Received North 12024 2:54:41 PM Type of Well: CONVENTIONAL GAS

WĖLL

Allottee or Tribe Name:

Page 1 of 44

Lease Number: NMLC0068431

Unit or CA Name: POKER LAKE UNIT

Unit or CA Number: NMNM71016X

LLC

Notice of Intent

Sundry ID: 2784385

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 04/10/2024 Time Sundry Submitted: 02:40

Date proposed operation will begin: 04/30/2024

Procedure Description: XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD. Changes to include FTP, LTP, BHL, Casing sizes, Cement, Proposed total Depth, and formation (Pool). FROM: TO: FTP: 387' FNL & 999' FEL OF SECTION 21-T24S-R30E 100' FNL & 998' FEL OF SECTION 21-T24S-R30E LTP: 330' FNL & 976' FEL OF SECTION 33-T23S-R30E 2538' FNL & 994' FEL OF SECTION 33-T24S-R30E BHL: 201' FNL & 975' FEL OF SECTION 33-T23S-R30E 2628' FNL & 995' FEL OF SECTION 33-T24S-R30E The proposed total depth is changing from 33005' MD; 11219' TVD (Wolfcamp) to 23291' MD; 10359' TVD (Bone Spring 3 Shale). See attached Drilling Plan for updated cement and casing program. A saturated salt brine will be utilized while drilling through the salt formations. Attachments: C-102, Drilling Plan, Directional Plan, MBS

NOI Attachments

Procedure Description

PLU_21_DTD_127H_Sundry_Documents_20240726150331.pdf

Received by OCD: 9/4/2024 2:54:41 PM

US Well Number: 3001553222

Operator: XTO PERMIAN OPERATING LLC

Conditions of Approval

Additional

POKER_LAKE_UNIT_21_DTD_127H_COA_20240829085729.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: TERRA SEBASTIAN Signed on: JUL 26, 2024 03:03 PM

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Advisor

Street Address: 6401 HOLIDAY HILL ROAD SUITE 200

City: MIDLAND State: TX

Phone: (432) 999-3107

Email address: TERRA.B.SEBASTIAN@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 09/04/2024

Signature: Chris Walls

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 2021

5. Lease Serial No.	NMLC068431

			'	WILC000431
Do not use this t	OTICES AND REPORTS ON Worm for proposals to drill or to Use Form 3160-3 (APD) for suc	o re-enter an	6. If Indian, Allottee of	or Tribe Name
SUBMIT IN	TRIPLICATE - Other instructions on pag	ne 2		ement, Name and/or No.
1. Type of Well		· ·	POKER LAKE UNI	
Oil Well Gas W	Vell Other		8. Well Name and No	POKER LAKE UNIT 21 DTD/127H
2. Name of Operator XTO PERMIAN	OPERATING LLC		9. API Well No. 3001	553222
3a. Address 6401 HOLIDAY HILL R		(include area code)	10. Field and Pool or	
O TOT FIGURE THE TE	(432) 683-22	77	PURPLE SAGE/W	/OLFCAMP
4. Location of Well (Footage, Sec., T., R	.,M., or Survey Description)		11. Country or Parish	, State
SEC 16/T24S/R30E/NMP			EDDY/NM	
12. CHE	CK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE OF	NOTICE, REPORT OR OT	HER DATA
TYPE OF SUBMISSION		TYPE (OF ACTION	
✓ Notice of Intent	Acidize Deep	pen	Production (Start/Resume)	Water Shut-Off
1 Notice of ment	Alter Casing Hydr	raulic Fracturing	Reclamation	Well Integrity
Subsequent Report		Construction	Recomplete	Other
		and Abandon	Temporarily Abandon	
Final Abandonment Notice	Convert to Injection Plug peration: Clearly state all pertinent details,	Back	Water Disposal	
completed. Final Abandonment No is ready for final inspection.) XTO Permian Operating, LLC.	ons. If the operation results in a multiple contices must be filed only after all requirement respectfully requests approval to make ent, Proposed total Depth, and formation	the following change	on, have been completed and	the operator has detennined that the site
FTP: 387' FNL & 999' FEL OF LTP: 330' FNL & 976' FEL OF BHL: 201' FNL & 975' FEL OF	SECTION 21-T24S-R30E 100' FNL & 9 SECTION 33-T23S-R30E 2538' FNL & SECTION 33-T23S-R30E 2628' FNL & anging from 33005 MD; 11219 TVD (W	994' FEL OF SECTI 995' FEL OF SECTI	ON 33-T24S-R30E ION 33-T24S-R30E	nα 3 Shale).
The proposed total departs on	anging noin occoonie, 11210 175 (17	ondamp) to 2020 i w	B, 10000 1 VB (Bolle Opin	ig o chale _j .
See attached Drilling Plan for	updated cement and casing program.			
Continued on page 3 additiona				
	true and correct. Name (Printed/Typed)	Regulatory A	dvicor	
TERRA SEBASTIAN / Ph: (432) 99	9-3107	Title Tegulatory At	UVISOI	
Signature (Electronic Submissic	n)	Date	07/26/2	0024
	THE SPACE FOR FED	ERAL OR STAT	E OFICE USE	
Approved by				
CHRISTOPHER WALLS / Ph: (575	5) 234-2234 / Approved	Petroleu Title	m Engineer	09/04/2024 Date
	ned. Approval of this notice does not warrar equitable title to those rights in the subject leduct operations thereon.	nt or		

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

A saturated salt brine will be utilized while drilling through the salt formations.

Attachments: C-102, Drilling Plan, Directional Plan, MBS

Location of Well

0. SHL: SESE / 237 FSL / 157 FEL / TWSP: 24S / RANGE: 30E / SECTION: 16 / LAT: 32.211148 / LONG: -103.878091 (TVD: 0 feet, MD: 0 feet)

PPP: NENE / 387 FNL / 999 FEL / TWSP: 24S / RANGE: 30E / SECTION: 21 / LAT: 32.209429 / LONG: -103.880337 (TVD: 11219 feet, MD: 11700 feet)

BHL: NENE / 201 FNL / 975 FEL / TWSP: 23S / RANGE: 30E / SECTION: 33 / LAT: 32.268078 / LONG: -103.880402 (TVD: 11219 feet, MD: 33005 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO

LEASE NO.: NMLC068431

LOCATION: Sec. 16, T.24 S, R 30 E

COUNTY: | Eddy Courty, New Mexico -

WELL NAME & NO.: PLU 21 DTD 127H SURFACE HOLE FOOTAGE: 237'/S & 157'/E BOTTOM HOLE FOOTAGE: 2628'/N & 995'/E

Changes approved through engineering via **Sundry 2784385**_ on _8-29-2024_. Any previous COAs not addressed within the updated COAs still apply.

COA

H ₂ S	•	No	0	Yes
Potash /	None	Secretary	□ R-111-Q	Open Annulus
WIPP	Choose	e an option (including bla	nk option.)	□ WIPP
Cave / Karst	• Low	Medium	் High	Critical
Wellhead	Conventional	• Multibowl	□ Both	Diverter
Cementing	Primary Squeeze	Cont. Squeeze	EchoMeter	DV Tool
Special Req	Capitan Reef	Water Disposal	COM	Unit
Waste Prev.	 Self-Certification 	ି Waste Min Plan	 APDSubmitted p 	rior to 06/10/2024
Additional	Flex Hose	Casing Clearance	Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	Fluid-Filled	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

Operator shall have a double ram and a pipe ram with a 10M pressure rating each.

B. CASING

- 1. The 9-5/8 inch surface casing shall be set at approximately 930 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with

- surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 pounds compressive strength</u>, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.
 - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6265'
 - b. **Second stage:** Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Operator has proposed to pump down Surface X Intermediate 1 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Surface casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

If cement does not reach surface, the next casing string must come to surface.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable.

Casing Clearance

String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for 1st Intermediate casing tieback. Operator may contact approving engineer to discuss changing casing set depth or grade to meet clearance requirement.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

- open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

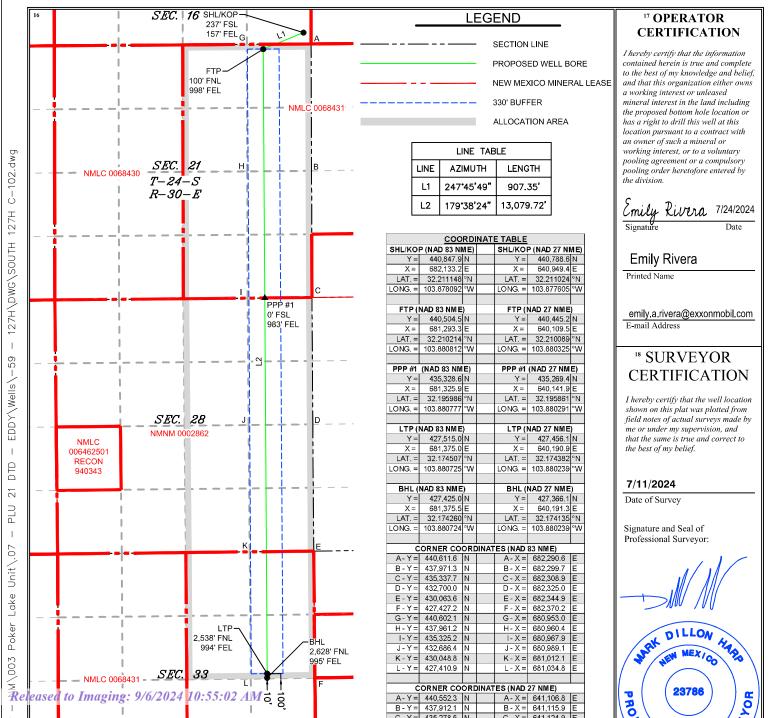
All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approved by Zota Stevens on 8/29/2024 575-234-5998 / zstevens@blm.gov

WELL LOCATION AND ACREAGE DEDICATION PLAT

	VV 1_1	EL LOCATION AND	ACICLAGE DEDICATION LEAT	
¹ API Number		² Pool Code	³ Pool Name	
30-015-	53222	97798	WILDCAT G-06 S243026M; BC	NE SPRING
4 Property Code		⁵ P	roperty Name	⁶ Well Number
333571		POKER L	AKE UNIT 21 DTD	127H
⁷ OGRID No.		⁸ O	perator Name	⁹ Elevation
373075		XTO PERMIA	AN OPERATING, LLC.	3,395'


"Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Р	16	24S	30E		237	SOUTH	157	EAST	EDDY

"Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
н	33	24S	30E		2,628	NORTH	995	EAST	EDDY
12 Dedicated Acres	¹³ Joint or	Infill 14C	onsolidation (Code 15 Oro	ler No.		•		
800.00									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten	t X	As Dril	led											
API #														
-	rator Nai D PERM	^{me:} IAIN OPI	ERATIN	G, LL	C.	Prope POKI	-			IT 21 I	DTD)		Well Number 127H
		···-				,								
UL UL	Off Point Section	(KOP)	Range	Lot	Feet	F	rom N	I/S	Feet		From E	E/W	County	
Latit	ude				Longitu	ıde							NAD	
First	Take Poir	nt (FTP)												
UL A	Section 21	Township 24S	Range 30E	Lot	Feet 100	N	rom N NOR7		Feet 998		From E		County EDDY	
132.	ude 210214	1			Longitu -103	ude .8807	777						NAD 83	
Last T	Гake Poin	+ (I TP)												
UL	Section	Township	Range	Lot	Feet	From		Feet		From E/		Count		
H Latit	33 ^{ude} 174507	24S 7	30E		2,538 Longitu	NOR ^{Ide} .8807		994		EAST		EDD' NAD 33	Y	
JZ.	174307	<u> </u>			-103	.0007	23					<u> </u>		
								Г		i				
is thi	s well the	defining v	vell for th	e Horiz	zontal Sį	pacing (Unit?	L						
Is thi	s well an	infill well?												
	ll is yes p ng Unit.	lease provi	ide API if	availab	ole, Opei	rator Na	ame :	and v	vell nu	ımber f	or De	efinin	ig well fo	r Horizontal
API #	ļ													
Оре	rator Nai	me:	1			Prope	erty N	ame	:					Well Number
						<u> </u>								V7.06/20/2019

KZ 06/29/2018

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.
POKER LAKE UNIT 21 DTD 127H
Projected TD: 23291' MD / 10359' TVD
SHL: 237' FSL & 157' FEL , Section 16, T24S, R30E
BHL: 2628' FNL & 995' FEL , Section 33, T23S, R30E
EDDY County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	1042'	Water
Top of Salt	1445'	Water
Base of Salt	3638'	Water
Delaware	3832'	Water
Brushy Canyon	6378'	Water/Oil/Gas
Bone Spring	7702'	Water
Avalon	8395'	Water/Oil/Gas
1st Bone Spring	8411'	Water/Oil/Gas
2nd Bone Spring	8996'	Water/Oil/Gas
3rd Bone Spring	9822'	Water/Oil/Gas
Target/Land Curve	10359'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 1420' (25' above the salt) and circulating cement back to surface. The salt will be isolated by setting 9.625 inch casing at 3738' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 7.625 inch casing at 9443' and cementing to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 23291 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 9143 feet) per Potash regulations.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 1420'	13.375	54.5	J-55	BTC	New	3.09	1.82	11.75
12.25	0' – 3738'	9.625	40	J-55	втс	New	1.76	3.04	4.21
8.75	0' – 3838'	7.625	29.7	RY P-110	Flush Joint	New	2.94	3.05	1.99
8.75	3838' – 9443'	7.625	29.7	HC L-80	Flush Joint	New	2.14	3.60	2.44
6.75	0' – 9343'	5.5	20	RY P-110	Semi-Premium	New	1.05	2.24	2.10
6.75	9343' - 23291'	5.5	20	RY P-110	Semi-Flush	New	1.05	2.02	5.42

- · Production casing meets the clearance requirements as tapered string crosses over before encountering the intermediate shoe, per Onshore Order 2.3.B.1
- · XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and intermediate 1 casing per this Sundry
- \cdot 9.625 Collapse analyzed using 50% evacuation based on regional experience.
- 7.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35

Wellhead:

Permanent Wellhead - Multibowl System

A. Starting Head: 20" 10M top flange x 13-3/8" bottom

B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top

lange Wellhead will be installed by manufacturer's representatives.

Manufacturer will monitor welding process to ensure appropriate temperature of seal.

^{***} Groundwater depth 40' (per NM State Engineers Office).

4. Cement Program

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 1420'

Optional Lead: 1160 sxs EconoCem-HLTRRC (mixed at 12.8 ppg, 1.33 ft3/sx, 10.13 gal/sx water)

Tail: 310 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 3738'

Lead: 780 sxs Class C (mixed at 14.8 ppg, 2.06 ft3/sx, 10.13 gal/sx water)

Tail: 60 sxs Class C + 2% CaCl (mixed at 15.6 ppg, 2.06 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9443'

st Stage

Optional Lead: 140 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: 3438

Tail: 320 sxs Class C (mixed at 14.8 ppg, 1.27 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 6378

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage - bradenhead contingency

Tail: 140 sxs Class C (mixed at 14.8 ppg, 2.77 ft3/sx, 6.39 gal/sx water)

Top of Cement: 3438

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6378') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per wellhead provider procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 23291'

Lead: 20 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 9143 feet
Tail: 850 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 9803 feet
Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the suface casing, the blow out preventer equipment (BOP) will consist of a 5M Hydril and a 10M Double Ram BOP.

XTO will use a Multi-Bowl system which is attached.

All BOP testing will be done by an independent service company. Annular pressure tests will be conducted to at least 50% of the rated working pressure. When nippling up on the 13.375, 10M bradenhead and flange, the BOP test will be limited to 10000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 10000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 10M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each week

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. We will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss	Additional Comments
IIVIEIVVIE	TIOIC OIZC	waa rypc	(ppg)	(sec/qt)	(cc)	Fresh water or
0' - 1420'	17.5	FW/Native	8.4-8.9	35-40	NC	native water Fully saturated
1420' - 3832'	12.25	Saturated Salt	10.5 - 11	30-32	NC	salt across salado / salt
3832' to 9443'	8.75	BDE / OBM	9- 9.5	30-32	NC	N/A
9443' to 23291'	6.75	ОВМ	10.5-11	50-60	NC - 20	N/A

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt solution. Saturated Salt mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system."

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Pr

Open hole logging will not be do

9. Abnormal Pressures and Tempe None Anticipated. BHT of 170 t occurrences. Should these circ necessary steps to ensure safe a serious problem in this area a drilling fluid. The maximum anti

Saturated Salt

10. Anticipated Starting Date and I Anticipated spud date will be af

Semi-major Semi-minor Semi-minor Tool

Well Plan Report - Poker Lake Unit 21 DTD South 127H

3/20/24, 11:22 AM

Well Plan Report

//easured Depth:	23291.00 ft
VD RKB:	10359.00 ft
ocation.	
Cartographic Reference System:	New Mexico East - NAD 27
Northing:	440788.60 ft
Easting:	640949.40 ft
RKB:	3427.00 ft
Ground Level:	3395.00 ft
North Reference:	Grid
Convergence Angle:	0.24 Deg

	Magnitude
	Vertical
outh 127H	Lateral
Poker Lake Unit 21 DTD South 127F	TVD Highside
Position Uncertainty	Measured

	Azimuth Used	(,)	0.000 MWD+IFR1+MS	112.264 MWD+IFR1+MS	122.711 MWD+IFR1+MS	125.469 MWD+IFR1+MS	126.713 MWD+IFR1+MS	127.419 MWD+IFR1+MS	127.873 MWD+IFR1+MS	128.190 MWD+IFR1+MS	128.423 MWD+IFR1+MS	128.602 MWD+IFR1+MS	128.744 MWD+IFR1+MS	128.859 MWD+IFR1+MS	128.954 MWD+IFR1+MS	129.034 MWD+IFR1+MS	129.102 MWD+IFR1+MS	129.161 MWD+IFR1+MS	129.212 MWD+IFR1+MS	129.257 MWD+IFR1+MS	129.297 MWD+IFR1+MS	129.333 MWD+IFR1+MS	129.365 MWD+IFR1+MS	129.394 MWD+IFR1+MS	129.420 MWD+IFR1+MS	129.444 MWD+IFR1+MS	129.466 MWD+IFR1+MS	129,486 MWD+IFR1+MS	129.505 MWD+IFR1+MS	129.522 MWD+IFR1+MS	129.538 MWD+IFR1+MS	129.552 MWD+IFR1+MS	129.566 MWD+IFR1+MS
	Error	(#)	0.000	0.220	0.627	0.986	1.344	1.701	2.059	2.417	2.775	3.133	3.491	3.849	4.207	4.565	4.924	5.282	5.640	5,999	6.357	6.715	7.074	7.432	7.791	8.149	8.507	8,866	9.224	9.583	9.941	10.299	10.658
	Error	(ff.)	0.000	0.751	1.259	1.698	2.108	2.503	2.888	3.267	3.642	4.014	4.384	4.752	5.119	5.484	5.849	6.213	6.577	6.939	7.302	7.664	8.026	8.387	8.748	9.109	9.470	9.831	10.191	10.552	10.912	11.272	11.632
ort	of Bias	(#)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	Error Bias	(ft) (ft)	0.000 0.000	2.300 0.000	2.310 0.000	2.325 0.000	2.347 0.000	2.374 0.000	2.407 0.000	2.444 0.000	2.486 0.000	2.532 0.000	2.582 0.000	2.635 0.000	2.692 0.000	2.752 0.000	2.814 0.000	2.879 0.000	2.947 0.000	3.017 0.000	3.088 0.000	3.162 0.000	3.237 0.000	3.315 0.000	3.393 0.000	3.474 0.000	3.555 0.000	3.639 0.000	3.723 0.000	3.809 0.000	3.896 0.000	3.985 0.000	4.075 0.000
	Bias	(#)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Error	(£	0.000	0.350	0.861	1.271	1.658	2.034	2.405	2.773	3.138	3.502	3.865	4.228	4.589	4.950	5.311	5.672	6.032	6.392	6.752	7.112	7.471	7.831	8.190	8.550	8.909	9.268	9.627	986	10.345	10.705	11.063
	Bias	(£	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
	Error	(0.000	0.700	1.112	1.497	1.871	2.240	2.607	2.971	3.334	3.696	4.058	4.419	4.779	5.140	5.500	5.860	6.219	6.579	6.938	7.298	7.657	8.016	8.375	8.734	9.093	9.452	9.811	10.170	10.529	10.888	11.247
	RKB	(#)	0.000	100.000	200.000	300.000	400.000	200.000	000'009	700.000	800.000	000'006	1000.000	1100.000	1200.000	1300.000	1400.000	1500.000	1600.000	1700.000	1800.000	1900.000	2000.000	2100.000	2200.000	2300.000	2400.000	2500,000	2600.000	2700.000	2800.000	2900.000	3000.000
	Azimuth	©	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Inclination A	()	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0000	0.000
3/20/24, 11:22 AM	Depth	(#)	0.000	100.000	200.000	300.000	400.000	200.000	000'009	700.000	800.000	000.006	1000.000	1100.000	1200.000	1300.000	1400.000	1500.000	1600.000	1700.000	1800.000	1900.000	2000.000	2100.000	2200.000	2300,000	2400.000	2500,000	2600.000	2700.000	2800.000	2900.000	3000.000
	eleas	ed t	o In	ıagi	ng:	9/6/.	2024	4 10	:55:	02 A	1 <i>M</i>																						

	129.579 MWD+IFR1+MS	129.591 MWD+IFR1+MS	129.603 MWD+IFR1+MS	129.613 MWD+IFR1+MS	129.623 MWD+IFR1+MS	129.633 MWD+IFR1+MS	129.642 MWD+IFR1+MS	131.335 MWD+IFR1+MS	-39.140 MWD+IFR1+MS	-32.704 MWD+IFR1+MS	-28.475 MWD+IFR1+MS	-25.601 MWD+IFR1+MS	-23.552 MWD+IFR1+MS	-22.022 MWD+IFR1+MS	-20.831 MWD+IFR1+MS	-20.836 MWD+IFR1+MS	-20.823 MWD+IFR1+MS	-20.659 MWD+IFR1+MS	-20.455 MWD+IFR1+MS	-20.234 MWD+IFR1+MS	-19.994 MWD+IFR1+MS	-19.735 MWD+IFR1+MS	-19.453 MWD+IFR1+MS	-19.147 MWD+IFR1+MS	-18.813 MWD+IFR1+MS	-18.448 MWD+IFR1+MS	-18.050 MWD+IFR1+MS	-17.612 MWD+IFR1+MS	-17.131 MWD+IFR1+MS	-16.601 MWD+IFR1+MS	-16.015 MWD+IFR1+MS	-15.830 MWD+IFR1+MS	-15.627 MWD+IFR1+MS
	11.016	11.375	11.733	12.092	12.450	12.809	13.167	13.548	13.991	14.386	14.757	15.116	15.468	15.817	16.166	16.202	16.511	16.869	17.233	17.601	17.973	18.349	18.729	19.112	19.498	19.887	20.279	20.674	21.070	21.470	21.871	22.067	22.267
	11.992	12.352	12.712	13.071	13.431	13.790	14.150	14.500	15.074	15.670	16.265	16.849	17.416	17.964	18.491	18.523	18.766	19.046	19.332	19.623	19.918	20.219	20.523	20.832	21.144	21.461	21.781	22.104	22.431	22.762	23.096	23.258	23.429
ort	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	4.166 0.000	4.258 0.000	4.352 0.000	4.447 0.000	4.543 0.000	4.641 0.000	4.740 0.000	4.841 0.000	4.946 0.000	2.059 0.000	5.186 0.000	5.330 0.000	5.495 0.000	5.683 0.000	5.898 0.000	5.903 0.000	000'0 600'9	6.136 0.000	6.269 0.000	6.407 0.000	6.549 0.000	000'0 969'9	6.848 0.000	7.003 0.000	7.163 0.000	7.326 0.000	7.494 0.000	7.665 0.000	7.839 0.000	8.017 0.000	8.197 0.000	8.286 0.000	8.382 0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	11.422	11.781	12.140	12.499	12.858	13.217	13.576	13.742	14.086	14.431	14.776	15.122	15.469	15.817	16.167	16.204	16.512	16.871	17.235	17.603	17.976	18.353	18.733	19.117	19.504	19.894	20.287	20.683	21.082	21.482	21.886	22.082	22.283
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	11.606	11 965	12.323	12.682	13.041	13.400	13.758	14 302	14.928	15.503	16.029	16.507	16 940	17 328	17.675	17 679	17 938	18.240	18.548	18.862	19 181	19.506	19 835	20.169	20.508	20.851	21.198	21.548	21.903	22.261	22.622	22.798	23.106
	3100.000	3200.000	3300.000	3400.000	3500.000	3600.000	3700.000	3799.961	3899.684	3998.935	4097.477	4195.078	4291 506	4386 533	4479 933	4489 877	4572.257	4664 569	4756.882	4849.195	4941 508	5033.821	5126 133	5218 446	5310.759	5403.072	5495.385	5587,697	5680.010	5772.323	5864 636	5910.123	5957.185
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	247.762	247.762	247.762	247.762	247 762	247 762	247 762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762	247.762
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.789	5.578	8.367	11.156	13.945	16.734	19.523	22.312	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	22.612	21.198
3/20/24, 11:22 AM	3100.000	3200,000	3300,000	3400.000	3500,000	3600,000	3700.000	3800.000	3900.000	4000.000	4100.000	4200,000	4300.000	4400.000	4500.000	4510.760	4600.000	4700.000	4800.000	4900.000	2000.000	5100,000	5200,000	5300,000	5400.000	5500,000	2600.000	5700,000	5800.000	2900,000	000'0009	6049.275	6100.000
	eleas	ed t	o In	ıagi	ng:	9/6/.	2024	4 10	:55:	02 A	1 <i>M</i>																						

	-14.920 MWD+IFR1+MS	-14.134 MWD+IFR1+MS	-13.572 MWD+IFR1+MS	-13.170 MWD+IFR1+MS	-12.879 MWD+IFR1+MS	-12.665 MWD+IFR1+MS	-12.502 MWD+IFR1+MS	-12.269 MWD+IFR1+MS	-12.318 MWD+IFR1+MS	-12.413 MWD+IFR1+MS	-12.595 MWD+IFR1+MS	-12.778 MWD+IFR1+MS	-12.962 MWD+IFR1+MS	-13.147 MWD+IFR1+MS	-13.333 MWD+IFR1+MS	-13.520 MWD+IFR1+MS	-13.708 MWD+IFR1+MS	-13.897 MWD+IFR1+MS	-14.086 MWD+IFR1+MS	-14.277 MWD+IFR1+MS	-14.469 MWD+IFR1+MS	-14.662 MWD+IFR1+MS	-14.855 MWD+IFR1+MS	-15.050 MWD+IFR1+MS	-15.246 MWD+IFR1+MS	-15.442 MWD+IFR1+MS	-15.639 MWD+IFR1+MS	-15.837 MWD+IFR1+MS	-16.036 MWD+IFR1+MS	-16.236 MWD+IFR1+MS	-16.437 MWD+IFR1+MS	-16.638 MWD+IFR1+MS	-16.841 MWD+IFR1+MS
	22.660	23.046	23 425	23.795	24.156	24 508	24.850	25.058	25.195	25.533	25.874	26.215	26.556	26.898	27.240	27.583	27 926	28.269	28.613	28.957	29.301	29.646	29 990	30 336	30.681	31.027	31.372	31,719	32.065	32.411	32.758	33.105	33.453
	23.877	24 414	24 952	25 486	26.013	26.532	27.040	27.230	27.349	27.652	27 962	28.272	28.583	28.896	29.210	29.524	29.840	30.157	30.475	30.793	31.113	31,434	31 755	32.077	32.400	32.724	33.048	33,373	33.699	34.026	34.353	34.681	35.010
ort	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	8.603 0.000	8.832 0.000	9.037 0.000	9.221 0.000	9.388 0.000	9.542 0.000	9.687 0.000	9.771 0.000	9.826 0.000	000.0 996.6	10.109 0.000	10.255 0.000	10.403 0.000	10.555 0.000	10.709 0.000	10.867 0.000	11.027 0.000	11.190 0.000	11.357 0.000	11.526 0.000	11.699 0.000	11.874 0.000	12.053 0.000	12.235 0.000	12.419 0.000	12.607 0.000	12.798 0.000	12.992 0.000	13.189 0.000	13.390 0.000	13.593 0.000	13.800 0.000	14.010 0.000
	0.000	0000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	22.680	23.074	23.461	23.838	24.207	24.566	24.915	27.135	27.255	27.558	27.866	28.175	28.485	28.796	29.108	29.422	29.736	30.051	30.368	30,685	31.003	31.322	31.642	31.963	32.284	32.606	32.929	33,253	33.577	33,903	34.228	34.555	34.882
	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
	23.791	24.508	25.159	25.743	26.258	26.704	27.081	25.160	25.297	25.635	25.977	26.319	26.662	27.005	27.349	27.692	28.037	28.381	28.726	29.072	29.417	29.763	30.110	30.456	30.803	31.150	31.497	31.845	32.193	32.541	32.889	33.237	33.586
	6051.262	6146.875	6243.800	6341.805	6440.658	6540.126	6639.973	6700.000	6739.964	6839.964	6939.964	7039.964	7139.964	7239.964	7339.964	7439.964	7539.964	7639.964	7739.964	7839.964	7939.964	8039.964	8139.964	8239.964	8339.964	8439.964	8539.964	8639,964	8739.964	8839.964	8939.964	9039.964	9139.964
	247.762	247.762	247.762	247.762	247.762	247.762	247.762	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	18 409	15.619	12.830	10.041	7.252	4 463	1.674	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3/20/24, 11:22 AM	6200.000	6300.000	6400,000	6500,000	000.0099	6700.000	6800.000	6860.036	6900.000	7000.000	7100.000	7200.000	7300.000	7400.000	7500.000	7600.000	7700.000	7800.000	7900.000	8000,000	8100.000	8200,000	8300.000	8400.000	8500.000	8600.000	8700.000	8800,000	8900.000	9000.0006	9100.000	9200,000	9300.000
	eleas	ed t	o In	iagi	ng:	9/6/.	202	4 10	:55:	: 02	1 <i>M</i>																						

	-17.044 MWD+IFR1+MS	-17.248 MWD+IFR1+MS	-17.452 MWD+IFR1+MS	-17.658 MWD+IFR1+MS	-17.879 MWD+IFR1+MS	-20.849 MWD+IFR1+MS	130.226 MWD+IFR1+MS	111.227 MWD+IFR1+MS	105.079 MWD+IFR1+MS	102.563 MWD+IFR1+MS	101.371 MWD+IFR1+MS	100.792 MWD+IFR1+MS	100,533 MWD+IFR1+MS	100.431 MWD+IFR1+MS	100.356 MWD+IFR1+MS	100.169 MWD+IFR1+MS	100.064 MWD+IFR1+MS	99.784 MWD+IFR1+MS	99.409 MWD+IFR1+MS	99.037 MWD+IFR1+MS	98.661 MWD+IFR1+MS	98.274 MWD+IFR1+MS	97.868 MWD+IFR1+MS	97.431 MWD+IFR1+MS	96.944 MWD+IFR1+MS	96.376 MWD+IFR1+MS	95.673 MWD+IFR1+MS	94.726 MWD+IFR1+MS	93.281 MWD+IFR1+MS	90,597 MWD+IFR1+MS	83.316 MWD+IFR1+MS	48,402 MWD+IFR1+MS	20.384 MWD+IFR1+MS
	33.800	34.148	34,495	34.843	35.201	35.734	36.746	37.247	37.591	37.890	38.164	38.416	38.648	38.860	39.053	39.224	39.266	39.378	39.549	39.733	39.931	40.142	40.366	40.602	40.851	41.112	41.385	41.670	41.965	42.270	42.580	42.834	42.896
	35.339	35,669	35.999	36.330	36.672	37.001	37.713	38.820	39.903	40.829	41.572	42.129	42.511	42.741	42.850	42.879	42.879	42.875	42.870	42.867	42.865	42.865	42.865	42.866	42.869	42.872	42.877	42.883	42.891	42.901	42.920	43.005	43.293
ort	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	000'0	0.000	0.000	0.000
Well Plan Report	14.223 0.000	14.439 0.000	14.658 0.000	14.881 0.000	15.113 0.000	15.347 0.000	15.690 0.000	16.225 0.000	17.008 0.000	18.059 0.000	19.366 0.000	20.886 0.000	22.563 0.000	24.333 0.000	26.134 0.000	27.907 0.000	28.009 0.000	28.174 0.000	28.396 0.000	28.638 0.000	28.900 0.000	29.181 0.000	29.480 0.000	29.797 0.000	30.130 0.000	30.481 0.000	30.847 0.000	31.229 0.000	31.625 0.000	32.036 0.000	32.461 0.000	32.899 0.000	33.349 0.000
	0.000	0000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	35.209	35.538	35.867	36.196	36.536	36.848	37.159	37.464	37.759	38.043	38.311	38.561	38.793	39.003	39.190	39.351	39.390	39.491	39.648	39.820	40.006	40.206	40.419	40.645	40.885	41.137	41.402	41.680	41.969	42.271	42.584	42.908	43.244
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	33 935	34 284	34.633	34.983	35.343	35.768	36.566	36.825	36.554	35.815	34.696	33.311	31.807	30.363	29.184	28.476	28.009	28.174	28.396	28.638	28.900	29 181	29.480	29.797	30.130	30.481	30.847	31.229	31.625	32.036	32.461	32.899	33.349
	9239 964	9339 964	9439.964	9539.964	9642.800	9739.667	9837 484	9931.511	10019.919	10100.987	10173.137	10234 964	10285.266	10323.063	10347.619	10358 456	10358 997	10358 997	10358 997	10358.997	10358.997	10358 997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358 997	10358 997	10358.997	10358.997	10358.997
	0.000	0.000	0.000	0.000	0.000	179.641	179.641	179.641	179.641	179.641	179.641	179 641	179.641	179.641	179.641	179 641	179 641	179.641	179 641	179.641	179.641	179 641	179.641	179.641	179.641	179.641	179.641	179.641	179 641	179.641	179.641	179.641	179.641
	0 000	0.000	0.000	0.000	0.000	7.773	15.773	23.773	31.773	39.773	47.773	55 773	63.773	71.773	79.773	87.773	000 06	000 06	000 06	90.000	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	000 06	000.06	90.000	90.000	90.000
3/20/24, 11:22 AM	9400 000	9500.000	000'0096	9700.000	9802.836	000 0066	10000.000	10100.000	10200.000	10300.000	10400.000	10500.000	10600.000	10700.000	10800.000	10900 000	10927 836	11000.000	11100.000	11200.000	11300.000	11400.000	11500.000	11600.000	11700.000	11800.000	11900.000	12000.000	12100 000	12200 000	12300.000	12400.000	12500.000
	eleas	ed t	o In	agi	ng:	9/6/.	202	4 10	:55:	02 Z	1 <i>M</i>																						

	14.428 MWD+IFR1+MS	12.072 MWD+IFR1+MS	10.780 MWD+IFR1+MS	9.940 MWD+IFR1+MS	9.335 MWD+IFR1+MS	8.867 MWD+IFR1+MS	8.487 MWD+IFR1+MS	8.168 MWD+IFR1+MS	7.892 MWD+IFR1+MS	7.649 MWD+IFR1+MS	7.432 MWD+IFR1+MS	7.234 MWD+IFR1+MS	7.053 MWD+IFR1+MS	6.886 MWD+IFR1+MS	6.730 MWD+IFR1+MS	6.584 MWD+IFR1+MS	6.447 MWD+IFR1+MS	6.317 MWD+IFR1+MS	6.194 MWD+IFR1+MS	6.077 MWD+IFR1+MS	5.966 MWD+IFR1+MS	5.859 MWD+IFR1+MS	5.757 MWD+IFR1+MS	5.659 MWD+IFR1+MS	5.564 MWD+IFR1+MS	5.474 MWD+IFR1+MS	5.386 MWD+IFR1+MS	5.302 MWD+IFR1+MS	5.220 MWD+IFR1+MS	5.141 MWD+IFR1+MS	5.065 MWD+IFR1+MS	4.991 MWD+IFR1+MS	4.919 MWD+IFR1+MS
	42.915	42.929	42.942	42.955	42.969	42.983	42.998	43.013	43.029	43.046	43.064	43.082	43.100	43.120	43.140	43.160	43.182	43.204	43.226	43.250	43.273	43.298	43.323	43.348	43.375	43.402	43.429	43,457	43.486	43.515	43.545	43.575	43.606
	43.637	43,996	44.367	44.748	45.139	45.540	45.950	46.369	46.797	47.233	47.677	48.129	48.589	49.057	49.532	50.013	50.502	50.998	51.500	52,009	52.523	53.044	53.570	54.103	54.640	55.183	55.731	56.284	56.842	57,405	57.973	58.544	59.121
ort	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	33.812 0.000	34.287 0.000	34.773 0.000	35.269 0.000	35.776 0.000	36.293 0.000	36.819 0.000	37.354 0.000	37.898 0.000	38,451 0.000	39.011 0.000	39.579 0.000	40.154 0.000	40.737 0.000	41.326 0.000	41.921 0.000	42.522 0.000	43.130 0.000	43.743 0.000	44.361 0.000	44.985 0.000	45.614 0.000	46.247 0.000	46.885 0.000	47.527 0.000	48.174 0.000	48.825 0.000	49.479 0.000	50.138 0.000	20.799 0.000	51.465 0.000	52.133 0.000	52.805 0.000
	43.590 -0.000	43.947 -0.000	44.315 -0.000	44.692 -0.000	45.079 -0.000	45.476 -0.000	45.883 -0.000	46.298 -0.000	46.722 -0.000	47.155 -0.000	47.596 -0.000	48.046 -0.000	48.503 -0.000	48.968 -0.000	49.440 -0.000	49.920 -0.000	50.407 -0.000	50.901 -0.000	51.401 -0.000	51.908 -0.000	52.421 -0.000	52.940 -0.000	53.465 -0.000	53.996 -0.000	54.532 -0.000	55.074 -0.000	55.621 -0.000	56.174 -0.000	56.731 -0.000	57.293 -0.000	57.860 -0.000	58.431 -0.000	29.006 -0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000
	33.812	34.287	34.773	35.269	35.776	36.293	36.819	37.354	37.898	38.451	39 011	39.579	40.154	40.737	41.326	41.921	42.522	43.130	43.743	44.361	44.985	45.614	46.247	46.885	47.527	48.174	48.825	49.479	50.138	50.799	51.465	52.133	52.805
	10358 997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358 997	10358 997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358.997	10358,997	10358.997	10358.997	10358.997	10358.997	10358 997	10358.997	10358.997	10358,997	10358.997	10358 997	10358.997	10358.997	10358.997
	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179.641	179 641	179.641	179.641	179.641	179.641	179 641	179.641	179.641	179.641
	90.000	000'06	000'06	90.000	90.000	000'06	90.000	90.000	90.000	90.000	90.000	000'06	000'06	000'06	000'06	000'06	90.000	90.000	000'06	000'06	90.000	000'06	90.000	000'06	90.000	90.000	90.000	000 06	90.000	90.000	90.000	90.000	90.000
3/20/24, 11:22 AM	12600.000	12700.000	12800.000	12900.000	13000.000	13100.000	13200.000	13300.000	13400.000	13500.000	13600.000	13700.000	13800.000	13900.000	14000.000	14100.000	14200.000	14300.000	14400.000	14500.000	14600.000	14700.000	14800.000	14900.000	15000.000	15100.000	15200.000	15300,000	15400.000	15500.000	15600.000	15700.000	15800.000
	eleas	ed t	o In	ıagi	ng:	9/6/	′2 <i>02</i> -	4 10	:55:	02 A	4 <i>M</i>																						

3/20/24, 11:22 AM 15900.000 90.000	179.641	10358.997	53.480	0.000	59.586 -0.000	Well Plan Report 53.480 0.000	t 0.000	59.701	43.638	4.849 MWD+IFR1+MS
17	179.641	10358.997	54.158	0.000	60.170 -0.000	54.158 0.000	0.000	60.285	43.670	4.782 MWD+IFR1+MS
17	179.641	10358.997	54.839	0.000	60.758 -0.000	54.839 0.000	0.000	60.874	43.703	4.716 MWD+IFR1+MS
17	179.641	10358.997	55.522	0.000	61.350 -0.000	55.522 0.000	0.000	61.466	43.736	4.652 MWD+IFR1+MS
-	179.641	10358 997	56.208	0.000	61.946 -0.000	56.208 0.000	0.000	62.062	43.770	4.590 MWD+IFR1+MS
_	179.641	10358 997	26 897	0.000	62.546 -0.000	56.897 0.000	0.000	62.662	43.804	4.529 MWD+IFR1+MS
	179.641	10358 997	57 588	0.000	63.149 -0.000	57.588 0.000	0.000	63.265	43.839	4.470 MWD+IFR1+MS
	179.641	10358.997	58.282	0.000	63.755 -0.000	58.282 0.000	0.000	63.872	43.875	4.413 MWD+IFR1+MS
	179.641	10358.997	58.978	0.000	64.365 -0.000	58.978 0.000	0.000	64.482	43.911	4.357 MWD+IFR1+MS
	179.641	10358.997	59.676	0.000	64.979 -0.000	59.676 0.000	0.000	960.59	43.947	4.302 MWD+IFR1+MS
	179.641	10358 997	928 09	0.000	65.595 -0.000	000:0 92:00	0.000	65.712	43.984	4.249 MWD+IFR1+MS
	179.641	10358.997	61.078	0.000	66.215 -0.000	61.078 0.000	0.000	66.332	44.022	4.197 MWD+IFR1+MS
	179.641	10358.997	61.782	0.000	66.837 -0.000	61 782 0 000	0.000	66.955	44.060	4.146 MWD+IFR1+MS
	179.641	10358.997	62.488	0.000	67.463 -0.000	62.488 0.000	0.000	67.580	44.099	4.097 MWD+IFR1+MS
	179.641	10358.997	63.196	0.000	68.091 -0.000	63.196 0.000	0.000	68.208	44.138	4.048 MWD+IFR1+MS
	179.641	10358.997	63.906	0.000	68.722 -0.000	63.906 0.000	0.000	68.840	44.178	4.001 MWD+IFR1+MS
	179.641	10358 997	64.617	0.000	69.356 -0.000	64.617 0.000	0.000	69.473	44.219	3.954 MWD+IFR1+MS
	179.641	10358.997	65.331	0.000	000'0- 866'69	65.331 0.000	0.000	70.110	44.260	3.909 MWD+IFR1+MS
	179.641	10358.997	66.045	0.000	70.632 -0.000	66.045 0.000	0.000	70.749	44.301	3.865 MWD+IFR1+MS
	179 641	10358 997	66 762	0000	71.274 -0.000	66.762 0.000	0.000	71.390	44.343	3.821 MWD+IFR1+MS
	179 641	10358.997	67.480	0.000	71.918 -0.000	67.480 0.000	0.000	72.034	44.385	3.779 MWD+IFR1+MS
	179.641	10358.997	68.199	0.000	72.564 -0.000	68.199 0.000	0.000	72.680	44.428	3.737 MWD+IFR1+MS
	179.641	10358.997	68.920	0.000	73.213 -0.000	68.920 0.000	0.000	73.329	44.472	3.697 MWD+IFR1+MS
	179.641	10358.997	69.642	0.000	73.864 -0.000	69.642 0.000	0.000	73.979	44.516	3.657 MWD+IFR1+MS
	179.641	10358.997	70.365	0.000	74.517 -0.000	70.365 0.000	0.000	74.632	44.561	3.618 MWD+IFR1+MS
	179.641	10358.997	71.090	0.000	75.172 -0.000	71.090 0.000	0.000	75.287	44.606	3.579 MWD+IFR1+MS
	179.641	10358.997	71.816	0.000	75.829 -0.000	71.816 0.000	0.000	75.944	44.651	3.542 MWD+IFR1+MS
	179,641	10358.997	72.544	0.000	76.489 -0.000	72.544 0.000	000.0	76,603	44,697	3.505 MWD+IFR1+MS
	179.641	10358 997	73.272	0.000	77.150 -0.000	73.272 0.000	0.000	77.264	44.744	3.469 MWD+IFR1+MS
	179.641	10358.997	74.002	0.000	77.813 -0.000	74 002 0 000	000'0	77.927	44.791	3.433 MWD+IFR1+MS
	179.641	10358.997	74.733	0.000	78.478 -0.000	74.733 0.000	0.000	78.592	44.838	3.399 MWD+IFR1+MS
	179.641	10358.997	75.464	0.000	79.145 -0.000	75 464 0 000	0.000	79.259	44.887	3.365 MWD+IFR1+MS
	179.641	10358.997	76.197	0.000	79.814 -0.000	76.197 0.000	0.000	79.927	44.935	3.331 MWD+IFR1+MS

Released to Imaging: 9/6/2024 10:55:02 AM

3/20/24, 11:22 AM								We	Well Plan Report	+				
22500.000	90.000	179.641	90.000 179.641 10358.997	101.578	0.000	103.352	-0.000	103.352 -0.000 101.578 0.000	0.000	0.000	103.452	46.867	2.470 MWD+IFR1+MS	S
22600.000	000.06	179.641	10358.997	102.335	0.000	104.062	-0.000	102.335	0.000	0.000	104.162	46.932	2.451 MWD+IFR1+MS	S
22700.000	90.000	179.641	10358.997	103.091	0.000	104.773	0000	103.091	0.000	0.000	104.873	46.997	2.432 MWD+IFR1+MS	S
22800.000	90.000	179.641	10358.997	103.849	0.000	105.485	-0.000	103.849	0.000	0.000	105.584	47.062	2.413 MWD+IFR1+MS	S
22900.000	90.000	179.641	10358.997	104.607	0.000	106.198	-0.000	104.607	0.000	0.000	106.296	47.128	2.395 MWD+IFR1+MS	S
23000.000	90.000	179.641	10358.997	105.365	0.000	106.911	-0.000	105.365	0.000	0.000	107.009	47.194	2.377 MWD+IFR1+MS	S
23100.000	90.000	179.641	10358.997	106.123	0.000	107.625	-0.000	106.123	0.000	0.000	107.723	47.261	2.359 MWD+IFR1+MS	S
23200.983	90.000	179.641	10358.997	106.890	0.000	108.347	-0.000	106.890	0.000	0.000	108.444	47.329	2.341 MWD+IFR1+MS	S
23291.004	90.000	179 641	179.641 10358.997	107.573	0.000	108.990	-0.000	-0.000 107.573	0.000	0.000	109.087	47.390	2.325 MWD+IFR1+MS	S
Plan Targets			Poker Lake Unit 21 DTD South	Jnit 21 DTD		127H								
			Σ	Measured Depth	əpth		Grid	Grid Northing		Grid Easting	sting	TVD MSL T	TVD MSL Target Shape	
Target Name					£			(#)			(#)	(ft)		
FTP 5				10699.51	9.51		4	440445.20		640109.50	09.50	6932.00 R	6932.00 RECTANGLE	
SHL 15				13141.53	1.53		4	439142.67		639658.62	58.62	8508.00 R	RECTANGLE	
LTP 5				23201.00	1.00		4	427456.10		640190.90	90.90	6932.00 R	RECTANGLE	
BHL 5				23290.99	66.0		4	427366.10		640191.30	91.30	6932.00 R	6932.00 RECTANGLE	

5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-FREEDOM HTQ®

MECHANICAL PROPERTIES	Pipe	USS-FREEDOM HTQ [®]	
Minimum Yield Strength	110,000	_	psi
Maximum Yield Strength	125,000	_	psi
Minimum Tensile Strength	125,000	_	psi
DIMENSIONS	Pipe	USS-FREEDOM HTQ [®]	
Outside Diameter	5.500	6.300	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.778	in.
Standard Drift	4.653	4.653	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	20.00		lb/ft
Plain End Weight	19.83		lb/ft
ECTION AREA	Pipe	USS-FREEDOM HTQ [®]	
Critical Area	5.828	5.828	sq. in.
Joint Efficiency	_	100.0	%
ERFORMANCE	Pipe	USS-FREEDOM HTQ [®]	
Minimum Collapse Pressure	11,100	11,100	psi
Minimum Internal Yield Pressure	12,640	12,640	psi
Minimum Pipe Body Yield Strength	641,000		lb
Joint Strength		641,000	lb
Compression Rating		641,000	lb
Reference Length [4]		21,370	ft
Maximum Uniaxial Bend Rating [2]		91.7	deg/100 ft
IAKE-UP DATA	Pipe	USS-FREEDOM HTQ [®]	
Make-Up Loss		4.13	in.
Minimum Make-Up Torque [3]		15,000	ft-Ib
Maximum Make-Up Torque [3]		21,000	ft-Ib
Maximum Operating Torque[3]		29,500	ft-Ib

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000	_	psi	_
Maximum Yield Strength	125,000	_	psi	_
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		_
Outside Diameter	5.500	5.900	in.	_
Wall Thickness	0.361		in.	_
Inside Diameter	4.778	4.778	in.	_
Standard Drift	4.653	4.653	in.	_
Alternate Drift	_		in.	_
Nominal Linear Weight, T&C	20.00		lb/ft	_
Plain End Weight	19.83		lb/ft	_
SECTION AREA	Pipe	USS-TALON HTQ™ RD		-
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		-
Minimum Collapse Pressure	11,100	11,100	psi	
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000		lb	
Joint Strength		641,000	lb	
Compression Rating		641,000	lb	
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		-
Make-Up Loss		5.58	in.	<u></u>
Minimum Make-Up Torque		17,000	ft-lb	[4]
Maximum Make-Up Torque		20,000	ft-lb	[4]
Maximum Operating Torque		39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

10,000 PSI Annular BOP Variance Request

XTO Energy/XTO Permian Op. request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOPL).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

8-1/2" Production Hole Section 10M psi Requirement					
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M
Jars	6.500"	Annular	5M	-	-
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-
Mud Motor	6.750"-8.000"	Annular	5M	-	-
Production Casing	5-1/2"	Annular	5M	-	-
Open-Hole	-	Blind Rams	10M	-	-

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the XTO Energy/Permian Operating drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per 43.CFR.3172 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- a. Sound alarm (alert crew)
- b. Stab crossover and full-opening safety valve and close
- c. Space out string
- d. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- e. Confirm shut-in
- f. Notify toolpusher/company representative
- g. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- h. Regroup and identify forward plan
- i. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time

- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

GATES ENGINEERING & SERVICES NORTH AMERICA

7603 Prairle Oak Dr.

Houston, TX. 77086

PHONE: +1 (281) 602-4100

FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com

WEB: www.gates.com/oilandgas

NEW CHOKE HOSE

INSTAUED 02-10-2024

CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CU	ST	OM	ER:	

NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA

CUSTOMER P.O.#:

15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531)

CUSTOMER P/N:

IMR RETEST SN 74621 ASSET #66-1531

PART DESCRIPTION:

RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K

FLANGES

SALES ORDER #:

529480

QUANTITY:

- 1

SERIAL #:

74621 H3-012524-1

SIGNATURE: 7. CUSTUSE

TITLE: QUALITY ASSURANCE

DATE: 1/25/2024

H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT

CUSTOMER

Company:

Nabors Industries Inc.

TEST OBJECT

Serial number: H3-012524-1

Lot number:

Production description:

74621/66-1531

Description:

74621/66-1531

Sales order #:

529480

Customer reference:

FG1213

Hose ID: Part number: 3" 16C CK

TEST INFORMATION

Test procedure:

GTS-04-053

Fitting 1:

Test pressure:

15000.00 3600.00

psi sec Part number:

3.0 x 4-1/16 10K

Test pressure hold: Work pressure:

10000.00

Description:

Work pressure hold:

900.00

Fitting 2:

3.0 x 4-1/16 10K

45

Length difference:

0.00

sec %

psi

Part number:

Length difference:

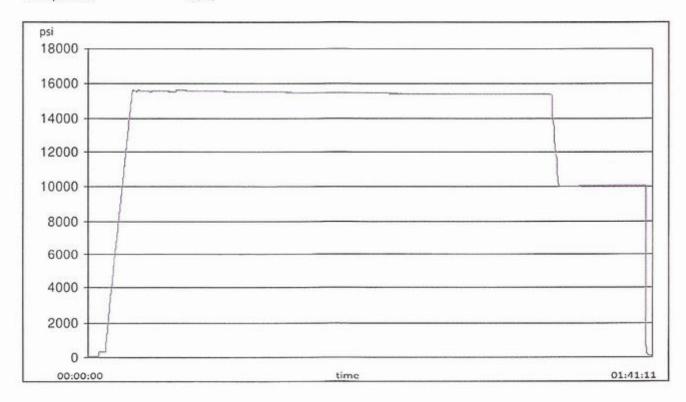
0.00

inch

Description:

Length:

feet

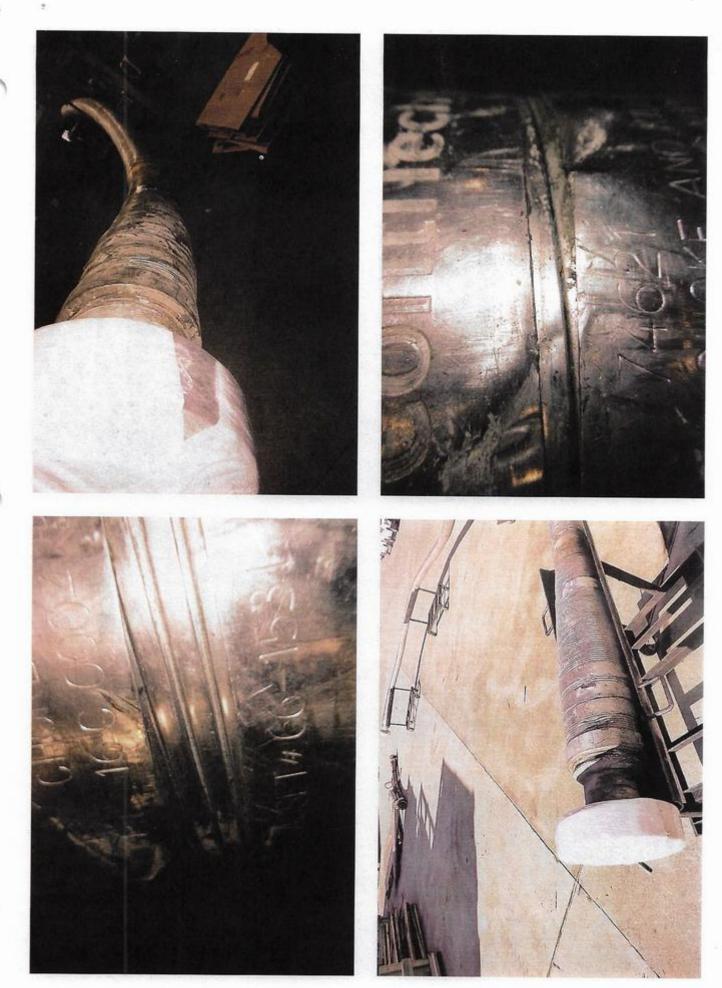

Visual check: Pressure test result:

PASS

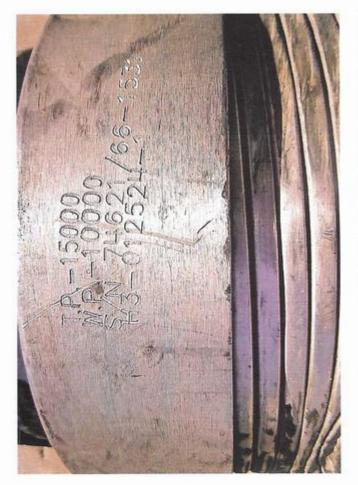
Length measurement result:

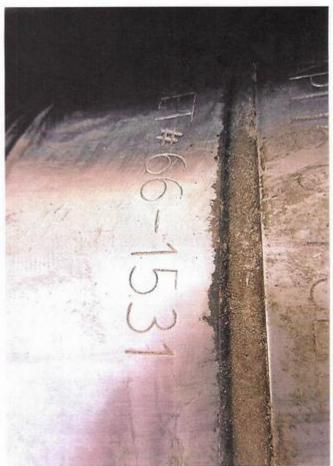
Test operator:

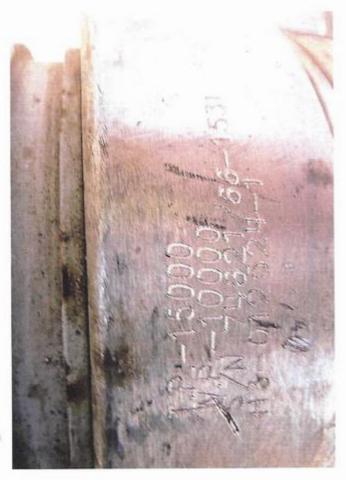
Travis


H3-15/16

1/25/2024 11:48:06 AM


TEST REPORT


GAUGE TRACEABILITY


Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110D3PHO	2023-06-06	2024-06-06
S-25-A-W	110IQWDG	2023-05-16	2024-05-16
Comment			

Released to Imaging: 9/6/2024 10:55:02 AM

Released to Imaging: 9/6/2024 10:55:02 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 380699

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	380699
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rika	a All original COA's still apply. Additionally, if cement is not circulated to surface during cementing operations, then a CBL is required.	9/6/2024