<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 341102

	APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD	A ZONE
Operator Name and Address		2. OGRID Number

Operator Name and Address	2. OGRID Number			
MATADOR PRODUCTION COMPAN'	228937			
One Lincoln Centre	3. API Number			
Dallas, TX 75240	Dallas, TX 75240			
4. Property Code	5. Property Name	6. Well No.		
334167	BARBARA 29 17S 37E	001		

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
G	29	17S	37E	G	2160	N	1915	E	Lea

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
G	29	17S	37E	G	1902	N	1874	E	Lea

9. Pool Information

MIDWAY;STRAWN, SOUTH	96346

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation	
New Well	OIL		Private	3764	
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date	
N	11218	Atoka		10/5/2023	
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water	

■ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

			ropocou ouc;	g arra e errierit i regraiir		
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	14.75	9.625	36	2132	1700	0
Prod	8.75	5.5	17	11218	1810	0

Casing/Cement Program: Additional Comments

Optional DV/Packer placed at least 50' outside surface shoe

22. Proposed Blowout Prevention Program

Туре	Working Pressure Test Pre		Manufacturer
Annular	5000	3000	Cameron
Double Ram	10000	5000	Cameron
Pipe	10000	5000	Cameron

knowledge and b	elief.	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	N DIVISION
Signature:					
Printed Name:	Electronically filed by Brett A Jeni	nings	Approved By:	Paul F Kautz	
Title:	Title: Regulatory Analyst			Geologist	
Email Address:	Email Address: brett.jennings@matadorresources.com			6/22/2023	Expiration Date: 6/22/2025
Date:	Date: 6/21/2023 Phone: 972-629-2160			oval Attached	

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 86240 Phone: (675) 393-6161 Fax: (575) 393-0720

State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION

DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-8720

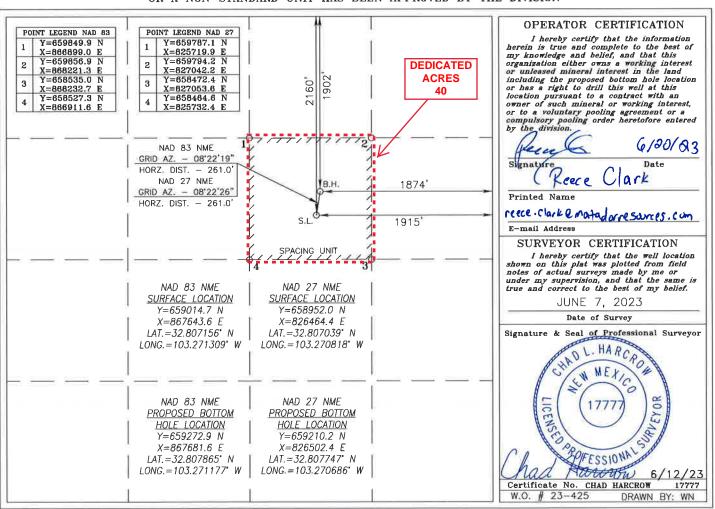
1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

□ AMENDED REPORT

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3480 Fax: (505) 478-3462


10EC. (000) 410 0400 1EE. (000) 410 0400	WELL LOCATION AND	ACREAGE DEDICATION	ON PLAT		
API Number	Pool Code		Pool Name		
	96346	Midway; St	rawn, Sou	utu	
Property Code	Proj	perty Name	1	Well Num	aber
	BARBARA	1			
OGRID No.	Орег	rator Name		Elevation	n
228937	MATADOR PROI	DUCTION COMPANY		3764	4.6'
	Surfa	ce Location			
		11 27 12 /0 11 11	T 1 0 0	72 4 /WY 4 31	-

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
G	29	17-S	37-E		2160	NORTH	1915	EAST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
G	29	17-S	37-E		1902	NORTH	1874	EAST	LEA
Dedicated Acres Joint or Infill Consolidation Code		Code Or	der No.		•	•			
40	1								

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 341102

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MATADOR PRODUCTION COMPANY [228937]	30-025-51640
One Lincoln Centre	Well:
Dallas, TX 75240	BARBARA 29 17S 37E #001

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud
pkautz	Cement is required to circulate on both surface and production strings of casing

Addendum to Natural Gas Management Plan for Matador's

Barbara 29-17S-37E #1

VI. Separation Equipment

Flow from the well will be routed via a flowline to a 48"x20" three phase heater treater dedicated to the well. The heater treater is sized with input from BRE ProMax and API 12J. Expected production from the Monika 14-17S-37E #1 well is approximately 600 mcfd, 300 bopd, and 50 bwpd. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the heater treater to sales. The gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treater, hydrocarbon liquid and water will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas.

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of the heater treater as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events.

VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Matador	Production C	Company	_OGRID: 228	8937		Date:_	6-7	-23
II. Type: ⊠Original □	Amendment of	due to □ 19.15.27.9.I	D(6)(a) NMAC	□ 19.15.27.9.D(0	6)(b) N	МАС □ С	ther.	
If Other, please describ	e:							
III. Well(s): Provide the recompleted from a single	ne following in gle well pad on	formation for each nor connected to a centr	ew or recomple al delivery poin	eted well or set of ont.	wells pr	oposed to	be dril	led or proposed to be
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D				
Barbara 29-17S-37E #1	TBD	UL-G Sec 29 T17S R37F	E 2,060' FNL 1,914' FEL	300	600		50	
V. Anticipated Schedu proposed to be recomposed Well Name	lle: Provide th	e following informati	on for each nevel nected to a center TD Reached Date	w or recompleted varial delivery point. Completio	n	-	s propo Flow	7.9(D)(1) NMAC] sed to be drilled or First Production Date
Tim Parker 18-16S-37E #1	TBD	10/15/2023	1/1/2023	12/1/2023		12/15/2023		12/15/2023
VI. Separation Equips VII. Operational Practices Subsection A through I VIII. Best Managemeduring active and plans	ctices: Atta	ich a complete descriß NMAC. Attach a complete	ption of the act	ions Operator will	take to	comply w	vith the	requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		EFFECTIV	E APRIL 1, 2022		
Beginning April 1, 20 reporting area must c			rith its statewide natural gas o	apture requirement for the	applicable
○ Operator certifies capture requirement to a provide the capture of the			ion because Operator is in co	npliance with its statewide	e natural gas
IX. Anticipated Nat	ural Gas Producti	on:			
We	11	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volum Gas for the First	
X. Natural Gas Gat	hering System (NC	GGS):			
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Da of System Segmen	
	A				
production operation the segment or portion	s to the existing or point of the natural gas	planned interconnect of t gathering system(s) to	location of the well(s), the are the natural gas gathering syst which the well(s) will be con	em(s), and the maximum dinected.	laily capacity of
		the date of first produc		ather 10070 of the anticipa	ated fluturar gas
			t its existing well(s) connect meet anticipated increases in		
☐ Attach Operator's	plan to manage pro	oduction in response to t	the increased line pressure.		
Section 2 as provided	d in Paragraph (2) o		nant to Section 71-2-8 NMS 27.9 NMAC, and attaches a ion.		

Section 3 - Certifications

Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

⊠Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27:9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Ryan-Hernandez
Title: Senior Facilities Engineer
E-mail Address: rhernandez@matadorresources.com
Date: 6-7-23
Phone: (972) 371-5427
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Matador Production Company

Twin Lakes
Barbara State #1
Barbara State #1

Well Bore

Plan: State Plan #2

Standard Planning Report

13 June, 2023

Database: EDM 5000.14 Single User Db Company: Matador Production Company

Project: Twin Lakes Barbara State #1 Site: Well: Barbara State #1 Wellbore: Well Bore Design: State Plan #2

Local Co-ordinate Reference: **TVD Reference:** MD Reference:

North Reference: **Survey Calculation Method:** Well Barbara State #1 KB @ 3793.6usft

KB @ 3793.6usft Grid

Minimum Curvature

Project Twin Lakes

Map Zone:

US State Plane 1927 (Exact solution) Map System: Geo Datum:

NAD 1927 (NADCON CONUS) New Mexico East 3001

System Datum: Mean Sea Level

Using geodetic scale factor

60.55

47.699.70667132

Barbara State #1 Site

Site Position: Northing: 659,051.60 usft Latitude: 32° 48' 26.326 N From: Мар Easting: 826,464.80 usft Longitude: 103° 16' 14.928 W **Position Uncertainty:** 0.0 usft **Slot Radius:** 13-3/16 " Grid Convergence: 0.58°

Well Barbara State #1

Well Position +N/-S -99.6 usft Northing: 658,952.00 usft Latitude: 32° 48' 25.340 N +F/-W -0.4 usft Easting: 826,464.40 usft Longitude: 103° 16' 14.945 W

Position Uncertainty 0.0 usft Wellhead Elevation: **Ground Level:** 3,765.1 usft

Wellbore Well Bore Declination Field Strength Magnetics **Model Name** Sample Date **Dip Angle** (°) (°) (nT)

6.21

Design State Plan #2

Audit Notes:

Version: Phase: **PROTOTYPE** Tie On Depth: 0.0

5/9/2023

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 8.37

Plan Survey Tool Program Date 6/13/2023

Depth From Depth To

(usft) (usft)

Survey (Wellbore) **Tool Name** Remarks

0.0 11,218.5 State Plan #2 (Well Bore) MWD 1

IGRF2015

OWSG MWD - Standard

Plan Sections Vertical Build Measured **Dogleg** Turn Depth Inclination **Azimuth** Depth +N/-S +E/-W Rate Rate Rate **TFO** (°/100usft) (usft) (usft) (°/100usft) (°/100usft) (usft) (usft) (°) (°) (°) **Target** 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 2.300.0 0.00 0.00 2.300.0 0.0 0.0 0.00 0.00 0.00 0.00 2,500.0 2.00 8.37 2,500.0 0.5 1.00 1.00 0.00 8.37 3.5 37.5 0.00 9.779.2 2.00 8.37 9.774.7 254.8 0.00 0.00 0.00 0.00 0.00 9.974.7 258 2 38.0 1 00 -1 00 0.00 9,979.2 180 00 0.00 38.0 10,218.5 0.00 10,214.0 258.2 0.00 0.00 0.00 0.00 VP - Barbara State 11,218.5 0.00 0.00 11,214.0 258.2 38.0 0.00 0.00 0.00 0.00 BHL - Barbara State

Database: EDM 5000.14 Single User Db **Company:** Matador Production Company

Project: Twin Lakes
Site: Barbara State #1
Well: Barbara State #1
Wellbore: Well Bore
Design: State Plan #2

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,082.0	0.00	0.00	2,082.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	1.00	8.37	2,400.0	0.9	0.1	0.9	1.00	1.00	0.00
2,500.0	2.00	8.37	2,500.0	3.5	0.5	3.5	1.00	1.00	0.00
2,600.0	2.00	8.37	2,599.9	6.9	1.0	7.0	0.00	0.00	0.00
2,700.0	2.00	8.37	2,699.8	10.4	1.5	10.5	0.00	0.00	0.00
2,800.0	2.00	8.37	2,799.8	13.8	2.0	14.0	0.00	0.00	0.00
2,900.0	2.00	8.37	2,899.7	17.3	2.5	17.5	0.00	0.00	0.00
3,000.0	2.00	8.37	2,999.7	20.7	3.0	20.9	0.00	0.00	0.00
3,100.0	2.00	8.37	3,099.6	24.2	3.6	24.4	0.00	0.00	0.00
3,200.0	2.00	8.37	3,199.5	27.6	4.1	27.9	0.00	0.00	0.00
3,205.5	2.00	8.37	3,205.0	27.8	4.1	28.1	0.00	0.00	0.00
,	op Artesia gro		-,						
3,300.0	2.00	8.37	3,299.5	31.1	4.6	31.4	0.00	0.00	0.00
3,400.0	2.00	8.37	3,399.4	34.5	5.1	34.9	0.00	0.00	0.00
3,500.0	2.00	8.37	3,499.4	38.0	5.6	38.4	0.00	0.00	0.00
3,600.0	2.00	8.37	3,599.3	41.4	6.1	41.9	0.00	0.00	0.00
3,700.0	2.00	8.37	3,699.2	44.9	6.6	45.4	0.00	0.00	0.00
3,800.0	2.00	8.37	3,799.2	48.3	7.1	48.9	0.00	0.00	0.00
3,900.0	2.00	8.37	3,899.1	51.8	7.6	52.3	0.00	0.00	0.00
4,000.0	2.00	8.37	3,999.0	55.2	8.1	55.8	0.00	0.00	0.00
4,100.0	2.00	8.37	4,099.0	58.7	8.6	59.3	0.00	0.00	0.00
4,200.0	2.00	8.37	4,198.9	62.1	9.1	62.8	0.00	0.00	0.00
4,300.0	2.00	8.37	4,298.9	65.6	9.7	66.3	0.00	0.00	0.00
4,400.0	2.00	8.37	4,398.8	69.1	10.2	69.8	0.00	0.00	0.00
4,500.0	2.00	8.37	4,498.7	72.5	10.7	73.3	0.00	0.00	0.00
4,600.0	2.00	8.37	4,598.7	76.0	11.2	76.8	0.00	0.00	0.00
4,700.0	2.00	8.37	4,698.6	79.4	11.7	80.3	0.00	0.00	0.00

Database:EDM 5000.14 Single User DbCompany:Matador Production Company

Project: Twin Lakes
Site: Barbara State #1
Well: Barbara State #1
Wellbore: Well Bore
Design: State Plan #2

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Desigr	n:	State Plan #2								
Plann	ed Survey									
	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	4,900.0	2.00	8.37	4,898.5	86.3	12.7	87.2	0.00	0.00	0.00
	5,000.0	2.00	8.37	4,998.4	89.8	13.2	90.7	0.00	0.00	0.00
	5,100.0	2.00	8.37	5,098.4	93.2	13.7	94.2	0.00	0.00	0.00
	5,200.0	2.00	8.37	5,198.3	96.7	14.2	97.7	0.00	0.00	0.00
	5,300.0	2.00	8.37	5,298.3	100.1	14.7	101.2	0.00	0.00	0.00
	5,400.0	2.00	8.37	5,398.2	103.6	15.2	104.7	0.00	0.00	0.00
	5,417.8	2.00	8.37	5,416.0	104.2	15.3	105.3	0.00	0.00	0.00
	San Andres									
	5,500.0	2.00	8.37	5,498.1	107.0	15.8	108.2	0.00	0.00	0.00
	5,600.0	2.00	8.37	5,598.1	110.5	16.3	111.7	0.00	0.00	0.00
	5,700.0	2.00	8.37	5,698.0	113.9	16.8	115.2	0.00	0.00	0.00
	5,800.0	2.00	8.37	5,797.9	117.4	17.3	118.7	0.00	0.00	0.00
	5,900.0	2.00	8.37	5,897.9	120.8	17.8	122.1	0.00	0.00	0.00
	6,000.0	2.00	8.37	5,997.8	124.3	18.3	125.6	0.00	0.00	0.00
	6,100.0	2.00	8.37	6,097.8	127.8	18.8	129.1	0.00	0.00	0.00
	6,200.0	2.00	8.37	6,197.7	131.2	19.3	132.6	0.00	0.00	0.00
	6,300.0	2.00	8.37	6,297.6	134.7	19.8	136.1	0.00	0.00	0.00
	6,400.0	2.00	8.37	6,397.6	138.1	20.3	139.6	0.00	0.00	0.00
	6,500.0	2.00	8.37	6,497.5	141.6	20.8	143.1	0.00	0.00	0.00
	6,600.0	2.00	8.37	6,597.5	145.0	21.3	146.6	0.00	0.00	0.00
	6,700.0	2.00	8.37	6,697.4	148.5	21.9	150.1	0.00	0.00	0.00
	6,800.0	2.00	8.37	6,797.3	151.9	22.4	153.6	0.00	0.00	0.00
	6,900.0	2.00	8.37	6,897.3	155.4	22.9	157.0	0.00	0.00	0.00
	7,000.0	2.00	8.37	6,997.2	158.8	23.4	160.5	0.00	0.00	0.00
	7,100.0	2.00	8.37	7,097.2	162.3	23.9	164.0	0.00	0.00	0.00
	7,200.0	2.00	8.37	7,197.1	165.7	24.4	167.5	0.00	0.00	0.00
	7,300.0	2.00	8.37	7,297.0	169.2	24.9	171.0	0.00	0.00	0.00
	7,400.0	2.00	8.37	7,397.0	172.6	25.4	174.5	0.00	0.00	0.00
	7,500.0	2.00	8.37	7,496.9	176.1	25.9	178.0	0.00	0.00	0.00
	7,600.0	2.00	8.37	7,596.9	179.5	26.4	181.5	0.00	0.00	0.00
	7,640.2	2.00	8.37	7,637.0	180.9	26.6	182.9	0.00	0.00	0.00
	7,700.0 7,800.0 7,900.0 8,000.0	2.00 2.00 2.00 2.00 2.00	8.37 8.37 8.37 8.37	7,696.8 7,796.7 7,896.7 7,996.6	183.0 186.4 189.9 193.4	26.9 27.4 27.9 28.5	185.0 188.5 191.9 195.4	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
	8,100.0	2.00	8.37	8,096.5	196.8	29.0	198.9	0.00	0.00	0.00
	8,200.0	2.00	8.37	8,196.5	200.3	29.5	202.4	0.00	0.00	0.00
	8,300.0	2.00	8.37	8,296.4	203.7	30.0	205.9	0.00	0.00	0.00
	8,400.0	2.00	8.37	8,396.4	207.2	30.5	209.4	0.00	0.00	0.00
	8,400.6	2.00	8.37	8,397.0	207.2	30.5	209.4	0.00	0.00	0.00
	Second Bo	ne Spring								
	8,500.0	2.00	8.37	8,496.3	210.6	31.0	212.9	0.00	0.00	0.00
	8,600.0	2.00	8.37	8,596.2	214.1	31.5	216.4	0.00	0.00	0.00
	8,700.0	2.00	8.37	8,696.2	217.5	32.0	219.9	0.00	0.00	0.00
	8,800.0	2.00	8.37	8,796.1	221.0	32.5	223.4	0.00	0.00	0.00
	8,900.0	2.00	8.37	8,896.1	224.4	33.0	226.8	0.00	0.00	0.00
	9,000.0	2.00	8.37	8,996.0	227.9	33.5	230.3	0.00	0.00	0.00
	9,100.0	2.00	8.37	9,095.9	231.3	34.0	233.8	0.00	0.00	0.00
	9,200.0	2.00	8.37	9,195.9	234.8	34.6	237.3	0.00	0.00	0.00
	9,211.1	2.00	8.37	9,207.0	235.2	34.6	237.7	0.00	0.00	0.00
	Third Bone			0.00= 0	000.0		6.10.5	2.25	2.25	0.00
	9,300.0	2.00	8.37	9,295.8	238.2	35.1	240.8	0.00	0.00	0.00

Database:EDM 5000.14 Single User DbCompany:Matador Production CompanyProject:Twin Lakes

Site: Barbara State #1
Well: Barbara State #1
Wellbore: Well Bore
Design: State Plan #2

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,400.0 9,500.0 9,549.3	2.00 2.00 2.00	8.37 8.37 8.37	9,395.8 9,495.7 9,545.0	241.7 245.1 246.8	35.6 36.1 36.3	244.3 247.8 249.5	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Third Bon	e Spring								
9,600.0 9,700.0	2.00 2.00	8.37 8.37	9,595.6 9,695.6	248.6 252.1	36.6 37.1	251.3 254.8	0.00 0.00	0.00 0.00	0.00 0.00
9.759.5	2.00	8.37	9.755.0	254.1	37.4	256.8	0.00	0.00	0.00
Wolfcamp	Α		,						
9,779.2 9,800.0 9,900.0 9,979.2	2.00 1.79 0.79 0.00	8.37 8.37 8.37 0.00	9,774.7 9,795.5 9,895.5 9,974.7	254.8 255.5 257.7 258.2	37.5 37.6 37.9 38.0	257.5 258.2 260.5 261.0	0.00 1.00 1.00 1.00	0.00 -1.00 -1.00 -1.00	0.00 0.00 0.00 0.00
10,000.0 10,100.0 10,200.0 10,218.5 10,300.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	9,995.5 10,095.5 10,195.5 10,214.0 10,295.5	258.2 258.2 258.2 258.2 258.2	38.0 38.0 38.0 38.0 38.0	261.0 261.0 261.0 261.0 261.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,400.0 10,500.0 10,529.5	0.00 0.00 0.00	0.00 0.00 0.00	10,395.5 10,495.5 10,525.0	258.2 258.2 258.2	38.0 38.0 38.0	261.0 261.0 261.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Penn Shal	е								
10,600.0 10,674.5	0.00 0.00	0.00 0.00	10,595.5 10,670.0	258.2 258.2	38.0 38.0	261.0 261.0	0.00 0.00	0.00 0.00	0.00 0.00
Strawn									
10,700.0 10,800.0 10,900.0 10,918.5	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	10,695.5 10,795.5 10,895.5 10,914.0	258.2 258.2 258.2 258.2	38.0 38.0 38.0 38.0	261.0 261.0 261.0 261.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Atoka									
11,000.0	0.00	0.00	10,995.5	258.2	38.0	261.0	0.00	0.00	0.00
11,100.0 11,200.0 11,218.5	0.00 0.00 0.00	0.00 0.00 0.00	11,095.5 11,195.5 11,214.0	258.2 258.2 258.2	38.0 38.0 38.0	261.0 261.0 261.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

Design Targets									
Target Name - hit/miss target D - Shape	ip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VP - Barbara State #1 - plan hits target cen - Point	0.00 iter	0.00	10,214.0	258.2	38.0	659,210.20	826,502.40	32° 48' 27.891 N	103° 16' 14.469 W
BHL - Barbara State # - plan hits target cen - Point	0.00 iter	0.00	11,214.0	258.2	38.0	659,210.20	826,502.40	32° 48' 27.891 N	103° 16' 14.469 W

Database:EDM 5000.14 Single User DbCompany:Matador Production CompanyProject:Twin Lakes

Site:Barbara State #1Well:Barbara State #1Wellbore:Well BoreDesign:State Plan #2

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Formations							
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)	
	2,082.0	2,082.0	Rustler				
	3,205.5	3,205.0	Base salt/Top Artesia group				
	5,417.8	5,416.0	San Andres				
	7,640.2	7,637.0	First Bone Spring				
	8,400.6	8,397.0	Second Bone Spring				
	9,211.1	9,207.0	Third Bone Carb				
	9,549.3	9,545.0	Third Bone Spring				
	9,759.5	9,755.0	Wolfcamp A				
	10,529.5	10,525.0	Penn Shale				
	10,674.5	10,670.0	Strawn				
	10,918.5	10,914.0	Atoka				