Form C-101

August 1, 2011 Permit 328932

Manufacturer

### <u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

<u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505

> Туре Double Ram

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

| 1. Operator Na                                                           | me and Address                                                   |                                                                               |                                                  |                 |                                                                                      | ,       | , , , , , , , , , , , , , , , , , , ,                                           | EN, PLUGBAC                                 | ,                                     |                                               | D Number                       |                |     |
|--------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------|----------------|-----|
|                                                                          | EOG RESOURCES INC                                                |                                                                               |                                                  |                 |                                                                                      |         |                                                                                 |                                             |                                       | 7377                                          |                                |                |     |
|                                                                          | 3. API Number                                                    |                                                                               |                                                  |                 |                                                                                      |         |                                                                                 |                                             |                                       |                                               |                                |                |     |
| Mid                                                                      | Midland, TX 79702                                                |                                                                               |                                                  |                 |                                                                                      |         |                                                                                 |                                             | 30-025-5079                           | 1                                             |                                |                |     |
|                                                                          | Property Code 5. Property Name                                   |                                                                               |                                                  |                 |                                                                                      |         | 6. Well I                                                                       |                                             |                                       |                                               |                                |                |     |
| 389                                                                      | 61                                                               |                                                                               |                                                  | BROWN BEA       | R 36 STATE                                                                           |         |                                                                                 |                                             |                                       |                                               | 202H                           |                |     |
|                                                                          |                                                                  |                                                                               |                                                  |                 | 7                                                                                    | . Surfa | ace Location                                                                    |                                             |                                       |                                               |                                |                |     |
| IL - Lot                                                                 | Section                                                          | Township                                                                      | R                                                | ange            | Lot Idn                                                                              |         | Feet From                                                                       | N/S Line                                    | Feet F                                | rom                                           | E/W Line                       | County         |     |
| С                                                                        | 36                                                               | 25                                                                            | iS                                               | 33E             |                                                                                      | С       | 675                                                                             | N                                           |                                       | 2232                                          | W                              |                | Lea |
|                                                                          |                                                                  |                                                                               |                                                  |                 | 8 Propo                                                                              | sad R   | ottom Hole Loca                                                                 | ion                                         |                                       |                                               |                                |                |     |
| JL - Lot                                                                 | Section                                                          | Township                                                                      | R                                                | ange            | Lot Idn                                                                              | Jeu D   | Feet From                                                                       | N/S Line                                    | Feet F                                | rom                                           | E/W Line                       | County         |     |
| N                                                                        | 36                                                               | 25                                                                            |                                                  | 33E             |                                                                                      | N       | 100                                                                             | S                                           |                                       | 1990                                          | W                              |                | Lea |
|                                                                          |                                                                  |                                                                               | ,                                                |                 |                                                                                      | • •     |                                                                                 |                                             |                                       |                                               |                                |                |     |
|                                                                          |                                                                  |                                                                               | ,,,                                              |                 |                                                                                      |         | 1                                                                               |                                             | <u> </u>                              |                                               |                                | L.             |     |
|                                                                          | 1                                                                | 1                                                                             | ,,,,,                                            | 002             | 9                                                                                    |         | Information                                                                     | 1                                           |                                       |                                               | 0.70                           | 200            |     |
|                                                                          | JPPER BONE SPR                                                   | 1                                                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |                 | 9                                                                                    |         | 1                                                                               |                                             |                                       |                                               | 979                            | 900            |     |
| RED HILLS;U                                                              | 1                                                                | RING SHALE                                                                    | -                                                |                 | Addit                                                                                | ). Pool | 1                                                                               |                                             | · · · · · · · · · · · · · · · · · · · |                                               | -                              | 900            |     |
| RED HILLS;U                                                              | JPPER BONE SPI                                                   | RING SHALE                                                                    | e                                                |                 |                                                                                      | ). Pool | Information                                                                     | 14. Lease Type                              |                                       | 15. Ground Le                                 | evel Elevation                 | 900            |     |
| RED HILLS;U                                                              | 1                                                                | RING SHALE  12. Well Typ                                                      | e<br>IL                                          | 13              | Addit<br>Cable/Rotary                                                                | ). Pool | Information                                                                     | State                                       |                                       | 333                                           | evel Elevation                 | 900            |     |
| RED HILLS;U                                                              | JPPER BONE SPI                                                   | 12. Well Typ<br>C<br>17. Proposed                                             | e<br>IL<br>d Depth                               | 13              | Addit Cable/Rotary Formation                                                         | 9. Pool | Information                                                                     |                                             |                                       | 333<br>20. Spud Date                          | evel Elevation<br>39           | 900            |     |
| RED HILLS;U                                                              | JPPER BONE SPI                                                   | 12. Well Typ<br>C<br>17. Proposed                                             | e<br>IL                                          | 13              | Addit Cable/Rotary Formation Bone S                                                  | D. Pool | Unformation  Well Information                                                   | State                                       |                                       | 333<br>20. Spud Date<br>12/                   | evel Elevation<br>39<br>1/2022 |                |     |
| RED HILLS;U                                                              | JPPER BONE SPI                                                   | 12. Well Typ<br>C<br>17. Proposed                                             | e<br>IL<br>d Depth                               | 13              | Addit Cable/Rotary Formation                                                         | D. Pool | Unformation  Well Information                                                   | State                                       |                                       | 333<br>20. Spud Date<br>12/                   | evel Elevation<br>39           |                |     |
| 1. Work Type Nev 6. Multiple N Depth to Groun                            | JPPER BONE SPI<br>v Well<br>d water                              | 12. Well Typ<br>O<br>17. Proposed                                             | e<br>IL<br>J Depth<br>5115                       | 13<br>18<br>Dis | Addit Cable/Rotary Formation Bone S                                                  | D. Pool | Unformation  Well Information                                                   | State                                       |                                       | 333<br>20. Spud Date<br>12/                   | evel Elevation<br>39<br>1/2022 |                |     |
| 1. Work Type Nev 6. Multiple N Depth to Groun                            | JPPER BONE SPI                                                   | 12. Well Typ<br>O<br>17. Proposed                                             | e<br>IL<br>J Depth<br>5115                       | 13<br>18<br>Dis | Addit Cable/Rotary Formation Bone Stance from near                                   | O. Pool | Unformation  Well Information                                                   | State 19. Contractor                        |                                       | 333<br>20. Spud Date<br>12/                   | evel Elevation<br>39<br>1/2022 |                |     |
| RED HILLS;t  1. Work Type Nev 6. Multiple N Depth to Groun  We will be a | V Well  d water  using a closed-load                             | 12. Well Typ<br>O<br>17. Proposed<br>1:                                       | e<br>IL<br>d Depth<br>5115<br>eu of lined        | 13 18 Dis       | Addit Cable/Rotary Formation Bone Stance from near                                   | O. Pool | Well Information  when the water well  and and Cement F                         | State 19. Contractor  Program               |                                       | 333<br>20. Spud Date<br>12/<br>Distance to ne | evel Elevation<br>39<br>1/2022 | ır             |     |
| RED HILLS;t  1. Work Type Nev 6. Multiple N repth to Grour  We will be   | JPPER BONE SPI  v Well  d water  using a closed-loc  Hole Size   | 12. Well Typ<br>C<br>17. Proposer<br>1:<br>pp system in lie                   | e<br>IL<br>d Depth<br>5115<br><b>eu of linec</b> | 13 18 Dis       | Addit Cable/Rotary Formation Bone S tance from near                                  | O. Pool | Well Information  Well Information  Sh water well  Ing and Cement F  Setting    | State  19. Contractor  Program  Depth       | Sac                                   | 33: 20. Spud Date 12/ Distance to ne          | evel Elevation<br>39<br>1/2022 | r<br>Estimated | гос |
| 1. Work Type Nev 6. Multiple N Depth to Groun We will be Type Surf       | JPPER BONE SPI<br>v Well d water using a closed-loc Hole Size 16 | 12. Well Typ<br>O<br>17. Proposer<br>1:<br>Op system in lie<br>Casing<br>13.3 | e IL I Depth 5115                                | 13 18 Dis       | Addit Cable/Rotary Formation Bone Stance from near  21. Proposed sing Weight/ft 54.5 | O. Pool | Well Information  Well Information  sh water well  ng and Cement F  Setting 128 | State  19. Contractor  Program  Depth  00   | Saci                                  | 33: 20. Spud Date 12/ Distance to ne.         | evel Elevation<br>39<br>1/2022 | Estimated O    | гос |
| RED HILLS;t  11. Work Type Nev  16. Multiple N  Depth to Grour           | JPPER BONE SPI  v Well  d water  using a closed-loc  Hole Size   | 12. Well Typ<br>C<br>17. Proposer<br>1:<br>pp system in lie                   | e IL I Depth 5115  Bu of lined  I Size 875  25   | 13 18 Dis       | Addit Cable/Rotary Formation Bone S tance from near                                  | O. Pool | Well Information  Well Information  Sh water well  Ing and Cement F  Setting    | State 19. Contractor  Program Depth 100 125 | Sac                                   | 33: 20. Spud Date 12/ Distance to ne          | evel Elevation<br>39<br>1/2022 | r<br>Estimated | гос |

Casing/Cement Program: Additional Comments

EOG respectfully requests the option to use the casing and cement program described in Design B of the drill plan. The NMOCD will be notified of EOG's election at spud.

5000

22. Proposed Blowout Prevention Program Working Pressure

Test Pressure

3000

| 23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OIL CONSERVATION DIVISION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| I further certify I have complied with 19.15.14.9 (A) NMAC ⊠ and/or 19.15.14.9 (B) NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| X, if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| District State of the State of the Manual State of the St | A LD Devil E Keyte        |

| ⊠, if applicable. | lave complied with 13.13.14.3 (A) N | INIAO ZI BILIO 13.13.14.3 (B) NINAO |                    |               |                             |
|-------------------|-------------------------------------|-------------------------------------|--------------------|---------------|-----------------------------|
| Signature:        |                                     |                                     |                    |               |                             |
| Printed Name:     | Electronically filed by Kay Maddox  |                                     | Approved By:       | Paul F Kautz  |                             |
| Title:            | Regulatory Agent                    |                                     | Title:             | Geologist     |                             |
| Email Address:    | kay_maddox@eogresources.com         | n                                   | Approved Date:     | 11/17/2022    | Expiration Date: 11/17/2024 |
| Date:             | 11/13/2022                          | Phone: 432-686-3658                 | Conditions of Appr | oval Attached |                             |

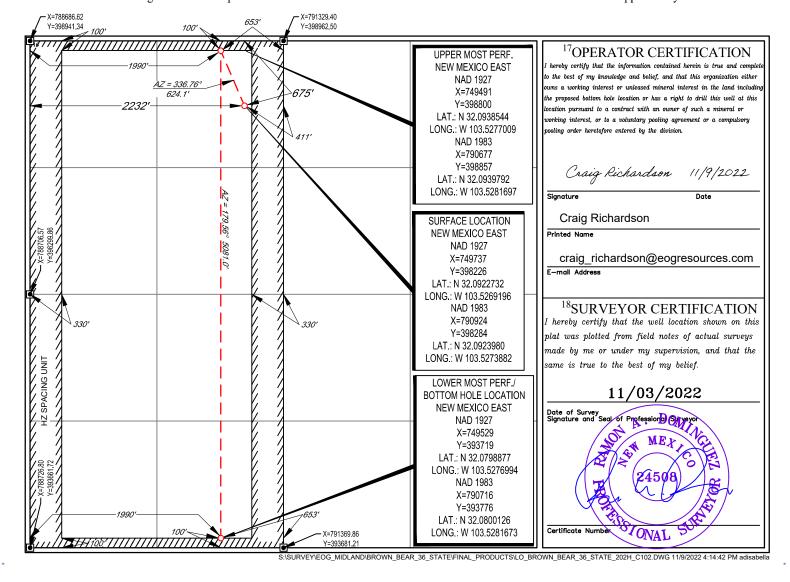
<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 1220 S. St. Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

**FORM C-102** Revised August 1, 2011 Submit one copy to appropriate **District Office** 

AMENDED REPORT


### WELL LOCATION AND ACREAGE DEDICATION PLAT

| - | <sup>1</sup> API Numbe     | er     | <sup>2</sup> Pool Code <sup>3</sup> Pool Name |                             |                          |
|---|----------------------------|--------|-----------------------------------------------|-----------------------------|--------------------------|
|   | 30-025                     | -50791 | 97900                                         | RED HILLS; UPPER BONE SPRIN | IG SHALE                 |
| ſ | <sup>4</sup> Property Code |        | <sup>5</sup> Pr                               | operty Name                 | <sup>6</sup> Well Number |
|   | 38961                      |        | BROWN B                                       | BEAR 36 STATE               | 202H                     |
| ſ | <sup>7</sup> OGRID No.     |        | <sup>8</sup> O <sub>I</sub>                   | perator Name                | <sup>9</sup> Elevation   |
| l | 7377                       |        | EOG RES                                       | SOURCES, INC.               | 3339'                    |

<sup>10</sup>Surface Location

| UL or lot no.                 | Section                  | Township   | Range          | Lot Idn              | Feet from the    | North/South line  | Feet from the | East/West line | County |
|-------------------------------|--------------------------|------------|----------------|----------------------|------------------|-------------------|---------------|----------------|--------|
| C                             | 36                       | 25-S       | 33-E           | -                    | 675'             | NORTH             | 2232'         | WEST           | LEA    |
|                               |                          |            | 11]            | Bottom Ho            | le Location If I | Different From Su | rface         |                |        |
| UL or lot no.                 | Section                  | Township   | Range          | Lot Idn              | Feet from the    | North/South line  | Feet from the | East/West line | County |
| N                             | 36                       | 25-S       | 33-E           | _                    | 100'             | SOUTH             | 1990'         | WEST           | LEA    |
| <sup>12</sup> Dedicated Acres | <sup>13</sup> Joint or l | nfill 14Co | nsolidation Co | de <sup>15</sup> Ord | er No.           |                   |               |                |        |
| 320.00                        |                          |            |                |                      |                  |                   |               |                |        |
|                               |                          |            |                |                      |                  |                   |               |                |        |

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.



Permit 328932

Form APD Conditions

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

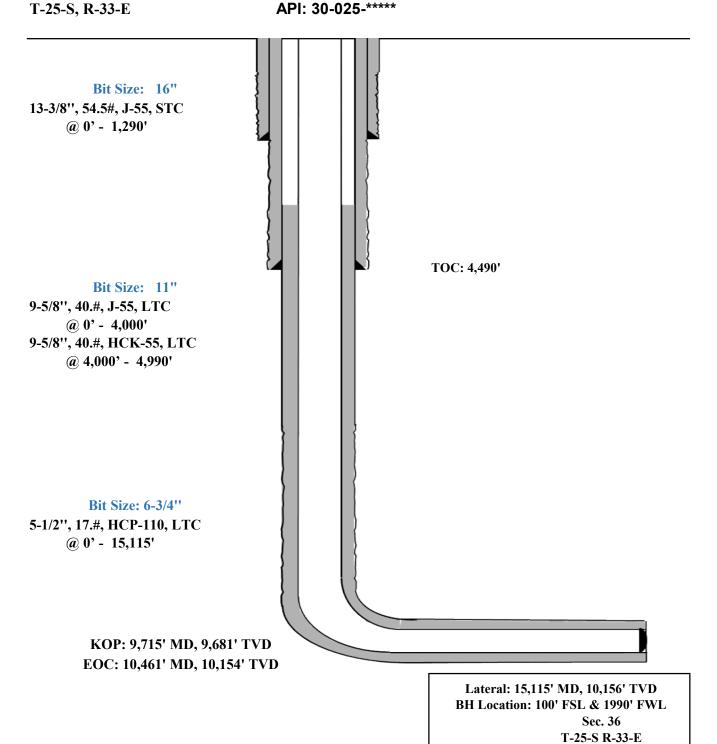
#### PERMIT CONDITIONS OF APPROVAL

| Operator Name and Address: | API Number:               |
|----------------------------|---------------------------|
| EOG RESOURCES INC [7377]   | 30-025-50791              |
| P.O. Box 2267              | Well:                     |
| Midland, TX 79702          | BROWN BEAR 36 STATE #202H |

| OCD<br>Reviewer | Condition                                                                                                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pkautz          | Notify OCD 24 hours prior to casing & cement                                                                                                                                                                                                                         |
| pkautz          | Will require a File As Drilled C-102 and a Directional Survey with the C-104                                                                                                                                                                                         |
| pkautz          | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string |
| pkautz          | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system                  |
| pkautz          | Cement is required to circulate on both surface and intermediate1 strings of casing                                                                                                                                                                                  |
| pkautz          | The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud                                                                                                                                                                   |

675' FNL

2232' FWL


**Section 36** 

**Brown Bear 36 State #202H** Lea County, New Mexico **Proposed Wellbore** 

Design A

KB: 3364' GL: 3339'

API: 30-025-\*\*\*\*





Brown Bear 36 State #202H Lea County, New Mexico Proposed Wellbore

675' FNL 2232' FWL Section 36 T-25-S, R-33-E osed Wellbore KB: 3364' Design B GL: 3339'

API: 30-025-\*\*\*\*

Bit Size: 13-1/2" 10-3/4", 40.5#, J-55, STC @ 0' - 1,290' TOC: 4,490' Bit Size: 9-7/8" 8-3/4", 38.5#, P110-EC, VAM Sprint-SF @ 0' - 4,990' Bit Size: 6-3/4" 5-1/2", 17.#, HCP-110, LTC @ 0' - 15,115' KOP: 9,715' MD, 9,681' TVD EOC: 10,461' MD, 10,154' TVD

Lateral: 15,115' MD, 10,156' TVD BH Location: 100' FSL & 1990' FWL

> Sec. 36 T-25-S R-33-E



### **Permit Information:**

Well Name: Brown Bear 36 State #202H

Location:

SHL: 675' FNL & 2232' FWL, Section 36, T-25-S, R-33-E, Lea Co., N.M. BHL: 100' FSL & 1990' FWL, Section 36, T-25-S, R-33-E, Lea Co., N.M.

### Design A

**Casing Program:** 

| Hole   | Interv    | al MD   | Interva   | d TVD   | Csg     |        |         |      |
|--------|-----------|---------|-----------|---------|---------|--------|---------|------|
| Size   | From (ft) | To (ft) | From (ft) | To (ft) | OD      | Weight | Grade   | Conn |
| 16"    | 0         | 1,290   | 0         | 1,290   | 13-3/8" | 54.5#  | J-55    | STC  |
| 11"    | 0         | 4,035   | 0         | 4,000   | 9-5/8"  | 40#    | J-55    | LTC  |
| 11"    | 4,035     | 5,025   | 4,000     | 4,990   | 9-5/8"  | 40#    | HCK-55  | LTC  |
| 6-3/4" | 0         | 15,115  | 0         | 10,156  | 5-1/2"  | 17#    | HCP-110 | LTC  |

**Cement Program:** 

|         | No.   | Wt.  | Yld    | Slurry Description                                                                                                  |
|---------|-------|------|--------|---------------------------------------------------------------------------------------------------------------------|
| Depth   | Sacks | ppg  | Ft3/sk | Starry Description                                                                                                  |
| 1,290'  | 370   | 13.5 | 1.73   | Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)                         |
| 1,290   | 80    | 14.8 | 1.34   | Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate                                            |
| 4,040'  | 510   | 14.2 | 1.11   | Tail: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)                                              |
| 4,040   | 590   | 14.8 | 1.5    | Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 3,992')                                                              |
|         | 480   | 11.0 | 3.21   | Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,490')                                                              |
| 15,115' | 390   | 13.2 | 1.52   | Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 |

**Mud Program:** 

| Depth                       | Type        | Veight (pp | Viscosity | Water Loss |
|-----------------------------|-------------|------------|-----------|------------|
| 0 – 1,290'                  | Fresh - Gel | 8.6-8.8    | 28-34     | N/c        |
| 1,290' – 4,990'             | Brine       | 8.6-8.8    | 28-34     | N/c        |
| 4,990' – 15,115'<br>Lateral | Oil Base    | 8.8-9.5    | 58-68     | N/c - 6    |



### **Design B**

### CASING PROGRAM

| Hole    | Interva   | al MD   | Interva   | Interval TVD |         |        |         |               |
|---------|-----------|---------|-----------|--------------|---------|--------|---------|---------------|
| Size    | From (ft) | To (ft) | From (ft) | To (ft)      | OD      | Weight | Grade   | Conn          |
| 13-1/2" | 0         | 1,290   | 0         | 1,290        | 10-3/4" | 40.5#  | J-55    | STC           |
| 9-7/8"  | 0         | 5,025   | 0         | 4,990        | 8-3/4"  | 38.5#  | P110-EC | VAM Sprint-SF |
| 6-3/4"  | 0         | 15,115  | 0         | 10,156       | 5-1/2"  | 17#    | HCP-110 | LTC           |

**Cementing Program:** 

| Cementi | ng Program | 111• |        |                                                                                                                     |
|---------|------------|------|--------|---------------------------------------------------------------------------------------------------------------------|
|         |            | Wt.  | Yld    | Slurry Description                                                                                                  |
| Depth   | No. Sacks  | ppg  | Ft3/sk | v I                                                                                                                 |
| 1,290'  | 360        | 13.5 | 1.73   | Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl2 + 0.25<br>lb/sk Cello-Flake (TOC @ Surface)                      |
| 1,290   | 70         | 14.8 | 1.34   | Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate                                            |
| 5,030'  | 230        | 14.2 | 1.11   | Tail: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)                                              |
| 3,030   | 1000       | 14.8 | 1.5    | Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 3,992')                                                              |
|         | 250        | 11.0 | 3.21   | Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,490')                                                              |
| 15,115' | 390        | 13.2 | 1.52   | Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 |

### **Mud Program:**

| Depth                       | Type        | Veight (ppg | Viscosity | Water Loss |
|-----------------------------|-------------|-------------|-----------|------------|
| 0 – 1,290'                  | Fresh - Gel | 8.6-8.8     | 28-34     | N/c        |
| 1,290' – 4,990'             | Brine       | 8.6-8.8     | 28-34     | N/c        |
| 4,990' – 15,115'<br>Lateral | Oil Base    | 8.8-9.5     | 58-68     | N/c - 6    |
| Lateral                     |             |             |           |            |



### **Hydrogen Sulfide Plan Summary**

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
  - Well control equipment
  - a. Flare line 150' from wellhead to be ignited by flare gun.
  - b. Choke manifold with a remotely operated choke.
  - c. Mud/gas separator
  - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

### Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
  - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
  - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
  - c. Two wind socks will be placed in strategic locations, visible from all angles.



### ■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

### ■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

### ■ Communication:

Communication will be via cell phones and land lines where available.



### Brown Bear 36 State #202H Emergency Assistance Telephone List

| PUBLIC SAFETY:             |               | 1      | 911 or         |
|----------------------------|---------------|--------|----------------|
| Lea County Sheriff's       | s Department  |        | (575) 396-3611 |
|                            | Rod Coffman   |        |                |
| Fire Department:           |               |        |                |
|                            | Carlsbad      |        | (575) 885-3125 |
|                            | Artesia       |        | (575) 746-5050 |
| Hospitals:                 |               |        |                |
|                            | Carlsbad      |        | (575) 887-4121 |
|                            | Artesia       |        | (575) 748-3333 |
|                            | Hobbs         |        | (575) 392-1979 |
| Dept. of Public Safe       | ty/Carlsbad   |        | (575) 748-9718 |
| Highway Departmen          | t             |        | (575) 885-3281 |
| New Mexico Oil Co          | nservation    |        | (575) 476-3440 |
| NMOCD Inspection           | Group - South |        | (575) 626-0830 |
| U.S. Dept. of Labor        | -             |        | (575) 887-1174 |
| <b>EOG Resources, In</b>   | c.            |        |                |
| EOG / Midland              |               | Office | (432) 686-3600 |
|                            |               |        |                |
| Company Drilling           | Consultants:  |        |                |
| David Dominque             |               | Cell   | (985) 518-5839 |
| Mike Vann                  |               | Cell   | (817) 980-5507 |
|                            |               |        |                |
| <b>Drilling Engineer</b>   |               |        |                |
| Stephen Davis              |               | Cell   | (432) 235-9789 |
| Matt Day                   |               | Cell   | (432) 296-4456 |
| <b>Drilling Manager</b>    |               |        |                |
| Branden Keener             |               | Office | (432) 686-3752 |
|                            |               | Cell   | (210) 294-3729 |
| <b>Drilling Superinten</b> | dent          |        |                |
| Steve Kelly                |               | Office | (432) 686-3706 |
|                            |               | Cell   | (210) 416-7894 |
| H&P Drilling               |               |        |                |
| H&P Drilling               |               | Office | (432) 563-5757 |
| H&P 651 Drilling R         | ig            | Rig    | (903) 509-7131 |
|                            |               |        |                |
| Tool Pusher:               |               |        |                |
| Johnathan Craig            |               | Cell   | (817) 760-6374 |
| Brad Garrett               |               |        |                |
|                            |               |        |                |
| Safety:                    |               |        |                |
| Brian Chandler (HSI        | E Manager)    | Office | (432) 686-3695 |
|                            |               | Cell   | (817) 239-0251 |
|                            |               |        |                |



### **Midland**

Lea County, NM (NAD 83 NME) Brown Bear 36 State #202H

OH

Plan: Plan #0.1 RT

### **Standard Planning Report**

10 November, 2022



### **Planning Report**

Database: Company:

PEDM Midland

Lea County, NM (NAD 83 NME)

Brown Bear 36 State Site:

Well: #202H Wellbore: ОН

Plan #0.1 RT Design:

**Local Co-ordinate Reference:** 

**TVD Reference:** MD Reference: North Reference:

**Survey Calculation Method:** 

Well #202H

kb = 26' @ 3365.0usft kb = 26' @ 3365.0usft

Grid

Minimum Curvature

Project

Project:

Lea County, NM (NAD 83 NME)

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983 System Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Brown Bear 36 State Site

Site Position: From:

Мар

Northing: Easting:

398,279.00 usft 790,384.00 usft

Latitude: Longitude:

32° 5' 32.624 N 103° 31' 44.870 W

**Position Uncertainty:** 0.0 usft Slot Radius: 13-3/16 "

0.0 usft

0.0 usft

0.0 usft

Well #202H

> +N/-S +E/-W

Northing:

Easting: Wellhead Elevation:

398,284.00 usft 790,924.00 usft usft Latitude: Longitude: **Ground Level:** 

32° 5' 32.634 N 103° 31' 38.593 W

3,339.0 usft

0.43° **Grid Convergence:** 

Wellbore

**Well Position** 

**Position Uncertainty** 

ОН

Declination Magnetics **Model Name** Sample Date Dip Angle Field Strength (°) (°) (nT) IGRF2020 47,274.59010651 11/10/2022 6.35 59.74

Design

Audit Notes:

Version:

Vertical Section:

Plan #0.1 RT

Phase:

PLAN

Tie On Depth:

0.0

Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 182.64 0.0 0.0 0.0

**Plan Survey Tool Program** 

Date 11/10/2022

**Depth From** Depth To

(usft) (usft) 0.0 15,115.3

Survey (Wellbore) Plan #0.1 RT (OH) **Tool Name** 

Remarks

EOG MWD+IFR1 MWD + IFR1

11/10/2022 4:10:00PM

Page 2

COMPASS 5000.16 Build 100



### Planning Report

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Brown Bear 36 State

Well: #202H Wellbore: OH

Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #202H

kb = 26' @ 3365.0usft kb = 26' @ 3365.0usft

Grid

| Plan Sections               |                    |                |                             |                 |                 |                               |                              |                             |            |                     |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|------------------------------|-----------------------------|------------|---------------------|
| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) | TFO<br>(°) | Target              |
| 0.0                         | 0.00               | 0.00           | 0.0                         | 0.0             | 0.0             | 0.00                          | 0.00                         | 0.00                        | 0.00       |                     |
| 1,400.0                     | 0.00               | 0.00           | 1,400.0                     | 0.0             | 0.0             | 0.00                          | 0.00                         | 0.00                        | 0.00       |                     |
| 1,696.5                     | 5.93               | 338.37         | 1,696.0                     | 14.3            | -5.6            | 2.00                          | 2.00                         | 0.00                        | 338.37     |                     |
| 7,886.7                     | 5.93               | 338.37         | 7,853.0                     | 608.7           | -241.4          | 0.00                          | 0.00                         | 0.00                        | 0.00       |                     |
| 8,183.2                     | 0.00               | 0.01           | 8,149.0                     | 623.0           | -247.0          | 2.00                          | -2.00                        | 0.00                        | 180.00     |                     |
| 9,714.7                     | 0.00               | 0.01           | 9,680.5                     | 623.0           | -247.0          | 0.00                          | 0.00                         | 0.00                        | 0.00       | KOP(Brown Bear 36 5 |
| 9,933.2                     | 26.70              | 180.00         | 9,891.2                     | 573.0           | -247.0          | 12.22                         | 12.22                        | 82.37                       | 180.00     | FTP(Brown Bear 36 S |
| 10,460.5                    | 89.98              | 179.55         | 10,154.1                    | 146.6           | -244.7          | 12.00                         | 12.00                        | -0.09                       | -0.51      |                     |
| 15,115.3                    | 89.98              | 179.55         | 10,156.0                    | -4,508.0        | -208.0          | 0.00                          | 0.00                         | 0.00                        | 0.00       | PBHL(Brown Bear 36  |

### Planning Report

Database: Company:

Project:

PEDM Midland

Lea County, NM (NAD 83 NME)

Site: Brown Bear 36 State

 Well:
 #202H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #202H

kb = 26' @ 3365.0usft kb = 26' @ 3365.0usft

Grid

| Measured Depth (usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Measured   Depth (usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | te   |
| 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 500.0         0.00         0.00         500.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00              | 0.00 |
| 600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 700.0         0.00         0.00         700.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00              | 0.00 |
| 800.0         0.00         0.00         800.0         0.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0     | 0.00 |
| 900.0 0.00 0.00 900.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 1,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 |
| 1,100.0         0.00         0.00         1,100.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00          |      |
| 1,200.0         0.00         0.00         1,200.0         0.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         1.00         0.00         1.00         0.00         1.00         0.00         1.00         1.00         1.00         0.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         < | 0.00 |
| 1,300.0       0.00       0.00       1,300.0       0.0       0.0       0.0       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                             | 0.00 |
| 1,400.0       0.00       0.00       1,400.0       0.0       0.0       0.0       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                             | 0.00 |
| 1,500.0       2.00       338.37       1,500.0       1.6       -0.6       -1.6       2.00       2.00         1,600.0       4.00       338.37       1,599.8       6.5       -2.6       -6.4       2.00       2.00         1,696.5       5.93       338.37       1,696.0       14.3       -5.6       -14.0       2.00       2.00         1,700.0       5.93       338.37       1,699.5       14.6       -5.8       -14.3       0.00       0.00         1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8                                                                                                                                  | 0.00 |
| 1,600.0       4.00       338.37       1,599.8       6.5       -2.6       -6.4       2.00       2.00         1,696.5       5.93       338.37       1,696.0       14.3       -5.6       -14.0       2.00       2.00         1,700.0       5.93       338.37       1,699.5       14.6       -5.8       -14.3       0.00       0.00         1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7                                                                                                                               | 0.00 |
| 1,600.0       4.00       338.37       1,599.8       6.5       -2.6       -6.4       2.00       2.00         1,696.5       5.93       338.37       1,696.0       14.3       -5.6       -14.0       2.00       2.00         1,700.0       5.93       338.37       1,699.5       14.6       -5.8       -14.3       0.00       0.00         1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7                                                                                                                               | 0.00 |
| 1,696.5       5.93       338.37       1,696.0       14.3       -5.6       -14.0       2.00       2.00         1,700.0       5.93       338.37       1,699.5       14.6       -5.8       -14.3       0.00       0.00         1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7 <td>0.00</td>                                                                                                              | 0.00 |
| 1,700.0       5.93       338.37       1,699.5       14.6       -5.8       -14.3       0.00       0.00         1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1<                                                                                                                         | 0.00 |
| 1,800.0       5.93       338.37       1,798.9       24.2       -9.6       -23.7       0.00       0.00         1,900.0       5.93       338.37       1,898.4       33.8       -13.4       -33.1       0.00       0.00         2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108                                                                                                                         | 0.00 |
| 2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5 <td< th=""><td>0.00</td></td<>                                                                                                | 0.00 |
| 2,000.0       5.93       338.37       1,997.8       43.4       -17.2       -42.6       0.00       0.00         2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5 <td< th=""><td>0.00</td></td<>                                                                                                | 0.00 |
| 2,100.0       5.93       338.37       2,097.3       53.0       -21.0       -52.0       0.00       0.00         2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       <                                                                                                                     | 0.00 |
| 2,200.0       5.93       338.37       2,196.8       62.6       -24.8       -61.4       0.00       0.00         2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       -136.7       0.00       0.00         3,100.0       5.93       338.37       3,092.0       149.0       -59.1                                                                                                                           | 0.00 |
| 2,300.0       5.93       338.37       2,296.2       72.2       -28.6       -70.8       0.00       0.00         2,400.0       5.93       338.37       2,395.7       81.8       -32.4       -80.2       0.00       0.00         2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       -136.7       0.00       0.00         3,100.0       5.93       338.37       3,092.0       149.0       -59.1       -146.2       0.00       0.00                                                                                                                                                                                                       | 0.00 |
| 2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       -136.7       0.00       0.00         3,100.0       5.93       338.37       3,092.0       149.0       -59.1       -146.2       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00 |
| 2,500.0       5.93       338.37       2,495.2       91.4       -36.2       -89.7       0.00       0.00         2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       -136.7       0.00       0.00         3,100.0       5.93       338.37       3,092.0       149.0       -59.1       -146.2       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00 |
| 2,600.0       5.93       338.37       2,594.6       101.0       -40.1       -99.1       0.00       0.00         2,700.0       5.93       338.37       2,694.1       110.6       -43.9       -108.5       0.00       0.00         2,800.0       5.93       338.37       2,793.6       120.2       -47.7       -117.9       0.00       0.00         2,900.0       5.93       338.37       2,893.0       129.8       -51.5       -127.3       0.00       0.00         3,000.0       5.93       338.37       2,992.5       139.4       -55.3       -136.7       0.00       0.00         3,100.0       5.93       338.37       3,092.0       149.0       -59.1       -146.2       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00 |
| 2,700.0     5.93     338.37     2,694.1     110.6     -43.9     -108.5     0.00     0.00       2,800.0     5.93     338.37     2,793.6     120.2     -47.7     -117.9     0.00     0.00       2,900.0     5.93     338.37     2,893.0     129.8     -51.5     -127.3     0.00     0.00       3,000.0     5.93     338.37     2,992.5     139.4     -55.3     -136.7     0.00     0.00       3,100.0     5.93     338.37     3,092.0     149.0     -59.1     -146.2     0.00     0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 |
| 2,800.0     5.93     338.37     2,793.6     120.2     -47.7     -117.9     0.00     0.00       2,900.0     5.93     338.37     2,893.0     129.8     -51.5     -127.3     0.00     0.00       3,000.0     5.93     338.37     2,992.5     139.4     -55.3     -136.7     0.00     0.00       3,100.0     5.93     338.37     3,092.0     149.0     -59.1     -146.2     0.00     0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 |
| 3,000.0 5.93 338.37 2,992.5 139.4 -55.3 -136.7 0.00 0.00 3,100.0 5.93 338.37 3,092.0 149.0 -59.1 -146.2 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 |
| 3,000.0 5.93 338.37 2,992.5 139.4 -55.3 -136.7 0.00 0.00 3,100.0 5.93 338.37 3,092.0 149.0 -59.1 -146.2 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 |
| 3,100.0 5.93 338.37 3,092.0 149.0 -59.1 -146.2 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 |
| . a.zuu.u 5.95 550.57 5.181.4 150.0 -02.9 -155.0 U.UU U.UU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 |
| 3,300.0 5.93 338.37 3,290.9 168.2 -66.7 -165.0 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,400.0 5.93 338.37 3,390.4 177.9 -70.5 -174.4 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,500.0 5.93 338.37 3,489.8 187.5 -74.3 -183.8 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,600.0 5.93 338.37 3,589.3 197.1 -78.1 -193.3 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,700.0 5.93 338.37 3,688.8 206.7 -81.9 -202.7 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,800.0 5.93 338.37 3,788.2 216.3 -85.7 -212.1 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 3,900.0 5.93 338.37 3,887.7 225.9 -89.6 -221.5 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 4,000.0 5.93 338.37 3,987.1 235.5 -93.4 -230.9 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 4,100.0 5.93 338.37 4,086.6 245.1 -97.2 -240.3 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 |
| 4,200.0 5.93 338.37 4,186.1 254.7 -101.0 -249.8 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,300.0 5.93 338.37 4,285.5 264.3 -104.8 -259.2 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,400.0 5.93 338.37 4,385.0 273.9 -108.6 -268.6 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,500.0 5.93 338.37 4,484.5 283.5 -112.4 -278.0 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,600.0 5.93 338.37 4,583.9 293.1 -116.2 -287.4 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,700.0 5.93 338.37 4,683.4 302.7 -120.0 -296.9 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,800.0 5.93 338.37 4,782.9 312.3 -123.8 -306.3 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 4,900.0 5.93 338.37 4,882.3 321.9 -127.6 -315.7 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 5,000.0 5.93 338.37 4,981.8 331.5 -131.4 -325.1 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 5,100.0 5.93 338.37 5,081.3 341.1 -135.2 -334.5 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |
| 5,200.0 5.93 338.37 5,180.7 350.7 -139.1 -343.9 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 |

### Planning Report

Database: Company:

Project:

PEDM Midland

Lea County, NM (NAD 83 NME)

Brown Bear 36 State Site:

Well: #202H ОН Wellbore:

Design: Plan #0.1 RT Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

**Survey Calculation Method:** 

Well #202H

kb = 26' @ 3365.0usft kb = 26' @ 3365.0usft

Grid

| Design:                     | Plan #0.1 RT       |                  |                             |                 |                  |                               |                               |                              |                             |
|-----------------------------|--------------------|------------------|-----------------------------|-----------------|------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Planned Survey              |                    |                  |                             |                 |                  |                               |                               |                              |                             |
| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft)  | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 5,300.0                     | 5.93               | 338.37           | 5,280.2                     | 360.3           | -142.9           | -353.4                        | 0.00                          | 0.00                         | 0.00                        |
| 5,400.0                     | 5.93               | 338.37           | 5,379.7                     | 369.9           | -146.7           | -362.8                        | 0.00                          | 0.00                         | 0.00                        |
| 5,500.0                     | 5.93               | 338.37           | 5,479.1                     | 379.5           | -150.5           | -372.2                        | 0.00                          | 0.00                         | 0.00                        |
| 5,600.0                     | 5.93               | 338.37           | 5,578.6                     | 389.1           | -154.3           | -381.6                        | 0.00                          | 0.00                         | 0.00                        |
| 5,700.0                     | 5.93               | 338.37           | 5,678.0                     | 398.7           | -158.1           | -391.0                        | 0.00                          | 0.00                         | 0.00                        |
| 5,800.0                     | 5.93               | 338.37           | 5,777.5                     | 408.3           | -161.9           | -400.5                        | 0.00                          | 0.00                         | 0.00                        |
| 5,900.0                     | 5.93               | 338.37           | 5,877.0                     | 418.0           | -165.7           | -409.9                        | 0.00                          | 0.00                         | 0.00                        |
| 6,000.0                     | 5.93               | 338.37           | 5,976.4                     | 427.6           | -169.5           | -419.3                        | 0.00                          | 0.00                         | 0.00                        |
| 6,100.0                     | 5.93               | 338.37           | 6,075.9                     | 437.2           | -173.3           | -428.7                        | 0.00                          | 0.00                         | 0.00                        |
| 6,200.0                     | 5.93               | 338.37           | 6,175.4                     | 446.8           | -177.1           | -438.1                        | 0.00                          | 0.00                         | 0.00                        |
| 6,300.0                     | 5.93               | 338.37           | 6,274.8                     | 456.4           | -180.9           | -447.5                        | 0.00                          | 0.00                         | 0.00                        |
| 6,400.0                     | 5.93               | 338.37           | 6,374.3                     | 466.0           | -184.7           | -457.0                        | 0.00                          | 0.00                         | 0.00                        |
| 6,500.0                     | 5.93               | 338.37           | 6,473.8                     | 475.6           | -188.6           | -466.4                        | 0.00                          | 0.00                         | 0.00                        |
| 6,600.0                     | 5.93               | 338.37           | 6,573.2                     | 485.2           | -192.4           | -475.8                        | 0.00                          | 0.00                         | 0.00                        |
| 6,700.0                     | 5.93               | 338.37           | 6,672.7                     | 494.8           | -196.2           | -485.2                        | 0.00                          | 0.00                         | 0.00                        |
| 6,800.0                     | 5.93               | 338.37           | 6,772.2                     | 504.4           | -200.0           | -494.6                        | 0.00                          | 0.00                         | 0.00                        |
| 6,900.0                     | 5.93               | 338.37           | 6,871.6                     | 514.0           | -203.8           | -504.1                        | 0.00                          | 0.00                         | 0.00                        |
| 7,000.0                     | 5.93               | 338.37           | 6,971.1                     | 523.6           | -207.6           | -513.5                        | 0.00                          | 0.00                         | 0.00                        |
| 7,100.0                     | 5.93               | 338.37           | 7,070.6                     | 533.2           | -211.4           | -522.9                        | 0.00                          | 0.00                         | 0.00                        |
| 7,200.0<br>7,300.0          | 5.93               | 338.37           | 7,170.0                     | 542.8<br>552.4  | -215.2<br>-219.0 | -532.3                        | 0.00                          | 0.00                         | 0.00                        |
|                             | 5.93               | 338.37           | 7,269.5                     |                 |                  | -541.7                        | 0.00                          | 0.00                         | 0.00                        |
| 7,400.0                     | 5.93               | 338.37           | 7,369.0                     | 562.0           | -222.8           | -551.1                        | 0.00                          | 0.00                         | 0.00                        |
| 7,500.0                     | 5.93               | 338.37           | 7,468.4                     | 571.6           | -226.6           | -560.6                        | 0.00                          | 0.00                         | 0.00                        |
| 7,600.0                     | 5.93               | 338.37           | 7,567.9                     | 581.2           | -230.4           | -570.0                        | 0.00<br>0.00                  | 0.00                         | 0.00<br>0.00                |
| 7,700.0<br>7,800.0          | 5.93<br>5.93       | 338.37<br>338.37 | 7,667.3<br>7,766.8          | 590.8<br>600.4  | -234.2<br>-238.0 | -579.4<br>-588.8              | 0.00                          | 0.00<br>0.00                 | 0.00                        |
|                             |                    |                  |                             |                 |                  |                               |                               |                              |                             |
| 7,886.7                     | 5.93               | 338.37           | 7,853.0                     | 608.7           | -241.4           | -597.0                        | 0.00                          | 0.00                         | 0.00                        |
| 7,900.0<br>8,000.0          | 5.66<br>3.66       | 338.37<br>338.37 | 7,866.3<br>7,965.9          | 610.0<br>617.6  | -241.8<br>-244.8 | -598.2<br>-605.6              | 2.00<br>2.00                  | -2.00<br>-2.00               | 0.00<br>0.00                |
| 8,100.0                     | 1.66               | 338.37           | 8,065.8                     | 621.9           | -244.6           | -609.9                        | 2.00                          | -2.00                        | 0.00                        |
| 8,183.2                     | 0.00               | 0.01             | 8,149.0                     | 623.0           | -247.0           | -611.0                        | 2.00                          | -2.00                        | 0.00                        |
|                             |                    |                  |                             |                 |                  |                               |                               |                              |                             |
| 8,200.0<br>8,300.0          | 0.00<br>0.00       | 0.00<br>0.00     | 8,165.8<br>8,265.8          | 623.0<br>623.0  | -247.0<br>-247.0 | -611.0<br>-611.0              | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
| 8,400.0                     | 0.00               | 0.00             | 8,365.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 8,500.0                     | 0.00               | 0.00             | 8,465.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 8,600.0                     | 0.00               | 0.00             | 8,565.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 8,700.0                     | 0.00               | 0.00             | 8,665.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 8,800.0                     | 0.00               | 0.00             | 8,765.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 8,900.0                     | 0.00               | 0.00             | 8,865.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,000.0                     | 0.00               | 0.00             | 8,965.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,100.0                     | 0.00               | 0.00             | 9,065.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,200.0                     | 0.00               | 0.00             | 9,165.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,300.0                     | 0.00               | 0.00             | 9,265.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,400.0                     | 0.00               | 0.00             | 9,365.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,500.0                     | 0.00               | 0.00             | 9,465.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,600.0                     | 0.00               | 0.00             | 9,565.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,700.0                     | 0.00               | 0.00             | 9,665.8                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,714.7                     | 0.00               | 0.01             | 9,680.5                     | 623.0           | -247.0           | -611.0                        | 0.00                          | 0.00                         | 0.00                        |
| 9,725.0                     | 1.26               | 180.00           | 9,690.8                     | 622.9           | -247.0           | -610.8                        | 12.22                         | 12.22                        | 0.00                        |
| 9,750.0                     | 4.32               | 180.00           | 9,715.8                     | 621.7           | -247.0           | -609.6                        | 12.22                         | 12.22                        | 0.00                        |
| 9,775.0                     | 7.37               | 180.00           | 9,740.7                     | 619.1           | -247.0           | -607.1                        | 12.22                         | 12.22                        | 0.00                        |
| 9,800.0                     | 10.42              | 180.00           | 9,765.3                     | 615.3           | -247.0           | -603.2                        | 12.22                         | 12.22                        | 0.00                        |
| 9,825.0                     | 13.48              | 180.00           | 9,789.8                     | 610.1           | -247.0           | -598.1                        | 12.22                         | 12.22                        | 0.00                        |
| 9,850.0                     | 16.53              | 180.00           | 9,813.9                     | 603.6           | -247.0           | -591.6                        | 12.22                         | 12.22                        | 0.00                        |

### **Planning Report**

Database: Company: PEDM Midland

Lea County, NM (NAD 83 NME)

Site: Brown Bear 36 State

Well: Wellbore:

Project:

#202H OH

Design:

Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

**Survey Calculation Method:** 

Well #202H

kb = 26' @ 3365.0usft

kb = 26' @ 3365.0usft

Grid

| Planned Survey              |                    |                  |                             |                      |                  |                               |                               |                              |                             |
|-----------------------------|--------------------|------------------|-----------------------------|----------------------|------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft)      | +E/-W<br>(usft)  | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 9,875.0<br>9,900.0          | 19.59<br>22.64     | 180.00<br>180.00 | 9,837.7<br>9,861.0          | 595.9<br>586.9       | -247.0<br>-247.0 | -583.8<br>-574.8              | 12.22<br>12.22                | 12.22<br>12.22               | 0.00<br>0.00                |
| 9,925.0                     | 25.70              | 180.00           | 9,883.8                     | 576.6                | -247.0           | -564.6                        | 12.22                         | 12.22                        | 0.00                        |
| 9,933.2                     | 26.70              | 180.00           | 9,891.2                     | 573.0                | -247.0           | -561.0                        | 12.22                         | 12.22                        | 0.00                        |
| 9,950.0<br>9.975.0          | 28.71<br>31.71     | 179.96<br>179.92 | 9,906.1<br>9,927.7          | 565.2<br>552.6       | -247.0<br>-247.0 | -553.2<br>-540.6              | 12.00<br>12.00                | 12.00<br>12.00               | -0.22<br>-0.19              |
| 10,000.0                    | 34.71              | 179.88           | 9,948.6                     | 538.9                | -247.0           | -527.0                        | 12.00                         | 12.00                        | -0.16                       |
| 10,025.0                    | 37.71              | 179.84           | 9,968.8                     | 524.2                | -246.9           | -512.2                        | 12.00                         | 12.00                        | -0.14                       |
| 10,050.0                    | 40.71              | 179.81           | 9,988.1                     | 508.3                | -246.9           | -496.4                        | 12.00                         | 12.00                        | -0.12                       |
| 10,075.0                    | 43.71              | 179.79           | 10,006.6                    | 491.6                | -246.8           | -479.7                        | 12.00                         | 12.00                        | -0.11                       |
| 10,100.0                    | 46.71              | 179.76           | 10,024.2                    | 473.8                | -246.7           | -461.9                        | 12.00                         | 12.00                        | -0.09                       |
| 10,125.0                    | 49.71              | 179.74           | 10,040.9                    | 455.2                | -246.7           | -443.3                        | 12.00                         | 12.00                        | -0.09                       |
| 10,150.0                    | 52.71              | 179.72           | 10,056.6                    | 435.7                | -246.6           | -423.9                        | 12.00                         | 12.00                        | -0.08                       |
| 10,175.0                    | 55.71              | 179.70           | 10,071.2                    | 415.4                | -246.5           | -403.6                        | 12.00                         | 12.00                        | -0.07                       |
| 10,200.0                    | 58.71              | 179.69           | 10,084.7                    | 394.4                | -246.4           | -382.6                        | 12.00                         | 12.00                        | -0.07                       |
| 10,225.0<br>10,250.0        | 61.71<br>64.71     | 179.67<br>179.66 | 10,097.1<br>10,108.4        | 372.7<br>350.4       | -246.2<br>-246.1 | -361.0<br>-338.7              | 12.00<br>12.00                | 12.00<br>12.00               | -0.06<br>-0.06              |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 10,275.0                    | 67.71              | 179.64           | 10,118.5                    | 327.5                | -246.0           | -315.8                        | 12.00                         | 12.00                        | -0.06                       |
| 10,300.0                    | 70.71              | 179.63           | 10,127.3                    | 304.1                | -245.8           | -292.5                        | 12.00                         | 12.00                        | -0.05                       |
| 10,325.0                    | 73.71              | 179.61           | 10,135.0                    | 280.3                | -245.7<br>-245.5 | -268.7                        | 12.00                         | 12.00<br>12.00               | -0.05                       |
| 10,350.0<br>10,375.0        | 76.71<br>79.71     | 179.60<br>179.59 | 10,141.4<br>10,146.5        | 256.2<br>231.7       | -245.5<br>-245.3 | -244.6<br>-220.1              | 12.00<br>12.00                | 12.00                        | -0.05<br>-0.05              |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 10,400.0                    | 82.71              | 179.58           | 10,150.3                    | 207.0                | -245.1           | -195.5                        | 12.00                         | 12.00                        | -0.05                       |
| 10,425.0                    | 85.71              | 179.57           | 10,152.8                    | 182.1                | -245.0           | -170.6                        | 12.00                         | 12.00                        | -0.05                       |
| 10,450.0                    | 88.71              | 179.55           | 10,154.0                    | 157.2                | -244.8           | -145.7                        | 12.00                         | 12.00                        | -0.05                       |
| 10,460.5<br>10,500.0        | 89.98<br>89.98     | 179.55<br>179.55 | 10,154.1<br>10,154.2        | 146.6<br>107.2       | -244.7<br>-244.4 | -135.2<br>-95.8               | 12.00<br>0.00                 | 12.00<br>0.00                | -0.05<br>0.00               |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 10,600.0                    | 89.98              | 179.55           | 10,154.2                    | 7.2                  | -243.6           | 4.1                           | 0.00                          | 0.00                         | 0.00                        |
| 10,700.0                    | 89.98              | 179.55           | 10,154.2                    | -92.8                | -242.8           | 103.9                         | 0.00                          | 0.00                         | 0.00                        |
| 10,800.0                    | 89.98              | 179.55           | 10,154.3                    | -192.8               | -242.0           | 203.8                         | 0.00                          | 0.00                         | 0.00                        |
| 10,900.0<br>11,000.0        | 89.98<br>89.98     | 179.55<br>179.55 | 10,154.3<br>10,154.4        | -292.8<br>-392.8     | -241.2<br>-240.4 | 303.6<br>403.5                | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 11,100.0                    | 89.98              | 179.55           | 10,154.4                    | -492.8               | -239.6           | 503.3                         | 0.00                          | 0.00                         | 0.00                        |
| 11,200.0                    | 89.98              | 179.55           | 10,154.4                    | -592.8               | -238.9           | 603.2                         | 0.00                          | 0.00                         | 0.00                        |
| 11,300.0                    | 89.98              | 179.55           | 10,154.5                    | -692.8               | -238.1           | 703.0                         | 0.00                          | 0.00                         | 0.00                        |
| 11,400.0<br>11,500.0        | 89.98<br>89.98     | 179.55<br>179.55 | 10,154.5<br>10,154.6        | -792.8<br>-892.8     | -237.3<br>-236.5 | 802.9<br>902.8                | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 11,600.0                    | 89.98              | 179.55           | 10,154.6                    | -992.8               | -235.7           | 1,002.6                       | 0.00                          | 0.00                         | 0.00                        |
| 11,700.0                    | 89.98              | 179.55           | 10,154.6                    | -1,092.8             | -234.9           | 1,102.5                       | 0.00                          | 0.00                         | 0.00                        |
| 11,800.0                    | 89.98<br>80.08     | 179.55<br>170.55 | 10,154.7                    | -1,192.8<br>1 202 8  | -234.1           | 1,202.3                       | 0.00                          | 0.00                         | 0.00                        |
| 11,900.0<br>12,000.0        | 89.98<br>89.98     | 179.55<br>179.55 | 10,154.7<br>10,154.8        | -1,292.8<br>-1,392.8 | -233.3<br>-232.5 | 1,302.2<br>1,402.0            | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
|                             |                    |                  |                             |                      |                  |                               |                               |                              |                             |
| 12,100.0<br>12,200.0        | 89.98<br>89.98     | 179.55<br>179.55 | 10,154.8<br>10,154.8        | -1,492.8<br>-1,592.8 | -231.8<br>-231.0 | 1,501.9<br>1,601.7            | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
| 12,200.0                    | 89.98              | 179.55           | 10,154.6                    | -1,592.6<br>-1,692.8 | -231.0<br>-230.2 | 1,701.6                       | 0.00                          | 0.00                         | 0.00                        |
| 12,400.0                    | 89.98              | 179.55           | 10,154.9                    | -1,792.8             | -229.4           | 1,801.4                       | 0.00                          | 0.00                         | 0.00                        |
| 12,500.0                    | 89.98              | 179.55           | 10,155.0                    | -1,892.8             | -228.6           | 1,901.3                       | 0.00                          | 0.00                         | 0.00                        |
| 12,600.0                    | 89.98              | 179.55           | 10,155.0                    | -1,992.8             | -227.8           | 2,001.2                       | 0.00                          | 0.00                         | 0.00                        |
| 12,700.0                    | 89.98              | 179.55           | 10,155.0                    | -2,092.8             | -227.0           | 2,101.0                       | 0.00                          | 0.00                         | 0.00                        |
| 12,800.0                    | 89.98              | 179.55           | 10,155.1                    | -2,192.8             | -226.2           | 2,200.9                       | 0.00                          | 0.00                         | 0.00                        |
| 12,900.0                    | 89.98              | 179.55           | 10,155.1                    | -2,292.8             | -225.5           | 2,300.7                       | 0.00                          | 0.00                         | 0.00                        |
| 13,000.0                    | 89.98              | 179.55           | 10,155.2                    | -2,392.8             | -224.7           | 2,400.6                       | 0.00                          | 0.00                         | 0.00                        |
| 13,100.0                    | 89.98              | 179.55           | 10,155.2                    | -2,492.8             | -223.9           | 2,500.4                       | 0.00                          | 0.00                         | 0.00                        |
| 13,200.0                    | 89.98              | 179.55           | 10,155.2                    | -2,592.8             | -223.1           | 2,600.3                       | 0.00                          | 0.00                         | 0.00                        |

### Planning Report

Database: Company: PEDM

Plan #0.1 RT

Company: Midland
Project: Lea Cou

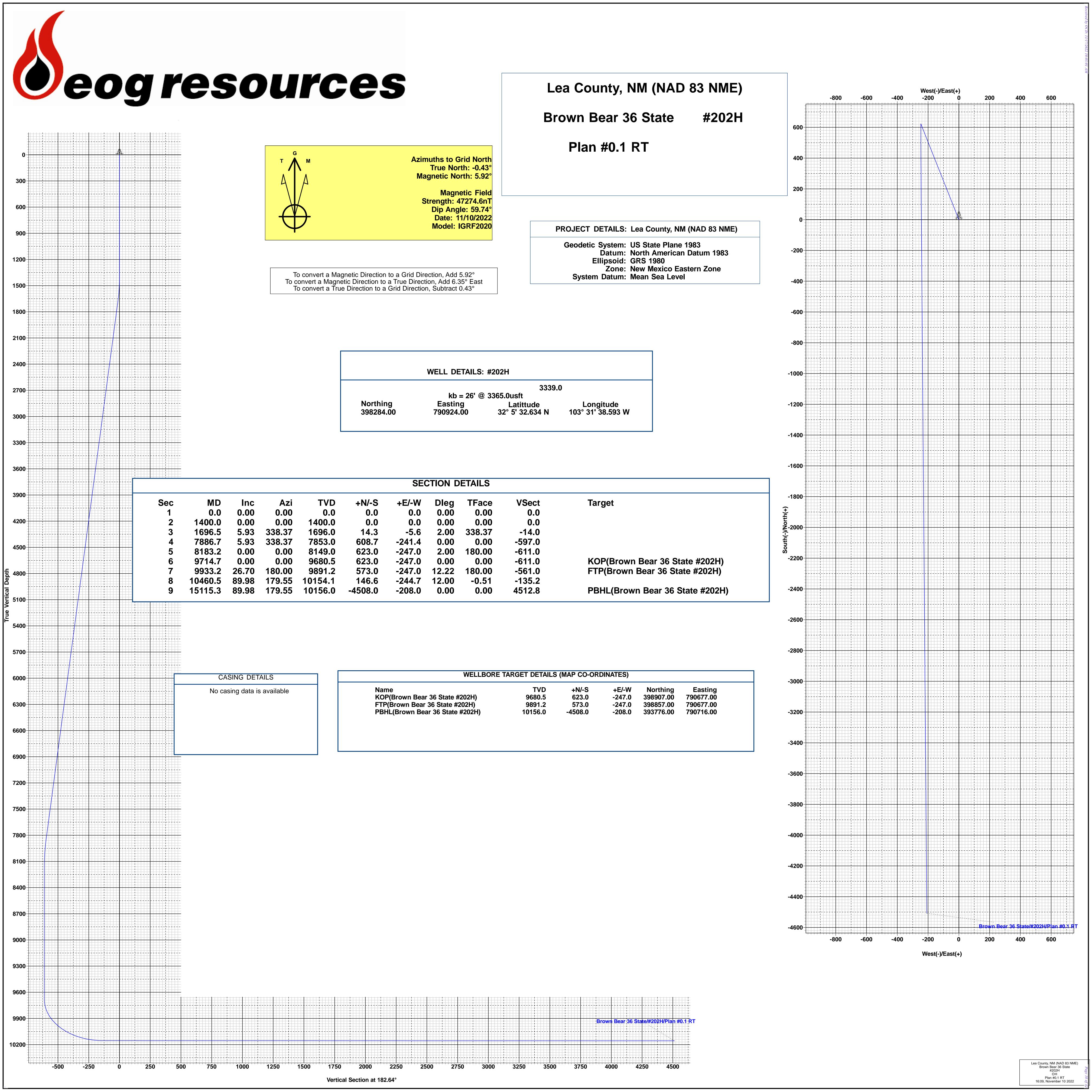
Site: Brown Bear 36 State
Well: #202H

Well: #20: Wellbore: OH Design: Plar

Midland Lea County, NM (NAD 83 NME) TVD Reference: MD Reference: North Reference:

North Reference: Survey Calculation Method:

Local Co-ordinate Reference:


Well #202H

kb = 26' @ 3365.0usft kb = 26' @ 3365.0usft

Grid

| lanned Survey               |                    |                |                             |                 |                 |                               |                               |                              |                             |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 13,300.0                    | 89.98              | 179.55         | 10,155.3                    | -2,692.7        | -222.3          | 2,700.1                       | 0.00                          | 0.00                         | 0.00                        |
| 13,400.0                    | 89.98              | 179.55         | 10,155.3                    | -2,792.7        | -221.5          | 2,800.0                       | 0.00                          | 0.00                         | 0.00                        |
| 13,500.0                    | 89.98              | 179.55         | 10,155.4                    | -2,892.7        | -220.7          | 2,899.8                       | 0.00                          | 0.00                         | 0.00                        |
| 13,600.0                    | 89.98              | 179.55         | 10,155.4                    | -2,992.7        | -219.9          | 2,999.7                       | 0.00                          | 0.00                         | 0.00                        |
| 13,700.0                    | 89.98              | 179.55         | 10,155.4                    | -3,092.7        | -219.2          | 3,099.5                       | 0.00                          | 0.00                         | 0.00                        |
| 13,800.0                    | 89.98              | 179.55         | 10,155.5                    | -3,192.7        | -218.4          | 3,199.4                       | 0.00                          | 0.00                         | 0.00                        |
| 13,900.0                    | 89.98              | 179.55         | 10,155.5                    | -3,292.7        | -217.6          | 3,299.3                       | 0.00                          | 0.00                         | 0.00                        |
| 14,000.0                    | 89.98              | 179.55         | 10,155.6                    | -3,392.7        | -216.8          | 3,399.1                       | 0.00                          | 0.00                         | 0.00                        |
| 14,100.0                    | 89.98              | 179.55         | 10,155.6                    | -3,492.7        | -216.0          | 3,499.0                       | 0.00                          | 0.00                         | 0.00                        |
| 14,200.0                    | 89.98              | 179.55         | 10,155.6                    | -3,592.7        | -215.2          | 3,598.8                       | 0.00                          | 0.00                         | 0.00                        |
| 14,300.0                    | 89.98              | 179.55         | 10,155.7                    | -3,692.7        | -214.4          | 3,698.7                       | 0.00                          | 0.00                         | 0.00                        |
| 14,400.0                    | 89.98              | 179.55         | 10,155.7                    | -3,792.7        | -213.6          | 3,798.5                       | 0.00                          | 0.00                         | 0.00                        |
| 14,500.0                    | 89.98              | 179.55         | 10,155.8                    | -3,892.7        | -212.8          | 3,898.4                       | 0.00                          | 0.00                         | 0.00                        |
| 14,600.0                    | 89.98              | 179.55         | 10,155.8                    | -3,992.7        | -212.1          | 3,998.2                       | 0.00                          | 0.00                         | 0.00                        |
| 14,700.0                    | 89.98              | 179.55         | 10,155.8                    | -4,092.7        | -211.3          | 4,098.1                       | 0.00                          | 0.00                         | 0.00                        |
| 14,800.0                    | 89.98              | 179.55         | 10,155.9                    | -4,192.7        | -210.5          | 4,197.9                       | 0.00                          | 0.00                         | 0.00                        |
| 14,900.0                    | 89.98              | 179.55         | 10,155.9                    | -4,292.7        | -209.7          | 4,297.8                       | 0.00                          | 0.00                         | 0.00                        |
| 15,000.0                    | 89.98              | 179.55         | 10,156.0                    | -4,392.7        | -208.9          | 4,397.7                       | 0.00                          | 0.00                         | 0.00                        |
| 15,100.0                    | 89.98              | 179.55         | 10,156.0                    | -4,492.7        | -208.1          | 4,497.5                       | 0.00                          | 0.00                         | 0.00                        |
| 15,115.3                    | 89.98              | 179.55         | 10,156.0                    | -4,508.0        | -208.0          | 4,512.8                       | 0.00                          | 0.00                         | 0.00                        |

| Design Targets                                              |                  |                 |               |                 |                 |                    |                   |                 |                   |
|-------------------------------------------------------------|------------------|-----------------|---------------|-----------------|-----------------|--------------------|-------------------|-----------------|-------------------|
| Target Name - hit/miss target - Shape                       | Dip Angle<br>(°) | Dip Dir.<br>(°) | TVD<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Northing<br>(usft) | Easting<br>(usft) | Latitude        | Longitude         |
| KOP(Brown Bear 36 Sta<br>- plan hits target cer<br>- Point  |                  | 0.00            | 9,680.5       | 623.0           | -247.0          | 398,907.00         | 790,677.00        | 32° 5′ 38.817 N | 103° 31' 41.410 W |
| FTP(Brown Bear 36 Stat<br>- plan hits target cer<br>- Point |                  | 0.00            | 9,891.2       | 573.0           | -247.0          | 398,857.00         | 790,677.00        | 32° 5′ 38.322 N | 103° 31' 41.414 W |
| PBHL(Brown Bear 36 St<br>- plan hits target cer<br>- Point  |                  | 0.00            | 10,156.0      | -4,508.0        | -208.0          | 393,776.00         | 790,716.00        | 32° 4' 48.041 N | 103° 31' 41.402 W |





2/24/2022

### **Cement Program**

1. No changes to the cement program will take place for offline cementing.

### **Summarized Operational Procedure for Intermediate Casing**

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
  - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
  - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
  - a. Ensure no blockage of float equipment and appropriate annular returns.
  - b. Perform flow check to confirm well is static.
- 4. Set pack-off
  - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
  - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
  - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
  - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
  - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
  - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
  - c. Well control plan can be seen in Section B, Well Control Procedures.
  - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.



2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
  - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
  - If either test fails, perform corrections and retest before proceeding.
  - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
  - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
  - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
  - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
  - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
  - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
  - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
  - a. With floats holding and backside static:
    - i. Remove cement head.
  - b. If floats are leaking:
    - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
  - c. If there is flow on the backside:
    - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.



2/24/2022

### **Example Well Control Plan Content**

### A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

| Component                | RWP |
|--------------------------|-----|
| Pack-off                 | 10M |
| Casing Wellhead Valves   | 10M |
| Annular Wellhead Valves  | 5M  |
| TA Plug                  | 10M |
| Float Valves             | 5M  |
| 2" 1502 Lo-Torque Valves | 15M |

### **B.** Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

### **General Procedure While Circulating**

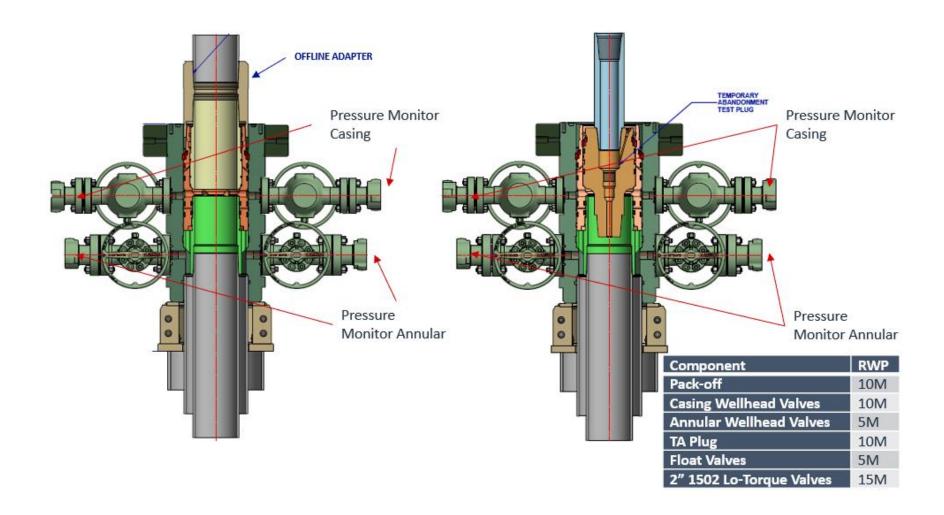
- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.



2/24/2022

- 6. Read and record the following:
  - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
  - b. Pit gain
  - c. Time
  - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

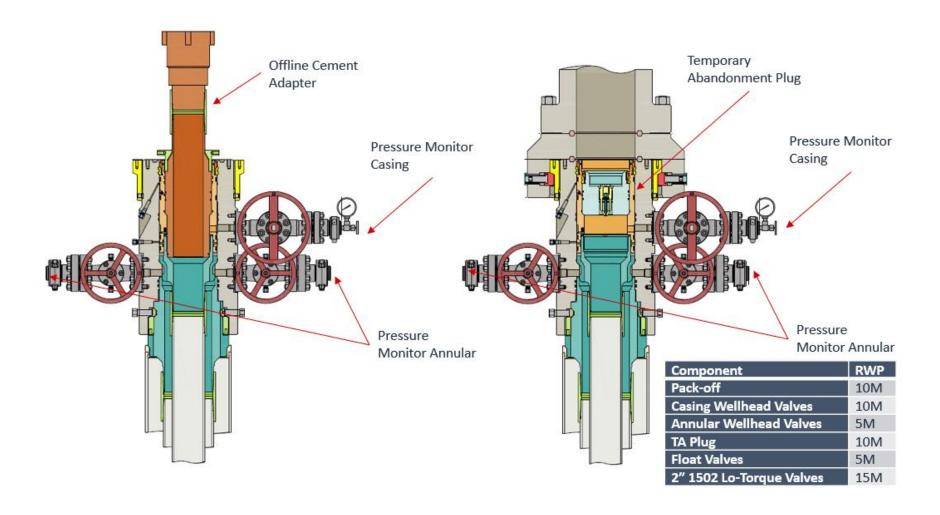
### **General Procedure While Cementing**


- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
  - a. SICP and AP
  - b. Pit gain
  - c. Time
  - d. Shut-in annulus valves on wellhead

### **General Procedure After Cementing**

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
  - a. SICP and AP
  - b. Pit gain
  - c. Time
  - d. Shut-in annulus valves on wellhead

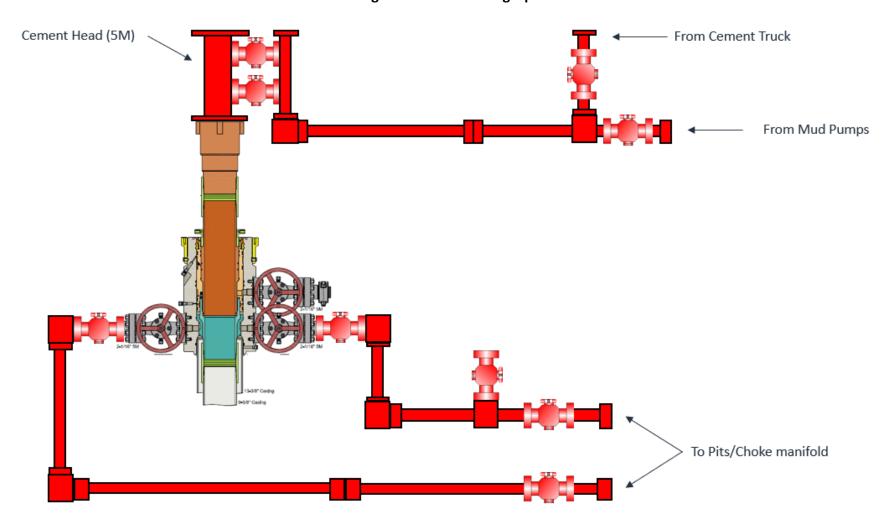
2/24/2022


Figure 1: Cameron TA Plug and Offline Adapter Schematic





2/24/2022

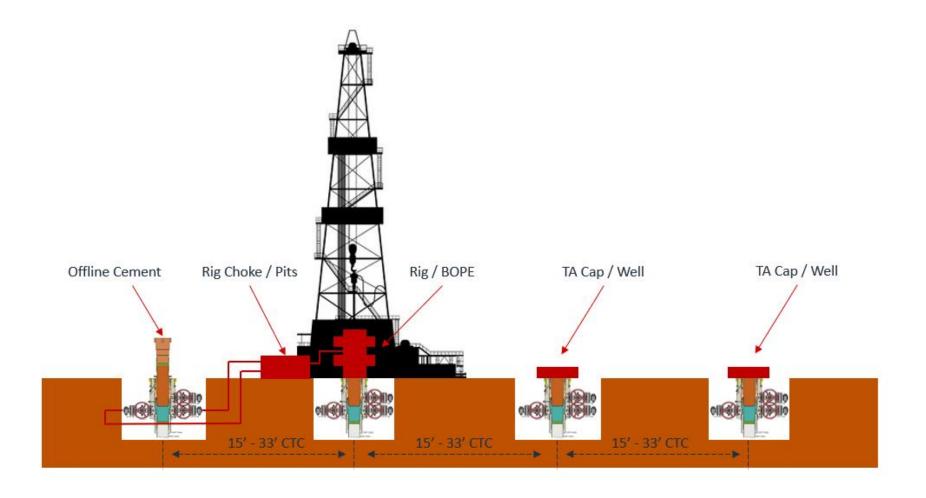

Figure 2: Cactus TA Plug and Offline Adapter Schematic





2/24/2022

Figure 3: Back Yard Rig Up




\*\*\* All Lines 10M rated working pressure



2/24/2022

Figure 4: Rig Placement Diagram



### State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

### NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

## Section 1 – Plan Description Effective May 25, 2021

| I. Operator:EOG F                                                                                                     | Resources, Inc                               | OGRID                                              | <b>:</b> 7377          |                                 | Dat       | te: 11/9/20      | )22     |                                 |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------|---------------------------------|-----------|------------------|---------|---------------------------------|
| II. Type: ⊠ Original □                                                                                                | Amendment                                    | due to □ 19.15.27.9                                | 9.D(6)(a) NMA          | C □ 19.15.27.9.D(               | (6)(b) N  | MAC 🗆 (          | Other.  |                                 |
| If Other, please describe:                                                                                            |                                              |                                                    |                        |                                 |           |                  |         |                                 |
| III. Well(s): Provide the be recompleted from a si                                                                    |                                              |                                                    |                        |                                 | wells pro | oposed to l      | be dril | led or proposed to              |
| Well Name                                                                                                             | API                                          | ULSTR                                              | Footages               | Anticipated<br>Oil BBL/D        |           | cipated<br>MCF/D | P       | Anticipated roduced Water BBL/D |
| BROWN BEAR 36 STATE 202H                                                                                              |                                              | C-36-25S-33E                                       | 675' FNL &<br>2232 FWL | +/- 1000                        | +/- 35    | 500              | +/- 30  | 000                             |
| V. Anticipated Schedule proposed to be recomple  Well Name                                                            |                                              |                                                    | TD Reached             | cal delivery point.  Completion | 1         | Initial F        | low     | First Production                |
|                                                                                                                       |                                              |                                                    | Date                   | Commencement                    | Date      | Back I           | Date    | Date                            |
| BROWN BEAR 36 STATE 202H                                                                                              |                                              | 11/30/22                                           | 12/15/22               | 2/15/23                         |           | 3/15/23          |         | 4/15/23                         |
| VII. Separation Equipm VII. Operational Pract Subsection A through F of VIII. Best Managemen during active and planne | ices: ⊠ Attaon of 19.15.27.8  t Practices: □ | ch a complete descr<br>NMAC.<br>☑ Attach a complet | iption of the act      | ions Operator will              | take to   | comply w         | ith the | requirements of                 |

### Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

| IX. Anticipated | Natural | Gas | <b>Production:</b> |
|-----------------|---------|-----|--------------------|
|-----------------|---------|-----|--------------------|

| Well | API | Anticipated Average<br>Natural Gas Rate MCF/D | Anticipated Volume of Natural Gas for the First Year MCF |
|------|-----|-----------------------------------------------|----------------------------------------------------------|
|      |     |                                               |                                                          |
|      |     |                                               |                                                          |

### X. Natural Gas Gathering System (NGGS):

| Operator | System | ULSTR of Tie-in | Anticipated Gathering Start Date | Available Maximum Daily Capacity of System Segment Tie-in |
|----------|--------|-----------------|----------------------------------|-----------------------------------------------------------|
|          |        |                 |                                  |                                                           |
|          |        |                 |                                  |                                                           |

| <b>XI. Map.</b> $\square$ Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of              |
| the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.                                                |

| XII. Line Capacity. The natural | gas gathering system $\square$ | will □ will not hav | re capacity to gather | 100% of the anticipated | l natural gas |
|---------------------------------|--------------------------------|---------------------|-----------------------|-------------------------|---------------|
| production volume from the well | prior to the date of first p   | production.         |                       |                         |               |

| <b>XIII. Line Pressure.</b> Operator $\square$ does $\square$ does not anticipate that its existing well(s) connected to the same segment | , or portion, | of the |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by                    | the new wel   | l(s).  |

| $\neg$ | A 44 1 4 | O 4 '    | , 1 ,     |        | 1 4        | •          | 4 41 .        | eased line pre |         |
|--------|----------|----------|-----------|--------|------------|------------|---------------|----------------|---------|
|        | ATTACH   | Inergiar | c nian to | manage | nraduction | in rechang | e to the incr | eased line nre | ACCIITA |
|        |          |          |           |        |            |            |               |                |         |

| XIV. Confidentiality:  Operator asserts confidentiality pursuant to Section /1-2-8 NMSA 19/8 for the information p            | provided ir |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific in | informatior |
| for which confidentiality is asserted and the basis for such assertion.                                                       |             |

(i)

## Section 3 - Certifications Effective May 25, 2021

|                                                                                                                                                                                                                                                                                                                                                                                                                               | MACCO CANAL AVA                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| ☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| hundred percent of the a into account the current                                                                                                                                                                                                                                                                                                                                                                             | able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following: |  |  |  |  |
| Well Shut-In. ☐ Opera<br>D of 19.15.27.9 NMAC                                                                                                                                                                                                                                                                                                                                                                                 | tor will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection; or                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | lan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | es for the natural gas until a natural gas gathering system is available, including: power generation on lease;                                                                                                                                                                                                                                                                             |  |  |  |  |
| (a)<br>(b)                                                                                                                                                                                                                                                                                                                                                                                                                    | power generation for grid;                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                                           | compression on lease;                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| (d)                                                                                                                                                                                                                                                                                                                                                                                                                           | liquids removal on lease;                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| (e)                                                                                                                                                                                                                                                                                                                                                                                                                           | reinjection for underground storage;                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| (f)                                                                                                                                                                                                                                                                                                                                                                                                                           | reinjection for temporary storage;                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| (g)                                                                                                                                                                                                                                                                                                                                                                                                                           | reinjection for enhanced oil recovery;                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| ( <b>h</b> )                                                                                                                                                                                                                                                                                                                                                                                                                  | fuel cell production; and                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

### **Section 4 - Notices**

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

| Signature: Craig Richardson                           |  |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|--|
| Printed Name: CRAIG RICHARDSON                        |  |  |  |  |  |  |
| Title: Regulatory Specialist                          |  |  |  |  |  |  |
| E-mail Address: craig_richardson@eogresources.com     |  |  |  |  |  |  |
| Date: 11/9/2022                                       |  |  |  |  |  |  |
| Phone: (432) 848-9161                                 |  |  |  |  |  |  |
| OIL CONSERVATION DIVISION                             |  |  |  |  |  |  |
| (Only applicable when submitted as a standalone form) |  |  |  |  |  |  |
| Approved By:                                          |  |  |  |  |  |  |
| Title:                                                |  |  |  |  |  |  |
| Approval Date:                                        |  |  |  |  |  |  |
| Conditions of Approval:                               |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |

### Natural Gas Management Plan Items VI-VIII

## VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

## VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

### **Drilling Operations**

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment
  malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and
  the environment, at which point the gas will be vented.

### <u>Completions/Recompletions Operations</u>

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

### **Production Operations**

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

### **Performance Standards**

• Production equipment will be designed to handle maximum anticipated rates and pressure.

- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60Mcfd.

### Measurement & Estimation

- All volume that is flared or vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.
- When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

## <u>VIII.</u> <u>Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.</u>

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.