<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 347383

74 1 207 (1011 011 011 2141 10 0142) (12 214 214) (2000) (014 017 017 014								
Operator Name and Address		2. OGRID Number						
EOG RESOURCES INC	7377							
P.O. Box 2267		3. API Number						
Midland, TX 79702		30-025-51941						
4. Property Code	5. Property Name	6. Well No.						
319585	DATE 14 STATE COM	201H						

7 Surface Location

ſ	UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
	M	14	21S	33E	M	826	S	789	W	Lea

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
D	11	21S	33E	D	100	N	430	W	Lea

9. Pool Information

BERRY;BONE SPRING, NORTH	5535

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	3814
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	20087	Bone Spring		9/1/2023
Depth to Ground water		Distance from nearest fresh water well	Distance to nearest surface water	

■ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

ziri opoosa saanig ana samaniri ogram							
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC	
Surf	16	13.375	54.5	2040	730	0	
Int1	11	9.625	40	4470	1260	0	
Int2	8.75	7.625	29.7	9873	1830	0	
Prod	6.75	5.5	17	20087	800	9373	

Casing/Cement Program: Additional Comments

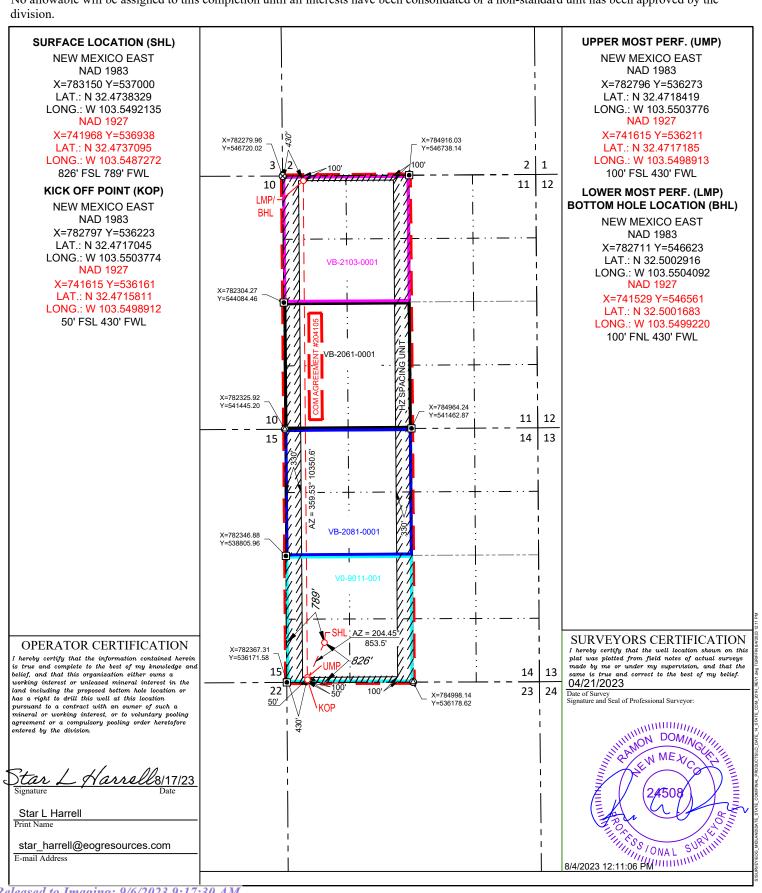
EOG respectfully requests the option to use the casing and cement program described in Design B of the drill plan. The NMOCD will be notified of EOG's election at spud.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Double Ram	5000	3000	

knowledge and be	elief.	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	ON DIVISION	
Printed Name:	Electronically filed by Kay Maddox	(Approved By:	Paul F Kautz		
Title:	, , ,			Geologist		
Email Address: kay_maddox@eogresources.com			Approved Date:	9/6/2023	Expiration Date: 9/6/2025	
Date:	8/17/2023 Phone: 432-686-3658			Conditions of Approval Attached		

DISTRICT I 6161 Fax: (575) 393-0720 DISTRICT II DISTRICT III DISTRICT IV DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

				Pool Code 5535						
Property Code 319585			•	Property Name DATE 14 STATE COM					Well Number 201H	
OGRID No. 7377				EC	Operator Name OG RESOURC	Elevation 3814'				
		•			Surface Locat	ion				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
М	14	21 - S	33-E	-	826'	SOUTH	789'	WEST	LEA	
		•	Bott	om Hole	Location If Diff	erent From Surfac	e			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
D	11	21 - S	33-E	-	100'	NORTH	430'	WEST	LEA	
Dedicated Acres	Joint or	Infill	Consolidated Co	de Orde	r No.	-		-		
640.00			COM AGREEMENT #204105							

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 347383

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:		
EOG RESOURCES INC [7377]	30-025-51941		
P.O. Box 2267	Well:		
Midland, TX 79702	DATE 14 STATE COM #201H		

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud
pkautz	IF ON ANY STRING CEMENT DOES NOT CIRCULATE, A RCBL MUST BE RUN ON THAT STRING OF CASING.
pkautz	Must run 4-string casing program.

State of New Mexico Energy, Minerals and Natural Resources Department

Michelle Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary Designate Dylan Fuge, Division Director Oil Conservation Division

Todd E. Leahy, JD, PhD **Deputy Secretary**

August 22, 2023

BUREAU OF LAND MANAGEMENT ATT: James S. Rutley 620 E Greene Street Carlsbad, NM 88220

STATE LAND OFFICE ATT: Paige Czoski PO BOX 1148 Santa Fe, NM 87505

RE: APPLICATION FOR PERMIT TO DRILL IN POTASH AREA

OPERATOR: EOG RESOURCES, INC.

LEASE NAME: DATE 14 STATE COM #201H

PROPOSED LOCATION: U/L M Sec 14 T21S R33E 826 FSL 789 FWL

Lat. 32.4738329 Long. -103.5492135 NAD83

PROPOSED DEPTH: 20087' MD

9809' TVD

Gentleman:

The application for permit to drill identified above has been filed with this office of the New Mexico Oil Conservation Division. Pursuant to the provisions of Oil Conservation Division Order R - 111 - P, please advise this office whether the location is within an established Life-of-Mine-Reserve that are filed with and approved by your office. If not, please advise whether it is within the buffer zone established by the order.

Thank you for your assistance. Please Return as soon as possible.

Very truly yours,

OIL CONSERVATION DIVISION

Hobbs District Geologist, District I

RESONSE:

The above referenced location is in LMR 2023

The above referenced location is within the Buffer Zone

Signed

Representing

EOG Resources, Inc. P.O. Box 2267 Midland, TX 79702

Phone: (432) 686-3600 Fax: (432) 686-3773

August 1, 2023

SENT VIA EMAIL & FEDEX

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division- Hobbs District Attn: Paul Kautz 1625 N. French Dr. Hobbs, NM 88240

RE: R-111-P Potash Area- Statement from Operator

Date 14 State Com #201H, #202H, #203H, #301H Sections 11 & 14, 21S-33E, Lea County, NM

Dear Mr. Kautz:

EOG has reviewed the area surrounding the subject sections for the purpose of identifying Potash Leases within a one (1) mile radius of the pending subject well APDs.

The New Mexico State Land Office's Data Portal, the BLM LR2000 Serial Register Page covering the entire township and range, and confirmation from the Federal Abstract Company in Santa Fe, NM were used to make this determination.

As of the date of this letter, EOG finds no Potash Leases within a one (1) mile radius of the subject sections. If you have any questions or concerns, please give me a call or send me an email.

Sincerely,

EOG Resources, Inc.

Riker Everett, CPL | Land Specialist o) 432.247.6326 | m) 210.289.5754

e) Riker_Everett@eogresources.com

Date 14 State Com #201H Lea County, New Mexico Proposed Wellbore

osed Wellbore KB: 3839'
Design B GL: 3814'

826' FSL 789' FWL Section 14 T-21-S, R-33-E

API: 30-025-****

Bit Size: 16" 13-3/8", 54.5#, J-55, STC @ 0' - 2,040' TOC: 3,970' Bit Size: 11" 9-5/8", 40.#, J-55, LTC @ 0' - 4,470' Bit Size: 8-3/4" 7-5/8", 29.7#, HCP-110, FXL @ 0' - 9,873' TOC: 9,370' Bit Size: 6-3/4" 5-1/2", 17.#, HCP-110, LTC @ 0' - 20,087' KOP: 9,414' MD, 9,332' TVD EOC: 10,164' MD, 9,809' TVD Lateral: 20,087' MD, 9,809' TVD

BH Location: 100' FNL & 430' FWL

Sec. 11 T-21-S R-33-E

Date 14 State Com #201H

Design B

CASING PROGRAM

Hole	Interva	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,040	0	2,040	13-3/8"	54.5#	J-55	STC
11"	0	4,558	0	4,470	9-5/8"	40#	J-55	LTC
8-3/4"	0	9,961	0	9,873	7-5/8"	29.7#	HCP-110	FXL
6-3/4"	0	20,087	0	9,809	5-1/2"	17#	HCP-110	LTC

Cementing Program:

	No.	Wt.	Yld	Slurry Description
Depth	Sacks	ppg	Ft3/sk	Siurry Description
2,040'	630	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 2.0% CaCl2 (TOC @ Surface)
2,040	100	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate + 2.0% KCl (1.06 lb/sk)
4 470'	590	12.7	1.11	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C-41P (TOC @ Surface)
4,470'	670	14.8	1.50	Tail: Class C + 0.13% C-20
0.9721	830	14.2	1.11	1st Stage (Tail): Class C + 0.6% Halad-9 + 0.45% HR-601 + 3% Microbond (TOC @ 6,891')
9,873'	1000	14.8	1.50	2nd Stage (Bradenhead squeeze): Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
20,087'	800	13.2	1.52	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C- 17 (TOC @ 9,373')

Mud Program:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,040'	Fresh - Gel	8.6-8.8	28-34	N/c
2,040' - 4,470'	Brine	8.6-10.2	28-34	N/c
4,470' – 9,873'	Brine	8.6-10.2	28-34	N/c - 6
9873' – 20,087' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Date 14 State Com 201H

EOG requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement above the Brushy Canyon (7,091') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Once cement circulates to surface drilling operations to drill out of the intermediate shoe will proceed. The final cement top will be verified by Echo-meter.

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Date 14 State Com #201H

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

Date 14 State Com #201H

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Date 14 State Com #201H Emergency Assistance Telephone List

PUBLIC SAFETY	:	•	911 or
Lea County Sheriff'	s Department		(575) 396-3611
	Rod Coffman		
Fire Department:			
_	Carlsbad		(575) 885-3125
	Artesia		(575) 746-5050
Hospitals:			,
•	Carlsbad		(575) 887-4121
	Artesia		(575) 748-3333
	Hobbs		(575) 392-1979
Dept. of Public Safe	ety/Carlsbad		(575) 748-9718
Highway Departmen	-		(575) 885-3281
New Mexico Oil Co			(575) 476-3440
NMOCD Inspection	Group - South		(575) 626-0830
U.S. Dept. of Labor	-		(575) 887-1174
EOG Resources, Ir			,
EOG / Midland		Office	(432) 686-3600
Company Drilling	Consultants:		
David Dominque		Cell	(985) 518-5839
Mike Vann		Cell	(817) 980-5507
Drilling Engineer			
Stephen Davis		Cell	(432) 235-9789
Matt Day		Cell	(432) 296-4456
Drilling Manager			,
Branden Keener		Office	(432) 686-3752
		Cell	(210) 294-3729
Drilling Superinter	ndent		,
Steve Kelly		Office	(432) 686-3706
•		Cell	(210) 416-7894
H&P Drilling			
H&P Drilling		Office	(432) 563-5757
H&P 651 Drilling R	ig	Rig	(903) 509-7131
Tool Pusher:			
Johnathan Craig		Cell	(817) 760-6374
Brad Garrett			
Safety:			
Brian Chandler (HS	E Manager)	Office	(432) 686-3695
(222	<i>5</i> ,	Cell	(817) 239-0251
		2011	(01.) = 0.0

Midland

Lea County, NM (NAD 83 NME)
Date 14 State Com
#201H

OH

Plan: Plan #0.1

Standard Planning Report

07 August, 2023

PEDM Database:

Company: Midland

Project: Lea County, NM (NAD 83 NME) Date 14 State Com Site:

Well: #201H Wellbore: OH Plan #0.1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

US State Plane 1983 Map System: North American Datum 1983 Geo Datum: New Mexico Eastern Zone Map Zone:

System Datum:

Mean Sea Level

Date 14 State Com Site

Northing: 536,428.00 usft Site Position: Latitude: 32° 28' 19.914 N From: Мар Easting: 786,265.00 usft Longitude: 103° 32' 20.860 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #201H

0.0 usft **Well Position** +N/-S Northing: 537,000.00 usft Latitude: 32° 28' 25.801 N +E/-W 0.0 usft Easting: 783,150.00 usft Longitude: 103° 32' 57.171 W 3,814.0 usft

Position Uncertainty 0.0 usft Wellhead Elevation: usft **Ground Level:**

0.42° **Grid Convergence:**

ОН Wellbore

Declination Field Strength Magnetics **Model Name** Sample Date Dip Angle (°) (°) (nT) 47,417.25624647 IGRF2020 8/7/2023 6.30 60.06

Design Plan #0.1

Audit Notes:

Phase: PLAN Tie On Depth: 0.0 Version:

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 357.39 0.0 0.0 0.0

Plan Survey Tool Program Date 8/7/2023

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

0.0 20,086.9 EOG MWD+IFR1 Plan #0.1 (OH)

MWD + IFR1

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

 Well:
 #201H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,343.0	0.00	0.00	2,343.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,921.7	11.57	204.43	2,917.7	-53.0	-24.1	2.00	2.00	0.00	204.43	
6,594.9	11.57	204.43	6,516.3	-724.0	-328.9	0.00	0.00	0.00	0.00	
7,173.5	0.00	0.00	7,091.0	-777.0	-353.0	2.00	-2.00	0.00	180.00	
9,414.0	0.00	0.00	9,331.5	-777.0	-353.0	0.00	0.00	0.00	0.00	KOP(Date 14 State C
9,634.5	26.46	358.85	9,544.2	-727.0	-354.0	12.00	12.00	-0.52	358.85	FTP(Date 14 State Co
10,164.0	90.00	359.54	9,808.9	-299.6	-359.0	12.00	12.00	0.13	0.76	
20,086.9	90.00	359.54	9,809.0	9,623.0	-439.0	0.00	0.00	0.00	0.00	PBHL(Date 14 State (

eog resources

Planning Report

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

 Well:
 #201H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

esign:	Plan #0.1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0				0.0				0.00	
	0.00	0.00	800.0		0.0	0.0	0.00		0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1 500 0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0		0.00	,				0.00		0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
			,						
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,343.0	0.00	0.00	2,343.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	1.14	204.43	2,400.0	-0.5	-0.2	-0.5	2.00	2.00	0.00
2,500.0	3.14	204.43	2,499.9	-3.9	-1.8	-3.8	2.00	2.00	0.00
2,600.0	5.14	204.43	2,599.7	-10.5	-4.8	-10.3	2.00	2.00	0.00
2,700.0	7.14	204.43	2,699.1	-20.2	-9.2	-19.8	2.00	2.00	0.00
2,800.0	9.14	204.43	2,798.1	-33.1	-15.0	-32.4	2.00	2.00	0.00
2,000.0	9.14	204.43	2,790.1	-33.1	-13.0	-32.4	2.00	2.00	0.00
2,900.0	11.14	204.43	2,896.5	-49.1	-22.3	-48.1	2.00	2.00	0.00
2,921.7	11.57	204.43	2,917.7	-53.0	-24.1	-51.9	2.00	2.00	0.00
3,000.0	11.57	204.43	2,994.5	-67.3	-30.6	-65.9	0.00	0.00	0.00
3,100.0	11.57	204.43	3,092.4	-85.6	-38.9	-83.7	0.00	0.00	0.00
3,200.0	11.57	204.43	3,190.4	-103.9	-47.2	-101.6	0.00	0.00	0.00
3,300.0	11.57	204.43	3,288.4	-122.1	-55.5	-119.5	0.00	0.00	0.00
3,400.0	11.57	204.43	3,386.3	-140.4	-63.8	-137.3	0.00	0.00	0.00
3,500.0	11.57	204.43	3,484.3	-158.7	-72.1	-155.2	0.00	0.00	0.00
3,600.0	11.57	204.43	3,582.3	-176.9	-80.4	-173.1	0.00	0.00	0.00
3,700.0	11.57	204.43	3,680.2	-195.2	-88.7	-191.0	0.00	0.00	0.00
3,800.0	11.57	204.43	3,778.2	-213.5	-97.0	-208.8	0.00	0.00	0.00
3,900.0	11.57	204.43	3,876.2	-231.7	-105.3	-226.7	0.00	0.00	0.00
4,000.0	11.57	204.43	3,974.1	-250.0	-113.6	-244.6	0.00	0.00	0.00
4,100.0	11.57	204.43	4,072.1	-268.3	-121.9	-262.4	0.00	0.00	0.00
4,200.0	11.57	204.43	4,170.1	-286.5	-130.2	-280.3	0.00	0.00	0.00
4,300.0	11.57	204.43	4,268.0	-304.8	-138.5	-298.2	0.00	0.00	0.00
4,400.0	11.57	204.43	4,366.0	-323.1	-146.8	-316.0	0.00	0.00	0.00
4,500.0	11.57	204.43	4,464.0	-341.3	-155.1	-333.9	0.00	0.00	0.00
4,600.0	11.57	204.43	4,561.9	-359.6	-163.4	-351.8	0.00	0.00	0.00
4,700.0	11.57	204.43	4,659.9	-377.9	-171.7	-369.6	0.00	0.00	0.00
4,800.0	11.57	204.43	4,757.9	-396.1	-180.0	-387.5	0.00	0.00	0.00
4,900.0	11.57	204.43	4,855.8	-414.4	-188.3	-405.4	0.00	0.00	0.00
5,000.0	11.57	204.43	4,953.8	-432.7	-196.6	-423.2	0.00	0.00	0.00
5,100.0	11.57	204.43	5,051.8	-450.9	-204.9	-441.1	0.00	0.00	0.00

Database: Company:

Project:

PEDM Midland

Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

 Well:
 #201H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

sign:	Plan #0.1								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	11.57	204.43	5,149.7	-469.2	-213.2	-459.0	0.00	0.00	0.00
5,300.0	11.57	204.43	5,247.7	-487.5	-221.5	-476.9	0.00	0.00	0.00
5,400.0	11.57	204.43	5,345.7	-505.7	-229.8	-494.7	0.00	0.00	0.00
5,500.0	11.57	204.43	5,443.7	-524.0	-238.1	-512.6	0.00	0.00	0.00
5,600.0	11.57	204.43	5,541.6	-542.2	-246.4	-530.5	0.00	0.00	0.00
5,700.0	11.57	204.43	5,639.6	-560.5	-254.6	-548.3	0.00	0.00	0.00
5,800.0	11.57	204.43	5,737.6	-578.8	-262.9	-566.2	0.00	0.00	0.00
5,900.0	11.57	204.43	5,835.5	-597.0	-271.2	-584.1	0.00	0.00	0.00
6,000.0	11.57	204.43	5,933.5	-615.3	-279.5	-601.9	0.00	0.00	0.00
6,100.0	11.57	204.43	6,031.5	-633.6	-287.8	-619.8	0.00	0.00	0.00
6,200.0	11.57	204.43	6,129.4	-651.8	-296.1	-637.7	0.00	0.00	0.00
6,300.0	11.57	204.43	6,227.4	-670.1	-304.4	-655.5	0.00	0.00	0.00
6,400.0	11.57	204.43	6,325.4	-688.4	-312.7	-673.4	0.00	0.00	0.00
6,500.0	11.57	204.43	6,423.3	-706.6	-321.0	-691.3	0.00	0.00	0.00
6,594.9	11.57	204.43	6,516.3	-724.0	-328.9	-708.2	0.00	0.00	0.00
6,600.0	11.47	204.43	6,521.3	-724.9	-329.3	-709.1	2.00	-2.00	0.00
6,700.0	9.47	204.43	6,619.6	-741.4	-336.8	-725.3	2.00	-2.00	0.00
6,800.0	7.47	204.43	6,718.5	-754.9	-342.9	-738.4	2.00	-2.00	0.00
6,900.0	5.47	204.43	6,817.9	-765.1	-347.6	-748.5	2.00	-2.00	0.00
7,000.0	3.47	204.43	6,917.6	-772.2	-350.8	-755.4	2.00	-2.00	0.00
7,100.0	1.47	204.43	7,017.5	-776.1	-352.6	-759.3	2.00	-2.00	0.00
7,173.5	0.00	0.00	7,091.0	-777.0	-353.0	-760.1	2.00	-2.00	0.00
7,200.0	0.00	0.00	7,117.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,300.0	0.00	0.00	7,217.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,400.0	0.00	0.00	7,317.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,500.0	0.00	0.00	7,417.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,600.0	0.00	0.00	7,517.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,700.0	0.00	0.00	7,617.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,800.0	0.00	0.00	7,717.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
7,900.0	0.00	0.00	7,817.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,000.0	0.00	0.00	7,917.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,100.0	0.00	0.00	8,017.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,200.0	0.00	0.00	8,117.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,300.0	0.00	0.00	8,217.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,400.0	0.00	0.00	8,317.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,500.0	0.00	0.00	8,417.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,600.0	0.00	0.00	8,517.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,700.0	0.00	0.00	8,617.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,800.0	0.00	0.00	8,717.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
8,900.0	0.00	0.00	8,817.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,000.0	0.00	0.00	8,917.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,100.0	0.00	0.00	9,017.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,200.0	0.00	0.00	9,117.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,300.0	0.00	0.00	9,217.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,400.0	0.00	0.00	9,317.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
9,414.0	0.00	0.00	9,331.5	-777.0	-353.0	-760.1	0.00	0.00	0.00
KOP(Date 14	4 State Com #20	1H)							
9,425.0	1.32	358.85	9,342.5	-776.9	-353.0	-760.0	12.00	12.00	0.00
9,450.0	4.32	358.85	9,367.4	-775.6	-353.0	-758.8	12.00	12.00	0.00
9,475.0	7.32	358.85	9,392.3	-773.1	-353.1	-756.2	12.00	12.00	0.00
9,500.0	10.32	358.85	9,417.0	-769.3	-353.2	-752.4	12.00	12.00	0.00
9,525.0	13.32	358.85	9,441.5	-764.2	-353.3	-747.3	12.00	12.00	0.00
9,550.0	16.32	358.85	9,465.6	-757.8	-353.4	-740.9	12.00	12.00	0.00

Database: P Company: M

PEDM

Midland Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

Project:

 Well:
 #201H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

Design:	Plan #0.1								
Planned Survey									
riailileu Suivey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,575.0	19.32	358.85	9,489.4	-750.1	-353.5	-733.2	12.00	12.00	0.00
9,600.0	22.32	358.85	9,512.8	-741.2	-353.7	-724.3	12.00	12.00	0.00
9,625.0	25.32	358.85	9,535.7	-731.1	-353.9	-714.3	12.00	12.00	0.00
9,634.5	26.46	358.85	9,544.2	-727.0	-354.0	-710.1	12.00	12.00	0.00
	4 State Com #201		0,044.2	-121.0	-004.0	-7 10.1	12.00	12.00	0.00
FIP(Date 1	4 State Com #201	іп)							
9,650.0	28.32	358.91	9,558.0	-719.9	-354.1	-703.0	12.00	12.00	0.34
9,675.0	31.32	358.98	9,579.7	-707.4	-354.4	-690.6	12.00	12.00	0.29
9,700.0	34.32	359.04	9,600.7	-693.9	-354.6	-677.0	12.00	12.00	0.24
9,725.0	37.32	359.09	9,620.9	-679.3	-354.8	-662.4	12.00	12.00	0.21
9,750.0	40.32	359.14	9,640.4	-663.6	-355.1	-646.7	12.00	12.00	0.18
9,775.0	43.32	359.18	9,659.0	-646.9	-355.3	-630.1	12.00	12.00	0.16
9,800.0	46.32	359.21	9,676.8	-629.3	-355.6	-612.4	12.00	12.00	0.14
9,825.0	49.32	359.25	9,693.5	-610.8	-355.8	-593.9	12.00	12.00	0.13
9,850.0	52.32	359.28	9,709.3	-591.4	-356.1	-574.6	12.00	12.00	0.12
9,875.0	55.32	359.30	9,724.1	-571.2	-356.3	-554.4	12.00	12.00	0.11
9,900.0	58.32	359.33	9,737.8	-550.3	-356.6	-533.5	12.00	12.00	0.10
9,925.0	61.32	359.35	9,750.3	-528.7	-356.8	-511.9	12.00	12.00	0.10
9,950.0	64.32	359.37	9,761.8	-506.5	-357.1	-489.7	12.00	12.00	0.09
9,975.0	67.32	359.40	9,772.0	-483.7		-466.9	12.00	12.00	0.09
,			,		-357.3				
10,000.0	70.32	359.42	9,781.0	-460.4	-357.6	-443.6	12.00	12.00	0.08
10,025.0	73.32	359.44	9,788.8	-436.6	-357.8	-419.9	12.00	12.00	0.08
10,050.0	76.32	359.46	9,795.4	-412.5	-358.0	-395.7	12.00	12.00	0.08
10,075.0	79.32	359.47	9,800.6	-388.1	-358.3	-371.3	12.00	12.00	0.07
10,100.0	82.32	359.49	9,804.6	-363.4	-358.5	-346.7	12.00	12.00	0.07
10,125.0	85.32	359.51	9,807.3	-338.5	-358.7	-321.8	12.00	12.00	0.07
10.150.0	88.32	359.53	9,808.7	212.6	-358.9	-296.9	12.00	12.00	0.07
10,150.0			,	-313.6				12.00	
10,164.0	90.00	359.54	9,808.9	-299.6	-359.0	-282.9	12.00	12.00	0.07
10,200.0	90.00	359.54	9,808.9	-263.6	-359.3	-246.9	0.00	0.00	0.00
10,300.0	90.00	359.54	9,808.9	-163.6	-360.1	-147.0	0.00	0.00	0.00
10,400.0	90.00	359.54	9,808.9	-63.6	-360.9	-47.1	0.00	0.00	0.00
10,500.0	90.00	359.54	9,808.9	36.4	-361.7	52.9	0.00	0.00	0.00
10,600.0	90.00	359.54	9,808.9	136.4	-362.5	152.8	0.00	0.00	0.00
10,700.0	90.00	359.54	9,808.9	236.4	-363.3	252.7	0.00	0.00	0.00
10,800.0	90.00	359.54	9,808.9	336.4	-364.1	352.7	0.00	0.00	0.00
10,900.0	90.00	359.54	9,808.9	436.4	-365.0	452.6	0.00	0.00	0.00
11,000.0	90.00	359.54	9,808.9	536.4	-365.8	552.5	0.00	0.00	0.00
11,100.0	90.00	359.54	9,808.9	636.4	-366.6	652.4	0.00	0.00	0.00
11,200.0	90.00	359.54	9,808.9	736.4	-367.4	752.4	0.00	0.00	0.00
11,300.0	90.00	359.54	9,808.9	836.4	-368.2	852.3	0.00	0.00	0.00
11,400.0	90.00	359.54	9,808.9	936.4	-369.0	952.2	0.00	0.00	0.00
11,500.0	90.00	359.54	9,808.9	1,036.4	-369.8	1,052.2	0.00	0.00	0.00
11,600.0	90.00	359.54	9,808.9	1,136.4	-370.6	1,152.1	0.00	0.00	0.00
11,700.0	90.00	359.54	9,808.9	1,236.4	-371.4	1,252.0	0.00	0.00	0.00
11,800.0	90.00	359.54	9,808.9	1,336.4	-372.2	1,352.0	0.00	0.00	0.00
11,900.0	90.00	359.54	9,808.9	1,436.4	-373.0	1,451.9	0.00	0.00	0.00
12,000.0	90.00	359.54	9,808.9	1,536.4	-373.8	1,551.8	0.00	0.00	0.00
12,100.0	90.00	359.54	9,808.9	1,636.4	-374.6	1,651.7	0.00	0.00	0.00
12,200.0	90.00	359.54	9,808.9	1,736.4	-375.4	1,751.7	0.00	0.00	0.00
12,300.0	90.00	359.54	9,808.9	1,836.4	-376.2	1,851.6	0.00	0.00	0.00
12,400.0	90.00	359.54	9,808.9	1,936.4	-377.0	1,951.5	0.00	0.00	0.00
12,500.0	90.00	359.54	9,808.9	2,036.4	-377.8	2,051.5	0.00	0.00	0.00
12,600.0	90.00	359.54	9,808.9	2,136.4	-378.7	2,151.4	0.00	0.00	0.00
12,700.0	90.00	359.54	9,808.9	2,236.3	-379.5	2,151.4	0.00	0.00	0.00
12,800.0	90.00	359.54	9,808.9	2,336.3	-380.3	2,351.3	0.00	0.00	0.00
12,000.0	90.00	JUB.U4	9,000.9	۷,330.3	-300.3	۷,351.2	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

 Well:
 #201H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,900.0	90.00	359.54	9,808.9	2,436.3	-381.1	2,451.2	0.00	0.00	0.00
13,000.0	90.00	359.54	9,808.9	2,536.3	-381.9	2,551.1	0.00	0.00	0.00
13,100.0	90.00	359.54	9,808.9	2,636.3	-382.7	2,651.0	0.00	0.00	0.00
13,200.0	90.00	359.54	9,808.9	2,736.3	-383.5	2,751.0	0.00	0.00	0.00
13,300.0	90.00	359.54	9,808.9	2,836.3	-384.3	2,850.9	0.00	0.00	0.00
13,400.0	90.00	359.54	9,808.9	2,936.3	-385.1	2,950.8	0.00	0.00	0.00
13,500.0	90.00	359.54	9,808.9	3,036.3	-385.9	3,050.8	0.00	0.00	0.00
13,600.0	90.00	359.54	9,808.9	3,136.3	-386.7	3,150.7	0.00	0.00	0.00
13,700.0	90.00	359.54	9,808.9	3,236.3	-387.5	3,250.6	0.00	0.00	0.00
13,800.0	90.00	359.54	9,808.9	3,336.3	-388.3	3,350.5	0.00	0.00	0.00
13,900.0	90.00	359.54	9,808.9	3,436.3	-389.1	3,450.5	0.00	0.00	0.00
14,000.0	90.00	359.54	9,808.9	3,536.3	-389.9	3,550.4	0.00	0.00	0.00
14,100.0	90.00	359.54	9,808.9	3,636.3	-390.7	3,650.3	0.00	0.00	0.00
14,200.0	90.00	359.54	9,808.9	3,736.3	-391.5	3,750.3	0.00	0.00	0.00
14,300.0	90.00	359.54	9,808.9	3,836.3	-392.4	3,850.2	0.00	0.00	0.00
14,400.0	90.00	359.54	9,809.0	3,936.3	-393.2	3,950.1	0.00	0.00	0.00
14,500.0	90.00	359.54	9,809.0	4,036.3	-394.0	4,050.1	0.00	0.00	0.00
14,600.0	90.00	359.54	9,809.0	4,136.3	-394.8	4,150.0	0.00	0.00	0.00
14,700.0	90.00	359.54	9,809.0	4,236.3	-395.6	4,249.9	0.00	0.00	0.00
14,800.0	90.00	359.54	9,809.0	4,336.3	-396.4	4,349.8	0.00	0.00	0.00
14,900.0	90.00	359.54	9,809.0	4,436.3	-397.2	4,449.8	0.00	0.00	0.00
15,000.0	90.00	359.54	9,809.0	4,536.3	-398.0	4,549.7	0.00	0.00	0.00
15,100.0	90.00	359.54	9,809.0	4,636.3	-398.8	4,649.6	0.00	0.00	0.00
15,200.0	90.00	359.54	9,809.0	4,736.3	-399.6	4,749.6	0.00	0.00	0.00
15,300.0	90.00	359.54	9,809.0	4,836.3	-400.4	4,849.5	0.00	0.00	0.00
15,400.0	90.00	359.54	9,809.0	4,936.3	-401.2	4,949.4	0.00	0.00	0.00
15,500.0	90.00	359.54	9,809.0	5,036.3	-402.0	5,049.3	0.00	0.00	0.00
15,600.0	90.00	359.54	9,809.0	5,136.3	-402.8	5,149.3	0.00	0.00	0.00
15,700.0	90.00	359.54	9,809.0	5,236.3	-403.6	5,249.2	0.00	0.00	0.00
15,800.0	90.00	359.54	9,809.0	5,336.2	-404.4	5,349.1	0.00	0.00	0.00
15,900.0	90.00	359.54	9,809.0	5,436.2	-405.3	5,449.1	0.00	0.00	0.00
16,000.0	90.00	359.54	9,809.0	5,536.2	-406.1	5,549.0	0.00	0.00	0.00
16,100.0	90.00	359.54	9,809.0	5,636.2	-406.9	5,648.9	0.00	0.00	0.00
16,200.0	90.00	359.54	9,809.0	5,736.2	-407.7	5,748.9	0.00	0.00	0.00
16,300.0	90.00	359.54	9,809.0	5,836.2	-408.5	5,848.8	0.00	0.00	0.00
16,400.0	90.00	359.54	9,809.0	5,936.2	-409.3	5,948.7	0.00	0.00	0.00
16,500.0	90.00	359.54	9,809.0	6,036.2	-410.1	6,048.6	0.00	0.00	0.00
16,600.0	90.00	359.54	9,809.0	6,136.2	-410.9	6,148.6	0.00	0.00	0.00
16,700.0	90.00	359.54	9,809.0	6,236.2	-411.7	6,248.5	0.00	0.00	0.00
16,800.0	90.00	359.54	9,809.0	6,336.2	-412.5	6,348.4	0.00	0.00	0.00
16,900.0	90.00	359.54	9,809.0	6,436.2	-413.3	6,448.4	0.00	0.00	0.00
17,000.0	90.00	359.54	9,809.0	6,536.2	-414.1	6,548.3	0.00	0.00	0.00
17,100.0	90.00	359.54	9,809.0	6,636.2	-414.9	6,648.2	0.00	0.00	0.00
17,200.0	90.00	359.54	9,809.0	6,736.2	-415.7	6,748.1	0.00	0.00	0.00
17,300.0	90.00	359.54	9,809.0	6,836.2	-416.5	6,848.1	0.00	0.00	0.00
17,400.0	90.00	359.54	9,809.0	6,936.2	-417.3	6,948.0	0.00	0.00	0.00
17,500.0	90.00	359.54	9,809.0	7,036.2	-418.1	7,047.9	0.00	0.00	0.00
17,600.0	90.00	359.54	9,809.0	7,136.2	-419.0	7,147.9	0.00	0.00	0.00
17,700.0	90.00	359.54	9,809.0	7,236.2	-419.8	7,247.8	0.00	0.00	0.00
17,800.0	90.00	359.54	9,809.0	7,336.2	-420.6	7,347.7	0.00	0.00	0.00
17,900.0	90.00	359.54	9,809.0	7,436.2	-421.4	7,447.7	0.00	0.00	0.00
18,000.0	90.00	359.54	9,809.0	7,536.2	-422.2	7,547.6	0.00	0.00	0.00
18,100.0	90.00	359.54	9,809.0	7,636.2	-423.0	7,647.5	0.00	0.00	0.00
18,200.0	90.00	359.54	9,809.0	7,736.2	-423.8	7,747.4	0.00	0.00	0.00

Database:

PEDM

Company: Midland
Project: Lea County, NM (NAD 83 NME)

Site: Date 14 State Com

 Well:
 #201H

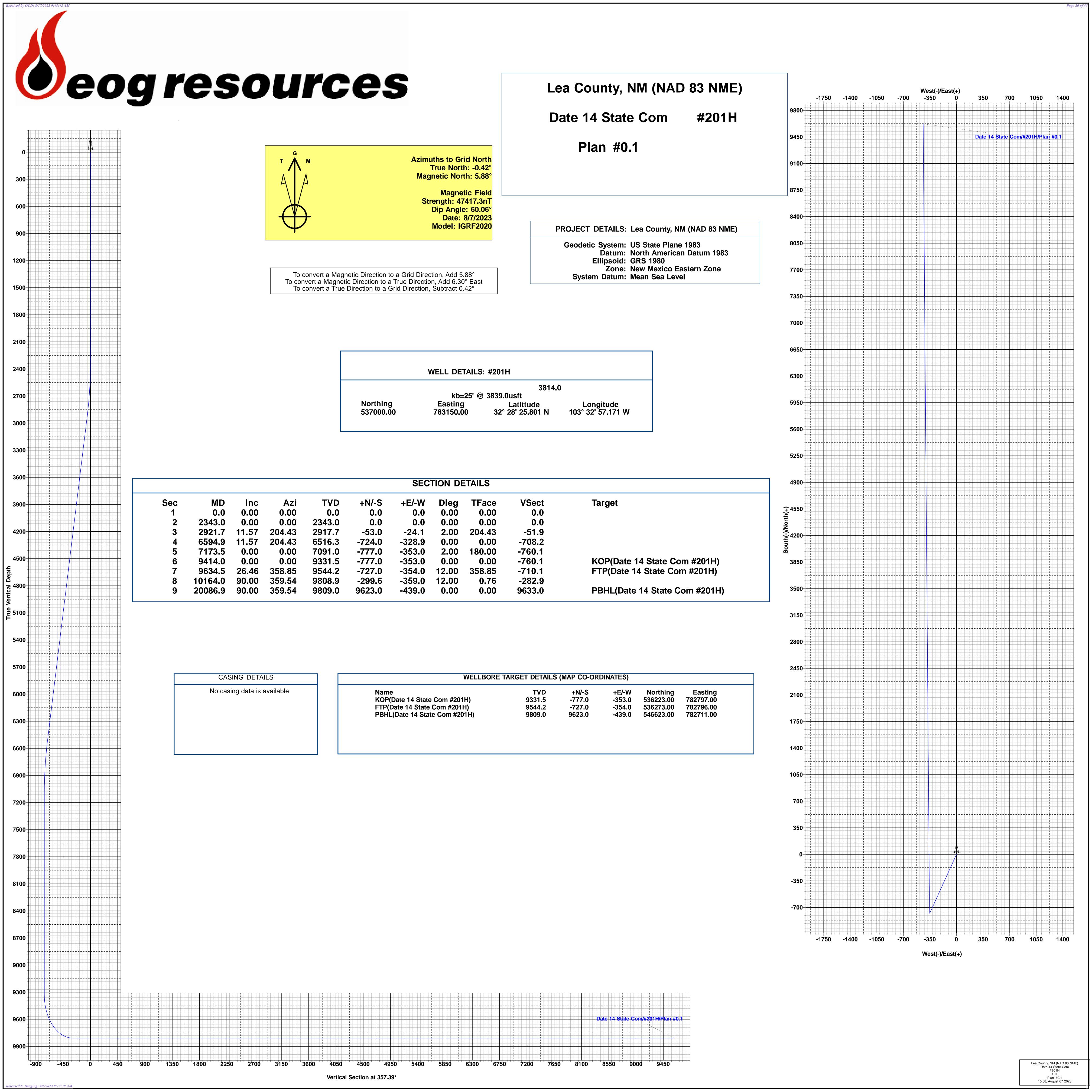
 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:


Well #201H

kb=25' @ 3839.0usft kb=25' @ 3839.0usft

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,300.0	90.00	359.54	9,809.0	7,836.2	-424.6	7,847.4	0.00	0.00	0.00
18,400.0	90.00	359.54	9,809.0	7,936.2	-425.4	7,947.3	0.00	0.00	0.00
18,500.0	90.00	359.54	9,809.0	8,036.2	-426.2	8,047.2	0.00	0.00	0.00
18,600.0	90.00	359.54	9,809.0	8,136.2	-427.0	8,147.2	0.00	0.00	0.00
18,700.0	90.00	359.54	9,809.0	8,236.2	-427.8	8,247.1	0.00	0.00	0.00
18,800.0	90.00	359.54	9,809.0	8,336.1	-428.6	8,347.0	0.00	0.00	0.00
18,900.0	90.00	359.54	9,809.0	8,436.1	-429.4	8,447.0	0.00	0.00	0.00
19,000.0	90.00	359.54	9,809.0	8,536.1	-430.2	8,546.9	0.00	0.00	0.00
19,100.0	90.00	359.54	9,809.0	8,636.1	-431.0	8,646.8	0.00	0.00	0.00
19,200.0	90.00	359.54	9,809.0	8,736.1	-431.9	8,746.7	0.00	0.00	0.00
19,300.0	90.00	359.54	9,809.0	8,836.1	-432.7	8,846.7	0.00	0.00	0.00
19,400.0	90.00	359.54	9,809.0	8,936.1	-433.5	8,946.6	0.00	0.00	0.00
19,500.0	90.00	359.54	9,809.0	9,036.1	-434.3	9,046.5	0.00	0.00	0.00
19,600.0	90.00	359.54	9,809.0	9,136.1	-435.1	9,146.5	0.00	0.00	0.00
19,700.0	90.00	359.54	9,809.0	9,236.1	-435.9	9,246.4	0.00	0.00	0.00
19,800.0	90.00	359.54	9,809.0	9,336.1	-436.7	9,346.3	0.00	0.00	0.00
19,900.0	90.00	359.54	9,809.0	9,436.1	-437.5	9,446.2	0.00	0.00	0.00
20,000.0	90.00	359.54	9,809.0	9,536.1	-438.3	9,546.2	0.00	0.00	0.00
20,086.9	90.00	359.54	9,809.0	9,623.0	-439.0	9,633.0	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Date 14 State Corr - plan hits target cent - Point	0.00 er	0.00	9,331.5	-777.0	-353.0	536,223.00	782,797.00	32° 28′ 18.139 N	103° 33' 1.358 W
FTP(Date 14 State Com - plan hits target cent - Point	0.00 er	0.00	9,544.2	-727.0	-354.0	536,273.00	782,796.00	32° 28′ 18.633 N	103° 33' 1.365 W
PBHL(Date 14 State Coi - plan hits target cent - Point	0.00 er	0.00	9,809.0	9,623.0	-439.0	546,623.00	782,711.00	32° 30' 1.050 N	103° 33' 1.471 W

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:EOG	Resources, Inc	OGRID	: 7377		Da	ite: 8/17/	2023		
II. Type: ⊠ Origina	l □ Amendm	ent due to □ 19.15.	27.9.D(6)(a) NI	MAC □ 19.15.27.	9.D(6)(l	o) NMAC	□ Otl	ner.	
If Other, please describe	:								
III. Well(s): Provide the be recompleted from a s					wells pr	oposed to	be dri	lled or proposed to	
Well Name API ULSTR Footages Anticipated Oil BBL/D Gas MCF/D Produced War BBL/D									
DATE 14 STATE COM 201H		M-14-21S-33E	286' FSL & 789' FWL	+/- 1000	+/- 35	500	+/- 30	000	
IV. Central Delivery P V. Anticipated Schedu or proposed to be recom Well Name	ule: Provide th	e following informa	ation for each ne	ew or recompleted	l well or nt.		lls pro	posed to be drilled First Production	
Well Ivallic	AH	Spud Date	Date	Commencement		Back I		Date	
DATE 14 STATE COM 201H		9/01/23	9/15/23	11/08/23		12/08/23	3	1/08/24	
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Management during active and planner	tices: ⊠ Attac of 19.15.27.8 at Practices: [ch a complete descr NMAC. ⊠ Attach a complet	iption of the ac	tions Operator wi	ll take to	o comply	with t	he requirements of	

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🖾 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
			Start Date	of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have capacity t	to gather 100% of the anticipated	natural gas
production volume from the well prior to the date of fin	rst production.		

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, o	r portion,	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the	ne new we	ıll(s).

\neg	Attach On	arator's	nlan to	monoga	production	in rocnone	o to the inc	reased line r	roccuro
	Affach Ob	erator s	nian to	manage	production	in respons	se to the inc	reased line i	ressure

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information prov	vided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information of the	rmation
for which confidentiality is asserted and the basis for such assertion.	

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; (c) compression on lease;

- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Star L Harrell
Printed Name: Star L Harrell
Title: Sr Regulatory Specialist
E-mail Address: Star_Harrell@eogresources.com
Date: 8/17/2023
Phone: (432) 848-9161
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction
 and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which
 point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which
 point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

2/24/2022

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

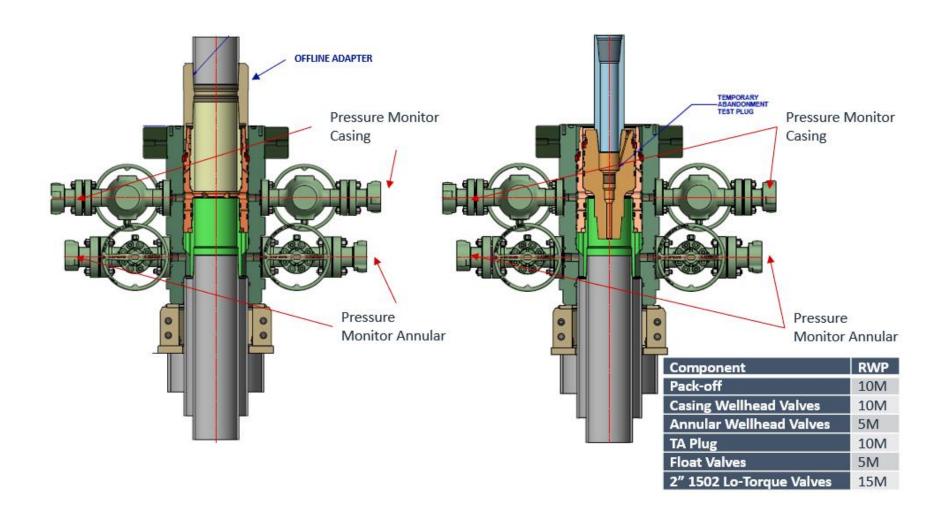
Page | 3

2/24/2022

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

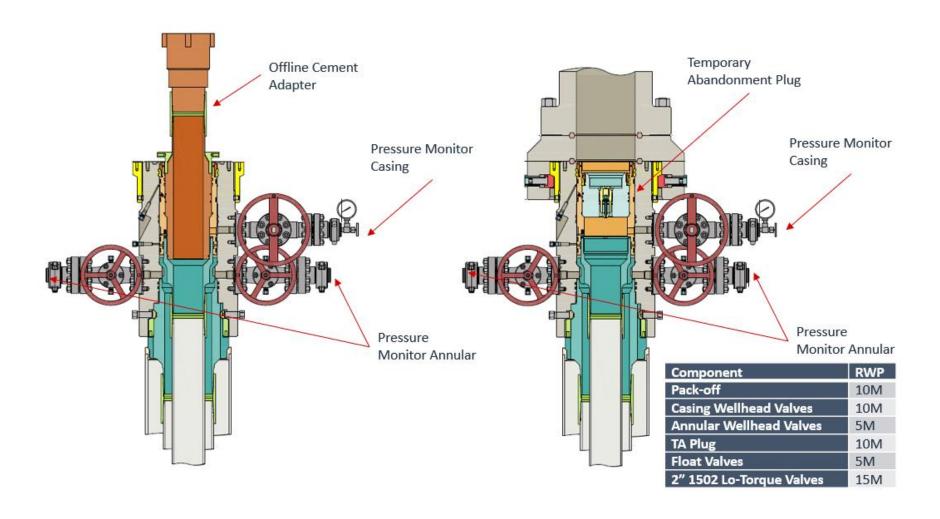
General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

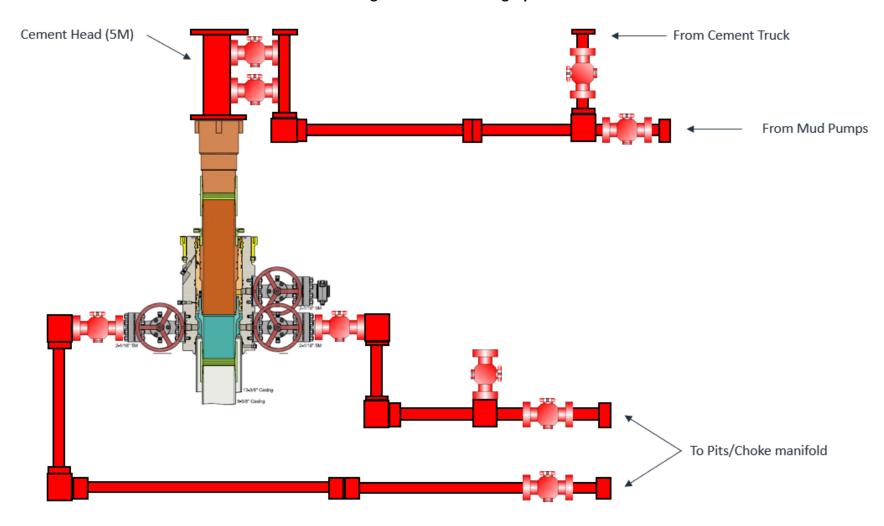
- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

2/24/2022


Figure 1: Cameron TA Plug and Offline Adapter Schematic

2/24/2022

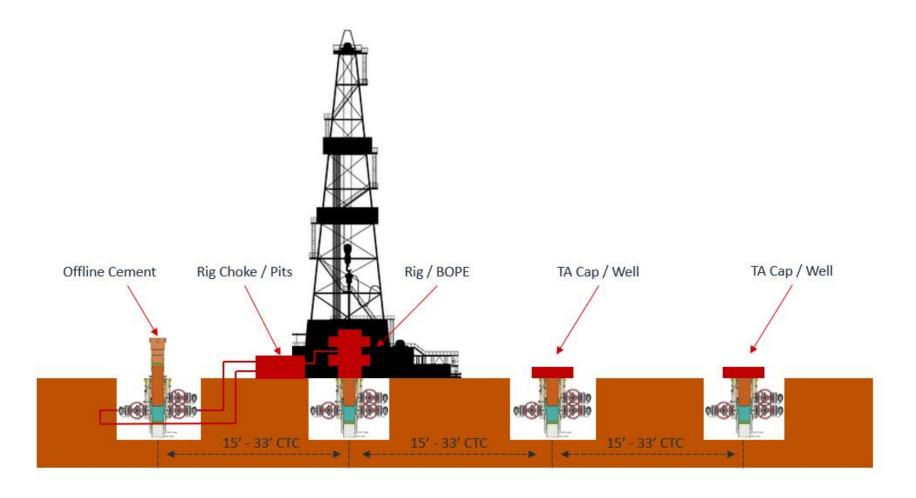
Figure 2: Cactus TA Plug and Offline Adapter Schematic



Page | 6

2/24/2022

Figure 3: Back Yard Rig Up


*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Figure 4: Rig Placement Diagram

Page | 8

Received by OCD: 8/17/2023 9:43:42 AM

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

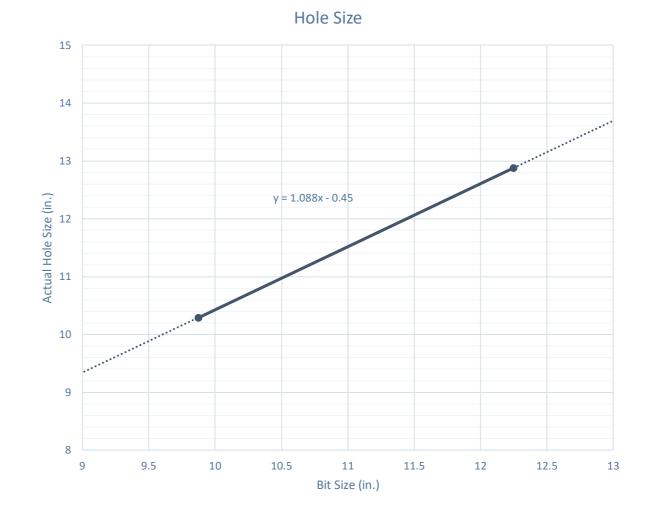
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

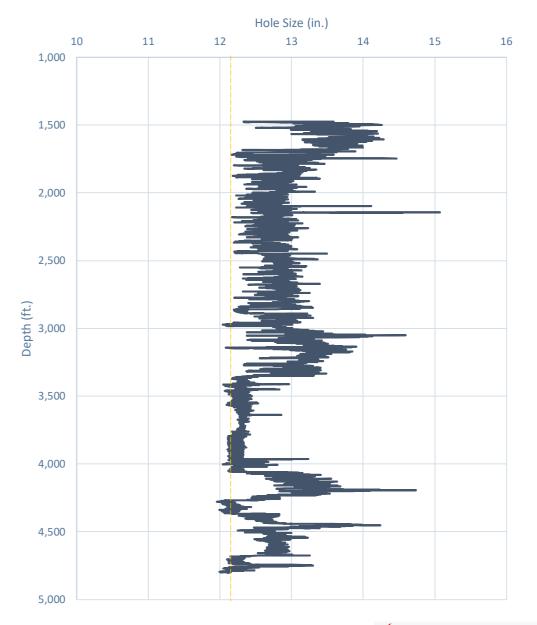

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

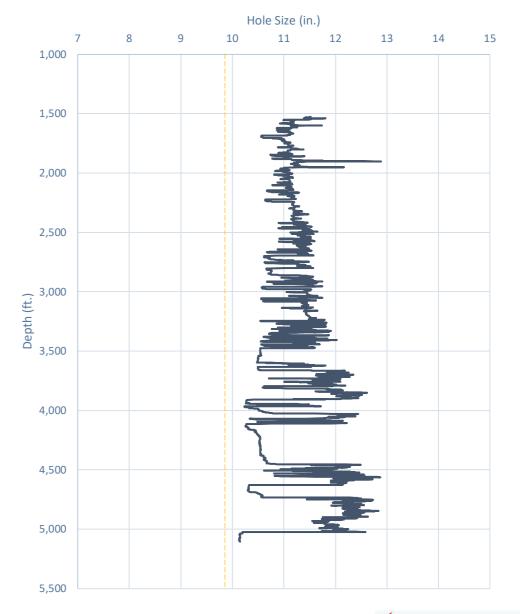


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

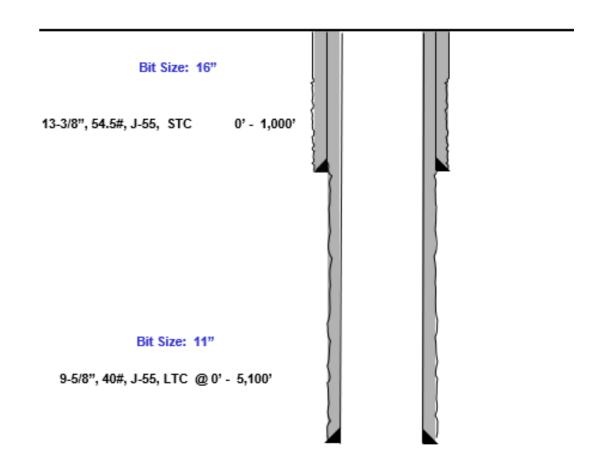
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

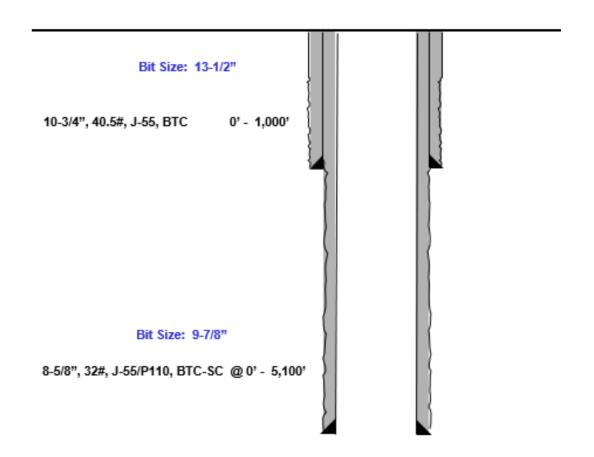
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 8/17/2023 9:43:42 AM

Page 43 of 45

Index

Released to Imaging: 9/6/2023 9:17:30 AM

Received by OCD: 8/17/2023 9:43:42 AM

Page 44 of 45

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	1

in²

Connection Parameters						
Connection OD	10.625	in				
Coupling Length	10.500	in				
Threads Per Inch	8	tpi				
Standoff Thread Turns	3.50	turns				
Make-Up Loss	4.750	in				
Min. Internal Yield Pressure	3,950	psi				

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

« Ba	ck to Pre	vious List
usc		Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength		909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Nom. Pipe Body Area

Received by OCD: 8/17/2023 9:43:42 AM Page 45 of 45

5,250


ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric 6/8/2015 10:14:05 AM BTC Ptpe STC **Mechanical Properties** Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diamete 10.750 11.750 in. Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 in. Alternate Drift in. 40.50 Nominal Linear Weight, T&C lbs/ft 38.91 lbs/ft Plain End Weight Performance Ptpe BTC STC Minimum Collapse Pressure psi Minimum Internal Yield Pressure 3.130 3.130 3.130 629.00 Minimum Pipe Body Yield Strength 1000 lbs 700 420 Joint Strength 1000 lbs Reference Length 11,522 6,915 BTC STC Make-Up Data Ptpe 4.81 Make-Up Loss 3.50 in. Minimum Make-Up Torque 3,150 ft-lbs

Material Properties (PE)				
55 ksi				
80 ksi				
75 ksi				
Coupling				
55 ksi				
80 ksi				
75 ksi				

MADE IN USA

#0d

SLN

#0/M

7.875

DA

S2L2

S

8.625

VALLOUREC

Pipe Body Data (PE)					
Geometry					
Nominal ID:	7.92 inch				
Nominal Area:	9.149 in ²				
*Special/Alt. Drift:	7.875 inch				
Performance					
Pipe Body Yield Strength:	503 kips				
Collapse Resistance:	2,530 psi				
Internal Yield Pressure: (API Historical)	3,930 psi				

Coupling OD: 9.625"						
STC Performance						
STC Internal Pressure:	3,930	psi				
STC Joint Strength:	372	kips				
LTC Performance						
LTC Internal Pressure:	3,930	psi				
LTC Joint Strength:		kips				
SC-BTC Performance - Cplg OD = 9.125"						
BTC Internal Pressure:	3,930	psi				
BTC Joint Strength:	503	kips				

	Connec	tion To	ane								
			API Connection Torque								
STC Torque (ft-lbs)											
793	Opti:	3,724	Max:	4,655							
LTC Torque (ft-lbs)											
130	Opti:	4,174	Max:	5,217							
BTC Torque (ft-lbs)											
follow API guidelines regarding positional make up											
	793 L1 130	Opti: LTC Torquition Opti: BTC Torquition Opticition Opticitical Opticition Opticitic Opticition Opticition Opticition Opticition Opticition Opticition Optical	793 Opti: 3,724 LTC Torque (ft-lb 130 Opti: 4,174 BTC Torque (ft-lb	793 Opti: 3,724 Max: LTC Torque (ft-lbs) 130 Opti: 4,174 Max: BTC Torque (ft-lbs)							

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT. SPECIAL INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Maximum Make-Up Torque