Form C-101 August 1, 2011

Permit 369411

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

APPLICATION FOR PERMIT TO DRILL. RE-ENTER. DEEPEN, PLUGBACK, OR ADD A ZONE

	2. OGRID Number
	14744
	3. API Number
	30-015-55247
5. Property Name	6. Well No.
WOODFORD 27/26 STATE COM	611H
	· · ·

7 Surface Location

I	UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
	E	27	18S	28E	E	2380	N	155	W	Eddy

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
С	26	18S	28E	С	660	N	2507	W	Eddy

9. Pool Information

TRAVIS; BONESPRING(O) 97257

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	6558
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	15772	2nd Bone Spring Sand		8/7/2022
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

☑ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

			z ii i i opoood odoilig t	and comoner rogram		
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	48	405	340	0
Int1	12.25	9.625	36	800	250	0
Prod	8.75	7	26	7753	810	600
Liner1	6.125	4.5	13.5	15772	530	7553

Casing/Cement Program: Additional Comments

MOC proposed to drill & test the Bone Springs formation. H2S rule 118 does not apply because MOC has researched the area & no high concentrations were found. Will have on location & working all H2S safety equiptment before Yates formation for safety & insurance purposes. Will stimulate as needed for production.

22. Proposed Blowout Prevention Program

Γ	Туре	Working Pressure	Test Pressure	Manufacturer
	Annular	5000	2500	SCHAFFER
Γ	Double Ram	5000	5000	SCHAFFER
	Annular	5000	2500	SCHAFFER

23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC ☒ and/or 19.15.14.9 (B) NMAC ☒, if applicable.				OIL CONSERVATIO	ON DIVISION
Signature:					
Printed Name:	Electronically filed by Monty Whe	etstone	Approved By:	Ward Rikala	
Title:	Vice President Operations		Title:	Petroleum Specialist Supervi	sor
Email Address: fking@mewbourne.com			Approved Date:	7/17/2024	Expiration Date: 7/17/2026
Date:	7/8/2024	Phone: 903-561-2900	Conditions of Appr	oval Attached	

<u>District I</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>
811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

UL or lot no.

Township

Section

Lot Idn

Range

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

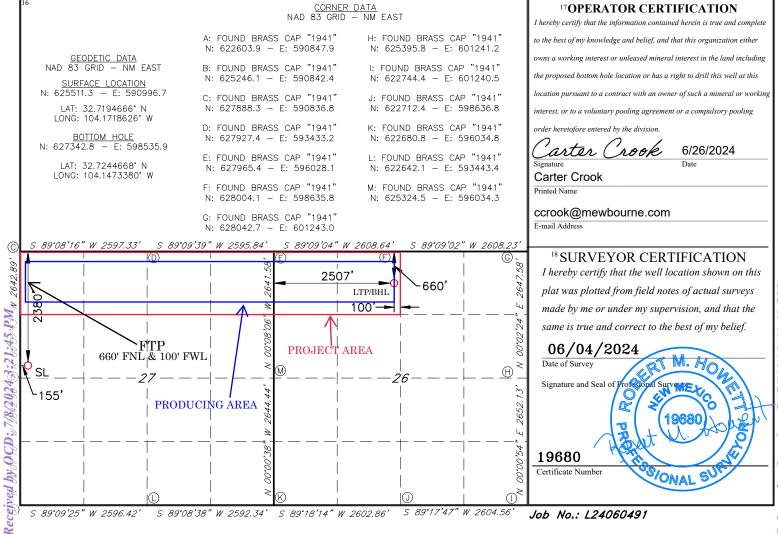
Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

County

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code	³ Pool Name			
30-015-55247 97257			TRAVIS; BONE SPRING			
4Property Code			operty Name	6 Well Number		
334553		WOODFORD 2	27/26 STATE COM	611H		
7 OGRID NO.		8 O _l	perator Name	⁹ Elevation		
14744		MEWBOURNE OIL COMPANY				
		¹⁰ Sui	rface Location			


Feet from the North/South line

Feet From the

East/West line

E	27	18S	28E		2380	NORTH	155	WEST	EDDY		
	11 Bottom Hole Location If Different From Surface										
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
C	26	18S	28E		660	NORTH	2507	WEST	EDDY		
	20	100	~01		000	NONTH	2001	111791	ו עעם		
12 Dedicated Acres			Consolidation	Code 15 (Order No.	NONTH	2001	MESI			

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 7/17/2024 3:11:18 PM

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 369411

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-015-55247
P.O. Box 5270	Well:
Hobbs, NM 88241	WOODFORD 27/26 STATE COM #611H

OCD Reviewer	Condition
ward.rikala	Notify OCD 24 hours prior to casing & cement
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
ward.rikala	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

Mewbourne Oil Co.

BOP Break Testing Variance

Mewbourne Oil Company requests a variance from the minimum standards for well control equipment testing of 43 CFR 3172 to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with batch drilling & offline cementing operations. Modern rig upgrades which facilitate pad drilling allow the BOP stack to be moved between wells on a multi-well pad without breaking any BOP stack components apart. Widespread use of these technologies has led to break testing BOPE being endorsed as safe and reliable. American Petroleum Institute (API) best practices are frequently used by regulators to develop their regulations. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (5th Ed., Dec. 2018) Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component."

Procedures

- 1. Full BOPE test at first installation on the pad.
 - Full BOPE test at least every 21 days.
 - Function test BOP elements per 43 CFR 3172.
 - Contact the BLM if a well control event occurs.
- 2. After the well section is secured and the well is confirmed to be static, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad. Two breaks on the BOPE will be made (Fig. 1).
 - Connection between the flex line and the HCR valve
 - Connection between the wellhead and the BOP quick connect (Fig. 5 & 6).
- 3. A capping flange will be installed after cementing per wellhead vendor procedure & casing pressure will be monitored via wellhead valve.
- 4. The BOP will be removed and carried by a hydraulic carrier (Fig. 3 & 4).
- 5. The rig will then walk to the next well.
- 6. Confirm that the well is static and remove the capping flange.
- 7. The connection between the flex line and HCR valve and the connection between the wellhead and the BOP quick connect will be reconnected.
- 8. Install a test plug into the wellhead.
- 9. A test will then be conducted against the upper pipe rams and choke, testing both breaks (Fig. 1 & 2).
- 10. The test will be held at 250 psi low and to the high value submitted in the APD, not to exceed 5000 psi.
- 11. The annular, blind rams and lower pipe rams will then be function tested.
- 12. If a pad consists of three or more wells, steps 4 through 11 will be repeated.

13. A break test will only be conducted if the intermediate section can be drilled and cased within 21 days of the last full BOPE test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool and/or cement head
- Capping flange after cementing

Summary

A variance is requested to only test broken pressure seals on the BOPE when moving between wells on a multi-well pad if the following conditions are met:

- A full BOPE test is conducted on the first well on the pad. API Standard 53 requires testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater.
- If the first well on the pad is not the well with the deepest intermediate section, a full BOPE test will also be performed when moving to a deeper well.
- The hole section being drilled has a MASP under 5000 psi.
- If a well control event occurs, Mewbourne will contact BLM for permission to continue break testing.
- If significant (>50%) losses occur, full BOPE testing will be required going forward.
- Full BOPE test will be required prior to drilling the production hole.

While walking the rig, the BOP stack will be secured via hydraulic winch or hydraulic carrier. A full BOPE test will be performed at least every 21 days.

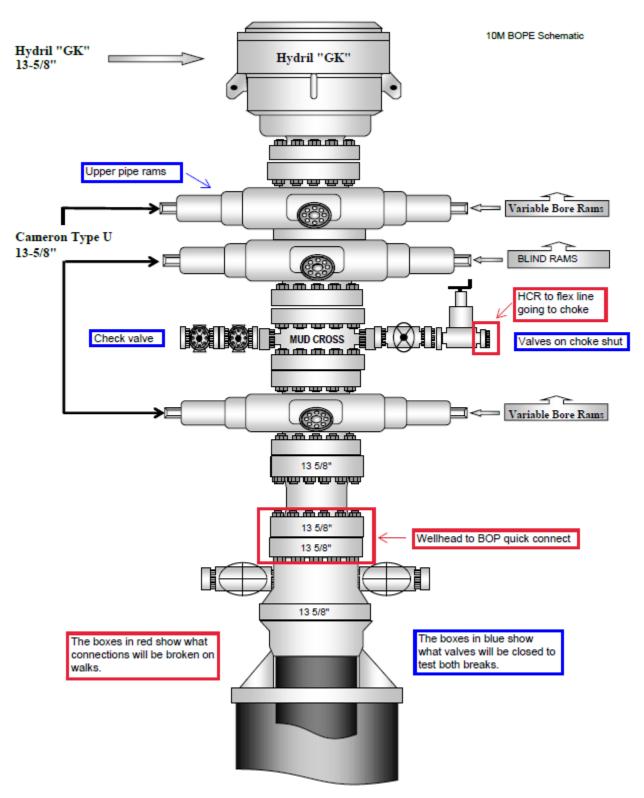


Figure 1. BOP diagram

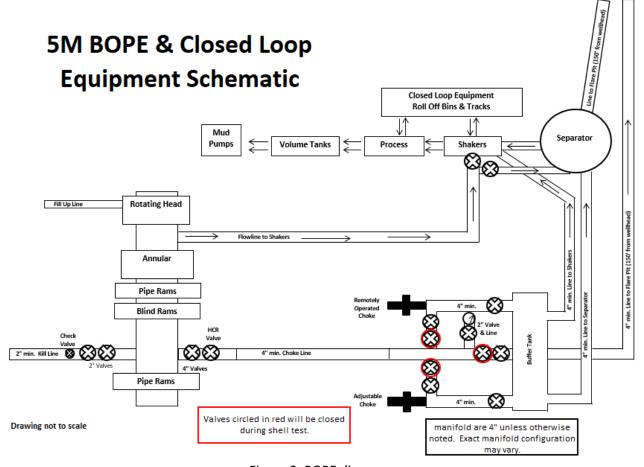


Figure 2. BOPE diagram

Figure 3. BOP handling system

Figure 4. BOP handling system

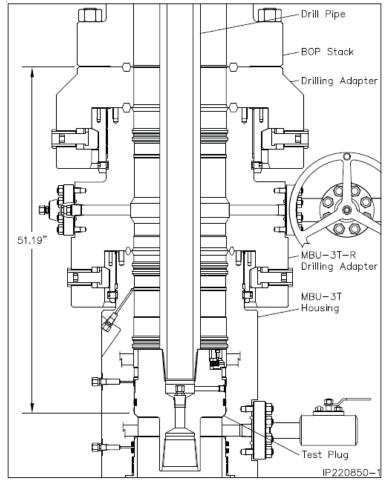


Figure 5. Cactus 5M wellhead with BOP quick connect

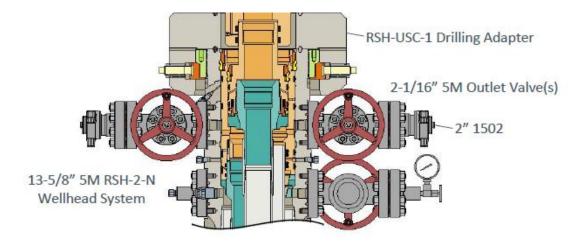


Figure 6. Vault 5M wellhead with BOP quick connect

Mewbourne Oil Co.

Surface & Intermediate Offline Cementing Variance

Mewbourne Oil Company requests a variance to perform offline cementing for surface and intermediate casing strings with the following conditions:

- Offline cementing will not be performed on production casing.
- Offline cementing will not be performed on a hole section with MASP > 5000 psi.
- Offline cementing will not be performed concurrently with offset drilling.

Surface Casing Order of Operations:

- 1. Run 13 3/8" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static.
- 4. Make up 13 %" wellhead or wellhead landing ring assembly and land on 20" conductor.
- 5. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint.
- 8. Walk rig to next well on pad with cement crew standing by to rig up.
- 9. Make up offline cement tool with forklift per wellhead manufacturer (Fig. 1 & 2).
- 10. Make up cement head on top of offline cement tool with forklift.
- 11. Commence cement operations.
- 12. If cement circulates, confirm well is static and proceed to step 16.
- 13. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 14. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 15. Confirm well is static.
- 16. Once cement job is complete, the cement head and offline cementing tool are removed. The wellhead technician returns to cellar to install wellhead/valves.
- 17. Install wellhead capping flange.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Offline cementing tool tested to 5000 psi and cement head
- Capping flange after cementing

20" Surface Casing Order of Operations (4 string area):

- 1. Run 20" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 4. Confirm well is static.
- 5. Back out landing joint and pull to rig floor. Lay down landing joint.
- 6. Make up cement head.
- 7. Walk rig to next well on pad with cement crew standing by to rig up.
- 8. Commence cement operations.
- 9. If cement circulates, confirm well is static and proceed to step 13.
- 10. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 11. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 12. Confirm well is static.
- 13. Once cement job is complete, remove cement head and install cap.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement Head

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement head
- Capping flange after cementing

Intermediate Casing Order of Operations:

- 1. Run casing as per normal operations (float shoe and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static (if running SBM).
- 4. Land casing.
- 5. Fill pipe, circulate casing capacity and confirm floats are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint. Install packoff & test.
- 8. Nipple down BOP.
- 9. Walk rig to next well on pad with cement crew standing by to rig up.
- 10. Make up offline cement tool using forklift per wellhead manufacturer (Fig. 3 8).
- 11. Make up cement head on top of offline cement tool.
- 12. Commence cement operations.
- 13. If cement circulates, confirm well is static and proceed to step 16.
- 14. If cement does not circulate (when required), notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 15. Pump remedial cement job if required.
- 16. Confirm well is static.
- 17. Remove cement head and offline cementing tool.
- 18. Install wellhead capping flange and test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool tested to 5000 psi and cement head
- Capping flange after cementing

Risks:

- Pressure build up in annulus before cementing
 - o Contact BLM if a well control event occurs.
 - o Rig up 3rd party pump or rig pumps to pump down casing and kill well.
 - Returns will be taken through the wellhead valves to a choke manifold (Fig 9 & 10).
 - Well could also be killed through the wellhead valves down the annulus.

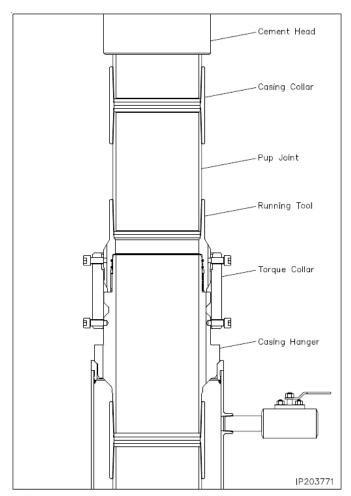


Figure 1. Cactus 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

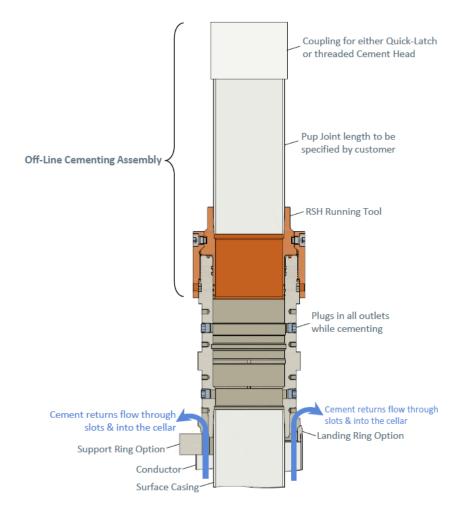


Figure 2. Vault 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

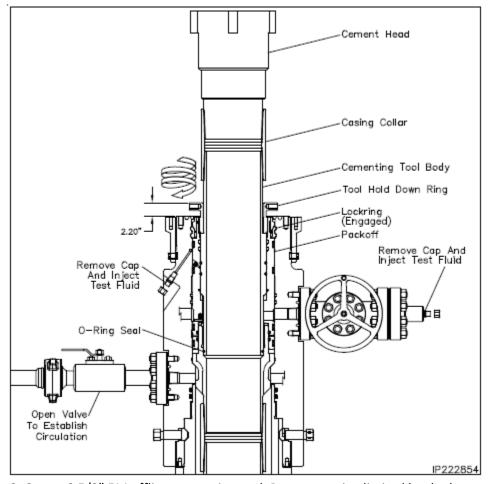


Figure 3. Cactus 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

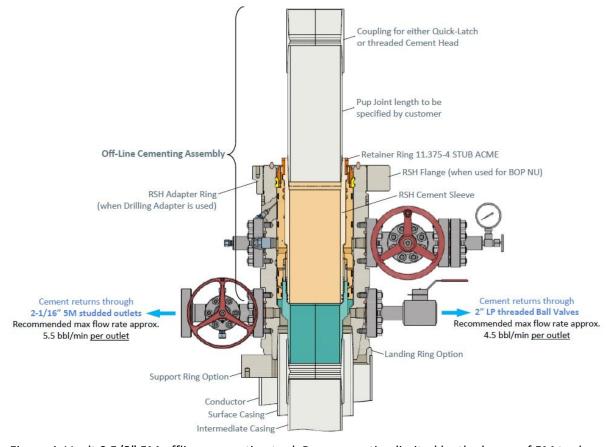


Figure 4. Vault 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

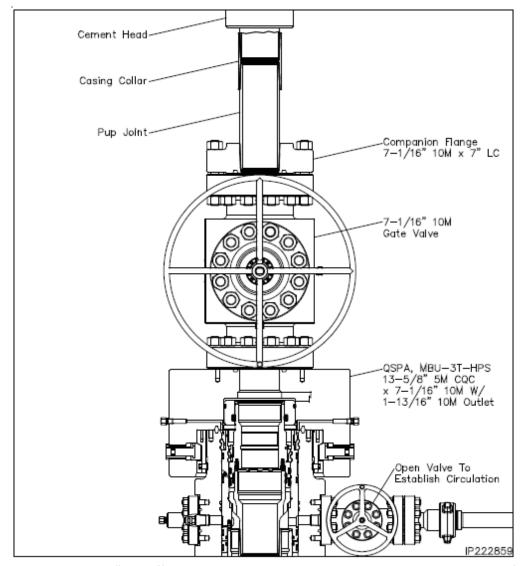


Figure 5. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

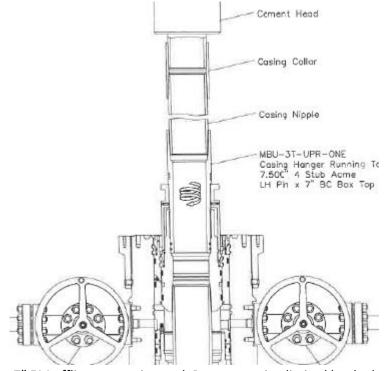


Figure 6. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

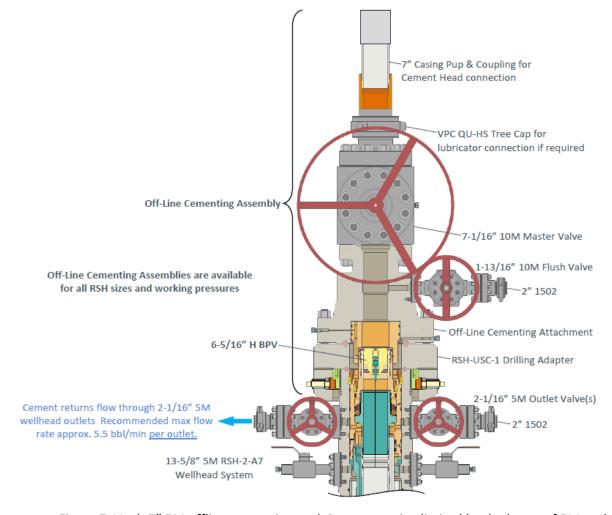
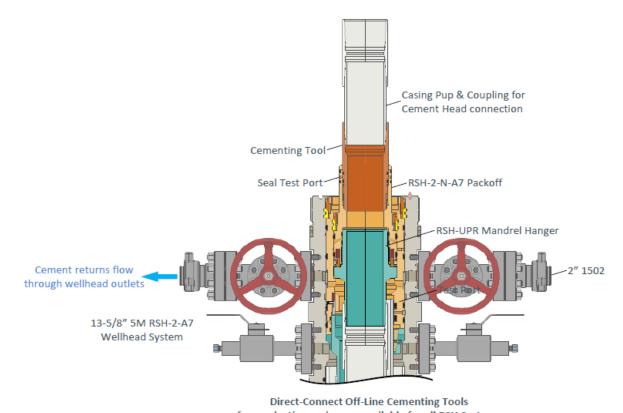



Figure 7. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

for production casing are available for all RSH Systems
menting tool. Pressure rating limited by the lesser of 9

Figure 8. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

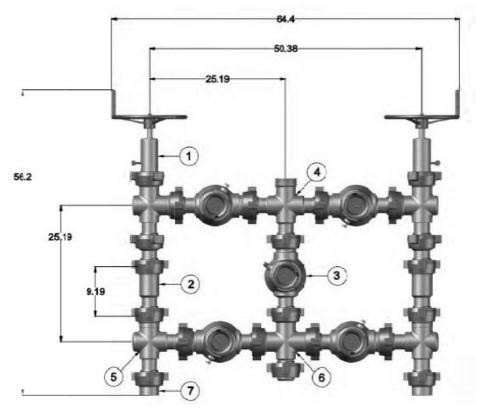


Figure 9. Five valve 15k choke manifold.

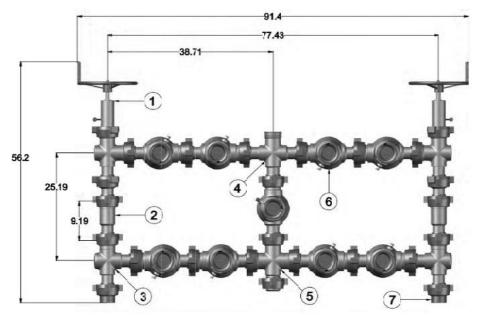


Figure 10. Nine valve 15k choke manifold.

Mewbourne Oil Company, Woodford 27/26 Fed Com 611H Sec 27, T18S, R28E SHL: 2380' FNL 155' FWL (Sec 27)

SHL: 2380' FNL 155' FWL (Sec 27) BHL: 660' FNL 2507' FWL (Sec 26)

		Casing Progr	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	405'	405'	13.375" 48# H40 STC	4.25	9.55	16.56	27.83
Int	12.25"	0'	0'	800'	800'	9.625" 36# J55 LTC	4.76	8.30	15.73	19.58
Production	8.75"	0'	0'	7753'	7513'	7" 26# P110 LTC	1.59	2.55	3.44	4.12
Liner	6.125"	7553'	7486'	15772'	8296'	4.5" 13.5# P110 LTC	2.25	2.62	3.05	3.80

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	140	12.5	2.12	0' - 214'	300	100%	Class C: Salt, Gel, Extender, LCM
13.373 III	TAIL	200	14.8	1.34	214' - 405'	268	100%	Class C: Retarder
9.625 in	LEAD	50	12.5	2.12	0' - 233'	110	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	233' - 800'	268	2370	Class C: Retarder
7 in	LEAD	410	12.5	2.12	600' - 5237'	870	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	5237' - 7753'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	530	13.5	1.85	7553' - 15772'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 405'	8.4 - 8.6	Fresh Water
405' - 800'	9.5 - 10.2	Brine
800' - 7753'	8.6 - 10.	Cut-Brine
7753' - 15772'	10.0 - 11.	OBM

Geolog

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top			Bell Canyon		
Salt Base	650'	None	Cherry Canyon		
Yates	720'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1040'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	1700'	Oil/Natural Gas	Bone Spring		
Capitan			1st Bone Spring	6100'	Oil/Natural Gas
Grayburg	2170'	None	2nd Bone Spring	6770'	Oil/Natural Gas
San Andres	2460'	Oil/Natural Gas	3rd Bone Spring	7940'	Oil/Natural Gas
Glorieta			Wolfcamp	8220'	Oil/Natural Gas

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Mewbourne Oil Company, Woodford 27/26 Fed Com 611H Sec 27, T18S, R28E

SHL: 2380' FNL 155' FWL (Sec 27) BHL: 660' FNL 2507' FWL (Sec 26)

		Casing Prog	ram Design B			BLM Minimum Safety Factors	1.125	1.0	1.6 Drv 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	405'	405'	13.375" 48# H40 STC	4.25	9.55	16.56	27.83
Int	12.25"	0'	0'	800'	800'	9.625" 36# J55 LTC	4.76	8.30	15.73	19.58
Production	8.75"	0'	0'	8654'	8086'	7" 26# P110 LTC	1.48	2.37	3.08	3.69
Liner	6.125"	7753'	7513'	15772'	8296'	4.5" 13.5# P110 LTC	2.25	2.62	3.12	3.90

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	140	12.5	2.12	0' - 214'	300	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	214' - 405'	268	10070	Class C: Retarder
9.625 in	LEAD	50	12.5	2.12	0' - 233'	110	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	233' - 800'	268	23%	Class C: Retarder
1st Stg 7 in	LEAD	490	12.5	2.12	600' - 6140'	1040	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
1st stg / m	TAIL	400	15.6	1.18	6140' - 8654'	472	2,370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	510	13.5	1.85	7753' - 15772'	950	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 405'	8.4 - 8.6	Fresh Water
405' - 800'	9.5 - 10.2	Brine
800' - 8654'	8.6 - 10.	Cut-Brine
8654' - 15772'	10.0 - 11.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
	Est. 10p (1 vD)	Willer at Resources		Est. Top (TVD)	Willer at Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top			Bell Canyon		
Salt Base	650'	None	Cherry Canyon		
Yates	720'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1040'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	1700'	Oil/Natural Gas	Bone Spring		
Capitan			1st Bone Spring	6100'	Oil/Natural Gas
Grayburg	2170'	None	2nd Bone Spring	6770'	Oil/Natural Gas
San Andres	2460'	Oil/Natural Gas	3rd Bone Spring	7940'	Oil/Natural Gas
Glorieta			Wolfcamp	8220'	Oil/Natural Gas

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
	_
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	IN .
If yes, are the first 2 strings centerited to surface and 3 string centerit tee back 300 into previous casing.	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
is wen rocated in high Cavo Natist: If yes, are there two strings cemented to surface?	N N
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Woodford 27/26 Fed Com #611H

Sec 27, T18S, R28E

SHL: 2380' FNL & 155' FWL (Sec 27) BHL: 660' FNL & 2507' FWL (Sec 26)

Plan: Design #1

Standard Planning Report

27 June, 2024

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Woodford 27/26 Fed Com #611H

Well: Sec 27, T18S, R28E

Wellbore: BHL: 660' FNL & 2507' FWL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Woodford 27/26 Fed Com #611H

Original Well @ 3587.0usft Original Well @ 3587.0usft

Grid

Minimum Curvature

Project Eddy County, New Mexico NAD 83

Map System: US State Plane 1983
Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

ate Plane 1983 System Datum:

Ground Level

Site Woodford 27/26 Fed Com #611H

 Site Position:
 Northing:
 625,510.00 usft
 Latitude:
 32.7194632

 From:
 Map
 Easting:
 590,995.50 usft
 Longitude:
 -104.1718666

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 27, T18S, R28E

 Well Position
 +N/-S
 0.0 usft
 Northing:
 625,510.00 usft
 Latitude:
 32.7194632

 +E/-W
 0.0 usft
 Easting:
 590,995.50 usft
 Longitude:
 -104.1718666

Position Uncertainty 0.0 usft Wellhead Elevation: 3,587.0 usft Ground Level: 3,559.0 usft

Grid Convergence: 0.09 °

Wellbore BHL: 660' FNL & 2507' FWL (Sec 26)

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2010
 12/31/2014
 7.46
 60.45
 48,467.84804998

 Design
 Design #1

 Audit Notes:
 Prototype
 Tie On Depth: 0.0

 Version:
 Depth From (TVD)
 +N/-S
 +E/-W
 Direction

 (usft)
 (usft)
 (usft)
 (°)

 0.0
 0.0
 0.0
 76.34

Plan Survey Tool Program Date 6/27/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 15,772.1 Design #1 (BHL: 660' FNL & 2507

Plan Sections Measured Vertical Dogleg Build Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (°/100usft) (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°) Target 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 900.0 0.00 0.00 900.0 0.0 0.0 0.00 0.00 0.00 0.00 1,731.3 16.63 355.10 1,719.7 119.3 -10.2 2.00 2.00 0.00 355.10 6,921.9 16.63 355,10 6,693.3 1,599.1 -137.1 0.00 0.00 0.00 0.00 180.00 KOP: 660' FNL & 10' I 7,753.2 0.00 -147.3 2.00 0.00 7,513.0 1,718.4 -2 00 0.00 8,086.0 409.0 8,636.8 88.31 89.15 1,726.7 9.99 9.99 0.00 89.15 15,772.1 88.31 89.15 8,296.0 1,832.5 7,540.4 0.00 0.00 0.00 0.00 BHL: 660' FNL & 2507

Hobbs Database:

Company:

Mewbourne Oil Company Eddy County, New Mexico NAD 83 Project: Site: Woodford 27/26 Fed Com #611H

Well: Sec 27, T18S, R28E

BHL: 660' FNL & 2507' FWL (Sec 26) Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Woodford 27/26 Fed Com #611H

Original Well @ 3587.0usft Original Well @ 3587.0usft

Grid

ned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 2380	FNL & 155' FWL	(Sec 27)							
100.0		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0		0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0		0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0		0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0		355.10	1,000.0	1.7	-0.1	0.3	2.00	2.00	0.00
1,100.0	4.00	355.10	1,099.8	7.0	-0.6	1.1	2.00	2.00	0.00
1,200.0		355.10	1,199.5	15.6	-1.3	2.4	2.00	2.00	0.00
1,300.0		355.10	1,298.7	27.8	-2.4	4.2	2.00	2.00	0.00
1,400.0		355.10	1,397.5	43.4	-3.7	6.6	2.00	2.00	0.00
			,						
1,500.0		355.10	1,495.6	62.4	-5.3	9.5	2.00	2.00	0.00
1,600.0	14.00	355.10	1,593.1	84.8	-7.3	13.0	2.00	2.00	0.00
1,700.0	16.00	355.10	1,689.6	110.6	-9.5	16.9	2.00	2.00	0.00
1,731.3	16.63	355.10	1,719.7	119.3	-10.2	18.2	2.00	2.00	0.00
1,800.0		355.10	1,785.5	138.9	-11.9	21.2	0.00	0.00	0.00
,			,						
1,900.0	16.63	355.10	1,881.3	167.4	-14.4	25.6	0.00	0.00	0.00
2,000.0	16.63	355.10	1,977.1	195.9	-16.8	29.9	0.00	0.00	0.00
2,100.0	16.63	355.10	2,073.0	224.4	-19.2	34.3	0.00	0.00	0.00
2,200.0	16.63	355.10	2,168.8	252.9	-21.7	38.7	0.00	0.00	0.00
2,300.0		355.10	2,264.6	281.5	-24.1	43.0	0.00	0.00	0.00
			,						
2,400.0		355.10	2,360.4	310.0	-26.6	47.4	0.00	0.00	0.00
2,500.0	16.63	355.10	2,456.2	338.5	-29.0	51.7	0.00	0.00	0.00
2,600.0	16.63	355.10	2,552.1	367.0	-31.5	56.1	0.00	0.00	0.00
2,700.0	16.63	355.10	2,647.9	395.5	-33.9	60.5	0.00	0.00	0.00
2,800.0	16.63	355.10	2,743.7	424.0	-36.3	64.8	0.00	0.00	0.00
			,						
2,900.0		355.10	2,839.5	452.5	-38.8	69.2	0.00	0.00	0.00
3,000.0		355.10	2,935.3	481.0	-41.2	73.5	0.00	0.00	0.00
3,100.0	16.63	355.10	3,031.2	509.5	-43.7	77.9	0.00	0.00	0.00
3,200.0	16.63	355.10	3,127.0	538.0	-46.1	82.2	0.00	0.00	0.00
3,300.0		355.10	3,222.8	566.5	-48.6	86.6	0.00	0.00	0.00
			,						
3,400.0		355.10	3,318.6	595.0	-51.0	91.0	0.00	0.00	0.00
3,500.0		355.10	3,414.4	623.5	-53.5	95.3	0.00	0.00	0.00
3,600.0	16.63	355.10	3,510.3	652.1	-55.9	99.7	0.00	0.00	0.00
3,700.0	16.63	355.10	3,606.1	680.6	-58.3	104.0	0.00	0.00	0.00
3,800.0		355.10	3,701.9	709.1	-60.8	108.4	0.00	0.00	0.00
3,900.0		355.10	3,797.7	737.6	-63.2	112.7	0.00	0.00	0.00
4,000.0	16.63	355.10	3,893.5	766.1	-65.7	117.1	0.00	0.00	0.00
4,100.0	16.63	355.10	3,989.4	794.6	-68.1	121.5	0.00	0.00	0.00
4,200.0		355.10	4,085.2	823.1	-70.6	125.8	0.00	0.00	0.00
4,300.0		355.10	4,181.0	851.6	-73.0	130.2	0.00	0.00	0.00
4,400.0		355.10	4,276.8	880.1	-75.4	134.5	0.00	0.00	0.00
4,500.0	16.63	355.10	4,372.6	908.6	-77.9	138.9	0.00	0.00	0.00
4,600.0	16.63	355.10	4,468.5	937.1	-80.3	143.2	0.00	0.00	0.00
4,700.0		355.10	4,564.3	965.6	-82.8	147.6	0.00	0.00	0.00
4,800.0		355.10	4,660.1	994.2	-85.2	152.0	0.00	0.00	0.00
4,900.0		355.10	4,755.9	1,022.7	-87.7	156.3	0.00	0.00	0.00
5,000.0	16.63	355.10	4,851.7	1,051.2	-90.1	160.7	0.00	0.00	0.00
5,100.0		355.10	4,947.5	1,079.7	-92.5	165.0	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Woodford 27/26 Fed Com #611H

Well: Sec 27, T18S, R28E

Wellbore: BHL: 660' FNL & 2507' FWL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Woodford 27/26 Fed Com #611H

Original Well @ 3587.0usft Original Well @ 3587.0usft

Grid

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0 5,300.0	16.63 16.63	355.10 355.10	5,043.4 5,139.2	1,108.2 1,136.7	-95.0 -97.4	169.4 173.7	0.00 0.00	0.00 0.00	0.00 0.00
5,400.0	16.63	355.10	5,235.0	1,165.2	-99.9	178.1	0.00	0.00	0.00
5,500.0	16.63	355.10	5,330.8	1,193.7	-102.3	182.5	0.00	0.00	0.00
5,600.0	16.63	355.10	5,426.6	1,222.2	-104.8	186.8	0.00	0.00	0.00
5,700.0	16.63	355.10	5,522.5	1,250.7	-107.2	191.2	0.00	0.00	0.00
5,800.0	16.63	355.10	5,618.3	1,279.2	-109.7	195.5	0.00	0.00	0.00
5,900.0	16.63	355.10	5,714.1	1,307.7	-112.1	199.9	0.00	0.00	0.00
6,000.0	16.63	355.10	5,809.9	1,336.2	-114.5	204.3	0.00	0.00	0.00
6,100.0	16.63	355.10	5,905.7	1,364.8	-117.0	208.6	0.00	0.00	0.00
6,200.0	16.63	355.10	6,001.6	1,393.3	-119.4	213.0	0.00	0.00	0.00
6,300.0	16.63	355.10	6,097.4	1,421.8	-121.9	217.3	0.00	0.00	0.00
6,400.0	16.63	355.10	6,193.2	1,450.3	-124.3	221.7	0.00	0.00	0.00
6,500.0	16.63	355.10	6,289.0	1,478.8	-126.8	226.0	0.00	0.00	0.00
6,600.0	16.63	355.10	6,384.8	1,507.3	-129.2	230.4	0.00	0.00	0.00
6,700.0	16.63	355.10	6,480.7	1,535.8	-131.6	234.8	0.00	0.00	0.00
6,800.0	16.63	355.10	6,576.5	1,564.3	-134.1	239.1	0.00	0.00	0.00
6,900.0	16.63	355.10	6,672.3	1,592.8	-136.5	243.5	0.00	0.00	0.00
6,921.9	16.63	355.10	6,693.3	1,599.1	-137.1	244.4	0.00	0.00	0.00
7,000.0	15.06	355.10	6,768.4	1,620.3	-138.9	247.7	2.00	-2.00	0.00
7,100.0	13.06	355.10	6,865.4	1,644.5	-141.0	251.4	2.00	-2.00	0.00
7,200.0	11.06	355.10	6,963.2	1,665.3	-142.8	254.6	2.00	-2.00	0.00
7,300.0	9.06	355.10	7,061.6	1,682.8	-144.2	257.2	2.00	-2.00	0.00
7,400.0	7.06	355.10	7,160.7	1,696.7	-145.4	259.4	2.00	-2.00	0.00
7,500.0	5.06	355.10	7,260.1	1,707.3	-146.3	261.0	2.00	-2.00	0.00
7,600.0	3.06	355.10	7,359.8	1,714.3	-147.0	262.0	2.00	-2.00	0.00
7,700.0	1.06	355.10	7,459.8	1,717.9	-147.3	262.6	2.00	-2.00	0.00
7,753.2	0.00	0.00	7,513.0	1,718.4	-147.3	262.7	2.00	-2.00	0.00
KOP: 660' F	FNL & 10' FWL (S	ec 27)							
7,800.0	4.67	89.15	7,559.7	1,718.4	-145.4	264.5	9.99	9.99	0.00
7,850.0	9.67	89.15	7,609.3	1,718.5	-139.2	270.6	9.99	9.99	0.00
7,900.0	14.67	89.15	7,658.2	1,718.7	-128.6	280.9	9.99	9.99	0.00
7,950.0	19.67	89.15	7,705.9	1,718.9	-113.9	295.3	9.99	9.99	0.00
8,000.0	24.66	89.15	7,752.2	1,719.2	-95.0	313.7	9.99	9.99	0.00
8,050.0	29.66	89.15	7,796.7	1,719.5	-72.2	335.9	9.99	9.99	0.00
8,078.9	32.55	89.15	7,821.4	1,719.7	-57.3	350.4	9.99	9.99	0.00
	NL & 100' FWL (S	•							
8,100.0	34.66	89.15	7,839.0	1,719.9	-45.6	361.9	9.99	9.99	0.00
8,150.0	39.66	89.15	7,878.8	1,720.4	-15.4	391.3	9.99	9.99	0.00
8,200.0	44.65	89.15	7,915.9	1,720.9	18.1	424.0	9.99	9.99	0.00
8,250.0	49.65	89.15	7,949.9	1,721.4	54.8	459.7	9.99	9.99	0.00
8,300.0	54.65	89.15	7,980.5	1,722.0	94.2	498.2	9.99	9.99	0.00
8,350.0	59.65	89.15	8,007.7	1,722.6	136.2	539.2	9.99	9.99	0.00
8,400.0	64.64	89.15	8,031.0	1,723.3	180.4	582.3	9.99	9.99	0.00
8,450.0	69.64	89.15	8,050.4	1,723.9	226.5	627.2	9.99	9.99	0.00
8,500.0	74.64	89.15	8,065.8	1,724.7	274.0	673.6	9.99	9.99	0.00
8,550.0	79.64	89.15	8,076.9	1,725.4	322.8	721.1	9.99	9.99	0.00
8,600.0	84.63	89.15	8,083.7	1,726.1	372.3	769.4	9.99	9.99	0.00
8,636.8	88.31	89.15	8,086.0	1,726.7	409.0	805.2	9.99	9.99	0.00
8,653.5	88.31	89.15	8,086.5	1,726.9	425.7	821.5	0.00	0.00	0.00
	IL & 583' FWL (Se		-,	.,. ====					
8,700.0	88.31	89.15	8,087.9	1,727.6	472.2	866.8	0.00	0.00	0.00
8,800.0	88.31	89.15	8,090.8	1,729.1	572.1	964.2	0.00	0.00	0.00

Hobbs Database:

Company: Mewbourne Oil Company Project:

Eddy County, New Mexico NAD 83 Site: Woodford 27/26 Fed Com #611H

Well: Sec 27, T18S, R28E

BHL: 660' FNL & 2507' FWL (Sec 26) Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Woodford 27/26 Fed Com #611H

Original Well @ 3587.0usft Original Well @ 3587.0usft

Grid

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,900.0 9,000.0	88.31 88.31	89.15 89.15	8,093.7 8,096.7	1,730.6 1,732.0	672.0 772.0	1,061.7 1,159.2	0.00 0.00	0.00 0.00	0.00 0.00
9,100.0	88.31	89.15	8,099.6	1,733.5	871.9	1,256.7	0.00	0.00	0.00
9,200.0	88.31	89.15	8,102.6	1,735.0	971.9	1,354.1	0.00	0.00	0.00
9,300.0 9,400.0	88.31	89.15 89.15	8,105.5	1,736.5	1,071.8	1,451.6	0.00 0.00	0.00 0.00	0.00 0.00
9,500.0	88.31 88.31	89.15	8,108.5 8,111.4	1,738.0 1,739.5	1,171.8 1,271.7	1,549.1 1,646.5	0.00	0.00	0.00
9,600.0	88.31	89.15	8,114.3	1,740.9	1,371.7	1,744.0	0.00	0.00	0.00
9,700.0	88.31	89.15	8,117.3	1,742.4	1,471.6	1,841.5	0.00	0.00	0.00
9,800.0	88.31	89.15	8,120.2	1,743.9	1,571.6	1,938.9	0.00	0.00	0.00
9,900.0	88.31	89.15	8,123.2	1,745.4	1,671.5	2,036.4	0.00	0.00	0.00
10,000.0	88.31	89.15	8,126.1	1,746.9	1,771.5	2,133.9	0.00	0.00	0.00
10,100.0	88.31	89.15	8,129.1	1,748.4	1,871.4	2,231.3	0.00	0.00	0.00
10,200.0	88.31	89.15	8,132.0	1,749.8	1,971.3	2,328.8	0.00	0.00	0.00
10,300.0	88.31	89.15	8,134.9	1,751.3	2,071.3	2,426.3	0.00	0.00	0.00
10,400.0	88.31	89.15	8,137.9	1,752.8	2,171.2	2,523.8	0.00	0.00	0.00
10,500.0	88.31	89.15	8,140.8	1,754.3	2,271.2	2,621.2	0.00	0.00	0.00
10,600.0	88.31	89.15	8,143.8	1,755.8	2,371.1	2,718.7	0.00	0.00	0.00
10,700.0	88.31	89.15	8,146.7	1,757.3	2,471.1	2,816.2	0.00	0.00	0.00
10,800.0	88.31	89.15	8,149.7	1,758.7	2,571.0	2,913.6	0.00	0.00	0.00
10,900.0	88.31	89.15 80.15	8,152.6 8,155.6	1,760.2	2,671.0	3,011.1	0.00	0.00	0.00
11,000.0	88.31	89.15	8,155.6	1,761.7	2,770.9	3,108.6	0.00	0.00	0.00
11,100.0	88.31	89.15	8,158.5	1,763.2	2,870.9	3,206.0	0.00	0.00	0.00
11,200.0	88.31	89.15	8,161.4	1,764.7	2,970.8	3,303.5	0.00	0.00	0.00
11,300.0	88.31	89.15	8,164.4	1,766.2	3,070.7	3,401.0	0.00	0.00	0.00
11,400.0	88.31	89.15	8,167.3	1,767.6	3,170.7	3,498.4	0.00	0.00	0.00
11,500.0	88.31	89.15	8,170.3	1,769.1	3,270.6	3,595.9	0.00	0.00	0.00
11,600.0	88.31	89.15	8,173.2	1,770.6	3,370.6	3,693.4	0.00	0.00	0.00
11,700.0	88.31	89.15	8,176.2	1,772.1	3,470.5	3,790.9	0.00	0.00	0.00
11,800.0	88.31	89.15	8,179.1	1,773.6	3,570.5	3,888.3	0.00	0.00	0.00
11,900.0	88.31	89.15	8,182.0	1,775.1	3,670.4	3,985.8	0.00	0.00	0.00
12,000.0	88.31	89.15	8,185.0	1,776.5	3,770.4	4,083.3	0.00	0.00	0.00
12,100.0	88.31	89.15	8,187.9	1,778.0	3,870.3	4,180.7	0.00	0.00	0.00
12,200.0	88.31	89.15	8,190.9	1,779.5	3,970.3	4,278.2	0.00	0.00	0.00
12,300.0 12,400.0	88.31 88.31	89.15 89.15	8,193.8 8,196.8	1,781.0 1,782.5	4,070.2	4,375.7 4,473.1	0.00 0.00	0.00	0.00
12,400.0	88.31 88.31	89.15 89.15	8,196.8 8,199.7	1,782.5 1,784.0	4,170.1 4,270.1	4,473.1 4,570.6	0.00	0.00 0.00	0.00 0.00
12,600.0	88.31	89.15	8,202.6	1,785.4	4,370.0	4,668.1	0.00	0.00	0.00
12,700.0	88.31	89.15	8,205.6	1,786.9	4,470.0	4,765.5	0.00	0.00	0.00
12,800.0	88.31	89.15	8,208.5	1,788.4	4,569.9	4,863.0	0.00	0.00	0.00
12,900.0	88.31	89.15	8,211.5	1,789.9	4,669.9	4,960.5	0.00	0.00	0.00
13,000.0	88.31	89.15	8,214.4	1,791.4	4,769.8	5,057.9	0.00	0.00	0.00
13,100.0	88.31	89.15	8,217.4	1,792.9	4,869.8	5,155.4	0.00	0.00	0.00
13,200.0	88.31	89.15	8,220.3	1,794.3	4,969.7	5,252.9	0.00	0.00	0.00
13,300.0	88.31	89.15	8,223.2	1,795.8	5,069.7	5,350.4	0.00	0.00	0.00
13,400.0	88.31	89.15	8,226.2	1,797.3	5,169.6	5,447.8	0.00	0.00	0.00
13,500.0	88.31	89.15	8,229.1	1,798.8	5,269.5	5,545.3	0.00	0.00	0.00
13,600.0	88.31	89.15	8,232.1	1,800.3	5,369.5	5,642.8	0.00	0.00	0.00
13,700.0	88.31	89.15	8,235.0	1,801.8	5,469.4	5,740.2	0.00	0.00	0.00
13,800.0	88.31	89.15	8,238.0	1,803.2	5,569.4	5,837.7	0.00	0.00	0.00
13,900.0	88.31	89.15	8,240.9	1,804.7	5,669.3	5,935.2	0.00	0.00	0.00
14,000.0	88.31	89.15	8,243.8	1,806.2	5,769.3	6,032.6	0.00	0.00	0.00
14,100.0	88.31	89.15	8,246.8	1,807.7	5,869.2	6,130.1	0.00	0.00	0.00
14,200.0	88.31	89.15	8,249.7	1,809.2	5,969.2	6,227.6	0.00	0.00	0.00

Hobbs Database: Company:

Project:

Site:

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Woodford 27/26 Fed Com #611H

Well: Sec 27, T18S, R28E

BHL: 660' FNL & 2507' FWL (Sec 26) Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Woodford 27/26 Fed Com #611H

Original Well @ 3587.0usft Original Well @ 3587.0usft

Grid

nned Survey			We die al			M. divel	B I	D 114	-
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,300.0	88.31	89.15	8,252.7	1,810.7	6,069.1	6,325.0	0.00	0.00	0.00
14,400.0	88.31	89.15	8,255.6	1,812.1	6,169.1	6,422.5	0.00	0.00	0.00
14,500.0	88.31	89.15	8,258.6	1,813.6	6,269.0	6,520.0	0.00	0.00	0.00
14,600.0	88.31	89.15	8,261.5	1,815.1	6,369.0	6,617.5	0.00	0.00	0.00
14,700.0	88.31	89.15	8,264.4	1,816.6	6,468.9	6,714.9	0.00	0.00	0.00
14,800.0	88.31	89.15	8,267.4	1,818.1	6,568.8	6,812.4	0.00	0.00	0.00
14,900.0	88.31	89.15	8,270.3	1,819.6	6,668.8	6,909.9	0.00	0.00	0.00
15,000.0	88.31	89.15	8,273.3	1,821.0	6,768.7	7,007.3	0.00	0.00	0.00
15,100.0	88.31	89.15	8,276.2	1,822.5	6,868.7	7,104.8	0.00	0.00	0.00
15,200.0	88.31	89.15	8,279.2	1,824.0	6,968.6	7,202.3	0.00	0.00	0.00
15,300.0	88.31	89.15	8,282.1	1,825.5	7,068.6	7,299.7	0.00	0.00	0.00
15,400.0	88.31	89.15	8,285.0	1,827.0	7,168.5	7,397.2	0.00	0.00	0.00
15,500.0	88.31	89.15	8,288.0	1,828.5	7,268.5	7,494.7	0.00	0.00	0.00
15,600.0	88.31	89.15	8,290.9	1,829.9	7,368.4	7,592.1	0.00	0.00	0.00
15,700.0	88.31	89.15	8,293.9	1,831.4	7,468.4	7,689.6	0.00	0.00	0.00
15,772.1	88.31	89.15	8,296.0	1,832.5	7,540.4	7,759.9	0.00	0.00	0.00
BHL: 660' FI	NL & 2507' FWL ((Sec 26)							

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 2380' FNL & 155' F - plan hits target cer - Point		0.00	0.0	0.0	0.0	625,510.00	590,995.50	32.7194632	-104.1718666
KOP: 660' FNL & 10' FW - plan hits target cer - Point		0.00	7,513.0	1,718.4	-147.3	627,228.40	590,848.20	32.7241871	-104.1723371
FTP: 660' FNL & 100' F\ - plan hits target cer - Point		0.00	7,821.4	1,719.7	-57.3	627,229.70	590,938.20	32.7241903	-104.1720444
LP: 660' FNL & 583' FW - plan hits target cer - Point		0.00	8,086.5	1,726.9	425.7	627,236.91	591,421.20	32.7242081	-104.1704738
BHL: 660' FNL & 2507' F - plan hits target cer - Point		0.00	8,296.0	1,832.5	7,540.4	627,342.50	598,535.90	32.7244662	-104.1473381

Page 5

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. Section 1 — Plan Description Effective May 25, 2021								
I. Operator: Mev	wbourne (Oil Co.	OGRID:	14744	D	oate: 5/2	2/24	
II. Type: 🗶 Original [II. Type: ★ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.							
If Other, please describe	e:							
III. Well(s): Provide the be recompleted from a s					wells propos	ed to be dri	illed or proposed to	
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		Anticipated Anticipat Gas MCF/D Produced W BBL/D		
WOODFORD 27/26 STATE COM 6	11H	E 27 18S 28E	2380' FNL x 155' F	wL 2000			3500	
IV. Central Delivery PV. Anticipated Schedu proposed to be recomple	l le: Provide the	following informa		v or recompleted v			7.9(D)(1) NMAC] osed to be drilled or	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		itial Flow ack Date	First Production Date	
WOODFORD 27/26 STATE COM 6	11H	7/2/24	8/2/24	9/2/24		9/17/24	9/17/24	
VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.								

Page 6

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗴 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF			
X. Natural Gas Gathering System (NGGS):						

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100% of the anticipated n	atural gas
production volume from the well prior to the date of first production.	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion	on, of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new	well(s).

esponse to the increased line pressu	response to	production in	plan to manage	perator's	☐ Attach O

XIV.	Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided	in
Section	2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information	or
for w	ch confidentiality is asserted and the basis for such assertion.	

Released to Imaging: 7/17/2024 3:11:18 PM

Page 7

Section 3 - Certifications <u>Effective May</u> 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🖾 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; (b) compression on lease;

- (c)
- liquids removal on lease: (d)
- reinjection for underground storage; (e)
- reinjection for temporary storage; **(f)**
- reinjection for enhanced oil recovery; **(g)**
- fuel cell production; and (h)
- other alternative beneficial uses approved by the division. (i)

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become (a) unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Released to Imaging: 7/17/2024 3:11:18 PM

Page 8

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Bradley Bishop
Printed Name:	BRADLEY BISHOP
Title:	REGULATORY MANAGER
E-mail Address:	BBISHOP@MEWBOURNE.COM
Date:	5/2/24
Phone:	575-393-5905
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of Ap	proval:

Mewbourne Oil Company

Natural Gas Management Plan – Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.