<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

334187

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 343426

121H

AT LICATION FOR ENGINE TO DIVILLE, RE-LIVER, DELL EN, TEOGRACIA, OR ADD	AZONE
1. Operator Name and Address	2. OGRID Number
AMEREDEV OPERATING, LLC	372224
2901 Via Fortuna	3. API Number

ADDITION FOR DEDMIT TO DOLL DE ENTED DEEDEN DILICRACK OR ADDIT ZONE

30-025-51655 Austin, TX 78746 4. Property Code 5. Property Name 6. Well No.

NELSON BRIDGE 26 36 26 STATE COM

7 Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
M	23	26S	36E	M	230	S	1329	W	Lea

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
E	35	. 26S	36E	4	50	S	331	W	Lea

9. Pool Information

98234 WC-025 G-09 S263619C;WOLFCAMP

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	2910
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	19851	Wolfcamp		9/15/2024
Depth to Ground water		Distance from nearest fresh wat	er well	Distance to nearest surface water

■ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	68	1666	2052	0
Int1	9.875	7.625	29.7	10672	3172	0
Prod	6.75	5.5	23	19851	1545	0

Casing/Cement Program: Additional Comments

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Double Ram	5000	5000	TBD

knowledge and be	elief.	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	ON DIVISION
Printed Name:	Electronically filed by Christie Ha	nna	Approved By:	Paul F Kautz	
Title:	Regulatory		Title:	Geologist	
Email Address:	channa@ameredev.com		Approved Date:	6/27/2023	Expiration Date: 6/27/2025
Date:	6/23/2023	Phone: 737-300-4723	Conditions of Appr	oval Attached	

<u>District I</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720 District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170 Phone: (303) 334-3176 Fax. (303) 334-3176 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

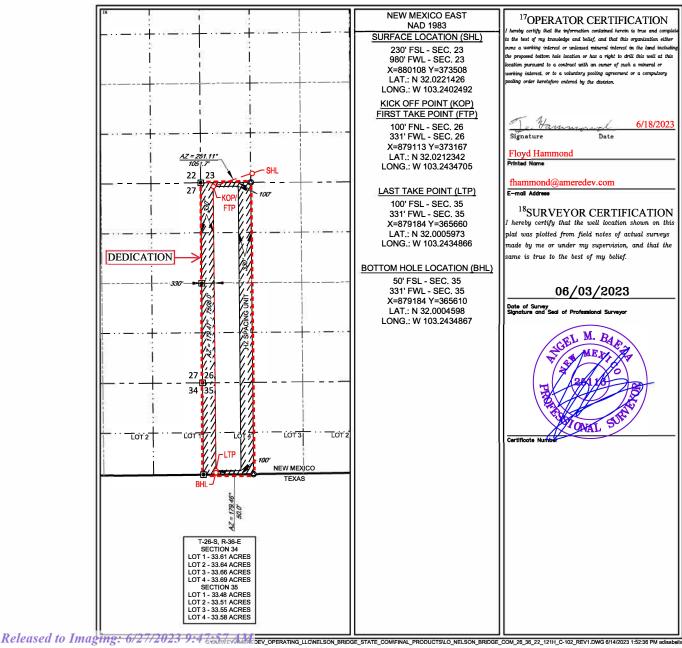
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate **District Office**

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

20 025 Number	30-025-51655		³ Pool Name		
30-025-51655		98234	WC-025 G-09 S263619C	WOLFCAMP Swell Number 121H Selevation 2910'	
⁴ Property Code		5P1	roperty Name	Well Number	
334187		NELSON BRIDGE	26 36 26 STATE COM	121H	
OGRID No.		⁸ O _l	perator Name	⁹ Elevation	
372224		AMEREDEV	OPERATING, LLC.	2910'	
	10	10 -			


¹⁰Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
l M	23	26-S	36-E		230'	SOUTH	1329'	WEST	LEA
			1					8	8

¹¹Bottom Hole Location If Different From Surface

UL or lot no.		Township	Range	Lot Idn					
4	35	26-S	36–E	_	50'	SOUTH	331'	WEST	LEA
¹² Dedicated Acres	¹³ Joint or I	nfill 14Co	nsolidation Co	de ¹⁵ Ord	er No.				
233.58			C						

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 343426

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
AMEREDEV OPERATING, LLC [372224]	30-025-51655
2901 Via Fortuna	Well:
Austin, TX 78746	NELSON BRIDGE 26 36 26 STATE COM #121H

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

Wellbore Schematic

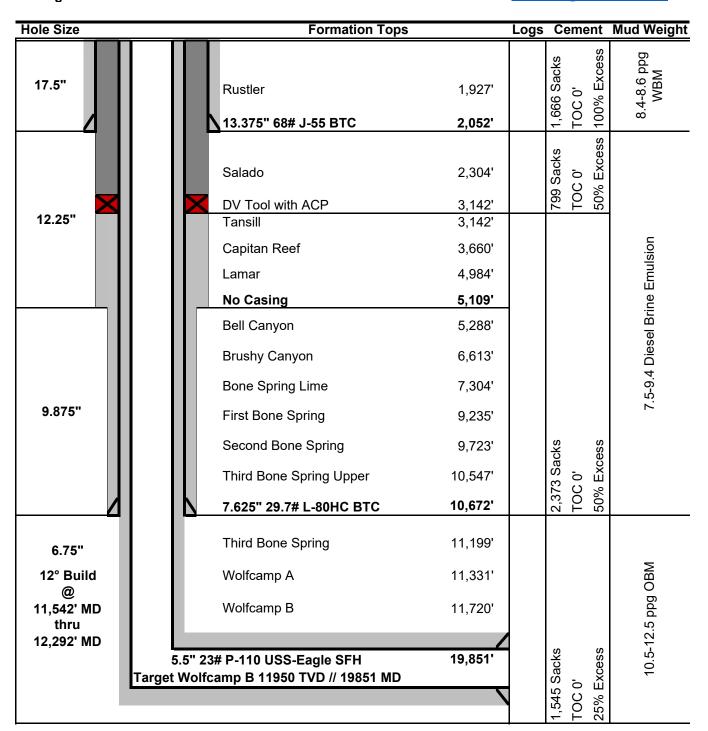
Well: Nelson Bridge 26 36 26 State Com 121H
SHL: Sec. 23 26S-36E 230' FSL & 1329' FWL
BHL: Sec. 35 26S-36E 50' FSL & 330' FWL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 7-1/16" 15M x 13-3/8" 10M


Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE

GL: 2,910'
Field: Delaware
Objective: Wolfcamp B
TVD: 11,950'
MD: 19,851'

Rig: TBD KB 27'

E-Mail: Wellsite2@ameredev.com

Ameredev Operating

Lea County, NM (N83-NME)
HOGAN/NELSON BRIDGE PROJECT
NELSON BRIDGE 26 36 26 STATE COM 121H

OWB

Plan: PWP

Standard Planning Report - Geographic

15 June, 2023

TVD Reference:

MD Reference:

North Reference:

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating
Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT
Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: OWB Design: PWP Local Co-ordinate Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Minimum Curvature

Project Lea County, NM (N83-NME)

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site HOGAN/NELSON BRIDGE PROJECT

 Site Position:
 Northing:
 373,507.82 usft
 Latitude:
 32.0221428

 From:
 Lat/Long
 Easting:
 880,088.06 usft
 Longitude:
 -103.2403140

 Position Uncertainty:
 0.0 usft
 Slot Radius:
 13-3/16 "

Well NELSON BRIDGE ST COM 26 36 26 121H

 Well Position
 +N/-S
 0.0 usft
 Northing:
 373,507.95 usft
 Latitude:
 32.0221426

 +E/-W
 0.0 usft
 Easting:
 880,108.14 usft
 Longitude:
 -103.2402492

Position Uncertainty3.0 usftWellhead Elevation:usflGround Level:2,910.0 usfl

Grid Convergence: 0.58 °

Wellbore OWB

 Magnetics
 Model Name
 Sample Date (°)
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2020
 6/12/2023
 6.14
 59.70
 47,203.02987410

Design PWP

Audit Notes:

Version:Phase:PROTOTYPETie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S (usft)
 +E/-W (usft)
 Direction (°)

 0.0
 0.0
 0.0
 179.46

Plan Survey Tool Program Date 6/15/2023

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 19,850.6 PWP (OWB) MWD

OWSG MWD - Standard

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating
Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT
Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: OWB Design: PWP **Local Co-ordinate Reference:**

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,400.0	8.00	277.83	1,398.7	3.8	-27.6	2.00	2.00	0.00	277.83	
8,252.3	8.00	277.83	8,184.3	133.7	-972.4	0.00	0.00	0.00	0.00	
8,652.3	0.00	0.00	8,583.0	137.5	-1,000.0	2.00	-2.00	0.00	180.00	
11,541.8	0.00	0.00	11,472.5	137.5	-1,000.0	0.00	0.00	0.00	0.00	
12,291.8	90.00	179.46	11,950.0	-339.9	-995.5	12.00	12.00	23.93	179.46	
19,850.6	90.00	179.46	11,950.0	-7,898.4	-924.5	0.00	0.00	0.00	0.00	BHL (NBSC 121F

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: **OWB**

Design: PWP Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
0.0 100.0 200.0 300.0 400.0 500.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.0 100.0 200.0 300.0 400.0 500.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	373,507.95 373,507.95 373,507.95 373,507.95 373,507.95 373,507.95	880,108.14 880,108.14 880,108.14 880,108.14 880,108.14 880,108.14	32.0221426 32.0221426 32.0221426 32.0221426 32.0221426 32.0221426	-103.2402492 -103.2402492 -103.2402492 -103.2402492 -103.2402492 -103.2402492
600.0 700.0 800.0 900.0 1,000.0	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	600.0 700.0 800.0 900.0 1,000.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	373,507.95 373,507.95 373,507.95 373,507.95 373,507.95	880,108.14 880,108.14 880,108.14 880,108.14 880,108.14	32.0221426 32.0221426 32.0221426 32.0221426 32.0221426	-103.2402492 -103.2402492 -103.2402492 -103.2402492 -103.2402492
Start B	uild 2.00								
1,100.0 1,200.0 1,300.0 1,400.0	4.00 6.00 8.00	277.83 277.83 277.83 277.83	1,100.0 1,199.8 1,299.5 1,398.7	0.2 1.0 2.1 3.8	-1.7 -6.9 -15.5 -27.6	373,508.18 373,508.90 373,510.08 373,511.74	880,106.42 880,101.23 880,092.60 880,080.52	32.0221433 32.0221454 32.0221489 32.0221538	-103.2402548 -103.2402715 -103.2402993 -103.2403382
	852.3 hold at		1.497.7	E 7	44.4	272 542 64	000 066 74	32.0221594	102 2402026
1,500.0 1,600.0 1,700.0 1,800.0 1,900.0	8.00 8.00 8.00 8.00	277.83 277.83 277.83 277.83 277.83 277.83	1,497.7 1,596.8 1,695.8 1,794.8 1,893.8 1,927.0	5.7 7.6 9.5 11.4 13.3 13.9	-41.4 -55.2 -69.0 -82.8 -96.6 -101.2	373,513.64 373,515.54 373,517.43 373,519.33 373,521.22 373,521.86	880,066.74 880,052.95 880,039.16 880,025.37 880,011.59 880,006.97	32.0221594 32.0221650 32.0221706 32.0221762 32.0221818 32.0221837	-103.2403826 -103.2404270 -103.2404714 -103.2405158 -103.2405603 -103.2405751
Rustle									
2,000.0 2,100.0 2,200.0 2,300.0 2,314.2	8.00 8.00 8.00	277.83 277.83 277.83 277.83 277.83	1,992.9 2,091.9 2,190.9 2,289.9 2,304.0	15.2 17.1 19.0 20.9 21.1	-110.3 -124.1 -137.9 -151.7 -153.7	373,523.12 373,525.01 373,526.91 373,528.81 373,529.07	879,997.80 879,984.01 879,970.22 879,956.44 879,954.48	32.0221874 32.0221930 32.0221986 32.0222042 32.0222050	-103.2406047 -103.2406491 -103.2406935 -103.2407379 -103.2407442
Salado									
2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 3,000.0 3,100.0 3,160.4	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	277.83 277.83 277.83 277.83 277.83 277.83 277.83 277.83 277.83	2,389.0 2,488.0 2,587.0 2,686.1 2,785.1 2,884.1 2,983.1 3,082.2 3,142.0	22.8 24.7 26.5 28.4 30.3 32.2 34.1 36.0 37.2	-165.5 -179.3 -193.1 -206.9 -220.6 -234.4 -248.2 -262.0 -270.3	373,530.70 373,532.60 373,534.49 373,536.39 373,538.28 373,540.18 373,542.08 373,543.97 373,545.12	879,942.65 879,928.86 879,915.07 879,901.29 879,887.50 879,873.71 879,859.92 879,846.14 879,837.80	32.0222098 32.0222154 32.0222210 32.0222266 32.0222321 32.0222377 32.0222433 32.0222489 32.0222523	-103.2407824 -103.2408268 -103.2408712 -103.2409156 -103.2409600 -103.2410045 -103.2410489 -103.2410933 -103.2411201
3,200.0		277.83	3,181.2	37.9	-275.8	373,545.87	879,832.35	32.0222545	-103.2411377
3,300.0 3,400.0 3,500.0 3,600.0 3,683.5	8.00 8.00 8.00 8.00 8.00 8.00	277.83 277.83 277.83 277.83 277.83	3,280.2 3,379.2 3,478.3 3,577.3 3,660.0	39.8 41.7 43.6 45.5 47.1	-289.6 -303.4 -317.2 -330.9 -342.5	373,547.76 373,549.66 373,551.56 373,553.45 373,555.03	879,818.56 879,804.77 879,790.99 879,777.20 879,765.68	32.0222601 32.0222657 32.0222713 32.0222769 32.0222816	-103.2411871 -103.2411821 -103.2412265 -103.2412710 -103.2413154 -103.2413525
Capita		077.00	0.070.0	47.4	0447	272 555 25	070 700 44	20 000000	400 0440500
3,700.0 3,800.0 3,900.0 4,000.0 4,100.0 4,200.0	8.00 8.00 8.00 8.00	277.83 277.83 277.83 277.83 277.83 277.83	3,676.3 3,775.3 3,874.4 3,973.4 4,072.4 4,171.5	47.4 49.3 51.2 53.1 55.0 56.9	-344.7 -358.5 -372.3 -386.1 -399.9 -413.7	373,555.35 373,557.24 373,559.14 373,561.03 373,562.93 373,564.83	879,763.41 879,749.62 879,735.83 879,722.05 879,708.26 879,694.47	32.0222825 32.0222881 32.0222937 32.0222993 32.0223049 32.0223105	-103.2413598 -103.2414042 -103.2414486 -103.2414931 -103.2415375 -103.2415819

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: **OWB** Design: PWP

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Planned Surv	еу								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
4,300.0	8.00	277.83	4,270.5	58.8	-427.5	373,566.72	879,680.68	32.0223160	-103.2416263
4,400.0	8.00	277.83	4,369.5	60.7	-441.2	373,568.62	879,666.90	32.0223216	-103.2416707
4,500.0	8.00	277.83	4,468.5	62.6	-455.0	373,570.51	879,653.11	32.0223272	-103.2417152
4,600.0	8.00	277.83	4,567.6	64.5	-468.8	373,572.41	879,639.32	32.0223328	-103.2417596
4,700.0 4,800.0	8.00 8.00	277.83 277.83	4,666.6 4,765.6	66.4 68.3	-482.6 -496.4	373,574.30 373,576.20	879,625.53 879,611.75	32.0223384 32.0223440	-103.2418040 -103.2418484
4,900.0	8.00	277.83	4,765.6	70.2	-490.4 -510.2	373,578.10	879,597.96	32.0223440	-103.2418928
5,000.0	8.00	277.83	4,963.7	72.0	-524.0	373,579.99	879,584.17	32.0223552	-103.2419372
5,020.5	8.00	277.83	4,984.0	72.4	-526.8	373,580.38	879,581.34	32.0223564	-103.2419464
Lamar			1,00			,	,		
5,100.0	8.00	277.83	5,062.7	73.9	-537.8	373,581.89	879,570.38	32.0223608	-103.2419817
5,200.0	8.00	277.83	5,161.7	75.8	-551.5	373,583.78	879,556.60	32.0223664	-103.2420261
5,300.0	8.00	277.83	5,260.7	77.7	-565.3	373,585.68	879,542.81	32.0223720	-103.2420705
5,327.5	8.00	277.83	5,288.0	78.3	-569.1	373,586.20	879,539.01	32.0223735	-103.2420827
Bell Ca	•	.==							100 0 10 1 1 10
5,400.0	8.00	277.83	5,359.8	79.6	-579.1	373,587.58	879,529.02	32.0223776	-103.2421149
5,500.0 5,600.0	8.00 8.00	277.83 277.83	5,458.8 5,557.8	81.5 83.4	-592.9 -606.7	373,589.47 373,591.37	879,515.23 879,501.45	32.0223832 32.0223888	-103.2421593 -103.2422038
5,700.0	8.00	277.83	5,656.9	85.3	-620.5	373,593.26	879,487.66	32.0223944	-103.2422482
5,800.0	8.00	277.83	5,755.9	87.2	-634.3	373,595.16	879,473.87	32.0224000	-103.2422926
5,900.0	8.00	277.83	5,854.9	89.1	-648.1	373,597.05	879,460.08	32.0224055	-103.2423370
6,000.0	8.00	277.83	5,953.9	91.0	-661.8	373,598.95	879,446.30	32.0224111	-103.2423814
6,100.0	8.00	277.83	6,053.0	92.9	-675.6	373,600.85	879,432.51	32.0224167	-103.2424259
6,200.0	8.00	277.83	6,152.0	94.8	-689.4	373,602.74	879,418.72	32.0224223	-103.2424703
6,300.0	8.00	277.83	6,251.0	96.7	-703.2	373,604.64	879,404.93	32.0224279	-103.2425147
6,400.0	8.00	277.83	6,350.0	98.6	-717.0	373,606.53	879,391.15	32.0224335	-103.2425591
6,500.0	8.00	277.83	6,449.1	100.5	-730.8 -744.6	373,608.43	879,377.36	32.0224391	-103.2426035
6,600.0 6,665.5	8.00 8.00	277.83 277.83	6,548.1 6,613.0	102.4 103.6	-744.6 -753.6	373,610.32 373,611.57	879,363.57 879,354.53	32.0224447 32.0224484	-103.2426479 -103.2426771
	Canyon	211.00	0,013.0	103.0	-733.0	373,011.37	079,004.00	32.0224404	-105.2420771
6,700.0	8.00	277.83	6,647.1	104.3	-758.4	373,612.22	879,349.78	32.0224503	-103.2426924
6,800.0		277.83	6,746.1	106.2	-772.1	373,614.12	879,335.99	32.0224559	-103.2427368
6,900.0		277.83	6,845.2	108.1	-785.9	373,616.01	879,322.21	32.0224615	-103.2427812
7,000.0	8.00	277.83	6,944.2	110.0	-799.7	373,617.91	879,308.42	32.0224671	-103.2428256
7,100.0	8.00	277.83	7,043.2	111.9	-813.5	373,619.80	879,294.63	32.0224727	-103.2428700
7,200.0		277.83	7,142.3	113.8	-827.3	373,621.70	879,280.84	32.0224783	-103.2429145
7,300.0	8.00	277.83	7,241.3	115.6	-841.1	373,623.60	879,267.06	32.0224838	-103.2429589
7,363.3		277.83	7,304.0	116.9	-849.8	373,624.80	879,258.32	32.0224874	-103.2429870
	pring Lime	277 02	7 240 2	117 5	954.0	272 625 40	970 252 27	22 0224904	102 2420022
7,400.0 7,500.0		277.83 277.83	7,340.3 7,439.3	117.5 119.4	-854.9 -868.7	373,625.49 373,627.39	879,253.27 879,239.48	32.0224894 32.0224950	-103.2430033 -103.2430477
7,600.0		277.83	7,439.3	121.3	-882.5	373,629.28	879,225.69	32.0225006	-103.2430921
7,700.0		277.83	7,637.4	123.2	-896.2	373,631.18	879,211.91	32.0225062	-103.2431366
7,800.0		277.83	7,736.4	125.1	-910.0	373,633.07	879,198.12	32.0225118	-103.2431810
7,900.0		277.83	7,835.4	127.0	-923.8	373,634.97	879,184.33	32.0225174	-103.2432254
8,000.0		277.83	7,934.5	128.9	-937.6	373,636.87	879,170.54	32.0225230	-103.2432698
8,100.0		277.83	8,033.5	130.8	-951.4	373,638.76	879,156.76	32.0225286	-103.2433142
8,200.0	8.00	277.83	8,132.5	132.7	-965.2	373,640.66	879,142.97	32.0225342	-103.2433586
8,252.3		277.83	8,184.3	133.7	-972.4	373,641.65	879,135.76	32.0225371	-103.2433819
	rop -2.00	277 02	8,231.6	1246	070 6	373 643 50	970 120 57	33 0335306	102 2424040
8,300.0 8,400.0		277.83 277.83	8,231.6	134.6 136.0	-978.6 -989.0	373,642.50 373,643.93	879,129.57 879,119.14	32.0225396 32.0225439	-103.2434018 -103.2434354
8,500.0		277.83	8,430.8	136.9	-996.0	373,644.89	879,112.15	32.0225467	-103.2434579
5,555.0	0.00		2,.00.0			,	,		

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT

Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: **OWB** Design: PWP

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Planned Surv	v ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
8,600.0		277.83	8,530.7	137.4	-999.5	373,645.38	879,108.62	32.0225481	-103.2434693
8,652.3		0.00	8,583.0	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
	889.5 hold at								
8,700.0		0.00	8,630.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
8,800.0		0.00	8,730.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
8,900.0 9,000.0		0.00 0.00	8,830.7 8,930.7	137.5 137.5	-1,000.0 -1,000.0	373,645.45 373,645.45	879,108.14 879,108.14	32.0225483 32.0225483	-103.2434708 -103.2434708
9,000.0		0.00	9,030.7	137.5	-1,000.0	373,645.45	879,108.14 879,108.14	32.0225483	-103.2434708
9,200.0		0.00	9,130.7	137.5	-1,000.0	373,645.45	879.108.14	32.0225483	-103.2434708
9,300.0		0.00	9,230.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,304.3		0.00	9,235.0	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
	one Spring								
9,400.0		0.00	9,330.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,500.0		0.00	9,430.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,600.0		0.00	9,530.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,700.0		0.00	9,630.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,792.3		0.00	9,723.0	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,800.0	d Bone Sprir 0.00	1 g 0.00	9,730.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
9,900.0		0.00	9,830.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,000.0		0.00	9,930.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,100.0		0.00	10,030.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,200.0	0.00	0.00	10,130.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,300.0		0.00	10,230.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,400.0		0.00	10,330.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,500.0		0.00	10,430.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,600.0		0.00 0.00	10,530.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,616.3			10,547.0	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,700.0	Sone Spring 0.00	0.00	10,630.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,700.0		0.00	10,030.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
10,900.0		0.00	10,830.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,000.0		0.00	10,930.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,100.0		0.00	11,030.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,200.0		0.00	11,130.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,268.3		0.00	11,199.0	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
	Bone Spring	0.00	44 000 7	407.5	4 000 0	070 045 45	070 400 44	00 0005 400	400 040 4700
11,300.0		0.00 0.00	11,230.7	137.5 137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,400.0 11,400.3		0.00	11,330.7 11,331.0	137.5	-1,000.0 -1,000.0	373,645.45 373,645.45	879,108.14 879,108.14	32.0225483 32.0225483	-103.2434708 -103.2434708
Wolfca		0.00	11,551.0	107.0	-1,000.0	373,043.43	07 9, 100.14	32.0223403	-103.2434700
11,500.0	•	0.00	11,430.7	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
11,541.8		0.00	11,472.5	137.5	-1,000.0	373,645.45	879,108.14	32.0225483	-103.2434708
KOP-S	tart DLS 12.0	00 TFO 179.							
11,550.0	0.99	179.46	11,480.7	137.4	-1,000.0	373,645.38	879,108.15	32.0225481	-103.2434708
11,575.0		179.46	11,505.7	136.3	-1,000.0	,		32.0225451	-103.2434708
							·		-103.2434708
,									-103.2434709
						,			
									-103.2434709
11,750.0		179.46	11,674.2	92.8	-999.6	373,600.76	879,108.56	32.0224255	-103.2434709
11,550.0 11,575.0 11,600.0 11,625.0 11,650.0 11,675.0 11,700.0	0.99 3.99 6.99 9.99 12.99 15.99 18.99 21.99	179.46 179.46 179.46 179.46 179.46 179.46 179.46 179.46	11,480.7 11,505.7 11,530.6 11,555.3 11,579.8 11,604.0 11,627.8 11,651.3	136.3 134.0 130.3 125.3 119.0 111.5 102.8	-1,000.0 -1,000.0 -999.9 -999.9 -999.8 -999.8 -999.7	373,644.29 373,641.90 373,638.21 373,633.24 373,626.98 373,619.47 373,610.72	879,108.16 879,108.18 879,108.21 879,108.26 879,108.32 879,108.39 879,108.47	32.0225451 32.0225386 32.0225284 32.0225147 32.0224976 32.0224769 32.0224529	-103.24347 -103.24347 -103.24347 -103.24347 -103.24347 -103.24347 -103.24347

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating
Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT
Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: OWB Design: PWP Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Planned Surv	еу								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
11,775.0	27.99	179.46	11,696.6	81.7	-999.5	373,589.61	879,108.67	32.0223948	-103.2434710
11,800.0		179.46	11,718.3	69.4	-999.4 -999.4	373,577.31	879,108.78	32.0223610	-103.2434710
11,802.0 Wolfca	31.22	179.46	11,720.0	68.3	-999.4	373,576.29	879,108.79	32.0223582	-103.2434710
11,825.0	33.99	179.46	11,739.4	55.9	-999.2	373,563.89	879.108.91	32.0223241	-103.2434710
11,850.0		179.46	11,759.8	41.4	-999.1	373,549.38	879,109.05	32.0222842	-103.2434711
11,875.0	39.99	179.46	11,779.3	25.9	-999.0	373,533.82	879,109.19	32.0222415	-103.2434711
11,900.0	42.99	179.46	11,798.0	9.3	-998.8	373,517.26	879,109.35	32.0221960	-103.2434711
11,925.0	45.99	179.46	11,815.9	-8.2	-998.6	373,499.75	879,109.51	32.0221478	-103.2434712
11,950.0 11,975.0	48.99 51.99	179.46 179.46	11,832.8 11,848.7	-26.6 -45.9	-998.5 -998.3	373,481.32 373,462.04	879,109.69 879,109.87	32.0220972 32.0220442	-103.2434712 -103.2434712
12,000.0	54.99	179.46	11,863.5	-45.9 -66.0	-998.1	373,441.95	879,110.06	32.0220442	-103.2434713
12,025.0	57.99	179.46	11,877.4	-86.8	-997.9	373,421.11	879,110.25	32.0219317	-103.2434713
12,050.0	60.99	179.46	11,890.0	-108.4	-997.7	373,399.57	879,110.45	32.0218725	-103.2434714
12,075.0	63.99	179.46	11,901.6	-130.5	-997.5	373,377.40	879,110.66	32.0218115	-103.2434714
12,100.0	66.99	179.46	11,912.0	-153.3	-997.3	373,354.66	879,110.88	32.0217490	-103.2434715
12,125.0	69.99 72.99	179.46 179.46	11,921.1	-176.5	-997.1 -996.8	373,331.41	879,111.09	32.0216851	-103.2434715
12,150.0 12,175.0		179.46	11,929.1 11,935.8	-200.2 -224.3	-996.6 -996.6	373,307.70 373,283.62	879,111.32 879,111.54	32.0216199 32.0215537	-103.2434716 -103.2434717
12,200.0	78.99	179.46	11,941.2	-248.7	-996.4	373,259.22	879,111.77	32.0214867	-103.2434717
12,225.0		179.46	11,945.3	-273.4	-996.1	373,234.56	879,112.00	32.0214189	-103.2434718
12,250.0	84.99	179.46	11,948.1	-298.2	-995.9	373,209.73	879,112.24	32.0213506	-103.2434718
12,275.0	87.99	179.46	11,949.7	-323.2	-995.7	373,184.78	879,112.47	32.0212821	-103.2434719
12,291.8		179.46	11,950.0	-339.9	-995.5	373,168.00	879,112.63	32.0212359	-103.2434719
	rt 7558.8 hol			240.0	-995.4	272 450 70	879,112.71	22 0242422	102 2424710
12,300.0 12,400.0	90.00 90.00	179.46 179.46	11,950.0 11,950.0	-348.2 -448.2	-995.4 -994.5	373,159.78 373,059.79	879,112.71 879,113.64	32.0212133 32.0209385	-103.2434719 -103.2434722
12,500.0	90.00	179.46	11,950.0	-548.2	-993.6	372,959.79	879,114.58	32.0206636	-103.2434724
12,600.0	90.00	179.46	11,950.0	-648.1	-992.6	372,859.80	879,115.52	32.0203888	-103.2434726
12,700.0	90.00	179.46	11,950.0	-748.1	-991.7	372,759.80	879,116.46	32.0201139	-103.2434728
12,800.0	90.00	179.46	11,950.0	-848.1	-990.7	372,659.81	879,117.40	32.0198390	-103.2434730
12,900.0	90.00	179.46	11,950.0	-948.1	-989.8	372,559.81	879,118.34	32.0195642	-103.2434733
13,000.0 13,100.0	90.00 90.00	179.46 179.46	11,950.0 11,950.0	-1,048.1 -1,148.1	-988.9 -987.9	372,459.82 372,359.82	879,119.28 879,120.22	32.0192893 32.0190144	-103.2434735 -103.2434737
13,200.0	90.00	179.46	11,950.0	-1,140.1	-987.0	372,259.82	879,121.16	32.0187396	-103.2434739
13,300.0	90.00	179.46	11,950.0	-1,348.1	-986.0	372,159.83	879,122.10	32.0184647	-103.2434742
13,400.0	90.00	179.46	11,950.0	-1,448.1	-985.1	372,059.83	879,123.04	32.0181898	-103.2434744
13,500.0	90.00	179.46	11,950.0	-1,548.1	-984.2	371,959.84	879,123.98	32.0179150	-103.2434746
13,600.0	90.00	179.46	11,950.0	-1,648.1	-983.2	371,859.84	879,124.91	32.0176401	-103.2434748
13,700.0 13,800.0		179.46 179.46	11,950.0 11,950.0	-1,748.1 -1,848.1	-982.3 -981.4	371,759.85 371,659.85	879,125.85 879,126.79	32.0173653 32.0170904	-103.2434751 -103.2434753
13,900.0		179.46	11,950.0	-1,046.1 -1,948.1	-981.4 -980.4	371,559.86	879,120.79	32.0168155	-103.2434755
14,000.0		179.46	11,950.0	-2,048.1	-979.5	371,459.86	879,128.67	32.0165407	-103.2434757
14,100.0		179.46	11,950.0	-2,148.1	-978.5	371,359.86	879,129.61	32.0162658	-103.2434760
14,200.0	90.00	179.46	11,950.0	-2,248.1	-977.6	371,259.87	879,130.55	32.0159909	-103.2434762
14,300.0		179.46	11,950.0	-2,348.1	-976.7	371,159.87	879,131.49	32.0157161	-103.2434764
14,400.0	90.00	179.46	11,950.0	-2,448.1	-975.7	371,059.88	879,132.43	32.0154412	-103.2434766
14,500.0 14,600.0		179.46 179.46	11,950.0 11,950.0	-2,548.1 -2,648.1	-974.8 -973.8	370,959.88 370,859.89	879,133.37 879,134.31	32.0151663 32.0148915	-103.2434769 -103.2434771
14,600.0	90.00	179.46	11,950.0	-2,046.1 -2,748.1	-973.6 -972.9	370,759.89	879,134.31 879,135.24	32.0146915	-103.2434771
14,800.0		179.46	11,950.0	-2,848.1	-972.0	370,659.90	879,136.18	32.0143418	-103.2434775
14,900.0		179.46	11,950.0	-2,948.0	-971.0	370,559.90	879,137.12	32.0140669	-103.2434778
15,000.0	90.00	179.46	11,950.0	-3,048.0	-970.1	370,459.90	879,138.06	32.0137920	-103.2434780

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT NELSON BRIDGE ST COM 26 36 26 121H

Well:

Wellbore: **OWB** Design: PWP

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Planned Surv	ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15,100.0	90.00	179.46	11,950.0	-3,148.0	-969.1	370,359.91	879,139.00	32.0135172	-103.2434782
15,200.0	90.00	179.46	11,950.0	-3,248.0	-968.2	370,259.91	879,139.94	32.0132423	-103.2434784
15,300.0	90.00	179.46	11,950.0	-3,348.0	-967.3	370,159.92	879,140.88	32.0129674	-103.2434786
15,400.0	90.00	179.46	11,950.0	-3,448.0	-966.3	370,059.92	879,141.82	32.0126926	-103.2434789
15,500.0	90.00	179.46	11,950.0	-3,548.0	-965.4	369,959.93	879,142.76	32.0124177	-103.2434791
15,600.0	90.00	179.46	11,950.0	-3,648.0	-964.4	369,859.93	879,143.70	32.0121428	-103.2434793
15,700.0	90.00	179.46	11,950.0	-3,748.0	-963.5	369,759.93	879,144.64	32.0118680	-103.2434795
15,800.0	90.00	179.46	11,950.0	-3,848.0	-962.6	369,659.94	879,145.58	32.0115931	-103.2434798
15,900.0	90.00	179.46	11,950.0	-3,948.0	-961.6	369,559.94	879,146.51	32.0113183	-103.2434800
16,000.0	90.00	179.46	11,950.0	-4,048.0	-960.7	369,459.95	879,147.45	32.0110434	-103.2434802
16,100.0	90.00	179.46	11,950.0	-4,148.0	-959.8	369,359.95	879,148.39	32.0107685	-103.2434804
16,200.0	90.00	179.46	11,950.0	-4,248.0	-958.8	369,259.96	879,149.33	32.0104937	-103.2434807
16,300.0	90.00	179.46	11,950.0	-4,348.0	-957.9	369,159.96	879,150.27	32.0102188	-103.2434809
16,400.0	90.00	179.46	11,950.0	-4,448.0 4.548.0	-956.9	369,059.97	879,151.21	32.0099439 32.0096691	-103.2434811 -103.2434813
16,500.0 16,600.0	90.00 90.00	179.46 179.46	11,950.0 11,950.0	-4,548.0 -4,648.0	-956.0 -955.1	368,959.97 368,859.97	879,152.15 879,153.09	32.0093942	-103.2434816
16,700.0	90.00	179.46	11,950.0	-4,048.0 -4,748.0	-955.1 -954.1	368,759.98	879,154.03	32.0093942	-103.2434818
16,800.0	90.00	179.46	11,950.0	-4,748.0 -4,848.0	-954.1 -953.2	368,659.98	879,154.97	32.0091193	-103.2434820
16,900.0	90.00	179.46	11,950.0	-4,948.0	-952.2	368,559.99	879,155.91	32.0085696	-103.2434822
17,000.0	90.00	179.46	11,950.0	-5,048.0	-951.3	368,459.99	879,156.84	32.0082947	-103.2434824
17,100.0	90.00	179.46	11,950.0	-5,147.9	-950.4	368,360.00	879,157.78	32.0080199	-103.2434827
17,200.0	90.00	179.46	11,950.0	-5,247.9	-949.4	368,260.00	879,158.72	32.0077450	-103.2434829
17,300.0	90.00	179.46	11,950.0	-5,347.9	-948.5	368,160.01	879,159.66	32.0074702	-103.2434831
17,400.0	90.00	179.46	11,950.0	-5,447.9	-947.5	368,060.01	879,160.60	32.0071953	-103.2434833
17,500.0	90.00	179.46	11,950.0	-5,547.9	-946.6	367,960.01	879,161.54	32.0069204	-103.2434836
17,600.0	90.00	179.46	11,950.0	-5,647.9	-945.7	367,860.02	879,162.48	32.0066456	-103.2434838
17,700.0	90.00	179.46	11,950.0	-5,747.9	-944.7	367,760.02	879,163.42	32.0063707	-103.2434840
17,800.0	90.00	179.46	11,950.0	-5,847.9	-943.8	367,660.03	879,164.36	32.0060958	-103.2434842
17,900.0	90.00	179.46	11,950.0	-5,947.9	-942.8	367,560.03	879,165.30	32.0058210	-103.2434845
18,000.0	90.00	179.46	11,950.0	-6,047.9	-941.9	367,460.04	879,166.24	32.0055461	-103.2434847
18,100.0	90.00	179.46	11,950.0	-6,147.9	-941.0	367,360.04	879,167.17	32.0052712	-103.2434849
18,200.0	90.00	179.46	11,950.0	-6,247.9	-940.0	367,260.04	879,168.11	32.0049964	-103.2434851
18,300.0	90.00	179.46	11,950.0	-6,347.9	-939.1	367,160.05	879,169.05	32.0047215	-103.2434853
18,400.0	90.00	179.46	11,950.0	-6,447.9	-938.2	367,060.05	879,169.99	32.0044466	-103.2434856
18,500.0	90.00	179.46	11,950.0	-6,547.9	-937.2	366,960.06	879,170.93	32.0041718	-103.2434858
18,600.0	90.00	179.46	11,950.0	-6,647.9	-936.3	366,860.06	879,171.87	32.0038969	-103.2434860
18,700.0	90.00	179.46	11,950.0	-6,747.9	-935.3	366,760.07	879,172.81	32.0036221	-103.2434862
18,800.0	90.00	179.46	11,950.0	-6,847.9	-934.4	366,660.07	879,173.75	32.0033472	-103.2434865
18,900.0	90.00	179.46	11,950.0	-6,947.9	-933.5	366,560.08	879,174.69	32.0030723	-103.2434867
19,000.0	90.00	179.46	11,950.0	-7,047.9 7,147.0	-932.5	366,460.08	879,175.63	32.0027975	-103.2434869
19,100.0		179.46 179.46	11,950.0 11,950.0	-7,147.9 7,247.0	-931.6 -930.6	366,360.08	879,176.57	32.0025226	-103.2434871 -103.2434873
19,200.0 19,300.0		179.46	11,950.0	-7,247.9 -7,347.9	-930.6 -929.7	366,260.09 366,160.09	879,177.51 879,178.44	32.0022477 32.0019729	-103.2434876
19,400.0		179.46	11,950.0	-7,347.9 -7,447.8	-929.7 -928.8	366,060.10	879,179.38	32.0019729	-103.2434878
19,500.0	90.00	179.46	11,950.0	-7,547.8	-927.8	365,960.10	879,180.32	32.0010900	-103.2434880
19,600.0		179.46	11,950.0	-7,647.8	-926.9	365,860.11	879,181.26	32.0014231	-103.2434882
19,700.0		179.46	11,950.0	-7,747.8	-925.9	365,760.11	879,182.20	32.0008734	-103.2434885
19,800.0	90.00	179.46	11,950.0	-7,847.8	-925.0	365,660.12	879,183.14	32.0005985	-103.2434887
19,850.6		179.46	11,950.0	-7,898.4	-924.5	365,609.54	879,183.62	32.0004595	-103.2434888
TD at 1									

Database: AUS-COMPASS - EDM_15 - 32bit

Company: Ameredev Operating
Project: Lea County, NM (N83-NME)

Site: HOGAN/NELSON BRIDGE PROJECT
Well: NELSON BRIDGE ST COM 26 36 26 121H

Wellbore: OWB Design: PWP **Local Co-ordinate Reference:**

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well NELSON BRIDGE ST COM 26 36 26

121H

KB=27' @ 2937.0usft KB=27' @ 2937.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP (NBSC 121H) - plan misses targ - Point	0.00 get center by	0.00 0.4usft at 1	11,950.0 9800.0usft	-7,848.3 MD (11950.0	-925.0 TVD, -7847	365,659.67 7.8 N, -925.0 E)	879,183.17	32.0005973	-103.2434886
BHL (NBSC 121H) - plan hits target of Point	0.00 center	0.00	11,950.0	-7,898.4	-924.5	365,609.54	879,183.62	32.0004595	-103.2434888
FTP (NBSC 121H) - plan misses targ - Point	0.00 get center by	0.00 0.2usft at 1	11,950.0 2292.2usft	-340.4 MD (11950.0	-995.7 TVD, -340.	373,167.56 4 N, -995.5 E)	879,112.45	32.0212347	-103.2434725

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	1,933.5	1,927.0	Rustler			
	2,314.2	2,304.0	Salado			
	3,160.4	3,142.0	Tansill			
	3,683.5	3,660.0	Capitan			
	5,020.5	4,984.0	Lamar			
	5,327.5	5,288.0	Bell Canyon			
	6,665.5	6,613.0	Brushy Canyon			
	7,363.3	7,304.0	Bone Spring Lime			
	9,304.3	9,235.0	First Bone Spring			
	9,792.3	9,723.0	Second Bone Spring			
	10,616.3	10,547.0	Third Bone Spring Lime			
	11,268.3	11,199.0	Third Bone Spring			
	11,400.3	11,331.0	Wolfcamp			
	11,802.0	11,720.0	Wolfcamp B			

Plan Annotations				
Measured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment
1,000.0	1,000.0	0.0	0.0	Start Build 2.00
1,400.0	1,398.7	3.8	-27.6	Start 6852.3 hold at 1400.0 MD
8,252.3	8,184.3	133.7	-972.4	Start Drop -2.00
8,652.3	8,583.0	137.5	-1,000.0	Start 2889.5 hold at 8652.3 MD
11,541.8	11,472.5	137.5	-1,000.0	KOP-Start DLS 12.00 TFO 179.46
12,291.8	11,950.0	-339.9	-995.5	LP-Start 7558.8 hold at 12291.8 MD
19,850.6	11,950.0	-7,898.4	-924.5	TD at 19850.6

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

_Ameredev II,	LLC	OGRID: _	372224	4Date	<u>0</u> 6/21/2023 _
				D(6)(b) NMAC □ C	Other.
ollowing inform	nation for each	new or recomple	eted well or set o	of wells proposed to	be drilled or propo
API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
30025-		230' FSL & 1329' FWL	101	1,664	241
30025-		230' FSL & 1369' FWL	101	1,664	241
30025-		230' FSL & 1660' FEL	101	1,664	241
30025-		230' FSL & 1620' FEL	101	1,664	241
t Name:				[See 19.15.27.90	(D)(1) NMAC]
	API 30025- 30025- 30025-	amendment due to 19.15.27. Description of the property of t	API ULSTR Footages 30025- 30025- 30025- 30025- 30025- 230' FSL & 1329' FWL 230' FSL & 1369' FWL 230' FSL & 1660' FEL 30025- 230' FSL & 1620' FEL	amendment due to 19.15.27.9.D(6)(a) NMAC 19.15.27.9.D 10.15.27.9.D 10.15.27.D 10.15	Amendment due to 19.15.27.9.D(6)(a) NMAC 19.15.27.9.D(6)(b) NMAC Completed to a central delivery point. API ULSTR Footages Anticipated Oil BBL/D MCF/D 30025- 230' FSL & 101 1,664 30025- 230' FSL & 101 1,664

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Nelson Bridge 26 36 26 State Com 121H	30025-	09/15/2024	11/01/2024	12/01/2024	12/15/2024	12/18/2024
Nelson Bridge 26 36 26 State Com 123H	30025-	09/15/2024	11/01/2024	12/01/2024	12/15/2024	12/18/2024
Nelson Bridge 26 36 26 State Com 125H	30025-	09/15/2024	11/01/2024	12/01/2024	12/15/2024	12/18/2024
Nelson Bridge 26 36 26 State Com 127H	30025-	09/15/2024	11/01/2024	12/01/2024	12/15/2024	12/18/2024

VI. Separation Equipment:
☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: ⊠ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices:

Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan <u>EFFECTIVE APRIL 1, 2022</u>

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural	Gas Production:
-------------------------	-----------------

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF		

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				, ,

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100%	of the anticipated natural gas
production volume from the well prior to the date of first production.	

XIII. I	Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or	or portion,	of the
natural	gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the	he new we	ell(s).

Attach O	perator's	plan to	manage	production	in res	ponse to	the	increased	line	pressure

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provides	ed in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific inform	ation
for which confidentiality is asserted and the basis for such assertion.	

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that,	after reasonable inquiry and based on the available information at the time of submittal:				
☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or					
hundred percent of the into account the curren	e able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking t and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. It is box, Operator will select one of the following:				
Well Shut-In. □ Opera D of 19.15.27.9 NMA	ator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection C; or				
Venting and Flaring l	Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential				
	ses for the natural gas until a natural gas gathering system is available, including:				
(a)	power generation on lease;				
(b)	power generation for grid;				
(c)	compression on lease;				
(d)	liquids removal on lease;				
(e)	reinjection for underground storage;				
(f)	reinjection for temporary storage;				
(g) (h)	reinjection for enhanced oil recovery; fuel cell production; and				
(II <i>)</i>	ruer cen production, and				

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Casca Gu
Printed Name: Cesca Yu
Title: Engineer
E-mail Address: cyu@ameredev.com
Date: 06/21/2023
Phone: 512-775-1417
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment is sized to allow for retention time and velocity to adequately separate oil, gas, and water at anticipated peak rates.
- All central tank battery equipment is designed to efficiently capture the remaining gas from the liquid phase.
- Valves and meters are designed to service without flow interruption or venting of gas.

VII. <u>Operational Practices: Attach a complete description of the actions Operator will</u> take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

19.15.27.8 (A)

Ameredev's field operations are designed with the goal of minimizing flaring and preventing venting of natural gas. If capturing the gas is not possible then the gas is combusted/flared using properly sized flares or combustors in accordance with state air permit rules.

19.15.27.8 (B) Venting and Flaring during drilling operations

- A properly-sized flare stack will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared. Venting will only occur if there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety, public health, or the environment.

19.15.27.8 (C) Venting and Flaring during completions or recompletions operations.

- During all phases of flowback, wells will flow through a sand separator, or other appropriate flowback separation equipment, and the well stream will be directed to a central tank battery (CTB) through properly sized flowlines
- The CTB will have properly sized separation equipment for maximum anticipated flowrates
- Multiple stages of separation will be used to separate gas from liquids. All gas will be routed to a sales outlet. Fluids will be routed to tanks equipped with a closed loop system that will recover any residual gas from the tanks and route such gas to a sales outlet.

19.15.27.8 (D) Venting and Flaring during production operations.

• During production, the well stream will be routed to the CTB where multiple stages of separation will separate gas from liquids. All gas will be routed to a sales outlet. Fluids will be routed to tanks with a closed

loop system that will recover any residual gas from the tanks and route such gas to a sales outlet, minimizing tank emissions.

- Flares are equipped with auto-ignition systems and continuous pilot operations.
- Automatic gauging equipment is installed on all tanks.

19.15.27.8 (E) Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- Automatic gauging equipment is installed on all tanks to minimize venting
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- •Flares are equipped with continuous pilots and auto-ignitors along with remote monitoring of the pilot status
- Weekly AVOs and monthly LDAR inspections will be performed on all wells and facilities that produce more than 60 Mcfd.
- Gas/H2S detectors will be installed throughout the facilities and wellheads to detect leaks and enable timely repairs.

19.15.27.8 (F) Measurement or estimation of vented and flared natural gas

- All high pressure flared gas is measured by equipment conforming to API 14.10.
- No meter bypasses are installed.
- When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated through flare flow curves with the assistance of air emissions consultants, as necessary.

VIII. <u>Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.</u>

- Ameredev will use best management practices to vent as minimally as possible during well intervention operations and downhole well maintenance
- All natural gas is routed into the gas gathering system and directed to one of Ameredev's multiple gas sales outlets.
- All venting events will be recorded and all start-up, shutdown, maintenance logs will be kept for control equipment
- All control equipment will be maintained to provide highest run-time possible
- All procedures are drafted to keep venting and flaring to the absolute minimum