<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 322576

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZO
--

AT LIGATION ON LIMIT TO BRILL, The ENTLINE LINE LINE LINE LINE LINE LINE LINE									
1. Operator Name and Address		2. OGRID Number							
MEWBOURNE OIL CO		14744							
P.O. Box 5270		3. API Number							
Hobbs, NM 88241		30-015-49830							
4. Property Code	5. Property Name	6. Well No.							
333163	Zircon 2/1 B3MP State Com	001H							

7 Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County	
L	2	19S	29E	L	1800	S	380	W	Eddy	

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
Р	1	19S	29E	Р	660	S	100	E	Eddv

9. Pool Information

VI VVI III VIII VIII VIII VIII VIII VI	
TURKEY TRACK;BONE SPRING	60660

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	3387
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	19239	3rd Bone Spring Sand		9/3/2022
Depth to Ground water		Distance from nearest fresh water well	Distance to nearest surface water	

☑ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

	yyy										
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC					
Surf	17.5	13.375	48	200	300	0					
Int1	12.25	9.625	36	1300	325	0					
Prod	8.75	7	26	8435	830	1100					
Liner1	6.125	4.5	13.5	19239	440	8235					

Casing/Cement Program: Additional Comments

MOC proposed to drill & test the Bone Springs formation. H2S rule 118 does not apply because MOC has researched the area & no high concentrations were found. Will have on location & working all H2S safety equiptment before Yates formation for safety & insurance purposes. Will stimulate as needed for production.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer					
Annular	5000	2500	SCHAFFER					
Double Ram	5000	5000	SCHAFFER					
Annular	5000	2500	SCHAFFER					

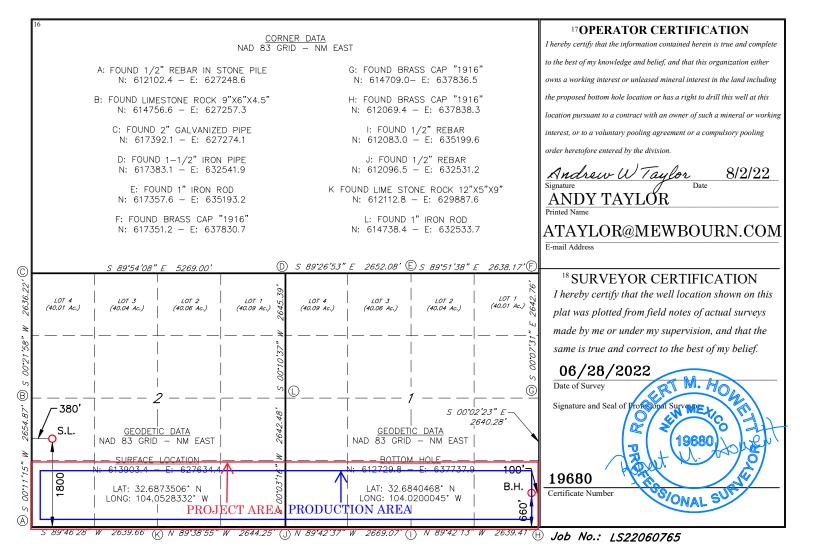
knowledge and be	lief.	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATION	ON DIVISION
Printed Name:	Electronically filed by Monty Whe	tstone	Approved By:	Katherine Pickford	
Title:	Vice President Operations		Title:	Geoscientist	
Email Address:	fking@mewbourne.com		Approved Date:	8/18/2022	Expiration Date: 8/18/2024
Date:	8/17/2022	Phone: 903-561-2900	Conditions of Approval Attached		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe. NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Numb		² Pool Code ³ Pool Name					ime			
30-015-49830			60660		TURKEY TRACK; BONE				SPRI	NG
⁴ Property Code								(Well Number	
333163		ZIRCON 2/1 B3MP STATE COM								1H
7OGRID NO.				8 Opera	ator Nam	ne			9]	Elevation
14744	14744 MEWBOURNE OIL COMPANY								3387'	
	¹⁰ Surface Location									
					. 1	3.7 3.70 3.31				

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County
L	2	19S	29E		1800	SOUTH	380	WEST	EDDY
	11 Bottom Hole Location If Different From Surface								
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	1	19S	29E		660	SOUTH	100	EAST	EDDY
12 Dedicated Acres	s 13 Joint	or Infill 14	Consolidation	Code 15 (Order No.				•
320									

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 322576

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-015-49830
P.O. Box 5270	Well:
Hobbs, NM 88241	Zircon 2/1 B3MP State Com #001H

OCD Reviewer Condition

Intent		As Dril	led											
API#														
Oper	rator Nar	me:	1			Prop	erty N	ame:						Well Number
						l								
Kick C	off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
Latitu	de				Longitu	ıde							NAD	
First T	ake Poin	it (FTP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
Latitu	de				Longitu	ıde							NAD	
Last T	ake Poin	+ (I TD)												
UL	Section	Township	Range	Lot	Feet	Fror	n N/S	Feet		From	E/W	Count	:y	
Latitu	de				Longitu	ıde						NAD		
Is this	well the	defining v	vell for th	ne Hori:	zontal Sp	pacing	g Unit?							
Ic thic	well an i	infill well?			7									
15 (1115	wen an	mini wen:			_									
	l is yes pl ng Unit.	lease provi	de API if	availat	ole, Opei	rator I	Name	and w	vell nı	umbei	r for I	Definir	ng well fo	r Horizontal
API#														
Oper	rator Nar	me:	1			Prop	erty N	ame:						Well Number

KZ 06/29/2018

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Zircon 2/1 B3MP State Com #1H

Sec 2, T19S, R29E SHL: 1800' FSL & 380' FWL, Sec 2

BHL: 660' FSL & 100' FEL, Sec 1

Plan: Design #1

Standard Planning Report

29 July, 2022

Hobbs Database:

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83 Zircon 2/1 B3MP State Com #1H Site:

Well: Sec 2, T19S, R29E

Wellbore: BHL: 660' FSL & 100' FEL, Sec 1 Design #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev)

WELL @ 3415.0usft (Original Well Elev)

Minimum Curvature

Project Eddy County, New Mexico NAD 83

Map System: Geo Datum:

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone

System Datum:

Ground Level

Zircon 2/1 B3MP State Com #1H Site

Northing: Site Position:

613,903.40 usft Latitude: 32.6873505 From: Мар Easting: 627,634.40 usft Longitude: -104.0528333

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 2, T19S, R29E

Well Position +N/-S 0.0 usft Northing: 613,903.40 usft Latitude: 32.6873505 +E/-W 0.0 usft Easting: 627,634.40 usft Longitude: -104.0528333

Position Uncertainty 0.0 usft Wellhead Elevation: 3,415.0 usft **Ground Level:** 3,387.0 usft

0.15° **Grid Convergence:**

BHL: 660' FSL & 100' FEL, Sec 1 Wellbore

Declination Magnetics **Model Name** Sample Date Dip Angle Field Strength (°) (°) (nT) IGRF2010 48,462.96063339 12/31/2014 7.41 60.44

Design #1 Design **Audit Notes:** Phase: PROTOTYPE Tie On Depth: 0.0 Version: +N/-S Direction

Vertical Section: Depth From (TVD) +E/-W (usft) (usft) (usft) (°) 96.63 0.0 0.0 0.0

Plan Survey Tool Program Date 7/29/2022

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

0.0 19,239.0 Design #1 (BHL: 660' FSL & 100'

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
275.0	0.00	0.00	275.0	0.0	0.0	0.00	0.00	0.00	0.00	
722.9	8.96	198.12	721.1	-33.2	-10.9	2.00	2.00	0.00	198.12	
7,986.4	8.96	198.12	7,895.9	-1,108.2	-362.5	0.00	0.00	0.00	0.00	
8,434.3	0.00	0.00	8,342.0	-1,141.4	-373.4	2.00	-2.00	0.00	180.00	KOP: 660' FSL & 10' I
9,327.6	89.33	90.18	8,915.0	-1,143.1	192.9	10.00	10.00	0.00	90.18	
19,239.0	89.33	90.18	9,031.0	-1,173.6	10,103.5	0.00	0.00	0.00	0.00	BHL: 660' FSL & 100'

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83
Site: Zircon 2/1 B3MP State Com #1H

Well: Sec 2, T19S, R29E

Wellbore: BHL: 660' FSL & 100' FEL, Sec 1
Design: Design #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev) WELL @ 3415.0usft (Original Well Elev)

ign:	Design #1										
nned Survey											
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)		
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00		
	0.00 SL & 380' FWL (0.0	0.0	0.0	0.0	0.00	0.00	0.00		
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00		
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00		
275.0	0.00	0.00	275.0	0.0	0.0	0.0	0.00	0.00	0.00		
300.0	0.50	198.12	300.0	-0.1	0.0	0.0	2.00	2.00	0.00		
400.0	2.50	198.12	400.0	-2.6	-0.8	-0.5	2.00	2.00	0.00		
500.0	2.50 4.50	198.12	499.8	-2.6 -8.4	-0.6 -2.7	-0.5 -1.8	2.00	2.00	0.00		
600.0	6.50	198.12	599.3	-17.5	-5.7	-3.7	2.00	2.00	0.00		
700.0	8.50	198.12	698.4	-29.9	-9.8	-6.3	2.00	2.00	0.00		
722.9	8.96	198.12	721.1	-33.2	-10.9	-7.0	2.00	2.00	0.00		
800.0 900.0	8.96 8.96	198.12 198.12	797.2 896.0	-44.6 -59.4	-14.6 -19.4	-9.4 -12.5	0.00 0.00	0.00 0.00	0.00 0.00		
1,000.0	8.96	198.12	994.8	-74.2	-19.4	-12.5	0.00	0.00	0.00		
1,100.0	8.96	198.12	1,093.6	-89.0	-29.1	-18.7	0.00	0.00	0.00		
1,200.0	8.96	198.12	1,192.4	-103.8	-34.0	-21.8	0.00	0.00	0.00		
1,300.0	8.96	198.12	1,291.1	-118.6	-38.8	-24.9	0.00	0.00	0.00		
1,400.0	8.96	198.12	1,291.1	-118.6	-38.8 -43.6	-24.9 -28.0	0.00	0.00	0.00		
1,500.0	8.96	198.12	1,488.7	-148.2	-48.5	-31.1	0.00	0.00	0.00		
1,600.0	8.96	198.12	1,587.5	-163.0	-53.3	-34.2	0.00	0.00	0.00		
1,700.0	8.96	198.12	1,686.3	-177.8	-58.2	-37.3	0.00	0.00	0.00		
1,800.0	8.96	198.12	1,785.0	-192.6	-63.0	-40.4	0.00	0.00	0.00		
1,900.0	8.96	198.12	1,883.8	-207.4	-67.9	-40.4 -43.5	0.00	0.00	0.00		
2,000.0	8.96	198.12	1,982.6	-222.2	-72.7	-46.6	0.00	0.00	0.00		
2,100.0	8.96	198.12	2,081.4	-237.0	-77.5	-49.7	0.00	0.00	0.00		
2,200.0	8.96	198.12	2,180.2	-251.8	-82.4	-52.8	0.00	0.00	0.00		
2,300.0	8.96	198.12	2,278.9	-266.6	-87.2	-55.9	0.00	0.00	0.00		
2,400.0	8.96	198.12	2,377.7	-281.4	-92.1	-59.0	0.00	0.00	0.00		
2,500.0	8.96	198.12	2,476.5	-296.2	-96.9	-62.1	0.00	0.00	0.00		
2,600.0	8.96	198.12	2,575.3	-311.0	-101.7	-65.2	0.00	0.00	0.00		
2,700.0	8.96	198.12	2,674.1	-325.8	-106.6	-68.3	0.00	0.00	0.00		
2,800.0	8.96	198.12	2,772.8	-340.6	-111.4	-71.4	0.00	0.00	0.00		
2,900.0	8.96	198.12	2,871.6	-355.4	-116.3	-74.5	0.00	0.00	0.00		
3,000.0	8.96	198.12	2,970.4	-370.2	-121.1	-77.6	0.00	0.00	0.00		
3,100.0	8.96	198.12	3,069.2	-385.0	-126.0	-80.7	0.00	0.00	0.00		
3,200.0	8.96	198.12	3,168.0	-399.8	-130.8	-83.8	0.00	0.00	0.00		
3,300.0	8.96	198.12	3,266.7	-414.6	-135.6	-86.9	0.00	0.00	0.00		
3,400.0	8.96	198.12	3,365.5	-429.4	-140.5	-90.0	0.00	0.00	0.00		
3,500.0	8.96	198.12	3,464.3	-444.2	-145.3	-93.1	0.00	0.00	0.00		
3,600.0	8.96	198.12	3,563.1	-459.0	-150.2	-96.2	0.00	0.00	0.00		
3,700.0	8.96	198.12	3,661.9	-473.8	-155.0	-99.3	0.00	0.00	0.00		
3,800.0	8.96	198.12	3,760.6	-488.6	-159.8	-102.4	0.00	0.00	0.00		
3,900.0	8.96	198.12	3,859.4	-503.4	-164.7	-105.5	0.00	0.00	0.00		
4,000.0	8.96	198.12	3,958.2	-518.2	-169.5	-108.6	0.00	0.00	0.00		
4,100.0	8.96	198.12	4,057.0	-533.0	-174.4	-111.7	0.00	0.00	0.00		
4,200.0	8.96	198.12	4,155.8	-547.8	-179.2	-114.8	0.00	0.00	0.00		
4,300.0	8.96	198.12	4,254.5	-562.6	-184.1	-117.9	0.00	0.00	0.00		
4,400.0	8.96	198.12	4,353.3	-577.4	-188.9	-121.0	0.00	0.00	0.00		
4,500.0	8.96	198.12	4,452.1	-592.2	-193.7	-124.1	0.00	0.00	0.00		
4,600.0	8.96	198.12	4,550.9	-607.0	-198.6	-127.2	0.00	0.00	0.00		
4,700.0	8.96	198.12	4,649.7	-621.8	-203.4	-130.3	0.00	0.00	0.00		
4,800.0	8.96	198.12	4,748.4	-636.6	-208.3	-133.4	0.00	0.00	0.00		
4,900.0	8.96	198.12	4,847.2	-651.4	-213.1	-136.5	0.00	0.00	0.00		

Database: Company: Hobbs

Mewbourne Oil Company

Eddy County, New Mexico NAD 83

Zircon 2/1 B3MP State Com #1H Sec 2, T19S, R29E

Well: Wellbore:

Project:

Site:

BHL: 660' FSL & 100' FEL, Sec 1

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev) WELL @ 3415.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Planned Survey									
Depth (usft)										
(usft)	Measured			Vertical			Vertical	Dogleg	Build	
5,100.0 8.96 198.12 5,044.8 -681.0 -222.8 -142.7 0.00 0.00 0.00 5,200.0 8.96 198.12 5,143.6 -695.8 -227.6 -145.8 0.00 0.00 0.00 5,300.0 8.96 198.12 5,242.3 -710.6 -232.5 -148.9 0.00 0.00 0.00 5,500.0 8.96 198.12 5,341.1 -725.4 -237.3 -152.0 0.00 0.00 0.00 5,600.0 8.96 198.12 5,538.7 -755.0 -247.0 -158.2 0.00 0.00 0.00 5,700.0 8.96 198.12 5,637.5 -769.8 -251.8 -161.3 0.00 0.00 0.00 5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 6,000.0 8.96 198.12 5,933.8 814.2 -266.7 -164.4 0.00 0.00 0.00 0.00 <	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	
5,200.0 8,96 198.12 5,143.6 -695.8 -227.6 -145.8 0.00 0.00 0.00 5,300.0 8,96 198.12 5,242.3 -710.6 -232.5 -148.9 0.00 0.00 0.00 0.00 5,600.0 8.96 198.12 5,341.1 -725.4 -237.3 -152.0 0.00	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,200.0 8,96 198.12 5,143.6 -695.8 -227.6 -145.8 0.00 0.00 0.00 5,300.0 8,96 198.12 5,242.3 -710.6 -232.5 1-148.9 0.00 0.00 0.00 0.00 5,000 5,000 0.00	5,100.0	8.96	198.12	5,044.8	-681.0	-222.8	-142.7	0.00	0.00	0.00
5,400.0 8.96 198.12 5,341.1 -725.4 -237.3 -152.0 0.00 0.00 0.00 5,500.0 8.96 198.12 5,439.9 -740.2 -242.2 -155.1 0.00 0.00 0.00 5,600.0 8.96 198.12 5,538.7 -755.0 -247.0 -158.2 0.00 0.00 0.00 5,700.0 8.96 198.12 5,637.5 -769.8 -251.8 -161.3 0.00 0.00 0.00 5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 6,000.0 8.96 198.12 5,333.8 -814.2 -266.4 -170.6 0.00 0.00 0.00 6,000.0 8.96 198.12 6,131.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,232.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 <td< td=""><td>5,200.0</td><td>8.96</td><td>198.12</td><td>5,143.6</td><td>-695.8</td><td>-227.6</td><td>-145.8</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	5,200.0	8.96	198.12	5,143.6	-695.8	-227.6	-145.8	0.00	0.00	0.00
5,400.0 8.96 198.12 5,341.1 -725.4 -237.3 -152.0 0.00 0.00 0.00 5,500.0 8.96 198.12 5,439.9 -740.2 -242.2 -155.1 0.00 0.00 0.00 5,600.0 8.96 198.12 5,538.7 -755.0 -247.0 -158.2 0.00 0.00 0.00 5,700.0 8.96 198.12 5,637.5 -769.8 -251.8 -161.3 0.00 0.00 0.00 5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 5,900.0 8.96 198.12 5,333.8 -814.2 -266.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 6,331.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 <td< td=""><td>5 300 0</td><td>8 96</td><td>198 12</td><td>5 242 3</td><td>-710 6</td><td>-232 5</td><td>-148 9</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	5 300 0	8 96	198 12	5 242 3	-710 6	-232 5	-148 9	0.00	0.00	0.00
5,500.0 8.96 198.12 5,499.9 -740.2 -242.2 -155.1 0.00 0.00 0.00 5,600.0 8.96 198.12 5,538.7 -755.0 -247.0 -158.2 0.00 0.00 0.00 5,700.0 8.96 198.12 5,637.5 -769.8 -251.8 -161.3 0.00 0.00 0.00 5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 6,000.0 8.96 198.12 5,835.0 -799.4 -261.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 6,932.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,300.0 8.96 198.12 6,220.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 0.00				,						
5,700.0 8.96 198.12 5,637.5 -769.8 -251.8 -161.3 0.00 0.00 0.00 5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 5,900.0 8.96 198.12 5,835.0 -799.4 -261.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,321.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,328.9 -873.4 -280.9 -179.9 0.00 0.00 0.00 6,500.0 8.96 198.12 6,427.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 <td< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				,						
5,800.0 8.96 198.12 5,736.2 -784.6 -256.7 -164.4 0.00 0.00 0.00 5,900.0 8.96 198.12 5,835.0 -799.4 -261.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 5,933.8 -814.2 -266.4 -170.6 0.00 0.00 0.00 6,100.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,300.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,227.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 6,500.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 <th< td=""><td>5,600.0</td><td>8.96</td><td>198.12</td><td>5,538.7</td><td>-755.0</td><td>-247.0</td><td>-158.2</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	5,600.0	8.96	198.12	5,538.7	-755.0	-247.0	-158.2	0.00	0.00	0.00
5,900.0 8.96 198.12 5,835.0 -799.4 -261.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 5,933.8 -814.2 -266.4 -170.6 0.00 0.00 0.00 6,100.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,232.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 6,500.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 <th< td=""><td>5,700.0</td><td>8.96</td><td>198.12</td><td>5,637.5</td><td>-769.8</td><td>-251.8</td><td>-161.3</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	5,700.0	8.96	198.12	5,637.5	-769.8	-251.8	-161.3	0.00	0.00	0.00
5,900.0 8.96 198.12 5,835.0 -799.4 -261.5 -167.5 0.00 0.00 0.00 6,000.0 8.96 198.12 5,933.8 -814.2 -266.4 -170.6 0.00 0.00 0.00 6,100.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,131.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 6,500.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 0.00	5,800.0	8.96	198.12	5,736.2	-784.6	-256.7	-164.4	0.00	0.00	0.00
6,100.0 8.96 198.12 6,032.6 -829.0 -271.2 -173.7 0.00 0.00 0.00 6,200.0 8.96 198.12 6,131.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 6,500.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,600.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 <td< td=""><td></td><td></td><td></td><td>5,835.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				5,835.0						
6,200.0 8.96 198.12 6,131.4 -843.8 -276.0 -176.8 0.00 0.00 0.00 6,300.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 6,500.0 8.96 198.12 6,427.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 6,600.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 <td< td=""><td>6,000.0</td><td>8.96</td><td>198.12</td><td>5,933.8</td><td>-814.2</td><td>-266.4</td><td>-170.6</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	6,000.0	8.96	198.12	5,933.8	-814.2	-266.4	-170.6	0.00	0.00	0.00
6,300.0 8.96 198.12 6,230.1 -858.6 -280.9 -179.9 0.00 0.00 0.00 6,400.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 0.00 6,500.0 8.96 198.12 6,427.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 0.00 6,600.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 0.00 6,700.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 0.00 0.00 6,800.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6,100.0	8.96		6,032.6				0.00		0.00
6,400.0 8.96 198.12 6,328.9 -873.4 -285.7 -183.0 0.00 0.00 0.00 6,500.0 8.96 198.12 6,427.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 6,600.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 7,020.4 -977.0 -314.8 -201.7 0.00 0.00 0.00 7,200.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 <	6,200.0	8.96	198.12	6,131.4	-843.8	-276.0	-176.8	0.00	0.00	0.00
6,500.0 8.96 198.12 6,427.7 -888.2 -290.6 -186.1 0.00 0.00 0.00 6,600.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,500.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1	6,300.0	8.96	198.12	6,230.1	-858.6	-280.9	-179.9	0.00	0.00	0.00
6,600.0 8.96 198.12 6,526.5 -903.0 -295.4 -189.2 0.00 0.00 0.00 6,700.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,066.6 -329.3 -211.0 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2	6,400.0	8.96								0.00
6,700.0 8.96 198.12 6,625.3 -917.8 -300.3 -192.3 0.00 0.00 0.00 6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,500.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00										
6,800.0 8.96 198.12 6,724.0 -932.6 -305.1 -195.5 0.00 0.00 0.00 6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3										
6,900.0 8.96 198.12 6,822.8 -947.4 -309.9 -198.6 0.00 0.00 0.00 7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,800.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 <td>6,700.0</td> <td>8.96</td> <td>198.12</td> <td>6,625.3</td> <td>-917.8</td> <td>-300.3</td> <td>-192.3</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	6,700.0	8.96	198.12	6,625.3	-917.8	-300.3	-192.3	0.00	0.00	0.00
7,000.0 8.96 198.12 6,921.6 -962.2 -314.8 -201.7 0.00 0.00 0.00 7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00	6,800.0	8.96	198.12	6,724.0	-932.6	-305.1	-195.5	0.00	0.00	0.00
7,100.0 8.96 198.12 7,020.4 -977.0 -319.6 -204.8 0.00 0.00 0.00 7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00	6,900.0	8.96							0.00	0.00
7,200.0 8.96 198.12 7,119.2 -991.8 -324.5 -207.9 0.00 0.00 0.00 7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -23										
7,300.0 8.96 198.12 7,217.9 -1,006.6 -329.3 -211.0 0.00 0.00 0.00 7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00 <td></td>										
7,400.0 8.96 198.12 7,316.7 -1,021.4 -334.1 -214.1 0.00 0.00 0.00 7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00	7,200.0	8.96	198.12	7,119.2	-991.8	-324.5	-207.9	0.00	0.00	0.00
7,500.0 8.96 198.12 7,415.5 -1,036.2 -339.0 -217.2 0.00 0.00 0.00 7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00		8.96	198.12	7,217.9	-1,006.6			0.00	0.00	0.00
7,600.0 8.96 198.12 7,514.3 -1,051.0 -343.8 -220.3 0.00 0.00 0.00 7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00				,						
7,700.0 8.96 198.12 7,613.1 -1,065.8 -348.7 -223.4 0.00 0.00 0.00 7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00										
7,800.0 8.96 198.12 7,711.9 -1,080.6 -353.5 -226.5 0.00 0.00 0.00 7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00										
7,900.0 8.96 198.12 7,810.6 -1,095.4 -358.4 -229.6 0.00 0.00 0.00 7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00		8.96		7,613.1	-1,065.8			0.00	0.00	0.00
7,986.4 8.96 198.12 7,895.9 -1,108.2 -362.5 -232.2 0.00 0.00 0.00				,						
				,						
	,			,						
8,000.0 8.69 198.12 7,909.4 -1,110.2 -363.2 -232.7 2.00 -2.00 0.00				,						
8,100.0 6.69 198.12 8,008.5 -1,122.9 -367.3 -235.3 2.00 -2.00 0.00	8,100.0	0.09	198.12	8,008.5	-1,122.9	-307.3	-235.3	2.00	-2.00	0.00
8,200.0 4.69 198.12 8,108.0 -1,132.3 -370.4 -237.3 2.00 -2.00 0.00				,	,					
8,300.0 2.69 198.12 8,207.8 -1,138.4 -372.4 -238.6 2.00 -2.00 0.00				,						
8,400.0 0.69 198.12 8,307.8 -1,141.2 -373.3 -239.2 2.00 -2.00 0.00	,			,						
8,434.3 0.00 0.00 8,342.0 -1,141.4 -373.4 -239.2 2.00 -2.00 0.00				8,342.0	-1,141.4	-3/3.4	-239.2	2.00	-2.00	0.00
KOP: 660' FSL & 10' FWL (2) 8,450.0 1.57 90.18 8,357.8 -1,141.4 -373.2 -239.0 10.00 10.00 0.00				Ω 257 Ω	_1 1/1 /	_272 0	-330 U	10.00	10.00	0.00
8,500.0 6.57 90.18 8,407.6 -1,141.4 -369.6 -235.5 10.00 10.00 0.00				•						
8,550.0 11.57 90.18 8,457.0 -1,141.4 -361.8 -227.6 10.00 10.00 0.00										
8,600.0 16.57 90.18 8,505.5 -1,141.5 -349.6 -215.6 10.00 10.00 0.00 8,650.0 21.57 90.18 8,552.7 -1,141.5 -333.3 -199.3 10.00 10.00 0.00										
8,650.0 21.57 90.18 8,552.7 -1,141.5 -333.3 -199.3 10.00 10.00 0.00 8,700.0 26.57 90.18 8,598.3 -1,141.6 -312.9 -179.1 10.00 10.00 0.00										
8,750.0 31.57 90.18 8,642.0 -1,141.7 -288.6 -154.9 10.00 10.00 0.00										
8,759.4 32.51 90.18 8,650.0 -1,141.7 -283.6 -150.0 10.00 10.00 0.00				8,650.0	-1,141.7	-283.6	-150.0	10.00	10.00	0.00
FTP: 660' FSL & 100' FWL (2)				0 602 4	1 1 1 1 7	260.6	107.4	10.00	10.00	0.00
8,800.0 36.57 90.18 8,683.4 -1,141.7 -260.6 -127.1 10.00 10.00 0.00 8,850.0 41.57 90.18 8,722.2 -1,141.8 -229.1 -95.8 10.00 10.00 0.00	,									
8,900.0 46.57 90.18 8,758.1 -1,142.0 -194.3 -61.3 10.00 10.00 0.00										
					,					
8,950.0 51.57 90.18 8,790.9 -1,142.1 -156.6 -23.8 10.00 10.00 0.00										
9,000.0 56.57 90.18 8,820.2 -1,142.2 -116.1 16.5 10.00 10.00 0.00 9,050.0 61.57 90.18 8,845.9 -1,142.3 -73.2 59.1 10.00 10.00 0.00										
9,050.0 61.57 90.18 8,845.9 -1,142.3 -73.2 59.1 10.00 10.00 0.00 9,100.0 66.57 90.18 8,867.8 -1,142.5 -28.3 103.7 10.00 10.00 0.00										
9,100.0 60.57 90.16 6,667.8 -1,142.5 -26.5 105.7 10.00 10.00 0.00 9,150.0 71.57 90.18 8,885.6 -1,142.6 18.4 150.1 10.00 10.00 0.00										

Database: Company:

Project:

Wellbore:

Site:

Hobbs

Mewbourne Oil Company Eddy County, New Mexico NAD 83

Zircon 2/1 B3MP State Com #1H

Well: Sec 2, T19S, R29E BHL: 660' FSL & 100' FEL, Sec 1

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev) WELL @ 3415.0usft (Original Well Elev)

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,200.0	0 76.57	90.18	8,899.4	-1,142.8	66.5	197.9	10.00	10.00	0.00
9,250.0		90.18	8,908.8	-1,142.9	115.6	246.6	10.00	10.00	0.00
9,300.0		90.18	8,914.0	-1,143.1	165.3	296.1	10.00	10.00	0.00
9,327.		90.18	8,915.0	-1,143.1	192.9	323.5	10.00	10.00	0.00
	SL & 573' FWL (2)		.,	, -					
9,400.0	, ,	90.18	8,915.8	-1,143.4	265.2	395.4	0.00	0.00	0.00
9,500.0	0 89.33	90.18	8.917.0	-1,143.7	365.2	494.8	0.00	0.00	0.00
9,600.0		90.18	8,918.2	-1,144.0	465.2	594.1	0.00	0.00	0.00
9,700.0		90.18	8,919.4	-1,144.3	565.2	693.5	0.00	0.00	0.00
9,800.0		90.18	8,920.5	-1,144.6	665.2	792.8	0.00	0.00	0.00
9,900.0		90.18	8,921.7	-1,144.9	765.2	892.2	0.00	0.00	0.00
10,000.0		90.18	8,922.9	-1,145.2	865.2	991.6	0.00	0.00	0.00
10,100.0		90.18	8,924.0	-1,145.5	965.2	1,090.9	0.00	0.00	0.00
10,200.0		90.18	8,925.2	-1,145.8 1 146 1	1,065.2	1,190.3	0.00	0.00	0.00
10,300.0		90.18	8,926.4	-1,146.1	1,165.2	1,289.6	0.00	0.00	0.00
10,400.0		90.18	8,927.6	-1,146.4	1,265.2	1,389.0	0.00	0.00	0.00
10,500.0		90.18	8,928.7	-1,146.7	1,365.2	1,488.4	0.00	0.00	0.00
10,600.0		90.18	8,929.9	-1,147.1	1,465.2	1,587.7	0.00	0.00	0.00
10,700.0		90.18	8,931.1	-1,147.4	1,565.1	1,687.1	0.00	0.00	0.00
10,800.0		90.18	8,932.2	-1,147.7	1,665.1	1,786.4	0.00	0.00	0.00
10,900.0	0 89.33	90.18	8,933.4	-1,148.0	1,765.1	1,885.8	0.00	0.00	0.00
11,000.0	0 89.33	90.18	8,934.6	-1,148.3	1,865.1	1,985.2	0.00	0.00	0.00
11,100.0	0 89.33	90.18	8,935.7	-1,148.6	1,965.1	2,084.5	0.00	0.00	0.00
11,200.0	0 89.33	90.18	8,936.9	-1,148.9	2,065.1	2,183.9	0.00	0.00	0.00
11,300.0	0 89.33	90.18	8,938.1	-1,149.2	2,165.1	2,283.2	0.00	0.00	0.00
11,400.0	0 89.33	90.18	8,939.3	-1,149.5	2,265.1	2,382.6	0.00	0.00	0.00
11,500.0	0 89.33	90.18	8,940.4	-1,149.8	2,365.1	2,482.0	0.00	0.00	0.00
11,600.0		90.18	8,941.6	-1,150.1	2,465.1	2,581.3	0.00	0.00	0.00
11,700.0	0 89.33	90.18	8,942.8	-1,150.4	2,565.1	2,680.7	0.00	0.00	0.00
11,800.0	0 89.33	90.18	8,943.9	-1,150.7	2,665.1	2,780.0	0.00	0.00	0.00
11,900.0	0 89.33	90.18	8,945.1	-1,151.0	2,765.1	2,879.4	0.00	0.00	0.00
12,000.0	0 89.33	90.18	8,946.3	-1,151.4	2,865.0	2,978.8	0.00	0.00	0.00
12,100.0	0 89.33	90.18	8,947.4	-1,151.7	2,965.0	3,078.1	0.00	0.00	0.00
12,200.0		90.18	8,948.6	-1,152.0	3,065.0	3,177.5	0.00	0.00	0.00
12,300.0		90.18	8,949.8	-1,152.3	3,165.0	3,276.8	0.00	0.00	0.00
12,400.0	0 89.33	90.18	8,951.0	-1,152.6	3,265.0	3,376.2	0.00	0.00	0.00
12,500.0	0 89.33	90.18	8,952.1	-1,152.9	3,365.0	3,475.6	0.00	0.00	0.00
12,600.0		90.18	8,953.3	-1,153.2	3,465.0	3,574.9	0.00	0.00	0.00
12,700.0		90.18	8,954.5	-1,153.5	3,565.0	3,674.3	0.00	0.00	0.00
12,800.0		90.18	8,955.6	-1,153.8	3,665.0	3,773.6	0.00	0.00	0.00
12,900.0		90.18	8,956.8	-1,154.1	3,765.0	3,873.0	0.00	0.00	0.00
13,000.0	0 89.33	90.18	8,958.0	-1,154.4	3,865.0	3,972.4	0.00	0.00	0.00
13,100.0		90.18	8,959.2	-1,154.7	3,965.0	4,071.7	0.00	0.00	0.00
13,200.0		90.18	8,960.3	-1,155.0	4,065.0	4,171.1	0.00	0.00	0.00
13,300.0		90.18	8,961.5	-1,155.3	4,165.0	4,270.4	0.00	0.00	0.00
13,400.0		90.18	8,962.7	-1,155.7	4,264.9	4,369.8	0.00	0.00	0.00
13,500.0	0 89.33	90.18	8,963.8	-1,156.0	4,364.9	4,469.2	0.00	0.00	0.00
13,600.0		90.18	8,965.0	-1,156.3	4,464.9	4,568.5	0.00	0.00	0.00
13,700.0		90.18	8,966.2	-1,156.6	4,564.9	4,667.9	0.00	0.00	0.00
13,800.0		90.18	8,967.3	-1,156.9	4,664.9	4,767.2	0.00	0.00	0.00
13,900.0		90.18	8,968.5	-1,157.2	4,764.9	4,866.6	0.00	0.00	0.00
14,000.0		90.18	8,969.7	-1,157.5	4,864.9	4,966.0	0.00	0.00	0.00
14,100.0	0 89.33	90.18	8,970.9	-1,157.8	4,964.9	5,065.3	0.00	0.00	0.00

Hobbs Database:

Company: Mewbourne Oil Company Eddy County, New Mexico NAD 83 Project:

Zircon 2/1 B3MP State Com #1H Site:

Well: Sec 2, T19S, R29E

BHL: 660' FSL & 100' FEL, Sec 1 Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev) WELL @ 3415.0usft (Original Well Elev)

gn:	Design #1								
ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
, ,				, ,		, ,	, ,	,	, ,
14,200.0	89.33	90.18	8,972.0	-1,158.1	5,064.9	5,164.7	0.00	0.00	0.00
14,300.0	89.33	90.18	8,973.2	-1,158.4	5,164.9	5,264.0	0.00	0.00	0.00
14,400.0	89.33	90.18	8,974.4	-1,158.7	5,264.9	5,363.4	0.00	0.00	0.00
14,500.0	89.33	90.18	8,975.5	-1,159.0	5,364.9	5,462.8	0.00	0.00	0.00
14,600.0	89.33	90.18	8,976.7	-1,159.3	5,464.9	5,562.1	0.00	0.00	0.00
14,700.0	89.33	90.18	8,977.9	-1,159.7	5,564.9	5,661.5	0.00	0.00	0.00
14,800.0	89.33	90.18	8,979.0	-1,160.0	5,664.8	5,760.8	0.00	0.00	0.00
14,900.0	89.33	90.18	8,980.2	-1,160.3	5,764.8	5,860.2	0.00	0.00	0.00
15,000.0	89.33	90.18	8,981.4	-1,160.6	5,864.8	5,959.6	0.00	0.00	0.00
15,100.0	89.33	90.18	8,982.6	-1,160.9	5,964.8	6,058.9	0.00	0.00	0.00
15,200.0	89.33	90.18	8,983.7	-1,161.2	6,064.8	6,158.3	0.00	0.00	0.00
15,300.0	89.33	90.18	8,984.9	-1,161.5	6,164.8	6,257.7	0.00	0.00	0.00
15,400.0	89.33	90.18	8,986.1	-1,161.8	6,264.8	6,357.0	0.00	0.00	0.00
15,500.0	89.33	90.18	8,987.2	-1,162.1	6.364.8	6,456.4	0.00	0.00	0.00
	89.33		8,987.2 8,988.4		-,		0.00	0.00	0.00
15,600.0		90.18		-1,162.4	6,464.8	6,555.7			
15,700.0	89.33	90.18	8,989.6	-1,162.7	6,564.8	6,655.1	0.00	0.00	0.00
15,800.0	89.33	90.18	8,990.8	-1,163.0	6,664.8	6,754.5	0.00	0.00	0.00
15,900.0	89.33	90.18	8,991.9	-1,163.3	6,764.8	6,853.8	0.00	0.00	0.00
16,000.0	89.33	90.18	8,993.1	-1,163.6	6,864.8	6,953.2	0.00	0.00	0.00
16,100.0	89.33	90.18	8,994.3	-1,164.0	6,964.7	7,052.5	0.00	0.00	0.00
16,200.0	89.33	90.18	8,995.4	-1,164.3	7,064.7	7,151.9	0.00	0.00	0.00
16,300.0	89.33	90.18	8,996.6	-1,164.6	7,164.7	7,251.3	0.00	0.00	0.00
16,400.0	89.33	90.18	8,997.8	-1,164.9	7,264.7	7,350.6	0.00	0.00	0.00
16,500.0	89.33	90.18	8,998.9	-1,165.2	7,364.7	7,450.0	0.00	0.00	0.00
16,600.0	89.33	90.18	9,000.1	-1,165.5	7,464.7	7,549.3	0.00	0.00	0.00
16,700.0	89.33	90.18	9,001.3	-1,165.8	7,564.7	7,648.7	0.00	0.00	0.00
16,800.0	89.33	90.18	9,002.5	-1,166.1	7,664.7	7,748.1	0.00	0.00	0.00
16,900.0	89.33	90.18	9,003.6	-1,166.4	7,764.7	7,847.4	0.00	0.00	0.00
17,000.0	89.33	90.18	9,004.8	-1,166.7	7,864.7	7,946.8	0.00	0.00	0.00
17,100.0	89.33	90.18	9,006.0	-1,167.0	7,964.7	8,046.1	0.00	0.00	0.00
17,200.0	89.33	90.18	9,007.1	-1,167.3	8,064.7	8,145.5	0.00	0.00	0.00
17,300.0	89.33	90.18	9,008.3	-1,167.6	8,164.7	8,244.9	0.00	0.00	0.00
17,400.0	89.33	90.18	9,009.5	-1,167.9	8,264.7	8,344.2	0.00	0.00	0.00
47.500.0	00.00	00.40	0.040.0	4.400.0	0.004.0	0.440.0	0.00	0.00	0.00
17,500.0	89.33	90.18	9,010.6	-1,168.3	8,364.6	8,443.6	0.00	0.00	0.00
17,600.0	89.33	90.18	9,011.8	-1,168.6	8,464.6	8,542.9	0.00	0.00	0.00
17,700.0	89.33	90.18	9,013.0	-1,168.9	8,564.6	8,642.3	0.00	0.00	0.00
17,800.0	89.33	90.18	9,014.2	-1,169.2	8,664.6	8,741.7	0.00	0.00	0.00
17,900.0	89.33	90.18	9,015.3	-1,169.5	8,764.6	8,841.0	0.00	0.00	0.00
18,000.0	89.33	90.18	9,016.5	-1,169.8	8,864.6	8,940.4	0.00	0.00	0.00
18,100.0	89.33	90.18	9,017.7	-1,170.1	8,964.6	9,039.7	0.00	0.00	0.00
18,200.0	89.33	90.18	9,018.8	-1,170.4	9,064.6	9,139.1	0.00	0.00	0.00
18,300.0	89.33	90.18	9,020.0	-1,170.7	9,164.6	9,238.5	0.00	0.00	0.00
18,400.0	89.33	90.18	9,021.2	-1,171.0	9,264.6	9,337.8	0.00	0.00	0.00
18,500.0	89.33	90.18	9,022.4	-1,171.3	9,364.6	9,437.2	0.00	0.00	0.00
18,600.0	89.33	90.18	9,023.5	-1,171.6	9,464.6	9,536.5	0.00	0.00	0.00
18,700.0	89.33	90.18	9,024.7	-1,171.9	9,564.6	9,635.9	0.00	0.00	0.00
18,800.0	89.33	90.18	9,025.9	-1,172.3	9,664.6	9,735.3	0.00	0.00	0.00
18,900.0	89.33	90.18	9,027.0	-1,172.6	9,764.5	9,834.6	0.00	0.00	0.00
19,000.0	89.33	90.18	9,028.2	-1,172.9	9,864.5	9,934.0	0.00	0.00	0.00
19,100.0	89.33	90.18	9,029.4	-1,173.2	9,964.5	10,033.3	0.00	0.00	0.00
19,200.0	89.33	90.18	9,030.5	-1,173.5	10,064.5	10,033.3	0.00	0.00	0.00
19,239.0	89.33	90.18	9,030.0	-1,173.6	10,103.5	10,132.7	0.00	0.00	0.00
10,200.0	09.00	55.10	0,001.0	1,170.0	10,100.0	. 5,	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Zircon 2/1 B3MP State Com #1H

Well: Sec 2, T19S, R29E

 Wellbore:
 BHL: 660' FSL & 100' FEL, Sec 1

 Design:
 Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Zircon 2/1 B3MP State Com #1H WELL @ 3415.0usft (Original Well Elev) WELL @ 3415.0usft (Original Well Elev)

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 1800' FSL & 380' - plan hits target c - Point		0.00	0.0	0.0	0.0	613,903.40	627,634.40	32.6873505	-104.0528333
KOP: 660' FSL & 10' F - plan hits target of - Point		0.00	8,342.0	-1,141.4	-373.4	612,762.00	627,261.00	32.6842159	-104.0540567
FTP: 660' FSL & 100' F - plan hits target o - Point		0.00	8,650.0	-1,141.7	-283.6	612,761.73	627,350.80	32.6842145	-104.0537648
LP: 660' FSL & 573' FV - plan hits target of - Point		0.01	8,915.0	-1,143.1	192.9	612,760.26	627,827.30	32.6842070	-104.0522161
BHL: 660' FSL & 100' F - plan hits target c - Point		0.00	9,031.0	-1,173.6	10,103.5	612,729.80	637,737.90	32.6840470	-104.0200044

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

		San	tare, INIVI 675	103			
	N.	ATURAL GA	AS MANA(GEMENT PI	LAN		
This Natural Gas Manag	ement Plan mi	ast be submitted wi	th each Applicat	ion for Permit to D	Orill (APD) for	a new or	recompleted well.
		Section Ef	1 – Plan De Tective May 25,	escription 2021			
I. Operator:Mev	/bourne (Oil Co.	OGRID:	14744	Dat	e: _5/2	/22
II. Type: X Original	Amendment	due to 🗆 19.15.27.	9.D(6)(a) NMA(□ 19.15.27.9.D(6)(b) NMAC	□ Other.	
If Other, please describe	:						
III. Well(s): Provide the be recompleted from a s	following inf ingle well pad	formation for each or connected to a	new or recomple central delivery p	ted well or set of voint.	wells proposed	l to be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/I		Anticipated roduced Water BBL/D
Zircon 2/1 B3MP State Com 1H		L 2 19S 29E	1830' FSL x 380' F	/ ₋ 1500	1500		4500
IV. Central Delivery P V. Anticipated Schedul proposed to be recomple	le: Provide the	following informa	2/1 B3MP State (v or recompleted w			7.9(D)(1) NMAC] osed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		al Flow k Date	First Production Date
Zircon 2/1 B3MP State Com 1H		7/2/22	8/2/22	9/2/22	9/1	7/22	9/17/22
VI. Separation Equipm	nent: 🖾 Attac	h a complete descri	iption of how Op	erator will size sep	aration equipi	nent to op	otimize gas capture.
VII. Operational Prac Subsection A through F	tices: 🛭 Attac of 19.15.27.8	ch a complete desc NMAC.	cription of the ac	tions Operator wil	ll take to com	ply with 1	the requirements of
VIII. Best Management during active and plann	nt Practices: ed maintenanc	☑ Attach a comple e.	ete description of	f Operator's best r	nanagement p	ractices to	o minimize venting

		Section 2 – EFFECTIV	Enhanced Plan E APRIL 1, 2022		
Beginning April 1, 2 reporting area must of	2022, an operator the complete this section	at is not in compliance	with its statewide natural ga	as cap	ture requirement for the applicable
X Operator certifies capture requirement	s that it is not requir for the applicable re	ed to complete this sec porting area.	tion because Operator is in a	compl	iance with its statewide natural gas
IX. Anticipated Na	tural Gas Productio	n:			
W	elI	API	Anticipated Average Natural Gas Rate MCF/D		Anticipated Volume of Natural Gas for the First Year MCF
				_	
	thering System (NG	GS): ULSTR of Tie-in	Anticipated Gathering	Av	ailable Maximum Daily Capacity
Operator	System	OLSTR of Tie-in	Start Date	Ду	of System Segment Tie-in
production operation the segment or portion in the segment or portion in the segment or portion with the segment of the segmen	ns to the existing or pon of the natural gas The natural gas gat from the well prior to Compare the compare to the compare t	lanned interconnect of gathering system(s) to the hering system will the date of first production and does not anticipate the date will continue to duction in response to the texts confidentiality pure	the natural gas gathering systemhich the well(s) will be conwhich the well(s) will be conwill not have capacity to getion. at its existing well(s) connect meet anticipated increases in the increased line pressure. Suant to Section 71-2-8 NM: 27.9 NMAC, and attaches a second which we have a second convergence.	em(s), nected gather ted to n line p	ted pipeline route(s) connecting the and the maximum daily capacity of it. 100% of the anticipated natural gas the same segment, or portion, of the pressure caused by the new well(s). 78 for the information provided in scription of the specific information

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. □ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Bradley Bishop
Printed Name:	BRADLEY BISHOP
	REGULATORY MANAGER
Title:	
E-mail Address:	BBISHOP@MEWBOURNE.COM
Date:	5/2/22
Phone:	575-393-5905
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of A	pproval:

Mewbourne Oil Company

Natural Gas Management Plan - Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15,27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.