U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report

Well Name: STEEL GUITAR 35-26

FED COM

Well Location: T26S / R29E / SEC 26 /

NENW /

Well Number: 423H

Type of Well: OTHER

County or Parish/State: /

Allottee or Tribe Name:

Lease Number: NMNM19609

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001549852

Well Status: Drilling Well

Operator: WPX ENERGY

PERMIAN LLC

LONG VO Date: 2024.02.05
15:19:23 -06'00'

Notice of Intent

Sundry ID: 2772998

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/01/2024

Date proposed operation will begin: 02/01/2024

Type of Action: APD Change

Time Sundry Submitted: 02:31

Procedure Description: Skid Sundry Attention Long Vo WPX Energy Permian, LLC respectfully request to skid over from the original permitted SHL location of 437 FNL, 1927 FWL, SEC 26-26S-29E and re-drill the approved subject wellbore in a different SHL due to pressures and a 4-string casing design change. The new SHL will be 407 FNL, 1929 FWL, SEC 26-26S-29E. The new well name will be Steel Guitar 35-26 Fed Com 423H and have a separate API. We request the original well associated with API 30-015-49852 to have a well name change to Steel Guitar 35-26 Fed Com 423Y. Please see the attached new plat, drill plan, and directional.

NOI Attachments

Procedure Description

VAroughneck_SC_5_5in_x_20_0_VA_EP_P110__6.051___100__efficiency__20240205124759.pdf

STEEL GUITAR 35 26 FED COM 423H 20240205124758.pdf

5.5_20lb_P110EC_VAM_SPRINT_SF_20240205124759.pdf

WA018351019_STEEL_GUITAR_35_26_FED_COM_423H_WL_R3_20240201142728.pdf

STEEL_GUITAR_35_26_FED_COM_423H_Directional_Plan_02_01_24_20240201142722.pdf

9.625_40__J55_20240201142722.pdf

7_625_29_7_BMP_P110HSCY_95_RBW_Sep20_2023_20240201142722.pdf

13.375 54.50 J55 20240201142722.pdf

Received by OCD: W를에게에 하면함 안제 AR 35-26 FED COM

Well Location: T26S / R29E / SEC 26 / NENW /

County or Parish/State: /

Page 2 of 35

Well Number: 423H

Type of Well: OTHER

Allottee or Tribe Name:

Lease Number: NMNM19609

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001549852

Well Status: Drilling Well

Operator: WPX ENERGY PERMIAN LLC

Zip:

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: FEB 05, 2024 12:49 PM

Name: WPX ENERGY PERMIAN LLC Title: Regulatory Compliance Professional Street Address: 333 West Sheridan Avenue City: Oklahoma City State: OK

Phone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Field

Representative Name:

Street Address:

City: State:

Phone:

Email address:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

WPX Energy Permian LLC **OPERATOR'S NAME:**

NMNM19609 **LEASE NO.:**

Section 26, T.26 S., R.29 E., NMPM **LOCATION: COUNTY:**

Eddy County, New Mexico

WELL NAME & NO.: Steel Guitar 35-26 Fed Com 423H

SURFACE HOLE FOOTAGE: 407'/N & 1929'/W **BOTTOM HOLE FOOTAGE** 1745'/N & 1890'/W

ATS/API ID: 3001549852 APD ID: | 10400063118 2772998 **Sundry ID:**

COA

H2S	Yes ▼		
Potash	None ▼		
Cave/Karst	Medium ▼		
Potential			
Cave/Karst	☐ Critical		
Potential			
Variance	None		Other
Wellhead	Conventional and Multibov	vl	
Other	✓ 4 String	Capitan Reef	□WIPP
		None ▼	
		None	
Other	Pilot Hole	☐ Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None ▼	None	Squeeze
	. Troile		None ▼
Special	☐ Water	☑ COM	□ Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	☑ Break Testing	☐ Offline	Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 495 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 3. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi. Annular which shall be tested to 2100 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).

- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Casing Clearance:

Operator casing variance is approved for the utilization of 5-1/2 inch Sprint Flush Joint **from** base of curve and a minimum of 500 feet or the minimum tie-back back requirement above whichever is greater into the previous casing shoe. **All** other 5-1/2 inch casing will run Varn.

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are less than 0.5 micron before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☑ Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.
- A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-

- off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 2/5/2024

Form 3160-5

UNITED STATES

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

(June 2019)	DEI	PARTMENT OF THE		Expires: October 31, 2021							
		EAU OF LAND MAN				5. Lease Serial No. NMNM19609					
	ot use this	NOTICES AND REP form for proposals Use Form 3160-3 (A	6. If Indian, Allottee	or Tribe Name							
	SUBMIT IN	TRIPLICATE - Other instr	ructions on page	e 2		7. If Unit of CA/Agre	eement, Name and/o	or No.			
1. Type of Well Oil We	ell Gas V	Well • Other				8. Well Name and No). STEEL GUITAR	35-26 FED COM/42			
2. Name of Operator	WPX ENERGY	PERMIAN LLC				9. API Well No. 30	-015-54704	7			
		nter, Tulsa, OK 74172	3b. Phone No. (539) 573-021	include area co	ode)	10. Field and Pool or PURPLE SAGE/V	Exploratory Area				
4. Location of Well (A SEC 26/T26S/R29	-	R.,M., or Survey Description)			11. Country or Parish EDDY/NM	ı, State				
	12. CHE	ECK THE APPROPRIATE E	BOX(ES) TO IND	DICATE NATUE	RE OF NOTI	CE, REPORT OR OT	HER DATA				
TYPE OF SUE	BMISSION			T	YPE OF AC	TION					
Notice of Inter	Notice of Intent Acidize Deepen Alter Casing Hydraulic Fracturin					uction (Start/Resume) amation	Well Integr				
Subsequent Re	•	Casing Repair Change Plans	Plug	Construction and Abandon	Temp	omplete porarily Abandon	Other				
Final Abandon	ment Notice	Convert to Injection	n Plug l	Back	Wate	er Disposal					
the Bond under w completion of the completed. Final is ready for final i	hich the work wi involved operati Abandonment No nspection.)	ally or recomplete horizontal Il be perfonned or provide the ons. If the operation results in pictices must be filed only after	ne Bond No. on fi in a multiple com	le with BLM/Bl pletion or recon	IA. Required npletion in a	subsequent reports m new interval, a Form 3	ust be filed within 3 3 160-4 must be filed	0 days following l once testing has been			
26-26S-29E a will be 407 FN request the or	Permian, LLC rendered re-drill the application 1929 FWL, S	espectfully request to skid oproved subject wellbore i SEC 26-26S-29E. The new ciated with API 30-015-49 and directional.	n a different SH v well name will	IL due to press be Steel Guita	sures and a ar 35-26 Fed	4-string casing desi d Com 423H and ha	gn change. The nove	. We			
		s true and correct. Name (Pr	inted/Typed)	Regulat	orv Complia	ince Professional					
CHELSEY GREEN / Ph: (405) 228-8595											
Signature (Electronic Submission)						02/05/2	2024				
		THE SPACE	E FOR FEDE	RAL OR S	TATE OF	ICE USE					
Approved by											

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

Title

Office

Date

(Instructions on page 2)

which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

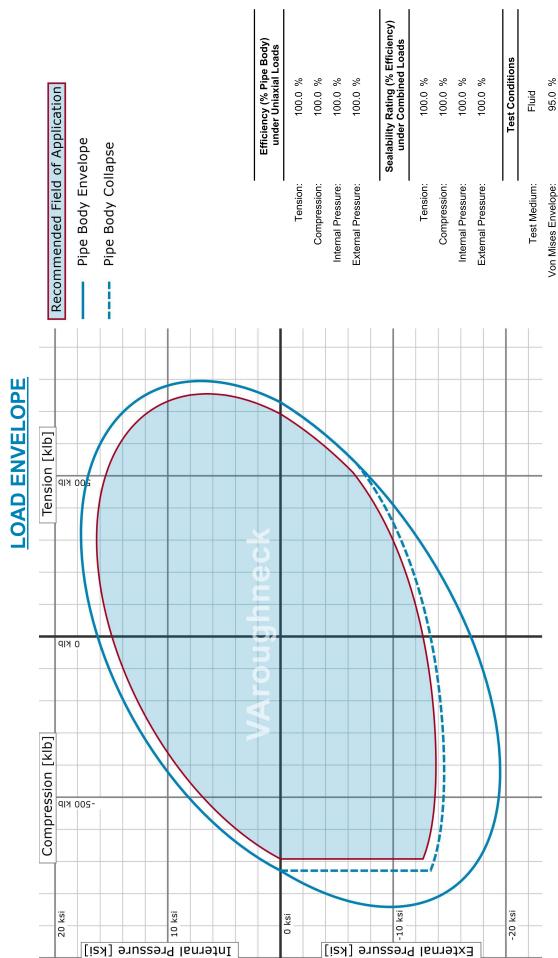
BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENW / 437 FNL / 1927 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0185694 / LONG: -103.9565076 (TVD: 0 feet, MD: 0 feet)
PPP: NENW / 100 FNL / 2410 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195253 / LONG: -103.9553418 (TVD: 9958 feet, MD: 10000 feet)
PPP: NESW / 2582 FSL / 2290 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.013123 / LONG: -103.9557504 (TVD: 10327 feet, MD: 12500 feet)
BHL: LOT 10 / 1794 FNL / 2040 FWL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002414 / LONG: -103.9565709 (TVD: 10327 feet, MD: 17193 feet)


Page 16 of 35

TECHNICAL DATA SHEET

Created on 25.04.2023	US Customary Metric		140,000 psi 125,000 psi		US Customary Metric	kness: 0.361 in 9.17 mm	d Drift: 4.653 in 118.19 mm	rength: 729 klb 3,240 kN				er inch: 5 Threads				US Customary Metric	ciency: > 100.0 %		Production: 0.932 gal/ft 11.57 l/m			US Customary Metric	p Loss: 4.370 in 111.00 mm	H B 000 00
TECHNICAL DATA SHEET	<u>Grade:</u> VA-EP-P110 Material:	Yield Strength Min.	Yield Strength Max. Tensile Strength Min.		Metric	139.70 mm Wall Thickness:	121.36 mm Standard Drift:	30.07 kg/m Pipe Body Yield Strength:	3,759.99 mm²		Metric	153.70 mm Threads per inch:	121.00 mm	228.00 mm		Metric	3,240 kN Tension Efficiency:	91.70 Mpa Displacement:	Ø	1,830 kN		Metric	21,450 Nm Make-Up Loss:	F 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Co KG	U				US Customary	5.500 in	4.778 in	20.00 lb/ft	5.828 in²		US Customary	6.051 in	4.764 in	8.976 in	(Uniaxial Load):	US Customary	729 klb	13,300 psi	14,360 psi	411 klb	ctor = 1.0):	US Customary	15,820 ft.lb	
Weestalpine Tubulars GmbH & Co KG	:sui: :Sonnection: VAroughneck SC Size: 5 1/2 in X 20:00 lb/ft		Bevel: standard	:edid		Nominal OD:	Nominal ID:	Nominal Weight:	Pipe Cross Section:	Connection:		OD:	ä	Length:	Connection Performance (Joint Strength:	Collapse Resistance:.	Internal Yield Pressure:	Load on Coupling Face:	Field Make Up (Friction Factor = 1.0):		Minimum Torque:	H ::

Voestalpine ONE STEP AHEAD.

The graph is calculated under consideration of the requirements of EN ISO 13679 and API 5C3. The combined loads are calculated without the consideration of wall thickness tolerances advantage and different grades. TO REGULAR REVISION. The generated performance envelope and differ from the values in the data sheet, which are calculated with tolerances determined by API. Any princulus is NOT SUBJECT TO REGULAR REVISION. The generated performance envelope shall soll by the use as a tool to facilitate the comparison of performance properties under combined loads, of different grades, sizes and connections of voestalpine Tubulars products. Field-specific safety/design factors as well as other loads are not considered. Thus the results shall by no means be used to replace the own string design engineering or to justify any warranty/guaranty cases.

Voestalpine ONE STEP AHEAD

20.00 °/100ft

Bending:

voestalpine Tubulars GmbH & Co KG

STEEL GUITAR 35-26 FED COM 423H

1. Geologic Formations

TVD of target	10246	Pilot hole depth	N/A
MD at TD:	17108	Deepest expected fresh water	

Basin

Dasin	D 41.	Water/Mineral	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	4007		
Brushy Canyon	5096		
1st Bone Spring Lime	6701		
Bone Spring 1st	7627		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
Bone Spring 3rd	9527		
Wolfcamp	9839		
		·	

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	460 MD	0	460 TVD
12 1/4	9 5/8	40.0	J-55	BTC	0.0	3100 MD	0	3100 TVD
8 3/4	7 5/8	29.7	P110 HSCY	MO-FXL	0	9602 MD	0	9602 TVD
6 3/4	5 1/2	20.0	P110 & VA-EP-P110	Sprint FJ &Varn	0	17108 MD	0	10246 TVD

- •All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.
- Surface shoe must be set 70' into Rustler Formation: ROP will be the primary indicator of Rustler Depth
- ** Intermediate 1 shoe depth for all wells will be 100' MD above KOP
- o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe
- o All other 5-1/2" Production Casing will run Varn (6.05")

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description		
Surface	371	Surf	13.2	1.44	Lead: Class C Cement + additives		
Int	317	Surf	9	3.27	Lead: Class C Cement + additives		
IIIt	154	2600	13.2 1.44		Tail: Class H / C + additives		
Int 1	166	3100	9	3.27	Lead: Class C Cement + additives		
THU I	416	5096	13.2	1.44	Tail: Class H / C + additives		
Production	62 7716 9		9	3.27	Lead: Class H /C + additives		
Froduction	472	9716	13.2	1.44	Tail: Class H / C + additives		

Casing String	% Excess
Surface	50%
Intermediate and Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Four String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	Туре		✓	Tested to:	
	Annui		Annular		50% of rated working pressure		
Int	13-5/8"	5M	Bline	l Ram	X		
IIIt	13-3/6	3101	Pipe	Ram		5M 100% of rated working pressure 5M	
			Doub	le Ram	X	3101	
			Other*				
			Annul	ar (5M)	X	· ·	
Int 1	12 5/011	5M	Blind Ram		X		
III I	13-5/8"		Pipe	Ram		5M	
			Doub?	le Ram	X	SIVI	
			Other*				
			Annul	ar (5M)	X	100% of rated working pressure	
Production	13-5/8"	5M	Blind	d Ram	X		
Troduction	13-3/8	J1 V1	Pipe Ram			5M	
			Double Ram		X	3101	
			Other*				
N A variance is requested for	r the use of a	diverter or	the surface	casing. See	attached for s	schematic.	
N A variance is requested to	run a 5 M an	nular on a	10M system				

5. Mud Program (Four String Design)

Section	Туре	Weight (ppg)
Surface	WBM	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Intermediate 1	WBM	8.5-9
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing								
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the								
X	Completion Report and shumitted to the BLM.								
	No logs are planned based on well control or offset log information.								
	Drill stem test? If yes, explain.								
	Coring? If yes, explain.								

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5594
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

L	incasurca va	nues and formations will be provided to the BEW.
	N	H2S is present
	Y	H2S plan attached.

STEEL GUITAR 35-26 FED COM 423H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

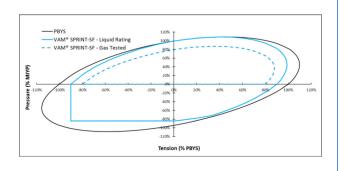
- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

Issued on: 08 Jul. 2020 by Wesley Ott

Connection Data Sheet

	,				
OD	Weight	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	20.00 lb/ft	0.361 in.	P110EC	4.653 in.	VAM® SPRINT-SF


PIPE PROPERTIES					
Nominal OD	5.500	in.			
Nominal ID	4.778	in.			
Nominal Cross Section Area	5.828	sqin.			
Grade Type	Hig	h Yield			
Min. Yield Strength	125	ksi			
Max. Yield Strength	140	ksi			
Min. Ultimate Tensile Strength	135	ksi			

CONNECTION P	ROPERTIES	
Connection Type	Semi-Premium Integral S	Semi-Flush
Connection OD (nom):	5.783	in.
Connection ID (nom):	4.717	in.
Make-Up Loss	5.965	in.
Critical Cross Section	5.244	sqin.
Tension Efficiency	90.0	% of pipe
Compression Efficiency	90.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES					
Tensile Yield Strength	656	klb			
Compression Resistance	656	klb			
Internal Yield Pressure	14,360	psi			
Collapse Resistance	12,080	psi			
Max. Structural Bending	89	°/100ft			
Max. Bending with ISO/API Sealability	30	°/100ft			

TORQUE VALUES		
Min. Make-up torque	20,000	ft.lb
Opt. Make-up torque	22,500	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	40,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com
usa@vamfieldservice.com
dubai@vamfieldservice.com
mexico@vamfieldservice.com
brazil@vamfieldservice.com
angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

^{* 87.5%} RBW

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

<u>District II</u> 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

1000 Rio Brazos Road, Aztec, NM 87410

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

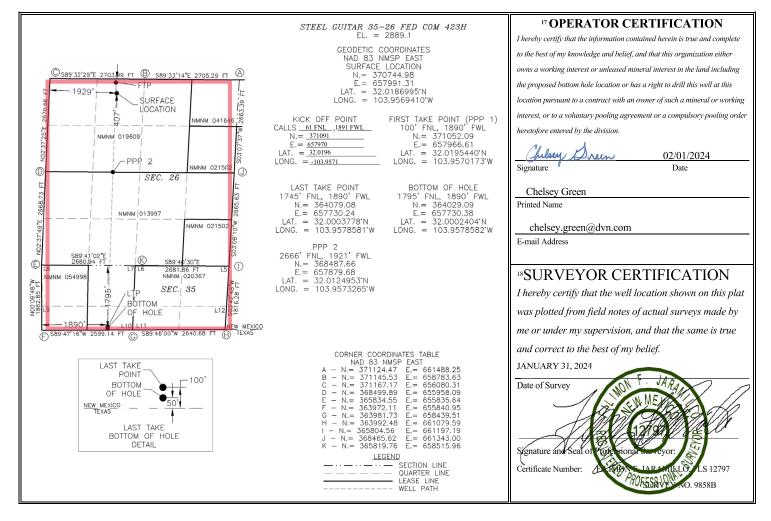
Santa Fe, NM 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

☐ AMENDED REPORT

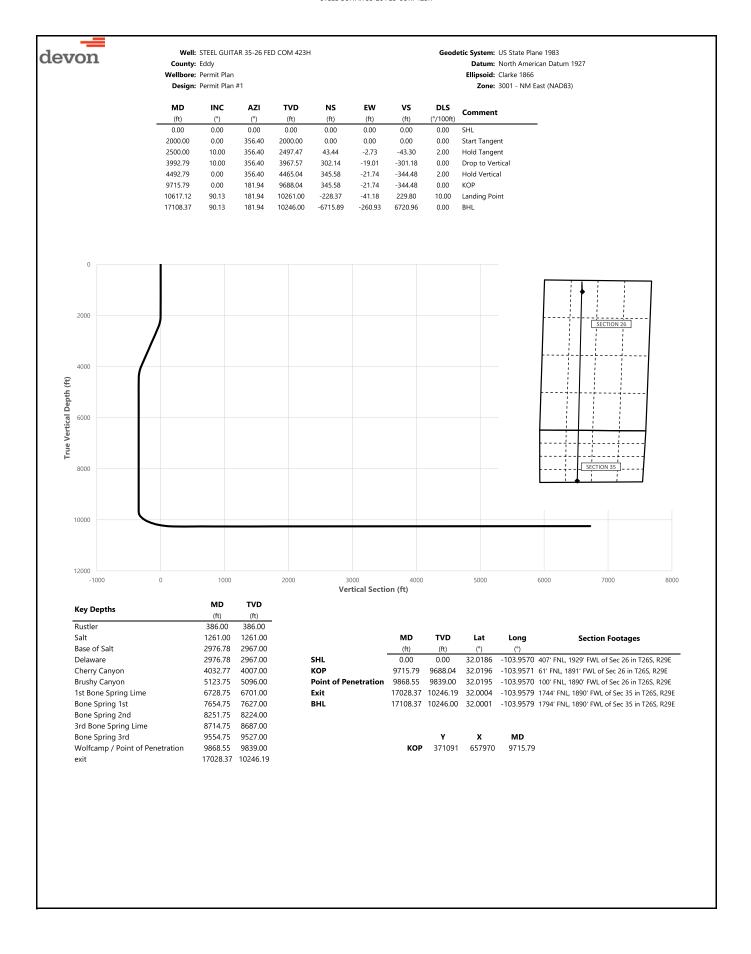
WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code ³ Pool Name		
30-015-54704		98220	PURPLE SAGE; WOLFCAMP (GAS)	
⁴ Property Code		⁵ Property Name		⁶ Well Number
333183 ⁷ OGRID No.		STEEL GUIT	423H	
		8 O	perator Name	⁹ Elevation
246289 WPX ENERG			GY PERMIAN, LLC	2889.1


¹⁰ Surface Location

	UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
	C	26	26 S	29 E		407	NORTH	1929	WEST	EDDY
•	D. H. H. L. JCD'CC AE C. C.									

¹¹ Bottom Hole Location If Different From Surface


UL or lot no.	Section 35	Township 26 S	Range 29 E	Lot Idn	Feet from the 1745	North/South line NORTH	Feet from the 1890	East/West line WEST	County EDDY
12 Dedicated Acre	s ¹³ Joint	or Infill	Consolidation	n Code			15 Order No.		
862.40									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten		As Dril	led										
API#													
	rator Na X ENEF	me: RGY PEF	RMIAN, I	LLC		-	erty N EL G			-26 FE	D CO	M	Well Number 423H
Kick (Off Point	(KOP)											
UL	Section	Township	Range	Lot	Feet		From N		Feet		m E/W	County	
C Latitu		26S	29E		61 Longitu -103.9	ıde	NORT	IH_	1891	VVE	ST	NAD	
32.0	196				-103.8	9571						83	
First ⁻	Take Poir	nt (FTP)											
UL C	Section 26	Township 26S	Range 29E	Lot	Feet 100		From N		Feet 1890		m E/W ST	County EDDY	
132.0	^{ude} 019544	.0			Longitu 103.9		173					NAD 83	
Last 1	ake Poin	t (LTP)											
UL	Section 35	Township 26S	Range 29E	Lot 10	Feet 1745	From	n N/S RTH	Feet		rom E/W VEST	Coun		
Latitu 32.0	ude 000377	'8			Longitu 103.9		581		L		NAD 83		
Is this	s well the	e defining v	vell for th	e Hori	zontal Տր	pacing	Unit?						
Is this	s well an	infill well?											
	ll is yes p ng Unit.	lease prov	ide API if	availal	ole, Opei	rator N	Name :	and v	vell nur	nber for	Defini	ng well fo	r Horizontal
API#	:												
Ope	rator Na	me:				Prop	erty N	lame:					Well Number
													V7.06 /20 /2010

KZ 06/29/2018

Well: STEEL GUITAR 35-26 FED COM 423H

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	356.40	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	356.40	200.00	0.00	0.00	0.00	0.00	
300.00	0.00	356.40	300.00	0.00	0.00	0.00	0.00	
386.00	0.00	356.40	386.00	0.00	0.00	0.00	0.00	Rustler
400.00	0.00	356.40	400.00	0.00	0.00	0.00	0.00	
500.00	0.00	356.40	500.00	0.00	0.00	0.00	0.00	
600.00	0.00	356.40	600.00	0.00	0.00	0.00	0.00	
700.00	0.00	356.40	700.00	0.00	0.00	0.00	0.00	
800.00	0.00	356.40	800.00	0.00	0.00	0.00	0.00	
900.00	0.00	356.40	900.00	0.00	0.00	0.00	0.00	
1000.00 1100.00	0.00	356.40 356.40	1000.00 1100.00	0.00	0.00	0.00 0.00	0.00	
1200.00	0.00	356.40	1200.00	0.00	0.00	0.00	0.00	
1261.00	0.00	356.40	1261.00	0.00	0.00	0.00	0.00	Salt
1300.00	0.00	356.40	1300.00	0.00	0.00	0.00	0.00	Suit
1400.00	0.00	356.40	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	356.40	1500.00	0.00	0.00	0.00	0.00	
1600.00	0.00	356.40	1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	356.40	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	356.40	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	356.40	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	356.40	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	356.40	2099.98	1.74	-0.11	-1.74	2.00	
2200.00	4.00	356.40	2199.84	6.96	-0.44	-6.94	2.00	
2300.00	6.00	356.40	2299.45	15.66	-0.99 1.75	-15.61	2.00	
2400.00 2500.00	8.00 10.00	356.40 356.40	2398.70 2497.47	27.82 43.44	-1.75 -2.73	-27.74 -43.30	2.00 2.00	Hold Tangent
2600.00	10.00	356.40	2595.95	60.77	-3.82	-60.57	0.00	Tiola Tangent
2700.00	10.00	356.40	2694.43	78.10	-4.91	-77.85	0.00	
2800.00	10.00	356.40	2792.91	95.43	-6.00	-95.12	0.00	
2900.00	10.00	356.40	2891.39	112.76	-7.09	-112.40	0.00	
2976.78	10.00	356.40	2967.00	126.06	-7.93	-125.66	0.00	Base of Salt, Delaware
3000.00	10.00	356.40	2989.87	130.09	-8.18	-129.67	0.00	
3100.00	10.00	356.40	3088.35	147.42	-9.28	-146.95	0.00	
3200.00	10.00	356.40	3186.83	164.75	-10.37	-164.22	0.00	
3300.00	10.00	356.40	3285.31	182.08	-11.46	-181.50	0.00	
3400.00	10.00	356.40	3383.79	199.41	-12.55	-198.77	0.00	
3500.00	10.00	356.40	3482.27	216.74	-13.64	-216.05	0.00	
3600.00 3700.00	10.00 10.00	356.40 356.40	3580.75 3679.23	234.07 251.40	-14.73 -15.82	-233.32 -250.60	0.00 0.00	
3800.00	10.00	356.40	3777.72	268.73	-16.91	-267.87	0.00	
3900.00	10.00	356.40	3876.20	286.06	-18.00	-285.15	0.00	
3992.79	10.00	356.40	3967.57	302.14	-19.01	-301.18	0.00	Drop to Vertical
4000.00	9.86	356.40	3974.68	303.39	-19.09	-302.42	2.00	·
4032.77	9.20	356.40	4007.00	308.80	-19.43	-307.81	2.00	Cherry Canyon
4100.00	7.86	356.40	4073.48	318.75	-20.05	-317.73	2.00	
4200.00	5.86	356.40	4172.76	330.66	-20.80	-329.61	2.00	
4300.00	3.86	356.40	4272.40	339.11	-21.34	-338.03	2.00	
4400.00	1.86	356.40	4372.27	344.08	-21.65	-342.98	2.00	11-14 \/
4492.79 4500.00	0.00	356.40 181.94	4465.04	345.58	-21.74 21.74	-344.48	2.00	Hold Vertical
4600.00	0.00 0.00	181.94	4472.25 4572.25	345.58 345.58	-21.74 -21.74	-344.48 -344.48	0.00	
4700.00	0.00	181.94	4672.25	345.58	-21.74	-344.48	0.00	
4800.00	0.00	181.94	4772.25	345.58	-21.74	-344.48	0.00	
4900.00	0.00	181.94	4872.25	345.58	-21.74	-344.48	0.00	
5000.00	0.00	181.94	4972.25	345.58	-21.74	-344.48	0.00	
5100.00	0.00	181.94	5072.25	345.58	-21.74	-344.48	0.00	
5123.75	0.00	181.94	5096.00	345.58	-21.74	-344.48	0.00	Brushy Canyon
5200.00	0.00	181.94	5172.25	345.58	-21.74	-344.48	0.00	
5300.00	0.00	181.94	5272.25	345.58	-21.74	-344.48	0.00	
5400.00	0.00	181.94	5372.25	345.58	-21.74	-344.48	0.00	
5500.00	0.00	181.94	5472.25	345.58	-21.74 21.74	-344.48	0.00	
5600.00 5700.00	0.00 0.00	181.94 181.94	5572.25 5672.25	345.58 345.58	-21.74 -21.74	-344.48 -344.48	0.00 0.00	
5800.00	0.00	181.94	5772.25	345.58	-21.74 -21.74	-344.46 -344.48	0.00	
5900.00	0.00	181.94	5872.25	345.58	-21.74	-344.48	0.00	
6000.00	0.00	181.94	5972.25	345.58	-21.74	-344.48	0.00	
6100.00	0.00	181.94	6072.25	345.58	-21.74	-344.48	0.00	
6200.00	0.00	181.94	6172.25	345.58	-21.74	-344.48	0.00	

Well: STEEL GUITAR 35-26 FED COM 423H

County: Eddy Wellbore: Permit Plan

Design: Permit Plan #1 Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

	Design:	Permit Plan	n #1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
6300.00	0.00	181.94	6272.25	345.58	-21.74	-344.48	0.00	
6400.00	0.00	181.94	6372.25	345.58	-21.74	-344.48	0.00	
6500.00	0.00	181.94	6472.25	345.58	-21.74	-344.48	0.00	
6600.00	0.00	181.94	6572.25	345.58	-21.74	-344.48	0.00	
6700.00 6728.75	0.00	181.94 181.94	6672.25 6701.00	345.58 345.58	-21.74 -21.74	-344.48 -344.48	0.00	1st Bone Spring Lime
6800.00	0.00	181.94	6772.25	345.58	-21.74	-344.48	0.00	ist boile spring Line
6900.00	0.00	181.94	6872.25	345.58	-21.74	-344.48	0.00	
7000.00	0.00	181.94	6972.25	345.58	-21.74	-344.48	0.00	
7100.00	0.00	181.94	7072.25	345.58	-21.74	-344.48	0.00	
7200.00	0.00	181.94	7172.25	345.58	-21.74	-344.48	0.00	
7300.00	0.00	181.94	7272.25	345.58	-21.74	-344.48	0.00	
7400.00	0.00	181.94	7372.25	345.58	-21.74	-344.48	0.00	
7500.00	0.00	181.94	7472.25	345.58	-21.74	-344.48	0.00	
7600.00 7654.75	0.00	181.94 181.94	7572.25 7627.00	345.58 345.58	-21.74 21.74	-344.48 -344.48	0.00	Pono Spring 1st
7700.00	0.00 0.00	181.94	7672.25	345.58	-21.74 -21.74	-344.48	0.00 0.00	Bone Spring 1st
7800.00	0.00	181.94	7772.25	345.58	-21.74	-344.48	0.00	
7900.00	0.00	181.94	7872.25	345.58	-21.74	-344.48	0.00	
8000.00	0.00	181.94	7972.25	345.58	-21.74	-344.48	0.00	
8100.00	0.00	181.94	8072.25	345.58	-21.74	-344.48	0.00	
8200.00	0.00	181.94	8172.25	345.58	-21.74	-344.48	0.00	
8251.75	0.00	181.94	8224.00	345.58	-21.74	-344.48	0.00	Bone Spring 2nd
8300.00	0.00	181.94	8272.25	345.58	-21.74	-344.48	0.00	
8400.00 8500.00	0.00	181.94	8372.25	345.58	-21.74	-344.48	0.00	
8600.00	0.00	181.94 181.94	8472.25 8572.25	345.58 345.58	-21.74 -21.74	-344.48 -344.48	0.00	
8700.00	0.00	181.94	8672.25	345.58	-21.74	-344.48	0.00	
8714.75	0.00	181.94	8687.00	345.58	-21.74	-344.48	0.00	3rd Bone Spring Lime
8800.00	0.00	181.94	8772.25	345.58	-21.74	-344.48	0.00	
8900.00	0.00	181.94	8872.25	345.58	-21.74	-344.48	0.00	
9000.00	0.00	181.94	8972.25	345.58	-21.74	-344.48	0.00	
9100.00	0.00	181.94	9072.25	345.58	-21.74	-344.48	0.00	
9200.00	0.00	181.94	9172.25	345.58	-21.74	-344.48	0.00	
9300.00	0.00	181.94	9272.25	345.58	-21.74	-344.48	0.00	
9400.00 9500.00	0.00	181.94 181.94	9372.25 9472.25	345.58 345.58	-21.74 -21.74	-344.48 -344.48	0.00 0.00	
9554.75	0.00	181.94	9527.00	345.58	-21.74	-344.48	0.00	Bone Spring 3rd
9600.00	0.00	181.94	9572.25	345.58	-21.74	-344.48	0.00	bone spring and
9700.00	0.00	181.94	9672.25	345.58	-21.74	-344.48	0.00	
9715.79	0.00	181.94	9688.04	345.58	-21.74	-344.48	0.00	KOP
9800.00	8.42	181.94	9771.95	339.41	-21.95	-338.30	10.00	
9868.55	15.28	181.94	9839.00	325.35	-22.43	-324.23	10.00	Wolfcamp / Point of Penetration
9900.00	18.42	181.94	9869.09	316.24	-22.74	-315.12	10.00	
10000.00	28.42	181.94	9960.74	276.57	-24.08	-275.42	10.00	
10100.00	38.42	181.94	10044.10	221.59	-25.94	-220.41	10.00	
10200.00 10300.00	48.42 58.42	181.94 181.94	10116.64 10176.16	152.98 72.82	-28.27 -30.98	-151.77 -71.57	10.00 10.00	
10400.00	68.42	181.94	10220.84	-16.44	-34.00	17.75	10.00	
10500.00	78.42	181.94	10249.34	-112.11	-37.24	113.47	10.00	
10600.00	88.42	181.94	10260.78	-211.27	-40.60	212.68	10.00	
10617.12	90.13	181.94	10261.00	-228.37	-41.18	229.80	10.00	Landing Point
10700.00	90.13	181.94	10260.81	-311.21	-43.99	312.68	0.00	
10800.00	90.13	181.94	10260.58	-411.15	-47.37	412.68	0.00	
10900.00	90.13	181.94	10260.35	-511.09	-50.76	512.68	0.00	
11000.00	90.13	181.94	10260.12	-611.04	-54.14	612.68	0.00	
11100.00 11200.00	90.13 90.13	181.94 181.94	10259.88 10259.65	-710.98 -810.92	-57.53 -60.91	712.68 812.67	0.00 0.00	
11300.00	90.13	181.94	10259.65	-910.92 -910.86	-64.30	912.67	0.00	
11400.00	90.13	181.94	10259.19	-1010.81	-67.68	1012.67	0.00	
11500.00	90.13	181.94	10258.96	-1110.75	-71.07	1112.67	0.00	
11600.00	90.13	181.94	10258.73	-1210.69	-74.45	1212.67	0.00	
11700.00	90.13	181.94	10258.50	-1310.63	-77.84	1312.67	0.00	
11800.00	90.13	181.94	10258.27	-1410.57	-81.22	1412.66	0.00	
11900.00	90.13	181.94	10258.04	-1510.52	-84.61	1512.66	0.00	
12000.00	90.13	181.94	10257.81	-1610.46	-87.99	1612.66	0.00	
12100.00	90.13	181.94	10257.58	-1710.40	-91.38	1712.66	0.00	
12200.00 12300.00	90.13 90.13	181.94 181.94	10257.34 10257.11	-1810.34 -1910.29	-94.76 -98.15	1812.66 1912.66	0.00 0.00	
12400.00	90.13	181.94	10257.11	-2010.23	-96.15	2012.66	0.00	

Well: STEEL GUITAR 35-26 FED COM 423H

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment	
12500.00	90.13	181.94	10256.65	-2110.17	-104.92	2112.65	0.00		
12600.00	90.13	181.94	10256.42	-2210.11	-108.30	2212.65	0.00		
12700.00	90.13	181.94	10256.19	-2310.06	-111.69	2312.65	0.00		
12800.00	90.13	181.94	10255.96	-2410.00	-115.07	2412.65	0.00		
12900.00	90.13	181.94	10255.73	-2509.94	-118.46	2512.65	0.00		
13000.00	90.13	181.94	10255.50	-2609.88	-121.84	2612.65	0.00		
13100.00	90.13	181.94	10255.27	-2709.83	-125.23	2712.65	0.00		
13200.00	90.13	181.94	10255.04	-2809.77	-128.61	2812.64	0.00		
13300.00	90.13	181.94	10254.80	-2909.71	-132.00	2912.64	0.00		
13400.00	90.13	181.94	10254.57	-3009.65	-135.38	3012.64	0.00		
13500.00	90.13	181.94	10254.34	-3109.60	-138.77	3112.64	0.00		
13600.00	90.13	181.94	10254.11	-3209.54	-142.15	3212.64	0.00		
13700.00	90.13	181.94	10253.88	-3309.48	-145.54	3312.64	0.00		
13800.00	90.13	181.94	10253.65	-3409.42	-143.34	3412.63	0.00		
13900.00									
	90.13	181.94	10253.42	-3509.37	-152.31	3512.63	0.00		
14000.00	90.13	181.94	10253.19	-3609.31	-155.69	3612.63	0.00		
14100.00	90.13	181.94	10252.96	-3709.25	-159.08	3712.63	0.00		
14200.00	90.13	181.94	10252.73	-3809.19	-162.46	3812.63	0.00		
14300.00	90.13	181.94	10252.49	-3909.14	-165.85	3912.63	0.00		
14400.00	90.13	181.94	10252.26	-4009.08	-169.23	4012.63	0.00		
14500.00	90.13	181.94	10252.03	-4109.02	-172.62	4112.62	0.00		
14600.00	90.13	181.94	10251.80	-4208.96	-176.00	4212.62	0.00		
14700.00	90.13	181.94	10251.57	-4308.91	-179.39	4312.62	0.00		
14800.00	90.13	181.94	10251.34	-4408.85	-182.77	4412.62	0.00		
14900.00	90.13	181.94	10251.11	-4508.79	-186.16	4512.62	0.00		
15000.00	90.13	181.94	10250.88	-4608.73	-189.54	4612.62	0.00		
15100.00	90.13	181.94	10250.65	-4708.67	-192.93	4712.62	0.00		
15200.00	90.13	181.94	10250.42	-4808.62	-196.31	4812.61	0.00		
15300.00	90.13	181.94	10250.19	-4908.56	-199.70	4912.61	0.00		
15400.00	90.13	181.94	10249.95	-5008.50	-203.08	5012.61	0.00		
15500.00	90.13	181.94	10249.72	-5108.44	-206.47	5112.61	0.00		
15600.00	90.13	181.94	10249.49	-5208.39	-209.85	5212.61	0.00		
15700.00	90.13	181.94	10249.26	-5308.33	-213.24	5312.61	0.00		
15800.00	90.13	181.94	10249.03	-5408.27	-216.62	5412.60	0.00		
15900.00	90.13	181.94	10248.80	-5508.21	-220.01	5512.60	0.00		
16000.00	90.13	181.94	10248.57	-5608.16	-223.39	5612.60	0.00		
16100.00	90.13	181.94	10248.34	-5708.10	-226.78	5712.60	0.00		
16200.00	90.13	181.94	10248.11	-5808.04	-230.16	5812.60	0.00		
16300.00	90.13	181.94	10247.88	-5907.98	-233.55	5912.60	0.00		
16400.00	90.13	181.94	10247.65	-6007.93	-236.93	6012.60	0.00		
16500.00	90.13	181.94	10247.65	-6107.87	-236.93 -240.32	6112.59	0.00		
16600.00	90.13	181.94	10247.41	-6107.87 -6207.81			0.00		
					-243.70	6212.59			
16700.00	90.13	181.94	10246.95	-6307.75	-247.09	6312.59	0.00		
16800.00	90.13	181.94	10246.72	-6407.70	-250.47	6412.59	0.00		
16900.00	90.13	181.94	10246.49	-6507.64	-253.86	6512.59	0.00		
17000.00	90.13	181.94	10246.26	-6607.58	-257.24	6612.59	0.00		
17028.37	90.13	181.94	10246.19	-6635.94	-258.21	6640.96	0.00	exit	
17100.00	90.13	181.94	10246.03	-6707.52	-260.63	6712.58	0.00		
17108.37	90.13	181.94	10246.00	-6715.89	-260.93	6720.96	0.00	BHL	

9.625" 40# .395" J-55

Dimensions (Nominal)

BTC

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.
weight, FE	38.970	105./11.
Performance Properties		
Collapse, PE	2570	psi
Internal Yield Pressure at Minimum Yield		
PE	3950	psi
LTC	3950	psi
ВТС	3950	psi
Yield Strength, Pipe Body	630	1000 lbs.
Joint Strength		
STC	452	1000 lbs.
LTC	520	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

714

1000 lbs.

etal One Corp.	MO-FXL			MO-FXL 7-5/8 29. P110HSCY			
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HSC	V MinVS125kei	CDS#	MinYS1			
Meiai One	Min95%WT	1 10123831		Min95			
	Connection Data	a Sheet	Date	20-Se			
		a Onect	Date				
	Geometry	<u>Imperia</u>	ı <u>l</u>	<u>S.I.</u>			
	Pipe Body						
	Grade *	P110HSCY		P110HSCY			
	Pipe OD (D)	7 5/8	in	193.68	mm		
MO-FXL	Weight	29.70	lb/ft	44.25	kg/m		
	Actual weight	29.04		43.26	kg/m		
	Wall Thickness (t)	0.375	in	9.53	mm		
	Pipe ID (d)	6.875	in	174.63	mm		
	Pipe body cross section	8.541	in ²	5,510	mm ²		
	Drift Dia.	6.750	in	171.45	mm		
	Connection						
\uparrow	Box OD (W)	7.625	in	193.68	mm		
	PIN ID	6.875	in	174.63	mm		
Box	Make up Loss	4.219	in	107.16	mm		
critical	Box Critical Area	5.714	in ²	3686	mm ²		
area	Joint load efficiency	70	%	70	%		
	Thread Taper			2" per ft)	/0		
p	Number of Threads			TPI			
/lake	Number of Threads Performance						
Make p D	Number of Threads Performance Performance Properties		5	TPI	kN		
Make p	Number of Threads Performance	for Pipe Body 1,068			kN MPa		
Make p D	Performance Performance Properties 1 S.M.Y.S. *1	for Pipe Body	5 kips	4,749			
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1	for Pipe Body 1,068 11,680 7,200	kips psi psi	4,749 80.55 49.66	MPa MPa		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE	kips psi psi psi	4,749 80.55 49.66 ngth of Pipe boo	MPa MPa		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specifi	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yielo	kips psi psi psi ELD Stre	4,749 80.55 49.66 ngth of Pipe body	MPa MPa		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Co	kips psi psi ELD Street Pressur	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi	MPa MPa dy		
Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Speciformance Mily.P. = Minim *BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.625	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Co	kips psi psi ELD Streid Pressui lapse Stre	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi	MPa MPa dy		
Aake p D Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specifor M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Co	kips psi psi ELD Stred Pressulapse Stre	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi	MPa MPa dy		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.626 Performance Properties	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H: for Connectio	kips psi psi ELD Streid Pressuilapse Streic SCY Rev3 n (70%	4,749 80.55 49.66 ngth of Pipe body ength 7,200psi 3, dated 9/19/202	MPa MPa dy		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.626 Performance Properties Tensile Yield load	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col " 29.7lb/ft P110H3 for Connectio 747 kips	kips psi psi ELD Stred Pressullapse Stre SCY Rev3 n 70%	4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.)	MPa MPa dy		
Aake IP D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.626 Performance Properties Tensile Yield load Min. Compression Yield	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips	kips psi psi ELD Stred Pressulapse StresCY Rev3 n (70% (70%	4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.)	MPa MPa dy		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.625 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips	kips psi psi ELD Streid Pressuillapse Stre SCY Rev3 n (70% (70% 80% 100% c	4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy		
Aake p D Pin critical	Performance Performance Properties 1 S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim * BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.625 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips	kips psi psi ELD Streid Pressuillapse Stre SCY Rev3 n (70% (70% 80% 100% c	4,749 80.55 49.66 Ingh of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy		
Make up D Pin critical	Performance Performance Properties of S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specifing M.I.Y.P. = Miniming *BMP P110HSCY: MinyS125ks Performance Data Sheet: 7.625 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H3 for Connectio 747 kips 747 kips 9,340 psi	kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% 70% 100% c	4,749 80.55 49.66 Ingh of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 3		
Aake p D Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Miniming *1 Miniming *2 Miniming *2 Miniming *3 Miniming *4 Min	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col " 29.7lb/ft P110Hs for Connectio 747 kips 747 kips 9,340 psi	kips psi psi stressurate Arressurate (70% (70% (70% (30%) 100% (3	4,749 80.55 49.66 Ingth of Pipe body ength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0	MPa MPa ddy		
Aake p D Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Miniming *1 Min	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Co " 29.7lb/ft P110Hs for Connectio 747 kips 9,340 psi 15,500 17,200	kips psi psi ELD Streid Pressullapse Stre SCY Rev3 n (70% 70% 100% c	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of Collapse St 0 21,000 23,300	MPa MPa dy 3		
Make up D Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Miniming *BMP P110HSCY: MinYS125ks Performance Data Sheet: 7.626 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110Hs for Connectio 747 kips 747 kips 9,340 psi	kips psi psi psi Heressur lapse Stre SCY Rev3 n (70% (70% (80% 100% c 3	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300 25,600	MPa MPa dy 3 rength N-m N-m N-m		
Aake IP D Pin critical	Performance Performance Properties for S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Miniming *1 Min	for Pipe Body 1,068 11,680 7,200 ied Minimum YIE um Internal Yield i, Min95%WT, Col 5" 29.7lb/ft P110H5 for Connectio 747 kips 747 kips 9,340 psi 15,500 17,200 18,900 23,600	kips psi psi psi lapse Stree SCY Rev3 n (70% 80% 100% c 3	4,749 80.55 49.66 Ingth of Pipe bodyength 7,200psi 3, dated 9/19/202 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300 25,600 32,000	MPa MPa ddy 3 rength N-m N-m N-m N-m		

Legal Notice

The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information.

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/ images/top/WebsiteTerms Active 20333287 1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Steel Guitar 35-26 Fed Com 423H

13 3/8	su	ırface csg in a	17 1/2	inch hole.		Design I	actors		Surface			
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50	j	55	btc	31.63	4.88	1.61	495	12	2.71	9.22	26,978
"B"				btc				0				0
	w/8.4	4#/g mud, 30min Sfc Csg Test psig	1,500	Tail Cmt	does not	circ to sfc.	Totals:	495				26,978
Comparison o	f Proposed to I	Minimum Required Cement	/olumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	371	534	344	55	9.00	1009	2M				1.56

9 5/8	casin	g inside the	13 3/8	_		Design	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	5.08	1.52	0.88	3,100	2	1.66	2.55	124,000
"B"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1,412				Totals:	3,100				124,000
		The cement	olume(s) are intende	ed to achieve a top of	0	ft from su	rface or a	495				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	471	1258	995	26	10.50	2377	3M				0.81
D V Tool(s):							sum of sx	Σ CuFt				Σ%excess
by stage % :		#VALUE!	#VALUE!				471	1258				26
Class 'C' tail cm	t yld > 1.35											
	/.).											
surst Frac Grad	ient(s) for Segmen	t(s): A, B, C, D = 1.27, i	o, c, a All > 0.70, OK									

7 5/8	casin	g inside the	9 5/8	_		Design Fa	ctors			Int 2		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70		p 110	mo-fxl	2.30	1.57	1.36	9,602	2	2.27	2.97	285,179
"B"								0				0
"C"								0				0
"D"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1,116				Totals:	9,602				285,179
		The cement v	olume(s) are intend	ded to achieve a top of	2900	ft from su	rface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
8 3/4	0.1005	582	1142	675	69	9.00	3335	5M				0.56
Class 'C' tail cm	t yld > 1.35											

Tail cmt 5 1/2	casin	g inside the	7 5/8			<u>Design</u> l	Factors			Prod 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00	VA-EF	P-P 110	Varn	3.55	2.68	2.57	9,102	3	4.31	4.49	182,040
"B"	20.00		p 110	vam sprint sf	28.02	2.16	2.57	1,515	3	4.31	3.62	30,300
"C"	20.00	VA-EF	P-P 110	Varn	00	2.38	2.57	6,491	3	4.31	3.99	129,827
"D"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test p	osig: 2,002				Totals:	17,108				342,167
		The cement vo	olume(s) are inten-	ded to achieve a top of	9102	ft from su	rface or a	500				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
6 3/4	0.0835	534	882	673	31	10.50						0.35
Class 'H' tail cm	nt yld > 1.20		Capitan Reef e	st top XXXX.								

Carlsbad Field Office 2/5/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 311497

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	311497
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
ward.rikala	All original COA's still apply. Additionally, if cement does not circulate to surface while cementing any string, then a CBL is required.	2/6/2024