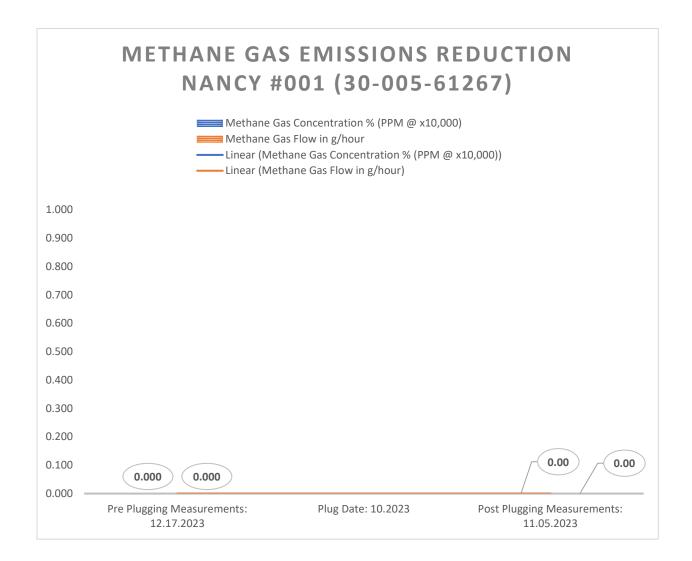
(406) 460-0903

333 Main Street Shelby, Montana 59474 / P.O. Box 10640 Bozeman, MT 59179

TO: Jim Griswold, OCD


FROM: Curtis Shuck, WDNM

DATE: December 31, 3023

RE: Nancy #001 (30-005-61267) Post Plugging Methane Emission Reduction Report

MEMORANDUM

Well Done New Mexico LLC performed Post Plugging Orphan Well Methane Emission Testing, Gas Sampling & Analysis on the Nancy #001 (30-005-61267) on November 5, 2023. The following are the conclusions:

15542G

Nancy #001 Post Plugging
Sample Point Name

Hourly forecast for 05.11.2023

Nancy #001 Casing Flow Test Sample Point Location

	Atmospheric conditions and temperature °F	RealFeel °F	Atmospheric pressure inHg	Wind speed mph	Humidity
Night	(+52°	+52°	26.4	▼ № 6.3	47%
Morning	+45°	+41°	26.4	▲ NW 4.3	64%
Day	(+73°	+73°	26.5	► SE 7.2	19%
Evening	(+64°	+64°	26.3	∢ sw 5.1	21%

Laboratory Se	ervices	2023078643	NA			CES - Spot	
Source Labora	atory	Lab File No	Container Id	entity		Sampler	
USA		USA	USA			New Mexico	
District		Area Name	Field Name			Facility Name	
Nov 5, 2023 15	5:45	Nov 5, 2023	15:45	Nov 6,	2023 10:47	Nov 20, 2023	
Date Sampled	1	Date Effecti	ive	Date	Received	Date Reported	
		System Administrat	or				
Ambient Tomp (9E)	Flour Date (Mcf)	Appliet	Droce DC1	I @ Tomp 9E			

VALIDATOR: Ashley Russell

Well Done Foundation

Operator				
Component	Normalized Mol %	Un-Normalized Mol %	GPM	
H2S (H2S)	0.0000	0		
Nitrogen (N2)	99.9110	99.911		ľ
CO2 (CO2)	0.0390	0.039		
Methane (C1)	0.0000	0		
Ethane (C2)	0.0000	0	0.0000	
Propane (C3)	0.0000	0	0.0000	L
I-Butane (IC4)	0.0000	0	0.0000	
N-Butane (NC4)	0.0000	0	0.0000	
I-Pentane (IC5)	0.0000	0	0.0000	Ī
N-Pentane (NC5)	0.0000	0	0.0000	
Hexanes Plus (C6+)	0.0500	0.05	0.0220	L
TOTAL	100.0000	100.0000	0.0220	F
ethod(s): Gas C6+ - GPA 2261, Extended (Gas - GPA 2286, Calculat	ions - GPA 2172		F

	Analyze	r Information	
Device Type:	Gas Chromatograph	Device Make:	Shimadzu
Device Model:	GC-2014	Last Cal Date:	Nov 20, 2023

14.696 PSI @ 60.0	Heating Value		PSI @ 60.00 °F
	Saturated	Dry	Saturated
2.6	3.4	2.6	3.4
Calcul	ated Total Sa	ample Prope	erties
GPA214	15-16 *Calculated	at Contract Cond	litions
Relative Density F	Real	Relati	ve Density Ideal
0.9684			0.9685
Molecular Weigl	ht		
28.0522			
	C6+ Group	Properties	
	Assumed Co	mposition	
C6 - 60.000%	C7 - 30.0	000%	C8 - 10.000%
	Field H	12S	
	0 PP	M	
REND STATUS:		DATA	SOURCE:
ed By Validator or	N= 22 202	23 Impo	and the same of th

PASSED BY VALIDATOR REASON:
Close enough to be considered reasonable. VALIDATOR COMMENTS:

128° Clear

1 Actual: 75°F

1 RealFeel: 75°F

Humidity (%): 14%

Pressure: 26.4 inHg

Wind S-E 8.7 mph 16 17 18 19 20 21 22 23 Humidity (%)

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240

15542G		Nanc	y #001 Post Pl	ugging en la	Nancy	#001 Casing Flow Test
Sample Point Code		Sample Point Na	ame		Sample Point Location	
Laboratory Se	rvices	2023078	643	NA	C	ES - Spot
Source Labora	tory	Lab File I	No	Container Identity		Sampler
USA		USA		USA	Ne	w Mexico
District		Area Name	_	Field Name	Fa	cility Name
Nov 5, 2023 15	:45	Nov 5,	2023 15:45	Nov 6, 20	023 10:47	Nov 20, 2023
Date Sampled		Date	e Effective	Date R	Received	Date Reported
		System Admi	nistrator			
Ambient Temp (°F)	Flow Rate (Mcf)	Analyst		Press PSI @ Temp °F Source Conditions		
Well Done Found	dation			_		NG
Operator					Lab Sou	rce Description
Component	Normalized	Un-Normalized	GPM		Heating Values (Re	
·	Mol %	Mol %		14.696 PSI @ 60.	00 °F Saturated	14.73 PSI @ 60.00 °F Dry Saturated
H2S (H2S)	0.0000	0		2.6		2.6 3.4
Nitrogen (N2)	99.9110	99.911		Calcu	ılated Total Sample	e Properties
CO2 (CO2)	0.0390	0.039		GPA21	145-16 *Calculated at Cont	ract Conditions
Methane (C1)	0.0000	0		Relative Density 0.9684		Relative Density Ideal 0.9685
Ethane (C2)	0.0000	0	0.0000	Molecular Wei	ght	0.3003
Propane (C3)	0.0000	0	0.0000	28.0522		
I-Butane (IC4)	0.0000	0	0.0000	1	C6+ Group Prope Assumed Composition	
N-Butane (NC4)	0.0000	0	0.0000	C6 - 60.000%	C7 - 30.000%	
I-Pentane (IC5)	0.0000	0	0.0000		Field H2S	
N-Pentane (NC5)	0.0000	0	0.0000]	0 PPM	
Hexanes Plus (C6+)	0.0500	0.05	0.0220	PROTREND STATUS:		DATA SOURCE:
TOTAL	100.0000	100.0000	0.0220	Passed By Validator o		Imported
Method(s): Gas C6+ - GPA 2261, Extende	ed Gas - GPA 2286, Calcula	tions - GPA 2172		PASSED BY VALIDATOR Close enough to be co		ole.
	Analyzer Informa	tion		VALIDATOR:		·· ·
Device Type: Gas Chromat	ograph Device	Make: Shimadz	u	Ashley Russell		

Device Model: GC-2014 Last Cal Date: Nov 20, 2023

VALIDATOR COMMENTS:

ok

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

DEFINITIONS

Action 302402

DEFINITIONS

Operator:	OGRID:
CANYON E & P COMPANY	269864
251 O'Connor Ridge Blvd.	Action Number:
Irving, TX 75038	302402
	Action Type:
	[UF-OMA] Post-Plug Methane Monitoring (UF-OMA-MMB)

DEFINITIONS

The Orphan Well Mitigation Activity (OMA) forms are a subset of the OCD's forms exclusively designed for activities related to State of New Mexico's contracted plugging and reclamation activities. Specifically, these forms are used for orphan wells or associated facilities which are in a "Reclamation Fund Approved" status. This status represents wells or facilities where the OCD has acquired a hearing order allowing the OCD to perform plugging or reclamation on wells and associated facilities that no longer have a viable operator to perform the necessary work. These forms are not to be utilized for any other purpose.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 302402

QUESTIONS

Operator:	OGRID:
CANYON E & P COMPANY	269864
ů .	Action Number:
Irving, TX 75038	302402
	Action Type:
	[UF-OMA] Post-Plug Methane Monitoring (UF-OMA-MMB)

QUESTIONS

Prerequisites		
[OGRID] Well Operator	[269864] CANYON E & P COMPANY	
[API] Well Name and Number	[30-005-61267] NANCY #001	
Well Status	Plugged (not released)	

Monitoring Event Information		
Please answer all the questions in this group.		
Reason For Filing	Post-Plug Methane Monitoring	
Date of monitoring	11/05/2023	
Latitude	33.64270	
Longitude	-104.03347	

Monitoring Event Details		
Please answer all the questions in this group.		
Flow rate in cubic meters per day (m³/day)	0.00	
Test duration in hours (hr)	1.0	
Average flow temperature in degrees Celsius (°C)	20.8	
Average gauge flow pressure in kilopascals (kPag)	0.0	
Methane concentration in part per million (ppm)	0	
Methane emission rate in grams per hour (g/hr)	0.00	
Testing Method	Steady State	

Monitoring Contractor		
Please answer all the questions in this group.		
Name of monitoring contractor	Well Done New Mexico LLC	