District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 52

Form C-101 August 1, 2011 Permit 366079

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	1. Operator Name and Address 2. OGRID Number EOG RESOURCES INC 7377												
550	09 Champions Driv	/e								3. AF	PI Number		
Mic	lland, TX 79706										30-015-55	104	
4. Property Co	de	:	5. Property Name							6. W	ell No.		
325	5165		QUAIL 2	STATE (COM						751H		
					7. Su	rface Location							
UL - Lot	Section	Township	Range		Lot Idn	Feet From	1	N/S Line	Feet From	Feet From E/W		County	у
А	2	26S	30E		252		Ν		975	E		Eddy	
					8. Proposed I	Bottom Hole Loo	ation	Î.					
UL - Lot	Section	Township	Range		Lot Idn	Feet From	1	N/S Line	Feet From		E/W Line	Count	у
0	2	26S	30)E	0	230		S		2540	E		Eddy
					9. Po	ol Information							
PURPLE SA	Ge;WOLFCAMP (G	iAS)									98220		
					Additiona	al Well Informatio	m						
11. Work Type 12. Well Type 13. Cable/Rotary					14. L	ease Type	15	Ground	Level Elevation				
	w Well	-	AS					State			237		
16. Multiple		17. Proposed	I Depth 5962	18.	Formation Wolfcame		19. Contractor 20. Sp				pud Date 6/18/2024		
N Depth to Grou	nd water	16	0902	Dist	ance from nearest				Dis		/ 18/2024 nearest surface wat	er	
Deptil to orou				Dist					Die		icurest surface wat	51	
	using a closed-loc					sing and Cemen							1700
Type Surf	Hole Size 12.25	Casing 9.62		Casin	ig Weight/ft 36		ng Dep	oth	Sacks of Cement 410		t		ted TOC
Suri Int1	8.75	9.62	-		29.7		1180 10374		1500			(-
Prod	6.75	5.5			17		5962		660			9510	
I				0							•		-
	tfully requests the ed of EOG's election		e casing and cerr		-	gram: Additiona in Design B of th			n to do a Br	adenhea	ad squeeze on b	oth plans.	The NMOCD
				22	. Proposed Blo	wout Prevention	n Prog	gram					
	Туре				g Pressure			Test Pres	sure		М	anufacturer	r
	Double Ram			5	000			3000)				
knowledge a I further cert ⊠, if applica	tify I have complie	0		·					OIL CONSE	RVATION	N DIVISION		
Signature:													
Printed Name:		Ily filed by Kay N				Approved By	:	Ward Rika	la				
Title:	,	ulatory Speciali				Title: Approved Da							
Email Address	: kay_madd	ox@eogresourc	@eogresources.com					6/3/2024			Expiration Date: 6	/3/2026	

Conditions of Approval Attached

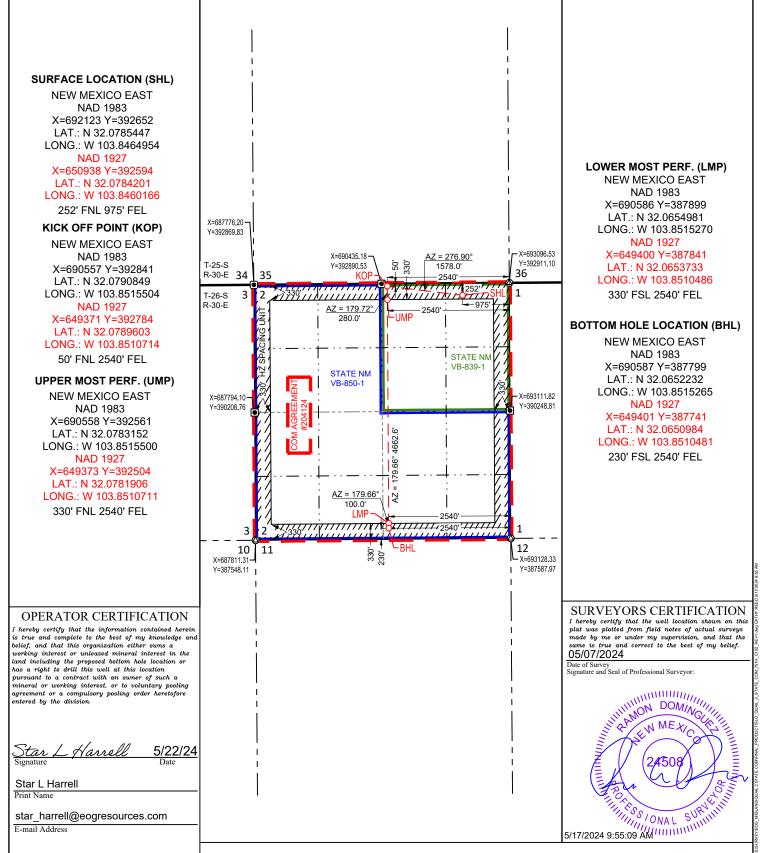
6/3/2024

Date:

Phone: 432-638-8475

Received by OCD: 6/3/2024 11:33:26 AM

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

□ AMENDED REPORT

WELL	LOCA	ATION	AND	ACREAGE	DEDICA	ATION P	'LAT
		TTTOT!		TOTOL	DEDICI		

	API Number Pool					Pool Name						
X	0x025-3()-015-55	104	98220	0 Purple Sage; Wolfcamp (Gas)							
Property Co	ode				Proper	y Name			Well Nu	Well Number		
32516	65			C	QUAIL 2 S	STATE	ECOM		75	751H		
OGRID N	0.				Operate	or Name			Elevati	on		
7377				EC	G RESO	URCE	ES, INC.		32	3237'		
	Surface Location											
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet from the	East/West line	County		
A	2	26-S	30-E	-	252		NORTH	975'	EAST	EDDY		
			Bott	om Hole I	Location I	f Diffe	erent From Surfac	ce				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet from the	East/West line	County		
0	2	26-S	30-E	-	230	•	SOUTH	2540'	EAST	EDDY		
Dedicated Acres	Joint or	Infill	Consolidated Code Order No.									
640.00			COM AGREEMENT #204124									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Nan	Operator Name and Address: API Number:							
EC	DG RESOURCES INC [7377]	30-015-55104						
55	509 Champions Drive	Well:						
Mi	Midland, TX 79706 QUAIL 2 STATE COM #751H							
OCD	Condition							
Reviewer	ar i i i i i i i i i i i i i i i i i i i							
ward.rikala	vard.rikala Notify OCD 24 hours prior to casing & cement							
ward.rikala	d.rikala Will require a File As Drilled C-102 and a Directional Survey with the C-104							
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, fresh water zone or zones and shall immediately set in cement the water protection string	the operator shall drill without interruption through the						
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing							
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing							
ward.rikala	rd.rikala Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system							
ward.rikala	rd.rikala The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud							

Form APD Conditions

Permit 366079

Page 3 of 52

Seog resources

Page 4 of 52

EOG Batch Casing

Pad Name:Quail 2 State Com DEEPSHL: Section 2, Township 26-S, Range 30-E, Eddy County, NM

Well Name	API #	Surface		Intermediate		Production	
vv en manie	AFI#	MD	TVD	MD	TVD	MD	TVD
Quail 2 State Com #741H	30-025-****	1,180	1,180	10,060	10,007	16,600	11,710
Quail 2 State Com #751H	30-025-****	1,180	1,180	10,374	10,007	16,962	11,823
Quail 2 State Com #753H	30-025-****	1,180	1,180	10,021	10,007	16,676	11,823
Quail 2 State Com #761H	30-025-****	1,180	1,180	10,169	10,007	17,086	12,101

Variances

EOG requests the additional variance(s) in the attached document(s):

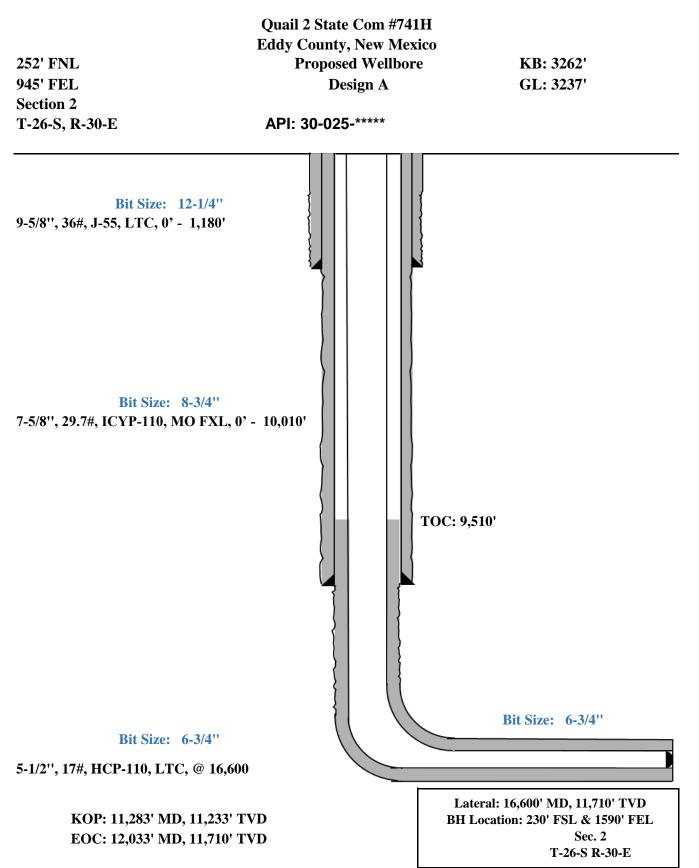
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 2a Intermediate Bradenhead Cement

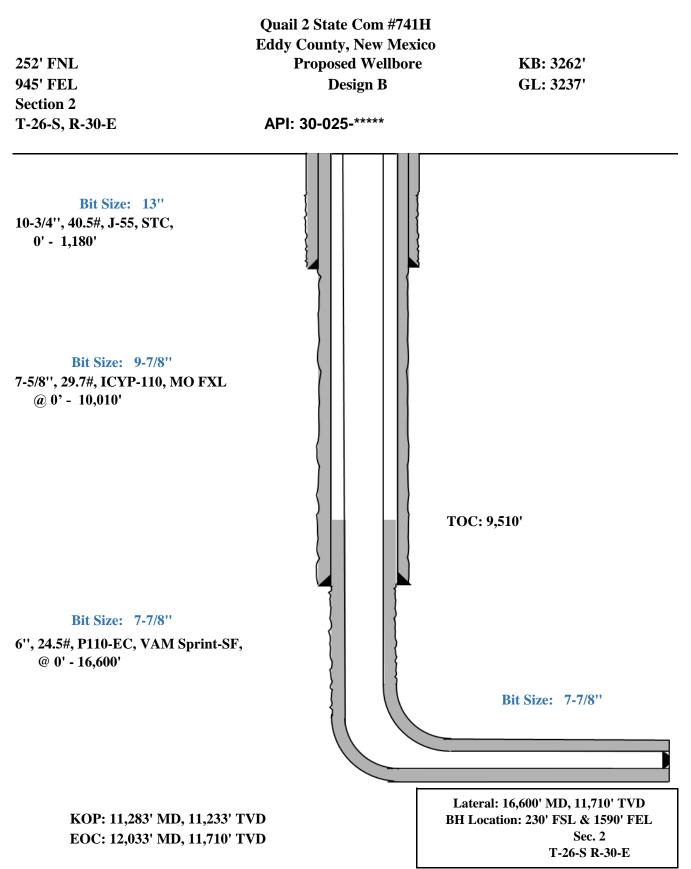
seog resources

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian


ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:


Rustler	1,065'
Tamarisk Anhydrite	1,150'
Top of Salt	1,434'
Base of Salt	3,678'
Lamar	3,835'
Bell Canyon	3,889'
Cherry Canyon	4,773'
Brushy Canyon	6,054'
Bone Spring Lime	7,720'
Leonard (Avalon) Shale	7,810'
1st Bone Spring Sand	8,668'
2nd Bone Spring Shale	9,004'
2nd Bone Spring Sand	9,290'
3rd Bone Spring Carb	9,907'
3rd Bone Spring Sand	10,576'
Wolfcamp	10,995'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	3,889'	Oil
Cherry Canyon	4,773'	Oil
Brushy Canyon	6,054'	Oil
Leonard (Avalon) Shale	7,810'	Oil
1st Bone Spring Sand	8,668'	Oil
2nd Bone Spring Shale	9,004'	Oil
2nd Bone Spring Sand	9,290'	Oil

fresh water sands will be protected by setting surface casing at 1,180' and circulating cement back to surface.

Page 9 of 52

Permit Information:

Well Name: Quail 2 State Com #741H

Location:

SHL: 252' FNL & 945' FEL, Section 2, T-26-S, R-30-E, Eddy Co., N.M.
BHL: 230' FSL & 1590' FEL, Section 2, T-26-S, R-30-E, Eddy Co., N.M.

Design A

Casing Program:

Hole	Interval M	erval MD		al MD Interval TVI		al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn		
12-1/4"	0	1,180	0	1,180	9-5/8"	36#	J-55	LTC		
8-3/4"	0	10,060	0	10,007	7-5/8"	29.7#	ICYP-110	MO FXL		
6-3/4"	0	16,600	0	11,710	5-1/2"	17#	HCP-110	LTC		

Cement Program:

	_	Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Siurry Description
1,180'	330	13.5	1.73	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
1,100	80	14.8	1.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
10,010'	490	14.2	1.11	1st Stage (Tail): Class C + 5% Salt (TOC @ 5,854')
10,010	1010	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C + 3% Salt + 1% PreMag- M + 6% Bentonite Gel (TOC @ surface)
16,600'	630	13.2	1 3 1	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 9,510')

Mud Program:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,180'	Fresh - Gel	8.6-8.8	28-34	N/c
1,180' - 10,010'	Brine	10.0-10.2	28-34	N/c
10,010' - 11,283'	Oil Base	8.7-9.4	58-68	N/c - 6
11,283' – 16,600'	Oil Base	10.0-14.0	58-68	4 - 6
Lateral				

Quail 2 State Com #741H

Design B

CASING PROGRAM

Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,180	0	1,180	10-3/4"	40.5#	J-55	STC
9-7/8"	0	10,060	0	10,007	8-3/4"	38.5#	P110-EC	SLIJ II NA
7-7/8"	0	16,600	0	11,710	6"	24.5#	P110-EC	VAM Sprint-SF

Cementing Program:

Depth	No. Sacks	Wt. ppg	Yld Ft3/sk	Slurry Description
1,180' 10-3/4"	300	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	70	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 980')
10,007' 8-3/4"	550	14.2	1.11	1st Stage (Tail): Class C + 0.6% Halad-9 + 0.45% HR-601 + 3% Microbond (TOC @ 5,850')
	1140	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
16,600' _{6"}	1010	13.2	1.31	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 9,507')

EOG requests variance from minimum standards to pump a two stage cement job on the 8-3/4" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (6,054') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 140 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency.

Mud Program:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 1,180'	Fresh - Gel	8.6-8.8	28-34	N/c
1,180' – 3,780'	Brine	10.0-10.2	28-34	N/c
3,780' - 10,010'	Oil Base	8.7-9.4	58-68	N/c - 6
10,010' - 16,600'	Oil Base	10.0-14.0	58-68	4 - 6
Lateral				

Quail 2 State Com 741H

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Quail 2 State Com #741H

Hydrogen Sulfide Plan Summary

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.

- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator

Protective equipment for essential personnel. Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

Quail 2 State Com #741H

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Seog resources

.

PUBLIC SAFETY:		911
Lea County Sheriff's Department		(575) 396-3611
Rod Coffman		
Fire Department:		
Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		(575) 476-3440
NMOCD Inspection Group - South		(575) 626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		
EOG / Midland	Office	(432) 686-3600
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Stephen Davis	Cell	(432) 235-9789
Matt Day	Cell	(432) 296-4456
Drilling Manager		
Branden Keener	Office	(432) 686-3752
	Cell	(210) 294-3729
Drilling Superintendent		
Ryan Reynolds	Cell	(432) 215-5978
Steve Kelly	Cell	(210) 416-7894
H&P Drilling		``
H&P Drilling	Office	(432) 563-5757
H&P 651 Drilling Rig	Rig	(903) 509-7131
	8	× /
Tool Pusher:		
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett		
Diau Ganell		
Brad Garrett		
Safety: Brian Chandler (HSE Manager)	Office	(432) 686-3695

Quail 2 State Com #741H Emergency Assistance Telephone List

Midland

Eddy County, NM (NAD 83 NME) Quail 2 State Com #751H

OH

Plan: Plan #0.1 RT

Standard Planning Report

22 May, 2024

Cogic								
Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Eddy County, I Quail 2 State C #751H OH Plan #0.1 RT		NME)	TVD Referen MD Referenc North Refere	e:	Well #751H kb = 26' @ 32 kb = 26' @ 32 Grid Minimum Curv	63.0usft	
Project	Eddy County, N	M (NAD 83 N	IME)					
Geo Datum:	US State Plane 1 North American E New Mexico East	Datum 1983		System Datum		Mean Sea Level Using geodetic s		
Site	Quail 2 State Co	om						
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	692,792	0.00 usft Latitud 0.00 usft Longit 1/16 "			32° 4' 43.295 N 103° 50' 39.610 W
Well	#751H							
Well Position Position Uncertainty Grid Convergence:	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft 0.26 °	Northing: Easting: Wellhead Elev		392,652.00 usft 692,123.00 usft usft	Latitude: Longitude: Ground Level:		32° 4' 42.761 N 103° 50' 47.389 W 3,237.0 usft
Wellbore	ОН	0.20						
Magnetics	Model Nam	le	Sample Date	Declinatio (°)	n	Dip Angle (°)		Strength IT)
	IGRF	2020	5/22/2024		6.32	59.63	47,0	75.89752276
Design	Plan #0.1 RT							
Audit Notes: Version:			Phase:	PLAN	Tie On De	pth:	0.0	
Vertical Section:		(1	rom (TVD) usft)	+N/-S (usft)	+E/-W (usft)		Virection (°)	
			0.0	0.0	0.0		197.56	
Plan Survey Tool Pro Depth From (usft)	Depth To	Date 5/22/2		Tool Name	Rem	arks		
1 0.0	16,961.5 P	lan #0.1 RT (OH)	EOG MWD+IFR1 MWD + IFR1				

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,503.4	24.07	276.88	2,468.3	29.8	-247.2	2.00	2.00	0.00	276.88	
5,151.0	24.07	276.88	4,885.7	159.2	-1,319.2	0.00	0.00	0.00	0.00	
6,354.3	0.00	0.00	6,054.0	189.1	-1,566.4	2.00	-2.00	0.00	180.00	
11,645.8	0.00	0.00	11,345.5	189.1	-1,566.4	0.00	0.00	0.00	0.00	KOP(Quail 2 State C
12,192.3	65.59	179.79	11,780.2	-91.0	-1,565.4	12.00	12.00	32.90	179.79	FTP(Quail 2 State C
12,395.7	90.00	179.65	11,822.9	-288.4	-1,564.4	12.00	12.00	-0.07	-0.35	
16,961.5	90.00	179.65	11,823.0	-4,854.0	-1,536.3	0.00	0.00	0.00	0.00	PBHL(Quail 2 State

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measu Dept (usfi	th	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
		0.00		800.0				0.00	0.00	
	800.0		0.00	800.0 900.0	0.0	0.0	0.0			0.00
	900.0	0.00	0.00		0.0	0.0	0.0	0.00	0.00	0.00
	0.000	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	2.00	276.88	1,400.0	0.2	-1.7	0.3	2.00	2.00	0.00
	500.0	4.00	276.88	1,499.8	0.8	-6.9	1.3	2.00	2.00	0.00
	600.0	6.00	276.88	1,599.5	1.9	-15.6	2.9	2.00	2.00	0.00
	700.0	8.00	276.88	1,698.7	3.3	-27.7	5.2	2.00	2.00	0.00
	800.0	10.00	276.88	1,797.5	5.2	-43.2	8.1	2.00	2.00	0.00
1,9	900.0	12.00	276.88	1,895.6	7.5	-62.2	11.6	2.00	2.00	0.00
2,0	0.000	14.00	276.88	1,993.1	10.2	-84.5	15.8	2.00	2.00	0.00
2,1	100.0	16.00	276.88	2,089.6	13.3	-110.2	20.6	2.00	2.00	0.00
2,2	200.0	18.00	276.88	2,185.3	16.8	-139.2	26.0	2.00	2.00	0.00
2,3	300.0	20.00	276.88	2,279.8	20.7	-171.5	32.0	2.00	2.00	0.00
2,4	400.0	22.00	276.88	2,373.2	25.0	-207.1	38.7	2.00	2.00	0.00
2,5	503.4	24.07	276.88	2,468.3	29.8	-247.2	46.2	2.00	2.00	0.00
2,6	600.0	24.07	276.88	2,556.5	34.6	-286.4	53.5	0.00	0.00	0.00
2,7	700.0	24.07	276.88	2,647.8	39.4	-326.9	61.0	0.00	0.00	0.00
2,8	800.0	24.07	276.88	2,739.1	44.3	-367.3	68.6	0.00	0.00	0.00
2,9	900.0	24.07	276.88	2,830.4	49.2	-407.8	76.1	0.00	0.00	0.00
3,0	0.000	24.07	276.88	2,921.7	54.1	-448.3	83.7	0.00	0.00	0.00
	100.0	24.07	276.88	3,013.1	59.0	-488.8	91.3	0.00	0.00	0.00
	200.0	24.07	276.88	3,104.4	63.9	-529.3	98.8	0.00	0.00	0.00
	300.0	24.07	276.88	3,195.7	68.8	-569.8	106.4	0.00	0.00	0.00
	400.0	24.07	276.88	3,287.0	73.7	-610.3	113.9	0.00	0.00	0.00
3,5	500.0	24.07	276.88	3,378.3	78.5	-650.8	121.5	0.00	0.00	0.00
3,6	600.0	24.07	276.88	3,469.6	83.4	-691.2	129.0	0.00	0.00	0.00
3,7	700.0	24.07	276.88	3,560.9	88.3	-731.7	136.6	0.00	0.00	0.00
3,8	800.0	24.07	276.88	3,652.2	93.2	-772.2	144.2	0.00	0.00	0.00
3,9	900.0	24.07	276.88	3,743.5	98.1	-812.7	151.7	0.00	0.00	0.00
4.0	0.000	24.07	276.88	3,834.8	103.0	-853.2	159.3	0.00	0.00	0.00
	100.0	24.07	276.88	3,926.1	107.9	-893.7	166.8	0.00	0.00	0.00
	200.0	24.07	276.88	4,017.4	112.7	-934.2	174.4	0.00	0.00	0.00
	300.0	24.07	276.88	4,108.7	117.6	-974.7	182.0	0.00	0.00	0.00
	400.0	24.07	276.88	4,200.0	122.5	-1,015.1	189.5	0.00	0.00	0.00
4,5	500.0	24.07	276.88	4,291.4	127.4	-1,055.6	197.1	0.00	0.00	0.00
	600.0	24.07	276.88	4,382.7	132.3	-1,096.1	204.6	0.00	0.00	0.00
	700.0	24.07	276.88	4,474.0	137.2	-1,136.6	212.2	0.00	0.00	0.00
	800.0	24.07	276.88	4,565.3	142.1	-1,177.1	219.7	0.00	0.00	0.00
	900.0	24.07	276.88	4,656.6	146.9	-1,217.6	227.3	0.00	0.00	0.00
5,0	0.000	24.07	276.88	4,747.9	151.8	-1,258.1	234.9	0.00	0.00	0.00
	100.0	24.07	276.88	4,839.2	156.7	-1,298.5	242.4	0.00	0.00	0.00
	151.0	24.07	276.88	4,885.7	159.2	-1,319.2	246.3	0.00	0.00	0.00
	200.0	23.09	276.88	4,930.7	161.6	-1,338.7	249.9	2.00	-2.00	0.00
				,		,				

5/22/2024 11:00:21AM

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measu Dep (usf	th	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,5	300.0	21.09	276.88	5,023.3	166.1	-1,376.0	256.9	2.00	-2.00	0.00
5.4	400.0	19.09	276.88	5,117.2	170.2	-1,410.1	263.2	2.00	-2.00	0.00
	500.0	17.09	276.88	5,212.3	173.9	-1,440.9	269.0	2.00	-2.00	0.00
	600.0	15.09	276.88	5,308.4	177.2	-1,468.4	274.1	2.00	-2.00	0.00
	700.0	13.09	276.88	5,405.4	180.1	-1,492.6	278.6	2.00	-2.00	0.00
	800.0	11.09	276.88	5,503.1	182.6	-1,513.4	282.5	2.00	-2.00	0.00
5	900.0	9.09	276.88	5,601.6	184.7	-1,530.7	285.8	2.00	-2.00	0.00
	000.0	7.09	276.88	5,700.6	186.4	-1,544.7	288.4	2.00	-2.00	0.00
	100.0	5.09	276.88	5,800.0	187.7	-1,555.2	290.3	2.00	-2.00	0.00
	200.0	3.09	276.88	5,899.8	188.6	-1,562.3	291.7	2.00	-2.00	0.00
	300.0	1.09	276.88	5,999.7	189.0	-1,565.9	292.3	2.00	-2.00	0.00
		0.00	0.00		189.1		292.4	2.00	-2.00	0.00
	354.3 400.0	0.00	0.00	6,054.0 6,099.7	189.1	-1,566.4 -1,566.4	292.4 292.4	2.00 0.00	-2.00 0.00	0.00
		0.00			189.1		292.4	0.00	0.00	0.00
	500.0 600.0	0.00	0.00 0.00	6,199.7 6,299.7	189.1	-1,566.4 -1,566.4	292.4 292.4	0.00	0.00	0.00
						-1,566.4 -1,566.4			0.00	
	700.0	0.00	0.00	6,399.7	189.1		292.4	0.00		0.00
	800.0	0.00	0.00	6,499.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	900.0	0.00	0.00	6,599.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	0.000	0.00	0.00	6,699.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	100.0	0.00	0.00	6,799.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
7,3	200.0	0.00	0.00	6,899.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
7,5	300.0	0.00	0.00	6,999.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	400.0	0.00	0.00	7,099.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	500.0	0.00	0.00	7,199.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	600.0	0.00	0.00	7,299.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	700.0	0.00	0.00	7,399.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
7	800.0	0.00	0.00	7,499.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	900.0	0.00	0.00	7,599.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	000.0	0.00	0.00	7,699.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	100.0	0.00	0.00	7,799.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	200.0	0.00	0.00	7,899.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	300.0	0.00 0.00	0.00 0.00	7,999.7 8 000 7	189.1 189.1	-1,566.4 -1,566.4	292.4 292.4	0.00	0.00 0.00	0.00
	400.0	0.00		8,099.7			292.4 292.4	0.00 0.00	0.00	0.00 0.00
	500.0 600.0	0.00	0.00	8,199.7 8 200 7	189.1 189.1	-1,566.4 -1,566.4	292.4 292.4	0.00	0.00	0.00
	600.0 700.0	0.00	0.00 0.00	8,299.7 8,399.7	189.1	-1,566.4 -1,566.4	292.4 292.4	0.00	0.00	0.00
	800.0	0.00	0.00	8,499.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	900.0	0.00	0.00	8,599.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	0.000	0.00	0.00	8,699.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	100.0	0.00	0.00	8,799.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,3	200.0	0.00	0.00	8,899.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,	300.0	0.00	0.00	8,999.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,4	400.0	0.00	0.00	9,099.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,	500.0	0.00	0.00	9,199.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,	600.0	0.00	0.00	9,299.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
9,	700.0	0.00	0.00	9,399.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
Q.	800.0	0.00	0.00	9,499.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	900.0	0.00	0.00	9,599.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	000.0	0.00	0.00	9,699.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	100.0	0.00	0.00	9,799.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
,	200.0	0.00	0.00	9,899.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	300.0	0.00	0.00	9,999.7 10,000,7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	400.0 500.0	0.00	0.00	10,099.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
	500.0	0.00	0.00	10,199.7	189.1	-1,566.4	292.4	0.00	0.00	0.00

5/22/2024 11:00:21AM

Released to Imaging: 6/3/2024 1:29:48 PM

Page 5

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0	0.00	0.00	10,299.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
10,700.0	0.00	0.00	10,399.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
10 900 0	0.00	0.00	10,499.7	190.1	1 566 4	292.4	0.00	0.00	0.00
10,800.0		0.00	,	189.1	-1,566.4				
10,900.0	0.00	0.00	10,599.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,000.0	0.00	0.00	10,699.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,100.0	0.00	0.00	10,799.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,200.0	0.00	0.00	10,899.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,300.0	0.00	0.00	10,999.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,400.0	0.00	0.00	11,099.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,500.0	0.00	0.00	11,199.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,600.0	0.00	0.00	11,299.7	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,645.8	0.00	0.00	11,345.5	189.1	-1,566.4	292.4	0.00	0.00	0.00
11,650.0	0.50	179.79	11,349.7	189.0	-1,566.4	292.5	12.00	12.00	0.00
11,675.0	3.50	179.79	11,374.7	188.2	-1,566.4	293.3	12.00	12.00	0.00
11,700.0	6.50	179.79	11,399.6	186.0	-1,566.4	295.4	12.00	12.00	0.00
11,725.0	9.50	179.79	11,424.3	182.5	-1,566.4	298.7	12.00	12.00	0.00
11,750.0	12.50	179.79	11,448.9	177.7	-1,566.4	303.2	12.00	12.00	0.00
11,775.0	15.50	179.79	11,473.1	171.7	-1,566.4	309.0	12.00	12.00	0.00
11,800.0	18.51	179.79	11,497.0	164.4	-1,566.3	315.9	12.00	12.00	0.00
11,825.0	21.51	179.79	11,520.5	155.8	-1,566.3	324.1	12.00	12.00	0.00
11,850.0	24.51	179.79	11,543.5	146.0	-1,566.3	333.4	12.00	12.00	0.00
11,875.0	27.51	179.79	11,566.0	135.1	-1,566.2	343.8	12.00	12.00	0.00
11,900.0	30.51	179.79	11,587.8	123.0	-1,566.2	355.4	12.00	12.00	0.00
11,925.0	33.51	179.79	11,609.0	109.7	-1,566.1	368.0	12.00	12.00	0.00
11,950.0	36.51	179.79	11,629.5	95.4	-1,566.1	381.6	12.00	12.00	0.00
11,975.0	39.51	179.79	11,649.2	80.0	-1,566.0	396.3	12.00	12.00	0.00
12,000.0	42.51	179.79	11,668.1	63.6	-1,566.0	411.9	12.00	12.00	0.00
12,025.0	45.51	179.79	11,686.1	46.2	-1,565.9	428.5	12.00	12.00	0.00
12,050.0	48.51	179.79	11,703.1	27.9	-1,565.8	445.9	12.00	12.00	0.00
12,075.0	51.51	179.79	11,719.2	8.8	-1,565.8	464.1	12.00	12.00	0.00
12,100.0	54.51	179.79	11,734.2	-11.2	-1,565.7	483.1	12.00	12.00	0.00
12,125.0	57.51	179.79	11,748.2	-31.9	-1,565.6	502.9	12.00	12.00	0.00
12,150.0	60.51	179.79	11,761.0	-53.3	-1,565.5	523.3	12.00	12.00	0.00
	63.51	179.79		-75.4		544.3	12.00	12.00	0.00
12,175.0			11,772.8		-1,565.5				
12,192.3	65.59	179.79	11,780.2	-91.0	-1,565.4	559.1	12.00	12.00	0.00
12,200.0	66.51	179.79	11,783.3	-98.1	-1,565.4	565.9	12.00	12.00	-0.08
12,225.0	69.51	179.77	11,792.7	-121.3	-1,565.3	587.9	12.00	12.00	-0.08
12,250.0	72.51	179.75	11,800.8	-144.9	-1,565.2	610.4	12.00	12.00	-0.07
12,275.0	75.51	179.73	11,807.7	-168.9	-1,565.1	633.3	12.00	12.00	-0.07
12,300.0	78.51	179.71	11,813.3	-193.3	-1,565.0	656.5	12.00	12.00	-0.07
12,325.0	81.51	179.69	11,817.7	-217.9	-1,564.8	679.9	12.00	12.00	-0.07
12,350.0	84.51	179.68	11,820.7	-242.7	-1,564.7	703.5	12.00	12.00	-0.07
12,375.0	87.51	179.66	11,822.4	-267.6	-1,564.6	727.3	12.00	12.00	-0.07
12,395.7	90.00	179.65	11,822.9	-288.4	-1,564.4	747.0	12.00	12.00	-0.07
12,400.0	90.00	179.65	11,822.9	-292.6	-1,564.4	751.1	0.00	0.00	0.00
12,500.0	90.00	179.65	11,822.9	-392.6	-1,563.8	846.2	0.00	0.00	0.00
12,600.0	90.00	179.65	11,822.9	-492.6	-1,563.2	941.4	0.00	0.00	0.00
12,700.0	90.00	179.65 170.65	11,822.9 11,822.0	-592.6	-1,562.6	1,036.5	0.00	0.00	0.00
12,800.0	90.00	179.65	11,822.9	-692.6	-1,561.9	1,131.7	0.00	0.00	0.00
12,900.0	90.00	179.65	11,822.9	-792.6	-1,561.3	1,226.8	0.00	0.00	0.00
13,000.0	90.00	179.65	11,822.9	-892.6	-1,560.7	1,322.0	0.00	0.00	0.00
13,100.0	90.00	179.65	11,822.9	-992.6	-1,560.1	1,417.1	0.00	0.00	0.00
13,200.0	90.00	179.65	11,822.9	-1,092.6	-1,559.5	1,512.3	0.00	0.00	0.00
13,300.0	90.00	179.65	11,822.9	-1,192.6	-1,558.9	1,607.4	0.00	0.00	0.00

5/22/2024 11:00:21AM

Page 6

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,400.0 13,500.0 13,600.0	90.00 90.00 90.00	179.65 179.65 179.65	11,822.9 11,822.9 11,822.9	-1,292.6 -1,392.6 -1,492.6	-1,558.2 -1,557.6 -1,557.0	1,702.6 1,797.7 1,892.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
13,700.0 13,800.0 13,900.0 14,000.0 14,100.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65 179.65	11,822.9 11,822.9 11,822.9 11,822.9 11,822.9 11,822.9	-1,592.6 -1,692.6 -1,792.6 -1,892.6 -1,992.6	-1,556.4 -1,555.8 -1,555.2 -1,554.6 -1,553.9	1,988.0 2,083.2 2,178.3 2,273.5 2,368.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,200.0 14,300.0 14,400.0 14,500.0 14,600.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65	11,822.9 11,822.9 11,822.9 11,822.9 11,822.9 11,822.9	-2,092.6 -2,192.6 -2,292.6 -2,392.6 -2,492.6	-1,553.3 -1,552.7 -1,552.1 -1,551.5 -1,550.9	2,463.8 2,558.9 2,654.1 2,749.2 2,844.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,700.0 14,800.0 14,900.0 15,000.0 15,100.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65 179.65	11,822.9 11,822.9 11,822.9 11,823.0 11,823.0	-2,592.6 -2,692.6 -2,792.6 -2,892.6 -2,992.6	-1,550.2 -1,549.6 -1,549.0 -1,548.4 -1,547.8	2,939.5 3,034.7 3,129.8 3,225.0 3,320.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
15,200.0 15,300.0 15,400.0 15,500.0 15,600.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65 179.65	11,823.0 11,823.0 11,823.0 11,823.0 11,823.0 11,823.0	-3,092.6 -3,192.6 -3,292.6 -3,392.6 -3,492.6	-1,547.2 -1,546.6 -1,545.9 -1,545.3 -1,544.7	3,415.3 3,510.4 3,605.6 3,700.7 3,795.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,700.0 15,800.0 15,900.0 16,000.0 16,100.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65 179.65	11,823.0 11,823.0 11,823.0 11,823.0 11,823.0 11,823.0	-3,592.6 -3,692.6 -3,792.6 -3,892.6 -3,992.6	-1,544.1 -1,543.5 -1,542.9 -1,542.2 -1,541.6	3,891.0 3,986.2 4,081.3 4,176.5 4,271.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,200.0 16,300.0 16,400.0 16,500.0 16,600.0	90.00 90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65 179.65 179.65	11,823.0 11,823.0 11,823.0 11,823.0 11,823.0 11,823.0	-4,092.6 -4,192.6 -4,292.6 -4,392.6 -4,492.6	-1,541.0 -1,540.4 -1,539.8 -1,539.2 -1,538.5	4,366.8 4,462.0 4,557.1 4,652.3 4,747.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,700.0 16,800.0 16,900.0 16,961.5	90.00 90.00 90.00 90.00	179.65 179.65 179.65 179.65	11,823.0 11,823.0 11,823.0 11,823.0	-4,592.6 -4,692.6 -4,792.6 -4,854.0	-1,537.9 -1,537.3 -1,536.7 -1,536.3	4,842.6 4,937.7 5,032.9 5,091.3	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00

Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
KOP(Quail 2 State Com - plan hits target cen - Point	0.00 ter	0.00	11,345.5	189.1	-1,566.4	392,841.00	690,557.00	32° 4' 44.701 N	103° 51' 5.580 W
FTP(Quail 2 State Com ; - plan hits target cen - Point	0.00 ter	0.00	11,780.2	-91.0	-1,565.4	392,561.00	690,558.00	32° 4' 41.930 N	103° 51' 5.583 W
PBHL(Quail 2 State Con - plan hits target cen - Point		0.00	11,823.0	-4,854.0	-1,536.3	387,799.00	690,587.00	32° 3' 54.804 N	103° 51' 5.493 W

Database:	PEDMB	Local Co-ordinate Reference:	Well #751H
Company:	Midland	TVD Reference:	kb = 26' @ 3263.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3263.0usft
Site:	Quail 2 State Com	North Reference:	Grid
Well:	#751H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Released to Imaging: 6/3/2024 1:29:48 PM

Re	ceived by	OCD:	6/3/2024	11:33:26	AM
----	-----------	------	----------	----------	----

ived by OCD: 6/3/202	24 11:33:26 AM	1						Page 23	
	E	ent			nit Electronically E-permitting				
		1220 \$	nservation Di South St. France ta Fe, NM 873	cis Dr.					
	N	ATURAL GA			LAN				
Гhis Natural Gas Man						PD) for a	new of	recompleted well.	
			<u>1 – Plan D</u> fective May 25,						
. Operator:EOO	G Resources, Inc	OGRII	D: 7377		Da	ate: 5/22	/2024		
II. Type: 🛛 Origin	nal 🗆 Amendm	ent due to \Box 19.15	.27.9.D(6)(a) NI	MAC 🗆 19.15.27.9	9.D(6)(b) NMAC	□ Oti	her.	
f Other, please descri	be:								
II. Well(s): Provide the recompleted from a					wells pi	roposed to	be dri	lled or proposed to	
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		Anticipated Gas MCF/D		Anticipated Produced Water BBL/D	
QUAIL 2 STATE COM 751H		A-2-26S-30E	252' FNL & 975' FEL	+/- 1000	+/- 35	500	+/- 3	000	
V. Central Delivery	Point Name:	Quail 2 State Co	m CTB		_[See	19.15.27.9	9(D)(1) NMAC]	
V. Anticipated Sche or proposed to be reco						set of wel	lls pro	posed to be drilled	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date	
UAIL 2 STATE COM 751H		06/18/24	07/2/24	10/01/24		11/01/24		12/01/24	
VI. Separation Equip VII. Operational Pra Subsection A through	actices: 🛛 Attac	ch a complete descr		-			-		
VIII. Best Managem luring active and plan		-	te description of	? Operator's best n	nanager	nent pract	ices to	o minimize venting	

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \square Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in		

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Star L Harrell Printed Name: Star L Harrell Title: Sr Regulatory Specialist E-mail Address: Star_Harrell@eogresources.com Date: 5/22/2024 Phone: (432) 848-9161 **OIL CONSERVATION DIVISION** (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Quail 2 State Com 751H API #: 30-025-**** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

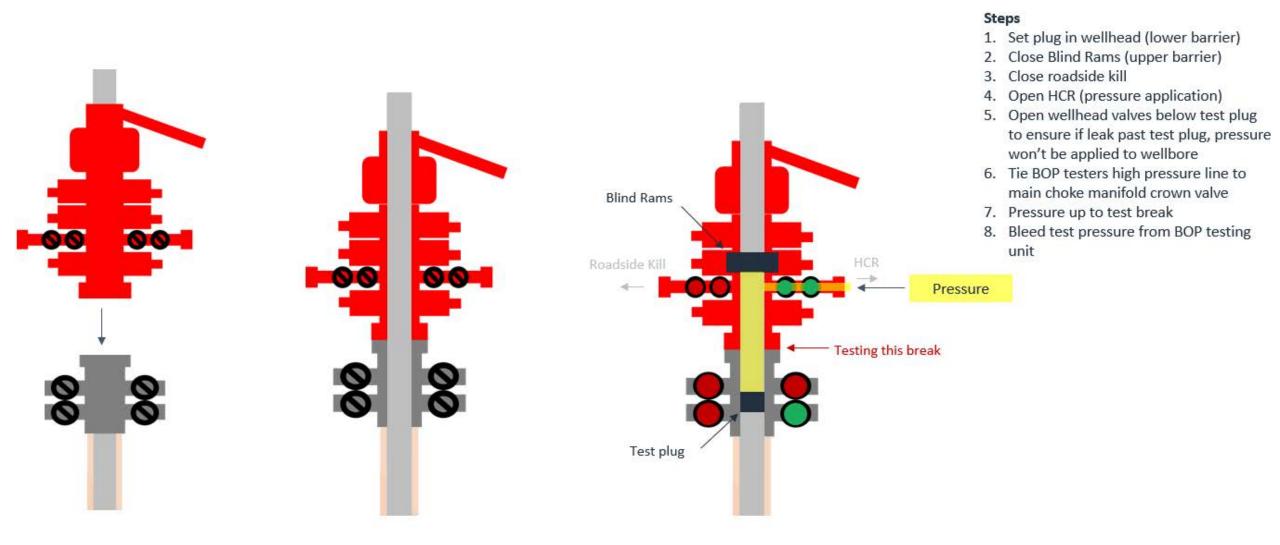
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 2a Inermediate Bradenhead Cement

Intermediate Bradenhead Cement:

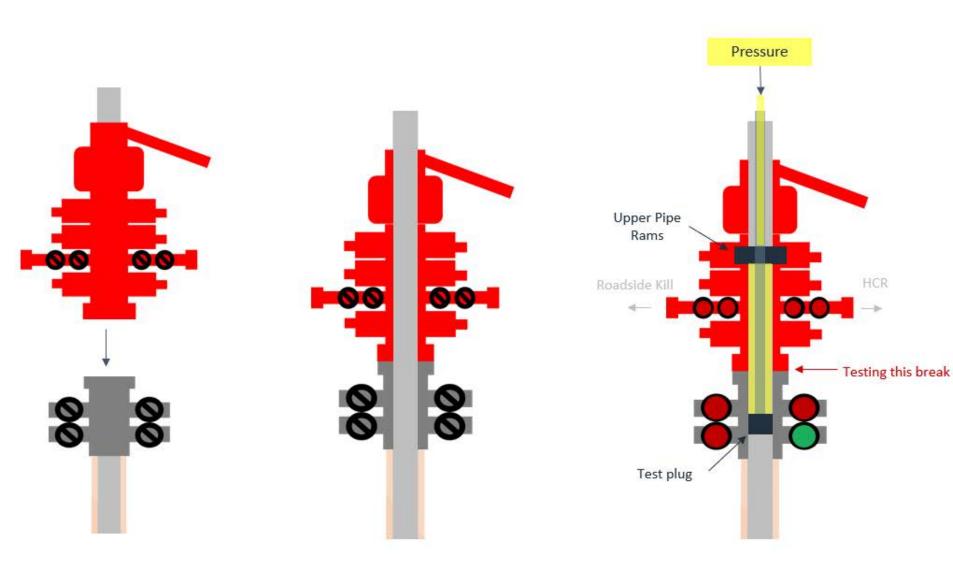
EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Received by OCD: 6/3/2024 11:33:26 AM

Seog resources Offline Intermediate Cementing Procedure

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the **casing will be cemented online**.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Page | 1

Page 35 of 52

2/24/2022

Seog resources

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

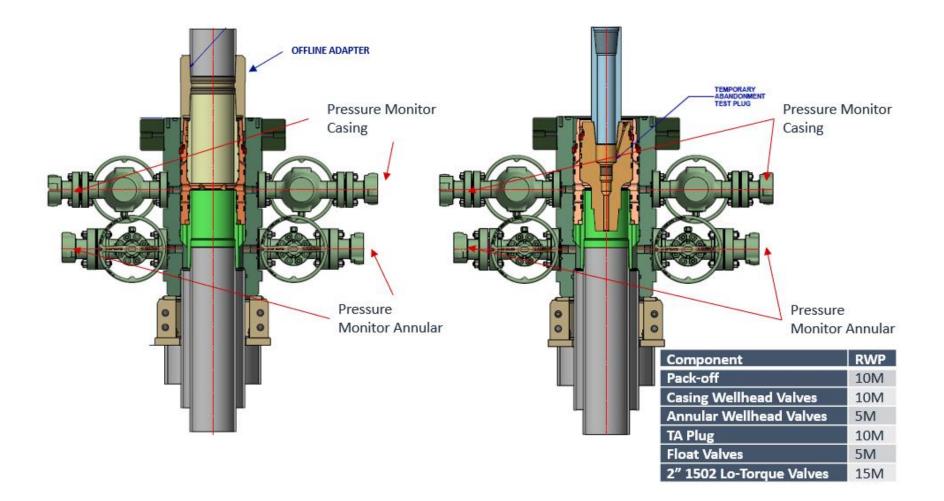
Seog resources

Offline Intermediate Cementing Procedure

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

Page | 4

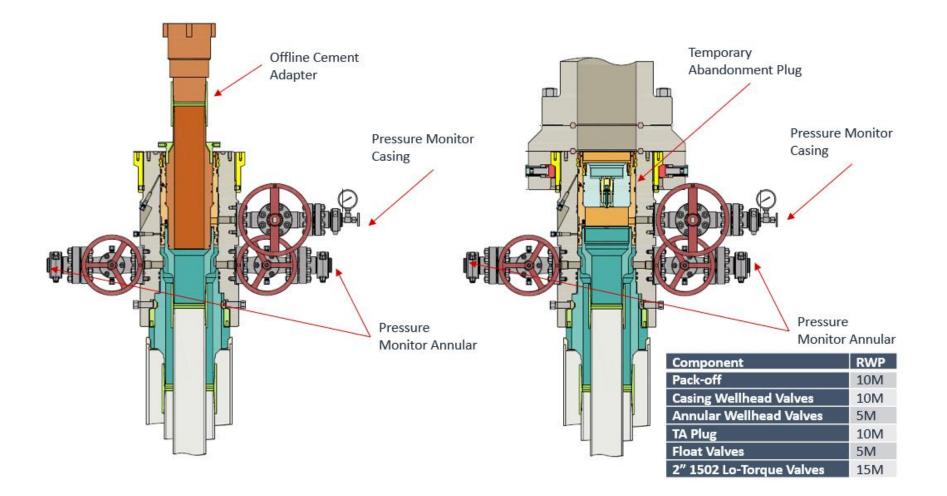
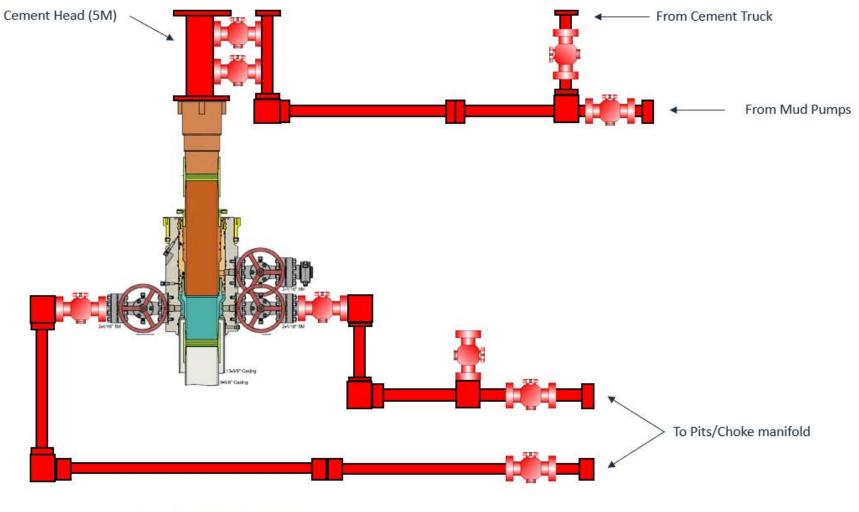

Seog resources Offline Intermediate Cementing Procedure

Figure 1: Cameron TA Plug and Offline Adapter Schematic

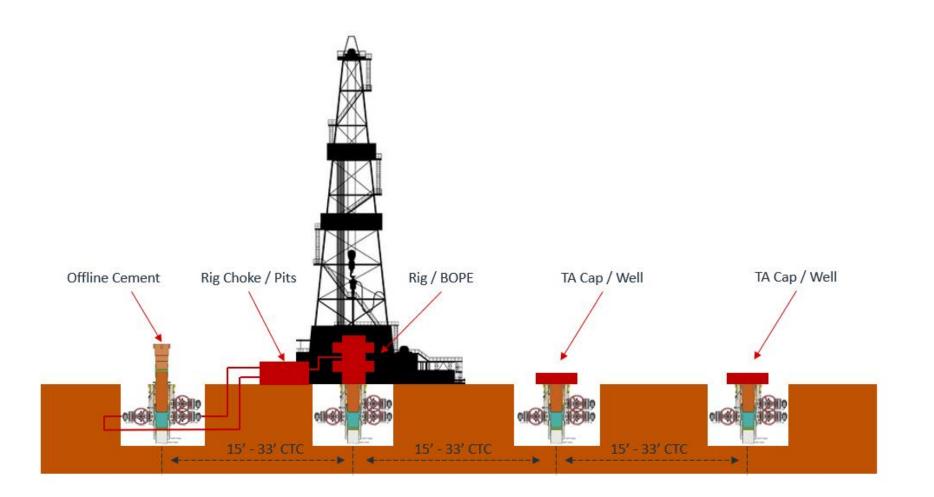
Page 38 of 52

Offline Intermediate Cementing Procedure



Page 40 of 52

2/24/2022



*** All Lines 10M rated working pressure

Page | 7

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

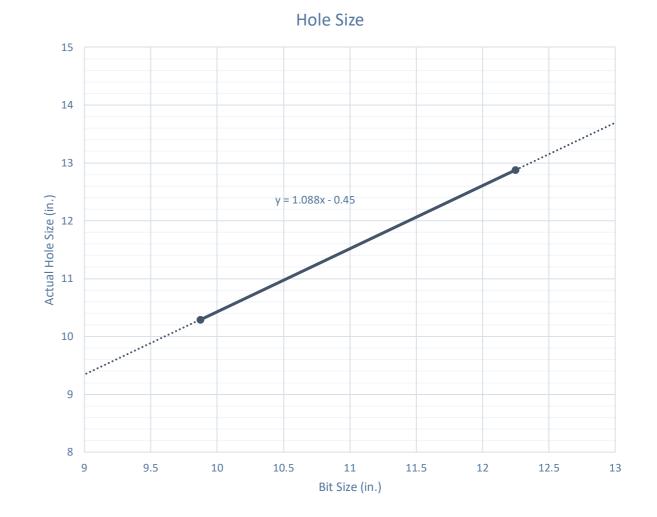
- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

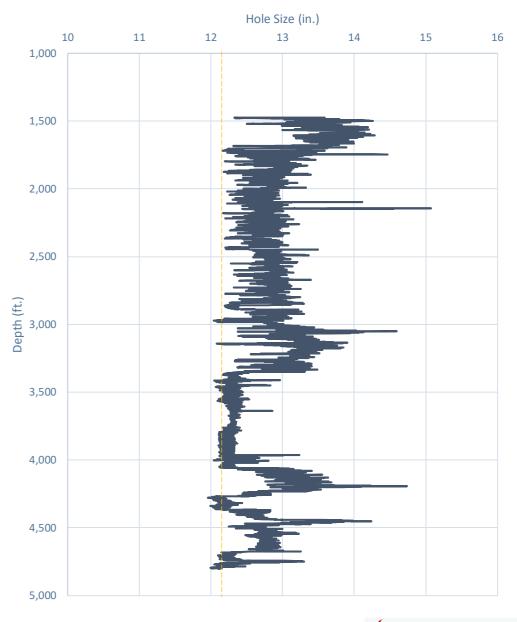

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

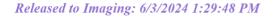
- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count



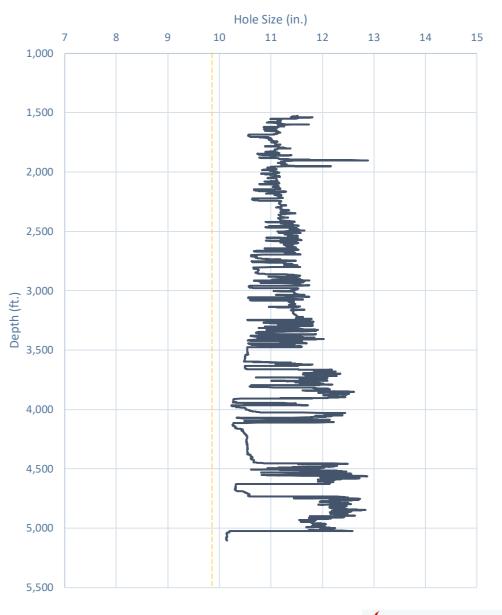
Page 46 of 52


Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine

Modelo 10 Fed Com #501H



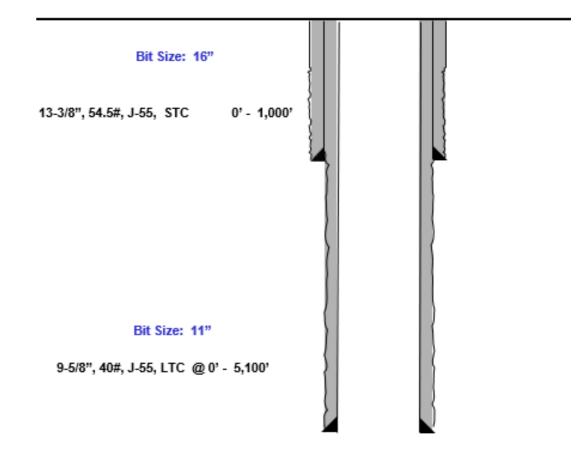
Whirling Wind 11 Fed Com #744H

Caliper Hole Size (9.875")

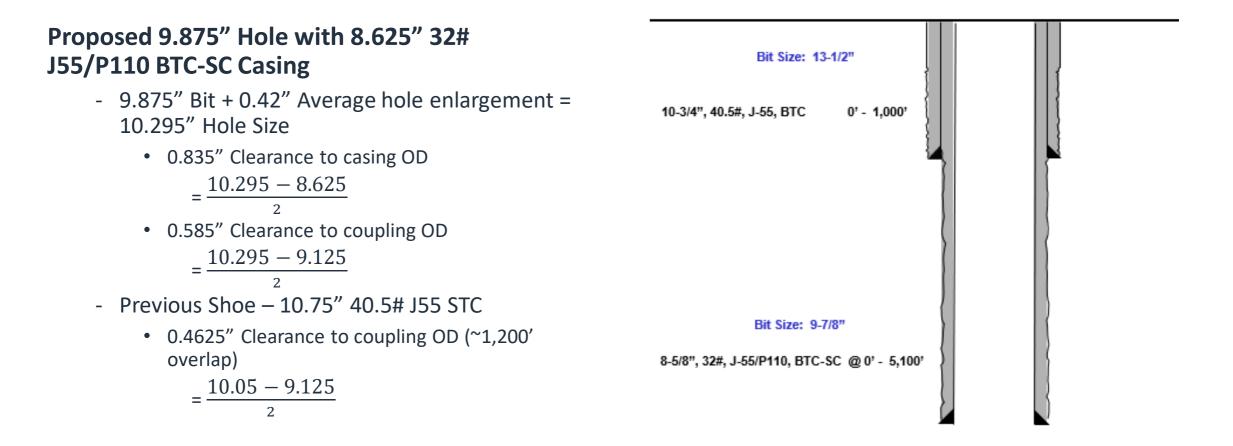
Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Design A


Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$= \frac{11.52 - 9.625}{2}$$
• 0.4475" Clearance to coupling OD

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Released to Imaging: 6/3/2024 1:29:48 PM

•

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	·
Nom. Pipe Body Area	11.454	in²			

Connection Parameters

Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data

13.375	54.50/0.380	J55

New Search »

« Back to Previous List

USC O Metric

PDF

6/8/2015 10:04:37 AM					
Mechantcal Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Ptpe	BTC	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					PE
New Search »					« Back to Previous
					USC 🔵 Me
/8/2015 10:14:05 AM					
Mechantcal Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-		psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350				in.
Inside Diameter	10.050	10.050		10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-		lbs/ft
Plain End Weight	38.91	-	-		lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength		700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss		4.81		3.50	in.
Minimum Make-Up Torque		-		3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

					AP	9I 5CT, 1	0th Ed. C	onnect	ion Data	She
	O.D. (in) 8.625	WEIGHT (I Nominal: Plain End:	b/ft) 32.00 31.13	WALL (in 0.352	· 1	ADE 55	* API DRIF 7.79	· · · /	RBW 87.	
		Material Propert	ies (PE)			F	Pipe Body	Data (I	PE)	
		Pipe					Geor	netry		
I	Minimum `	Yield Strength:	55	ksi	Nomir	nal ID:			7.92 ii	nch
Ν	Maximum	Yield Strength:	80	ksi	Nomir	nal Area	:		9.149 ji	n ²
ľ	Minimum ⁻	Tensile Strength:		ksi	*Spec	ial/Alt. D			7.875 iı	nch
		Coupling	•				Perfor			
		Yield Strength:		ksi			eld Strengt	h:	503 k	•
ľ	Maximum	Yield Strength:	80	ksi		ose Resi			2,530 p	
N	/inimum ·	Tensile Strength:	75	ksi	Internal Yield Pressure: (API Historical) 3,930 psi			si		
		API Connectio				AF	PI Connec	tion To	rque	
STC Performance						STC Torq	•			
		nal Pressure:	3,930		Min:	2,793	Opti:	3,724	Max:	4,65
0	STC Joint	Strength:		kips						
LTC Performance LTC Internal Pressure: 3,930 psi			nci	Min [.]	3,130	DDDti:	ue (ft-lk 4.174	os) Max:	5.21	
	LTC Joint		,	kips	WIIIT.	5,150	Opti.	4,174	IVICIA.	J,21
		Performance - C								
	PTC Inton	nal Pressure:	3,930	nci	follo		BTC Torq	•		ko up
		Strength:	,	kips	10//0	w Ar i gu	idennes rega	iruing pot	suona ma	te up
-	510 5000		*Alt. Drift will		ess API Drift	is specifie	d on order			
	**	f above API connec		suit your ne		® premiur		ns are ava	ailable up t	0

eog

Released to Imaging: 6/3/2024 1:29:48 PM

11