U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Sundry Print Reports 03/14/2024 Well Name: COTTON DRAW UNIT Well Location: T25S / R32E / SEC 28 / County or Parish/State: NENE / Well Number: 654H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC061869 Unit or CA Name: Unit or CA Number: US Well Number: 3002549161 Well Status: Approved Application for Operator: DEVON ENERGY Permit to Drill PRODUCTION COMPANY LP ## **Notice of Intent** **Sundry ID: 2777537** Type of Submission: Notice of Intent Type of Action: APD Change Date Sundry Submitted: 03/01/2024 Time Sundry Submitted: 10:11 Date proposed operation will begin: 03/01/2024 **Procedure Description:** Engineer Review only Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes and cement plan. Please see attachments for the slim hole design. # **NOI Attachments** #### **Procedure Description** 5.5_20lb_P110EC_VAM_SPRINT_SF_20240312072214.pdf 7.625_29.7lb_P110EC_SPRINT_FJ_20240312072214.pdf COTTON_DRAW_UNIT_654H_20240312072214.pdf 9.625_40lb_J55_SeAH_20240312072214.pdf 5.5_20lb_P110EC_DWC_C_IS_20240312072212.pdf Well Name: COTTON DRAW UNIT Well Name: COTTON DRAW UNIT Well Location: T25S / R32E / SEC 28 / Co NENE / County or Parish/State: Page 2 of Well Number: 654H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC061869 Unit or CA Name: Unit or CA Number: **US Well Number:** 3002549161 **Well Status:** Approved Application for **Operator:** DEVON ENERGY Permit to Drill PRODUCTION COMPANY LP ## **Conditions of Approval** #### **Specialist Review** Sundry_ID_2777537_20240312142945.pdf # **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a Operator Electronic Signature: CHELSEY GREEN Signed on: MAR 12, 2024 07:22 AM Name: DEVON ENERGY PRODUCTION COMPANY LP **Title:** Regulatory Compliance Professional **Street Address:** 333 West Sheridan Avenue City: Oklahoma City State: OK **Phone:** (405) 228-8595 Email address: Chelsey.Green@dvn.com #### **Field** **Representative Name:** **Street Address:** City: State: Zip: Phone: **Email address:** Signature: Long Vo ## **BLM Point of Contact** **BLM POC Name:** LONG VO **BLM POC Title:** Petroleum Engineer **BLM POC Phone:** 5759885402 **BLM POC Email Address:** LVO@BLM.GOV **Disposition:** Approved **Disposition Date:** 03/12/2024 Disposition: Approved Disposition Date: 05/12/2024 Form 3160-5 (June 2019) # UNITED STATES DEPARTMENT OF THE INTERIOR | FORM APPROVED | |---------------------------| | OMB No. 1004-0137 | | Expires: October 31, 2021 | | . Lease Serial No. | NIMI CO61 | |--------------------|-----------| | BURI | EAU OF LAND MANAGEMENT | | | J. Lease Serial 140. | 1MFC | 061869 | | |---|--|------------------------------|--|--|-------------------|----------------------------------|---| | SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals. | | | | 6. If Indian, Allottee | or Tribe | e Name | | | | ` , | | <i>5</i> 50415. | 7. If Unit of CA/Agre | ement | Name and/o | or No. | | 1. Type of Well | TRIPLICATE - Other instructions on pag | ge 2 | | - | , | , - 101-12 01-101 | | | Oil Well Gas W | /ell Other | | | 8. Well Name and No. COTTON DRAW UNIT/654H | | | | | 2. Name of Operator DEVON ENERG | SY PRODUCTION COMPANY LP | | | 9. API Well No. 3002 |
254916 |
61 | | | 3a. Address 333 WEST SHERIDAN | | (include ar | ea code) | 10. Field and Pool or | | | | | 333 WEST SHERIDAR | (405) 235-36 | , | , | WC-025 G-06 S25 | 532061 | M/BONE SP | RING | | 4. Location of Well (Footage, Sec., T.,R
SEC 28/T25S/R32E/NMP | .,M., or Survey Description) | | | 11. Country or Parish
LEA/NM | , State | | | | 12. CHE | CK THE APPROPRIATE BOX(ES) TO IN | DICATE N. | ATURE OF NOT | ICE, REPORT OR OT | HER D | ATA | | | TYPE OF SUBMISSION | | | TYPE OF AC | TION | | | | | ✓ Notice of Intent | | raulic Fract | uring Recl | luction (Start/Resume)
amation | | Water Shut | | | Subsequent Report | | Construction | | omplete | L | Other | | | Final Abandonment Notice | | and Aband
Back | | porarily Abandon
er Disposal | | | | | completion of the involved operation completed. Final Abandonment Not is ready for final inspection.) Engineer Review only Devon Energy Production Co., attachments for the slim hole of | | mpletion or
ts, including | recompletion in a
greclamation, hav | new interval, a Form 3 te been completed and | 3160-4
the ope | must be filed
erator has dete | d once testing has been
tennined that the site | | 14. I hereby certify that the foregoing is CHELSEY GREEN / Ph: (405) 228 | | Title Reg | gulatory Complia | ance Professional | | | | | Signature (Electronic Submission | n) | Date | | 03/12/2 | :024 | | | | | THE SPACE FOR FED | ERAL O | R STATE OF | ICE USE | | | | | Approved by | | | . | | | | | | LONG VO / Ph: (575) 988-5402 / A | pproved | Title | Petroleum Eng | | Date | 03 | 3/12/2024 | | | ned. Approval of this notice does not warrar
equitable title to those rights in the subject led
duct operations thereon. | | ce CARLSBAD | | | | | | | B U.S.C Section 1212, make it a crime for a | | | Ifully to make to any d | epartm | ent or agency | y of the United States | (Instructions on page 2) #### **GENERAL INSTRUCTIONS** This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office. #### SPECIFIC INSTRUCTIONS *Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions. Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. #### **NOTICES** The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160. PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used. ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government. EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases. Response to this request
is mandatory. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240 (Form 3160-5, page 2) #### **Additional Information** #### **Location of Well** $0. \ SHL: \ NENE \ / \ 175 \ FNL \ / \ 785 \ FEL \ / \ TWSP: 25S \ / \ RANGE: 32E \ / \ SECTION: 28 \ / \ LAT: 32.1078039 \ / \ LONG: -103.6735143 \ (TVD: 0 \ feet, MD: 0 \ feet \)$ $PPP: \ SESE \ / \ 100 \ FSL \ / \ 400 \ FEL \ / \ TWSP: 25S \ / \ RANGE: 32E \ / \ SECTION: 21 \ / \ LAT: 32.108968 \ / \ LONG: -103.672785 \ (TVD: 11695 \ feet, MD: 11858 \ feet \)$ $BHL: \ NENE \ / \ 20 \ FNL \ / \ 330 \ FEL \ / \ TWSP: 25S \ / \ RANGE: 32E \ / \ SECTION: 16 \ / \ LAT: 32.1376613 \ / \ LONG: -103.6727259 \ (TVD: 11730 \ feet, MD: 22300 \ feet \)$ Issued on: 08 Jul. 2020 by Wesley Ott **Connection Data Sheet** | OD | Weight | Wall Th. | Grade | API Drift: | Connection | |-----------|-------------|-----------|--------|------------|----------------| | 5 1/2 in. | 20.00 lb/ft | 0.361 in. | P110EC | 4.653 in. | VAM® SPRINT-SF | | | ' | | | • | | | PIPE PROPERTIES | | | | | | |--------------------------------|-------|---------|--|--|--| | Nominal OD | 5.500 | in. | | | | | Nominal ID | 4.778 | in. | | | | | Nominal Cross Section Area | 5.828 | sqin. | | | | | Grade Type | Hig | h Yield | | | | | Min. Yield Strength | 125 | ksi | | | | | Max. Yield Strength | 140 | ksi | | | | | Min. Ultimate Tensile Strength | 135 | ksi | | | | | CONNECTION P | ROPERTIES | | |------------------------------|-----------------------|------------| | Connection Type | Semi-Premium Integral | Semi-Flush | | Connection OD (nom): | 5.783 | in. | | Connection ID (nom): | 4.717 | in. | | Make-Up Loss | 5.965 | in. | | Critical Cross Section | 5.244 | sqin. | | Tension Efficiency | 90.0 | % of pipe | | Compression Efficiency | 90.0 | % of pipe | | Internal Pressure Efficiency | 100 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | | | | |---------------------------------------|--------|---------|--|--|--| | Tensile Yield Strength | 656 | klb | | | | | Compression Resistance | 656 | klb | | | | | Internal Yield Pressure | 14,360 | psi | | | | | Collapse Resistance | 12,080 | psi | | | | | Max. Structural Bending | 89 | °/100ft | | | | | Max. Bending with ISO/API Sealability | 30 | °/100ft | | | | | TORQUE VALUES | | | |------------------------------------|--------|-------| | Min. Make-up torque | 20,000 | ft.lb | | Opt. Make-up torque | 22,500 | ft.lb | | Max. Make-up torque | 25,000 | ft.lb | | Max. Torque with Sealability (MTS) | 40,000 | ft.lb | VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements. Do you need help on this product? - Remember no one knows VAM® like VAM® canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW Received by OCD: 3/14/2024 1:03:39 PM Issued on: 09 Dec. 2020 by Logan Van Gorp # **Connection Data Sheet** | OD | Weight | Wall Th. | Grade | API Drift: | Connection | |-----------|------------------------|-----------|--------|------------|----------------| | 7 5/8 in. | Nominal: 29.70 lb/ft | 0.375 in. | P110EC | 6.750 in. | VAM® SPRINT-FJ | | | Plain End: 29.06 ft/lb | | | | | | PIPE PROPERTIES | | | |--------------------------------|----------|----------| | Nominal OD | 7.625 | in. | | Nominal ID | 6.875 | in. | | Nominal Cross Section Area | 8.541 | sqin. | | Grade Type | Enhanced | Collapse | | Min. Yield Strength | 125 | ksi | | Max. Yield Strength | 140 | ksi | | Min. Ultimate Tensile Strength | 135 | ksi | | CONNECTION PROP | ERTIES | | |------------------------------|------------------|-------------| | Connection Type | Semi-Premium Int | egral Flush | | Connection OD (nom): | 7.654 | in. | | Connection ID (nom): | 6.827 | in. | | Make-Up Loss | 4.055 | in. | | Critical Cross Section | 6.979 | sqin. | | Tension Efficiency | 80.0 | % of pipe | | Compression Efficiency | 80.0 | % of pipe | | Internal Pressure Efficiency | 80.0 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | | | | |--------------------------------|-------|---------|--|--|--| | Tensile Yield Strength | 854 | klb | | | | | Compression Resistance | 854 | klb | | | | | Max. Internal Pressure | 8,610 | psi | | | | | Structural Collapse Resistance | 7,360 | psi | | | | | Max. Structural Bending | 57 | °/100ft | | | | | Max. Bending with Sealability | 10 | °/100ft | | | | | TORQUE VALUES | | | |------------------------------------|--------|-------| | Min. Make-up torque | 15,000 | ft.lb | | Opt. Make-up torque | 16,500 | ft.lb | | Max. Make-up torque | 18,000 | ft.lb | | Max. Torque with Sealability (MTS) | 32,000 | ft.lb | **VAM® SPRINT-FJ** is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings. canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com # Do you need help on this product? - Remember no one knows VAM^{\circledR} like VAM^{\circledR} uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW #### **COTTON DRAW UNIT 654H** #### 1. Geologic Formations | TVD of target | 9020 | Pilot hole depth | N/A | |---------------|-------|------------------------------|-----| | MD at TD: | 19380 | Deepest expected fresh water | | #### Basin | | Depth | Water/Mineral | | |----------------------|---------|----------------|----------| | Formation | (TVD) | Bearing/Target | Hazards* | | | from KB | Zone? | | | Rustler | 782 | | | | Salt | 1148 | | | | Base of Salt | 4348 | | | | Delaware | 4570 | | | | Cherry Canyon | 5539 | | | | Brushy Canyon | 6977 | | | | 1st Bone Spring Lime | 8556 | ^{*}H2S, water flows, loss of circulation, abnormal pressures, etc. 2. Casing Program (Primary Design) | | | Wt | | | | Interval | Casing | Interval | |-----------|-----------|-------|-------|----------------------|-----------|----------|------------|----------| | Hole Size | Csg. Size | (PPF) | Grade | Conn | From (MD) | To (MD) | From (TVD) | To (TVD) | | 12 1/4 | 9 5/8 | 40 | J-55 | BTC | 0 | 862 | 0 | 862 | | 8 3/4 | 7 5/8 | 29.7 | P110 | Sprint FJ | 0 | 8468 | 0 | 8468 | | 6 3/4 | 5 1/2 | 20 | P110 | DWC/C-IS & Sprint FJ | 0 | 19380 | 0 | 9020 | [•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing. Variance Approval - o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8" casing shoe o All other 5-1/2" Production Casing will run DWC/C IS (6.05") #### 3. Cementing Program (Primary Design) Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures | Casing | # Sks | TOC | Wt.
ppg | Yld
(ft3/sack) | Slurry Description | |------------|------------------------------|------|------------|---|----------------------------------| | Surface | 300 | Surf | 13.2 | 1.44 | Lead: Class C Cement + additives | | Int 1 | Int 1 390 Surf 13.0 2.3 1.44 | | 2.3 | 2nd State: Bradenhead Squeeze - Lead:
Class C Cement + additives | | | III I | | | 13.2 | 1.44 | Tail: Class H / C + additives | | Production | 62 | 6568 | 9 | 3.27 | Lead: Class H /C + additives | | Floduction | 690 | 8568 | 13.2 | 1.44 | Tail: Class H / C + additives | Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to matchintermediate
sections' 5M BOPE requirements. | Casing String | % Excess | |----------------|----------| | Surface | 50% | | Intermediate 1 | 30% | | Prod | 10% | 4. Pressure Control Equipment (Three String Design) | BOP installed and tested before drilling which hole? | Size? | Min. Required WP | T | ype | ✓ | Tested to: | | | | |--|--|---------------------|---------------|----------------|---------------|-------------------------------|-----|--|----| | | | | Anı | nular | X | 50% of rated working pressure | | | | | Int 1 | 13-5/8" | 5M | | l Ram | X | | | | | | 1111.1 | 13-3/0 | 3141 | Pipe | Ram | | 5M | | | | | | | | Doub | le Ram | X | JIVI | | | | | | | | Other* | | | | | | | | | | | Annul | ar (5M) | X | 50% of rated working | | | | | | 13-5/8" | | 7 Hillian (3) | | 21 | pressure | | | | | Production | | 5M | | l Ram | X | | | | | | Troddetion | | 13-3/0 | 13-3/0 | 13-3/0 | | _ | Ram | | 5M | | | | | Doub | le Ram | X | 31,1 | | | | | | | | Other* | | | | | | | | | | | Annular (5M) | | | | | | | | | | | Blind | l Ram | | | | | | | | | | Pipe Ram | | | | | | | | | | | Doub | le Ram | | | | | | | | | | Other* | | | | | | | | N A variance is requested for | the use of a | a diverter on the s | urface casin | g. See attache | ed for schema | atic. | | | | | Y A variance is requested to r | A variance is requested to run a 5 M annular on a 10M system | | | | | | | | | 5. Mud Program (Three String Design) | Section | Туре | Weight
(ppg) | |--------------|-----------------|-----------------| | Surface | FW Gel | 8.5-9 | | Intermediate | DBE / Cut Brine | 10-10.5 | | Production | OBM | 10-10.5 | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---|-----------------------------| 6. Logging and Testing Procedures | Logging, (| Logging, Coring and Testing | | | | | |------------|---|--|--|--|--| | | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the | | | | | | X | Completion Report and shumitted to the BLM. | | | | | | | No logs are planned based on well control or offset log information. | | | | | | | Drill stem test? If yes, explain. | | | | | | | Coring? If yes, explain. | | | | | | Additional logs planned | | Interval | |-------------------------|-------------|-------------------------| | | Resistivity | Int. shoe to KOP | | | Density | Int. shoe to KOP | | X | CBL | Production casing | | X | Mud log | Intermediate shoe to TD | | | PEX | | 7. Drilling Conditions | Condition | Specfiy what type and where? | |----------------------------|------------------------------| | BH pressure at deepest TVD | 4925 | | Abnormal temperature | No | Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers. Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176.. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM. N H2S is present Y H2S plan attached. #### **COTTON DRAW UNIT 654H** #### 8. Other facets of operation Is this a walking operation? Potentially - 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad. - The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well. - 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions. NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented. #### Will be pre-setting casing? Potentially - 1 Spudder rig will move in and batch drill surface hole. - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis., - 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations). - 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached. - 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead. - 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa. - 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations. - 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well. - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing. | Attachn | nents | |---------|------------------| | X | Directional Plan | | | Other, describe | 9.625" 40# .395" J-55 # **Dimensions (Nominal)** LTC **BTC** | Outside Diameter | 9.625 | in. | |--|--------|-----------| | Wall | 0.395 | in. | | Inside Diameter | 8.835 | in. | | Drift | 8.750 | in. | | | | | | Weight, T&C | 40.000 | lbs./ft. | | Weight, PE | 38.970 | lbs./ft. | | | | | | Performance Properties | | | | <u> </u> | | | | C.H PF | 2570 | • | | Collapse, PE | 2570 | psi | | Internal Yield Pressure at Minimum Yield | | | | PE | 3950 | psi | | LTC | 3950 | psi | | втс | 3950 | psi | | | | • | | | | | | Yield Strength, Pipe Body | 630 | 1000 lbs. | | | | | | Joint Strength | | | | STC | 452 | 1000 lbs. | | | | | Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility. 520 714 1000 lbs. 1000 lbs. Sundry Print Report 03/12/2024 Page 14 of 38 U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Well Name: COTTON DRAW UNIT Well Location: T25S / R32E / SEC 28 / County or Parish/State: NENE / Well Number: 654H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC061869 **Unit or CA Name: Unit or CA Number:** **US Well Number: 3002549161** Well Status: Approved Application for **Operator: DEVON ENERGY** PRODUCTION COMPANY LP Permit to Drill Digitally signed **LONG** by LONG VO Date: 2024.03.12 15:26:45 -05'00' #### **Notice of Intent** Sundry ID: 2777537 Type of Action: APD Change Type of Submission: Notice of Intent Date Sundry Submitted: 03/01/2024 Time Sundry Submitted: 10:11 Date proposed operation will begin: 03/01/2024 Procedure Description: Engineer Review only Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes and cement plan. Please see attachments for the slim hole design. #### **NOI Attachments** #### **Procedure Description** 5.5_20lb_P110EC_VAM_SPRINT_SF_20240312072214.pdf 7.625_29.7lb_P110EC_SPRINT_FJ_20240312072214.pdf COTTON_DRAW_UNIT_654H_20240312072214.pdf 9.625_40lb_J55_SeAH_20240312072214.pdf 5.5_20lb_P110EC_DWC_C_IS_20240312072212.pdf Received by OCD: WINKARD EDGTON BRAW UNIT Well Location: T25S / R32E / SEC 28 / NENE / County or Parish/State: Page 15 of 38 Well Number: 654H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC061869 Unit or CA Name: **Unit or CA Number:** **US Well Number: 3002549161** Well Status: Approved Application for Permit to Drill **Operator:** DEVON ENERGY PRODUCTION COMPANY LP #### **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a Operator Electronic Signature: CHELSEY GREEN Signed on: MAR 12, 2024 07:22 AM Name: DEVON ENERGY PRODUCTION COMPANY LP **Title:** Regulatory Compliance Professional **Street Address:** 333 West Sheridan Avenue **City:** Oklahoma City **State:** OK Phone: (405) 228-8595 Email address: Chelsey.Green@dvn.com #### **Field** **Representative Name:** Street Address: City: State: Zip: Phone: Email address: # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: Devon Energy Production Company LP LEASE NO.: NMLC061869 LOCATION: Section 28, T.25 S., R.32 E., NMPM COUNTY: Lea County, New Mexico WELL NAME & NO.: | Cotton Draw Unit 654H SURFACE HOLE FOOTAGE: 175'/N & 785'/E BOTTOM HOLE FOOTAGE 20'/N & 330'/E ATS/API ID: 30-025-49161 APD ID: 10400039120 **Sundry ID: 2766945** #### COA | H2S | Yes ▼ | | | |--------------|---------------------------|---------------------------------------|----------------| | Potash | None 🔻 | | | | Cave/Karst | Low 🔻 | | | | Potential | | | | | Cave/Karst | ☐ Critical | | | | Potential | | | | | Variance | ■ None | Flex Hose | C Other | | Wellhead | Conventional and Multibov | /l <u> </u> | | | Other | □4 String
| Capitan Reef | □WIPP | | | | None | | | | | i i i i i i i i i i i i i i i i i i i | | | Other | Pilot Hole | ☐ Open Annulus | | | | None 🔻 | | | | Cementing | Contingency Squeeze | Echo-Meter | Primary Cement | | | None ▼ | Int 1 | Squeeze | | | | | None - | | Special | □ Water | □ СОМ | ✓ Unit | | Requirements | Disposal/Injection | | | | Special | ☐ Batch Sundry | | | | Requirements | | | | | Special | ▼ Break Testing | ✓ Offline | ▼ Casing | | Requirements | | Cementing | Clearance | | Variance | | | | #### A. HYDROGEN SULFIDE A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM. #### B. CASING - 1. The 9-5/8 inch surface casing shall be set at approximately 920 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 12 1/4 inch in diameter. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is: #### **Option 1 (Single Stage):** • Cement to surface. If cement does not circulate see B.1.a, c-d above. #### **Option 2:** Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6977' (139 sxs Class H/C+ additives). - b. Second stage: Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 390 sxs Class C) Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. If cement does not reach surface, the next casing string must come to surface. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures. - 3. The minimum required fill of cement behind the 5-1/2 inch production casing is: - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification. #### C. PRESSURE CONTROL 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).' 2. #### Option 1: - a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi. - b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7-5/8 inch intermediate casing shoe shall be 5000 (5M) psi. #### **Option 2:** Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **9-5/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. #### D. SPECIAL REQUIREMENT (S) #### **Unit Wells** The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced. #### **Commercial Well Determination** A commercial well determination shall be submitted after production has been established for at least six months. ## **BOPE Break Testing Variance (Approved)** - BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle. - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests. - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172. - If in the event break testing is not utilized, then a full BOPE test would be conducted. #### **Offline Cementing** Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**. Offline cementing should commence within 24 hours of landing the casing for the interval. Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981. #### **Casing Clearance** Operator casing variance is approved for the utilization of 5-1/2 inch Sprint Flush Joint **from** base of curve and a minimum of 500 feet or the minimum tie-back requirement above whichever is greater into the previous casing shoe. **All** other 5-1/2 inch casing will run DWC/C IS. Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are less than 0.5 micron before cementing. # **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) ✓ Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper
copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report when present. - A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. - B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut- - off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.) - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172. - C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. #### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. Long Vo (LVO) 3/12/2024 Form 3160-5 (June 2019) # UNITED STATES DEPARTMENT OF THE INTERIOR | FORM APPROVED | |--------------------------| | OMB No. 1004-0137 | | Expires: October 31, 202 | | BUR | EAU OF LAND MANAGEMENT | | 5. Lease Serial No. N | MLC061869 | |---|--|--|---|--| | Do not use this t | IOTICES AND REPORTS ON W
form for proposals to drill or to
Use Form 3160-3 (APD) for suc | o re-enter an | 6. If Indian, Allottee o | r Tribe Name | | SUBMIT IN | TRIPLICATE - Other instructions on pag | e 2 | 7. If Unit of CA/Agree | ement, Name and/or No. | | 1. Type of Well Oil Well Gas W | Vell Other | | 8. Well Name and No. | COTTON DRAW UNIT/654H | | 2. Name of Operator DEVON ENERG | _ | | 9. API Well No.
3002 | E40404 | | 3a. Address 333 WEST SHERIDAN | | (include area code) | 10. Field and Pool or 1 | | | 333 WEST SHERIDAN | (405) 235-36 | ' | | 3206M/BONE SPRING | | 4. Location of Well (Footage, Sec., T.,R
SEC 28/T25S/R32E/NMP | .,M., or Survey Description) | | 11. Country or Parish,
LEA/NM | State | | 12. CHE | CK THE APPROPRIATE BOX(ES) TO INI | DICATE NATURE OF | NOTICE, REPORT OR OTH | IER DATA | | TYPE OF SUBMISSION | | ТҮРЕ С | OF ACTION | | | ✓ Notice of Intent | | raulic Fracturing | Production (Start/Resume) Reclamation | Water Shut-Off Well Integrity | | Subsequent Report | | Construction | Recomplete | Other | | Final Abandonment Notice | | and Abandon Back | Temporarily Abandon Water Disposal | | | completion of the involved operation completed. Final Abandonment Notice is ready for final inspection.) Engineer Review only Devon Energy Production Co., attachments for the slim hole of | | npletion or recompletic
s, including reclamatic | n in a new interval, a Form 3
n, have been completed and t | 160-4 must be filed once testing has bee
he operator has detennined that the site | | CHELSEY GREEN / Ph: (405) 228 | true and correct. Name (Printed/Typed) -8595 | Regulatory Co | ompliance Professional | | | Signature (Electronic Submission | on) | Date | 03/12/20 | 024 | | | THE SPACE FOR FED | ERAL OR STAT | E OFICE USE | | | Approved by | | Title | | Date | | | | Title | 1 | Julio . | Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Office (Instructions on page 2) which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease #### **GENERAL INSTRUCTIONS** This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office. #### SPECIFIC INSTRUCTIONS *Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions. Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. #### **NOTICES** The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160. PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used. ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government. EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases. Response to this request is mandatory. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240 (Form 3160-5, page 2) #### **Additional Information** #### **Location of Well** 0. SHL: NENE / 175 FNL / 785 FEL / TWSP: 25S / RANGE: 32E / SECTION: 28 / LAT: 32.1078039 / LONG: -103.6735143 (TVD: 0 feet, MD: 0 feet) PPP: SESE / 100 FSL / 400 FEL / TWSP: 25S / RANGE: 32E / SECTION: 21 / LAT: 32.108968 / LONG: -103.672785 (TVD: 11695 feet, MD: 11858 feet) BHL: NENE / 20 FNL / 330 FEL / TWSP: 25S / RANGE: 32E / SECTION: 16 / LAT: 32.1376613 / LONG: -103.6727259 (TVD: 11730 feet, MD: 22300 feet) Issued on: 08 Jul. 2020 by Wesley Ott **Connection Data Sheet** | | | | | • | | |-----------|-------------|-----------|--------|------------|------------------| | OD | Weight | Wall Th. | Grade | API Drift: | Connection | | 5 1/2 in. | 20.00 lb/ft | 0.361 in. | P110EC | 4.653 in. | VAM® SPRINT-SF | | 5 1, 2 | | 0.000 | 1 | | VAIVI SI MINT SI | | | | | | | | | PIPE PROPERTIES | | | |--------------------------------|-------|---------| | Nominal OD | 5.500 | in. | | Nominal ID | 4.778 | in. | | Nominal Cross Section Area | 5.828 | sqin. | | Grade Type | Hig | h Yield | | Min. Yield Strength | 125 | ksi | | Max. Yield Strength | 140 | ksi | | Min. Ultimate Tensile Strength | 135 | ksi | | CONNECTION P | ROPERTIES | | |------------------------------|-----------------------|------------| | Connection Type | Semi-Premium Integral | Semi-Flush | | Connection OD (nom): | 5.783 | in. | | Connection ID (nom): | 4.717 | in. | | Make-Up Loss | 5.965 | in. | | Critical Cross Section | 5.244 | sqin. | | Tension Efficiency | 90.0 | % of pipe | | Compression Efficiency | 90.0 | % of pipe | | Internal Pressure Efficiency | 100 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | | | |---------------------------------------|--------|---------|--|--| | Tensile Yield Strength | 656 | klb | | | | Compression Resistance | 656 | klb | | | | Internal Yield Pressure | 14,360 | psi | | | | Collapse Resistance | 12,080 | psi | | | | Max. Structural Bending | 89 | °/100ft | | | | Max. Bending with ISO/API Sealability | 30 | °/100ft | | | | TORQUE VALUES | | | |------------------------------------|--------|-------| | Min. Make-up torque | 20,000 | ft.lb | | Opt. Make-up torque | 22,500 | ft.lb | | Max. Make-up torque | 25,000 | ft.lb | | Max. Torque with Sealability (MTS) | 40,000 | ft.lb | VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements. Do you need help on this product? - Remember no one knows VAM® like VAM® canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW Issued on: 09 Dec. 2020 by Logan Van Gorp #### **Connection Data Sheet** | | | | | • | | |-----------|--|-----------|--------|------------|----------------| | OD | Weight | Wall Th. | Grade | API Drift: | Connection | | 7 5/8 in. | Nominal: 29.70 lb/ft
Plain End: 29.06 ft/lb |
0.375 in. | P110EC | 6.750 in. | VAM® SPRINT-FJ | | PIPE PROPERTIES | | | |--------------------------------|----------|----------| | Nominal OD | 7.625 | in. | | Nominal ID | 6.875 | in. | | Nominal Cross Section Area | 8.541 | sqin. | | Grade Type | Enhanced | Collapse | | Min. Yield Strength | 125 | ksi | | Max. Yield Strength | 140 | ksi | | Min. Ultimate Tensile Strength | 135 | ksi | | CONNECTION PROP | ERTIES | | |------------------------------|------------------|-------------| | Connection Type | Semi-Premium Int | egral Flush | | Connection OD (nom): | 7.654 | in. | | Connection ID (nom): | 6.827 | in. | | Make-Up Loss | 4.055 | in. | | Critical Cross Section | 6.979 | sqin. | | Tension Efficiency | 80.0 | % of pipe | | Compression Efficiency | 80.0 | % of pipe | | Internal Pressure Efficiency | 80.0 | % of pipe | | External Pressure Efficiency | 100 | % of pipe | | CONNECTION PERFORMANCES | | | |--------------------------------|-------|---------| | Tensile Yield Strength | 854 | klb | | Compression Resistance | 854 | klb | | Max. Internal Pressure | 8,610 | psi | | Structural Collapse Resistance | 7,360 | psi | | Max. Structural Bending | 57 | °/100ft | | Max. Bending with Sealability | 10 | °/100ft | | TORQUE VALUE | S | | |------------------------------------|--------|-------| | Min. Make-up torque | 15,000 | ft.lb | | Opt. Make-up torque | 16,500 | ft.lb | | Max. Make-up torque | 18,000 | ft.lb | | Max. Torque with Sealability (MTS) | 32,000 | ft.lb | VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings. canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM[®] like VAM[®] uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance ^{* 87.5%} RBW #### **COTTON DRAW UNIT 654H** ## 1. Geologic Formations | TVD of target | 9020 | Pilot hole depth | N/A | |---------------|-------|------------------------------|-----| | MD at TD: | 19380 | Deepest expected fresh water | | #### Basin | Dasiii | Depth | Water/Mineral | | |----------------------|---------|----------------|----------| | Formation | (TVD) | Bearing/Target | Hazards* | | | from KB | Zone? | | | Rustler | 782 | | | | Salt | 1148 | | | | Base of Salt | 4348 | | | | Delaware | 4570 | | | | Cherry Canyon | 5539 | | | | Brushy Canyon | 6977 | | | | 1st Bone Spring Lime | 8556 | ^{*}H2S, water flows, loss of circulation, abnormal pressures, etc. 2. Casing Program (Primary Design) | | | Wt | | | Casing | Interval | Casing | Interval | |-----------|-----------|-------|-------|----------------------|--------------|----------|---------------|----------| | Hole Size | Csg. Size | (PPF) | Grade | | From
(MD) | To (MD) | From
(TVD) | To (TVD | | 12 1/4 | 9 5/8 | 40 | J-55 | BTC SC
-BTC- | 0 | 862 | 0 | 862 | | 8 3/4 | 7 5/8 | 29.7 | P110 | Sprint FJ | 0 | 8468 | 0 | 8468 | | 6 3/4 | 5 1/2 | 20 | P110 | DWC/C-IS & Sprint FJ | 0 | 19380 | 0 | 9020 | [•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing. Variance Approval - o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe o All other 5-1/2" Production Casing will run DWC/C IS (6.05") #### 3. Cementing Program (Primary Design) Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures | Casing | # Sks | TOC | Wt.
ppg | Yld
(ft3/sack) | Slurry Description | | |------------|-------|------|------------|-------------------|---|--| | Surface | 300 | Surf | 13.2 | 1.44 | Lead: Class C Cement + additives | | | Int 1 | 390 | Surf | 13.0 | 2.3 | 2nd State: Bradenhead Squeeze - Lead:
Class C Cement + additives | | | IIII I | 139 | 7019 | 13.2 | 1.44 | Tail: Class H / C + additives | | | Production | 62 | 6568 | 9 | 3.27 | Lead: Class H /C + additives | | | Troduction | 690 | 8568 | 13.2 | 1.44 | Tail: Class H / C + additives | | Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to matchintermediate sections' 5M BOPE requirements. | Casing String | % Excess | |----------------|----------| | Surface | 50% | | Intermediate 1 | 30% | | Prod | 10% | 4. Pressure Control Equipment (Three String Design) | BOP installed and tested before drilling which hole? | Size? | Min. Required
WP | Туре | | ✓ | Tested to: | | | | | | | | | |--|-----------------------|---------------------|------------------------|----------------|---------------|-------------------------------|--------|------|------|------|------|-----|--|----| | | | | Anı | nular | X | 50% of rated working pressure | | | | | | | | | | Int 1 | 13-5/8" | 5M | | l Ram | X | | | | | | | | | | | IIIt 1 | 13-3/6 | 5171 | Pipe | Ram | | 5M | | | | | | | | | | | | | Doub | le Ram | X | J1V1 | | | | | | | | | | | | Other* | | | | | | | | | | | | | | | | | Annul | ar (5M) | X | 50% of rated working pressure | | | | | | | | | | Duaduation | Production 13-5/8" 5M | Blind Ram | | X | | | | | | | | | | | | Production | | 13-3/8 | 13-3/6 | 13-3/6 | 13-3/6 | 13-3/8" | 13-3/8 | SIVI | 3101 | 3101 | Pipe | Ram | | 5M | | | | | Doub | le Ram | X | 5M | | | | | | | | | | | | | Other* | | | | | | | | | | | | | | | | Annul | ar (5M) | | | | | | | | | | | | | | | Bline | d Ram | | | | | | | | | | | | | | | Pipe Ram
Double Ram | | | | | | | | | | | | | | | | | | |] | | | | | | | | | | | | | Other* | | | | | | | | | | | | | N A variance is requested for | the use of a | a diverter on the s | urface casing | g. See attache | ed for schema | atic. | | | | | | | | | | Y A variance is requested to r | un a 5 M a | nnular on a 10M s | system | | | | | | | | | | | | 5. Mud Program (Three String Design) | Section | Туре | Weight
(ppg) | |--------------|-----------------|-----------------| | Surface | FW Gel | 8.5-9 | | Intermediate | DBE / Cut Brine | 10-10.5 | | Production | OBM | 10-10.5 | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---|-----------------------------| **6. Logging and Testing Procedures** | Logging, C | oring and Testing | |------------|---| | | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the | | X | Completion Report and shumitted to the BLM. | | | No logs are planned based on well control or offset log information. | | | Drill stem test? If yes, explain. | | | Coring? If yes, explain. | | Additional logs planned | | Interval | | |-------------------------|-------------|-------------------------|--| | | Resistivity | Int. shoe to KOP | | | | Density | Int. shoe to KOP | | | X | CBL | Production casing | | | X | Mud log | Intermediate shoe to TD | | | | PEX | | | 7. Drilling Conditions | Condition | Specfiy what type and where? | |----------------------------|------------------------------| | BH pressure at deepest TVD | 4925 | | Abnormal temperature | No | Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers. | Hydrogren S | Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations | |--------------|---| | greater than | 100 ppm, the operator will comply with the provisions of 43 CFR 3176 If Hydrogen Sulfide is encountered measured | | values and f | Formations will be provided to the BLM. | | N | H2S is present | | Y | H2S plan attached. | #### **COTTON DRAW UNIT 654H** #### 8. Other facets of operation 2 Is this a walking operation? Potentially - 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad. - The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well. - 3 The drilling rig will
then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions. NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented. #### Will be pre-setting casing? Potentially - 1 Spudder rig will move in and batch drill surface hole. - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis., - 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations). - 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached. - 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead. - 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa. - 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations. - 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well. - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing. | Attachi | ments | |---------|------------------| | X | Directional Plan | | | Other, describe | 9.625" 40# .395" J-55 # **Dimensions (Nominal)** **BTC** | Outside Diameter | 9.625 | in. | |--|--------|-----------| | Wall | 0.395 | in. | | Inside Diameter | 8.835 | in. | | Drift | 8.750 | in. | | Weight, T&C | 40.000 | lbs./ft. | | Weight, PE | 38.970 | lbs./ft. | | Performance Properties | | | | Collapse, PE | 2570 | psi | | Internal Yield Pressure at Minimum Yield | | | | PE | 3950 | psi | | LTC | 3950 | psi | | ВТС | 3950 | psi | | | | | | Yield Strength, Pipe Body | 630 | 1000 lbs. | | Joint Strength | | | | STC | 452 | 1000 lbs. | | LTC | 520 | 1000 lbs. | Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility. 714 1000 lbs. | 9 5/8 | | surface csg in a | 12 1/4 | inch hole. | | Design | Factors | | | Surface | | | |---|--|--|---|---|---|--|--|--|------------------|-----------------------------------|------------------------------|---| | Segment | #/ft | Grade | | Coupling | Body | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 40.00 | | j 55 | btc sc | 17.12 | 5.97 | 0.86 | 920 | 10 | 1.43 | 11.29 | 36,800 | | "B" | | | | btc sc | | | | 0 | | | | 0 | | | ١ | v/8.4#/g mud, 30min Sfc Csg Tes | st psig: 1,500 | Tail Cmt | does not | circ to sfc. | Totals: | 920 | | | | 36,800 | | | | to Minimum Required Cen | nent Volumes_ | | | | | | | | | | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Req'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cp | | 12 1/4 | 0.3132 | 300 | 432 | 288 | 50 | 9.00 | 2756 | 3M | | | | 1.31 | | Burst Frac Grac | lient(s) for S | segment(s) A, B = , b All > 0 | D.70, OK. | | | | | | | | | | | 7.5.70 | | | 0.5/0 | | | | F1 | | | lmå 1 | | | | 7 5/8
Segment | #/ft | casing inside the
Grade | 9 5/8 | Coupling | Joint | Design
Collapse | Burst | Length | B@s | Int 1
a-B | a-C | Weigh | | "A" | 29.70 | Grade | p 110 | | 3.40 | 1.59 | 1.75 | 8,468 | 2 | 2.93 | 2.67 | • | | "B" | 29.70 | | ριιυ | vam sprint fj | 3.40 | 1.09 | 1.70 | 0,400 | 2 | 2.93 | 2.07 | 251,50 | | В | | v/8.4#/g mud, 30min Sfc Csg Tes | -t noise 1 962 | | | | Totals: | 8,468 | | | | 251,50 | | | ` | | | ded to achieve a top of | 0 | ft from su | | 920 | | | | overlap. | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Reg'd | | | | Min Dis | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cp | | 8 3/4 | 0.1005 | 139 | 200 | 858 | -77 | 10.50 | 2936 | 3M | | | | 0.55 | | D V Tool(s): | 0.1003 | 100 | 6977 | 030 | -11 | 10.50 | sum of sx | Σ CuFt | | | | Σ%exces | | D V TOOI(S): | | | 6977 | | | | Sulli Ol SX | Z Curt | | | | Z /0EXCE | | by stage % : | | 2.4 | 27 | | | | 520 | 1007 | | | | 28 | | | t yld > 1.35 | 34 | 27 | | | | 529 | 1097 | | | | 28 | | Class 'C' tail cm | t yld > 1.35 | | | | | Dosign Fa | | 1097 | | Prod 1 | | 28 | | Tail cmt | | casing inside the | 27
7 5/8 | Coupling | Joint | Design Fa | ctors ctors | | B@s | Prod 1
a-B | a-C | | | Tail cmt 5 1/2 Segment | #/ft | | 7 5/8 | Coupling dwc/c is | Joint
4 04 | Collapse | ctors
Burst | Length | B@s | а-В | a-C | Weigh | | Tail cmt 5 1/2 | #/ft
20.00 | casing inside the | 75/8 p 110 | dwc/c is | 4.04 | Collapse
2.78 | ctors
Burst
2.86 | Length
7,968 | 3 | a-B
4.79 | 4.66 | Weigh 159,36 | | Tail cmt 5 1/2 Segment "A" "B" | #/ft
20.00
20.00 | casing inside the | 7 5/8
p 110
p 110 | dwc/c is
vam sprint sf | | 2.78
2.46 | ctors
Burst
2.86
2.92 | Length 7,968 1,052 | 3
3 | a-B
4.79
4.89 | 4.66
4.12 | Weigh
159,36
21,04 0 | | Tail cmt 5 1/2 Segment "A" "B" "C" | #/ft
20.00 | casing inside the | 75/8 p 110 | dwc/c is | 4.04
30.47 | Collapse
2.78 | ctors
Burst
2.86 | Length 7,968 1,052 10,360 | 3 | a-B
4.79 | 4.66
4.12 | Weigh
159,36
21,04 (
207,20 | | Tail cmt 5 1/2 Segment "A" "B" | #/ft
20.00
20.00
20.00 | casing inside the
Grade | 75/8 p 110 p 110 p 110 | dwc/c is
vam sprint sf | 4.04
30.47 | 2.78
2.46 | ctors
Burst
2.86
2.92
2.86 | Length
7,968
1,052
10,360
0 | 3
3 | a-B
4.79
4.89 | 4.66
4.12 | Weigh
159,36
21,040
207,20
0 | | Tail cmt 5 1/2 Segment "A" "B" "C" | #/ft
20.00
20.00
20.00 | casing inside the
Grade
v/8.4#/g mud, 30min Sfc Csg Tes | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 | dwc/c is
vam sprint sf
dwc/c is | 4.04
30.47 | 2.78
2.46 | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 | 3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60 | | Tail cmt 5 1/2 Segment "A" "B" "C" | #/ft
20.00
20.00
20.00 | casing inside the
Grade
v/8.4#/g mud, 30min Sfc Csg Tes
The cement | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intens | dwc/c is
vam sprint sf | 4.04
30.47
∞ | 2.78
2.46
2.46 | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 0 19,380 200 | 3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft
20.00
20.00
20.00 | casing inside the
Grade
v/8.4#/g mud, 30min Sfc Csg Tes
The cement | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 | dwc/c is vam sprint sf dwc/c is | 4.04
30.47
∞ | 2.78 2.46 2.46 ft from su | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 0 19,380 | 3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft
20.00
20.00
20.00 | casing inside the
Grade
v/8.4#/g mud, 30min Sfc Csg Tes
The cement
1 Stage | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intended 1 Stage | dwc/c is
vam sprint sf
dwc/c is | 4.04
30.47
∞
8268
1 Stage | 2.78 2.46 2.46 ft from su | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd | 3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft | 4.04
30.47
∞
8268
1 Stage
% Excess | Collapse 2.78 2.46 2.46 ft from su Drilling Mud Wt | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd | 3
3 | a-B
4.79
4.89 |
4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap.
Min Dis
Hole-Cp | | 5 1/2
Segment
"A"
"B"
"C"
"D"
Hole
Size
6 3/4
Class 'C' tail cm | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft | 4.04
30.47
∞
8268
1 Stage
% Excess | Collapse 2.78 2.46 2.46 ft from su Drilling Mud Wt | ctors Burst 2.86 2.92 2.86 Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd | 3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap.
Min Dis
Hole-Cp | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 7 5/8 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft | 4.04
30.47
∞
8268
1 Stage
% Excess | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 | Ctors Burst 2.86 2.92 2.86 Totals: urface or a Calc MASP | Length 7,968 1,052 10,360 0 19,380 200 Req'd | 3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap.
Min Dis
Hole-Cp | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft | 4.04
30.47
∞
8268
1 Stage
% Excess | Collapse 2.78 2.46 2.46 ft from su Drilling Mud Wt | Ctors Burst 2.86 2.92 2.86 Totals: urface or a Calc MASP | Length 7,968 1,052 10,360 0 19,380 200 Req'd | 3
3
3 | a-B
4.79
4.89 | 4.66
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835
tyld > 1.35 | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 752 | 7 5/8 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 | 4.04
30.47
∞
8268
1 Stage
% Excess
29 | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 | Ctors Burst 2.86 2.92 2.86 Totals: urface or a Calc MASP | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12 | Weigh
159,36
21,04t
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft
20.00
20.00
20.00
Annular
Volume
0.0835
tyld > 1.35 | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 752 | 7 5/8 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling | 4.04
30.47
∞
8268
1 Stage
% Excess
29 | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 | Ctors Burst 2.86 2.92 2.86 Totals: urface or a Calc MASP | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12 | Weigh
159,36
21,044
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft 20.00 20.00 20.00 20.00 Annular Volume 0.0835 tyld > 1.35 #/ft | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 752 | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intene 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling 0.00 | 4.04
30.47
∞
8268
1 Stage
% Excess
29 | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 | Ctors Burst 2.86 2.92 2.86 Totals: urface or a Calc MASP | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE Length 0 | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12 | Weigh
159,36
21,04
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft 20.00 20.00 20.00 20.00 Annular Volume 0.0835 tyld > 1.35 #/ft | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 752 Grade | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling 0.00 | 4.04
30.47
∞
8268
1 Stage
% Excess
29 | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 | Ctors Burst 2.86 2.92 2.86 Totals: Irface or a Calc MASP Factors Burst Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE Length 0 0 | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12
4.12 | Weigh
159,36
21,04
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm | #/ft 20.00 20.00 20.00 20.00 Annular Volume 0.0835 tyld > 1.35 #/ft | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 752 Grade | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling 0.00 0.00 | 4.04
30.47
∞
8268
1 Stage
% Excess
29
#N/A | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 Design Collapse | Ctors Burst 2.86 2.92 2.86 Totals: Irface or a Calc MASP Factors Burst Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE Length 0 0 | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12
4.12 | Weigh
159,36
21,04
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35
Weigh
0
0
0
overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft
20.00
20.00
20.00
20.00
Annular
Volume
0.0835
tyld>1.35 | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 752 Grade v/8.4#/g mud, 30min Sfc Csg Tes Cmt vol C | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intend 1 Stage CuFt Cmt 1196 5 1/2 | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling 0.00 0.00 this csg, TOC intended | 4.04
30.47
∞
8268
1 Stage
% Excess
29
#N/A | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 Design Collapse | Ctors Burst 2.86 2.92 2.86 Totals: Irface or a Calc MASP Factors Burst Totals: | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE Length 0 0 #N/A | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12
4.12 | Weigh 159,36 21,040 207,20 0 387,60 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0 overlap. Min Dis | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft 20.00 20.00 20.00 20.00 Annular Volume 0.0835 tyld > 1.35 #/ft Annular | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 752 Grade w/8.4#/g mud, 30min Sfc Csg Ter Cmt vol c 1 Stage | 7 5/8 p 110 p 110 p 110 p 110 st psig: 1,753 volume(s) are intent 1 Stage CuFt Cmt 1196 5 1/2 st psig: calc below includes t 1 Stage | dwc/c is vam sprint sf dwc/c is ded to achieve a top of Min Cu Ft 930 Coupling 0.00 0.00 this csg, TOC intended Min | 4.04
30.47
∞
8268
1 Stage
% Excess
29
#N/A
#N/A | Collapse 2.78 2.46 2.46 2.46 ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling | Ctors Burst 2.86 2.92 2.86 Totals: Irface or a Calc MASP Factors Burst Totals: Irface or a Calc | Length 7,968 1,052 10,360 0 19,380 200 Req'd BOPE Length 0 0 #N/A Req'd | 3
3
3
3 | a-B 4.79 4.89 4.79 | 4.66
4.12
4.12
4.12 | Weigh
159,36
21,040
207,20
0
387,60
overlap.
Min Dis
Hole-Cp
0.35 | Carlsbad Field Office 3/12/2024 District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 # **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 323361 #### **CONDITIONS** | Operator: | OGRID: | |-------------------------------------|--------------------------------------| | DEVON ENERGY PRODUCTION COMPANY, LP | 6137 | | 333 West Sheridan Ave. | Action Number: | | Oklahoma City, OK 73102 | 323361 | | | Action Type: | | | [C-103] NOI Change of Plans (C-103A) | #### CONDITIONS | Created
By | | Condition
Date | |---------------|------|-------------------| | pkautz | None | 3/18/2024 |