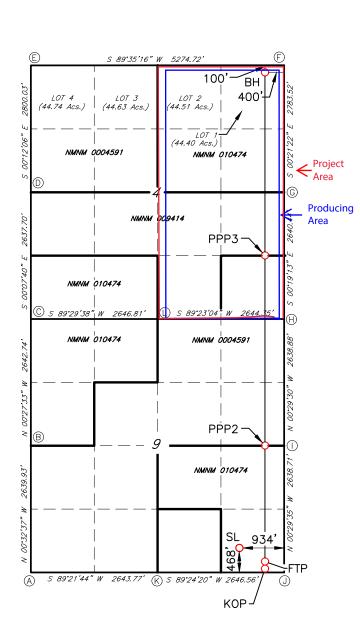
Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM10474 **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: Oil Well 1b. Type of Well: Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone COW BELL 9/4 B3MD FED COM **1**H 9. API Well No. 2. Name of Operator MEWBOURNE OIL COMPANY 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) P O BOX 5270, HOBBS, NM 88241 (575) 393-5905 E-K/Bone Spring 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 9/T19S/R34E/NMP At surface SESE / 468 FSL / 934 FEL / LAT 32.6688098 / LONG -103.5597375 At proposed prod. zone NENE / 100 FNL / 400 FEL / LAT 32.696665 / LONG -103.5579998 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State NM LEA 10 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 100 feet location to nearest property or lease line, ft. 320.0 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 9731 feet / 20343 feet FED: NM1693 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3835 feet 05/25/2022 60 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the Name (Printed/Typed) Date 25. Signature BRADLEY BISHOP / Ph: (575) 393-5905 09/19/2023 (Electronic Submission) Title Regulatory Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 10/15/2024 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.



<u>C-102</u>	2		Ener	rgy, Min	State of New erals & Natura	v Mexico l Resources De	partmen	nt			Revised .	July 9, 2024
	Electronica					ION DIVISION		_			☐ Initial Submit	++ o.1
Via OC	CD Permittii	ng							Submi		✓ Amended Re	
									Type:		☐ As Drilled	r
					WELL LOCAT	ION INFORMATION	ON	I				
API Number 30-025-53732 Pool Code 21650						Pool Name E-K; BONE SPF						
Property	Code 33	66413	Property Na	ame	COW BEL	L 9/4 FED	COM			Well	Number	508H
OGRID 14744	No.		Operator Na	ame	MEWBOURI	NE OIL COM	IPANY			Grou	nd Level Elevation	¹ 3835'
Surface	Owner:	State □ Fee □]Tribal □Fo	ederal		Mineral Owner	: State	☐ Fee ☐	Tribal	□Fec	deral	
					Surfa	ce Location						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitud	le		Long	itude	County
P	9	19S	34E		468 FSL	934 FEL	32.6	68809	8°N	103	.5597375°W	LEA
	1				Bottom	Hole Location						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitud			Long		County
A	4	19S	34E	1	100 FNL	400 FEL	32.6	96665	0°N	103	.5579998°W	LEA
Dedicate 32	ed Acres	Infill or Defin	ning Well	Defining	g Well API	Overlapping Sp	acing Uni	` /	Consolic	lation	Code	
Order N	umbers. N/	A		•		Well setbacks a	re under (Common C	wnersh	nip: 🔲	Yes □ No	
					Kick O	ff Point (KOP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitud	le		Long	itude	County
P	9	19S	34E		10 FSL	400 FEL				_	.5580020°W	1 1
				l	First Ta	L ke Point (FTP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitud	le		Long	itude	County
P	9	19S	34E		100 FSL	400 FEL	32.6	67803	6°N	103	.5580024°W	LEA
					Last Ta	ke Point (LTP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitud		1	Long	1	County
A	4	19S	34E	1	100 FNL	400 FEL	32.69	066650	°N 1	03.5	5579998°W	LEA
Unitized	d Area or A	rea of Uniform	Interest	Spacing	Unit Type 🛭 Hori	zontal Vertical		Ground 3863	Floor I	Elevati	ion:	
				l								
OPER A	ATOR CER	TIFICATIONS				SURVEYOR CEI	RTIFICA	TIONS				
		e information cont ef, and , if the well			plete to the best of	I hereby certify that is surveys made by me	the well loc	ration shown	on this I	olat wa.	s plotted from field no	otes of actual
organiza	tion either ow	ns a working intere bottom hole locat	est or unleased	mineral inter	rest in the land	my belief.	unaer my si		and this p		e is true and correct	to the best of
location	pursuant to a	contract with an o	wner of a worki	ng interest o	r unleased mineral			O KW	MEX	6/8	4	
	y the division.		<i>иет от и сотри</i>	isory pooiing	g order heretofore		7	. (1	9680)	2	
		tal well, I further o					\3				8	
in each tr	ract (in the tar	get pool or format	ion) in which ar	ny part of the			\	THE .			4/	
		or obtained a con hitley	ipulsory pooling 10/01/20	-	ine aivision.			11/3/0	NALS	3U'	•	
Signature		- mary	Date	-		Signature and Seal of Pro	ofessional Su					-
	er Whit	ley				Robert L	1. 4	swett				
Printed Na						Certificate Number	D	ate of Survey				
CWhiti		ewbourne.	com			19680			0	6/1	9/2024	

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

<u>GEODETIC DATA</u> NAD 83 GRID — NM EAST

SURFACE LOCATION (SL)
N: 607911.5 - E: 779389.0
N: 32.6688098* N
LONG: 103.5597375* W

KICK OFF POINT (KOP) 10' FSL & 400' FEL SEC. 9 N: 607459.4 - E: 779926.4 LAT: 32.6675563* N LONG: 103.5580020' W

FIRST TAKE POINT (FTP) 100' FSL & 400' FEL SEC. S N: 607549.4 - E: 779925.6 LAT: 32.6678036' N LON: 103.5580024' W

PROPOSED PENETRATION POINT 2 (PPP2)

2639' FSL & 397' FEL SEC.9
N: 610087.5 - E: 779907.2
LAT: 32.6747798' N
LONG: 103.5580018' W

PROPOSED PENETRATION POINT 3 (PPP3)

1320' FSL & 395' FEL SEC.4

N: 614045.7 - E: 779878.6

LAT: 32.6856593' N

LONG: 103.5580008' W

BOTTOM HOLE (BH) N: 618049.8 — E: 779849.7 LAT: 32.6966650° N LONG: 103.5579998° W

CORNER DATA NAD 83 GRID — NM EAST

A: FOUND BRASS CAP "1912' N: 607396.7 - E: 775037.4

B: FOUND 1/2" REBAR N: 610036.0 - E: 775012.4

C: FOUND BRASS CAP "1912" N: 612678.1 - E: 774991.2

D: FOUND BRASS CAP "1912" N: 615315.3 - E: 774985.3

E: FOUND BRASS CAP "1912" N: 618114.7 - E: 774975.4

F: FOUND BRASS CAP "1912" N: 618152.7 - E: 780249.0

G: FOUND BRASS CAP "1912" N: 615369.8 - E: 780266.3

H: FOUND BRASS CAP "1912" N: 612729.9 - E: 780281.0

I: FOUND BRASS CAP "1912"

N: 610091.6 - E: 780303.6

J: FOUND BRASS CAP "1912" N: 607453.6 - E: 780326.4

K: FOUND 5/8" REBAR N: 607426.1 - E: 777680.5

L: FOUND BRASS CAP "1912" N: 612701.5 - E: 777637.4

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

	Section 1 – Plan Description Effective May 25, 2021							
I. Operator: Mev	vbourne C	Oil Co.	_OGRID: _	14744	Date:	5/2/22		
II. Type: X Original	Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	C □ 19.15.27.9.D(6)(b) NMAC 🗆 (Other.		
If Other, please describe								
III. Well(s): Provide the be recompleted from a s	e following inf ingle well pad	formation for each roor connected to a c	new or recomple entral delivery p	ted well or set of voint.	vells proposed to	be drilled or proposed to		
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D		
Cow Bell 9/4 B3MD Fed Corn 1H		N 9 19S 34E	468 FSL x 934 FEL	v∟ 2500	2000	3000		
IV. Central Delivery P V. Anticipated Schedu proposed to be recomple	le: Provide the	following informat	ell 9/4 B3MD Fection for each new	or recompleted was al delivery point.	rell or set of wells	9.15.27.9(D)(1) NMAC] s proposed to be drilled or		
Well Name	API	Spud Date	TD Reached Date	Completion Commencement				
Cow Bell 9/4 B3MD Fed Com 1H		7/2/22	8/2/22	9/2/22	9/17/2	2 9/17/22		
VII. Operational Prac Subsection A through F	tices: 🖾 Attac of 19.15.27.8	h a complete descr NMAC. ☑ Attach a complet	ription of the act	ions Operator wil	I take to comply	at to optimize gas capture. with the requirements of tices to minimize venting		

Section	2 –	En	han	ced	Plan
EFFE	CTIV	EA	PRIL	1, 20)22

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

X Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system \square will \square will not	have capacity to gather	100% of the anticipated natu	aral gas
production volume from the well	prior to the date of first production.			

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment,	or portion,	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by	the new we	:ll(s).

	Attach O	perator's	plan to	manage pi	roduction	in	response	to	the	increased	line	pressure
--	----------	-----------	---------	-----------	-----------	----	----------	----	-----	-----------	------	----------

XIV. Confide	entiality: Operator	asserts confidentiality	pursuant to	Section 7	71 -2-8 NMSA	1978 for th	e information	provided in
Section 2 as p	rovided in Paragraph (2	2) of Subsection D of 1	9.15.27.9 NM	IAC, and	attaches a full	description	of the specific	information
	fidentiality is asserted							

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗷 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; (b) compression on lease; (c) (d) liquids removal on lease;

- reinjection for underground storage; (e)
- reinjection for temporary storage; (f)
- reinjection for enhanced oil recovery; (g)
- fuel cell production; and (h)
- other alternative beneficial uses approved by the division. (i)

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Bradley Bishop
Printed Name:	BRADLEY BISHOP
Title:	REGULATORY MANAGER
E-mail Address:	BBISHOP@MEWBOURNE.COM
Date:	5/2/22
Phone:	575-393-5905
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of Ap	pproval:

Mewbourne Oil Company

Natural Gas Management Plan - Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date: 09/19/2023

July 1

Highlighted data reflects the most recent changes

Operator Name: MEWBOURNE OIL COMPANY
Well Name: COW BELL 9/4 B3MD FED COM

Well Number: 1H

Well Type: OIL WELL

APD ID: 10400089811

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14318022	UNKNOWN	3796	28	28	OTHER : Topsoil	NONE	N
14318023	RUSTLER	2066	1730	1730	ANHYDRITE, DOLOMITE	USEABLE WATER	N
14318032	TOP SALT	1756	2040	2040	SALT	NONE	N
14318033	BASE OF SALT	596	3200	3200	SALT	NONE	N
14318035	YATES	426	3370	3370	SANDSTONE	NATURAL GAS, OIL	N
14318036	SEVEN RIVERS	-144	3940	3940	DOLOMITE	NATURAL GAS, OIL	N
14318037	QUEEN	-844	4640	4640	DOLOMITE, SANDSTONE	NATURAL GAS, OIL	N
14318042	LAMAR	-2064	5860	5860	LIMESTONE	NATURAL GAS, OIL	N
14318029	BRUSHY CANYON	-3984	7780	7780	SANDSTONE	NATURAL GAS, OIL	N
14318030	BONE SPRING	-4224	8020	8020	LIMESTONE, SHALE	NATURAL GAS, OIL	N
14318040	BONE SPRING 1ST	-5624	9420	9420	SANDSTONE	NATURAL GAS, OIL	N
14318019	BONE SPRING 2ND	-6104	9900	9900	SANDSTONE	NATURAL GAS, OIL	Y
14318021	BONE SPRING 3RD	-6724	10520	10520	SANDSTONE	NATURAL GAS, OIL	N
14318018	WOLFCAMP	-7024	10820	10820	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Pressure Rating (PSI): 5M Rating Depth: 20343

Equipment: Annular Pipe Rams Blind Rams Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for hydrostatic test chart. Anchors are not required by manufacturer. A variance is requested to use a multi-bowl wellhead.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

5M_BOPE_Choke_Diagram_20240614072838.pdf Flex Line Specs API 16C 20240715100341.pdf

BOP Diagram Attachment:

Cow_Bell_9_4_B3MD_Fed_Com_1H_5M_Mutli_Bowl_WH_20221221155332.pdf 5M_BOPE_Schematic_20240614072844.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1805	0	1805	3835	2030	1805	J-55	54.5	ST&C	1.4	3.38	DRY	26.5 7	DRY	44 . 0 9
2		12 . 2 5	9.625	NEW	API	N	0	3200	0	3200		635	3200	J-55	36	LT&C	1.16	2.01	DRY	3.56	DRY	4.43
3	INTERMED IATE	12 . 2 5	9.625	NEW	API	N	3200	3500	3200	3500	635	335	300	J-55	40	ST&C	1.34	2.07	DRY	43.3 3	DRY	52.5
4	PRODUCTI ON	8.75	7.0	NEW	API	N	0	9422	0	9388		-5553	9422	P- 110	26	LT&C	1.34	2.15	DRY	2.83	DRY	3.39
5		6.12 5	4.5	NEW	API	N	9222	20343	9188	9961	-5353	-6126	11121	P- 110	13.5	LT&C	1.72	2	DRY	2.25	DRY	2.81

Casing Attachments

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Cow_Bell_9_4_B3MD_Fed_Com_1H_CsgAssumptions_202408051111111.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Cow_Bell_9_4_B3MD_Fed_Com_1H_CsgAssumptions_20240805110914.pdf

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Cow_Bell_9_4_B3MD_Fed_Com_1H_CsgAssumptions_20240805111157.pdf

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Casing Attachments

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Cow_Bell_9_4_B3MD_Fed_Com_1H_CsgAssumptions_20240805110636.pdf$

Casing ID: 5

String

LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Cow_Bell_9_4_B3MD_Fed_Com_1H_CsgAssumptions_20240805110956.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1613	1060	2.12	12.5	2250	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		1613	1805	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	2809	510	2.12	12.5	1090	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail		2809	3500	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead	6200	3300	5511	200	2.12	12.5	430	25	Class C	Salt, Gel, Extender, LCM, Defoamer

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		5511	6200	100	1.34	14.8	134	25	Class C	Retarder
PRODUCTION	Lead	6200	6200	6977	70	2.12	12.5	150	25	Class C	Salt, Gel, Extender, LCM, Defoamer
PRODUCTION	Tail		6977	9422	400	1.18	15.6	472	25	Class H	Retarder
LINER	Lead		9222	2034 3	710	1.85	13.5	1320	25	Class H	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-settling Agent

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material, sweeps, mud scavengers

Describe the mud monitoring system utilized: Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1805	SPUD MUD	8.4	8.6							
1805	3500	SALT SATURATED	9.5	10.5							
3500	9422	SALT SATURATED	8.6	9.5							

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
9422	2034 3	OIL-BASED MUD	10	12							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL from KOP (10228' TVD) in offset well: Cow Bell 9/4 B3PA Fed Com 1H

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGIC LITHOLOGY LOG,

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6216 Anticipated Surface Pressure: 4034

Anticipated Bottom Hole Temperature(F): 140

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

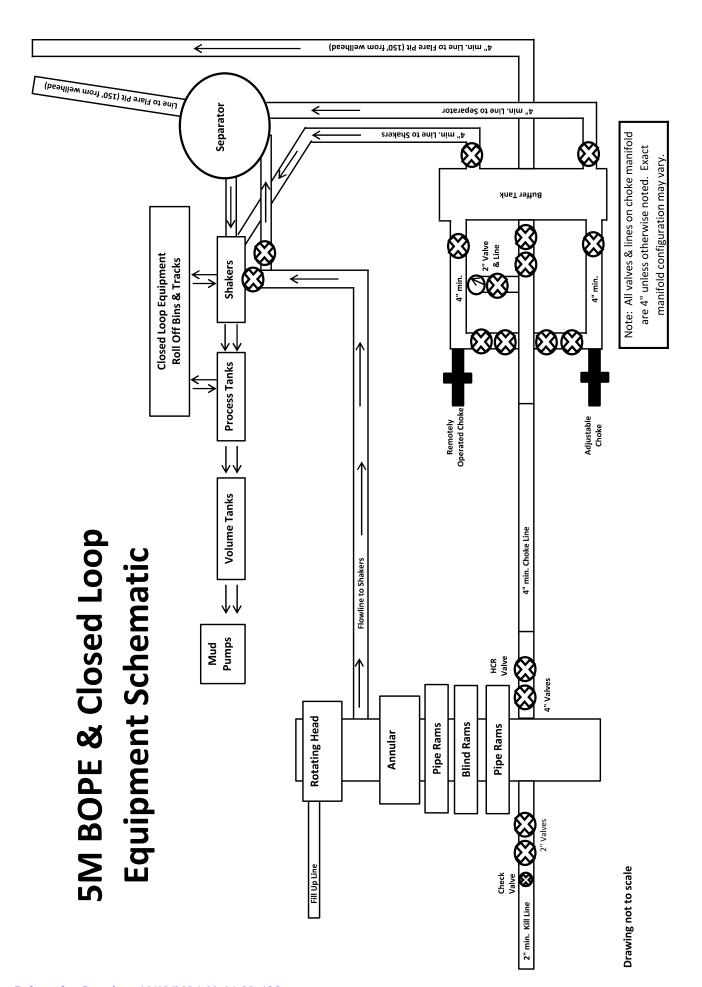
Cow Bell 9 4 B3MD Fed Com 1H H2S Plan 20221221165123.pdf

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Cow_Bell_9_4_B3MD_Fed_Com_1H_MOC_Dir_Plan_20240805111738.pdf Cow_Bell_9_4_B3MD_Fed_Com_1H_MOC_Dir_Plot_20240805111744.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:

Cow_Bell_9_4_B3MD_Fed_Com_1H_AddInfo_20240805111752.pdf Cow_Bell_9_4_B3MD_Fed_Com_1H_Drlg_Program_20240805111759.pdf

Other Variance attachment:

MOC_Break_Testing_Variance_20240621134109.pdf
MOC_Offline_Cementing_Variance_20240621134109.pdf

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

HYDROSTATIC TESTING REPORT

LTYY/QR-5.7.1-28

№: 230826015

Product Name											
	Cho	oke And Kill Hose	Standar	d A	PI Spec 16C 3 rd edition						
Product Specificatio	n 3″×1000	00psi×60ft (18.29m)	Serial Nun	nber	7660144						
Inspection Equipmen	nt MTU	J-BS-1600-3200-E	Test medi	um	Water						
Inspection Departme	nt (Q.C. Department	Inspection	Date	2023.08.26						
		Rate of length	change								
Standard requiremen	ts At working pr	essure ,the rate of length	change should not r	nore than ±	2%						
Testing result 10000psi (69.0MPa) ,Rate of length change 0.7%											
		Hydrostatic te	sting								
Standard requiremen		vorking pressure, the initions									
Testing result	15000psi (103	15000psi (103.5MPa), 3 min for the first time, 60 min for the second time, no leakage									
raph of pressure test	ing:				Aborton						
110		110		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
100 - 100 -		110 100 90 30 70 60 10 10 10									
100 95 160 1	ष्टा अडंबा अडंबा अडंबा अडंबा अ	90- 80- 10- 10- 10- 10- 10- 10- 10- 1	2000 State S		1953 002958 003958 00						
100 - 100 -	ष्टा अडंबा अडंबा अडंबा अडंबा अ	90: 100: 100: 100: 100: 100: 100: 100: 1	2000 State S		01958 002958 001958 0						

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

CERTIFICATE OF QUALITY

LTYY/QR-5.7.1-19B

№: LT2023-126-002

Customer Name	Austin Hose							
Product Name	Choke And Kill Hose							
Product Specification	3"×10000psi×60ft (18.29m)	Quantity	2PCS					
Serial Number	7660143~7660144	FSL	FSL3					
Temperature Range	-29℃~+121℃	Standard	API Spec 16C 3 rd edition					
Inspection Department	Q.C. Department	Inspection date	2023.08.26					

	Inspection	on Items	3		Inspection results					
	Appearance (Checkin	g		In accordance with API Spec 16C 3 rd edition					
	Size and L	engths			In accordance with API Spec 16C 3 rd edition					
Γ	Dimensions and	d Tolerar	nces		In accordance with API Spec 16C 3 rd edition					
End Connections: 4-	/16"×10000psi I	ntegral fla	ange for sour gas ser	vice	In accordance with API Spec 6A 21st edition					
End Connections: 4-	1/16″×10000psi I	ntegral fla	ange for sour gas ser	vice	In accordance with API Spec 17D 3 rd edition					
	Hydrostatic	Testing			In accordance with API Spec 16C 3 rd edition					
	product M	arking			In accordance with API Spec 16C 3 rd edition					
Inspection con	Inspection conclusion The inspected items m					ments of API Spec	16C 3 rd edition			
Remark	Remarks									
Approver	Chen	Auditor	1/1	nging Dong	Inspector	Zhansheng Wang				

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

CERTIFICATE OF CONFORMANCE

№:LT230826016

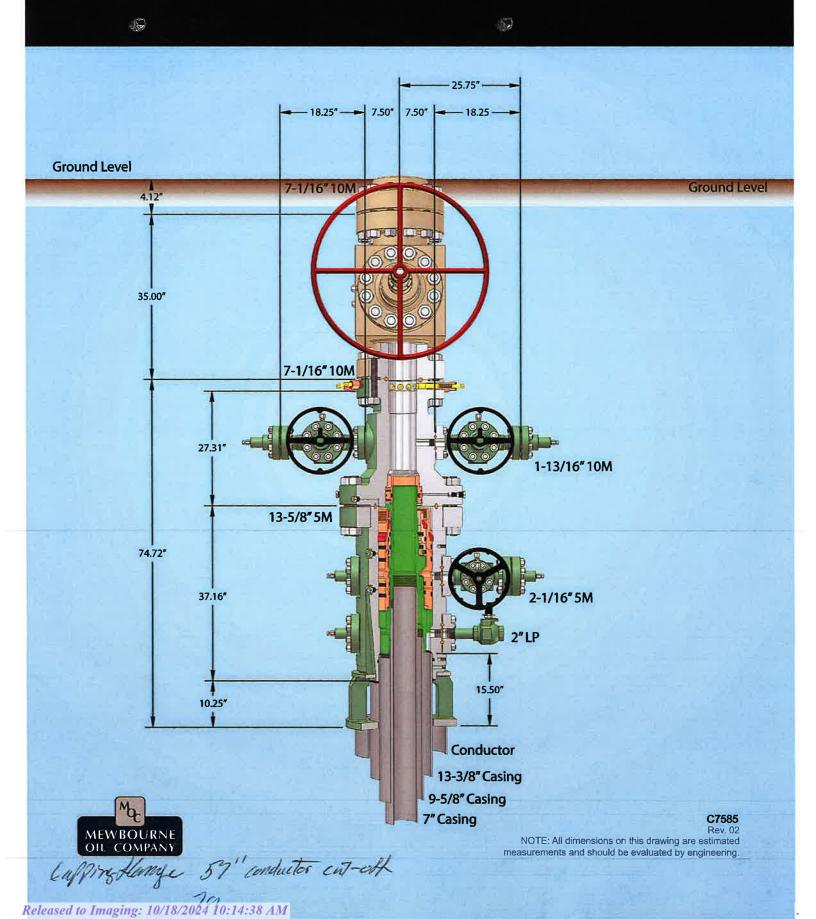
Product Name: Choke And Kill Hose

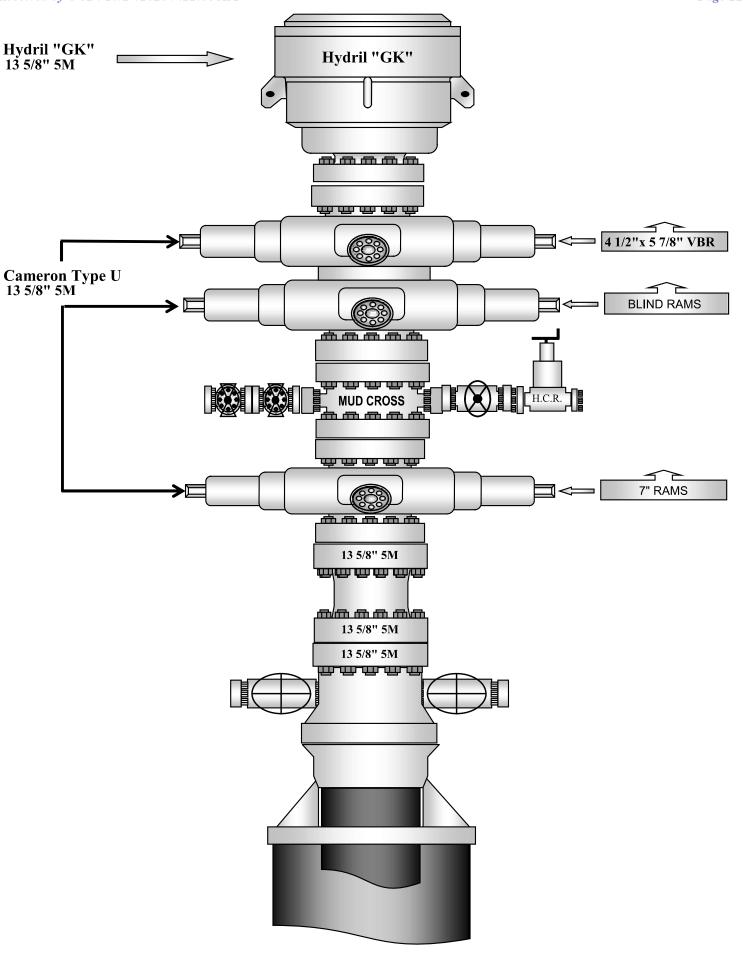
Product Specification: 3"×10000psi×60ft (18.29m)

Serial Number: 7660143~7660144

End Connections: 4-1/16"×10000psi Integral flange for sour gas service

The Choke And Kill Hose assembly was produced by LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD. in Aug 2023, and inspected by LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD. according to API Spec 16C 3rd edition on Aug 26, 2023. The overall condition is good. This is to certify that the Choke And Kill Hose complies with all current standards and specifications for API Spec 16C 3rd edition.


Jian long Chen


QC Manager:

Date: Aug 26, 2023

13-5/8" MN-DS Wellhead System

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

		Casing Prog	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	9422'	9388'	7" 26# P110 LTC	1.34	2.15	2.83	3.39
Liner	6.125"	9222'	9188'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.25	2.81

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	70	12.5	2.12	6200' - 6977'	150	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist atg / iii	TAIL	400	15.6	1.18	6977' - 9422'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
2nd Stg / m	TAIL	100	14.8	1.34	5511' - 6200'	134	2376	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	710	13.5	1.85	9222' - 20343'	1320	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 9422'	8.6 - 9.5	Cut-Brine
9422' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is easing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	11
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency easing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

Casing Program Design B					BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet	
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	10336'	9961'	7" 26# P110 LTC	1.27	2.02	2.58	3.09
Liner	6.125"	9422'	9388'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.29	2.86

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	150	12.5	2.12	6200' - 7871'	320	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
1st Stg / III	TAIL	400	15.6	1.18	7871' - 10336'	472	2376	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
Ziiu Sig / iii	TAIL	100	14.8	1.34	5511' - 6200'	134	2370	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	690	13.5	1.85	9422' - 20343'	1280	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 10336'	8.6 - 9.5	Cut-Brine
10336' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production easing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	
Is well located in R-111-O and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
	N
If yes, are there three strings cemented to surface?	

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

Casing Program Design A						BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	9422'	9388'	7" 26# P110 LTC	1.34	2.15	2.83	3.39
Liner	6.125"	9222'	9188'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.25	2.81

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	ТОС/ВОС	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	70	12.5	2.12	6200' - 6977'	150	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist atg / iii	TAIL	400	15.6	1.18	6977' - 9422'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
2nd Stg / m	TAIL	100	14.8	1.34	5511' - 6200'	134	2376	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	710	13.5	1.85	9222' - 20343'	1320	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 9422'	8.6 - 9.5	Cut-Brine
9422' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	
I H A L D I D I GODIN	
Is well located in R-111-Q and SOPA? If yes, are the first three strings cemented to surface?	N
Is 2 nd string set 100' to 600' below the base of salt? Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
is an open animus used to statisty R-111-Q' it yes, see ceincin design. Is an open animus used to statisty R-111-Q'? Is an engineered weak point used to statisfy R-111-Q'?	
is an engineered weak point used to statisty K-111-Q? If yes, at what depth is the weak point planned?	
if yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

	Casing Program Design B					BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	10336'	9961'	7" 26# P110 LTC	1.27	2.02	2.58	3.09
I iner	6.125"	9422'	9388'	20343'	9961'	4 5" 13 5# P110 LTC	1.72	2.00	2.29	2.86

Design B - Cement Program

raign b - Centent i rogram								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	2809' - 3500'	268	25%	Class C: Retarder
1st Stg 7 in	LEAD	150	12.5	2.12	6200' - 7871'	320	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist stg / iii	TAIL	400	15.6	1.18	7871' - 10336'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
2nd Stg / m	TAIL	100	14.8	1.34	5511' - 6200'	134	23%	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	690	13.5	1.85	9422' - 20343'	1280	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 10336'	8.6 - 9.5	Cut-Brine
10336' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.	Y						
Is premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?							
Is well located within Capitan Reef?	N						
If yes, does production casing cement tie back a minimum of 50' above the Reef?							
Is well within the designated 4 string boundary.	N						
Is well located in SOPA but not in R-111-Q?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-Q and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2 nd string set 100' to 600' below the base of salt?							
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.							
Is an engineered weak point used to satisfy R-111-Q?							
If yes, at what depth is the weak point planned?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?							
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

	Casing Program Design A						1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	9422'	9388'	7" 26# P110 LTC	1.34	2.15	2.83	3.39
Liner	6.125"	9222'	9188'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.25	2.81

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268		Class C: Retarder
1st Stg 7 in	LEAD	70	12.5	2.12	6200' - 6977'	150	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist atg / iii	TAIL	400	15.6	1.18	6977' - 9422'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
2nd Stg / m	TAIL	100	14.8	1.34	5511' - 6200'	134	25%	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	710	13.5	1.85	9222' - 20343'	1320	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 9422'	8.6 - 9.5	Cut-Brine
9422' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1	Y					
Is casing API approved? If no, attach casing specification sheet.	Y					
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N					
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).						
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?						
Is well located within Capitan Reef?	N					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.	N					
Is well located in SOPA but not in R-111-Q?	N					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?						
Is well located in R-111-Q and SOPA?	N					
If yes, are the first three strings cemented to surface?						
Is 2 nd string set 100' to 600' below the base of salt?						
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.						
Is an engineered weak point used to satisfy R-111-Q?						
If yes, at what depth is the weak point planned?						
Is well located in high Cave/Karst?	N					
If yes, are there two strings cemented to surface?						
(For 2 string wells) If yes, is there a contingency easing if lost circulation occurs?						
Is well located in critical Cave/Karst?	N					
If yes, are there three strings cemented to surface?						

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

	Casing Program Design B					BLM Minimum Safety Factors	1.125	1.0	1.6 Drv 1.8 Wet	1.6 Drv 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	10336'	9961'	7" 26# P110 LTC	1.27	2.02	2.58	3.09
I iner	6.125"	9422'	9388'	20343'	9961'	4 5" 13 5# P110 LTC	1.72	2.00	2.29	2.86

Design B - Cement Program

Design B - Cement Frogran								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	2809' - 3500'	268	23%	Class C: Retarder
1st Stg 7 in	LEAD	150	12.5	2.12	6200' - 7871'	320	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist Stg / III	TAIL	400	15.6	1.18	7871' - 10336'	472	2376	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
Ziiu Sig / iii	TAIL	100	14.8	1.34	5511' - 6200'	134	23%	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	690	13.5	1.85	9422' - 20343'	1280	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 10336'	8.6 - 9.5	Cut-Brine
10336' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.	Y						
s premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?							
Is well located within Capitan Reef?	N						
If yes, down production casing cement tie back a minimum of 50' above the Reef?	- N						
n yes, does prior to saving certificial to does a minimum of 50 above the recei. Is well within the designated 4 string boundary.	N						
Is well located in SOPA but not in R-111-Q?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?							
Is well located in R-111-Q and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2^{md} string set 100' to 600' below the base of salt?							
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.							
Is an engineered weak point used to satisfy R-111-Q?							
If yes, at what depth is the weak point planned?							
Is well located in high Cave/Karst?	N						
If yes, there two strings cemented to surface?	IN .						
If yes, are turne wells) If yes, is there a contingency casing if lost circulation occurs?							
(1 or a string wear) it yes, to mere a commigency vising it rost circumters occurs.							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

Casing Program Design A						BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	9422'	9388'	7" 26# P110 LTC	1.34	2.15	2.83	3.39
Liner	6.125"	9222'	9188'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.25	2.81

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	тос/вос	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	70	12.5	2.12	6200' - 6977'	150	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
ist atg / iii	TAIL	400	15.6	1.18	6977' - 9422'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
2nd Stg / m	TAIL	100	14.8	1.34	5511' - 6200'	134	2376	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	710	13.5	1.85	9222' - 20343'	1320	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 9422'	8.6 - 9.5	Cut-Brine
9422' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	1 OI N						
is easing NPI approved; fire, attack casing specification sheet.	V						
Is premium or uncommon casing planned? If yes tatach easing specification sheet.	N N						
be permitted to the casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?							
The state of the s	Y						
Is well located within Capitan Reef?	N						
If yes, does production casing cement tie back a minimum of 50' above the Reef?							
Is well within the designated 4 string boundary.	N						
Is well located in SOPA but not in R-111-Q?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-Q and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2 nd string set 100' to 600' below the base of salt?							
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.							
Is an engineered weak point used to satisfy R-111-Q?							
If yes, at what depth is the weak point planned?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?							
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

Casing Program Design B						BLM Minimum Safety Factors	1.125	1.0	1.6 Drv 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	10336'	9961'	7" 26# P110 LTC	1.27	2.02	2.58	3.09
Liner	6.125"	9422'	9388'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.29	2.86

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 111	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	150	12.5	2.12	6200' - 7871'	320	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
18t Stg / III	TAIL	400	15.6	1.18	7871' - 10336'	472		Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
Ziiu Sig / iii	TAIL	100	14.8	1.34	5511' - 6200'	134	23%	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	690	13.5	1.85	9422' - 20343'	1280	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 10336'	8.6 - 9.5	Cut-Brine
10336' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Formation		1.200001012200000	Formation	Est. 10p (1 v D)	Milieral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	
Is well located in R-111-O and SOPA?	N
is wen rocated in NYTTPQ and SOFA: If yes, are the first three strings comented to surface?	- IN
is yes, are time set 100° to 600° below the base of salt?	_
is 2 sung set 100 to 000 to terow the coase or sant: Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	_
Is an engineered weak point used to satisfy R-111-Q?	_
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

		Casing Prog	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	9422'	9388'	7" 26# P110 LTC	1.34	2.15	2.83	3.39
Liner	6.125"	9222'	9188'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.25	2.81

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	ТОС/ВОС	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder
9,625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder
1st Stg 7 in	LEAD	70	12.5	2.12	6200' - 6977'	150	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
1st Stg / III	TAIL	400	15.6	1.18	6977' - 9422'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
					7" DV	Tool @ 6200'		
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
Ziiu Stg / Iii	TAIL	100	14.8	1.34	5511' - 6200'	134	23%	Class C: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	710	13.5	1.85	9222' - 20343'	1320	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 9422'	8.6 - 9.5	Cut-Brine
9422' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	V
is easing first in account and account of the control of the contr	V
Is premium or uncommon casing planned? If yes tatach easing specification sheet.	N N
Does the above easing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	v
will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	v
The state of the s	
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

		Casing Prog	ram Design B			BLM Minimum Safety Factors	1.125	1.0	1.6 Drv 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	1450'	1450'	13.375" 48# H40 STC	1.19	2.67	3.62	6.08
Surface	17.5"	1450'	1450'	1805'	1805'	13.375" 54.5# J55 STC	1.40	3.38	26.57	44.09
Int	12.25"	0'	0'	3200'	3200'	9.625" 36# J55 LTC	1.16	2.01	3.56	4.43
Int	12.25"	3200'	3200'	3500'	3500'	9.625" 40# J55 LTC	1.34	2.07	43.33	52.50
Production	8.75"	0'	0'	10336'	9961'	7" 26# P110 LTC	1.27	2.02	2.58	3.09
Liner	6.125"	9422'	9388'	20343'	9961'	4.5" 13.5# P110 LTC	1.72	2.00	2.29	2.86

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description	
13.375 in	LEAD	1060	12.5	2.12	0' - 1613'	2250	100%	Class C: Salt, Gel, Extender, LCM	
15.575 III	TAIL	200	14.8	1.34	1613' - 1805'	268	100%	Class C: Retarder	
9.625 in	LEAD	510	12.5	2.12	0' - 2809'	1090	25%	Class C: Salt, Gel, Extender, LCM	
9.023 111	TAIL	200	14.8	1.34	2809' - 3500'	268	2370	Class C: Retarder	
1st Stg 7 in	LEAD	150	12.5	2.12	6200' - 7871'	320	25%	Class C: Salt, Gel, Extender, LCM, Defoamer	
1st Stg / III	TAIL	400	15.6	1.18	7871' - 10336'	472	2376	Class H: Retarder, Fluid Loss, Defoamer	
					7" DV	Tool @ 6200'			
2nd Stg 7 in	LEAD	200	12.5	2.12	3300' - 5511'	430	25%	Class C: Salt, Gel, Extender, LCM, Defoamer	
Ziiu Sig / iii	TAIL	100	14.8	1.34	5511' - 6200'	134	23%	Class C: Retarder, Fluid Loss, Defoamer	
4.5 in	LEAD	690	13.5	1.85	9422' - 20343'	1280	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent	

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 1805'	8.4 - 8.6	Fresh Water
1805' - 3500'	9.5 - 10.5	Brine
3500' - 10336'	8.6 - 9.5	Cut-Brine
10336' - 20343'	10.0 - 12.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	1730'	Usable Water	Yeso		
Castile			Delaware (Lamar)	5860'	Oil/Natural Gas
Salt Top	2040'	None	Bell Canyon		
Salt Base	3200'	None	Cherry Canyon		
Yates	3370'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	3940'	Oil/Natural Gas	Basal Brushy Canyon	7780'	Oil/Natural Gas
Queen	4640'	Oil/Natural Gas	Bone Spring	8020'	Oil/Natural Gas
Capitan			1st Bone Spring	9420'	Oil/Natural Gas
Grayburg	5330'	None	2nd Bone Spring	9900'	Oil/Natural Gas
San Andres			3rd Bone Spring	10520'	Oil/Natural Gas
Glorieta			Wolfcamp	10820'	Oil/Natural Gas

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	$\overline{}$
Is well located in R-111-Q and SQPA?	
	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	- 11
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Cow Bell 9-4 B3MD Fed Com 1H

Sec 09, T19S, R34E

SHL: 468' FSL & 934' FEL (Sec 9) BHL: 100' FNL & 400' FEL (Sec 4)

Plan: Design #1

Standard Planning Report

02 August, 2024

Planning Report

Database: Hobbs

Company: Mewbourne Oil Company Lea County, New Mexico NAD 83 Project: Cow Bell 9-4 B3MD Fed Com 1H Site:

Well: Sec 09, T19S, R34E

Wellbore: BHL: 100' FNL & 400' FEL (Sec 4)

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Minimum Curvature

Project Lea County, New Mexico NAD 83

US State Plane 1983 Map System: North American Datum 1983 Geo Datum: Map Zone: New Mexico Eastern Zone

System Datum:

Mean Sea Level

Cow Bell 9-4 B3MD Fed Com 1H Site

Northing: 607,911.50 usft Site Position: Latitude: 32.6688096 From: Мар Easting: 779,389.00 usft Longitude: -103.5597375

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 09, T19S, R34E

Well Position +N/-S 0.0 usft Northing: 607,911.50 usfl Latitude: 32.6688096 +E/-W 0.0 usft Easting: 779,389.00 usfl Longitude: -103.5597375

Position Uncertainty 0.0 usft Wellhead Elevation: 3,863.0 usfl Ground Level: 3,835.0 usfl

0.42° **Grid Convergence:**

BHL: 100' FNL & 400' FEL (Sec 4) Wellbore

Magnetics Sample Date **Declination** Dip Angle Field Strength **Model Name** (°) (°) (nT) **IGRF2010** 12/31/2014 7.17 60.51 48,527.02010256

Design #1 Design

Audit Notes:

PROTOTYPE Version: Phase: Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 2.60

Plan Survey Tool Program Date 8/2/2024

Depth From Depth To

> (usft) (usft) Survey (Wellbore) **Tool Name** Remarks

0.0 20,342.7 Design #1 (BHL: 100' FNL & 400' 1

Plan Section	ıs									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,005.0	0.00	0.00	2,005.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,287.4	5.65	130.07	2,287.0	-9.0	10.6	2.00	2.00	0.00	130.07	
9,139.8	5.65	130.07	9,106.0	-443.1	526.8	0.00	0.00	0.00	0.00	
9,422.2	0.00	0.00	9,388.0	-452.1	537.4	2.00	-2.00	0.00	180.00 K	OP: 10' FSL & 40(
10,335.7	91.32	359.59	9,961.0	134.2	533.2	10.00	10.00	0.00	-0.41	
20,342.7	91.32	359.59	9,731.0	10,138.3	460.7	0.00	0.00	0.00	0.00 B	HL: 100' FNL & 40

Planning Report

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83

Site: Cow Bell 9-4 B3MD Fed Com 1H

Well: Sec 09, T19S, R34E

Wellbore: BHL: 100' FNL & 400' FEL (Sec 4)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Grid

Minimum Curvature

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0 SHL: 468'	0.00 FSL & 934' FE	0.00 L (Sec 9)	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,005.0	0.00	0.00	2,005.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	1.90	130.07	2,100.0	-1.0	1.2	-1.0	2.00	2.00	0.00
2,200.0	3.90	130.07	2,199.8	-4.3	5.1	-4.0	2.00	2.00	0.00
2,287.4	5.65	130.07	2,287.0	-9.0	10.6	-8.5	2.00	2.00	0.00
2,300.0	5.65	130.07	2,299.5	-9.8	11.6	-9.2	0.00	0.00	0.00
2,400.0	5.65	130.07	2,399.0	-16.1	19.1	-15.2	0.00	0.00	0.00
2,500.0	5.65	130.07	2,498.5	-22.4	26.7	-21.2	0.00	0.00	0.00
2,600.0	5.65	130.07	2,598.0	-28.8	34.2	-27.2	0.00	0.00	0.00
2,700.0	5.65	130.07	2,697.5	-35.1	41.7	-33.2	0.00	0.00	0.00
2,800.0	5.65	130.07	2,797.1	-41.4	49.3	-39.2	0.00	0.00	0.00
2,900.0	5.65	130.07	2,896.6	-47.8	56.8	-45.1	0.00	0.00	0.00
3,000.0	5.65	130.07	2,996.1	-54.1	64.3	-51.1	0.00	0.00	0.00
3,100.0	5.65	130.07	3,095.6	-60.4	71.8	-57.1	0.00	0.00	0.00
3,200.0	5.65	130.07	3,195.1	-66.8	79.4	-63.1	0.00	0.00	0.00
3,300.0	5.65	130.07	3,294.6	-73.1	86.9	-69.1	0.00	0.00	0.00
3,400.0	5.65	130.07	3,394.1	-79.5	94.4	-75.1	0.00	0.00	0.00
3,500.0	5.65	130.07	3,493.7	-85.8	102.0	-81.1	0.00	0.00	0.00
3,600.0	5.65	130.07	3,593.2	-92.1	109.5	-87.1	0.00	0.00	0.00
3,700.0	5.65	130.07	3,692.7	-98.5	117.0	-93.0	0.00	0.00	0.00
3,800.0	5.65	130.07	3,792.2	-104.8	124.6	-99.0	0.00	0.00	0.00
3,900.0 4,000.0 4,100.0 4,200.0 4,300.0	5.65 5.65 5.65 5.65	130.07 130.07 130.07 130.07 130.07	3,891.7 3,991.2 4,090.7 4,190.3 4,289.8	-111.1 -117.5 -123.8 -130.1 -136.5	132.1 139.6 147.2 154.7 162.2	-105.0 -111.0 -117.0 -123.0 -129.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,400.0	5.65	130.07	4,389.3	-142.8	169.8	-135.0	0.00	0.00	0.00
4,500.0	5.65	130.07	4,488.8	-149.2	177.3	-141.0	0.00	0.00	0.00
4,600.0	5.65	130.07	4,588.3	-155.5	184.8	-146.9	0.00	0.00	0.00
4,700.0	5.65	130.07	4,687.8	-161.8	192.4	-152.9	0.00	0.00	0.00
4,800.0	5.65	130.07	4,787.3	-168.2	199.9	-158.9	0.00	0.00	0.00
4,900.0	5.65	130.07	4,886.9	-174.5	207.4	-164.9	0.00	0.00	0.00
5,000.0	5.65	130.07	4,986.4	-180.8	215.0	-170.9	0.00	0.00	0.00
5,100.0	5.65	130.07	5,085.9	-187.2	222.5	-176.9	0.00	0.00	0.00

Planning Report

Database: Company:

Hobbs

Mewbourne Oil Company Lea County, New Mexico NAD 83

Cow Bell 9-4 B3MD Fed Com 1H

Well: Wellbore:

Project:

Site:

Sec 09, T19S, R34E BHL: 100' FNL & 400' FEL (Sec 4)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Grid

Minimum Curvature

Design:	Design #1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	5.65	130.07	5,185.4	-193.5	230.0	-182.9	0.00	0.00	0.00
5,300.0	5.65	130.07	5,284.9	-199.8	237.5	-188.9	0.00	0.00	0.00
5,400.0	5.65	130.07	5,384.4	-206.2	245.1	-194.8	0.00	0.00	0.00
5,500.0	5.65	130.07	5,483.9	-212.5	252.6	-200.8	0.00	0.00	0.00
5,600.0	5.65	130.07	5,583.5	-218.9	260.1	-206.8	0.00	0.00	0.00
5,700.0	5.65	130.07	5,683.0	-225.2	267.7	-212.8	0.00	0.00	0.00
5,800.0	5.65	130.07	5,782.5	-231.5	275.2	-218.8	0.00	0.00	0.00
5,900.0	5.65	130.07	5,882.0	-237.9	282.7	-224.8	0.00	0.00	0.00
6,000.0	5.65	130.07	5,981.5	-244.2	290.3	-230.8	0.00	0.00	0.00
6,100.0	5.65	130.07	6,081.0	-250.5	297.8	-236.8	0.00	0.00	0.00
6,200.0	5.65	130.07	6,180.5	-256.9	305.3	-242.7	0.00	0.00	0.00
6,300.0	5.65	130.07	6,280.1	-263.2	312.9	-248.7	0.00	0.00	0.00
6,400.0	5.65	130.07	6,379.6	-269.5	320.4	-254.7	0.00	0.00	0.00
6,500.0	5.65	130.07	6,479.1	-275.9	327.9	-260.7	0.00	0.00	0.00
6,600.0	5.65	130.07	6,578.6	-282.2	335.5	-266.7	0.00	0.00	0.00
6,700.0	5.65	130.07	6,678.1	-288.6	343.0	-272.7	0.00	0.00	0.00
6,800.0	5.65	130.07	6,777.6	-294.9	350.5	-278.7	0.00	0.00	0.00
6,900.0	5.65	130.07	6,877.1	-301.2	358.1	-284.7	0.00	0.00	0.00
7,000.0	5.65	130.07	6,976.7	-307.6	365.6	-290.6	0.00	0.00	0.00
7,100.0	5.65	130.07	7,076.2	-313.9	373.1	-296.6	0.00	0.00	0.00
7,200.0	5.65	130.07	7,175.7	-320.2	380.7	-302.6	0.00	0.00	0.00
7,300.0	5.65	130.07	7,275.2	-326.6	388.2	-308.6	0.00	0.00	0.00
7,400.0	5.65	130.07	7,374.7	-332.9	395.7	-314.6	0.00	0.00	0.00
7,500.0	5.65	130.07	7,474.2	-339.2	403.3	-320.6	0.00	0.00	0.00
7,600.0	5.65	130.07	7,573.7	-345.6	410.8	-326.6	0.00	0.00	0.00
7,700.0	5.65	130.07	7,673.3	-351.9	418.3	-332.6	0.00	0.00	0.00
7,800.0	5.65	130.07	7,772.8	-358.3	425.8	-338.6	0.00	0.00	0.00
7,900.0	5.65	130.07	7,872.3	-364.6	433.4	-344.5	0.00	0.00	0.00
8,000.0	5.65	130.07	7,971.8	-370.9	440.9	-350.5	0.00	0.00	0.00
8,100.0	5.65	130.07	8,071.3	-377.3	448.4	-356.5	0.00	0.00	0.00
8,200.0	5.65	130.07	8,170.8	-383.6	456.0	-362.5	0.00	0.00	0.00
8,300.0	5.65	130.07	8,270.3	-389.9	463.5	-368.5	0.00	0.00	0.00
8,400.0	5.65	130.07	8,369.9	-396.3	471.0	-374.5	0.00	0.00	0.00
8,500.0	5.65	130.07	8,469.4	-402.6	478.6	-380.5	0.00	0.00	0.00
8,600.0	5.65	130.07	8,568.9	-408.9	486.1	-386.5	0.00	0.00	0.00
8,700.0	5.65	130.07	8,668.4	-415.3	493.6	-392.4	0.00	0.00	0.00
8,800.0	5.65	130.07	8,767.9	-421.6	501.2	-398.4	0.00	0.00	0.00
8,900.0	5.65	130.07	8,867.4	-428.0	508.7	-404.4	0.00	0.00	0.00
9,000.0	5.65	130.07	8,966.9	-434.3	516.2	-410.4	0.00	0.00	0.00
9,100.0	5.65	130.07	9,066.5	-440.6	523.8	-416.4	0.00	0.00	0.00
9,139.8	5.65	130.07	9,106.0	-443.1	526.8	-418.8	0.00	0.00	0.00
9,200.0	4.44	130.07	9,166.0	-446.6	530.8	-422.0	2.00	-2.00	0.00
9,300.0 9,400.0 9,422.2	2.44 0.44 0.00 SL & 400' FEL	130.07 130.07 0.00	9,265.8 9,365.8 9,388.0	-450.4 -452.0 -452.1	535.4 537.3 537.4	-425.7 -427.2 -427.2	2.00 2.00 2.00	-2.00 -2.00 -2.00	0.00 0.00 0.00
9,450.0	2.78	359.59	9,415.8	-451.4	537.4	-426.6	10.00	10.00	0.00
9,500.0	7.78	359.59	9,465.6	-446.8	537.4	-422.0	10.00	10.00	0.00
9,550.0 9,600.0 9,650.0 9,700.0 9,747.7 FTP: 100' F	12.78 17.78 22.77 27.77 32.55 SL & 400' FEL	359.59 359.59 359.59 359.59 359.59	9,514.8 9,563.0 9,609.9 9,655.1 9,696.3	-437.9 -424.7 -407.4 -386.1 -362.1	537.3 537.2 537.1 536.9 536.7	-413.1 -399.9 -382.6 -361.3 -337.4	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00

Planning Report

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Cow Bell 9-4 B3MD Fed Com 1H

Well: Sec 09, T19S, R34E

Wellbore: BHL: 100' FNL & 400' FEL (Sec 4)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Grid

Minimum Curvature

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,750.0	32.77	359.59	9,698.2	-360.9	536.7	-336.1	10.00	10.00	0.00
9,800.0	37.77	359.59	9,739.0	-332.0	536.5	-307.3	10.00	10.00	0.00
9,850.0	42.77	359.59	9,777.2	-299.7	536.3	-275.1	10.00	10.00	0.00
9,900.0	47.77	359.59	9,812.4	-264.2	536.0	-239.6	10.00	10.00	0.00
9,950.0	52.76	359.59	9,844.3	-225.8	535.8	-201.2	10.00	10.00	0.00
10,000.0	57.76	359.59	9,872.8	-184.7	535.5	-160.2	10.00	10.00	0.00
10,050.0	62.76	359.59	9,897.6	-141.3	535.1	-116.9	10.00	10.00	0.00
10,100.0	67.76	359.59	9,918.5	-95.9	534.8	-71.5	10.00	10.00	0.00
10,150.0	72.76	359.59	9,935.4	-48.9	534.5	-24.5	10.00	10.00	0.00
10,200.0	77.75	359.59	9,948.1	-0.5	534.1	23.7	10.00	10.00	0.00
10,250.0 10,300.0 10,335.7	82.75 87.75 91.32 SL & 400' FEL	359.59 359.59 359.59	9,956.6 9,960.7 9,961.0	48.7 98.6 134.2	533.8 533.4 533.2	72.9 122.7 158.3	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
10,400.0	91.32	359.59	9,959.5	198.5	532.7	222.5	0.00	0.00	0.00
10,500.0	91.32	359.59	9,957.2	298.5	532.0	322.3	0.00	0.00	0.00
10,600.0	91.32	359.59	9,954.9	398.5	531.2	422.2	0.00	0.00	0.00
10,700.0	91.32	359.59	9,952.6	498.4	530.5	522.0	0.00	0.00	0.00
10,800.0	91.32	359.59	9,950.3	598.4	529.8	621.8	0.00	0.00	0.00
10,900.0	91.32	359.59	9,948.0	698.4	529.1	721.7	0.00	0.00	0.00
11,000.0	91.32	359.59	9,945.7	798.4	528.3	821.5	0.00	0.00	0.00
11,100.0	91.32	359.59	9,943.4	898.3	527.6	921.3	0.00	0.00	0.00
11,200.0	91.32	359.59	9,941.1	998.3	526.9	1,021.2	0.00	0.00	0.00
11,300.0	91.32	359.59	9,938.8	1,098.3	526.2	1,121.0	0.00	0.00	0.00
11,400.0	91.32	359.59	9,936.5	1,198.2	525.4	1,220.9	0.00	0.00	0.00
11,500.0	91.32	359.59	9,934.2	1,298.2	524.7	1,320.7	0.00	0.00	0.00
11,600.0	91.32	359.59	9,931.9	1,398.2	524.0	1,420.5	0.00	0.00	0.00
11,700.0	91.32	359.59	9,929.6	1,498.1	523.3	1,520.4	0.00	0.00	0.00
11,800.0	91.32	359.59	9,927.3	1,598.1	522.6	1,620.2	0.00	0.00	0.00
11,900.0	91.32	359.59	9,925.0	1,698.1	521.8	1,720.0	0.00	0.00	0.00
12,000.0	91.32	359.59	9,922.7	1,798.1	521.1	1,819.9	0.00	0.00	0.00
12,100.0 12,200.0 12,300.0 12,378.0 PPP2: 263	91.32 91.32 91.32 91.32 9' FSL & 397' F	359.59 359.59 359.59 359.59 FEL (Sec 9)	9,920.4 9,918.2 9,915.9 9,914.1	1,898.0 1,998.0 2,098.0 2,176.0	520.4 519.7 518.9 518.4	1,919.7 2,019.5 2,119.4 2,197.3	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
12,400.0	91.32	359.59	9,913.6	2,197.9	518.2	2,219.2	0.00	0.00	0.00
12,500.0	91.32	359.59	9,911.3	2,297.9	517.5	2,319.0	0.00	0.00	0.00
12,600.0	91.32	359.59	9,909.0	2,397.9	516.8	2,418.9	0.00	0.00	0.00
12,700.0	91.32	359.59	9,906.7	2,497.9	516.0	2,518.7	0.00	0.00	0.00
12,800.0	91.32	359.59	9,904.4	2,597.8	515.3	2,618.5	0.00	0.00	0.00
12,900.0	91.32	359.59	9,902.1	2,697.8	514.6	2,718.4	0.00	0.00	0.00
13,000.0	91.32	359.59	9,899.8	2,797.8	513.9	2,818.2	0.00	0.00	0.00
13,100.0	91.32	359.59	9,897.5	2,897.7	513.1	2,918.0	0.00	0.00	0.00
13,200.0	91.32	359.59	9,895.2	2,997.7	512.4	3,017.9	0.00	0.00	0.00
13,300.0	91.32	359.59	9,892.9	3,097.7	511.7	3,117.7	0.00	0.00	0.00
13,400.0	91.32	359.59	9,890.6	3,197.7	511.0	3,217.6	0.00	0.00	0.00
13,500.0	91.32	359.59	9,888.3	3,297.6	510.2	3,317.4	0.00	0.00	0.00
13,600.0	91.32	359.59	9,886.0	3,397.6	509.5	3,417.2	0.00	0.00	0.00
13,700.0	91.32	359.59	9,883.7	3,497.6	508.8	3,517.1	0.00	0.00	0.00
13,800.0	91.32	359.59	9,881.4	3,597.5	508.1	3,616.9	0.00	0.00	0.00
13,900.0	91.32	359.59	9,879.1	3,697.5	507.3	3,716.7	0.00	0.00	0.00
14,000.0	91.32	359.59	9,876.8	3,797.5	506.6	3,816.6	0.00	0.00	0.00

Planning Report

Database: Company:

Hobbs

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Cow Bell 9-4 B3MD Fed Com 1H

Well:

Project:

Site:

Wellbore: BHL: 100' FNL & 400' FEL (Sec 4) Design: Design #1

Sec 09, T19S, R34E

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:**

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Minimum Curvature

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,100.0	91.32	359.59	9,874.5	3,897.4	505.9	3,916.4	0.00	0.00	0.00
14,200.0	91.32	359.59	9,872.2	3,997.4	505.2	4,016.2	0.00	0.00	0.00
14,300.0	91.32	359.59	9,869.9	4,097.4	504.5	4,116.1	0.00	0.00	0.00
14,400.0	91.32	359.59	9,867.6	4,197.4	503.7	4,215.9	0.00	0.00	0.00
14,500.0	91.32	359.59	9,865.3	4,297.3	503.0	4,315.7	0.00	0.00	0.00
14,600.0	91.32	359.59	9,863.0	4,397.3	502.3	4,415.6	0.00	0.00	0.00
14,700.0	91.32	359.59	9,860.7	4,497.3	501.6	4,515.4	0.00	0.00	0.00
14,800.0	91.32	359.59	9,858.4	4,597.2	500.8	4,615.2	0.00	0.00	0.00
14,900.0	91.32	359.59	9,856.1	4,697.2	500.1	4,715.1	0.00	0.00	0.00
15,000.0	91.32	359.59	9,853.8	4,797.2	499.4	4,814.9	0.00	0.00	0.00
15,100.0	91.32	359.59	9,851.5	4,897.2	498.7	4,914.7	0.00	0.00	0.00
15,200.0	91.32	359.59	9,849.2	4,997.1	497.9	5,014.6	0.00	0.00	0.00
15,300.0	91.32	359.59	9,846.9	5,097.1	497.2	5,114.4	0.00	0.00	0.00
15,400.0	91.32	359.59	9,844.6	5,197.1	496.5	5,214.3	0.00	0.00	0.00
15,500.0	91.32	359.59	9,842.3	5,297.0	495.8	5,314.1	0.00	0.00	0.00
15,600.0	91.32	359.59	9,840.0	5,397.0	495.0	5,413.9	0.00	0.00	0.00
15,700.0	91.32	359.59	9,837.7	5,497.0	494.3	5,513.8	0.00	0.00	0.00
15,800.0	91.32	359.59	9,835.4	5,597.0	493.6	5,613.6	0.00	0.00	0.00
15,900.0	91.32	359.59	9,833.1	5,696.9	492.9	5,713.4	0.00	0.00	0.00
16,000.0	91.32	359.59	9,830.8	5,796.9	492.1	5,813.3	0.00	0.00	0.00
16,100.0	91.32	359.59	9,828.5	5,896.9	491.4	5,913.1	0.00	0.00	0.00
16,200.0	91.32	359.59	9,826.2	5,996.8	490.7	6,012.9	0.00	0.00	0.00
16,300.0	91.32	359.59	9,823.9	6,096.8	490.0	6,112.8	0.00	0.00	0.00
16,337.4	91.32	359.59	9,823.1	6,134.2	489.7	6,150.1	0.00	0.00	0.00
	0' FSL & 395' F								
16,400.0	91.32	359.59	9,821.6	6,196.8	489.2	6,212.6	0.00	0.00	0.00
16,500.0	91.32	359.59	9,819.3	6,296.8	488.5	6,312.4	0.00	0.00	0.00
16,600.0	91.32	359.59	9,817.0	6,396.7	487.8	6,412.3	0.00	0.00	0.00
16,700.0	91.32	359.59	9,814.7	6,496.7	487.1	6,512.1	0.00	0.00	0.00
16,800.0	91.32	359.59	9,812.4	6,596.7	486.3	6,611.9	0.00	0.00	0.00
16,900.0	91.32	359.59	9,810.1	6,696.6	485.6	6,711.8	0.00	0.00	0.00
17,000.0	91.32	359.59	9,807.8	6,796.6	484.9	6,811.6	0.00	0.00	0.00
17,100.0	91.32	359.59	9,805.5	6,896.6	484.2	6,911.4	0.00	0.00	0.00
17,200.0	91.32	359.59	9,803.2	6,996.5	483.5	7,011.3	0.00	0.00	0.00
17,300.0 17,400.0 17,500.0 17,600.0 17,700.0	91.32 91.32 91.32 91.32 91.32	359.59 359.59 359.59 359.59	9,800.9 9,798.6 9,796.3 9,794.0 9,791.7	7,096.5 7,196.5 7,296.5 7,396.4 7,496.4	482.7 482.0 481.3 480.6 479.8	7,111.1 7,211.0 7,310.8 7,410.6 7,510.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,800.0	91.32	359.59	9,789.4	7,596.4	479.1	7,610.3	0.00	0.00	0.00
17,900.0	91.32	359.59	9,787.1	7,696.3	478.4	7,710.1	0.00	0.00	0.00
18,000.0	91.32	359.59	9,784.8	7,796.3	477.7	7,810.0	0.00	0.00	0.00
18,100.0	91.32	359.59	9,782.5	7,896.3	476.9	7,909.8	0.00	0.00	0.00
18,200.0	91.32	359.59	9,780.2	7,996.3	476.2	8,009.6	0.00	0.00	0.00
18,300.0	91.32	359.59	9,777.9	8,096.2	475.5	8,109.5	0.00	0.00	0.00
18,400.0	91.32	359.59	9,775.6	8,196.2	474.8	8,209.3	0.00	0.00	0.00
18,500.0	91.32	359.59	9,773.4	8,296.2	474.0	8,309.1	0.00	0.00	0.00
18,600.0	91.32	359.59	9,771.1	8,396.1	473.3	8,409.0	0.00	0.00	0.00
18,700.0	91.32	359.59	9,768.8	8,496.1	472.6	8,508.8	0.00	0.00	0.00
18,800.0	91.32	359.59	9,766.5	8,596.1	471.9	8,608.6	0.00	0.00	0.00
18,900.0	91.32	359.59	9,764.2	8,696.1	471.1	8,708.5	0.00	0.00	0.00
19,000.0	91.32	359.59	9,761.9	8,796.0	470.4	8,808.3	0.00	0.00	0.00
19,100.0	91.32	359.59	9,759.6	8,896.0	469.7	8,908.1	0.00	0.00	0.00
19,200.0	91.32	359.59	9,757.3	8,996.0	469.0	9,008.0	0.00	0.00	0.00

Planning Report

Database: Company:

Hobbs

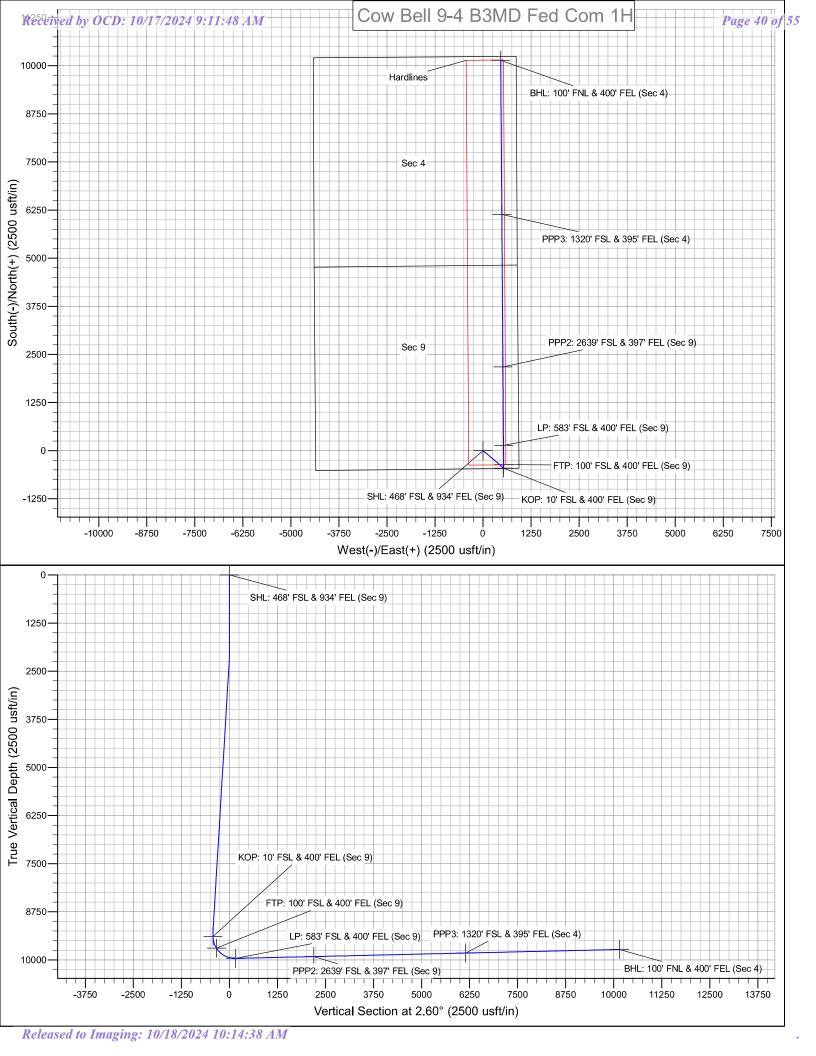
Mewbourne Oil Company

Project: Lea County, New Mexico NAD 83 Cow Bell 9-4 B3MD Fed Com 1H Site:

Well: Sec 09, T19S, R34E

Wellbore: BHL: 100' FNL & 400' FEL (Sec 4) Design: Design #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:


Survey Calculation Method:

Site Cow Bell 9-4 B3MD Fed Com 1H WELL @ 3863.0usft (Original Well Elev) WELL @ 3863.0usft (Original Well Elev)

Minimum Curvature

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,300.0	91.32	359.59	9,755.0	9,095.9	468.2	9,107.8	0.00	0.00	0.00
19,400.0 19,500.0 19,600.0 19,700.0 19,800.0	91.32 91.32 91.32	359.59 359.59 359.59 359.59 359.59	9,752.7 9,750.4 9,748.1 9,745.8 9,743.5	9,195.9 9,295.9 9,395.9 9,495.8 9,595.8	467.5 466.8 466.1 465.4 464.6	9,207.7 9,307.5 9,407.3 9,507.2 9,607.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,900.0 20,000.0 20,100.0 20,200.0 20,300.0	91.32 91.32 91.32	359.59 359.59 359.59 359.59 359.59	9,741.2 9,738.9 9,736.6 9,734.3 9,732.0	9,695.8 9,795.7 9,895.7 9,995.7 10,095.6	463.9 463.2 462.5 461.7 461.0	9,706.8 9,806.7 9,906.5 10,006.3 10,106.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
20,342.7 BHL: 100	91.32 ' FNL & 400' FE	359.59 E L (Sec 4)	9,731.0	10,138.3	460.7	10,148.8	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 468' FSL & 934 - plan hits target - Point		0.00	0.0	0.0	0.0	607,911.50	779,389.00	32.6688096	-103.5597375
KOP: 10' FSL & 400' - plan hits target - Point		0.00	9,388.0	-452.1	537.4	607,459.40	779,926.40	32.6675563	-103.5580019
FTP: 100' FSL & 400 - plan hits target - Point		0.00	9,696.3	-362.1	536.7	607,549.40	779,925.75	32.6678037	-103.5580019
BHL: 100' FNL & 400 - plan hits target - Point		0.00	9,731.0	10,138.3	460.7	618,049.80	779,849.70	32.6966651	-103.5579997
PPP3: 1320' FSL & 3 - plan hits target - Point		0.00	9,823.1	6,134.2	489.7	614,045.70	779,878.70	32.6856594	-103.5580006
PPP2: 2639' FSL & 3 - plan hits target - Point		0.00	9,914.1	2,176.0	518.4	610,087.50	779,907.36	32.6747799	-103.5580014
LP: 583' FSL & 400' I - plan hits target - Point	0.00	0.00	9,961.0	134.2	533.2	608,045.70	779,922.15	32.6691678	-103.5580018

Mewbourne Oil Company, Cow Bell 9/4 B3MD Fed Com 1H Sec 9, T19S, R34E

SHL: 468' FSL 934' FEL (Sec 9) BHL: 100' FNL 400' FEL (Sec 4)

١	Operator Name:	Property Name:	Well Number
	Mewbourne Oil Company	Cow Bell 9/4 B3MD Fed Com	1H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County	
P	9	19	34	-	10'	FSL	400'	FEL	Lea	
		Latitude				Longitude				
32.6675563	3				-103.55800	83				

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County	
P	9	19	34	-	100'	FSL	400'	FEL	Lea	
		Latitude	-			Longitude				
32.6678036					-103.55800	83				

Last Take Point (LTP)

	ot rune r	Cime (E11	,								
	UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County	
	A	4	19	34	_	100'	FNL	400'	FEL	Lea	
			Latitude				Longitude				
32.	.696665					-103.55799	98			83	

32.696665	-103.5579998	83
Is this well the defining well for the Horizontal Is this well an infill well?	Spacing Unit? Y	
If infill is yes please provide API if available, (Spacing Unit.	Operator Name and well number for Defining well for Horizontal	
API#		
Operator Name:	Property Name:	Well Number

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: MEWBOURNE OIL COMPANY

WELL NAME & NO.: COW BELL 9/4 B3MD FED COM 1H

APD ID: 10400089811

LOCATION: Section 9, T19S, R34E. NMP.

COUNTY: Lea County, New Mexico

COA

H ₂ S	0	No	• Yes			
Potash /	None	O Secretary	O R-111-Q	☐ Open Annulus		
WIPP				□ WIPP		
Cave / Karst	• Low	O Medium	O High	Critical		
Wellhead	Conventional	Multibowl	O Both	Diverter		
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	DV Tool		
Special Req	Capitan Reef	☐ Water Disposal	✓ COM	☐ Unit		
Waste Prev.	Self-Certification	O Waste Min. Plan	• APD Submitted 1	prior to 06/10/2024		
Additional	✓ Flex Hose	☐ Casing Clearance	☐ Pilot Hole	Break Testing		
Language	\square Four-String	Offline Cementing	▼ Fluid-Filled			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated **AT SPUD**. As a result, the Hydrogen Sulfide area must meet **43 CFR 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING DESIGN

Primary Casing Program

- 1. The 13-3/8-inch surface casing shall be set at approximately 1805 ft. (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or **500 psi compressive strength**, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch 1st intermediate casing shall be set in a competent bed (the base of Tansill/Yates formation) at approximately 3,500 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate, see B.1.a, c-d above.

Note: Excess cement is below the BLM's recommendation of 25%. More cement might be needed.

Note: Intermediate casing must be kept fluid-filled to meet the BLM's minimum collapse design requirement.

3. Operator has proposed to set **7 in.** production casing at approximately **9,422 ft.** (9,388 ft. TVD). The minimum required fill of cement behind the **7 in.** production casing is:

Option 1 (Single Stage): Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

Option 2 (Two-stage): Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. **First stage to DV tool:** Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool: Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. If cement does not circulate, contact the appropriate BLM office.
- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back at least 100 feet into previous casing string. Operator shall provide method of verification.

Alternate Casing Program

1. The 13-3/8-inch surface casing shall be set at approximately 1805 ft. (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered set casing at least 25 ft. above the salt.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> hours or 500 psi compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch 1st intermediate casing shall be set in a competent bed (the base of Tansill/Yates formation) at approximately 3,500 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate, see B.1.a, c-d above.

Note: Excess cement is below the BLM's recommendation of 25%. More cement might be needed.

Note: Intermediate casing must be kept fluid-filled to meet the BLM's minimum collapse design requirement.

3. Operator has proposed to set **7 in.** production casing at approximately **10,336 ft.** (9,961 ft. TVD). The minimum required fill of cement behind the **7 in.** production casing is:

<u>Option 1 (Single Stage):</u> Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

<u>Option 2 (Two-stage)</u>: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. **First stage to DV tool:** Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool: Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. If cement does not circulate, contact the appropriate BLM office.
- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back at least 100 feet into previous casing string. Operator shall provide method of verification.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Surface and intermediate(s) intervals**. Offline cementing should commence within 24 hours of landing the casing for the interval. Notify the BLM 4hrs prior to cementing offline at **Lea County:** 575-689-5981.

C. PRESSURE CONTROL

- 1. Variance approved to use **flex line** from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a **multi-bowl wellhead** assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi. The BOP/BOPE and annular preventer shall be pressure-tested in accordance with **title 43 CFR 3172 and API Standard 53.**
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in the title 43 CFR 3172.6(b)(9) must be followed.

BOPE Break Testing Variance (Approved)

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.

- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981.

1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.

- a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
- b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the doghouse or stairway area.
- **3.** For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- **4.** If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (Only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing.

- Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crewintensive operations.

SA 10/11/2024

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Center	of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office Fax 2 nd Fax	575-393-5905 575-397-6252 575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
<u> </u>	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Operator Name: MEWBOURNE OIL COMPANY

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: GARBAGE

Waste content description: Garbage & Trash

Amount of waste: 1500 pounds

Waste disposal frequency: One Time Only

Safe containment description: Enclosed trash trailer

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.) Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Operator Name: MEWBOURNE OIL COMPANY

Well Name: COW BELL 9/4 B3MD FED COM Well Number: 1H

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

Cow_Bell_9_4_B3MD_Fed_Com_1H_ProductionFacility_20240807083636.pdf

Comments: NONE

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Cow Bell 9/4 Fed Com

Multiple Well Pad Number: 4

Recontouring

Drainage/Erosion control construction: NONE

Drainage/Erosion control reclamation: NONE

Well pad proposed disturbance Well pad interim reclamation (acres): Well pad long term disturbance

(acres): 4.22 1.1 (acres): 3.12

Road proposed disturbance (acres): Road interim reclamation (acres): 0 Road long term disturbance (acres): 0

0.972

Powerline proposed disturbance Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0 (acres): 0

Pipeline proposed disturbance Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0

Other proposed disturbance (acres): 0 Other interim reclamation (acres): 0 Other long term disturbance (acres): 0

Total proposed disturbance: 5.192 Total interim reclamation: 1.1 Total long term disturbance: 3.12

Disturbance Comments: In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ration, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To see the area, the proper BLM seed mixture, free of noxious weeks, will be used.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 393373

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270 Hobbs, NM 88241	Action Number: 393373
	Action Type: [C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require administrative order for non-standard spacing unit for Quail Ridge BS	10/18/2024
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	10/18/2024
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	10/18/2024
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	10/18/2024
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	10/18/2024
pkautz	If cement does not circulate on any string, a CBL is required for that string of casing	10/18/2024