| U.S. Department of the Interior | |---------------------------------| | BUREAU OF LAND MANAGEMENT | | Well Name | Well Number | US Well Number | Lease Number | Case Number | Operator | |----------------|-------------|----------------|--------------|-------------|----------| | TATER TOT 2-35 | 334H | 3001549053 | NMNM103604 | NMNM103604 | DEVON | | TATER TOT 2-35 | 624H | 3001549050 | NMNM103604 | NMNM103604 | DEVON | | TATER TOT 2-35 | 713H | 3001549067 | NMNM103604 | NMNM103604 | DEVON | ### **Notice of Intent** **Sundry ID: 2765978** Type of Submission: Notice of Intent Type of Action: APD Change Date Sundry Submitted: 12/14/2023 Time Sundry Submitted: 06:08 Date proposed operation will begin: 12/13/2023 **Procedure Description:** Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes. Please see attachments. Batch includes attachments by pad with the drilling plan for the deepest well (TVD). ### **NOI Attachments** ### **Procedure Description** 5.50_20__VA_EP_P110_VAroughneck_6.051in_20231214060644.pdf CDS_FXL_7_625_29_7_BMP_P110HSCY_95_RBW_Sep20_2023_20231214060643.pdf 9.625_40_J55___SeAH_20231214060643.pdf 5.5_20_P110EC_SPRINT_SF___VST_20231214060642.pdf Tater_Tot_2_35__Fed_Com_713H_20231214060621.pdf ### **Conditions of Approval** ### **Specialist Review** Tater_Tot_2_35_Fed_Com_Batch_Sundry_ID_2765978_20231215121546.pdf ### **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a Operator Electronic Signature: SHAYDA OMOUMI Signed on: DEC 14, 2023 06:08 AM Name: DEVON ENERGY PRODUCTION COMPANY LP **Title:** Regulatory Compliance Associate 3 **Street Address:** 333 W SHERIDAN AVE City: OKLAHOMA CITY State: OK Phone: (405) 235-3611 Email address: SHAYDA.OMOUMI@DVN.COM **Field** **Representative Name:** **Street Address:** City: State: Zip Phone: **Email address:** **BLM Point of Contact** Signature: Long Vo BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer BLM POC Phone: 5759885402 BLM POC Email Address: LVO@BLM.GOV **Disposition:** Approved **Disposition Date:** 12/15/2023 Issued on: 08 Jul. 2020 by Wesley Ott **Connection Data Sheet** | | 1 | | | | | |-----------|-------------|-----------|--------|------------|----------------| | OD | Weight | Wall Th. | Grade | API Drift: | Connection | | 5 1/2 in. | 20.00 lb/ft | 0.361 in. | P110EC | 4.653 in. | VAM® SPRINT-SF | | | • | | • | • | | | PIPE PROPERTIES | | | | | |--------------------------------|-------|---------|--|--| | Nominal OD | 5.500 | in. | | | | Nominal ID | 4.778 | in. | | | | Nominal Cross Section Area | 5.828 | sqin. | | | | Grade Type | Hig | h Yield | | | | Min. Yield Strength | 125 | ksi | | | | Max. Yield Strength | 140 | ksi | | | | Min. Ultimate Tensile Strength | 135 | ksi | | | | CONNECTION P | ROPERTIES | | |------------------------------|-------------------------|------------| | Connection Type | Semi-Premium Integral ! | Semi-Flush | | Connection OD (nom): | 5.783 | in. | | Connection ID (nom): | 4.717 | in. | | Make-Up Loss | 5.965 | in. | | Critical Cross Section | 5.244 | sqin. | | Tension Efficiency | 90.0 | % of pipe | | Compression Efficiency | 90.0 | % of pipe | | Internal Pressure Efficiency | 100 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | | |---------------------------------------|--------|---------|--| | Tensile Yield Strength | 656 | klb | | | Compression Resistance | 656 | klb | | | Internal Yield Pressure | 14,360 | psi | | | Collapse Resistance | 12,080 | psi | | | Max. Structural Bending | 89 | °/100ft | | | Max. Bending with ISO/API Sealability | 30 | °/100ft | | | TORQUE VALUES | | | |------------------------------------|--------|-------| | Min. Make-up torque | 20,000 | ft.lb | | Opt. Make-up torque | 22,500 | ft.lb | | Max. Make-up torque | 25,000 | ft.lb | | Max. Torque with Sealability (MTS) | 40,000 | ft.lb | VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements. canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM^{\circledR} like VAM^{\circledR} uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW Metric 862 Mpa 965 Mpa 862 Mpa ### **TECHNICAL DATA SHEET** Connection: VAroughneck Size: 5 1/2 in X 20.00 lb/ft Drift: standard Bevel: standard Grade: VA-EP-P110 Material: Yield Strength Min. 125,000 psi Yield Strength Max. 140,000 psi Tensile Strength Min. 125,000 psi **US Customary** ### Pipe: | _ | US Customary | Metric | | US Customary | Metric | |---------------------|-----------------------|--------------------------|---------------------------|--------------|-----------| | Nominal OD: | 5.500 in | 139.70 mm | Wall Thickness: | 0.361 in | 9.17 mm | | Nominal ID: | 4.778 in | 121.36 mm | Standard Drift: | 4.653 in | 118.19 mm | | Nominal Weight: | 20.00 lb/ft | 30.07 kg/m | Pipe Body Yield Strength: | 729 klb | 3,243 kN | | Pipe Cross Section: | 5.828 in ² | 3,759.99 mm ² | | | | ### **Connection:** | | US Customary | Metric | |---------|--------------|-----------| | OD: | 6.051 in | 153.70 mm | | ID: | 4.764 in | 121.00 mm | | Length: | 8.976 in | 228.00 mm | Threads per inch: 5 Threads ### **Connection Performance (Uniaxial Load):** | | US Customary | Metric | | US Customary | Metric | |--------------------------|--------------|-----------|---------------------|--------------|-----------| | Joint Strength: | 729 klb | 3,243 kN | Tension Efficiency: | > 100.0 % | | | Collapse Resistance:. | 13,300 psi | 91.70 Mpa | Displacement: | 1.240 gal/ft | 15.40 l/m | | Internal Yield Pressure: | 13,920 psi | 96.00 Mpa | Production: | 0.932 gal/ft | 11.57 l/m | | Load on Coupling Face: | 411 klh | 1.829 kN | | | | ### Field Make Up (Friction Factor = 1.0): | | US Customary | Metric | | US Customary | Metric | |-----------------|--------------|-----------|---------------|--------------|-----------| | Minimum Torque: | 15,822 ft.lb | 21,451 Nm | Make-Up Loss: | 4.370 in | 111.00 mm | | Optimum Torque: | 17,580 ft.lb | 23,835 Nm | Yield Torque: | 22,000 ft.lb | 29,800 Nm | | Maximum Torque: | 19,338 ft.lb | 26,218 Nm | | | | Min. Torque on Shoulder: ### **LOAD ENVELOPE** The graph is calculated under consideration of the requirements of EN ISO 13679 and API 5C3. The combined loads are calculated without the consideration of wall thickness tolerances and differ from the values in the data sheet, which are calculated with tolerances determined by API. Any printout is NOT SUBJECT TO REGULAR REVISION. The generated performance envelope shall solely be used as a tool to facilitate the comparison of performance properties under combined loads, of different grades, sizes and connections of voestalpine Tubulars products. Field-specific safety/design factors as well as other loads are not considered. Thus the results shall by no means be used to replace the own string design engineering or to justify any warranty/guaranty cases. 9.625" 40# .395" J-55 ## **Dimensions (Nominal)** **BTC** | 9.625 | in. | |--------|---| | 0.395 | in. | | 8.835 | in. | | 8.750 | in. | | 40.000 | lbs./ft. | | 38.970 | lbs./ft. | | | | | 2570 | psi | | | | | 3950 | psi | | 3950 | psi | | 3950 | psi | | 630 | 1000 lbs. | | | | | 452 | 1000 lbs. | | 520 | 1000 lbs. | | | 0.395
8.835
8.750
40.000
38.970
2570
3950
3950
3950
3950 | Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility. 714 1000 lbs. | etai Olie Corp. | MO-FXL | | | MO-FXL 7-5/8 29.7
P110HSCY | | | |---------------------------------------|--|---|--|---|---------------------------------------|--| | Metal <mark>O</mark> ne | *1 Pipe Body: BMP P110HS0 | Y MinYS125kei | CDS# | MinYS125ksi | | | | Metal One | Min95%WT | 71 WIII 1 0 12 0 K31 | | Min95%WT | | | | | Connection Dat | a Shoot | Date | 20-Se | | | | | | a Olicet | Date | 20-00 | ρ- <u>2</u> υ | | | | Geometry | <u>Imperia</u> | <u>.l</u> | <u>S.I.</u> | | | | | Pipe Body |
 | | | | | | Grade * | P110HSCY | | P110HSCY | | | | | Pipe OD (D) | 7 5/8 | in | 193.68 | mm | | | MO-FXL | Weight | 29.70 | lb/ft | 44.25 | kg/m | | | | Actual weight | 29.04 | | 43.26 | kg/m | | | | Wall Thickness (t) | 0.375 | in | 9.53 | mm | | | | Pipe ID (d) | 6.875 | in | 174.63 | mm | | | | Pipe body cross section | 8.541 | in ² | 5,510 | mm ² | | | | Drift Dia. | 6.750 | in | 171.45 | mm | | | | Connection | | | | | | | \uparrow \longleftrightarrow | Box OD (W) | 7.625 | in | 193.68 | mm | | | | PIN ID | 6.875 | in | 174.63 | mm | | | Box | Make up Loss | 4.219 | in | 107.16 | mm | | | critical | Box Critical Area | 5.714 | in ² | 3686 | mm ² | | | | | | % | 70 | % | | | area | Joint load efficiency | 1 /0 | 70 | | | | | area | Joint load efficiency Thread Taper | 70 | | | | | | Make p | Thread Taper Number of Threads | | / 10 (1. | 2" per ft)
TPI | • | | | | Thread Taper Number of Threads Performance | 1 | / 10 (1. | 2" per ft) | | | | d d d d | Thread Taper Number of Threads Performance Performance Properties | for Pipe Body | / 10 (1.
5 | 2" per ft)
TPI | kN | | | d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 | for Pipe Body | / 10 (1.
5
kips | 2" per ft) TPI 4,749 | kN
MPa | | | d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 | for Pipe Body 1,068 11,680 | / 10 (1.
5
kips
psi | 2" per ft) TPI 4,749 80.55 | MPa | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 | for Pipe Body 1,068 11,680 7,200 | / 10 (1. 5 | 2" per ft) TPI 4,749 80.55 49.66 | MPa
MPa | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif | for Pipe Body 1,068 11,680 7,200 ried Minimum YIE | kips
psi
psi | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe boo | MPa
MPa | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Minim | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yielo | kips
psi
psi
ELD Street | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body re of Pipe body | MPa
MPa | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yielo ii, Min95%WT, Col | kips psi psi ELD Streid Pressuilapse Stre | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yiel ii, Min95%WT, Col 5" 29.7lb/ft P110H3 | kips psi psi ELD Streid Pressuilapse Stre | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yiel ii, Min95%WT, Col 5" 29.7lb/ft P110H3 | kips
psi
psi
ELD Streid Pressul
lapse Stre
SCY Revo | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62: Performance Properties | for Pipe Body 1,068 11,680 7,200 ried Minimum YIE um Internal Yiel si, Min95%WT, Col 5" 29.7lb/ft P110H: for Connectio | kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe bodyength 7,200psi 8, dated 9/19/202 | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S. = Specific M.I.Y.P. = Miniming * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load | for Pipe Body 1,068 11,680 7,200 ried Minimum YIE um Internal Yield si, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips | kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) | MPa
MPa
dy | | | Make p D Pin critical | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi the Pressulation SCY Rev3 n (70% (70% (80% | 2" per ft) TPI 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi the Pressulation SCY Rev3 n (70% (70% (80% | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse St | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi Pressul lapse Stre (70% (70% 80% 100% c | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse St | MPa
MPa
dy | | | Make p D Pin critical | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi Pressul lapse Stre (70% (70% 80% 100% c | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse St | MPa
MPa
dy | | | d d d d d d d d d d d d d d d d d d d | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. | for Pipe Body 1,068 11,680 7,200 iied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% (70% 3 | 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 | MPa
MPa
dy
3 | | | Make p D Pin critical | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S. = Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. | for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H for Connectio 747 kips 747 kips 9,340 psi | kips psi psi ELD Streid Pressuilapse Stre SCY Rev3 n (70% (70% (70%) 3 | 2" per ft) TPI 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300 | MPa
MPa
dy
3
3
rrength | | | Make p D Pin critical | Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. | for Pipe Body 1,068 11,680 7,200 iied Minimum YIE um Internal Yield ii, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% (70% 3 | 4,749 80.55 49.66 ngth of Pipe body ength 7,200psi 8, dated 9/19/202
of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 | MPa
MPa
dy
3 | | The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Shee is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safetyrelated factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information. Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/ images/top/WebsiteTerms Active 20333287 1.pdf the contents of which are incorporated by reference into this Connection Data Sheet. ### 1. Geologic Formations | TVD of target | 10345 | Pilot hole depth | N/A | |---------------|-------|------------------------------|-----| | MD at TD: | 20700 | Deepest expected fresh water | | ### Basin | Dasin | Depth | Water/Mineral | | |----------------------|---------|----------------|----------| | Formation | | | Hazards* | | Formation | (TVD) | Bearing/Target | Hazarus* | | | from KB | Zone? | | | Rustler | 260 | | | | Salt | 570 | | | | Base of Salt | 2995 | | | | Delaware | 3198 | | | | Cherry Canyon | 4075 | | | | Brushy Canyon | 5663 | | | | 1st Bone Spring Lime | 6891 | | | | Bone Spring 1st | 7944 | | | | Bone Spring 2nd | 8672 | | | | 3rd Bone Spring Lime | 9071 | | | | Bone Spring 3rd | 9869 | | | | Wolfcamp | 10216 | | | | | | | | | | | | | | | | | | | _ | | | | | _ | | | | | | | | _ | ^{*}H2S, water flows, loss of circulation, abnormal pressures, etc. 2. Casing Program (Primary Design) | | | Wt | | | Casing | Interval | Casing | Interval | |-----------|-----------|-------|-----------|-----------------|-----------|----------|------------|----------| | Hole Size | Csg. Size | (PPF) | Grade | Conn | From (MD) | To (MD) | From (TVD) | To (TVD) | | 13 1/2 | 9 5/8 | 40 | J-55 | ВТС | 0 | 340 | 0 | 340 | | 8 3/4 | 7 5/8 | 29.7 | P-110HSCY | MOFXL | 0 | 9979 | 0 | 9979 | | 6 3/4 | 5 1/2 | 20 | P-110EC | Sprint FJ &Varn | 0 | 20700 | 0 | 10345 | [•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing. Variance Approval - o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe o All other 5-1/2" Production Casing will run Varn (6.05") ### 3. Cementing Program (Primary Design) Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures | Casing | # Sks | тос | Wt.
ppg | Yld
(ft3/sack) | Slurry Description | |------------|-------|------|------------|-------------------|---| | Surface | 192 | Surf | 13.2 | 1.44 | Lead: Class C Cement + additives | | Int 1 | 320 | Surf | 13.0 | 2.3 | 2nd State: Bradenhead Squeeze - Lead:
Class C Cement + additives | | III I | 397 | 5683 | 13.2 | 1.44 | Tail: Class H / C + additives | | Production | 63 | 7838 | 9 | 3.27 | Lead: Class H /C + additives | | Floduction | 693 | 9838 | 13.2 | 1.44 | Tail: Class H / C + additives | | Casing String | % Excess | |----------------|----------| | Surface | 50% | | Intermediate 1 | 30% | | Prod | 10% | 4. Pressure Control Equipment (Three String Design) | BOP installed and tested before drilling which hole? | Size? | Min. Required
WP | Туре | | ✓ | Tested to: | | | | | | | |--|--|---------------------|------------------------|----------------|---------------|-------------------------------|------|------|------|--------|---|------| | | | | Anı | nular | X | 50% of rated working pressure | | | | | | | | Int 1 | 13-5/8" | 5M | Bline | d Ram | X | | | | | | | | | IIIt 1 | 13-3/6 | 3101 | Pipe | Ram | | 5M | | | | | | | | | | | Doub | le Ram | X | JIVI | | | | | | | | | | | Other* | | | | | | | | | | | | | | Δnnul | ar (5M) | X | 50% of rated working | | | | | | | | | 13-5/8" 5M | Ainiulai | <u> </u> | Λ | pressure | | | | | | | | | Production | | 5M | Blind Ram | | X | | | | | | | | | Troduction | | 13 3/0 | 5101 | JIVI | 3141 | 3111 | 3111 | 3141 | | Ram | | 5M | | | | | | | | | | | Doub | le Ram | X | 3111 | | | | | Other* | | | | | | | | | | | | | | Annular (5M) | | | | | | | | | | | | | | Blind Ram | | | | | | | | | | | | | | Pipe Ram
Double Ram | Other* | | | | | | | | | | | N A variance is requested for | the use of a | a diverter on the s | urface casin | g. See attache | ed for schema | atic. | | | | | | | | | A variance is requested to run a 5 M annular on a 10M system | | | | | | | | | | | | 5. Mud Program (Three String Design) | Section | Туре | Weight
(ppg) | |--------------|-----------------|-----------------| | Surface | FW Gel | 8.5-9 | | Intermediate | DBE / Cut Brine | 10-10.5 | | Production | OBM | 10-10.5 | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---|-----------------------------| 6. Logging and Testing Procedures | Logging, C | Logging, Coring and Testing | | | | | | | |------------|---|--|--|--|--|--|--| | | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the | | | | | | | | X | Completion Report and shumitted to the BLM. | | | | | | | | | No logs are planned based on well control or offset log information. | | | | | | | | | Drill stem test? If yes, explain. | | | | | | | | | Coring? If yes, explain. | | | | | | | | Additional | logs planned | Interval | | |------------|--------------|-------------------------|--| | | Resistivity | Int. shoe to KOP | | | | Density | Int. shoe to KOP | | | X | CBL | Production casing | | | X | Mud log | Intermediate shoe to TD | | | | PEX | | | 7. Drilling Conditions | Condition | Specfiy what type and where? | |----------------------------|------------------------------| | BH pressure at deepest TVD | 5649 | | Abnormal temperature | No | Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers. Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM. N H2S is present Y H2S plan attached. ### 8. Other facets of operation Is this a walking operation? Potentially - 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad. - The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well. - 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions. NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented. ### Will be pre-setting casing? Potentially - 1 Spudder rig will move in and batch drill surface hole. - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis., - 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached. - 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead. - 5 Spudder rig operations is expected
to take 4-5 days per well on a multi-well pa. - 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations. - 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well. - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing. | Attachn | nents | |---------|------------------| | X | Directional Plan | | | Other, describe | Sundry Print Report U.S. Department of the Interior BUREAU OF LAND MANAGEMENT | Well Name | Well Number | US Well Number | Lease Number | Case Number | Operator | |----------------|-------------|----------------|--------------|-------------|----------| | TATER TOT 2-35 | 334H | 3001549053 | NMNM103604 | NMNM103604 | DEVON | | TATER TOT 2-35 | 624H | 3001549050 | NMNM103604 | NMNM103604 | DEVON | | TATER TOT 2-35 | 713H | 3001549067 | NMNM103604 | NMNM103604 | DEVON | ### **Notice of Intent** **Sundry ID: 2765978** Type of Action: APD Change Type of Submission: Notice of Intent Date Sundry Submitted: 12/14/2023 Time Sundry Submitted: 06:08 Date proposed operation will begin: 12/13/2023 Procedure Description: Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes. Please see attachments. Batch includes attachments by pad with the drilling plan for the deepest well (TVD). ### **NOI Attachments** ### **Procedure Description** 5.50_20__VA_EP_P110_VAroughneck_6.051in_20231214060644.pdf CDS_FXL_7_625_29_7_BMP_P110HSCY_95_RBW_Sep20_2023_20231214060643.pdf 9.625 40 J55 SeAH 20231214060643.pdf 5.5_20_P110EC_SPRINT_SF___VST_20231214060642.pdf Tater_Tot_2_35__Fed_Com_713H_20231214060621.pdf ### **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a Operator Electronic Signature: SHAYDA OMOUMI Signed on: DEC 14, 2023 06:08 AM Name: DEVON ENERGY PRODUCTION COMPANY LP **Title:** Regulatory Compliance Associate 3 **Street Address:** 333 W SHERIDAN AVE City: OKLAHOMA CITY State: OK Phone: (405) 235-3611 Email address: SHAYDA.OMOUMI@DVN.COM Representative Name: Street Address: City: State: Zip Phone: **Email address:** # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL **OPERATOR'S NAME:** Devon Energy Production Company LP LEASE NO.: | NMNM103604 **LOCATION:** | Section 2, T.24 S., R.29 E., NMPM **COUNTY:** Eddy County, New Mexico WELL NAME & NO.: Tater Tot 2-35 Fed Com 334H SURFACE HOLE FOOTAGE: BOTTOM HOLE FOOTAGE ATS/API ID: | 3001549053 **APD ID:** **Sundry ID:** | 2765978 WELL NAME & NO.: Tater Tot 2-35 Fed Com 624H SURFACE HOLE FOOTAGE: BOTTOM HOLE FOOTAGE ATS/API ID: | 3001549050 **APD ID:** **Sundry ID:** | 2765978 WELL NAME & NO.: Tater Tot 2-35 Fed Com 713H SURFACE HOLE FOOTAGE: **BOTTOM HOLE FOOTAGE** ATS/API ID: 3001549067 APD ID: **Sundry ID: 2765978** COA | H2S | No ▼ | | | |--------------|---------------------------|--------------|----------------| | Potash | Secretary 🔻 | | | | Cave/Karst | Medium 🔻 | | | | Potential | | | | | Cave/Karst | □ Critical | | | | Potential | | | | | Variance | None None | Flex Hose | C Other | | Wellhead | Conventional and Multibow | /I <u> </u> | | | Other | □4 String | Capitan Reef | □WIPP | | | | None - | | | | | | | | Other | Pilot Hole | Open Annulus | | | | None 🔻 | | | | Cementing | Contingency Squeeze | Echo-Meter | Primary Cement | | | None | Int 1 ▼ | Squeeze | | | | | None - | | Special | □ Water | ▼ COM | □ Unit | | Requirements | Disposal/Injection | | | | Special | ▼ Batch Sundry | | | | Requirements | | | | | Special | ▼ Break Testing | □ Offline | | | Requirements | | Cementing | Clearance | | Variance | | | | ### A. HYDROGEN SULFIDE Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM. ### **B. CASING** - 1. The 9-5/8 inch surface casing shall be set at approximately 285 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 13 1/2 inch in diameter. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of - six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is: ### **Option 1 (Single Stage):** • Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. ### **Option 2:** Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 5663' (410 sxs Class H/C+ additives). - b. Second stage: - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 235 sxs Class C) Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. If cement does not reach surface, the next casing string must come to surface. # Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures. - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. - ❖ In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. - 3. The minimum required fill of cement behind the 5-1/2 inch production casing is: - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. ### C. PRESSURE CONTROL 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).' 2. ### **Option 1:** - a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi. - b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7-5/8 inch intermediate casing shoe shall be 5000 (5M) psi. ### **Option 2:** Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 9-5/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. ### D. SPECIAL REQUIREMENT (S) ### **Communitization Agreement** - The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New
Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request. - The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171 - If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1. - In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign. ### **BOPE Break Testing Variance (Approved)** - BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle. - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests. - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172. - If in the event break testing is not utilized, then a full BOPE test would be conducted. ### **Batch Sundry:** - Approval shall be for wells with surface, intermediate, and production section within 200' TVD tolerance between shoes above the deepest well shoe(s) set depth. - Approval shall be for wells with same drill plan design. (Casing depth may vary and cement volumes may vary per Condition of Approval.) - Approval shall be for wells within the same drill pad. - Cement excess shall be a minimum of 25%, adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore. ### **Casing Clearance:** Operator casing variance is approved for the utilization of 5-1/2 inch Sprint Flush Joint **from** base of curve and a minimum of 500 feet or the minimum tie-back back requirement above whichever is greater into the previous casing shoe. **All** other 5-1/2 inch casing will run Varn. Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are less than 0.5 micron before cementing. ### **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) - Eddy County EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. ### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. - B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken,
all the tests in 43 CFR 3172.6(b)(9) must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.) - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR ### part 3170 Subpart 3172. ### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. LVO 12/15/2023 Form 3160-5 (June 2019) **MULTIPLE** ### **UNITED STATES** DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT | | FORM APPROVED
OMB No. 1004-0137
pires: October 31, 20 | |--------------------|---| | . Lease Serial No. | MULTIPLE | | SUNDRY NOTICES AND REPORTS ON WELLS | |---| | Do not use this form for proposals to drill or to re-enter an | | abandoned well. Use Form 3160-3 (APD) for such proposals | | 6 | If Indian. | Allottee | or Tribe | Name | |---|------------|----------|----------|------| **MULTIPLE** | abandoned well. Use Form 3160-3 (Al | | MULTIPLE | |--|---|--| | SUBMIT IN TRIPLICATE - Other instru | ictions on page 2 | 7. If Unit of CA/Agreement, Name and/or No. MULTIPLE | | Oil Well Gas Well Other | | 8. Well Name and No. MULTIPLE | | 2. Name of Operator DEVON ENERGY PRODUCTION COMPA | ANY LP | 9. API Well No. MULTIPLE | | 3a. Address 333 WEST SHERIDAN AVE, OKLAHOMA CITY, | 3b. Phone No. <i>(include area code)</i> (405) 235-3611 | 10. Field and Pool or Exploratory Area MULTIPLE | | 4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description) | | 11. Country or Parish, State | 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA | | | <u>` </u> | · | | |--------------------------|-----------------------------|--|---------------------------------------|-------------------------------| | TYPE OF SUBMISSION | | TY | PE OF ACTION | | | ✓ Notice of Intent | Acidize Alter Casing | Deepen Hydraulic Fracturing | Production (Start/Resume) Reclamation | Water Shut-Off Well Integrity | | Subsequent Report | Casing Repair Change Plans | New Construction Plug and Abandon | Recomplete Temporarily Abandon | Other | | Final Abandonment Notice | Convert to Injection | Plug Back | Water Disposal | | | | | | | | 13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be perfonned or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has detennined that the site is ready for final inspection.) Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes. Please see attachments. Batch includes attachments by pad with the drilling plan for the deepest well (TVD). | 14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>) SHAYDA OMOUMI / Ph: (405) 235-3611 | Regulatory Com | pliance Associate 3 | | |---|----------------|---------------------|--| | Signature (Electronic Submission) | Date | 12/14/2023 | | | THE SPACE FOR FEDE | RAL OR STATE | OFICE USE | | | Approved by | | | | | | Title | Date | | | Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject least which would entitle the applicant to conduct operations thereon. | | | | Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Instructions on page 2) ### **GENERAL INSTRUCTIONS** This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office. ### **SPECIFIC INSTRUCTIONS** *Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions. Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the
top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. ### **NOTICES** The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160. PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used. ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government. EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases. Response to this request is mandatory. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240 (Form 3160-5, page 2) ### **Additional Information** ### **Batch Well Data** TATER TOT 2-35 FED COM 624H, US Well Number: 3001549050, Case Number: NMNM103604, Lease Number: NMNM103604, Operator: DEVON ENERGY PRODUCTION COMPANY LP TATER TOT 2-35 FED COM 334H, US Well Number: 3001549053, Case Number: NMNM103604, Lease Number: NMNM103604, Operator: DEVON ENERGY PRODUCTION COMPANY LP TATER TOT 2-35 FED COM 713H, US Well Number: 3001549067, Case Number: NMNM103604, Lease Number: NMNM103604, Operator: DEVON ENERGY PRODUCTION COMPANY LP # **TECHNICAL DATA SHEET** | Connection: VAroughneck Size: 5 1/2 in X 20.00 lb/ft Drift: standard | | TECHNICAL | ECHNICAL DATA SHEET Grade: VA-EP-P110 Material: Yield Strength Min. | US Customary 125,000 psi | Metric
862 Mpa | |---|------------------|--------------|--|----------------------------|--------------------| | | | | Yield Strength Max.
Tensile Strength Min. | 140,000 psi
125,000 psi | 965 Mpa
862 Mpa | | Sn | US Customary | Metric | | US Customary | Metric | | Nominal OD: | 5.500 in | 139.70 mm | | 0.361 in | 9.17 mm | | Nominal ID: | 4.778 in | 121.36 mm | Standard Drift: | 4.653 in | 118.19 mm | | Nominal Weight: | 20.00 lb/ft | 30.07 kg/m | Pipe Body Yield Strength: | 729 klb | 3,243 kN | | Pipe Cross Section: | 5.828 In | 3,759.99 mm² | | | | | Sn | US Customary | Metric | | | | | OD: | 6.051 in | 153.70 mm | Threads per inch: | 5 Threads | | | ü | 4.764 in | 121.00 mm | | | | | Length: | 8.976 in | 228.00 mm | | | | | Connection Performance (Unia | (Uniaxial Load): | | | | | | SN | US Customary | Metric | | US Customary | Metric | | Joint Strength: | 729 klb | 3,243 KN | Tension Efficiency: | > 100.0 % | | | Collapse Resistance:. | 13,300 psi | 91.70 Mpa | Displacement: | 1.240 gal/ft | 15.40 l/m | | Internal Yield Pressure: | 13,920 psi | 96.00 Mpa | Production: | 0.932 gal/ft | 11.57 l/m | | Load on Coupling Face: | 411 klb | 1,829 KN | | | | | Field Make Up (Friction Factor = 1.0): | = 1.0): | | | | | | SN | US Customary | Metric | 1 | US Customary | Metric | | Minimum Torque: | 15,822 ft.lb | 21,451 Nm | Make-Up Loss: | 4.370 in | 111.00 mm | | Optimum Torque: | 17,580 ft.lb | 23,835 Nm | Yield Torque: | 22,000 ft.lb | 29,800 Nm | | Maximum Torque: | 19,338 ft.lb | 26,218 Nm | | | | | | | | | | | Voestalpine ONE STEP AHEAD. The graph is calculated under consideration of the requirements of EN ISO 13679 and API 5C3. The combined loads are calculated without the consideration of wall thickness tolerances advantage and different grades. TO REGULAR REVISION. The generated performance envelope and differ from the values in the data sheet, which are calculated with tolerances determined by API. Any princulus is NOT SUBJECT TO REGULAR REVISION. The generated performance envelope shall soll by the use as a tool to facilitate the comparison of performance properties under combined loads, of different grades, sizes and connections of voestalpine Tubulars products. Field-specific safety/design factors as well as other loads are not considered. Thus the results shall by no means be used to replace the own string design engineering or to justify any warranty/guaranty cases. Voestalpine 20.00 °/100ft Bending: | | MO-FXL | | | MO-FXL 7 | | |------------------------|--|---|--|--|---| | Matalona | *4 Direc Desky DMD D440UCC | V M:V0405!! | CDS# | P110F | | | Metal One | *1 Pipe Body: BMP P110HSC | Y WIINYS125KSI | - | MinYS | | | | Min95%WT | a Chaat | Data | Min95 | | | | Connection Dat | a Sneet | Date | 20-Se | ep-23 | | | Geometry | <u>Imperia</u> | ı <u>l</u> | <u>S.I.</u> | | | | Pipe Body | | | | | | | Grade * | P110HSCY | | P110HSCY | | | | Pipe OD (D) | 7 5/8 | in | 193.68 | mm | | MO-FXL | Weight | 29.70 | lb/ft | 44.25 | kg/m | | | Actual weight | 29.04 | | 43.26 | kg/m | | | Wall Thickness (t) | 0.375 | in | 9.53 | mm | | | Pipe ID (d) | 6.875 | in | 174.63 | mm | | | Pipe body cross section | 8.541 | in
² | 5,510 | mm ² | | | Drift Dia. | 6.750 | in | 171.45 | mm | | | Connection | | | | | | \uparrow | Box OD (W) | 7.625 | in | 193.68 | mm | | | PIN ID | 6.875 | in | 174.63 | mm | | Box | Make up Loss | 4.219 | in | 107.16 | mm | | critical | Box Critical Area | 5.714 | in ² | 3686 | mm ² | | area | Joint load efficiency | 70 | % | 70 | % | | 5 | Thread Taper | | | 2" per ft) | 70 | | | | · | | | | | Make d | Number of Threads | | | TPI | | | /lake | Number of Threads Performance | for Pipe Body | | TPI | | | Make p D | Number of Threads Performance Performance Properties | | 5 | | kN | | lake
p | Number of Threads Performance | 1,068 | 5
kips | 4,749 | kN
MPa | | nake p D Pin | Performance Performance Properties S.M.Y.S. *1 | | 5 | | _ | | Aake p D Pin critical | Performance Performance Properties: S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.625 | 1,068
11,680
7,200
ied Minimum YIE
um Internal Yield
i, Min95%WT, Col | kips psi psi ELD Streid Pressurilapse Stre | 4,749
80.55
49.66
ngth of Pipe body
e of Pipe body
ength 7,200psi | MPa
MPa
dy | | Aake p D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio | kips psi psi ELD Streid Pressur lapse Stre SCY Rev3 | 4,749
80.55
49.66
ngth of Pipe body
ength 7,200psi
3, dated 9/19/202 | MPa
MPa
dy | | Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110Hs for Connectio 747 kips | kips psi psi the psi psi the pressure the pressure the pressure the psi ps | 4,749
80.55
49.66
ngth of Pipe body
ength 7,200psi
s, dated 9/19/202 | MPa
MPa
dy | | Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi ELD Streid Pressur lapse Streic SCY Rev3 n 70% 70% | 4,749
80.55
49.66
ngth of Pipe body
ength 7,200psi
8, dated 9/19/202
of S.M.Y.S.) | MPa
MPa
dy | | Aake p D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinyS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110Hs for Connectio 747 kips | kips psi psi ELD Streid Pressur lapse Streic SCY Rev3 n (70% (70% (80% | 4,749
80.55
49.66
ngth of Pipe body
ength 7,200psi
8, dated 9/19/202
of S.M.Y.S.)
of M.I.Y.P.) | MPa
MPa
dy | | Aake p D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinyS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi ELD Streid Pressur lapse Stre SCY Rev3 n (70% (70% 80% 100% c | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse Si | MPa
MPa
dy | | Aake p D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinyS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips | kips psi psi ELD Streid Pressur lapse Streic SCY Rev3 n (70% (70% (80% | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 8, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse Si | MPa
MPa
dy | | Aake IP D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.62! Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110Hs for Connectio 747 kips 747 kips 9,340 psi | kips psi psi Pressur lapse Stre SCY Rev3 n (70% 70% 80% 100% c | 4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse Si | MPa
MPa
dy | | Aake p D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H5 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi ELD Streid Pressur lapse Stre SCY Rev3 n (70% (70% (80% 100% c 3 | 4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse Si 0 | MPa
MPa
dy | | Aake IP D Pin critical | Performance Performance Properties: S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col " 29.7lb/ft P110H3 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi Pressur lapse Stre SCY Rev3 n 70% 70% 80% 100% c 3 | 4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Si 0 | MPa
MPa
dy
23
trength
N-m
N-m | | Aake IP D Pin critical | Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.629 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. | 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H5 for Connectio 747 kips 747 kips 9,340 psi | kips psi psi ELD Streid Pressur lapse Stre SCY Rev3 n (70% (70% (80% 100% c 3 | 4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.) of Collapse Si 0 | MPa
MPa
dy | ### Legal Notice The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheel is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information. Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/ images/top/WebsiteTerms Active 20333287 1.pdf the contents of which are incorporated by reference into this Connection Data Sheet. 9.625" 40# .395" J-55 ## **Dimensions (Nominal)** **BTC** | Outside Diameter | 9.625 | in. | |--|--------|-----------| | Wall | 0.395 | in. | | Inside Diameter | 8.835 | in. | | Drift | 8.750 | in. | | | | | | Weight, T&C | 40.000 | lbs./ft. | | Weight, PE | 38.970 | lbs./ft. | | | | | | Performance Properties | | | | | | | | Collapse, PE | 2570 | psi | | | | • | | Internal Yield Pressure at Minimum Yield | | | | PE | 3950 | psi | | LTC | 3950 | psi | | ВТС | 3950 | psi | | | | | | | | | | Yield Strength, Pipe Body | 630 | 1000 lbs. | | 1 6 | | | | Joint Strength | | 4000 !! | | STC | 452 | 1000 lbs. | | LTC | 520 | 1000 lbs. | Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the
material described are at the customer's own risk and responsibility. 714 1000 lbs. Issued on: 08 Jul. 2020 by Wesley Ott **Connection Data Sheet** | | 1 | | ı | | | |-----------|-------------|-----------|--------|------------|----------------| | OD | Weight | Wall Th. | Grade | API Drift: | Connection | | 5 1/2 in. | 20.00 lb/ft | 0.361 in. | P110EC | 4.653 in. | VAM® SPRINT-SF | | | | · | | | | | PIPE PROPERTIES | | | | | | | | |--------------------------------|-------|----------|--|--|--|--|--| | Nominal OD | 5.500 | in. | | | | | | | Nominal ID | 4.778 | in. | | | | | | | Nominal Cross Section Area | 5.828 | sqin. | | | | | | | Grade Type | Hig | ıh Yield | | | | | | | Min. Yield Strength | 125 | ksi | | | | | | | Max. Yield Strength | 140 | ksi | | | | | | | Min. Ultimate Tensile Strength | 135 | ksi | | | | | | | CONNECTION P | ROPERTIES | | |------------------------------|-------------------------|------------| | Connection Type | Semi-Premium Integral : | Semi-Flush | | Connection OD (nom): | 5.783 | in. | | Connection ID (nom): | 4.717 | in. | | Make-Up Loss | 5.965 | in. | | Critical Cross Section | 5.244 | sqin. | | Tension Efficiency | 90.0 | % of pipe | | Compression Efficiency | 90.0 | % of pipe | | Internal Pressure Efficiency | 100 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | | | | | | | |---------------------------------------|--------|---------|--|--|--|--|--|--| | Tensile Yield Strength | 656 | klb | | | | | | | | Compression Resistance | 656 | klb | | | | | | | | Internal Yield Pressure | 14,360 | psi | | | | | | | | Collapse Resistance | 12,080 | psi | | | | | | | | Max. Structural Bending | 89 | °/100ft | | | | | | | | Max. Bending with ISO/API Sealability | 30 | °/100ft | | | | | | | | TORQUE VALUES | | | | | | | | | |------------------------------------|--------|-------|--|--|--|--|--|--| | Min. Make-up torque | 20,000 | ft.lb | | | | | | | | Opt. Make-up torque | 22,500 | ft.lb | | | | | | | | Max. Make-up torque | 25,000 | ft.lb | | | | | | | | Max. Torque with Sealability (MTS) | 40,000 | ft.lb | | | | | | | VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements. canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM^{\circledR} like VAM^{\circledR} uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW ### Tater Tot 2-35 Fed Com 713H ### 1. Geologic Formations | TVD of target | 10569 | Pilot hole depth | N/A | |---------------|-------|------------------------------|-----| | MD at TD: | 20876 | Deepest expected fresh water | | ### Basin | Dasin | | 777 / 77.54 | | |----------------------|---------|----------------|----------| | | Depth | Water/Mineral | | | Formation | (TVD) | Bearing/Target | Hazards* | | | from KB | Zone? | | | Rustler | 260 | | | | Salt | 570 | | | | Base of Salt | 2995 | | | | Delaware | 3198 | | | | Cherry Canyon | 4075 | | | | Brushy Canyon | 5663 | | | | 1st Bone Spring Lime | 6891 | | | | Bone Spring 1st | 7944 | | | | Bone Spring 2nd | 8672 | | | | 3rd Bone Spring Lime | 9071 | | | | Bone Spring 3rd | 9869 | | | | Wolfcamp | 10216 | _ | | | | | | ^{*}H2S, water flows, loss of circulation, abnormal pressures, etc. 2. Casing Program (Primary Design) | | Csg. Size | Wt | | Casi | | Interval | Casing | Interval | |-----------|-----------|-------|----------|---------------------|--------------|----------|---------------|----------| | Hole Size | | (PPF) | Grade | Conn | From
(MD) | To (MD) | From
(TVD) | To (TVD) | | 13 1/2 | 9 5/8 | 40 | J-55 | ВТС | 0 | 285 | 0 | 285 | | 8 3/4 | 7 5/8 | 29.7 | P110HSCY | MOFXL | 0 | 9969 | 0 | 9969 | | 6 3/4 | 5 1/2 | 20 | P110EC | VARN &
Sprint FJ | 0 | 20876 | 0 | 10569 | - All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing. - •Variance Approval - - 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe - All other 5-1/2" Production Casing will run Varn (6.05") connection ### 3. Cementing Program (Primary Design) Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy canyon to surface. If necessary, a top out of Class C cement will be executed as a contingency. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures. | Casing | # Sks | TOC | Wt.
ppg | Yld
(ft3/sack) | Slurry Description | |------------|-------|-------|------------|-------------------|---| | Surface | 155 | Surf | 13.2 | 1.44 | Lead: Class C Cement + additives | | Int 1 | 235 | Surf | 13.0 | 3.27 | 2nd State: Bradenhead Squeeze - Lead:
Class C Cement + additives | | III I | 410 | 5695 | 13.2 | 1.44 | Tail: Class H / C + additives | | Production | 75 | 8022 | 9 | 3.27 | Lead: Class H /C + additives | | Froduction | 725 | 10022 | 13.2 | 1.44 | Tail: Class H / C + additives | | Casing String | % Excess | |----------------|----------| | Surface | 50% | | Intermediate 1 | 30% | | Prod | 10% | 4. Pressure Control Equipment (Three String Design) | BOP installed and tested before drilling which hole? | Size? | Min.
Required
WP | Туре | | ✓ | Tested to: |--|--------------|------------------------|-------------|--------------|----------------|------------|-------------------------------|---------|----|----|-------------|----|----|-----|-----|----|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|-----|--|------| | | | 5).4 | 5M | Annular | | X | 50% of rated working pressure | Int 1 | 13-5/8" | | | 534 | Blind | d Ram | X | IIIL I | 13-3/6 | 5M | Pipe | Ram | | 514 | Doub | le Ram | X | 5M | Other* | 13-5/8" | | | Annular (5M) | | X | 50% of rated working pressure | D 1 | | 53.6 | Blind Ram | | X | Production | | 13-3/8" | 13-5/8" | 13-5/8" | 13-5/8" | 13-5/8" | 13-5/8" | 13-5/8" | 5M | 5M | 13-5/8" 5IM | 5M | 5M | SIM | SIM | SM | SIVI | SIVI | SIVI | 3101 | 3101 | 3101 | 3101 | 3101 | 3101 | 3101 | SIVI | 3101 | 3101 | 3101 | Pipe | Ram | | 51.4 | Doub | le Ram | X | 5M | | | | | | | | | | Other* | Annul | ar (5M) | Blind Ram | Pipe Ram | | | 1 | Double Ram | | | 1 | Other* | | |] | N A variance is requested for | the use of a | diverter or | the surface | casing. See | attached for s | schematic. | Y A variance is requested to 1 | un a 5 M ai | nnular on a | 10M system | 5. Mud Program (Three String Design) | Section | Туре | Weight
(ppg) | | | | | |--------------|-----------------|-----------------|--|--|--|--| | Surface | FW Gel | 8.5-9 | | | | | | Intermediate | DBE / Cut Brine | 10-10.5 | | | | | | Production | OBM | 10-10.5 | | | | | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring |
--|-----------------------------| | William William 6.5 miles 10.5 miles 11.5 mi | | 6. Logging and Testing Procedures | | ** — *888 **** | | | | | | | |----------|---|--|--|--|--|--|--| | Logging, | Logging, Coring and Testing | | | | | | | | | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the | | | | | | | | X | Completion Report and shumitted to the BLM. | | | | | | | | | No logs are planned based on well control or offset log information. | | | | | | | | | Drill stem test? If yes, explain. | | | | | | | | | Coring? If yes, explain. | | | | | | | | Additional logs planned | | Interval | |-------------------------|-------------|-------------------------| | | Resistivity | Int. shoe to KOP | | | Density | Int. shoe to KOP | | X | CBL | Production casing | | X | Mud log | Intermediate shoe to TD | | | PEX | | 7. Drilling Conditions | Condition | Specfiy what type and where? | |----------------------------|------------------------------| | BH pressure at deepest TVD | 5771 | | Abnormal temperature | No | Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers. Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM. N H2S is present | checamera | measured values and formations will be provided to the BEW. | |-----------|---| | N | H2S is present | | Y | H2S plan attached. | ### Tater Tot 2-35 Fed Com 713H ### 8. Other facets of operation Is this a walking operation? Potentially - 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad. - 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well. - 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions. NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented. ### Will be pre-setting casing? Potentially - 1 Spudder rig will move in and batch drill surface hole. - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis., - 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - ³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached. - 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead. - 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa. - 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations. - 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well. - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing. | Attachments | 1 | |-------------|------------------| | X | Directional Plan | | | Other, describe | ### Tater Tot 2-35 Fed Com 334H-624H-713H | | | | | Tater Tot 2-35 Fed C | om 334H-62 | 4H-713H | | | | | | | |-------------------|-----------------|-----------------------------------|---------------------|-------------------------|------------|--------------------|-------------|--------|-----|------------|-------|----------| | 9 5/8 | | surface csg in a | 13 1/2 | inch hole. | | Design | Factors - | | | Surface | | | | Segment | #/ft | Grade | | Coupling | Body | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 40.00 | | j 55 | btc | 55.26 | 19.29 | 0.73 | 285 | 31 | 1.22 | 36.43 | 11,400 | | "B" | | | | btc | | | | 0 | | | | 0 | | | w | /8.4#/g mud, 30min Sfc Csg Test p | osig: 1,500 | Tail Cmt | does not | circ to sfc. | Totals: | 285 | | | | 11,400 | | Comparison o | | to Minimum Required Cemer | | | | | | | | | | | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Reg'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cp | | 13 1/2 | 0.4887 | 155 | 223 | 139 | 60 | 9.00 | 3244 | 5M | | | | 1.44 | | Burst Frac Gra | dient(s) for Se | egment(s) A, B = , b All > 0.70 | 0, OK. | 7 5/8 | | casing inside the | 9 5/8 | | | <u>Design</u> | Factors - | | | Int 1 | | | | Segment | #/ft | Grade | | Coupling | Joint | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 29.70 | | p 110 | mo-fxl | 2.22 | 1.3 | 1.31 | 9,969 | 1 | 2.20 | 2.17 | 296,07 | | "B" | | | | | | | | 0 | | | | 0 | | | w, | /8.4#/g mud, 30min Sfc Csg Test p | osig: 956 | | | | Totals: | 9,969 | | | | 296,07 | | | | | - | led to achieve a top of | 0 | ft from su | ırface or a | 285 | | | | overlap. | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Reg'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cp | | 8 3/4 | 0.1005 | 410 | 590 | 1004 | -41 | 10.50 | 3440 | 5M | | | | 0.56 | | D V Tool(s): | | | 5663 | | | 10100 | sum of sx | Σ CuFt | | | | Σ%exces | | by stage % : | | 36 | 35 | | | | 645 | 1359 | | | | 35 | | Tail cmt | | | | | | | | | | | , | | | 5 1/2 | | casing inside the | 7 5/8 | _ | | Design Fa | | | | Prod 1 | | | | Segment | #/ft | Grade | | Coupling | Joint | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 20.00 | | p 110 | varn | 3.45 | 2.58 | 2.41 | 9,469 | 2 | 4.05 | 4.32 | | | "B" | 20.00 | | p 110 | vam sprint sf | 29.14 | 2.10 | 2.49 | 1,100 | 2 | 4.17 | 3.51 | 22,000 | | "C" | 20.00 | | p 110 | varn | ∞ | 2.31 | 2.41 | 10,307 | 2 | 4.05 | 3.87 | 206,14 | | "D" | | | | 0 | | | | 0 | | | | 0 | | | w | /8.4#/g mud, 30min Sfc Csg Test p | osig: 2,083 | | | | Totals: | 20,876 | | | | 417,52 | | | | The cement vo | olume(s) are intend | led to achieve a top of | 9469 | ft from su | urface or a | 500 | | | | overlap. | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Req'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cpl | | 6 3/4 | 0.0835 | 800 | 1289 | 957 | 35 | 10.50 | | | | | | 0.35 | | Class 'C' tail cn | nt yld > 1.35 | | | | | | | | | | | | | #N/A | | | | | | | | | | | | | | 0 | | | 5 1/2 | | | Design | Factors | | - | hoose Casi | ng> | | | Segment | #/ft | Grade | 3 1/2 | Coupling | #N/A | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | mit | Jiuuc | | 0.00 | #14/FA | Jonapac | Duist | 0 | Dws | u-D | u-5 | 0 | | "B" | | | | 0.00 | | | | 0 | | | 1 | 0 | | | | /8.4#/g mud, 30min Sfc Csg Test p | ncia. | 0.00 | | | Totals: | 0 | | | | 0 | | | w, | | - | his csg, TOC intended | #N/A | ft from su | | #N/A | | | | overlap. | | Hole | Annula- | | | Min | | | Calc | | | | | | | | Annular | 1 Stage | 1 Stage | | 1 Stage | Drilling
Mud We | | Req'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess |
Mud Wt | MASP | BOPE | | | | Hole-Cp | | 0 | | #N/A | #N/A | 0 | #N/A | #N/A | | | Capitan Reef es | t top XXXX. | | | | | | | | | Carlsbad Field Office 12/14/2023 District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 295264 ### **CONDITIONS** | Operator: | OGRID: | |-------------------------------------|--------------------------------------| | DEVON ENERGY PRODUCTION COMPANY, LP | 6137 | | 333 West Sheridan Ave. | Action Number: | | Oklahoma City, OK 73102 | 295264 | | | Action Type: | | | [C-103] NOI Change of Plans (C-103A) | ### CONDITIONS | Created By | Condition | Condition Date | |-------------|-----------------------------|----------------| | ward.rikala | Original COA's still apply. | 12/18/2023 |