6400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 6500.00 | 0.00 | 346.22 | 6500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 6600.00 | 0.00 | 346.22 | 6600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | N 32 5 43.38 | W 103 35 22.28 | | | 6700.00 | 0.00 | 346.22 | 6700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 6800.00 | 0.00 | 346.22 | 6800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 6900.00 | 0.00 | 346.22 | 6900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | 7000.00
7100.00 | 0.00 | 346.22
346.22 | 7000.00
7100.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 399231.48
399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 7200.00 | 0.00 | 346.22 | 7200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28
W 103 35 22.28 | | | 7300.00 | 0.00 | 346.22 | 7300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | | W 103 35 22.28 | | | | | | | | | | | | | | | | | 7400.00 | 0.00 | 346.22 | 7400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | | | | 7400.00
7500.00
7600.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 399231.48
399231.48
399231.48 | 771673.75 | N 32 5 43.38
N 32 5 43.38
N 32 5 43.38 | W 103 35 22.28 | | Comments | MD
(ft) | Incl
(°) | Azim Grid | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting (ftUS) | Latitude
(N/S ° ' ") | Longitude
(E/W ° ' ") | |------------------------------|----------------------|----------------|------------------|----------------------|--------------------|--------------------|------------------|------------------|------------------------|------------------------|------------------------------|----------------------------------| | | 7700.00 | 0.00 | 346.22 | 7700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 7800.00 | 0.00 | 346.22 | 7800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 7900.00
8000.00 | 0.00 | 346.22
346.22 | 7900.00
8000.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 8100.00 | 0.00 | 346.22 | 8100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 8200.00 | 0.00 | 346.22 | 8200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 8300.00
8400.00 | 0.00 | 346.22
346.22 | 8300.00
8400.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 8500.00 | 0.00 | 346.22 | 8500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 8600.00 | 0.00 | 346.22 | 8600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 8700.00
8800.00 | 0.00 | 346.22
346.22 | 8700.00
8800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 8900.00 | 0.00 | 346.22 | 8900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 9000.00 | 0.00 | 346.22 | 9000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | | | | 9100.00
9200.00 | 0.00 | 346.22
346.22 | 9100.00
9200.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 9300.00 | 0.00 | 346.22 | 9300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | | | | 9400.00 | 0.00 | 346.22 | 9400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 9500.00
9600.00 | 0.00 | 346.22
346.22 | 9500.00
9600.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 9700.00 | 0.00 | 346.22 | 9700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 9800.00 | 0.00 | 346.22 | 9800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 9900.00
10000.00 | 0.00 | 346.22
346.22 | 9900.00
10000.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 10100.00 | 0.00 | 346.22 | 10100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 10200.00 | 0.00 | 346.22 | 10200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 10300.00
10400.00 | 0.00 | 346.22
346.22 | 10300.00
10400.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 10500.00 | 0.00 | 346.22 | 10500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 10600.00 | 0.00 | 346.22 | 10600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 10700.00 | 0.00 | 346.22
346.22 | 10700.00
10800.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 10800.00
10900.00 | 0.00 | 346.22
346.22 | 10900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 11000.00 | 0.00 | 346.22 | 11000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 11100.00 | 0.00 | 346.22 | 11100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | W 103 35 22.28 | | | 11200.00
11300.00 | 0.00 | 346.22
346.22 | 11200.00
11300.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | W 103 35 22.28
W 103 35 22.28 | | | 11400.00 | 0.00 | 346.22 | 11400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | | 11500.00 | 0.00 | 346.22 | 11500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | | | | | 11600.00
11700.00 | 0.00 | 346.22
346.22 | 11600.00
11700.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 399231.48
399231.48 | 771673.75
771673.75 | | | | KOP - Build | 11798.21 | 0.00 | 346.22 | 11798.21 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | | N 32 5 43.38 | | | 12°/100' DLS | | | | | | | | | | | | | | | 11800.00
11900.00 | 0.21
12.21 | 346.22
346.22 | 11800.00
11899.23 | 0.00
10.51 | 0.00
10.50 | 0.00
-2.57 | 12.00
12.00 | 399231.48
399241.98 | 771673.75
771671.18 | | W 103 35 22.28
W 103 35 22.31 | | | 12000.00 | 24.21 | 346.22 | 11994.05 | 40.86 | 40.80 | -10.00 | 12.00 | 399272.28 | 771663.75 | | | | Build & Turn | 12089.88 | 35.00 | 346.22 | 12072.08 | 84.00 | 83.86 | -20.56 | 12.00 | 399315.34 | 771653.19 | N 32 5 44.21 | W 103 35 22.51 | | 12°/100' DLS | 12100.00 | 36.14 | 346.92 | 12080.31 | 89.73 | 89.59 | -21.93 | 12.00 | 399321.07 | 771651.82 | | W 103 35 22.53 | | | 12200.00 | 47.61 | 352.25 | 12154.66 | 155.36 | 155.15 | -33.63 | 12.00 | 399386.62 | 771640.12 | | W 103 35 22.66 | | | 12300.00 | 59.25 | 355.90 | 12214.15 | 235.16 | 234.90 | -41.71 | 12.00 | 399466.37 | 771632.04 | | W 103 35 22.75 | | Build 4°/100' | 12400.00 | 70.97 | 358.75 | 12256.16 | 325.64 | 325.35 | -45.82 | 12.00 | 399556.82 | 771627.93 | | | | DLS | 12434.28 | 75.00 | 359.63 | 12266.19 | 358.41 | 358.11 | -46.28 | 12.00 | 399589.58 | 771627.47 | | | | | 12500.00 | 77.63 | 359.63 | 12281.74 | 422.26 | 421.96 | -46.69 | 4.00 | 399653.43 | 771627.06 | | W 103 35 22.79 | | | 12600.00
12700.00 | 81.63
85.63 | 359.63
359.63 | 12299.74
12310.83 | 520.60
619.96 | 520.31
619.67 | -47.33
-47.97 | 4.00
4.00 | 399751.77
399851.13 | 771626.42
771625.78 | | W 103 35 22.79
W 103 35
22.79 | | | 12800.00 | 89.63 | 359.63 | 12314.97 | 719.86 | 719.56 | -48.61 | 4.00 | 399951.02 | 771625.14 | | W 103 35 22.79 | | Landing Point | 12809.28 | 90.00 | 359.63 | 12315.00 | 729.14 | 728.84 | -48.67 | 4.00 | 399960.29 | 771625.08 | | W 103 35 22.79 | | | 12900.00
13000.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 819.86
919.86 | 819.56
919.56 | -49.26
-49.91 | 0.00 | 400051.01
400151.01 | 771624.49
771623.85 | | W 103 35 22.79
W 103 35 22.79 | | | 13100.00 | 90.00 | 359.63 | 12315.00 | 1019.86 | 1019.55 | -50.55 | 0.00 | 400251.00 | 771623.20 | N 32 5 53.47 | W 103 35 22.79 | | | 13200.00 | 90.00
90.00 | 359.63
359.63 | 12315.00 | 1119.86
1219.86 | 1119.55
1219.55 | -51.20
-51.84 | 0.00
0.00 | 400351.00
400450.99 | 771622.56 | | | | | 13300.00
13400.00 | 90.00 | 359.63 | 12315.00
12315.00 | 1319.86 | 1319.55 | -52.49 | 0.00 | 400450.98 | 771621.91
771621.27 | | | | | 13500.00 | 90.00 | 359.63 | 12315.00 | 1419.86 | 1419.54 | -53.13 | 0.00 | 400650.98 | 771620.62 | N 32 5 57.43 | W 103 35 22.79 | | | 13600.00
13700.00 | 90.00 | 359.63 | 12315.00 | 1519.86 | 1519.54
1619.54 | -53.78
-54.42 | 0.00
0.00 | 400750.97
400850.97 | 771619.98
771619.33 | | | | | 13800.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 1619.86
1719.86 | 1719.54 | -55.07 | 0.00 | 400850.97 | 771618.68 | | | | | 13900.00 | 90.00 | 359.63 | 12315.00 | 1819.86 | 1819.54 | -55.71 | 0.00 | 401050.96 | 771618.04 | N 32 6 1.39 | W 103 35 22.78 | | | 14000.00
14100.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 1919.86
2019.86 | 1919.53
2019.53 | -56.36
-57.00 | 0.00 | 401150.95
401250.95 | 771617.39
771616.75 | | | | | 14200.00 | 90.00 | 359.63 | 12315.00 | 2119.86 | 2119.53 | -57.65 | 0.00 | 401350.94 | 771616.73 | | | | | 14300.00 | 90.00 | 359.63 | 12315.00 | 2219.86 | 2219.53 | -58.29 | 0.00 | 401450.94 | 771615.46 | N 32 6 5.34 | W 103 35 22.78 | | | 14400.00
14500.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 2319.86
2419.86 | 2319.53
2419.52 | -58.94
-59.58 | 0.00 | 401550.93
401650.93 | 771614.81
771614.17 | N 32 6 6.33
N 32 6 7.32 | | | | 14600.00 | 90.00 | 359.63 | 12315.00 | 2519.86 | 2519.52 | -60.23 | 0.00 | 401750.92 | 771613.52 | | | | | 14700.00 | 90.00 | 359.63 | 12315.00 | 2619.86 | 2619.52 | -60.87 | 0.00 | 401850.92 | 771612.88 | N 32 6 9.30 | W 103 35 22.78 | | | 14800.00 | 90.00 | 359.63 | 12315.00 | 2719.86 | 2719.52 | -61.52 | 0.00 | 401950.91 | 771612.23 | | | | | 14900.00
15000.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 2819.86
2919.86 | 2819.52
2919.51 | -62.16
-62.81 | 0.00 | 402050.91
402150.90 | 771611.59
771610.94 | | W 103 35 22.78
W 103 35 22.78 | | | 15100.00 | 90.00 | 359.63 | 12315.00 | 3019.86 | 3019.51 | -63.45 | 0.00 | 402250.89 | 771610.30 | | | | | 15200.00 | 90.00 | 359.63 | 12315.00 | 3119.86 | 3119.51 | -64.10 | 0.00 | 402350.89 | 771609.65 | | | | | 15300.00
15400.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 3219.86
3319.86 | 3219.51
3319.51 | -64.74
-65.39 | 0.00 | 402450.88
402550.88 | 771609.01
771608.36 | | | | | 15500.00 | 90.00 | 359.63 | 12315.00 | 3419.86 | 3419.50 | -66.04 | 0.00 | 402650.87 | 771607.72 | N 32 6 17.22 | W 103 35 22.78 | | | 15600.00 | 90.00 | 359.63 | 12315.00 | 3519.86 | 3519.50 | -66.68 | 0.00 | 402750.87 | 771607.07 | N 32 6 18.21 | W 103 35 22.77 | | | 15700.00
15800.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 3619.86
3719.86 | 3619.50
3719.50 | -67.33
-67.97 | 0.00
0.00 | 402850.86
402950.86 | | N 32 6 19.20
N 32 6 20.19 | | | | 15900.00 | 90.00 | 359.63 | 12315.00 | 3819.86 | 3819.49 | -68.62 | 0.00 | 403050.85 | 771605.14 | N 32 621.18 | W 103 35 22.77 | | | 16000.00 | 90.00 | 359.63 | 12315.00 | 3919.86 | 3919.49 | -69.26 | 0.00 | 403150.85 | 771604.49 | N 32 6 22.17 | W 103 35 22.77 | | | 16100.00
16200.00 | 90.00 | 359.63
359.63 | 12315.00 | 4019.86
4119.86 | 4019.49
4119.49 | -69.91
-70.55 | 0.00 | 403250.84
403350.84 | | N 32 6 23.16
N 32 6 24.15 | | | | 16200.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 4119.86
4219.86 | 4119.49
4219.49 | -70.55
-71.20 | 0.00 | 403350.84 | | N 32 6 24.15
N 32 6 25.14 | | | | 16400.00 | 90.00 | 359.63 | 12315.00 | 4319.86 | 4319.48 | -71.84 | 0.00 | 403550.83 | 771601.91 | N 32 6 26.13 | W 103 35 22.77 | | | 16500.00 | 90.00 | 359.63 | 12315.00 | 4419.86 | 4419.48 | -72.49 | 0.00 | 403650.82 | | N 32 627.11 | | | | 16600.00
16700.00 | 90.00
90.00 | 359.63
359.63 | 12315.00
12315.00 | 4519.86
4619.86 | 4519.48
4619.48 | -73.13
-73.78 | 0.00
0.00 | 403750.82
403850.81 | 771600.62
771599.97 | N 32 6 28.10
N 32 6 29.09 | | | | 16800.00 | 90.00 | 359.63 | 12315.00 | 4719.86 | 4719.48 | -74.42 | 0.00 | 403950.80 | | N 32 6 30.08 | | | | | | | | | | | | | | | | | Cimarex Energy | | | | | | | | | | | | | | Cascade 29 | | | | | | | | | | | | | | Cascade 29
Federal #74H - | 16871.24 | 90.00 | 359.63 | 12315.00 | 4791.10 | 4790.71 | -74.88 | 0.00 | 404022.04 | 771598.87 | N 32 6 30.79 | W 103 35 22.77 | | | 16871.24 | 90.00 | 359.63 | 12315.00 | 4791.10 | 4790.71 | -74.88 | 0.00 | 404022.04 | 771598.87 | N 32 6 30.79 | W 103 35 22.77 | | Comments Survey Type: | MD
(ft)
Non-De | inci
(°)
ef Plan | Azim Grid
(°) | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting
(ftUS) | | ongitude
E/W ° ' ") | |--|----------------------|------------------------|------------------|--------------------|------------------|------------------------|----------------------|--------------------------------------|--------------------|-------------------|---|------------------------| | Survey Error Model:
Survey Program: | ISCWS | SA Rev 0 *** 3- | D 95.000% Confid | dence 2.7955 sigma | 1 | | | | | | | | | Description | | Part | MD From
(ft) | MD To
(ft) | EOU Freq
(ft) | Hole Size Casi
(in) | ing Diameter
(in) | Expected Max
Inclination
(deg) | Survey Tool Typ | oe . | Borehole / Surve | ey . | | | | 1 | 0.000 | 23.000 | 1/100.000 | 17.500 | 13.375 | | NAL_MWD_IFR1+MS-D | epth Only | Cascade 29 Federal #
Cimarex Energy Casc | ade 29 | | | | | | | | | | | | | Federal #74H Rev0 RM | 29Oct20 | #### Schlumberger #### Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 Proposal Geodetic Report (Non-Def Plan) Report Date: October 29, 2020 - 01:05 PM Client: Cimarex Energy Field: NM Lea County (NAD 83) Structure / Slot: Cimarex Cascade 29 Federal #74H / New Slot Well: Cascade 29 Federal #74H Borehole: Cascade 29 Federal #74H UWI / API#: Unknown / Unknown Survey Name: Cimarex Energy Cascade 29 Federal #74H Rev0 RM 29Oct20 Survey Date: October 28, 2020 Survey Date: October 28, 2020 Tort / AHD / DDI / ERD Ratio: 91.328 ° / 4795.039 ft / 5.778 / 0.389 Coordinate Reference System: NAD83 New Mexico State Plane, Eastern Zone, US Feet Location Lat / Long: N 32° 5' 43.37855", W 103° 35' 22.28165" Location Grid N/E Y/X: N 399231.480 ftUS, E 771673.750 ftUS CRS Grid Convergence Angle: 0.3952 ° 0.9996986 Version / Patch: 2.10.821.3 Survey / DLS Computation: Minimum Curvature / Lubinski Vertical Section Azimuth: 359.630 ° (Grid North) Vertical Section Origin: 0.000 ft, 0.000 ft TVD Reference Datum: RKB TVD Reference Elevation: 3420.500 ft above MSL Seabed / Ground Elevation: 3397.500 ft above MSL Magnetic Declination: 6.486 ° Total Gravity Field Strength: 998.431 Total Gravity Field Strength: 998.4310mgn (9.80665 Based) Gravity Model: GARM Expected May North: 6.0908 ° Local Coord Referenced To: Well Head | Comments | MD
(ft) | Incl
(°) | Azim Grid
(°) | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting (ftUS) | Latitude
(N/S ° ' ") | Longitude
(E/W ° ' ") | |--|------------|-------------|------------------|-------------|--------------|------------|------------|------------------|--------------------|----------------|-------------------------|--------------------------| | SHL [390' FSL,
1160' FEL] | 0.00 | 0.00 | 359.10 | 0.00 | 0.00 | 0.00 | 0.00 | N/A | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | KOP - Build
12°/100' DLS | 11798.21 | 0.00 | 346.22 | 11798.21 | 0.00 | 0.00 | 0.00 | 0.00 | 399231.48 | 771673.75 | N 32 5 43.38 | W 103 35 22.28 | | Build & Turn
12°/100' DLS | 12089.88 | 35.00 | 346.22 | 12072.08 | 84.00 | 83.86 | -20.56 | 12.00 | 399315.34 | 771653.19 | N 32 5 44.21 | W 103 35 22.51 | | Build 4°/100'
DLS | 12434.28 | 75.00 | 359.63 | 12266.19 | 358.41 | 358.11 | -46.28 | 12.00 | 399589.58 | 771627.47 | N 32 5 46.93 | W 103 35 22.79 | | Landing Point | 12809.28 | 90.00 | 359.63 | 12315.00 | 729.14 | 728.84 | -48.67 | 4.00 | 399960.29 | 771625.08 | N 32 5 50.59 | W 103 35 22.79 | | Cimarex Energy
Cascade 29
Federal #74H -
PBHL
[100'FNL,1204'F
EL] | 16871.24 | 90.00 | 359.63 | 12315.00 | 4791.10 | 4790.71 | -74.88 | 0.00 | 404022.04 | 771598.87 | N 32 630.79 1 | W 103 35 22.77 | Survey Type: Non-Def Plan Survey Error Model: Survey Program: ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma | _ | Description | Part | MD From
(ft) | MD To
(ft) | EOU Freq
(ft) | Hole Size Cas
(in) | ing Diameter
(in) | Inclination
(deg) | Survey Tool Type | Borehole / Survey | |---|-------------|------|-----------------|---------------|------------------|-----------------------|----------------------|----------------------|----------------------------|--| | - | | 1 | 0.000 | 23.000 | 1/100.000 | 17.500 | 13.375 | |
NAL_MWD_IFR1+MS-Depth Only | Cascade 29 Federal #74H /
Cimarex Energy Cascade 29
Federal #74H Rev0 RM 29Oct20 | | | | 1 | 23.000 | 16871.239 | 1/100.000 | 17.500 | 13.375 | | NAL_MWD_IFR1+MS | Cascade 29 Federal #74H /
Cimarex Energy Cascade 29 | Drilling Office 2.10.821.3 # Schlumberger ## Cimarex Energy Rev 0 Received by OCD: 6/7/2022 7:52:56 AM # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: Cimarex LEASE NO.: NMNM026394 LOCATION: Section 29 T.25 S., R.33 E., NMPM Lea County, New Mexico **COUNTY:** WELL NAME & NO.: Cascade 29 Fed 74H SURFACE HOLE FOOTAGE: 390'/S & 1160'/E BOTTOM HOLE FOOTAGE 100'/S & 1204'/E COA | H2S | • Yes | O No | | |----------------------|------------------|------------------|--------------| | Potash | None | Secretary | © R-111-P | | Cave/Karst Potential | • Low | Medium | O High | | Cave/Karst Potential | Critical | | | | Variance | O None | • Flex Hose | Other | | Wellhead | Conventional | • Multibowl | O Both | | Other | ☐4 String Area | ☐ Capitan Reef | □WIPP | | Other | ☐ Fluid Filled | ☐ Cement Squeeze | ☐ Pilot Hole | | Special Requirements | ☐ Water Disposal | □ СОМ | □ Unit | #### A. HYDROGEN SULFIDE A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Wolfcamp** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM. #### **B. CASING** - 1. The 10-3/4 inch surface casing shall be set at approximately 1170 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8 - **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage. - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job. - b. Second stage above DV tool: - Cement to surface. If cement does not circulate, contact the appropriate BLM office. - Wait on cement (WOC) time for a primary cement job is to include the tail cement slurry due to cave/karst. - 3. The minimum required fill of cement behind the $5-1/2 \times 5$ inch production casing is: Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. #### C. PRESSURE CONTROL - 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends). - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. # **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. #### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a - larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. #### B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17. - 2. If a variance is
approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs). - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2. #### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. #### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. ZS041122 # Hydrogen Sulfide Drilling Operations Plan Cascade 29 Federal 74H Cimarex Energy Co. Sec. 29, 25S, 33E Lea Co., NM # 1 All Company and Contract personnel admitted on location must be trained by a qualified H2S safety instructor to the following: - A. Characteristics of H₂S - B. Physical effects and hazards - C. Principal and operation of H2S detectors, warning system and briefing areas. - D. Evacuation procedure, routes and first aid. - E. Proper use of safety equipment & life support systems - F. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs. #### H₂S Detection and Alarm Systems: - A. H2S sensors/detectors to be located on the drilling rig floor, in the base of the sub structure/cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may play placed as deemed necessary. - B. An audio alarm system will be installed on the derrick floor and in the top doghouse. #### 3 Windsock and/or wind streamers: - A. Windsock at mudpit area should be high enough to be visible. - B. - Windsock on the rig floor and / or top doghouse should be high enough to be visible. #### 4 Condition Flags and Signs - A. Warning sign on access road to location. - B. Flags to be displayed on sign at entrance to location. Green flag indicates normal safe condition. Yellow flag indicates potential pressure and danger. Red flag indicates danger (H₂S present in dangerous concentration). Only H2S trained and certified personnel admitted to location. #### 5 Well control equipment: A. See exhibit "E-1" #### 6 Communication: - A. While working under masks chalkboards will be used for communication. - B. Hand signals will be used where chalk board is inappropriate. - C. Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters. #### 7 Drillstem Testing: No DSTs r cores are planned at this time. - 8 Drilling contractor supervisor will be required to be familiar with the effects H₂S has on tubular goods and other mechanical equipment. - 9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary. H₂S Contingency Plan Cascade 29 Federal 74H Cimarex Energy Co. Sec. 29, 25S, 33E Lea Co., NM #### **Emergency Procedures** In the event of a release of gas containing H₂S, the first responder(s) must: - « Isolate the area and prevent entry by other persons into the 100 ppm ROE. - « Evacuate any public places encompassed by the 100 ppm ROE. - « Be equipped with H₂S monitors and air packs in order to control the release. - « Use the "buddy system" to ensure no injuries occur during the 432-620-1975 - « Take precautions to avoid personal injury during this operation. - « Contact operator and/or local officials to aid in operation. See list of phone numbers attached. - « Have received training in the: - Detection of H₂S, and - Measures for protection against the gas, - · Equipment used for protection and emergency response. #### **Ignition of Gas Source** Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO_2). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas. #### Characteristics of H₂S and SO₂ Please see attached International Chemical Safety Cards. #### **Contacting Authorities** Cimarex Energy Co. of Colorado's personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. Cimarex Energy Co. of Colorado's
response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER). #### H₂S Contingency Plan Emergency Contacts #### Cascade 29 Federal 74H Cimarex Energy Co. Sec. 29, 25S, 33E Lea Co., NM | | Lea Co., NM | | | | |-----------------------------------|---------------------------------------|------------------------------|-----------|---------| | Company Office | | | | | | Cimarex Energy Co. of Colora | do | 800-969-4789 | | | | Co. Office and After-Hours M | enu | | | | | Key Personnel | | | | | | Name | Title | Office | Mobil | e | | Larry Seigrist | Drilling Manager | 432-620-1934 | 580-2 | 43-8485 | | Charlie Pritchard | Drilling Superintendent | 432-620-1975 | 432-2 | 38-7084 | | Roy Shirley | Construction Superintendent | | 432-63 | 34-2136 | | | | | | | | <u>Artesia</u> | | | | | | Ambulance | | 911 | | | | State Police | | 575-746-2703 | | | | City Police | | 575-746-2703 | | | | Sheriff's Office | | 575-746-9888 | | | | Fire Department | | 575-746-2701 | | | | Local Emergency Planning | | 575-746-2122 | | | | New Mexico Oil Conservati | on Division | 575-748-1283 | | | | <u>Carlsbad</u> | | | | | | Ambulance | | 911 | | | | State Police | | 575-885-3137 | | | | City Police | | 575-885-2111 | | | | Sheriff's Office | | 575-887-7551 | | | | Fire Department | | 575-887-3798 | | | | Local Emergency Planning | Committee | 575-887-6544 | | | | US Bureau of Land Manage | ement | 575-887-6544 | | | | Santa Fe | | | | | | | esponse Commission (Santa Fe) | 505-476-9600 | | | | | esponse Commission (Santa Fe) 24 Hrs | 505-827-9126 | | | | New Mexico State Emerger | | 505-476-9635 | | | | | -, -, -, | | | | | National | | | | | | National Emergency Respo | nse Center (Washington, D.C.) | 800-424-8802 | | | | | | | | | | <u>Medical</u> | | | | | | Flight for Life - 4000 24th S | t.; Lubbock, TX | 806-743-9911 | | | | Aerocare - R3, Box 49F; Lub | bbock, TX | 806-747-8923 | | | | Med Flight Air Amb - 2301 | Yale Blvd S.E., #D3; Albuquerque, NM | 505-842-4433 | | | | SB Air Med Service - 2505 (| Clark Carr Loop S.E.; Albuquerque, NM | 505-842-4949 | - | | | Othor | | | | | | Other | | 800-256-9688 | or 201 0 | 21_0001 | | Boots & Coots IWC | | | | 31-8884 | | Cudd Pressure Control Halliburton | | 432-699-0139
575-746-2757 | or 432-56 | 63-3356 | | | | | | | | B.J. Services | | 575-746-3569 | | | # **10M BOP** | Intent | : | As Drill | led | | | | | | | | | | | | |----------------|-------------|--------------------------|------------|----------|------------|----------------|---------|-------------------------|--------|--------|----------|-------------|------------|--------------| | API# | | | | | | | | | | | | | | | | Operator Name: | | | | | | Property Name: | | | | | | | | Well Number | | Kick C | Off Point (| (KOP) | | | | <u></u> | | | | | | | | <u> </u> | | UL | Section | Township | Range | Lot | Feet | | From I | From N/S | | | From E/W | | County | | | Latitu | de | | <u> </u> | | Longitu | ıde | | | | | | | NAD | | | First T | ake Poin | nt (FTP) | | | | | | | | | | | | | | UL | Section | Township | Range | Lot | Feet | | From I | N/S Feet From E/W Count | | County | | | | | | Latitu | Latitude | | | Longitu | Longitude | | | | | | | NAD | | | | Last T | ake Poin | t (LTP) | | | | | | | | | | | | | | UL | Section | Township | Range | Lot | Feet | Froi | m N/S | Feet | | From E | /W | Count | :y | | | Latitu | de | 1 | | | Longitu | Longitude NAD | | | | | | | | | | | | e defining winfill well? | | he Hori | izontal Sp | pacinį | g Unit? | ? | | | | | | | | | ng Unit. | lease provi | ide API if | f availa | ble, Opei | rator | Name | and w | vell n | umber | for [| Definin | ng well fo | r Horizontal | | Operator Name: | | | | | Pro | Property Name: | | | | | | Well Number | | | | Estima | ated Forr | mation Top |)S | | | | | | | | | | | | | Forma | ation: | | | | Тор: | | Fo | rmation | n: | | | | | Тор: | + | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | _ | | | | | | | | | + | + | | | | | | | | District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 # **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 114305 #### **CONDITIONS** | Operator: | OGRID: | |---|--| | CIMAREX ENERGY CO. | 215099 | | 600 N. Marienfeld Street
Midland, TX 79701 | Action Number:
114305 | | | Action Type: [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | #### CONDITIONS | Created
By | Condition | Condition
Date | |---------------|--|-------------------| | pkautz | Will require a File As Drilled C-102 and a Directional Survey with the C-104 | 6/30/2022 | | pkautz | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 6/30/2022 | | pkautz | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system | 6/30/2022 | | pkautz | Cement is required to circulate on both surface and intermediate1 strings of casing | 6/30/2022 |