<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 331683

Operator Name and Address Silverback Operating II, LLC IH10 West, Suite 201 San Antonio, TX 78257		2. OGRID Number 330968		
IH10 West, Suite 201 San Antonio, TX 78257				
San Antonio, TX 78257		3. API Number		
· · · · · · · · · · · · · · · · · · ·		30-015-53	275	
4. Property Code 5. Property Name		6. Well No.		
333447 MARGARET		203H		
7. Surface Location				
UL - Lot Section Township Range Lot Idn Feet From N/S Lin	e Feet From	E/W Line	County	
I 22 18S 26E 2126	S 1	58 E	Eddy	
8. Proposed Bottom Hole Location				
UL - Lot Section Township Range Lot Idn Feet From N/S Lin	e Feet From	E/W Line	County	
I 23 18S 26E I 1827	S 1	100 E	Eddy	
9. Pool Information				
ATOKA;GLORIETA-YESO		3250		
Additional Well Information				
11. Work Type 12. Well Type 13. Cable/Rotary 14. Lease Type	15. Gr	ound Level Elevation		
New Well OIL Private		3316		
16. Multiple 17. Proposed Depth 18. Formation 19. Contractor	20. Sp	. Spud Date		
N 9250 Yeso		2/6/2023		
Depth to Ground water Distance from nearest fresh water well	Distanc	ce to nearest surface wate	r	
☑ We will be using a closed-loop system in lieu of lined pits				

Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	12.25	9.625	36	1250	239	0
Prod	8.75	7	32	4179	185	0
Prod	8.75	5.5	20	9250	1484	2832

Casing/Cement Program: Additional Comments

22. Proposed Blowout Prevention Program							
Туре	Working Pressure	Test Pressure	Manufacturer				
Double Ram	5000	5000	Shaffer				

knowledge and	belief. I have complied with 19.15.14.9 (A	is true and complete to the best of my) NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATION	ON DIVISION
Printed Name:	Electronically filed by Matthew A	Alley	Approved By:	Katherine Pickford	
Title:	Chief Financial Officer		Title:	Geoscientist	
Email Address:	malley@silverbackexp.com		Approved Date:	1/12/2023	Expiration Date: 1/12/2025
Date:	1/4/2023	Phone: 303-513-0990	Conditions of Approval Attached		

District I

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

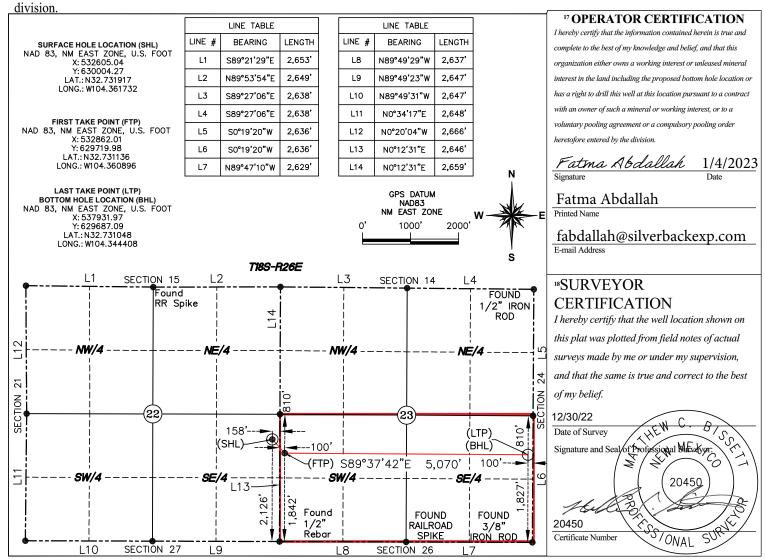
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code	³ Pool Name	iO
30-015- 53275		3250	ATOKA;GLORIETA-YES	
⁴ Property Code 333447		⁵ Pr	⁶ Well Number 203H	
⁷ OGRID No.		⁸ O _I	⁹ Elevation	
330968		SILVERBACK	3,316'	


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
I	22	18-S	26-E		2,126'	SOUTH	158'	EAST	EDDY

¹¹ Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
1	23	18-S	26-E		1,827'	SOUTH	100'	EAST	EDDY
12 Dedicated Acres 13 Joint or Infill 14 Consolidation		Code 15 Or	der No.						
320									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Comments

Permit 331683

PERMIT COMMENTS

Operator Name and Address: API Nu	mber:
Silverback Operating II, LLC [330968]	30-015-53275
IH10 West, Suite 201	
San Antonio, TX 78257	MARGARET #203H

Created By	Comment	Comment Date
kpickford	Defining well 3001550074 MARGARET #202H	1/12/2023

Form APD Conditions

Permit 331683

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operator N	ame and Address:	API Number:
;	Silverback Operating II, LLC [330968]	30-015-53275
	H10 West, Suite 201	Well:
;	San Antonio, TX 78257	MARGARET #203H
OCD	Condition	
Reviewer		
kpickford	Notify OCD 24 hours prior to casing & cement	
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104	
kpickford	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud	

kpickford Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh

kpickford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,

water zone or zones and shall immediately set in cement the water protection string kpickford Cement is required to circulate on both surface and intermediate1 strings of casing

drilling fluids and solids must be contained in a steel closed loop system

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

$\frac{Section~1-Plan~Description}{\frac{Effective~May~25,~2021}{}}$

I. Operator:	Silverbac	k Operating II	, LLC	OGRID: _	330968	Date:	01 / 04 / 2023
				9.D(6)(a) NMA	.C □ 19.15.27.9.D(6)(b) NMAC □ 0	Other.
If Other, please	e describe	:					
III. Well(s): Probe recompleted	rovide the I from a si	following infingle well pad	Formation for each roor connected to a connected to	new or recompl central delivery	eted well or set of v point.	wells proposed to	be drilled or proposed to
Well Nar	me	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
See attached ta	ıble						
V. Anticipated	l Schedul	e: Provide the		tion for each ne			19.15.27.9(D)(1) NMAC] s proposed to be drilled or
proposed to be Well Nar		ted from a sin API	gle well pad or con Spud Date	TD Reached Date	tral delivery point. Completion Commencement		
See attached ta	ble						
VI. Separation	ı Equipm	ent: 🗵 Attacl	a complete descrip	otion of how Op	perator will size sepa	aration equipment	t to optimize gas capture.
VII. Operation Subsection A the				ption of the act	ions Operator will	take to comply wi	ith the requirements of
VIII. Best Ma during active a				e description of	Operator's best ma	anagement practic	ces to minimize venting

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				-

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system □ will □	will not have capacity to gather 100% of the anticipated natural gas
production volume from the well prior to the date of first production	on.

XIII.	Line Pressure.	Operator	does □ doe	s not antic	ipate that it	ts existing	well(s) con	nnected to	the same	segment	t, or portio	n, of the
natura	al gas gathering	system(s) de	scribed abov	e will cont	tinue to me	et anticipat	ted increas	es in line p	pressure c	aused by	the new v	vell(s).

	Attach (Inerator'	c nlan	to manage i	production	in recnance	to the incre-	ased line pressu	ıre
ш	Attach (operator	s blan	to manage i	production	in response	to the incre	ased line bresst	ire

XIV. (Confidentiality: 🗆 Operator ass	erts confidentiality pursuant	to Section 71-2	2-8 NMSA 19	78 for the infor	mation pro	ovided in
Section	n 2 as provided in Paragraph (2) o	f Subsection D of 19.15.27.9	NMAC, and att	taches a full de	scription of the	specific inf	ormation
for wh	ich confidentiality is asserted and	the basis for such assertion.					

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, a	fter reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of	to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the a into account the current	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one inticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following:
Well Shut-In. ☐ Operate D of 19.15.27.9 NMAC	tor will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection; or
Venting and Flaring P	lan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential
alternative beneficial us	es for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage;
(g)	reinjection for enhanced oil recovery; fuel cell production; and
(h)	tuei cen production, and

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Fatma Abdallah
Printed Name: Fatma Abdallah
Title: Regulatory Manager
E-mail Address: fabdallah@silverbackexp.com
Date: 01/04/2023
Phone: 210-585-3316
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

III. Wells

Well Name	<u>API</u>	<u>ULSTR</u>	<u>Footages</u>	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Margaret 103H	30-15-	P-22-18S-26E	1115'S 238'E	515	800	3000
Margaret 102H	30-15-50076	P-22-18S-26E	1095'S 238'E	515	800	3000
Margaret 202H	30-15-50074	P-22-18S-26E	1105'S 178'E	515	800	3000
Margaret 104H	30-15-	P-22-18S-26E	2186' S 158' E	515	800	3000
Margaret 203H	30-15-	P-22-18S-26E	2126' S 158' E	515	800	3000

V. Anticipated Schedule

Well Name	<u>API</u>	Spud date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Margaret 103H	30-15-	5/7/23	5/16/23	6/25/23	8/10/23	8/10/23
Margaret 102H	30-15-50076	4/28/23	5/6/23	6/25/23	8/10/23	8/10/23
Margaret 202H	30-15-50074	6/16/23	6/24/23	7/15/23	8/13/23	8/13/23
Margaret 104H	30-15-	1/27/23	2/4/23	2/14/23	3/8/23	3/8/23
Margaret 203H	30-15-	2/6/23	2/14/23	2/14/23	3/8/23	3/8/23
			_			

Separation Equipment

Silverback Operating II (LLC) has sampled existing producing wells and performed laboratory testing to determine composition. Performance of existing producing wells was analyzed to predict expected production volumes including a low probably, high volume production case (approximately 75% higher than type curve or most likely amount of production). Production composition and the volumes were utilized as inputs to a process model which predicts relative amounts of gas, oil and water throughout the process. The high volume case was used to size equipment, piping and instrumentation. Equipment sizing is based on drop settlement and limits the amount of carry over to the gas phase.

Each well has a dedicated 3 phase separator and gas from that separator is taken directly to gas sales. Facility piping and pipeline were sized to allow peak volumes to flow with minimal pressure loss and deliver to midstream gatherer at an acceptable pressure. Water is conveyed directly to tankage.

Oil from 3 phase separators is comingled and conveyed to a heated separator for enhanced liquid-liquid separation and degassing. Vapors from the heater treater are routed to a Vapor Recovery Unit (VRU).

Oil and water storage tanks vapor outlets are common and utilize a closed vent vapor system to ensure all working & breathing and flashing losses are routed to the Vapor Recovery Unit (VRU) Site VRUs are sized to accommodate peak expected production volume. Flash volumes were estimated using the high volume case and process modeling software. Gas from the VRU outlet is combined with 1st stage separation gas and sent to sales.

Venting and Flaring

Silverback Operating II, LLC will ensure pipeline connectivity before producing hydrocarbons and will operate a closed vent vapor capture system that is designed to capture all associated and evolved gas during normal operation. Venting or flaring will only occur during start up and shut down, maintenance activities or equipment failure or upset. Silverback may utilize the following from list A-I of Section 3 for its operations to minimize flaring:

- a) Power generation on lease Natural gas driven gen set to produce power required to run supply well pad electrical loads
- c) Compression on lease gas lift or gas compression as required
- d) Liquids removal on lease gas pressure will be used to convey fluids as needed

Best Management Practices

Silverback utilizes automate engineering controls included in facility design to minimize venting and flaring. Additionally, operational best practices support minimization of flare and venting as described below.

If the main gas outlet becomes unavailable and pressure increases on the outlet sales line, produced gas will be routed directly to the facility flare. The facility control system will alert personnel to the need for maintenance and appropriate response to the temporary flaring event.

The facility design includes a closed vent vapor capture system to route flash or evolved from the heater treater and tanks to the Vapor Recovery Unit (VRU) Compressor. If the VRU requires planned or unplanned maintenance, vapors will automatically be routed to the facility flare.

For maintenance activities, Silverback will utilize the facility flare to blowdown equipment and piping whenever practical to minimize venting

Silverback Exploration

Eddy County, NM (NAD 83 NME) Margaret 203H Margaret 203H OH

Plan: Plan 0.1

SilverBack Plan Report

30 December, 2022

SilverBack Plan Report

Silverback Exploration Company:

Project: Eddy County, NM (NAD 83 NME)

Site: Margaret 203H Margaret 203H Well:

Wellbore: ОН Design: Plan 0.1 Local Co-ordinate Reference: **TVD Reference:**

Well Margaret 203H

Well @ 3330.00usft (14' KB) Well @ 3330.00usft (14' KB)

North Reference: Grid

Survey Calculation Method: Minimum Curvature Database: EDM 5000.17-Aim-DB

Eddy County, NM (NAD 83 NME) **Project**

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983

Map Zone:

New Mexico Eastern Zone

System Datum:

MD Reference:

Mean Sea Level

Site Margaret 203H

Site Position:

From:

Lat/Long

Northing: Easting:

630,004.18 usft 532.605.21 usft

Latitude: Longitude:

32.73192 -104.36173

Position Uncertainty: 0.00 usft **Slot Radius:** 13-3/16 " **Grid Convergence:** -0.02 °

Well Margaret 203H

Well Position +N/-S

+E/-W

0.00 usft Northing: 0.00 usft Easting:

630,004.18 usft 532.605.21 usft

Latitude: Longitude:

32.73192 -104.36173

0.00 usft Wellhead Elevation: **Ground Level:** 3.316.00 usft **Position Uncertainty** usft

Wellbore

ОН

Declination Magnetics **Model Name** Sample Date **Dip Angle Field Strength** (°) (°) (nT) MVHD 10/4/2022 6.87 60.38 47.650.17193429

Design

Plan 0.1

Audit Notes:

Version:

Phase:

PLAN

Tie On Depth:

0.00

Vertical Section:

Depth From (TVD) (usft) 0.00

+N/-S (usft) 0.00

+E/-W (usft) 0.00

Direction (°) 90.00

Survey Tool Program

Date 12/30/2022

From (usft) То

(usft)

Survey (Wellbore) **Tool Name**

MWD+HRGM

Description

0.00 9,249.91 Plan 0.1 (OH) OWSG MWD + HRGM

SilverBack Plan Report

Company: Project:

Silverback Exploration

Eddy County, NM (NAD 83 NME)

Site:

Margaret 203H

Well:

Margaret 203H

Wellbore: Design:

ОН

Plan 0.1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Margaret 203H

Well @ 3330.00usft (14' KB)

Well @ 3330.00usft (14' KB)

Grid

Minimum Curvature

EDM 5000.17-Aim-DB

nned Survey									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	N/S (usft)	E/W (usft)	V. Sec (usft)	DLeg (°/100usft)	Latitude (°)	Longitude (°)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.000	32.73192	-104.36173
Build: 3°/100									
600.00	3.00	245.56	599.95	-1.08	-2.38	-2.38	3.000	32.73191	-104.36174
700.00	6.00	245.56	699.63	-4.33	-9.53	-9.53	3.000	32.73191	-104.36176
800.00	9.00	245.56	798.77	-9.73	-21.41	-21.41	3.000	32.73189	-104.36180
900.00	12.00	245.56	897.08	-17.26	-38.00	-38.00	3.000	32.73187	-104.36185
1,000.00	15.00	245.56	994.31	-26.92	-59.25	-59.25	3.000	32.73184	-104.36192
1,031.04	15.93	245.56	1,024.23	-30.35	-66.78	-66.78	3.000	32.73183	-104.36195
Hold: 15.93° I	nc, 245.56° Azm								
1,100.00	15.93	245.56	1,090.54	-38.18	-84.02	-84.02	0.000	32.73181	-104.36200
1,200.00	15.93	245.56	1,186.69	-49.53	-109.01	-109.01	0.000	32.73178	-104.36209
1,300.00	15.93	245.56	1,282.85	-60.89	-134.00	-134.00	0.000	32.73175	-104.36217
1,400.00	15.93	245.56	1,379.01	-72.24	-158.99	-158.99	0.000	32.73172	-104.36225
1,500.00	15.93	245.56	1,475.17	-83.60	-183.97	-183.97	0.000	32.73169	-104.36233
1,600.00	15.93	245.56	1,571.33	-94.95	-208.96	-208.96	0.000	32.73166	-104.36241
1,700.00	15.93	245.56	1,667.49	-106.30	-233.95	-233.95	0.000	32.73162	-104.36249
1,800.00	15.93	245.56	1,763.65	-117.66	-258.94	-258.94	0.000	32.73159	-104.36257
1,900.00	15.93	245.56	1,859.81	-129.01	-283.93	-283.93	0.000	32.73156	-104.36265
2,000.00	15.93	245.56	1,955.97	-140.37	-308.92	-308.92	0.000	32.73153	-104.36274
2,100.00	15.93	245.56	2,052.13	-151.72	-333.91	-333.91	0.000	32.73150	-104.36282
2,200.00	15.93	245.56	2,148.29	-163.08	-358.90	-358.90	0.000	32.73147	-104.36290
2,300.00	15.93	245.56	2,244.44	-174.43	-383.89	-383.89	0.000	32.73144	-104.36298

SilverBack Plan Report

Company: Project:

Silverback Exploration

Eddy County, NM (NAD 83 NME)

Site: Well: Margaret 203H

Wellbore:

Margaret 203H

Design:

OH Plan 0.1 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method: Database:

Well @ 3330.00usft (14' KB) Well @ 3330.00usft (14' KB)

Grid

Minimum Curvature

Well Margaret 203H

EDM 5000.17-Aim-DB

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	N/S (usft)	E/W (usft)	V. Sec (usft)	DLeg (°/100usft)	Latitude (°)	Longitude (°)
2,400.00	15.93	245.56	2,340.60	-185.79	-408.88	-408.88	0.000	32.73141	-104.36306
2,500.00	15.93	245.56	2,436.76	-197.14	-433.87	-433.87	0.000	32.73137	-104.36314
2,600.00	15.93	245.56	2,532.92	-208.50	-458.86	-458.86	0.000	32.73134	-104.36322
2,700.00	15.93	245.56	2,629.08	-219.85	-483.85	-483.85	0.000	32.73131	-104.36330
2,800.00	15.93	245.56	2,725.24	-231.21	-508.84	-508.84	0.000	32.73128	-104.36339
2,832.17	15.93	245.56	2,756.17	-234.86	-516.88	-516.88	0.000	32.73127	-104.36341
KOP: 9°/100'	@ 2832.17' MD								
2,850.00	14.45	243.17	2,773.38	-236.88	-521.09	-521.09	9.000	32.73127	-104.36343
2,900.00	10.50	233.05	2,822.20	-242.44	-530.31	-530.31	9.000	32.73125	-104.36346
2,950.00	7.22	212.62	2,871.60	-247.83	-535.65	-535.65	9.000	32.73124	-104.36347
3,000.00	5.86	174.05	2,921.30	-253.01	-537.08	-537.08	9.000	32.73122	-104.36348
Maximum Ba	ckBuild								
3,050.00	7.54	137.36	2,970.98	-257.97	-534.59	-534.59	9.000	32.73121	-104.36347
3,100.00	10.94	118.63	3,020.33	-262.66	-528.20	-528.20	9.000	32.73119	-104.36345
3,150.00	14.93	109.21	3,069.06	-267.05	-517.95	-517.95	9.000	32.73118	-104.36342
3,200.00	19.15	103.78	3,116.86	-271.13	-503.89	-503.89	9.000	32.73117	-104.36337
3,250.00	23.46	100.27	3,163.43	-274.86	-486.13	-486.13	9.000	32.73116	-104.36331
3,300.00	27.84	97.80	3,208.50	-278.22	-464.76	-464.76	9.000	32.73115	-104.36324
3,350.00	32.24	95.96	3,251.77	-281.19	-439.91	-439.91	9.000	32.73114	-104.36316
3,400.00	36.67	94.52	3,292.99	-283.75	-411.75	-411.75	9.000	32.73114	-104.36307
3,450.00	41.11	93.35	3,331.90	-285.89	-380.44	-380.44	9.000	32.73113	-104.36297
3,500.00	45.56	92.38	3,368.26	-287.59	-346.19	-346.19	9.000	32.73113	-104.36286
3,550.00	50.01	91.54	3,401.85	-288.85	-309.19	-309.19	9.000	32.73112	-104.36274
3,600.00	54.48	90.80	3,432.46	-289.65	-269.67	-269.67	9.000	32.73112	-104.36261
3,650.00	58.94	90.15	3,459.89	-289.99	-227.89	-227.89	9.000	32.73112	-104.36247
3,661.83	60.00	90.00	3,465.91	-290.00	-217.70	-217.70	9.000	32.73112	-104.36244
Hold: 60.00°	Inc, 90.00° Azm								
3,700.00	60.00	90.00	3,484.99	-290.00	-184.64	-184.64	0.000	32.73112	-104.36233

SilverBack Plan Report

Company: Project:

Silverback Exploration

Eddy County, NM (NAD 83 NME)

Site:

Margaret 203H

Well:

Margaret 203H

Wellbore:

Design:

ОН Plan 0.1 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Margaret 203H

Well @ 3330.00usft (14' KB)

Well @ 3330.00usft (14' KB)

Grid

Minimum Curvature

EDM 5000.17-Aim-DB

nned Survey									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	N/S (usft)	E/W (usft)	V. Sec (usft)	DLeg (°/100usft)	Latitude (°)	Longitude (°)
3,800.00	60.00	90.00	3,534.99	-290.00	-98.04	-98.04	0.000	32.73112	-104.36205
3,861.83	60.00	90.00	3,565.91	-290.00	-44.49	-44.49	0.000	32.73112	-104.36188
Build: 9°/100									
3,900.00	63.43	90.00	3,583.99	-290.00	-10.89	-10.89	9.000	32.73112	-104.36177
3,950.00	67.93	90.00	3,604.57	-290.00	34.67	34.67	9.000	32.73112	-104.36162
4,000.00	72.43	90.00	3,621.51	-290.00	81.69	81.69	9.000	32.73112	-104.36147
4,050.00	76.93	90.00	3,634.72	-290.00	129.91	129.91	9.000	32.73112	-104.36131
4,100.00	81.43	90.00	3,644.10	-290.00	179.01	179.01	9.000	32.73112	-104.36115
4,150.00	85.93	90.00	3,649.59	-290.00	228.69	228.69	9.000	32.73112	-104.36099
4,179.35	88.58	90.00	3,651.00	-290.00	258.00	258.00	9.000	32.73112	-104.36089
LP/Hold: 88.5	8° Inc, 90.00° A	zm							
4,200.00	88.58	90.00	3,651.51	-290.00	278.65	278.65	0.000	32.73112	-104.36082
4,300.00	88.58	90.00	3,654.00	-290.00	378.62	378.62	0.000	32.73112	-104.36050
4,400.00	88.58	90.00	3,656.48	-290.00	478.58	478.58	0.000	32.73112	-104.36017
4,500.00	88.58	90.00	3,658.97	-290.00	578.55	578.55	0.000	32.73112	-104.35985
4,600.00	88.58	90.00	3,661.45	-290.00	678.52	678.52	0.000	32.73112	-104.35952
4,700.00	88.58	90.00	3,663.94	-290.00	778.49	778.49	0.000	32.73112	-104.35920
4,800.00	88.58	90.00	3,666.42	-290.00	878.46	878.46	0.000	32.73112	-104.35887
4,900.00	88.58	90.00	3,668.91	-290.00	978.43	978.43	0.000	32.73112	-104.35855
5,000.00	88.58	90.00	3,671.39	-290.00	1,078.40	1,078.40	0.000	32.73112	-104.35822
5,100.00	88.58	90.00	3,673.88	-290.00	1,178.37	1,178.37	0.000	32.73112	-104.35790
5,200.00	88.58	90.00	3,676.36	-290.00	1,278.34	1,278.34	0.000	32.73112	-104.35757
5,300.00	88.58	90.00	3,678.85	-290.00	1,378.31	1,378.31	0.000	32.73112	-104.35725
5,400.00	88.58	90.00	3,681.33	-290.00	1,478.28	1,478.28	0.000	32.73112	-104.35692
5,500.00	88.58	90.00	3,683.82	-290.00	1,578.25	1,578.25	0.000	32.73112	-104.35660
5,600.00	88.58	90.00	3,686.30	-290.00	1,678.21	1,678.21	0.000	32.73112	-104.35627
5,700.00	88.58	90.00	3,688.79	-290.00	1,778.18	1,778.18	0.000	32.73112	-104.35595

SilverBack Plan Report

Company:

Planned Survey

Silverback Exploration

Project:

Eddy County, NM (NAD 83 NME)

Site:

Margaret 203H

Well:

Margaret 203H

Wellbore:

OH

Design:

Plan 0.1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: **Survey Calculation Method:**

Database:

Well Margaret 203H

Well @ 3330.00usft (14' KB)

Well @ 3330.00usft (14' KB)

Grid

Minimum Curvature

EDM 5000.17-Aim-DB

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	N/S (usft)	E/W (usft)	V. Sec (usft)	DLeg (°/100usft)	Latitude (°)	Longitude (°)	
5,800.00	88.58	90.00	3,691.27	-290.00	1,878.15	1,878.15	0.000	32.73112	-104.35562	
5,900.00	88.58	90.00	3,693.76	-290.00	1,978.12	1,978.12	0.000	32.73112	-104.35530	
6,000.00	88.58	90.00	3,696.24	-290.00	2,078.09	2,078.09	0.000	32.73112	-104.35497	
6,100.00	88.58	90.00	3,698.73	-290.00	2,178.06	2,178.06	0.000	32.73112	-104.35465	
6,200.00	88.58	90.00	3,701.21	-290.00	2,278.03	2,278.03	0.000	32.73112	-104.35432	
6,300.00	88.58	90.00	3,703.70	-290.00	2,378.00	2,378.00	0.000	32.73112	-104.35400	
6,400.00	88.58	90.00	3,706.18	-290.00	2,477.97	2,477.97	0.000	32.73112	-104.35367	
6,500.00	88.58	90.00	3,708.67	-290.00	2,577.94	2,577.94	0.000	32.73112	-104.35335	
6,600.00	88.58	90.00	3,711.15	-290.00	2,677.91	2,677.91	0.000	32.73112	-104.35302	
6,700.00	88.58	90.00	3,713.64	-290.00	2,777.87	2,777.87	0.000	32.73112	-104.35270	
6,800.00	88.58	90.00	3,716.12	-290.00	2,877.84	2,877.84	0.000	32.73112	-104.35237	
6,900.00	88.58	90.00	3,718.61	-290.00	2,977.81	2,977.81	0.000	32.73112	-104.35205	
7,000.00	88.58	90.00	3,721.09	-290.00	3,077.78	3,077.78	0.000	32.73112	-104.35172	
7,100.00	88.58	90.00	3,723.58	-290.00	3,177.75	3,177.75	0.000	32.73112	-104.35140	
7,200.00	88.58	90.00	3,726.06	-290.00	3,277.72	3,277.72	0.000	32.73112	-104.35107	
7,300.00	88.58	90.00	3,728.55	-290.00	3,377.69	3,377.69	0.000	32.73112	-104.35075	
7,400.00	88.58	90.00	3,731.03	-290.00	3,477.66	3,477.66	0.000	32.73112	-104.35042	
7,500.00	88.58	90.00	3,733.52	-290.00	3,577.63	3,577.63	0.000	32.73112	-104.35010	
7,600.00	88.58	90.00	3,736.00	-290.00	3,677.60	3,677.60	0.000	32.73112	-104.34977	
7,700.00	88.58	90.00	3,738.49	-290.00	3,777.57	3,777.57	0.000	32.73112	-104.34945	
7,800.00	88.58	90.00	3,740.97	-290.00	3,877.54	3,877.54	0.000	32.73112	-104.34912	
7,900.00	88.58	90.00	3,743.46	-290.00	3,977.50	3,977.50	0.000	32.73112	-104.34880	
8,000.00	88.58	90.00	3,745.94	-290.00	4,077.47	4,077.47	0.000	32.73112	-104.34847	

4,177.44

4,277.41

4,377.38

4,477.35

4,177.44

4,277.41

4,377.38

4,477.35

0.000

0.000

0.000

0.000

32.73112

32.73112

32.73112

32.73112

8,100.00

8,200.00

8,300.00

8,400.00

88.58

88.58

88.58

88.58

90.00

90.00

90.00

90.00

3,748.43

3,750.91

3,753.40

3,755.88

-290.00

-290.00

-290.00

-290.00

-104.34815

-104.34782

-104.34750

-104.34717

SilverBack Plan Report

Company:

Silverback Exploration

Project:

Eddy County, NM (NAD 83 NME)

Site:

Margaret 203H

Well:

Margaret 203H

Wellbore:

ОН

Design:

Plan 0.1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Margaret 203H

Well @ 3330.00usft (14' KB)

Well @ 3330.00usft (14' KB)

Grid

Minimum Curvature

EDM 5000.17-Aim-DB

Planned	Survey
---------	--------

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	N/S (usft)	E/W (usft)	V. Sec (usft)	DLeg (°/100usft)	Latitude (°)	Longitude (°)
8,500.00	88.58	90.00	3,758.37	-290.00	4,577.32	4,577.32	0.000	32.73112	-104.34685
8,600.00	88.58	90.00	3,760.85	-290.00	4,677.29	4,677.29	0.000	32.73112	-104.34652
8,700.00	88.58	90.00	3,763.34	-290.00	4,777.26	4,777.26	0.000	32.73112	-104.34620
8,800.00	88.58	90.00	3,765.82	-290.00	4,877.23	4,877.23	0.000	32.73112	-104.34587
8,900.00	88.58	90.00	3,768.30	-290.00	4,977.20	4,977.20	0.000	32.73112	-104.34554
9,000.00	88.58	90.00	3,770.79	-290.00	5,077.16	5,077.16	0.000	32.73112	-104.34522
9,100.00	88.58	90.00	3,773.27	-290.00	5,177.13	5,177.13	0.000	32.73112	-104.34489
9,200.00	88.58	90.00	3,775.76	-290.00	5,277.10	5,277.10	0.000	32.73112	-104.34457
9,249.91	88.58	90.00	3,777.00	-290.00	5,327.00	5,327.00	0.000	32.73112	-104.34441
PBHL									

PI	an	Δn	no	tati	ions

Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
500.00	500.00	0.00	0.00	Build: 3°/100
1,031.04	1,024.23	-30.35	-66.78	Hold: 15.93° Inc, 245.56° Azm
2,832.17	2,756.17	-234.86	-516.88	KOP: 9°/100' @ 2832.17' MD
3,000.00	2,921.30	-253.01	-537.08	Maximum BackBuild
3,661.83	3,465.91	-290.00	-217.70	Hold: 60.00° Inc, 90.00° Azm
3,861.83	3,565.91	-290.00	-44.49	Build: 9°/100
4,179.35	3,651.00	-290.00	258.00	LP/Hold: 88.58° Inc, 90.00° Azm
9,249.91	3,777.00	-290.00	5,327.00	PBHL