Form 3160-3 (June 2015)			OMB No	APPROVED o. 1004-0137 nuary 31, 2018					
UNITED STATE									
DEPARTMENT OF THE I BUREAU OF LAND MAN		Γ	5. Lease Serial No.						
APPLICATION FOR PERMIT TO I	ORILL OR	REENTER	6. If Indian, Allotee or Tribe Name						
1a. Type of work: DRILL	REENTER		7. If Unit or CA Agi	reement, Name a	ıd No.				
1b. Type of Well: Oil Well Gas Well	Other		8. Lease Name and	Well No.					
1c. Type of Completion: Hydraulic Fracturing S	Single Zone	Multiple Zone		317432]					
2. Name of Operator [260297]			9. API Well No.	30-025-	50821				
3a. Address	3b. Phone N	o. (include area code)	10. Field and Pool,	or Exploratory	[96392]				
4. Location of Well (Report location clearly and in accordance	with any State	requirements.*)	11. Sec., T. R. M. or	Blk. and Survey	or Area				
At surface									
At proposed prod. zone									
14. Distance in miles and direction from nearest town or post of	fice*		12. County or Parisl	h 13. Sta	ıte				
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	16. No of ac	cres in lease 17. Spa	cing Unit dedicated to t	his well					
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Propose	d Depth 20. BL	M/BIA Bond No. in file						
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	mate date work will start*	23. Estimated durati	ion					
	24. Attac	hments							
The following, completed in accordance with the requirements of (as applicable)	of Onshore Oil	and Gas Order No. 1, and the	e Hydraulic Fracturing r	rule per 43 CFR 3	162.3-3				
Well plat certified by a registered surveyor.		4. Bond to cover the operation	ions unless covered by ar	n existing bond or	ı file (see				
2. A Drilling Plan.3. A Surface Use Plan (if the location is on National Forest Systems)	em Lands, the	Item 20 above). 5. Operator certification.							
SUPO must be filed with the appropriate Forest Service Office		6. Such other site specific in BLM.	formation and/or plans as	may be requested	l by the				
25. Signature	Name	(Printed/Typed)		Date					
Title									
Approved by (Signature)	Name	(Printed/Typed)		Date					
Title	Office	,							
Application approval does not warrant or certify that the application applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds legal	or equitable title to those righ	its in the subject lease w	hich would entitl	e the				
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statements				any department o	r agency				
NGMP Rec 11/22/2022			1						
		TH CONDITIONS	1,5						
SL	TIN WI	TH CONDITIONS	11/28	D/ ZUZZ					
(Continued on page 2)	ARD MT		*(In	structions on	nage 2)				
(Communication page 2)	The second second		(111	Structions on	puse 2)				

Released to Imaging: 11/28/2022 3:15:55 PM Approval Date: 11/10/2022

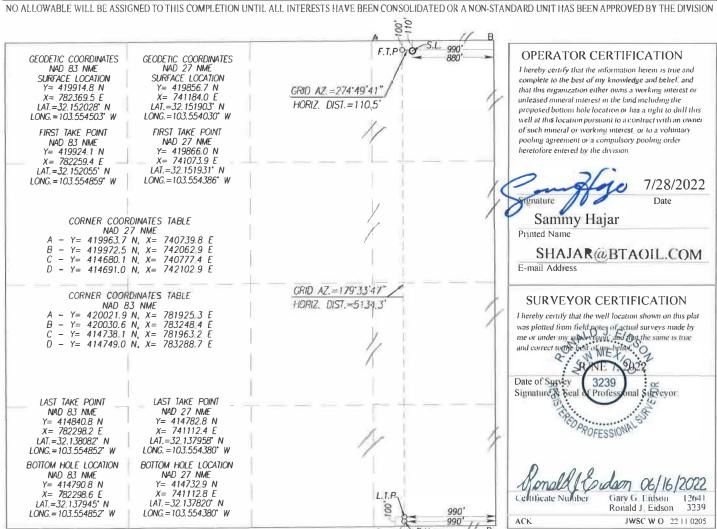
1625 N French Dr. Hobbs, NM 88240 Phone (575) 393-6161 Fax (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 88210 Phone (575) 748-1283 Fax (575) 748-9720 DISTRICT III 1000 Rio Brazos Road, Aztec, NM 87410 Phone (505) 334-6178 Fax (505) 334-6170 DISTRICTIV 1220 S St Francis Di Santa Fe NM 87505 Phone (505) 476-3460 Fax (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

□AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT


API Number	Pool Code	Pool Name			
30-025-50821	96392	DRAPER MILL;BON	NE SPRING		
Property Code	•	ty Name	Well Number		
317432	VACA DRAW 94	418 10 FEDERAL	48H		
OGRID No.	Operat	or Name	Elevation		
260297	BTA OIL PRO	DUCERS, LLC	3418'		

Surface Location

UL or lot	o Section	Township	Range	Lot ldn	Feet from the	North/South line	Feet from the	East/West line	County
A	10	25-S	33-E		110	NORTH	880	EAST	LEA

Bottom Hole Location If Different From Surface

Ī	UL or lot No	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
	P	10	25-S	33-E		50	SOUTH	990	EAST	LEA
	Dedicated Acres	Joint or	Infill C	Consolidation C	ode Ord	ei No				
	160									

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: BTA (Dil Producers	s, LLC	OGRID:2	260297	Date:	8 / 11 / 2022
II. Type: Original [☐ Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NMAC □	Other.
If Other, please describe	e:					
III. Well(s): Provide the be recompleted from a s					wells proposed to	be drilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
VACA DRAW 9418		A-10-25S-33E	110 FNL, 880 FEL	+/- 800	+/- 2000	+/- 1200
FEDERAL 48H	30-025-508	21				
V. Anticipated Schedu proposed to be recomple Well Name	le: Provide the		TD Reached	al delivery point. Completion	vell or set of wells	
			Date	Commencement		
VACA DRAW 9418	20 025 500	1/13/2023	2/2/2023	2/16/2023	3/9/2023	4/8/2023
VII. Operational Prac Subsection A through F	tices: \(\times\) Attac of 19.15.27.8	n a complete descrip h a complete descr NMAC.	ription of the act	tions Operator wil	l take to comply	nt to optimize gas capture. with the requirements of tices to minimize venting

Section 2 - Enhanced Plan

			E APRIL 1, 2022					
	2022, an operator the complete this section		with its statewide natural ga	as cap	ture requirement for the applicable			
	es that it is not requi t for the applicable re		tion because Operator is in o	compl	iance with its statewide natural gas			
IX. Anticipated N	atural Gas Producti	on:						
V	Vell	API	Anticipated Average Natural Gas Rate MCF/D)	Anticipated Volume of Natural Gas for the First Year MCF			
X. Natural Gas G	athering System (NC	GGS):						
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Ava	Available Maximum Daily Capacity of System Segment Tie-in			
production operation the segment or port XII. Line Capacity production volume XIII. Line Pressur natural gas gatherin Attach Operator XIV. Confidential Section 2 as provid	ons to the existing or price of the natural gas gas. Y. The natural gas gas from the well prior to the company of the company	planned interconnect of the gathering system(s) to the thering system will to the date of first product does not anticipate the dabove will continue to enduction in response to the terts confidentiality pursuant to the product of the terts confidentiality pursuant to the terts are the terts and the terts are	the natural gas gathering systewhich the well(s) will be considered which the well(s) will be considered will not have capacity to getion. at its existing well(s) connect meet anticipated increases in the increased line pressure. uant to Section 71-2-8 NMS 27.9 NMAC, and attaches a few which we will be considered.	em(s), nected ather ted to the line p	ted pipeline route(s) connecting the and the maximum daily capacity of l. 100% of the anticipated natural gas the same segment, or portion, of the pressure caused by the new well(s). 78 for the information provided in scription of the specific information			

Section 3 - Certifications Effective May 25, 2021

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature Samplejan
Printed Name: Sammy Hajar
Title: Regulatory Analyst
E-mail Address: SHAJAR@BTAOIL.COM
Date: 8/11/2022
Phone: 432-682-3753
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Separation equipment will allow for adequate retention time to allow gas and liquids to separate.
- Separation equipment will separate all three phases (Oil, Water, and Gas).
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment
 malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and
 the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities that produce more than 60 MCFD.
- Leaking thief hatches and pressure safety valves found during AVOs will be cleaned and properly re-sealed.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All gas lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- All gas will have multiple points of separation to ensure no liquids enter flares, combustors, or gas sales line.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 MCFD.
- All OOOOa facilities will be filmed with an Optical Gas Imaging Thermographer camera once per month to check for fugitive emissions.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- All meters will be calibrated at regular intervals according to meter manufacturer recommendations.
- When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, BTA will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

APD ID: 10400087319

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date: 08/12/2022

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FEDERAL Well Number: 48H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical			Mineral Resources	Producing
ID	Formation Name	Elevation		Depth	Lithologies		Formatio
9029104	QUATERNARY	3418	0	0	ALLUVIUM	NONE	N
9029105	RUSTLER	2275	1143	1143	ANHYDRITE	NONE	N
9029106	TOP SALT	1775	1643	1643	SALT	NONE	N
9029107	BASE OF SALT	-1425	4843	4843	SALT	NONE	N
9029108	DELAWARE	-1705	5123	5123	LIMESTONE	NATURAL GAS, OIL	N
9029117	BELL CANYON	-1905	5323	5323	SANDSTONE	NATURAL GAS, OIL	N
9029110	CHERRY CANYON	-3055	6473	6473	SANDSTONE	NATURAL GAS, OIL	N
9029111	BRUSHY CANYON	-4245	7663	7663	SANDSTONE	NATURAL GAS, OIL	N
9029112	BONE SPRING LIME	-5855	9273	9273	LIMESTONE	NATURAL GAS, OIL	N
9029113	UPPER AVALON SHALE	-6015	9433	9433	SANDSTONE, SHALE	NATURAL GAS, OIL	N
9029123	FIRST BONE SPRING SAND	-6795	10213	10213	SANDSTONE	NATURAL GAS, OIL	N
9029124	BONE SPRING 2ND	-7385	10803	10803	SANDSTONE	NATURAL GAS, OIL	N
9029125	BONE SPRING 3RD	-8525	11943	11943	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: VACA DRAW 9418 10 FEDERAL Well Number: 48H

Pressure Rating (PSI): 5M Rating Depth: 14000

Equipment: The blowout preventer equipment (BOP) shown in Exhibit A will consist of a (5M system) double ram type (5,000 psi WP) preventer and a bag-type (Hydril) preventer (5000 psi WP). Both units will be hydraulically operated and the ram type preventer will be equipped with blind rams on top and 5" drill pipe rams on bottom. The BOPs will be installed on the 10-3/4" surface casing and utilized continuously until total depth is reached. A 2" kill line and 3" choke line will be incorporated in the drilling spool below the ram-type BOP. A remote kill line will be used for the 5M system as per onshore order #2. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines, and choke manifold having a 5,000 psi WP rating. The 5M annular will be tested as per BLM drilling Operations Order No. 2, and will be test to 100% of working pressure.

Requesting Variance? NO

Variance request:

Testing Procedure: Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily drillers log. All BOPs and associated equipment will be tested as per BLM drilling Operations Order No. 2.

Choke Diagram Attachment:

5M_choke_mannifold_20200917143047.pdf

Choke_Hose___Test_Chart_and_Specs_20190723082742.pdf

BOP Diagram Attachment:

5M_BOP_diagram_20200917143053.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1140	0	1140	3418	2278	1140	J-55	40.5	ST&C	3.2	6.4	DRY	9.1	DRY	13.6
2	INTERMED IATE	9.87 5	7.625	NEW	API	Υ	0	8009	0	8000	3423	-4582	8009	P- 110	29.7	BUTT	1.4	2.4	DRY	4	DRY	4
3	PRODUCTI ON	6.75	5.5	NEW	API	Υ	0	11429	0	11420	3423	-8002	11429	P- 110	20	BUTT	1.3	1.5	DRY	2.9	DRY	2.8
4	INTERMED IATE	8.75	7.625	NEW	API	Υ	8009	11629	8000	11620	-4577	-8202	3620	P- 110	29.7	FJ	1.7	1.7	DRY	2.8	DRY	2.7
5	PRODUCTI ON	6.75	5.0	NEW	API	Υ	11429	17191	11420	12173	-8002	-8755	5762	P- 110	18	BUTT	1.3	1.4	DRY	2	DRY	1.9

Well Name: VACA DRAW 9418 10 FEDERAL Well Number: 48H

Casing	Attachments	ŝ
--------	-------------	---

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_48H_Casing_Assumption_20220812093048.JPG

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7_5_8_tapered_string_9_7_8_hole_spec__20220811144133.jpg

Casing Design Assumptions and Worksheet(s):

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5_tapered_string_spec_20220811144507.jpg

Casing Design Assumptions and Worksheet(s):

Well Name: VACA DRAW 9418 10 FEDERAL Well Number: 48H

Casing Attachments

Casing ID: 4

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7_5_8_tapered_string_8_3_4_hole_spec_for_FJ_20220811144323.jpg

Casing Design Assumptions and Worksheet(s):

Casing ID: 5

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5_tapered_string_spec_20220811144557.jpg

Casing Design Assumptions and Worksheet(s):

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	895	555	1.8	13.5	999	100	Class C	2% CaCl2
SURFACE	Tail		895	1140	200	1.34	14.8	268	100	Class C	2% CaCl2
INTERMEDIATE	Lead		0	4690	755	2.19	12.7	1653. 45	50	Class C	0.5% CaCl2
INTERMEDIATE	Tail		4690	5112	150	1.33	14.8	199.5	50	Class C	1% CaCl2
INTERMEDIATE	Lead	5145	5112	8080	305	2.64	10.5	805.2	25	Class H	0.5% CaCl2

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 48H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		8080	1162 9	400	1.19	15.6	476	25	Class H	1% CaCl2
PRODUCTION	Lead		1063 0	1142 9	0	0	0	0		n/a	n/a

PRODUCTION	Lead	1142	1719	640	1.27	14.8	812.8	10	Class H	0.1% Fluid Loss
		9	1							

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1140	OTHER : FW SPUD	8.3	8.4							
1140	1162 9	OTHER : DBE	9	9.4							
1162 9	1217 3	OTHER : DBE	10.5	11.4							

Well Name: VACA DRAW 9418 10 FEDERAL Well Number: 48H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Drill Stem Tests will be based on geological sample shows.

List of open and cased hole logs run in the well:

MUD LOG/GEOLOGICAL LITHOLOGY LOG, GAMMA RAY LOG, CEMENT BOND LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7216 Anticipated Surface Pressure: 4537

Anticipated Bottom Hole Temperature(F): 178

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

BTA_Oil_Producers_LLC___EMERGENCY_CALL_LIST_20190723161502.pdf H2S_Equipment_Schematic_20190723161502.pdf H2S_Plan_20190723161502.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Vaca_Draw_9418_10_Fed_48H_Well_Plan_Rpt_20220812093836.pdf

Vaca_Draw_9418_10_Fed_48H_WM_20220812093836.pdf

Vaca_Draw_48H_NGMP_signed_20220812094128.pdf

Other proposed operations facets description:

A variance is requested for a Multi Bowl Wellhead. See the attached schematic. *All strings will be kept 1/3 full while running.

Other proposed operations facets attachment:

Other Variance attachment:

BOP_Break_Testing_Variance_20200917143242.pdf

Multibowl__3_STRING_10_34_SOW__5K_VACA_45H_48H_20220811150552.pdf

BTA Oil Producers, LLC

Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Vaca Draw #48H

Wellbore #1

Plan: Design #1

Standard Planning Report - Geographic

10 August, 2022

Page 16 of 33

Microsoft

Planning Report - Geographic

EDM16 Database:

Company: BTA Oil Producers, LLC Project: Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Site:

Well: Vaca Draw #48H Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Vaca Draw #48H GL @ 3418.0usft GL @ 3418.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83), Lea County, NM

US State Plane 1983 Map System: Ground Level System Datum:

North American Datum 1983 Geo Datum: Map Zone: New Mexico Eastern Zone

Using geodetic scale factor

60.18

180.79

48,752.06387588

Site Vaca Draw Sec 10, T25S, R33E

Northing: 419,812.34 usft Site Position: Latitude: 32° 9' 6.483 N Easting: 779,596.21 usft 103° 33' 48.478 W Мар From: Longitude:

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Vaca Draw #48H

Well Position +N/-S 0.0 usft Northing: 419,914.80 usft Latitude: 32° 9' 7.299 N

103° 33' 16.212 W +E/-W 0.0 usft Easting: 782,369.50 usft Longitude: 0.0 usft Wellhead Elevation: usft 3,418.0 usft **Position Uncertainty** Ground Level:

Grid Convergence: 0.41°

Wellbore Wellbore #1 Model Name Declination Magnetics Sample Date Dip Angle Field Strength (°) (°) (nT)

7.74

0.0

Design #1 Design Audit Notes: Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 Depth From (TVD) Direction Vertical Section: +N/-S +E/-W (usft) (usft) (usft) (°)

0.0

Plan Survey Tool Program 8/10/2022

Depth From Depth To Survey (Wellbore) **Tool Name** (usft) (usft) Remarks

0.0

12/31/2009

17,194.0 Design #1 (Wellbore #1) 1 0.0

IGRF200510

Microsoft

Planning Report - Geographic

EDM16 Database:

BTA Oil Producers, LLC Company: Project: Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Site:

Well: Vaca Draw #48H Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Vaca Draw #48H

GL @ 3418.0usft GL @ 3418.0usft

Grid

Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,600.0	8.00	309.29	1,598.7	17.7	-21.6	2.00	2.00	0.00	309.29	
2,220.6	8.00	309.29	2,213.2	72.3	-88.4	0.00	0.00	0.00	0.00	
2,620.6	0.00	0.00	2,611.9	90.0	-110.0	2.00	-2.00	0.00	180.00	
11,654.1	0.00	0.00	11,645.5	90.0	-110.0	0.00	0.00	0.00	0.00	
11,704.2	0.00	0.00	11,695.5	90.0	-110.0	0.00	0.00	0.00	0.00	
12,454.2	90.00	179.57	12,173.0	-387.5	-106.4	12.00	12.00	0.00	179.57	
17,191.0	90.00	179.57	12,173.0	-5,124.1	-70.9	0.00	0.00	0.00	0.00	Vaca Draw #48H B

Microsoft

Planning Report - Geographic

EDM16 Database:

BTA Oil Producers, LLC Company: Project: Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Site:

Well: Vaca Draw #48H Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Vaca Draw #48H GL @ 3418.0usft GL @ 3418.0usft

Minimum Curvature

Grid

Design.	Desig	,							
Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
` '									-
0.0		0.00	0.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
100.0		0.00	100.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
200.0 300.0		0.00	200.0	0.0	0.0 0.0	419,914.80 419,914.80	782,369.50 782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
400.0		0.00 0.00	300.0 400.0	0.0 0.0	0.0	419,914.80	782,369.50 782,369.50	32° 9' 7.299 N 32° 9' 7.299 N	103° 33' 16.212 W 103° 33' 16.212 W
500.0		0.00	500.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
600.0		0.00	600.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
700.0		0.00	700.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
800.0		0.00	800.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
900.0		0.00	900.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
1,000.0		0.00	1,000.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
1,100.0		0.00	1,100.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
1,200.0		0.00	1,200.0	0.0	0.0	419,914.80	782,369.50	32° 9' 7.299 N	103° 33' 16.212 W
1,300.0		309.29	1,300.0	1.1	-1.4	419,915.90	782,368.15	32° 9' 7.310 N	103° 33' 16.228 W
1,400.0	4.00	309.29	1,399.8	4.4	-5.4	419,919.22	782,364.10	32° 9' 7.343 N	103° 33' 16.275 W
1,500.0	6.00	309.29	1,499.5	9.9	-12.1	419,924.74	782,357.35	32° 9' 7.398 N	103° 33' 16.353 W
1,600.0	8.00	309.29	1,598.7	17.7	-21.6	419,932.45	782,347.92	32° 9' 7.476 N	103° 33' 16.462 W
1,700.0	8.00	309.29	1,697.7	26.5	-32.3	419,941.27	782,337.15	32° 9' 7.564 N	103° 33' 16.586 W
1,800.0	8.00	309.29	1,796.8	35.3	-43.1	419,950.08	782,326.38	32° 9' 7.651 N	103° 33' 16.711 W
1,900.0		309.29	1,895.8	44.1	-53.9	419,958.89	782,315.61	32° 9' 7.739 N	103° 33' 16.836 W
2,000.0		309.29	1,994.8	52.9	-64.7	419,967.70	782,304.84	32° 9' 7.827 N	103° 33' 16.960 W
2,100.0		309.29	2,093.8	61.7	-75.4	419,976.52	782,294.06	32° 9' 7.915 N	103° 33' 17.085 W
2,200.0		309.29	2,192.9	70.5	-86.2	419,985.33	782,283.29	32° 9' 8.003 N	103° 33' 17.209 W
2,220.6		309.29	2,213.2	72.3	-88.4	419,987.14	782,281.08	32° 9' 8.021 N	103° 33' 17.235 W
2,300.0		309.29	2,292.0	78.7	-96.1	419,993.45	782,273.37	32° 9' 8.084 N	103° 33' 17.324 W
2,400.0		309.29	2,391.6	84.6	-103.4	419,999.42	782,266.07	32° 9' 8.144 N	103° 33' 17.408 W
2,500.0		309.29	2,491.4	88.4	-108.0	420,003.19	782,261.46	32° 9' 8.182 N	103° 33' 17.462 W
2,600.0		309.29	2,591.4	90.0	-109.9	420,004.75	782,259.56	32° 9' 8.197 N	103° 33' 17.484 W
2,620.6		0.00	2,611.9	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
2,700.0 2,800.0	0.00	0.00	2,691.4 2,791.4	90.0	-110.0 -110.0	420,004.80	782,259.50 782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
2,900.0		0.00 0.00	2,791.4	90.0 90.0	-110.0 -110.0	420,004.80 420,004.80	782,259.50 782,259.50	32° 9' 8.198 N 32° 9' 8.198 N	103° 33' 17.484 W 103° 33' 17.484 W
3,000.0		0.00	2,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,100.0		0.00	3,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,200.0		0.00	3,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,300.0	0.00	0.00	3,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,400.0		0.00	3,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,500.0		0.00	3,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,600.0	0.00	0.00	3,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,700.0	0.00	0.00	3,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,800.0		0.00	3,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
3,900.0		0.00	3,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,000.0	0.00	0.00	3,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,100.0		0.00	4,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,200.0	0.00	0.00	4,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,300.0	0.00	0.00	4,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,400.0	0.00	0.00	4,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,500.0	0.00	0.00	4,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,600.0		0.00	4,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,700.0		0.00	4,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,800.0		0.00	4,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
4,900.0		0.00	4,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,000.0		0.00	4,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,100.0		0.00	5,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,200.0	0.00	0.00	5,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W

Microsoft

Planning Report - Geographic

EDM16 Database:

BTA Oil Producers, LLC Company: Project: Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Site:

Well: Vaca Draw #48H Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Vaca Draw #48H GL @ 3418.0usft GL @ 3418.0usft

Grid

Minimum Curvature

Design.	Desig	,							
Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,300.0		0.00	5,291.4	90.0	-110.0	420,004.80	702.250.50	32° 9' 8.198 N	-
5,400.0		0.00	5,291.4	90.0	-110.0 -110.0	420,004.80	782,259.50 782,259.50	32° 9' 8.198 N	103° 33' 17.484 W 103° 33' 17.484 W
5,500.0		0.00	5,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,600.0		0.00	5,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,700.0		0.00	5,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,800.0		0.00	5,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
5,900.0		0.00	5,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,000.0		0.00	5,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,100.0		0.00	6,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,200.0		0.00	6,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,300.0		0.00	6,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,400.0		0.00	6,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,500.0		0.00	6,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,600.0	0.00	0.00	6,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,700.0	0.00	0.00	6,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
6,800.0	0.00	0.00	6,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9′ 8.198 N	103° 33' 17.484 W
6,900.0		0.00	6,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9′ 8.198 N	103° 33' 17.484 W
7,000.0		0.00	6,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,100.0		0.00	7,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,200.0		0.00	7,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,300.0		0.00	7,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,400.0		0.00	7,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,500.0		0.00	7,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,600.0		0.00	7,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,700.0		0.00	7,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,800.0		0.00	7,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
7,900.0		0.00	7,891.4 7,991.4	90.0	-110.0 -110.0	420,004.80	782,259.50 782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,000.0 8,100.0		0.00 0.00	8,091.4	90.0 90.0	-110.0 -110.0	420,004.80 420,004.80	782,259.50 782,259.50	32° 9' 8.198 N 32° 9' 8.198 N	103° 33' 17.484 W 103° 33' 17.484 W
8,200.0		0.00	8,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,300.0		0.00	8,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,400.0		0.00	8,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,500.0		0.00	8,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,600.0		0.00	8,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,700.0		0.00	8,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,800.0		0.00	8,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
8,900.0		0.00	8,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,000.0		0.00	8,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,100.0	0.00	0.00	9,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,200.0	0.00	0.00	9,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,300.0	0.00	0.00	9,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,400.0	0.00	0.00	9,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,500.0	0.00	0.00	9,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,600.0	0.00	0.00	9,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,700.0	0.00	0.00	9,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,800.0		0.00	9,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
9,900.0	0.00	0.00	9,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,000.0		0.00	9,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,100.0		0.00	10,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,200.0		0.00	10,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,300.0		0.00	10,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,400.0		0.00	10,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,500.0		0.00	10,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,600.0		0.00	10,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,700.0	0.00	0.00	10,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W

TRUEZ

Microsoft

Planning Report - Geographic

Database: EDM16

 Company:
 BTA Oil Producers, LLC

 Project:
 Lea County, NM (NAD 83)

 Site:
 Vaca Draw Sec 10, T25S, R33E

Well: Vaca Draw #48H
Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Vaca Draw #48H GL @ 3418.0usft GL @ 3418.0usft

Grid Minimum Curvature

Design.	Desig	, .							
Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
10,800.0	0.00	0.00	10,791.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
10,900.0		0.00	10,891.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,000.0		0.00	10,991.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,100.0		0.00	11,091.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,200.0		0.00	11,191.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,300.0		0.00	11,291.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,400.0		0.00	11,391.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,500.0		0.00	11,491.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,600.0		0.00	11,591.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,654.1	0.00	0.00	11,645.5	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,700.0	0.00	0.00	11,691.4	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,704.2	0.00	0.00	11,695.5	90.0	-110.0	420,004.80	782,259.50	32° 9' 8.198 N	103° 33' 17.484 W
11,800.0	11.50	179.57	11,790.7	80.4	-109.9	419,995.21	782,259.57	32° 9' 8.103 N	103° 33' 17.484 W
11,900.0	23.50	179.57	11,885.9	50.4	-109.7	419,965.20	782,259.80	32° 9' 7.806 N	103° 33' 17.484 W
12,000.0	35.50	179.57	11,972.8	1.3	-109.3	419,916.05	782,260.17	32° 9′ 7.320 N	103° 33' 17.484 W
12,100.0	47.50	179.57	12,047.6	-64.9	-108.8	419,849.91	782,260.66	32° 9′ 6.665 N	103° 33' 17.484 W
12,200.0	59.50	179.57	12,106.9	-145.1	-108.2	419,769.68	782,261.26	32° 9' 5.871 N	103° 33' 17.484 W
12,300.0		179.57	12,148.3	-235.9	-107.6	419,678.86	782,261.94	32° 9′ 4.972 N	103° 33' 17.483 W
12,400.0	83.50	179.57	12,169.9	-333.4	-106.8	419,581.41	782,262.67	32° 9' 4.008 N	103° 33' 17.483 W
12,454.2		179.57	12,173.0	-387.5	-106.4	419,527.36	782,263.08	32° 9′ 3.473 N	103° 33' 17.483 W
12,500.0		179.57	12,173.0	-433.3	-106.1	419,481.53	782,263.42	32° 9' 3.020 N	103° 33' 17.483 W
12,600.0		179.57	12,173.0	-533.3	-105.3	419,381.54	782,264.17	32° 9' 2.030 N	103° 33' 17.482 W
12,700.0		179.57	12,173.0	-633.3	-104.6	419,281.54	782,264.92	32° 9' 1.041 N	103° 33' 17.482 W
12,800.0		179.57	12,173.0	-733.3	-103.8	419,181.55	782,265.67	32° 9' 0.051 N	103° 33' 17.482 W
12,900.0		179.57	12,173.0	-833.3	-103.1	419,081.55	782,266.42	32° 8′ 59.061 N	103° 33' 17.481 W
13,000.0		179.57	12,173.0	-933.3	-102.3	418,981.56	782,267.17	32° 8′ 58.072 N	103° 33' 17.481 W
13,100.0 13,200.0		179.57 179.57	12,173.0 12,173.0	-1,033.3 -1,133.3	-101.6 -100.8	418,881.56 418,781.57	782,267.92 782,268.67	32° 8' 57.082 N 32° 8' 56.093 N	103° 33' 17.481 W 103° 33' 17.481 W
13,300.0		179.57	12,173.0	-1,133.3	-100.6	418,681.57	782,269.42	32° 8' 55.103 N	103° 33' 17.480 W
13,400.0		179.57	12,173.0	-1,233.3	-99.3	418,581.58	782,270.17	32° 8' 54.114 N	103° 33' 17.480 W
13,500.0		179.57	12,173.0	-1,433.3	-98.6	418,481.58	782,270.17	32° 8' 53.124 N	103° 33' 17.480 W
13,600.0		179.57	12,173.0	-1,533.2	-97.8	418,381.59	782,271.67	32° 8' 52.135 N	103° 33' 17.479 W
13,700.0		179.57	12,173.0	-1,633.2	-97.1	418,281.59	782,272.42	32° 8' 51.145 N	103° 33' 17.479 W
13,800.0		179.57	12,173.0	-1,733.2	-96.3	418,181.60	782,273.17	32° 8' 50.156 N	103° 33' 17.479 W
13,900.0		179.57	12,173.0	-1,833.2	-95.6	418,081.60	782,273.92	32° 8′ 49.166 N	103° 33' 17.478 W
14,000.0		179.57	12,173.0	-1,933.2	-94.8	417,981.61	782,274.67	32° 8' 48.177 N	103° 33' 17.478 W
14,100.0	90.00	179.57	12,173.0	-2,033.2	-94.1	417,881.62	782,275.42	32° 8' 47.187 N	103° 33' 17.478 W
14,200.0	90.00	179.57	12,173.0	-2,133.2	-93.3	417,781.62	782,276.17	32° 8′ 46.198 N	103° 33' 17.477 W
14,300.0	90.00	179.57	12,173.0	-2,233.2	-92.6	417,681.63	782,276.92	32° 8′ 45.208 N	103° 33' 17.477 W
14,400.0	90.00	179.57	12,173.0	-2,333.2	-91.8	417,581.63	782,277.67	32° 8′ 44.219 N	103° 33' 17.477 W
14,500.0	90.00	179.57	12,173.0	-2,433.2	-91.1	417,481.64	782,278.42	32° 8′ 43.229 N	103° 33' 17.476 W
14,600.0		179.57	12,173.0	-2,533.2	-90.3	417,381.64	782,279.17	32° 8' 42.239 N	103° 33' 17.476 W
14,700.0		179.57	12,173.0	-2,633.2	-89.6	417,281.65	782,279.92	32° 8′ 41.250 N	103° 33' 17.476 W
14,800.0		179.57	12,173.0	-2,733.2	-88.8	417,181.65	782,280.67	32° 8′ 40.260 N	103° 33' 17.476 W
14,900.0		179.57	12,173.0	-2,833.2	-88.1	417,081.66	782,281.42	32° 8′ 39.271 N	103° 33' 17.475 W
15,000.0		179.57	12,173.0	-2,933.2	-87.3	416,981.66	782,282.17	32° 8′ 38.281 N	103° 33' 17.475 W
15,100.0		179.57	12,173.0	-3,033.2	-86.6	416,881.67	782,282.92	32° 8' 37.292 N	103° 33' 17.475 W
15,200.0		179.57	12,173.0	-3,133.2	-85.8	416,781.67	782,283.67	32° 8′ 36.302 N	103° 33' 17.474 W
15,300.0		179.57	12,173.0	-3,233.2	-85.1	416,681.68	782,284.42	32° 8′ 35.313 N	103° 33' 17.474 W
15,400.0		179.57	12,173.0	-3,333.2	-84.3	416,581.68	782,285.17	32° 8' 34.323 N	103° 33' 17.474 W
15,500.0		179.57	12,173.0	-3,433.2	-83.6	416,481.69	782,285.92	32° 8' 33.334 N	103° 33' 17.473 W
15,600.0 15,700.0		179.57 179.57	12,173.0 12,173.0	-3,533.2 -3,633.2	-82.8 -82.1	416,381.69 416,281.70	782,286.67 782,287.42	32° 8' 32.344 N 32° 8' 31.355 N	103° 33' 17.473 W 103° 33' 17.473 W
15,700.0		179.57	12,173.0	-3,633.2 -3,733.2	-82.1 -81.3	416,281.70	782,287.42 782,288.17	32° 8' 30.365 N	103 33 17.473 W
15,900.0		179.57	12,173.0	-3,733.2 -3,833.2	-80.6	416,081.70	782,288.92	32° 8' 29.376 N	103° 33' 17.472 W
10,900.0	90.00	118.01	14,173.0	-5,033.2	-00.0	410,001.71	102,200.92	32 U 28.31U N	103 33 17.472 W

Project:

Site:

Microsoft

Planning Report - Geographic

Database: Company:

EDM16 BTA Oil Producers, LLC

Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E

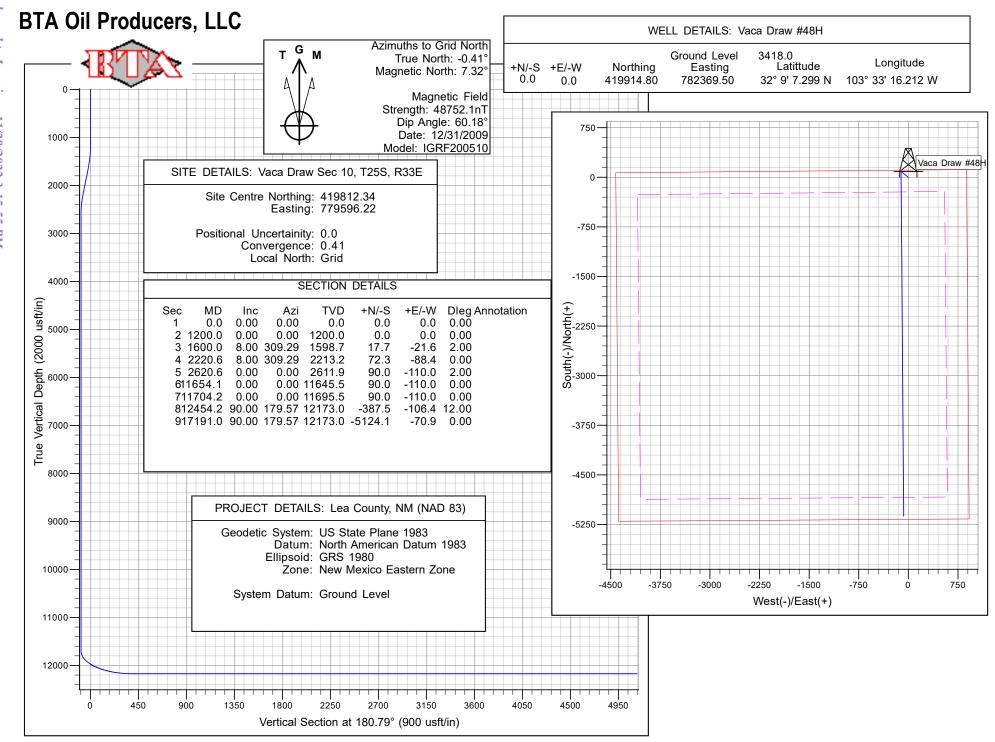
Well: Vaca Draw #48H Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Vaca Draw #48H GL @ 3418.0usft


GL @ 3418.0usft Grid

Minimum Curvature

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
16,000.0	90.00	179.57	12,173.0	-3,933.2	-79.8	415,981.71	782,289.67	32° 8' 28.386 N	103° 33' 17.472 W
16,100.0	90.00	179.57	12,173.0	-4,033.2	-79.1	415,881.72	782,290.42	32° 8' 27.397 N	103° 33' 17.471 W
16,200.0	90.00	179.57	12,173.0	-4,133.2	-78.3	415,781.73	782,291.17	32° 8' 26.407 N	103° 33' 17.471 W
16,300.0	90.00	179.57	12,173.0	-4,233.2	-77.6	415,681.73	782,291.92	32° 8' 25.417 N	103° 33' 17.471 W
16,400.0	90.00	179.57	12,173.0	-4,333.2	-76.8	415,581.74	782,292.67	32° 8' 24.428 N	103° 33' 17.470 W
16,500.0	90.00	179.57	12,173.0	-4,433.2	-76.1	415,481.74	782,293.42	32° 8' 23.438 N	103° 33' 17.470 W
16,600.0	90.00	179.57	12,173.0	-4,533.2	-75.3	415,381.75	782,294.17	32° 8' 22.449 N	103° 33' 17.470 W
16,700.0	90.00	179.57	12,173.0	-4,633.2	-74.6	415,281.75	782,294.92	32° 8' 21.459 N	103° 33' 17.470 W
16,800.0	90.00	179.57	12,173.0	-4,733.2	-73.8	415,181.76	782,295.67	32° 8' 20.470 N	103° 33' 17.469 W
16,900.0	90.00	179.57	12,173.0	-4,833.2	-73.1	415,081.76	782,296.42	32° 8′ 19.480 N	103° 33' 17.469 W
17,000.0	90.00	179.57	12,173.0	-4,933.2	-72.3	414,981.77	782,297.17	32° 8' 18.491 N	103° 33' 17.469 W
17,100.0	90.00	179.57	12,173.0	-5,033.1	-71.6	414,881.77	782,297.92	32° 8' 17.501 N	103° 33' 17.468 W
17,191.0	90.00	179.57	12,173.0	-5,124.1	-70.9	414,790.80	782,298.60	32° 8' 16.601 N	103° 33' 17.468 W

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Vaca Draw #48H BHL - plan hits target cent - Point	0.00 er	0.00	12,173.0	-5,124.1	-70.9	414,790.80	782,298.60	32° 8' 16.601 N	103° 33' 17.468 W

Received by OCD: 11/21/2022 1:26:58 PM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | BTA OIL PRODUCERS LLC

LEASE NO.: | NMNM97153

WELL NAME & NO.: VACA DRAW 9418 10 FEDERAL 48H

SURFACE HOLE FOOTAGE: 110'/N & 880'/E **BOTTOM HOLE FOOTAGE** 50'/S & 990'/E

LOCATION: Section 10, T.25 S., R.33 E., NMPM

COUNTY: Lea County, New Mexico

COA

H2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	O Multibowl	O Both
Other	☐ 4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	□ СОМ	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the undesignated formation in a wildcat pool. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The 10-3/4 inch surface casing shall be set at approximately 1,165 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing, which shall be set at approximately **11,620** feet is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Excess cement calculates to -49%, additional cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - Excess cement calculates to -8%, additional cement might be required.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The minimum required fill of cement behind the 5 1/2 X 5 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Excess cement calculates to -1%, additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000** (**5M**) psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Α. **CASING**

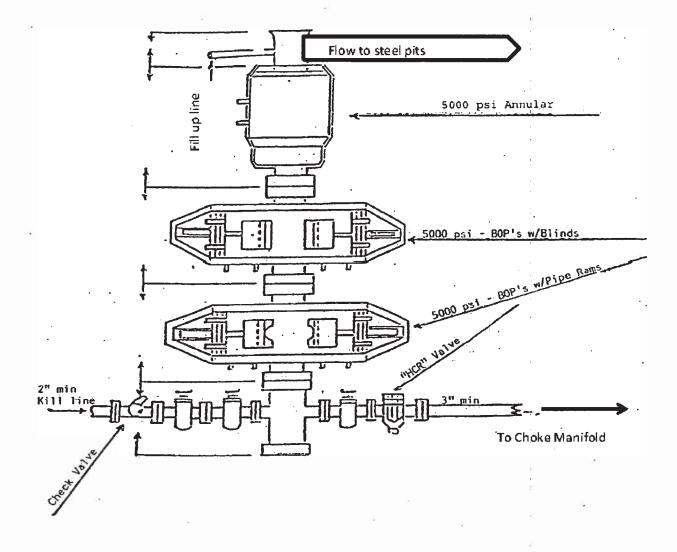
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

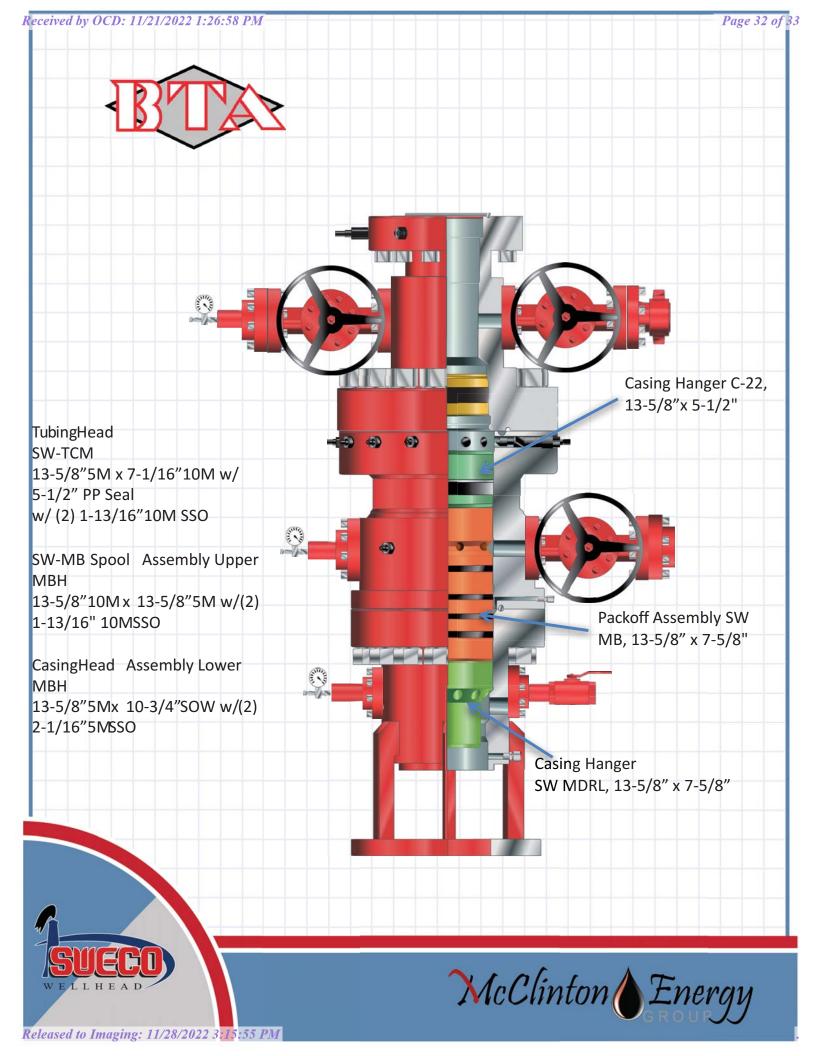
B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

- lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- **C**.. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.


D. WASTE MATERIAL AND FLUIDS


All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA10172022

13-5/8" 5,000 PSI BOP

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 160490

CONDITIONS

Operator:	OGRID:
BTA OIL PRODUCERS, LLC	260297
104 S Pecos	Action Number:
Midland, TX 79701	160490
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	11/28/2022
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	11/28/2022
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	11/28/2022
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	11/28/2022