Received 1. Nymperi/192724 10:21:42 AM

Type of Well: OIL WELL

Allottee or Tribe Name:

Page 1 of 50

Lease Number: NMNM033955

Unit or CA Name: BIG EDDY

Unit or CA Number: NMNM68294X

US Well Number: 3002552505

Operator: XTO PERMIAN OPERATING

LLC

Notice of Intent

Sundry ID: 2776431

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 02/22/2024 Time Sundry Submitted: 03:53

Date proposed operation will begin: 02/22/2024

Procedure Description: XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD. Changes to include SHL, FTP, LTP, BHL, Casing sizes, Cement, and Proposed total Depth. The API number for this well is 30-025-52505. FROM: TO: SHL: 470' FSL & 915' FWL OF SECTION 22-T20S-R32E 490' FSL & 915' FWL OF SECTION 22-T20S-R32E FTP: 2630' FNL & 100' FEL OF SECTION 21-T20S-R32E 760' FSL & 100' FEL OF SECTION 21-T20S-R32E TP: 2630' FNL & 100' FWL OF SECTION 19-T20S-R32E 760' FSL & 100' FWL OF SECTION 19-T20S-R32E BHL: 2630' FNL & 50' FWL OF SECTION 19-T20S-R32E 760' FSL & 50' FWL OF SECTION 19-T20S-R32E The proposed total depth is changing from 27256' MD; 10926' TVD to 27957.86' MD; 11801' TVD. XTO Permian Operating, LLC. respectfully requests permission for a primary and a contingency drilling program for this well. Primary will be a 4-string design and the contingency will be a 5-string design that will be used in case of wellbore instability. A saturated salt brine will be utilized while drilling through the salt formations. See attached drilling program for the primary and contingency designs, with updated casing design, and cement program. Attachments: C-102, Drilling Plan (Primary 4-string design), Drilling Plan (Contingency 5-string design) Directional Plan, Non-API Spec documents for Production Casing, MBS Diagram (Primary 4-string design), MBS diagram (Contingency 5-string design). All Variances were approved with the Original APD.

NOI Attachments

Procedure Description

BEU_BB_Grevious_100H___Sundry_attachments_10252024_20241025115544.pdf

NMNM68294X

US Well Number: 3002552505 Operator: XTO PERMIAN OPERATING

LĹC

Conditions of Approval

Additional

BEU_BB_Grievous_100H_COA_20241107131642.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: RICHARD REDUS Signed on: OCT 25, 2024 11:57 AM

Name: XTO PERMIAN OPERATING LLC

Title: Permitting Manager

Street Address: 22777 SPRINGWOODS VILLAGE PARKWAY

City: SPRING State: TX

Phone: (720) 539-1673

Email address: RICHARD.L.REDUS@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved **Disposition Date:** 11/07/2024

Signature: Chris Walls

Form 3160-5 (June 2019)

UNITED STATES

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

(Julie 2019)	DEF	PARTMENT OF THE IN	NTERIOR		Ex	pires: October 31, 2021
	BUR	EAU OF LAND MANA	AGEMENT		5. Lease Serial No.	NMNM033955
Do no	t use this t	NOTICES AND REPO form for proposals to Use Form 3160-3 (AF	o drill or to r	e-enter an	6. If Indian, Allottee or Tribe	Name
	SUBMIT IN	TRIPLICATE - Other instru	ctions on page 2	,	7. If Unit of CA/Agreement, BIG EDDY/NMNM68294X	Name and/or No.
1. Type of Well Oil Well	Gas V	Well Other			8. Well Name and No.	
2. Name of Operator X1	_				9. API Well No. 300255250	E
			3b. Phone No. (in	clude avea code		
54.71ddress 6401 HOL	IDAY HILL R	O' ID DED G O, WIIDE, II ID,	(432) 683-2277	inac area coac,	SALT LAKE BONE SPRING	
4. Location of Well (Foo	_	R.,M., or Survey Description)			11. Country or Parish, State LEA/NM	
	12. CHE	CCK THE APPROPRIATE BC	X(ES) TO INDIC	CATE NATURE	OF NOTICE, REPORT OR OT	THER DATA
TYPE OF SUBM	ISSION			TYF	E OF ACTION	
✓ Notice of Intent		Acidize Alter Casing	Deepen Hydraul	ic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Repo	rt	Casing Repair Change Plans	=	nstruction l Abandon	Recomplete Temporarily Abandon	Other
Final Abandonme	ent Notice	Convert to Injection	Plug Ba		Water Disposal	
FTP, LTP, BHL, FROM: TO: SHL: 470' FSL & FTP: 2630' FNL LTP: 2630' FNL	Casing sizes, 915' FWL OF & 100' FEL O & 100' FWL C	respectfully requests appropriate to the comment, and Proposed to the comment, and Proposed to the comment of t	tal Depth. The A 5 490' FSL & 915 E 760' FSL & 10 E 760' FSL & 10	PI number for 5' FWL OF SEC 0' FEL OF SEC 10' FWL OF SE	OTION 22-T20S-R32E OTION 21-T20S-R32E OTION 19-T20S-R32E	Changes to include SHL,
The proposed to	tal depth is ch	nanging from 27256 MD; 10	926 TVD to 279	57.86 MD; 118	801 TVD.	
XTO Permian Op Continued on pag	•		nission for a prim	nary and a con	tingency drilling program for t	his well. Primary will be a
14. I hereby certify that t	he foregoing is	strue and correct. Name (Prin	nted/Typed)	5		
RICHARD REDUS / I	Ph: (720) 539-	-1673	Ti	Permitting ttle	Manager	
Signature (Electro	nic Submissic	on)	D	ate	10/25/2	2024
		THE SPACE	FOR FEDEF	RAL OR STA	ATE OFICE USE	
Approved by						11/07/005
CHRISTOPHER WA	LLS / Ph: (57	5) 234-2234 / Approved		Title Petro	leum Engineer	11/07/2024 Date
certify that the applicant	holds legal or e	hed. Approval of this notice d equitable title to those rights induct operations thereon.			RLSBAD	
Title 18 H S C Section 10	001 and Title 4	3 II S C Section 1212 make i	t a crime for any	nerson knowing	y and willfully to make to any o	lenartment or agency of the United States

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

4-string design and the contingency will be a 5-string design that will be used in case of wellbore instability.

A saturated salt brine will be utilized while drilling through the salt formations.

See attached drilling program for the primary and contingency designs, with updated casing design, and cement program.

Attachments: C-102, Drilling Plan (Primary 4-string design), Drilling Plan (Contingency 5-String design) Directional Plan, Non-API Spec documents for Production Casing, MBS Diagram (Primary 4-string design), MBS diagram (Contingency 5-string design), Well bore diagram (Primary 4-String design), Well bore diagram (Contingency 5-string design). All Variances were approved with the Original APD.

Location of Well

0. SHL: SWSW / 470 FSL / 915 FWL / TWSP: 20S / RANGE: 32E / SECTION: 22 / LAT: 32.552749 / LONG: -103.759687 (TVD: 0 feet, MD: 0 feet)

PPP: SENE / 2630 FNL / 100 FEL / TWSP: 20S / RANGE: 32E / SECTION: 21 / LAT: 32.558722 / LONG: -103.762974 (TVD: 10926 feet, MD: 11536 feet)

BHL: LOT 2 / 2630 FNL / 50 FWL / TWSP: 20S / RANGE: 32E / SECTION: 19 / LAT: 32.558908 / LONG: -103.813996 (TVD: 10865 feet, MD: 27256 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO

LEASE NO.: NMNM033955

LOCATION: Sec. 22, T.20 S, R 32 E

COUNTY: Lea County, New Mexico

WELL NAME & NO.: Big Eddy Unit BB Grievous 101H

SURFACE HOLE FOOTAGE: 490'/S & 915'/W

BOTTOM HOLE FOOTAGE: 760'/S & 50'/W

Changes approved through engineering via **Sundry 2776431**_ on 11-7-2024__. Any previous COAs not addressed within the updated COAs still apply.

COA

H_2S	•	No	0	Yes
Potash /	None	Secretary	• R-111-Q	Open Annulus
WIPP	4-String Design: Open 1	st Int x Production Casin	g (ICP 2 above Relie	f Zone)
Cave / Karst	• Low	Medium	O High	Critical
Wellhead	Conventional	Multibowl	O Both	Diverter
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	☐ DV Tool
Special Req	Capitan Reef	☐ Water Disposal	\square COM	Unit
Waste Prev.	○ Self-Certification	O Waste Min. Plan	• APD Submitted I	orior to 06/10/2024
Additional	▼ Flex Hose	Casing Clearance	☐ Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	☐ Fluid-Filled	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

APD is within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the updated order.

B. CASING

1. The **20** inch surface casing shall be set at approximately **1237** feet (a minimum of **25** feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 13-3/8 inch 1st Intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

- ❖ Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the Capitan interval)
 - Switch to freshwater mud to protect the Capitan Reef and use freshwater mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - O Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The minimum required fill of cement behind the 9-5/8 inch 2nd Intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

- 4. The minimum required fill of cement behind the 6 inch production casing is:
 - Cement should tie-back 500 feet into the previous casing but not higher than USGS
 Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements.
 Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 1. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.

- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable.

Casing Clearance

String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing easing set depth or grade to meet clearance requirement.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

- requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

- open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approved by Zota Stevens on 11/7/2024 575-234-5998 / zstevens@blm.gov

Type:	☑ Amended Report			l
	☐ As Drilled	Page 1	5 of 5	

WELL.	LOCA	TION	INFOR	MATIO

API Number	Pool Code	Pool Name		
30-025-52505	53570	SALT LAKE;WOLFCAMP		
Property Code	Property Name		Well Number	
335210	BIG EDDY	100H		
OGRID No.	Operator Name		Ground Level Elevation	
373075 XTO PERMIAN OPERATING, LLC.		AN OPERATING, LLC.	3,529'	
Surface Owner: State Fee Tribal Federal		Mineral Owner: □State □Fee □Tribal ☒F	ederal	

Surface Hole Location

UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
М	22	208	32E		490 FSL	915 FWL	32.552	2804	-103.759687	LEA
,		*			Bottom H	ole Location				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
	19	208	32E	4	760 FSL	50 FWL	32.553	8648	-103.813998	LEA
		N:	,	<u>.</u>	,		h		9	
Dedicate	ed Acres	Infill or Defin	ing Well	Defining	Well API	Overlapping Spacing U	Jnit (Y/N)	Consolio	lation Code	
95	9.32	INF	ILL			N			U	
Order Numbers.				Well Setbacks are und	er Common C	wnership	Yes □ No			

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
М	22	20\$	32E		759 FSL	616 FWL	32.553544	-103.760656	LEA
	First Take Point (FTP)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
	21	208	32E		760 FSL	100 FEL	32.553549	-103.762980	LEA
Р	21	203	322		700132	TOOTEL	02.00079	-100.702300	LLA
_ P	21	205	JZL			Point (LTP)	02.000040	-100.702300	LLA
UL	Section	Township	Range	Lot			Latitude	Longitude	County

Ground Elevation Unitized Area of Area of Interest Spacing Unit Type: ☑ Horizontal ☐ Vertical NMNM105467880 3,529

OPERATOR CERTIFICATIONS

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or a voluntary pooling agreement or a compulsory pooling order of heretofore entered by the division.

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or information) in which any part of the well's completed interval will be located or obtained a $compulsory\ pooling\ order\ from\ the\ division.$

Srinivas Naveen Signature Date

Released to Strangingsvid 15 GM 24 4th: 24:37 AM

GRIEVOUS 100H\DWG\GRIEVOUS 100H C-102.dwg

LEA\Wells\-07

BLUEBIRD

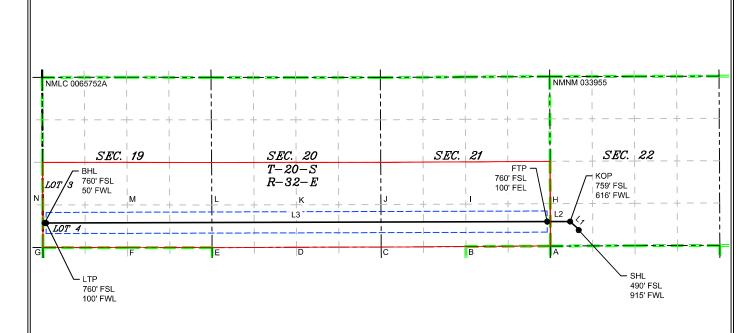
BEU

Eddy Lea\.01

Big Eddy Unit

SURVEYOR CERTIFICATIONS

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief



Signature and Seal of Professional Surveyor

MARK DILLON HARP 23786

9/18/2024

Received by OCD: 11/15/2024 10:21:42 AM

LINE TABLE					
LINE	AZIMUTH	LENGTH			
L1	311°44'14"	402.05'			
L2	269*50'19"	716.19'			
L3	269*50'16"	15,719.79'			

LOT ACREAGE TABLE SECTION 19 T-20-S, R-32-E LOT 3 = 39.64 ACRES LOT 4 = 39.68 ACRES

LINE TAB	LE		LEG	END
AZIMUTH	LENGTH			SECTION LINE
311°44'14"	402.05'			PROPOSED WELL BORE
269*50'19"	716.19'	=====	==	NEW MEXICO MINERAL LEASE
269*50'16"	15,719.79			330' BUFFER
				ALLOCATION AREA

COORDINATE TABLE							
SHL (I	NAD 83 NME	SHL (NAD 27 NME)					
Y =	565,316.9	N	Y =	565,255.3	N		
X =	718,087.2	Е	X =	676,907.4	Ε		
LAT. =	32.552804	°N	LAT. =	32.552683	°N		
LONG. =	103.759687	°W	LONG. =	103.759188	°W		
KOP (NAD 83 NME	Ξ)	KOP (NAD 27 NME	:)		
Y =	565,584.5	Ν	Y =	565,522.9	Ν		
X =	717,787.2	Е	X =	676,607.4	Ε		
LAT. =	32.553544	°N	LAT. =	32.553424	°N		
LONG. =	103.760656	°W	LONG. =	103.760157	°W		
FTP (I	VAD 83 NME)	FTP (NAD 27 NME)				
Y =	565,582.5	Ν	Y =	565,520.9	Ν		
X =	717,071.0	Е	X =	675,891.2	Е		
LAT. =	32.553549	°N	LAT. =	32.553429	°N		
LONG. =	103.762980	°W	LONG. =	103.762481	°W		
LTP (I	VAD 83 NME	()	LTP (I	VAD 27 NME)		
Y =	565,537.9	Ν	Y =	565,476.1	Ν		
X =	701,401.3	Е	X =	660,221.7	Е		
LAT. =	32.553647	°N	LAT. =	32.553526	°N		
LONG. =	103.813836	°W	LONG. =	103.813335	°W		
BHL (NAD 83 NME	.)	BHL (I	NAD 27 NME	:)		
Y =	565,538.0	N	Y =	565,476.2	Ν		
Imoging:	1464533924	10 <u>:</u> 2	<i>4:3</i> ∑ <i>AM</i>	660,171.7	Ε		
IAT =	32 553648	٥N	ΙΔT =	32 553527	°N		

COF	RNER COOF	DIN	ATES (NA	AD 83 NME)	
A - Y =	567,464.0	N	A - X =	717,162.8	Е
B-Y=	567,449.0	Ν	B-X=	714,516.0	Е
C - Y =	567,434.0	N	C - X =	711,863.7	Е
D-Y=	567,430.9	N	D - X =	709,219.7	Е
E-Y=	567,427.7	Ν	E-X=	706,578.1	Е
F-Y=	567,430.1	Ν	F-X=	703,931.3	Ε
G-Y=	567,432.4	Ν	G-X=	701,292.5	Ε
H-Y=	566,143.6	Ν	H - X =	717,168.5	Ε
I-Y=	566,128.3	Ν	I - X =	714,522.2	Ε
J-Y=	566,112.3	Ν	J-X=	711,871.8	Е
K-Y=	566,108.2	N	K - X =	709,227.5	Ε
L-Y=	566,100.1	Ν	L-X=	706,585.9	Е
M - Y =	566,101.1	N	M - X =	703,940.2	Ε
N - Y =	566,105.2	Ν	N - X =	701,298.7	Е
COF	NER COOF	DIN	ATES (NA	AD 27 NME)	
A - Y =	567,402.4	Ν	A - X =	675,983.0	Е
B-Y=	567,387.3	Ν	B - X =	673,336.3	Е
C - Y =	567,372.2	Ν	C - X =	670,684.1	Ε
D-Y=	567,369.1	Ν	D - X =	668,040.1	Е
E-Y=	567,366.0	N	E - X =	665,398.5	Е
F-Y=	567,368.3	Ν	F-X=	662,751.7	Е
G-Y=	567,370.6	N	G-X=	660,113.0	Е
H-Y=	566,081.9	N	H-X=	675,988.8	Е
I-Y=	566,066.6	N	I - X =	673,342.5	Е
J-Y=	566,050.6	N	J-X=	670,692.2	Е

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc. BIG EDDY UNIT BB GRIEVOUS 100H Projected TD: 27957.86' MD / 11801' TVD SHL: 490' FSL & 915' FWL , Section 22, T20S, R32E BHL: 760' FSL & 50' FWL , Section 19, T20S, R32E Lea County, NM

1. Geologic Name of Surface Formation

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	966'	Water
Top of Salt	1337'	Water
Base of Salt	2701'	Water
Capitan	3011'	Water
Delaware	4981'	Water/Oil/Gas
Brushy Canyon	6221'	Water
Bone Spring	7731'	Water/Oil/Gas
1st Bone Spring Ss	8789'	Water/Oil/Gas
2nd Bone Spring Ss	9321'	Water/Oil/Gas
3rd Bone Spring Ss	10536'	Water/Oil/Gas
Wolfcamp	10821'	Water/Oil/Gas
Wolfcamp X	10843'	Water/Oil/Gas
Wolfcamp Y	10901'	Water/Oil/Gas
Wolfcamp A	10954'	Water/Oil/Gas
Wolfcamp C	11031'	Water/Oil/Gas
Wolfcamp F	11225'	Water/Oil/Gas
Target/Land Curve	11801'	Water/Oil/Gas

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The fresh water sands will be protected by setting surface casing above Top of Salt and circulating cement back to surface. The salt will be isolated by setting first intermediate casing below base of salt and circulating cement to surface. The second intermediate will isolate the Capitan Reef up ~ 75' inside Delaware formation and cemented to surface. A 8.5/8.75 inch curve and lateral hole will be drilled to TD and 6 inch production casing will be set at TD cemented in one stage with estimated TOC ~7700 ft (Base of Brushy Canyon)

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
24	0' – 1237'	20	94	J-55	BTC	New	2.51	0.97	9.26
17.5	0' – 2801'	13.375	54.5	J-55	втс	New	2.57	1.33	5.95
12.25	0' – 2901'	9.625	40	HC L-80	втс	New	1.07	3.38	4.55
12.25	2901' – 5031'	9.625	40	HC L-80	втс	New	1.07	5.84	10.75
8.75 – 8.5	0' - 27957.86'	6	26	P-110	TenarisHydril Wedge	New	1.17	1.70	2.52

XTO will keep surface casing fluid filled to meet BLM's collapse requirement.

*Non-API Standard Spec Sheet Attached

Wellhead:

Permanent Wellhead Multibowl System for 4 String desing as per attachement.

^{***} Hydrocarbons @ Brushy Canyon
*** Groundwater depth 40' (per NM State Engineers Office).

4. Cement Program

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

Surface Casing: 20, 94 New BTC, J-55 casing to be set at +/- 1237'

Optional Lead: 960 sxs EconoCem-HLTRRC (mixed at 12.8 ppg, 1.87 ft3/sx, 10.13 gal/sx water)

Tail: 420 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 2801'

Lead: 1380 sxs Class C (mixed at 12.6 ppg, 1.88 ft3/sx, 10.13 gal/sx water)

Tail: 230 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 9.625, 40 New casing to be set at +/- 5031'

Lead: 670 sxs Class C (mixed at 12.8 ppg, 1.88 ft3/sx, 15.59 gal/sx water)

TOC: 0'

Tail: 640 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

TOC: Capitan Reef @ 3011

Compressives:

Compressives: 12-hr = 900 psi 24 hr = 1150 ps

XTO requests to pump a single stage cement job on the second intermediate casing string, with slurries pumped conventionally with the first slurry top of cement at Capitan Reef (3011') and the second slurry performed with planned cement from the Capitan Reef to surface.

Production Casing: 6, 26 New TenarisHydril Wedge, P-110 casing to be set at +/- 27957.86'

1375 psi

Optional Lead: 240 sxs NeoCem (mixed at 12.8 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of C 7731 feet Tail: 2060 sxs VersaCem (mixed at 14.5 ppg, 1.61 ft3/sx, 8.38 gal/sx water) Top of Cement: 11113 feet

XTO requests to pump a single stage cement job on the 6" Production casing string pumped conventionally, with calculated

24 hr = 2285 psi

top of cement at 7731' (Base of Brushy Canyon).

12-hr =

In case the initial cement job do not reach the desired top of cement, a post completion bradenhead squeeze will be performed to tied back the 2nd intermediate x production casing annulus TOC into the 2nd intermediate shoe but below of potash interval

2

5. Pressure Control Equipment

The blow out preventer equipment (BOP) that will be RU on top of surf casing wellhead will consist of 2M Hydril. MASP should not exceed 635 psi.

Once the permanent WH is installed on the casing, the blow out preventer equipment (BOP) will consist of 5M Hydril and 10M 3-Ram BOP.

All BOP testing will be done by an independent service company. Operator will test as per BLM CFR43-3172

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and intermediate strings are all batch drilled and completed, XTO will begin drilling the production hole on each of the wells.

A break testing variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss	Additional Comments
INTERVAL	TIOIC OIZC	Widd Type	(ppg)	(sec/qt)	(cc)	Additional Comments
0' - 1237'	24	FW/Native	8.3-8.8	35-40	NC	Fresh water or native water
1237' - 2801'	17.5	Sat salt Brine	10-11	30-32	NC	Fully saturated brine across salado / salt
2801' to 5031'	12.25	FW	8.3-8.8	30-32	NC	FW across Cap Reef
5031' to 27957.86'	8.75 – 8.5	ОВМ	9-13.5	50-60	NC - 20	OBM or Brine depending well conditions.

The necessary mud products for weight addition and fluid loss control will be on location at all times

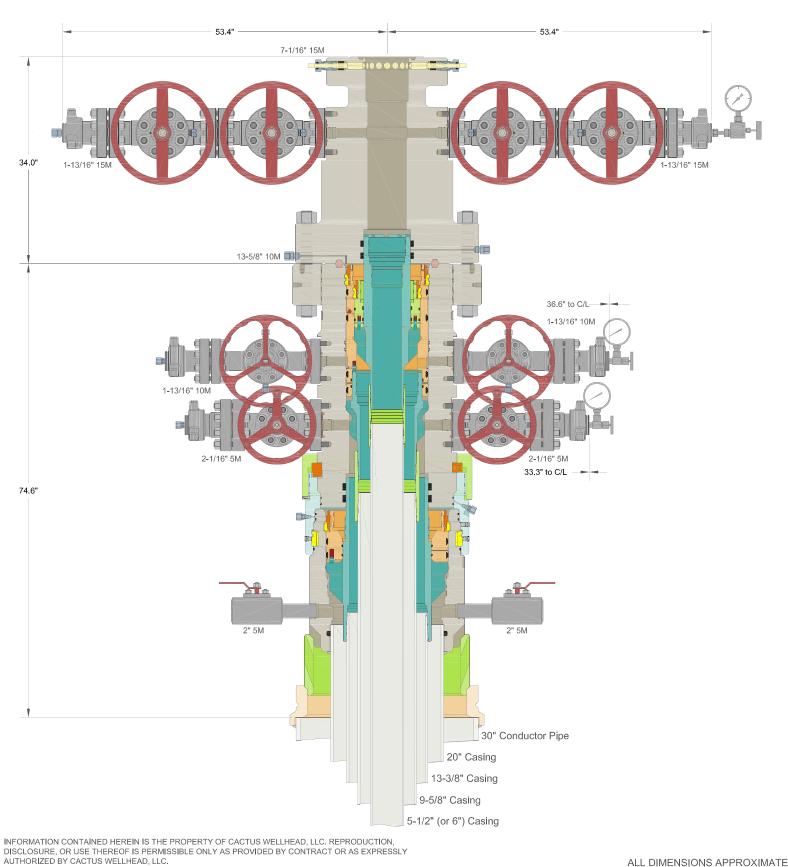
Spud with fresh water/native mud. Drill out from under surface casing. A fully saturated brine will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A Kelly cock will be in the drill string at all times.
- A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times. H2S monitors will be on location when drilling below the 20 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing where necessary. Otherwise, gamma ray will be utilized while actively drilling.


Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 180 to 200 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 7977 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

CACTUS WELLHEAD LLC

30" x 20" x 13-3/8" x 9-5/8" x 5-1/2" (or 6") CRC / MBU-3T-CFL With 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS-SB Tubing Head And 13-3/8", 9-5/8" & 5-1/2" (or 6") Pin Bottom Casing Hangers

XTO ENERGY INC

DELAWARE BASIN DLE 25MAR24 DRAWN

APPRV

HBE0000801 DRAWING NO.

TenarisHydril Wedge 461®

 Coupling
 Pipe Body
 Page 22 of 50

 Grade: P110-CY
 Grade: P110-CY

 Body: White
 1st Band: White

 1st Band: Grey
 2nd Band: Grey

 2nd Band: 3rd Band:

 3rd Band: 4th Band:

 5th Band: 6th Band:

Outside Diameter	6.000 in.	Wall Thickness	0.438 in.	Grade	P110-CY
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	6.000 in.	Wall Thickness	0.438 in.
Nominal Weight	26.00 lb/ft	Plain End Weight	26.04 lb/ft
Drift	4.999 in.	OD Tolerance	API
Nominal ID	5.124 in.		

Performance	
Body Yield Strength	842 x1000 lb
Min. Internal Yield Pressure	14,050 psi
SMYS	110,000 psi
Collapse Pressure	13,680 psi

Connection Data

Geometry	
Connection OD	6.800 in.
Coupling Length	8.914 in.
Connection ID	5.170 in.
Make-up Loss	4.375 in.
Threads per inch	3.40
Connection OD Option	Regular

Performance	
Tension Efficiency	100 %
Joint Yield Strength	842 x1000 lb
Internal Pressure Capacity	14,050 psi
Compression Efficiency	100 %
Compression Strength	842 x1000 lb
Max. Allowable Bending	84.03 °/100 ft
External Pressure Capacity	13,680 psi
Coupling Face Load	306,000 lb

Make-Up Torques	
Minimum	20,000 ft-lb
Optimum	21,000 ft-lb
Maximum	25,200 fHb
Operation Limit Torques	
Operating Torque	52,000 ft-lb
Yield Torque	61,000 ft-lb
Buck-On	
Minimum	25,200 ft-lb
Maximum	26,700 ft-lb
waximum	20,700 140

Notes

In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchangeable

For the lastest performance data, always visit our website: www.tenaris.com
For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any- provided by the user in connection with, or for the purpose of, the Information ortained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com. ©Tenaris 2024. All rights reserved.

PIII/CI

Contingency DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.
BIG EDDY UNIT BB GRIEVOUS 100H
Projected TD: 27957.86' MD / 11801' TVD
SHL: 490' FSL & 915' FWL , Section 22, T20S, R32E
BHL: 760' FSL & 50' FWL , Section 19, T20S, R32E
Lea County, NM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	966'	Water
Top of Salt	1337'	Water
Base of Salt	2701'	Water
Capitan	3011'	Water
Delaware	4981'	Water/Oil/Gas
Brushy Canyon	6221'	Water
Bone Spring	7731'	Water/Oil/Gas
1st Bone Spring Ss	8789'	Water/Oil/Gas
2nd Bone Spring Ss	9321'	Water/Oil/Gas
3rd Bone Spring Ss	10536'	Water/Oil/Gas
Wolfcamp	10821'	Water/Oil/Gas
Wolfcamp X	10843'	Water/Oil/Gas
Wolfcamp Y	10901'	Water/Oil/Gas
Wolfcamp A	10954'	Water/Oil/Gas
Wolfcamp C	11031'	Water/Oil/Gas
Wolfcamp F	11225'	Water/Oil/Gas
Target/Land Curve	11801'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The fresh water sands will be protected by setting surface casing above Top of Salt and circulating cement back to surface. The salt will be isolated by setting first intermediate casing below base of salt and circulating cement to surface. The second intermediate will isolate the Capitan Reef up ~ 75' inside Delaware formation and cemented to surface. The 3rd Intermediate csg will isolate DMG to Wolfcamp A circulating cement to ~300' inside Int 2 csg. A 6.75 inch ourve and lateral hole will be drilled to TD and 5.5 inch production casing will be set at TD cemented in one stage with estimated TOC ~500ft inside previous casing string.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
24	0' – 1237'	20	94	J-55	втс	New	2.51	0.97	9.26
17.5	0' – 2801'	13.375	54.5	J-55	втс	New	2.57	1.33	5.95
12.25	0' – 2901'	9.625	40	HC L-80	втс	New	1.75	3.38	4.55
12.25	2901' – 5031'	9.625	40	HC L-80	BTC	New	1.75	5.84	10.75
8.75 - 8.5	0' - 5181	7.625	29.7	RY P-110	Flush Joint	New	1.76	4.45	1.72
8.75 - 8.5	5181' – 10954'	7.625	29.7	HC L-80	Flush Joint	New	1.28	2.27	2.37
6.75	0' – 10854'	5.5	20	RY P-110	Semi-Premium / Freedom	New	1.05	1.50	1.81
6.75	10854' - 27957.86'	5.5	20	RY P-110	Semi-Flush / Talon	New	1.05	1.39	4.72

XTO will keep surface casing fluid filled to meet BLM's collapse requirement.

Wellhead:

Permanent Wellhead Multibowl System for 5 String desing as per attachement.

^{***} Groundwater depth 40' (per NM State Engineers Office).

^{*}Non-API Standard Casing Specs attached.

4. Cement Program

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

Surface Casing: 20, New casing to be set at +/- 1237*

Optional Lead: 960 sxs EconoCem-HLTRRC (mixed at 12.8 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 420 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi

24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 13.375, New casing to be set at +/- 2801'

Lead: 1380 sxs Class C (mixed at 12.6 ppg, 1.88 ft3/sx, 10.13 gal/sx water)

Tail: 230 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives:

12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 9.625, New casing to be set at +/- 5031'

Lead: 670 sxs Class C (mixed at 12.8 ppg, 1.88 ft3/sx, 10.13 gal/sx water)

Tail: 640 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

900 psi

TOC: Capitan Reef @ 3011

Compressives:

12-hr =

24 hr = 1500 psi

3rd Intermediate Casing: 7.625, New casing to be set at +/- 10954'

Optional Lead: 250 sxs Class C (mixed at 12.8 ppg, 1.88 ft3/sx, 15.59 gal/sx water)

TOC @ 4731' ~ 300' inside 2nd Intermediate csg

Tail: 120 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

TOC @ 9300'

Compressives:

12-hr = 900 psi 24 hr = 1150 psi

XTO Request to pump an optional Lead slurry if well conditions dictate in an attempt to bring cement inside the 2nd intermediate casing with primary job, If cement reaches the desired height, the BLM will be notified and the second stage

XTO requests to pump the 7-5/8" intermediate casing string with the first stage being pumped conventionally with 1 or 2 slurries with the calculated TOC @ 4731' ~300 ft inside 2nd intermediate casing.

XTO Request the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval of BLM, when unplanned remediation is needed and batch drilling is approved.

Production Casing: 5.5, New casing to be set at +/- 27957.86

Lead: 20 sxs NeoCem (mixed at 12.8 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 10400 feet Tail: 1000 sxs VersaCem (mixed at 14.5 ppg, 1.61 ft3/sx, 8.38 gal/sx water) Top of Cement: 11113 feet

Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests to pump a single stage cement job on the 5.5" Production casing string pumped conventionally, the first slurry with calculated top of cement at ~ 10400' (~500' feet inside Intermediate 3 casing string).

5. Pressure Control Equipment

The blow out preventer equipment (BOP) that will be RU on top of surf casing wellhead will consist of 2M Hydril. MASP should not exceed 635 psi.

Once the permanent WH is installed on the casing, the blow out preventer equipment (BOP) will consist of 5M Hydril and 10M 3-Ram BOP.

All BOP testing will be done by an independent service company. Operator will test as per BLM CFR43-3172 $\,$

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and intermediate strings are all batch drilled and completed, XTO will begin drilling the production hole on each of the wells.

A break testing variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss	Additional Comments
	11010 0120	maa Type	(ppg)	(sec/qt)	(cc)	, tallional sommone
0' - 1237'	24	FW/Native	8.3-8.8	35-40	NC	Fresh water or native water
1237' - 2801'	17.5	Sat salt brine	10-10.5	30-32	NC	Fully saturated brine across salado / salt
2801' to 5031'	12.25	FW	8.3-8.8	30-32	NC	FW across Cap Reef
5031' to 10954'	8.75 – 8.5	Cut Brine / OBM	10-11.5	50-60	NC - 20	OBM or cut brine depending well conditions.
10954' to 27957.86'	8.5 - 6.75	Cut Brine / OBM	11.5-13.5	50-60	NC - 20	OBM or cut brine depending well conditions.

The necessary mud products for weight addition and fluid loss control will be on location at all times.

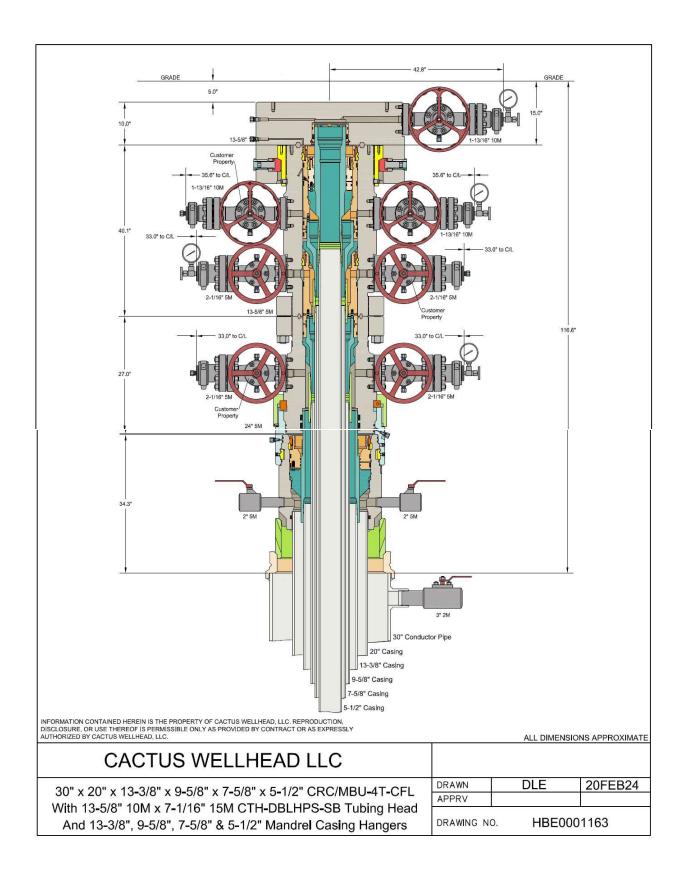
Spud with fresh water/native mud. Drill out from under surface casing with a fully saturated brine while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. An EDR (Electronic Drilling Recorder) will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 20 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing where necessary. Otherwise, gamma ray will be utilized while actively drilling.


Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 180 to 200 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 7977 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-FREEDOM HTQ®

MECHANICAL PROPERTIES	Pipe	USS-FREEDOM HTQ [®]	
Minimum Yield Strength	110,000	_	psi
Maximum Yield Strength	125,000	_	psi
Minimum Tensile Strength	125,000	_	psi
DIMENSIONS	Pipe	USS-FREEDOM HTQ [®]	
Outside Diameter	5.500	6.300	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.778	in.
Standard Drift	4.653	4.653	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	20.00		lb/ft
Plain End Weight	19.83		lb/ft
SECTION AREA	Pipe	USS-FREEDOM HTQ [®]	
Critical Area	5.828	5.828	sq. in.
Joint Efficiency	_	100.0	%
PERFORMANCE	Pipe	USS-FREEDOM HTQ®	
Minimum Collapse Pressure	11,100	11,100	psi
Minimum Internal Yield Pressure	12,640	12,640	psi
Minimum Pipe Body Yield Strength	641,000		lb
Joint Strength		641,000	lb
Compression Rating		641,000	lb
Reference Length [4]		21,370	ft
Maximum Uniaxial Bend Rating [2]		91.7	deg/100 ft
MAKE-UP DATA	Pipe	USS-FREEDOM HTQ [®]	
Make-Up Loss		4.13	in.
Minimum Make-Up Torque [3]		15,000	ft-lb
Maximum Make-Up Torque [3]		21,000	ft-lb
Maximum Operating Torque[3]		29,500	ft-lb

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

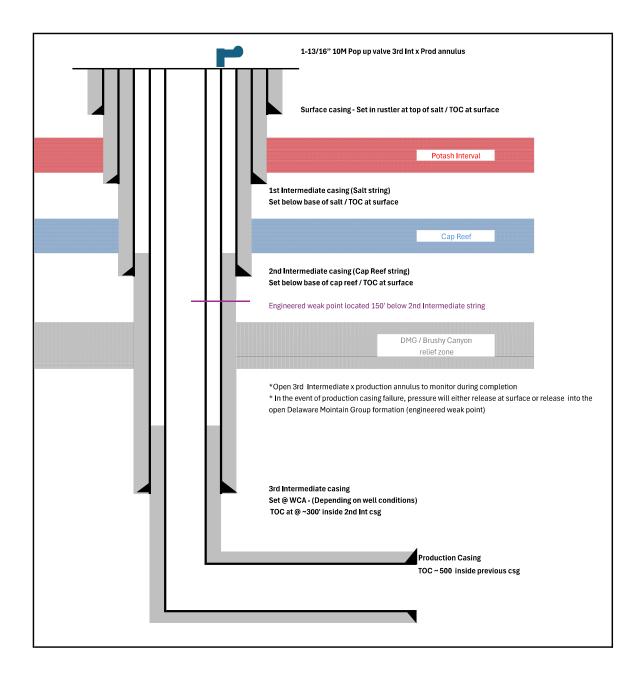
Legal Notice

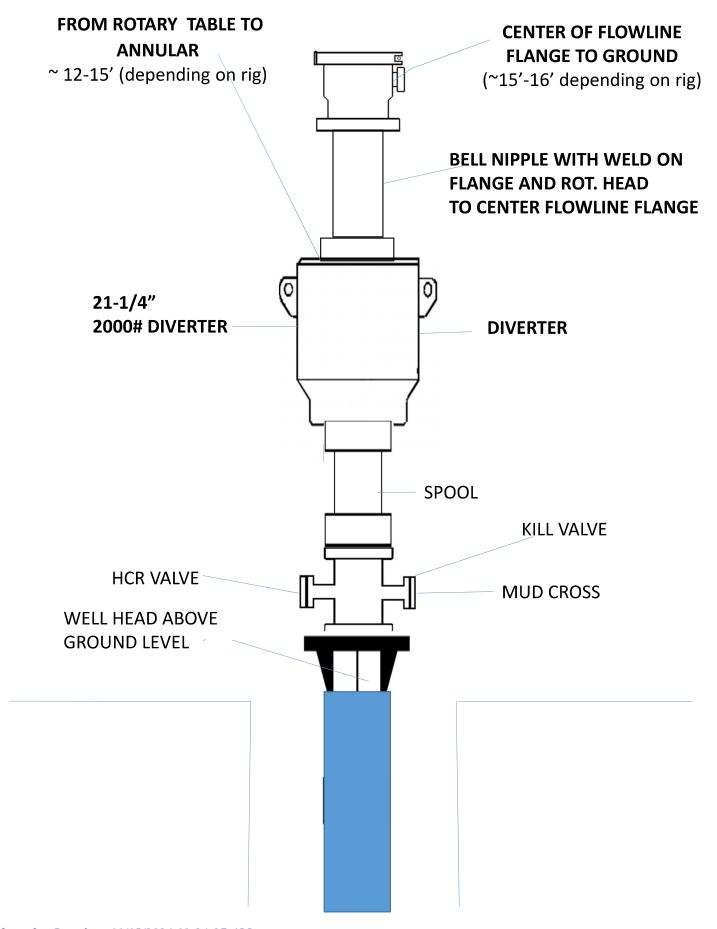
All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000	_	psi	_
Maximum Yield Strength	125,000	_	psi	_
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		-
Outside Diameter	5.500	5.900	in.	_
Wall Thickness	0.361		in.	_
Inside Diameter	4.778	4.778	in.	_
Standard Drift	4.653	4.653	in.	_
Alternate Drift	_		in.	_
Nominal Linear Weight, T&C	20.00		lb/ft	_
Plain End Weight	19.83		lb/ft	_
SECTION AREA	Pipe	USS-TALON HTQ™ RD		-
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		-
Minimum Collapse Pressure	11,100	11,100	psi	
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000		lb	
Joint Strength		641,000	lb	
Compression Rating		641,000	lb	
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		_
Make-Up Loss		5.58	in.	
Minimum Make-Up Torque		17,000	ft-lb	[4]
Maximum Make-Up Torque		20,000	ft-lb	[4]
Maximum Operating Torque		39,500	ft-lb	[4]


Notes


- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- $2. \quad \text{Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.} \\$
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

Well Plan Report

Well Plan Report - Big Eddy Unit BB GRIEVOUS 100H

Well Plan Report - Big Eddy Unit BB	Measured Depth:	`	Cartographic New Me Reference System:	Northing: 56	Easting: 67		Ground Level:	North Reference:	
dy Unit	27957.86 ft	11801.00 ft	New Mexico East - NAD 27	565255.30 ft	676907.40 ft	3561.00 ft	3529.00 ft	Grid	200

			Target							FTP 100H	LTP 100H	ВНС 100Н
	Dogleg	Rate	(Deg/100ft) Target	00.00	00.00	2.00	00.00	2.00	00.00	8.00 F	00'0	0.00
	Turn	Rate	(Deg/100ft)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00
	Build	Rate	(Deg/100ft)	0.00	00'0	2.00	0.00	-2.00	0.00	8.00	00.00	0.00
		X Offset	(#)	0.00	0.00	-23.81	-276.20	-300.01	-300.01	-1016.20	-16685.70	-16735.70
Ŧ		Y Offset	(#)	00.00	00.00	21.24	246.41	267.65	267.65	265.60	220.80	220.66
Big Eddy Unit BB GRIEVOUS 100H	DVT	RKB	(#)	00.00	3100.00	3526.37	5773.63	6200.00	11084.80	11801.00	11801.00	11801.00
ig Eddy Unit BB		Azimuth	(Deg)	00.00	00.00	311.74	311.74	00.00	00.00	269.84	269.84	269.84
B		Inclination	(Deg)	0.00	0.00	8.56	8.56	0.00	0.00	90.00	00'06	90.00
Plan Sections	Measured	Depth	(#)	00:00	3100.00	3527.96	5800.53	6228.49	11113.29	12238.29	27907.86	27957.86

	Magnitude Semi-major Semi-minor Semi-minor Tool
	Vertical
JS 100H	Lateral
Big Eddy Unit BB GRIEVOUS 100H	TVD Highside
Position Uncertainty	Measured

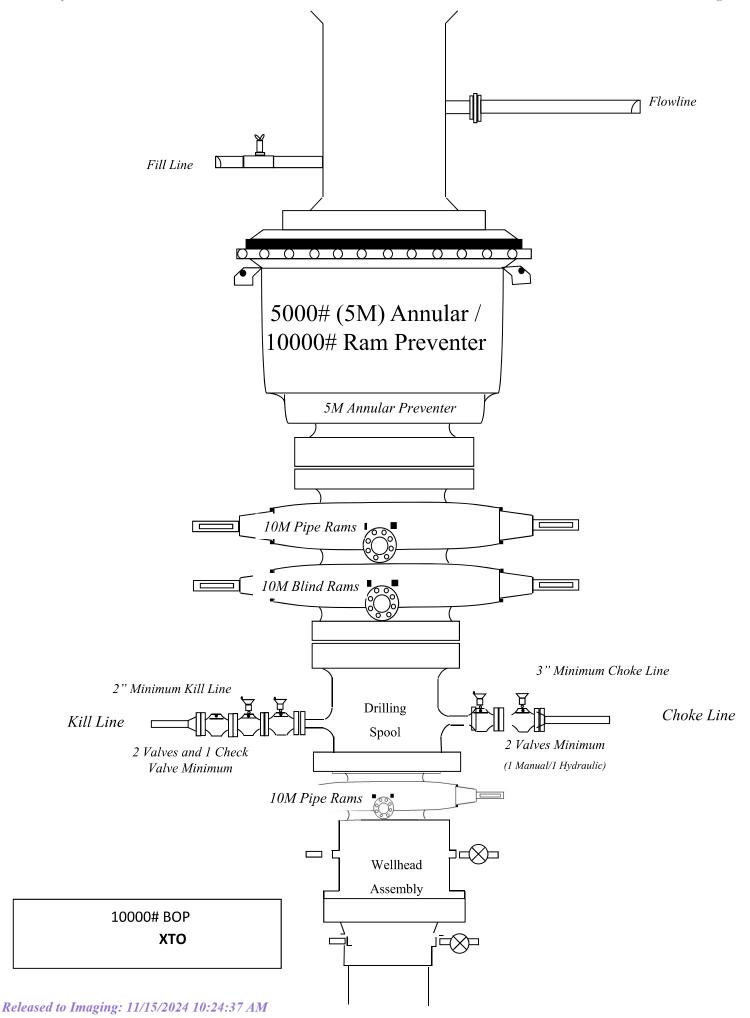
	Azimuth Used	(.)	0.000 MWD+IFR1+MS	112.264 MWD+IFR1+MS	122,711 MWD+IFR1+MS	125.469 MWD+IFR1+MS	126.713 MWD+IFR1+MS	127.419 MWD+IFR1+MS	127.873 MWD+IFR1+MS	128.190 MWD+IFR1+MS	128.423 MWD+IFR1+MS	128.602 MWD+IFR1+MS	128.744 MWD+IFR1+MS	128.859 MWD+IFR1+MS	128.954 MWD+IFR1+MS	129.034 MWD+IFR1+MS	129.102 MWD+IFR1+MS	129.161 MWD+IFR1+MS	129.212 MWD+IFR1+MS	129.257 MWD+IFR1+MS	129.297 MWD+IFR1+MS	129.333 MWD+IFR1+MS	129.365 MWD+IFR1+MS	129.394 MWD+IFR1+MS	129.420 MWD+IFR1+MS	129.444 MWD+IFR1+MS	129.466 MWD+IFR1+MS	129,486 MWD+IFR1+MS	129.505 MWD+IFR1+MS	129.522 MWD+IFR1+MS	129.538 MWD+IFR1+MS	129.552 MWD+IFR1+MS	129.566 MWD+IFR1+MS
	Error	(ft)	0.000	0.220	0.627	0.986	1.344	1.701	2.059	2.417	2.775	3.133	3.491	3.849	4.207	4.565	4.924	5.282	5.640	5.999	6.357	6.715	7.074	7.432	7.791	8.149	8.507	8.866	9.224	9.583	9.941	10.299	10.658
	Error	(ft)	0.000	0.751	1.259	1.698	2.108	2.503	2.888	3.267	3.642	4.014	4.384	4.752	5.119	5.484	5.849	6.213	6.577	6.939	7.302	7.664	8.026	8.387	8.748	9.109	9.470	9.831	10.191	10.552	10.912	11.272	11.632
ort	of Bias	(#)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	000'0	0.000	000'0	0.000	0.000	0.000
Well Plan Report	Error Bias	(ft) (ft)	0.000 0.000	2.300 0.000	2.310 0.000	2.326 0.000	2.348 0.000	2.375 0.000	2.408 0.000	2.446 0.000	2.488 0.000	2.534 0.000	2.585 0.000	2.639 0.000	2.696 0.000	2.756 0.000	2.819 0.000	2.884 0.000	2.952 0.000	3.022 0.000	3.094 0.000	3.168 0.000	3.243 0.000	3.320 0.000	3.399 0.000	3.479 0.000	3.561 0.000	3.644 0.000	3.728 0.000	3.814 0.000	3.901 0.000	3.989 0.000	4.078 0.000
	Error Bias	(ft) (ft)	0.000 0.000	0.350 0.000	0.861 0.000	1.271 0.000	1.658 0.000	2.034 0.000	2.405 0.000	2.773 0.000	3.138 0.000	3.502 0.000	3.865 0.000	4.228 0.000	4.589 0.000	4.950 0.000	5.311 0.000	5.672 0.000	6.032 0.000	6.392 0.000	6.752 0.000	7.112 0.000	7.471 0.000	7.831 0.000	8.190 0.000	8.550 0.000	8.909 0.000	9.268 0.000	9.627 0.000	000.0 986.6	10.345 0.000	10.705 0.000	11.063 0.000
	Bias	(#)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Error	(#)	0.000	0.700	1.112	1.497	1.871	2.240	2.607	2.971	3.334	3.696	4.058	4.419	4.779	5.140	5.500	5.860	6.219	6.579	6.938	7.298	7.657	8.016	8.375	8.734	9.093	9,452	9.811	10.170	10.529	10.888	11.247
	RKB	(#J)	0.000	100.000	200.000	300.000	400 000	200 000	000 009	700.000	800.000	900.006	1000.000	1100.000	1200.000	1300.000	1400.000	1500.000	1600.000	1700.000	1800.000	1900.000	2000.000	2100.000	2200.000	2300.000	2400 000	2500.000	2600.000	2700.000	2800.000	2900.000	3000.000
	Azimuth	©	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Inclination	(0)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9/9/24, 7:24 AM	Depth	(#)	0.000	100.000	200.000	300.000	400.000	200.000	000.009	700.000	800.000	900.000	1000.000	1100.000	1200.000	1300.000	1400.000	1500.000	1600.000	1700.000	1800.000	1900.000	2000.000	2100.000	2200.000	2300.000	2400.000	2500,000	2600.000	2700.000	2800.000	2900.000	3000.000
	leas	ed to	o Im	agi	ng:	11/1	5/20	024 .	10:2	24:3	7 AN	1																					

	129.579 MWD+IFR1+MS	127.162 MWD+IFR1+MS	121.110 MWD+IFR1+MS	112.139 MWD+IFR1+MS	100.747 MWD+IFR1+MS	100.311 MWD+IFR1+MS	99.960 MWD+IFR1+MS	99.522 MWD+IFR1+MS	98.984 MWD+IFR1+MS	98.499 MWD+IFR1+MS	98.060 MWD+IFR1+MS	97.660 MWD+IFR1+MS	97.294 MWD+IFR1+MS	96.957 MWD+IFR1+MS	96.646 MWD+IFR1+MS	96.358 MWD+IFR1+MS	96.090 MWD+IFR1+MS	95.840 MWD+IFR1+MS	95.605 MWD+IFR1+MS	95.385 MWD+IFR1+MS	95.178 MWD+IFR1+MS	94.982 MWD+IFR1+MS	94.797 MWD+IFR1+MS	94.621 MWD+IFR1+MS	94.453 MWD+IFR1+MS	94.294 MWD+IFR1+MS	94.141 MWD+IFR1+MS	93.996 MWD+IFR1+MS	93.854 MWD+IFR1+MS	92.274 MWD+IFR1+MS	88.420 MWD+IFR1+MS	85.001 MWD+IFR1+MS	82.050 MWD+IFR1+MS
	11.016	11.424	11.984	12.502	12.969	13.066	13.307	13.641	13.977	14.314	14.653	14.993	15.334	15.676	16.020	16.364	16.710	17.056	17.404	17.752	18.101	18.450	18.801	19.151	19.503	19.855	20.208	20.561	20.917	21.281	21.675	22.059	22.434
	11.992	12.345	12.704	13.085	13.501	13.597	13.839	14 187	14.542	14 898	15.255	15.613	15 971	16.330	16.690	17 050	17.411	17.772	18 133	18.495	18.858	19.220	19.583	19.947	20.310	20.674	21.039	21.403	21.770	22 159	22.591	23 027	23.463
ţ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	4.169 0.000	4.260 0.000	4.353 0.000	4.449 0.000	4.550 0.000	4.574 0.000	4.644 0.000	4.743 0.000	4.845 0.000	4.949 0.000	5.054 0.000	5.161 0.000	5.271 0.000	5.381 0.000	5.494 0.000	2.609 0.000	5.725 0.000	5.844 0.000	5.964 0.000	000'0 980'9	6.210 0.000	6.336 0.000	6.464 0.000	6.594 0.000	6.726 0.000	000.0 098.9	000.0 966.9	7.135 0.000	7.276 0.000	7.419 0.000	7.567 0.000	7.711 0.000	7.853 0.000
	11.422 0.000	12.340 0.000	12.680 0.000	13.021 0.000	13.362 0.000	13.455 0.000	13.693 0.000	14.034 0.000	14.379 0.000	14.725 0.000	15.072 0.000	15.421 0.000	15.770 0.000	16.120 0.000	16.471 0.000	16.823 0.000	17.176 0.000	17.529 0.000	17.883 0.000	18.237 0.000	18.593 0.000	18.948 0.000	19.304 0.000	19.661 0.000	20.018 0.000	20.375 0.000	20.733 0.000	21.092 0.000	21.452 0.000	21.808 0.000	22.165 0.000	22.519 0.000	22.870 0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	00000
	11 606	11 424	11.985	12.517	13.021	13.106	13.352	13.697	14.047	14 398	14.750	15.103	15.458	15.813	16.169	16.525	16 883	17.241	17.600	17.959	18.319	18.680	19.041	19.403	19 765	20.127	20.490	20.853	21.219	21.663	22.156	22.619	23.051
	3100.000	3199.980	3299.838	3399.452	3498.702	3526.371	3597.608	3696.494	3795.380	3894.266	3993.153	4092.039	4190.925	4289.811	4388.698	4487.584	4586.470	4685.356	4784.243	4883.129	4982.015	5080.901	5179.788	5278.674	5377.560	5476.447	5575.333	5674.219	5773.629	5872.229	5971.752	6071.552	6171.510
	0.000	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311.737	311,737	311.737	311.737	311.737	311.737	311.737	311,737	311.737	311,737	311.737	311.737	311.737
	0.000	2.000	4.000	000.9	8.000	8.559	8.559	8.559	8.559	8.559	8.559	8.559	8 559	8.559	8.559	8.559	8.559	8.559	8.559	8 559	8.559	8 559	8.559	8.559	8 559	8.559	8.559	8.559	8.559	6.570	4.570	2.570	0.570
9/9/24, 7:24 AM	3100.000	3200,000	3300.000	3400,000	3500,000	3527.961	3600.000	3700.000	3800.000	3900.000	4000.000	4100.000	4200.000	4300.000	4400.000	4500.000	4600.000	4700.000	4800.000	4900,000	5000.000	5100,000	5200,000	5300.000	5400,000	5500,000	5600.000	5700.000	5800.529	2900,000	000'0009	6100.000	6200.000
Ke	leas	eu t	v 1M	iagti	ng:	11/1	3/20	124 .	10:2	4:5	/ ALA	VI																					

	82.013 MWD+IFR1+MS	82.188 MWD+IFR1+MS	82.579 MWD+IFR1+MS	83.080 MWD+IFR1+MS	83.580 MWD+IFR1+MS	84.080 MWD+IFR1+MS	84.578 MWD+IFR1+MS	85.075 MWD+IFR1+MS	85.570 MWD+IFR1+MS	86.064 MWD+IFR1+MS	86.554 MWD+IFR1+MS	87.043 MWD+IFR1+MS	87.528 MWD+IFR1+MS	88.010 MWD+IFR1+MS	88.489 MWD+IFR1+MS	88.965 MWD+IFR1+MS	89.436 MWD+IFR1+MS	89.904 MWD+IFR1+MS	90.367 MWD+IFR1+MS	90.826 MWD+IFR1+MS	91.281 MWD+IFR1+MS	91.730 MWD+IFR1+MS	92.175 MWD+IFR1+MS	92.615 MWD+IFR1+MS	93.050 MWD+IFR1+MS	93.480 MWD+IFR1+MS	93.904 MWD+IFR1+MS	94.323 MWD+IFR1+MS	94.736 MWD+IFR1+MS	95.144 MWD+IFR1+MS	95.547 MWD+IFR1+MS	95.943 MWD+IFR1+MS	96.334 MWD+IFR1+MS
	22.533	22.782	23.136	23.493	23.849	24.206	24.562	24.918	25.275	25.631	25.987	26.343	26.699	27.055	27.410	27.766	28.122	28.477	28.833	29.189	29.544	29.900	30.255	30.611	30.966	31.321	31.677	32.032	32.387	32.743	33.098	33.453	33.809
	23.562	23.805	24.145	24.487	24.830	25.174	25.518	25.862	26.207	26.553	26.899	27.246	27.593	27.940	28.288	28.636	28.984	29.333	29.683	30.032	30.382	30.732	31.083	31.433	31.784	32.136	32.487	32.839	33.191	33.543	33.895	34.248	34.601
t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
Well Plan Report	7.894 0.000	7.995 0.000	8.139 0.000	8.285 0.000	8.434 0.000	8.585 0.000	8.739 0.000	8.895 0.000	9.053 0.000	9.215 0.000	9.378 0.000	9.545 0.000	9.714 0.000	9.885 0.000	10.060 0.000	10.237 0.000	10.416 0.000	10.599 0.000	10.784 0.000	10.972 0.000	11.163 0.000	11.356 0.000	11.553 0.000	11.752 0.000	11.954 0.000	12.159 0.000	12.367 0.000	12.577 0.000	12.791 0.000	13.007 0.000	13.227 0.000	13.449 0.000	13.674 0.000
	22.553 0.000	22.801 0.000	23.153 0.000	23.508 0.000	23.862 0.000	24.216 0.000	24.571 0.000	24.926 0.000	25.280 0.000	25.635 0.000	25.990 0.000	26.345 0.000	26.700 0.000	27.056 0.000	27.411 0.000	27.766 0.000	28.122 0.000	28.477 0.000	28.833 0.000	29.189 0.000	29.545 0.000	29,900 0.000	30.256 0.000	30.612 0.000	30.968 0.000	31.324 0.000	31.680 0.000	32.037 0.000	32.393 0.000	32.749 0.000	33.106 0.000	33.462 0.000	33.818 0.000
	23.542 0.000	23.786 0.000	24.128 0.000	24.473 0.000	24.818 0.000	25.164 0.000	25.509 0.000	25.856 0.000	26.202 0.000	26.549 0.000	26.896 0.000	27.243 0.000	27.591 0.000	27.939 0.000	28.287 0.000	28.636 0.000	28.984 0.000	29.333 0.000	29.683 0.000	30.032 0.000	30.382 0.000	30.731 0.000	31.081 0.000	31.432 0.000	31.782 0.000	32.133 0.000	32.483 0.000	32.834 0.000	33.185 0.000	33.536 0.000	33.888 0.000	34.239 0.000	34.591 0.000
	6200 000	6271.509	6371.509	6471.509	6571.509	6671.509	6771.509	6871.509	6971.509	7071.509	7171.509	7271 509	7371 509	7471 509	7571.509	7671.509	7771.509	7871.509	7971.509	8071.509	8171.509	8271.509	8371 509	8471 509	8571.509	8671.509	8771.509	8871,509	8971.509	9071 509	9171 509	9271.509	9371.509
	0000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
9/9/24, 7:24 AM	6228.491	6300,000	6400.000	6500.000	000'0099	6700.000	000.0089	6900.000	7000.000	7100.000	7200.000	7300.000	7400.000	7500.000	7600.000	7700.000	7800.000	7900.000	8000.000	8100.000	8200.000	8300.000	8400.000	8500.000	8600.000	8700.000	8800.000	8900.000	000.0006	9100.000	9200.000	9300.000	9400.000
	leas	ed to	o Im	ıagi	ng:	11/1	5/20	024	10:2	24:3	7 AN	И																					

	96.720 MWD+IFR1+MS	97.099 MWD+IFR1+MS	97.473 MWD+IFR1+MS	97.842 MWD+IFR1+MS	98.204 MWD+IFR1+MS	98.561 MWD+IFR1+MS	98.912 MWD+IFR1+MS	99.258 MWD+IFR1+MS	99.598 MWD+IFR1+MS	99.933 MWD+IFR1+MS	100.262 MWD+IFR1+MS	100.585 MWD+IFR1+MS	100.904 MWD+IFR1+MS	101.216 MWD+IFR1+MS	101.524 MWD+IFR1+MS	101.826 MWD+IFR1+MS	102.124 MWD+IFR1+MS	102.124 MWD+IFR1+MS	103.882 MWD+IFR1+MS	-14.399 MWD+IFR1+MS	-1.161 MWD+IFR1+MS	0.967 MWD+IFR1+MS	1.892 MWD+IFR1+MS	2.465 MWD+IFR1+MS	2.896 MWD+IFR1+MS	3.256 MWD+IFR1+MS	3.566 MWD+IFR1+MS	3.816 MWD+IFR1+MS	3.962 MWD+IFR1+MS	3.961 MWD+IFR1+MS	3.957 MWD+IFR1+MS	3.993 MWD+IFR1+MS	4.092 MWD+IFR1+MS
	34.164	34.519	34.874	35.230	35.585	35.940	36.295	36.651	37.006	37.361	37.717	38.072	38.427	38.783	39.138	39.493	39.849	39.896	40.342	41.257	41.624	41.964	42.292	42.607	42.910	43.199	43.474	43.734	43.975	44.060	44.200	44.451	44.731
	34.954	35.307	35.660	36.014	36.367	36.721	37.075	37.429	37.783	38.138	38.492	38.847	39.201	39.556	39.911	40.266	40.621	40.668	40.970	41.620	42.830	43.908	44.817	45.544	46.093	46.473	46.708	46.827	46.868	46.872	46.876	46.883	46.891
t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
Well Plan Report	13.902 0.000	14.133 0.000	14.367 0.000	14.604 0.000	14.844 0.000	15.087 0.000	15.333 0.000	15.582 0.000	15.834 0.000	16.089 0.000	16.347 0.000	16.608 0.000	16.872 0.000	17.139 0.000	17.409 0.000	17.682 0.000	17.958 0.000	17.995 0.000	18.241 0.000	18.592 0.000	19.094 0.000	19.790 0.000	20.706 0.000	21.840 0.000	23.168 0.000	24.646 0.000	26.225 0.000	27.850 0.000	29.466 0.000	29.618 0.000	29.726 0.000	29.881 0.000	30.058 0.000
	34.175 0.000	34.531 0.000	34.888 0.000	35.244 0.000	35.601 0.000	35.958 0.000	36.314 0.000	36.671 0.000	37.028 0.000	37.385 0.000	37.741 0.000	38.098 0.000	38.455 0.000	38.812 0.000	39.169 0.000	39.526 0.000	39.883 0.000	39.930 0.000	40.933 0.000	41.279 0.000	41.625 0.000	41.965 0.000	42.295 0.000	42.614 0.000	42.920 0.000	43.211 0.000	43.489 0.000	43.749 0.000	43.991 0.000	44.075 0.000	44.214 0.000	44.465 0.000	44.743 0.000
	34.943 0.000	35.295 0.000	35.647 0.000	35.999 0.000	36.351 0.000	36.704 0.000	37.056 0.000	37.409 0.000	37.762 0.000	38.115 0.000	38.468 0.000	38.821 0.000	39.174 0.000	39.527 0.000	39.881 0.000	40.234 0.000	40.588 0.000	40.634 0.000	40.255 -0.000	40.802 -0.000	40.866 -0.000	40.353 -0.000	39.328 -0.000	37.889 -0.000	36.162 -0.000	34.312 -0.000	32.545 -0.000	31.098 -0.000	30.215 -0.000	29.618 0.000	29.726 0.000	29.881 0.000	30.058 0.000
	9471.509	9571.509	9671.509	9771.509	9871.509	9971.509	10071.509	10171.509	10271.509	10371.509	10471.509	10571 509	10671.509	10771.509	10871.509	10971 509	11071.509	11084.803	11171.298	11269.402	11363.913	11452.991	11534 903	11608.055	11671 022	11722.579	11761.722	11787.690	11799.977	11801.000	11801.000	11801.000	11801.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	269.836	269 836	269.836	269 836	269 836	269 836	269 836	269.836	269.836	269.836	269 836	269 836	269.836	269.836	269.836
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.937	14 937	22.937	30 937	38.937	46.937	54 937	62.937	70.937	78,937	86.937	90.000	90.000	90.000	90.000
9/9/24, 7:24 AM	9200.000	9600.000	9700.000	9800.000	000.0066	10000.000	10100.000	10200.000	10300.000	10400.000	10500.000	10600.000	10700.000	10800.000	10900.000	11000.000	11100.000	11113.293	11200.000	11300.000	11400.000	11500.000	11600.000	11700.000	11800.000	11900.000	12000.000	12100.000	12200.000	12238.293	12300.000	12400.000	12500.000
	leas	ed to	o Im	agi	ng:	11/1	5/20	024	10:2	24:3	7 AN	И																					

	4.281 MWD+IFR1+MS	4.620 MWD+IFR1+MS	5.251 MWD+IFR1+MS	6.588 MWD+IFR1+MS	10.571 MWD+IFR1+MS	45.402 MWD+IFR1+MS	83.376 MWD+IFR1+MS	87.588 MWD+IFR1+MS	88.991 MWD+IFR1+MS	89.668 MWD+IFR1+MS	90.054 MWD+IFR1+MS	90.297 MWD+IFR1+MS	90.458 MWD+IFR1+MS	90.569 MWD+IFR1+MS	90.648 MWD+IFR1+MS	90.704 MWD+IFR1+MS	90.744 MWD+IFR1+MS	90.772 MWD+IFR1+MS	90.792 MWD+IFR1+MS	90.805 MWD+IFR1+MS	90.814 MWD+IFR1+MS	90.818 MWD+IFR1+MS	90.820 MWD+IFR1+MS	90.819 MWD+IFR1+MS	90.816 MWD+IFR1+MS	90.812 MWD+IFR1+MS	90.806 MWD+IFR1+MS	90.800 MWD+IFR1+MS	90.793 MWD+IFR1+MS	90.785 MWD+IFR1+MS	90.777 MWD+IFR1+MS	90.768 MWD+IFR1+MS	90.760 MWD+IFR1+MS
	45.037	45.368	45.724	46.104	46.504	46.880	46.952	46.970	46.985	47.000	47.016	47.032	47.048	47.065	47.082	47.100	47.119	47.138	47.158	47.178	47.199	47.221	47.243	47.266	47.289	47.313	47.338	47.363	47.389	47,415	47.442	47.470	47.498
	46.900	46.910	46.920	46.932	46.948	47.012	47.404	47.872	48.366	48.880	49.416	49.971	50.544	51.136	51.746	52.373	53.016	53.675	54.349	55.038	55.741	56.457	57.187	57.929	58.683	59.449	60.226	61.014	61.813	62.621	63.439	64.266	65.102
+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	000'0	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	000'0	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000
Well Plan Report	30.254 0.000	30.469 0.000	30.703 0.000	30.955 0.000	31.224 0.000	31.511 0.000	31.814 0.000	32.134 0.000	32.470 0.000	32.821 0.000	33.187 0.000	33.567 0.000	33.961 0.000	34.368 0.000	34.789 0.000	35.222 0.000	35.667 0.000	36.123 0.000	36.591 0.000	37.069 0.000	37.558 0.000	38.056 0.000	38.564 0.000	39.082 0.000	39.608 0.000	40.142 0.000	40.685 0.000	41.235 0.000	41.793 0.000	42.358 0.000	42.930 0.000	43.509 0.000	44.094 0.000
	45.048 0.000	45.379 0.000	45.735 0.000	46.115 0.000	46.520 0.000	46.948 0.000	47.398 0.000	47.871 0.000	48.365 0.000	48.880 0.000	49.416 0.000	49.970 0.000	50.544 0.000	51.136 0.000	51.745 0.000	52.372 0.000	53.015 0.000	53.673 0.000	54.347 0.000	55.036 0.000	55.739 0.000	56.455 0.000	57.184 0.000	57.926 0.000	58.680 0.000	59.446 0.000	60.223 0.000	61.011 0.000	61.809 0.000	62.617 0.000	63.435 0.000	64.262 0.000	65.098 0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	30.254	30 469	30.703	30 955	31.224	31.511	31.814	32.134	32.470	32 821	33.187	33.567	33.961	34.368	34.789	35 222	35.667	36.123	36.591	37.069	37.558	38.056	38 564	39 082	39 608	40.142	40.685	41.235	41.793	42.358	42.930	43 509	44.094
	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801,000	11801.000	11801.000	11801.000	11801.000	11801.000
	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269.836	269 836	269 836	269 836	269.836	269.836	269.836	269.836	269 836	269.836	269 836	269.836
	000 06	000 06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	000 06	90.000	90.000	000'06	90.000	90.000	000 06	90.000	90.000	90.000	000.06	90.000	000.06	000 06	90.000	000 06	90.000	90.000	000'06	90.000	000 06	90.000	90.000	90.000
9/9/24, 7:24 AM	12600.000	12700.000	12800.000	12900.000	13000.000	13100.000	13200.000	13300.000	13400.000	13500.000	13600.000	13700.000	13800.000	13900.000	14000.000	14100.000	14200.000	14300.000	14400.000	14500.000	14600.000	14700.000	14800.000	14900.000	15000.000	15100.000	15200.000	15300.000	15400.000	15500.000	15600.000	15700.000	15800.000
	leas	ed to	o Im	agi	ng:	11/1	5/20	924	10:2	24:3	7 AN	И																					


	90.751 MWD+IFR1+MS	90.741 MWD+IFR1+MS	90.732 MWD+IFR1+MS	90.723 MWD+IFR1+MS	90.714 MWD+IFR1+MS	90.705 MWD+IFR1+MS	90.695 MWD+IFR1+MS	90.686 MWD+IFR1+MS	90.677 MWD+IFR1+MS	90.668 MWD+IFR1+MS	90.659 MWD+IFR1+MS	90.650 MWD+IFR1+MS	90.642 MWD+IFR1+MS	90.633 MWD+IFR1+MS	90.625 MWD+IFR1+MS	90.616 MWD+IFR1+MS	90.608 MWD+IFR1+MS	90.600 MWD+IFR1+MS	90.592 MWD+IFR1+MS	90.584 MWD+IFR1+MS	90.577 MWD+IFR1+MS	90.569 MWD+IFR1+MS	90.562 MWD+IFR1+MS	90.554 MWD+IFR1+MS	90.547 MWD+IFR1+MS	90.540 MWD+IFR1+MS	90.533 MWD+IFR1+MS	90.526 MWD+IFR1+MS	90.519 MWD+IFR1+MS	90.513 MWD+IFR1+MS	90.506 MWD+IFR1+MS	90.500 MWD+IFR1+MS	90.493 MWD+IFR1+MS
	47.527	47.556	47.586	47.616	47.647	47.679	47 711	47.744	47.777	47.811	47.846	47.881	47.916	47.953	47.989	48.027	48.065	48.103	48.142	48.182	48.222	48.263	48.304	48.346	48.388	48.431	48.474	48.518	48.563	48.608	48.653	48.700	48.746
	65.946	66 7 99	62 62	68.527	69 403	70.285	71.175	72.070	72.972	73.881	74.795	75.714	76.639	77.570	78.505	79.445	80.390	81.339	82.293	83.251	84.213	85.179	86 149	87 123	88 100	89.080	90.064	91,051	92.042	93.035	94 031	95.030	96.032
ť	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000
Well Plan Report	44.685 0.000	45.282 0.000	45.884 0.000	46.493 0.000	47.106 0.000	47.724 0.000	48.347 0.000	48.975 0.000	49.608 0.000	50.244 0.000	50.885 0.000	51.530 0.000	52.178 0.000	52.830 0.000	53.486 0.000	54.145 0.000	54.808 0.000	55.474 0.000	56.143 0.000	56.814 0.000	57.489 0.000	58.166 0.000	58.847 0.000	59.529 0.000	60.214 0.000	60.902 0.000	61.592 0.000	62.284 0.000	62.978 0.000	63.675 0.000	64.373 0.000	65.073 0.000	000'0 92'2'9
	65.942 0.000	000.0 267.99	67.655 0.000	68.523 0.000	000'0 868'69	70.281 0.000	71.170 0.000	72.066 0.000	72.968 0.000	73.876 0.000	74.790 0.000	75.710 0.000	76.635 0.000	77.565 0.000	78.500 0.000	79.440 0.000	80.385 0.000	81.335 0.000	82.288 0.000	83.246 0.000	84.209 0.000	85.175 0.000	86.144 0.000	87.118 0.000	88.095 0.000	89.076 0.000	000.0 650.06	91.047 0.000	92.037 0.000	93.030 0.000	94.026 0.000	95.025 0.000	96.027 0.000
	44.685 0.000	45.282 0.000	45.884 0.000	46.493 0.000	47.106 0.000	47.724 0.000	48.347 0.000	48.975 0.000	49.608 0.000	50.244 0.000	50.885 0.000	51.530 0.000	52.178 0.000	52.830 0.000	53.486 0.000	54.145 0.000	54.808 0.000	55.474 0.000	56.143 0.000	56.814 0.000	57.489 0.000	58.166 0.000	58.847 0.000	59.529 0.000	60.214 0.000	60.902 0.000	61.592 0.000	62.284 0.000	62.978 0.000	63.675 0.000	64.373 0.000	65.073 0.000	000:0 92:25
	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000
	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269.836
	90.000	90.000	90.000	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000
9/9/24, 7:24 AM	15900.000	16000.000	16100.000	16200.000	16300.000	16400.000	16500.000	16600.000	16700.000	16800.000	16900.000	17000.000	17100.000	17200.000	17300.000	17400.000	17500.000	17600.000	17700.000	17800.000	17900.000	18000.000	18100.000	18200.000	18300.000	18400.000	18500.000	18600,000	18700.000	18800.000	18900.000	19000.000	19100.000
	leas	ed to	o Im	agi	ng:	11/1	5/20	924 .	10:2	4:3	7 AN	И																					

	90.487 MWD+IFR1+MS	90.481 MWD+IFR1+MS	90.475 MWD+IFR1+MS	90.469 MWD+IFR1+MS	90.464 MWD+IFR1+MS	90.458 MWD+IFR1+MS	90.452 MWD+IFR1+MS	90.447 MWD+IFR1+MS	90.441 MWD+IFR1+MS	90.436 MWD+IFR1+MS	90.431 MWD+IFR1+MS	90.426 MWD+IFR1+MS	90.421 MWD+IFR1+MS	90.416 MWD+IFR1+MS	90.411 MWD+IFR1+MS	90.406 MWD+IFR1+MS	90.401 MWD+IFR1+MS	90.396 MWD+IFR1+MS	90.392 MWD+JFR1+MS	90.387 MWD+IFR1+MS	90.383 MWD+IFR1+MS	90.378 MWD+IFR1+MS	90.374 MWD+IFR1+MS	90.370 MWD+IFR1+MS	90.366 MWD+IFR1+MS	90.361 MWD+IFR1+MS	90.357 MWD+IFR1+MS	90.353 MWD+IFR1+MS	90.349 MWD+IFR1+MS	90.346 MWD+IFR1+MS	90.342 MWD+IFR1+MS	90.338 MWD+IFR1+MS	90.334 MWD+IFR1+MS
	48.794	48.841	48.890	48.938	48.988	49.038	49.088	49.139	49.191	49.243	49.295	49.348	49.402	49.456	49.510	49.565	49.621	49.677	49.734	49.791	49.849	49.907	49.965	50.024	50.084	50.144	50.205	50.266	50.328	50.390	50.452	50.515	50.579
	97.036	98.043	99.052	100.064	101.079	102.095	103.114	104.135	105.158	106.183	107.210	108.239	109.269	110.302	111.336	112.372	113.410	114.449	115.490	116.532	117.576	118.621	119.668	120.716	121.766	122.816	123.868	124.922	125.976	127.032	128.089	129.146	130.205
ť	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	66.480 0.000	67.186 0.000	67.893 0.000	68.603 0.000	69.314 0.000	70.026 0.000	70.740 0.000	71.456 0.000	72.173 0.000	72.891 0.000	73.611 0.000	74.332 0.000	75.055 0.000	75.778 0.000	76.503 0.000	77.229 0.000	77.956 0.000	78.684 0.000	79.413 0.000	80.144 0.000	80.875 0.000	81.608 0.000	82.341 0.000	83.075 0.000	83.810 0.000	84.546 0.000	85.283 0.000	86.021 0.000	86.760 0.000	87.499 0.000	88.239 0.000	88.980 0.000	89.722 0.000
	97.031 0.000	98.038 0.000	99.048 0.000	100.060 0.000	101.074 0.000	102.090 0.000	103.109 0.000	104.130 0.000	105.153 0.000	106.178 0.000	107.205 0.000	108.234 0.000	109.265 0.000	110.297 0.000	111.332 0.000	112.368 0.000	113.405 0.000	114.445 0.000	115.485 0.000	116.528 0.000	117.572 0.000	118.617 0.000	119.664 0.000	120.712 0.000	121.761 0.000	122.812 0.000	123.864 0.000	124.917 0.000	125.972 0.000	127.028 0.000	128.084 0.000	129.142 0.000	130.201 0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000
	66.480	67 186	67.893	68.603	69.314	70.026	70.740	71.456	72.173	72 891	73.611	74.332	75.055	75.778	76.503	77.229	77.956	78.684	79.413	80.144	80.875	81.608	82.341	83 075	83.810	84.546	85.283	86.021	86.760	87.499	88.239	88 980	89.722
	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000	11801.000
	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269.836	269.836	269 836	269 836	269.836	269.836	269.836	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269.836	269 836	269 836	269 836	269 836	269.836	269.836	269 836	269 836	269.836	269 836	269.836
	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	000.06	90.000	90.000	90.000	90.000	000.06	90.000	90.000	000'06	90.000	000'06	90.000	90.000	90.000
9/9/24, 7:24 AM	19200.000	19300.000	19400.000	19500.000	19600.000	19700.000	19800.000	19900.000	20000.000	20100.000	20200.000	20300.000	20400.000	20500.000	20600.000	20700.000	20800.000	20900.000	21000.000	21100.000	21200.000	21300.000	21400.000	21500.000	21600.000	21700.000	21800.000	21900.000	22000.000	22100.000	22200.000	22300.000	22400.000
	leas	ed to	o In	agi	ng:	11/1	5/20	924	10:2	24:3	7 A I	И																					

	90.331 MWD+IFR1+MS	90.327 MWD+IFR1+MS	90.323 MWD+IFR1+MS	90.320 MWD+IFR1+MS	90.316 MWD+IFR1+MS	90.313 MWD+IFR1+MS	90.310 MWD+IFR1+MS	90.306 MWD+IFR1+MS	90.303 MWD+IFR1+MS	90.300 MWD+IFR1+MS	90.296 MWD+IFR1+MS	90.293 MWD+IFR1+MS	90,290 MWD+IFR1+MS	90.287 MWD+IFR1+MS	90.284 MWD+IFR1+MS	90.281 MWD+IFR1+MS	90.278 MWD+IFR1+MS	90.275 MWD+IFR1+MS	90.272 MWD+IFR1+MS	90,269 MWD+IFR1+MS	90.267 MWD+IFR1+MS	90.264 MWD+IFR1+MS	90.261 MWD+IFR1+MS	90.258 MWD+IFR1+MS	90.256 MWD+IFR1+MS	90.253 MWD+IFR1+MS	90.251 MWD+IFR1+MS	90,248 MWD+IFR1+MS	90.245 MWD+IFR1+MS	90.243 MWD+IFR1+MS	90.240 MWD+IFR1+MS	90.238 MWD+IFR1+MS	90.236 MWD+IFR1+MS
	50.643	50.707	50.772	50.838	50.904	50.970	51.037	51.104	51.172	51.240	51.309	51.378	51.448	51.518	51.588	51.659	51.731	51.803	51.875	51.948	52.021	52.095	52.169	52.243	52.318	52.394	52.470	52.546	52.623	52.700	52.777	52.855	52.934
	131.266	132.327	133.389	134.452	135.516	136.581	137.647	138.714	139.782	140.850	141.920	142.990	144.061	145.133	146.205	147.279	148.353	149.428	150.503	151.580	152.657	153.734	154.812	155.891	156.971	158.051	159.132	160.213	161.295	162.377	163.460	164 544	165.628
ť	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	90.464 0.000	91.208 0.000	91.951 0.000	92.696 0.000	93.441 0.000	94.187 0.000	94.933 0.000	95.680 0.000	96.428 0.000	97.176 0.000	97.925 0.000	98.674 0.000	99.424 0.000	100.175 0.000	100.926 0.000	101.677 0.000	102.429 0.000	103.182 0.000	103.935 0.000	104.688 0.000	105.442 0.000	106.196 0.000	106.951 0.000	107.706 0.000	108.462 0.000	109.218 0.000	109.974 0.000	110.731 0.000	111.488 0.000	112.246 0.000	113.004 0.000	113.762 0.000	114.521 0.000
	131.261 0.000	132.322 0.000	133.385 0.000	134.448 0.000	135.512 0.000	136.577 0.000	137.643 0.000	138.710 0.000	139.778 0.000	140.846 0.000	141.916 0.000	142.986 0.000	144.057 0.000	145.129 0.000	146.202 0.000	147.275 0.000	148.349 0.000	149.424 0.000	150.500 0.000	151.576 0.000	152.653 0.000	153.730 0.000	154.809 0.000	155.887 0.000	156.967 0.000	158.047 0.000	159.128 0.000	160.209 0.000	161.291 0.000	162.373 0.000	163.456 0.000	164.540 0.000	165.624 0.000
	90.464 0.000	91 208 0 000	91.951 0.000	92.696 0.000	93.441 0.000	94.187 0.000	94.933 0.000	95.680 0.000	96.428 0.000	97.176 0.000	97.925 0.000	98.674 0.000	99.424 0.000	100.175 0.000	100.926 0.000	101.677 0.000	102.429 0.000	103.182 0.000	103.935 0.000	104.688 0.000	105.442 0.000	106.196 0.000	106.951 0.000	107.706 0.000	108.462 0.000	109.218 0.000	109.974 0.000	110.731 0.000	111.488 0.000	112.246 0.000	113.004 0.000	113.762 0.000	114.521 0.000
	11801 000 8	11801.000 8	11801.000 8	11801.000 8	11801.000 9	11801.000 9	11801.000 9	11801.000	11801.000 9	11801.000 8	11801.000 9	11801 000 8	11801 000 8	11801.000 10	11801.000 10	11801.000 10	11801.000 10	11801.000 10	11801.000 10	11801 000 10	11801.000 10	11801.000 10	11801.000 10	11801 000 10	11801.000 10	11801.000 10	11801.000 10	11801.000 11	11801.000 11	11801.000 11	11801.000 11	11801.000 11	11801.000 11
	269 836	269 836	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269 836	269.836	269 836	269 836	269.836	269.836	269.836	269.836	269.836	269.836	269 836	269.836	269 836	269.836	269 836	269.836	269.836	269.836	269.836	269.836	269 836	269.836	269.836	269.836
	90.000	000'06	90.000	90.000	000'06	90.000	000'06	90.000	90.000	90.000	90.000	000'06	000'06	000'06	000'06	90.000	90.000	90.000	90.000	000'06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	000'06	90.000	000'06	90.000	90.000	90.000
9/9/24, 7:24 AM	22500.000	22600.000	22700.000	22800.000	22900.000	23000.000	23100.000	23200.000	23300.000	23400.000	23500.000	23600.000	23700.000	23800.000	23900.000	24000.000	24100.000	24200.000	24300.000	24400.000	24500.000	24600.000	24700.000	24800.000	24900.000	25000.000	25100.000	25200,000	25300.000	25400.000	25500.000	25600.000	25700.000
	leas	ed to	o Im	agi	ng:	11/1	5/20	024	10:2	24:3	7 AN	И																					

9/9/24, 7:24 AM								Well F	Well Plan Report				
25800.000	90.000		269.836 11801.000	115.280	0.000	166.709	0.000	115.280	0.000	0.000	166.712	53.012	90.233 MWD+IFR1+MS
25900.000	90.000	269.836	11801.000	116.039	0.000	167.794	0.000	116.039	0.000	0.000	167.797	53.092	90.231 MWD+IFR1+MS
26000.000	90.000	269.836	11801.000	116.799	0.000	168.879	0.000	116.799	0.000	0.000	168.883	53.171	90.229 MWD+IFR1+MS
26100.000	90.000	269.836	11801.000	117.559	0.000	169.965	0.000	117.559	0.000	0.000	169.969	53.251	90.226 MWD+IFR1+MS
26200.000	90.000	269.836	11801.000	118.319	0.000	171.052	0.000	118.319	0.000	0.000	171.055	53.332	90.224 MWD+IFR1+MS
26300.000	90.000	269.836	11801.000	119.080	0.000	172.139	0.000	119.080	0.000	0.000	172.142	53.413	90.222 MWD+IFR1+MS
26400.000	90.000	269.836	11801.000	119.841	0.000	173.226	0.000	119.841	0.000	0.000	173.230	53.494	90.219 MWD+IFR1+MS
26500.000	90.000	269.836	11801.000	120.602	0.000	174.314	0.000	120.602	0.000	0.000	174.318	53.576	90.217 MWD+IFR1+MS
26600.000	90.000	269.836	11801.000	121.364	000.0	175.403	0.000	121.364	0.000	0.000	175.406	53.658	90.215 MWD+IFR1+MS
26700.000	90.000	269.836	11801.000	122.126	0.000	176.491	0.000	122 126	0.000	0.000	176.495	53.740	90.213 MWD+IFR1+MS
26800.000	90.000	269.836	11801.000	122.888	0.000	177 581	0.000	122.888	0.000	0.000	177.584	53.823	90.211 MWD+IFR1+MS
26900.000	90.000		269.836 11801.000	123.650	0000	178.670	0.000	123.650	0.000	0.000	178.674	53.906	90.209 MWD+IFR1+MS
27000.000	90.000	269.836	11801.000	124.413	000.0	179.760	0000	124.413	0.000	0.000	179.764	53 990	90.207 MWD+IFR1+MS
27100.000	90.000	269.836	11801.000	125.176	0.000	180.851	0.000	125.176	0.000	0.000	180.854	54.074	90.205 MWD+IFR1+MS
27200.000	000.06	269.836	11801.000	125.939	0000	181.942	0.000	125.939	0.000	0.000	181.945	54.159	90.202 MWD+IFR1+MS
27300.000	90.000	269.836	11801.000	126.703	0.000	183 033	0.000	126.703	0.000	0.000	183.036	54 244	90.200 MWD+IFR1+MS
27400.000	90.000	269.836	11801.000	127.467	0.000	184 125	0.000	127.467	0.000	0.000	184.128	54.329	90.198 MWD+IFR1+MS
27500.000	90.000	269.836	11801.000	128.231	0.000	185.217	0.000	128.231	0.000	0.000	185.220	54.414	90.196 MWD+IFR1+MS
27600.000	90.000	269.836	11801.000	128.995	0.000	186.309	0.000	128.995	0.000	0.000	186.312	54.501	90.195 MWD+IFR1+MS
27700.000	90.000	269.836	11801.000	129.760	000.0	187.402	0000	129.760	0.000	0.000	187.405	54 587	90.193 MWD+IFR1+MS
27800.000	90.000	269.836	11801.000	130.524	0.000	188.495	0.000	130.524	0.000	0.000	188.498	54.674	90.191 MWD+IFR1+MS
27907.857	000'06	269.836	11801.000	131.350	0000	189.675	0000	131.350	0.000	0.000	189.678	54.768	90.189 MWD+IFR1+MS
27957.861	90.000		269.836 11801.000	131.732	0.000	190.221	0.000	131.732	0.000	0.000	190.224	54.811	90.188 MWD+IFR1+MS

	TVD MSL Target Shape	(tt)	8240.00 CIRCLE	8240.00 CIRCLE	8240.00 CIRCLE
	Grid Easting	(#)	675891.20	660221.70	660171.70
	Grid Northing	(#)	565520.90	565476.10	565476.20
Big Eddy Unit BB GRIEVOUS 100H	Measured Depth	(H)	12238.29	27907.86	27957.86
Plan Targets		Target Name	FTP 100H	LTP 100H	BHL 100H

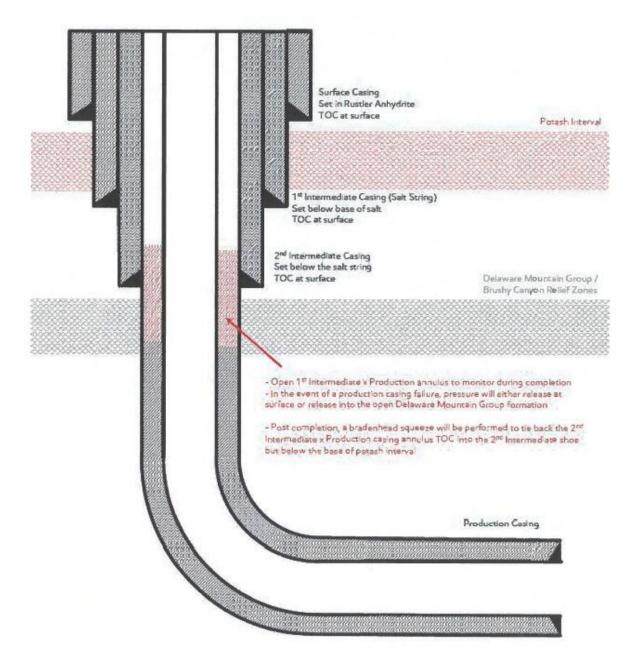


Figure - E: 4 String design (Capitan Reef + Potash)

XTO is aware of the R-111-Q update and will comply with these requirements including (but not limited to):

- 1. Alignment with KPLA requirements per schematic above, leaving open annulus for pressure monitoring during frac and utilizing new casing that meets API standards.
- 2. Contingency plans in place to divert formation fluids away from salt interval in even of production casing failure.
- 3. Bradenhead squeeze to be completed within 180 days to tie back TOC to salt string at least 500ft but with top below Marker Bed 126.
- 4. Production Cement to be tied back no less than 500ft inside previous casing shoe

10,000 PSI Annular BOP Variance Request

Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOPL).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

	12-	1/4" Intermediate Hole : 10M psi Requiremen			
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
Jars	6.500"	Annular	5M	-	-
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-
Mud Motor	8.000"-9.625"	Annular	5M	-	-
Intermediate Casing	9.625"	Annular	5M	-	-
Open-Hole	-	Blind Rams	10M	-	-

	8-	-3/4" Production Hole Se	ection		
		10M psi Requiremen	t		
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
Jars	6.500"	Annular	5M	-	-
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-
Mud Motor	6.750"-8.000"	Annular	5M	-	-
Production Casing	7"	Annular	5M	1	-
Open-Hole	-	Blind Rams	10M	-	-

		6-1/8" Lateral Hole Sect 10M psi Requiremen			
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M
				Lower 3.5"-5.5" VBR	10M
HWDP	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M
				Lower 3.5"-5.5" VBR	10M
DCs and MWD tools	4.750"-5.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M
				Lower 3.5"-5.5" VBR	10M
Mud Motor	4.750"-5.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M
				Lower 3.5"-5.5" VBR	10M
Production Casing	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M
				Upper 3.5"-5.5" VBR	10M
Open-Hole	-	Blind Rams	10M	-	-

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the Mewbourne Oil Company drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 403657

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	403657
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	PLEASE NOTE CORRECTION OF POOL TO SALT LAKE; WOLFCAMP [53570]	11/15/2024
pkautz	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	11/15/2024
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing.	11/15/2024