Form 3160-3 (June 2015)			OMB No.	PPROVED 1004-0137
UNITED STATE	Expires: Jan	uary 31, 2018		
DEPARTMENT OF THE I	5. Lease Serial No.			
BUREAU OF LAND MAN	-		NMNM122624	
APPLICATION FOR PERMIT TO D	RILL OF	REENIER	6. If Indian, Allotee o	r Iribe Name
			7. If Unit or CA Agre	ement. Name and No.
	EENTER		7. If Ollit of CAAgio	ement, Ivanie and Ivo.
1b. Type of Well: ✔ ✔ Oil Well Gas Well O	ther		8. Lease Name and W	/ell No
1c. Type of Completion: Hydraulic Fracturing Image: State of Completion:	ingle Zone	Multiple Zone	PITCHBLENDE 24-	
2. Name of Operator COG OPERATING LLC			703H 9. API Well No. 30-025-5	3043
3a. Address 600 West Illinois Ave, Midland, TX 79701	3b. Phone (432) 683	No. (include area code) -7443	10. Field and Pool, or DOGIE DRAW/Wolf	Exploratory
4. Location of Well (Report location clearly and in accordance	with any Sta	te requirements.*)		Blk. and Survey or Area
At surface NWNE / 210 FNL / 1480 FEL / LAT 32.1226	612 / LONG	6 -103.419916	SEC 24/T25S/R34E	/NMP
At proposed prod. zone SWSE / 50 FSL / 1480 FEL / LA	T 32.09430	07 / LONG -103.419922		
14. Distance in miles and direction from nearest town or post off	ìce*		12. County or Parish LEA	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of	acres in lease 17. Spac 1280.0	ing Unit dedicated to thi	s well
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 30 feet 	19. Propos 12796 fee	ed Depth 20, BLM 20, BLM 20, BLM FED:	I/BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3353 feet	22. Appro 01/01/202	ximate date work will start* 23	23. Estimated duratio 30 days	n
	24. Atta	achments		
The following, completed in accordance with the requirements o (as applicable)	f Onshore O	il and Gas Order No. 1, and the	Hydraulic Fracturing rul	e per 43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the operation Item 20 above).	ns unless covered by an o	existing bond on file (see
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office		b. Operator certification.c. Such other site specific info BLM.	ormation and/or plans as n	nay be requested by the
25. Signature (Electronic Submission)		ne (Printed/Typed) 'TE REYES / Ph: (432) 683-		Date 02/15/2022
Title Regulatory Analyst				
Approved by (Signature) (Electronic Submission)		Name (Printed/Typed) Date CODY LAYTON / Ph: (575) 234-5959 10/18/2024		
Title Assistant Field Manager Lands & Minerals	Offic Carl	^{ce} sbad Field Office		
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds lega	l or equitable title to those rights	s in the subject lease whi	ch would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, r of the United States any false, fictitious or fraudulent statements				y department or agency

(Continued on page 2)

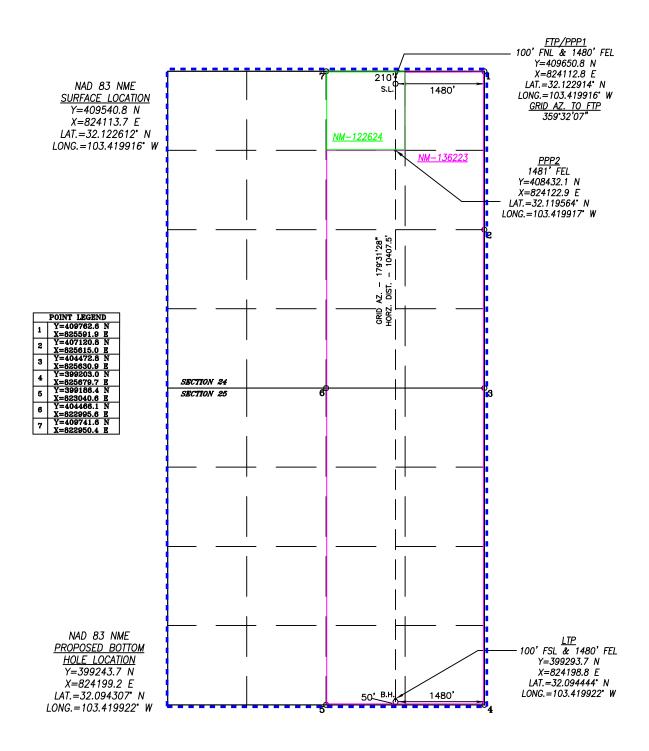
<u>C-102</u>	State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION	Revised July 9, 202		
Submit Electronically Via OCD Permitting	OIL CONSERVATION DIVISION		🛛 Initial Submittal	
		Submittal Type:	Amended Report	
		- 71 -	As Drilled	

API Number 30-025-53944	Pool Code 17980	Pool Name DOGIE DRAW; WOLCAMP		
Property Code 326534	Property Name PITCHB	LENDE 24–25 FEDERAL	Well Number 703H	
OGRID No. Operator Name		COG OPERATING LLC Ground Level		
Surface Owner: 🗆 State 🗆 Fee 🗆 Tribal 🔀 Federal		Mineral Owner: 🗆 State 🗆 Fee 🗖 Tribal 🕱 Federal		

	Surface Location								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
B	24	25–S	34-E		210 FNL	1480 FEL	32.122612 ° N	103.419916°W	LEA
		5 <u>.</u> •			Bottom H	ole Location			0 0
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
0	25	25-S	34-E		50 FSL	1480 FEL	32.094307°N	103.419922°W	LEA

Dedicated Acres 1280	Infill or Defining Well Defining	Defining Well API Pending	Overlapping Spacing Unit (Y/N)	Consolidation Code
Order Numbers.		U	Well setbacks are under Common	Ownership: XYes □No

	Kick Off Point (KOP)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
В	24	25–S	34-E		210 FNL	1480 FEL	32.122612°N	103.419916°W	LEA
			10		First Take	Point (FTP)	n.		0
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
В	24	25–S	34-E		100 FNL	1480 FEL	32.122914 • N	103.419916°W	LEA
					Last Take	Point (LTP)			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
0	25	25–S	34-E		100 FSL	1480 FEL	32.094444°N	103.419922°W	LEA


Unitized Area or Area of Uniform Interest	Spacing Unit Type 🗶 Horiz	contal 🗆 Vertical	Ground Flo	Ground Floor Elevation: 3353.2'	
OPERATOR CERTIFICATIONS		SURVEYOR CERTIFIC	ATIONS		
I hereby certify that the information contained herein is t my knowledge and belief, and, if the well is a vertical or organization either owns a working interest or unleased including the proposed bottom hole location or has a rig location pursuant to a contract with an owner of a worki interest, or to a voluntary pooling agreement or a compu- entered by the division. If this well is a horizontal well, I further certify that this a consent of at least one lessee or owner of a working inter in each tract (in the target pool or formation) in which ar interval will be located or obtained a compulsory pooling	directional well, that this mineral interest in the land ht to drill this well at this ng interest or unleased mineral lsory pooling order heretofore organization has received the test or unleased mineral interest ny part of the well's completed	I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made be me or under my supervision, and that the same is tracent correct to the best of my belief.			
Signature Date		Signature and Seal of Professional Suveyor			
	0/23/2024	Signature and Seal of Professional Suveyor			
Printed Name		Certificate Number	Date of Survey		
Mayte Reyes		17777	NO	VEMBER 3, 2021	
Email Address mayte.x.reyes@conc	cophillips.com		W.O.#24-898	DRAWN BY: WN	PAGE 1 OF 2

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 10/31/2024 4:16:56 PM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

PAGE 2 OF 2

•

State of New MexicoSubmit ElectronicallyEnergy, Minerals and Natural Resources DepartmentVia E-permitting								
Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505								
	Ν	ATURAL GA	AS MANA(GEMENT PI	LAN			
This Natural Gas Manag	gement Plan m	ust be submitted wit	th each Applicat	tion for Permit to D	Drill (AP	PD) for a new of	r recompleted well.	
			<u>1 – Plan D</u> fective May 25,					
I. Operator: COG O	perating LL	C_OGRID:2	17955	Date:	<u>9 / 13</u>	/ 2024		
II. Type: 🛛 Original	☐ Amendment	due to □ 19.15.27.9	9.D(6)(a) NMA	C 🗆 19.15.27.9.D(6)(b) NN	MAC 🗆 Other.		
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a s					wells pro	pposed to be dri	lled or proposed to	
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		ripated ACF/D P	Anticipated roduced Water BBL/D	
Pitchblende 24-25 Fed Com 703H	30-025-	B-24-25S-34	E 210 FNL & 1480 FEL	± 1700	± 1	969	± 5500	
IV. Central Delivery P	oint Name:					_[See 19.15.2	7.9(D)(1) NMAC]	
V. Anticipated Schedu proposed to be recomple						t of wells propo	osed to be drilled or	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date	First Production Date	
Pitchblende 24-25 Fed Com 703H	Pending	5/20/2026	± 25 days from spud	9/17/2026		9/27/2026	10/2/2026	
VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.								
VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.								
VIII. Best Managemen during active and planne		-	e description of	`Operator's best m	nanagem	ent practices to	o minimize venting	

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

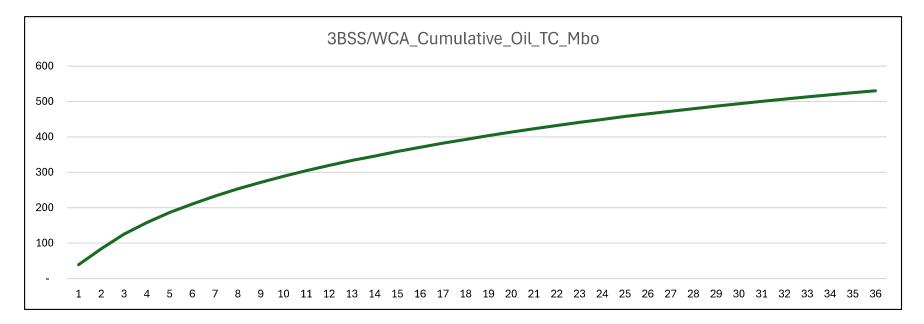
All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

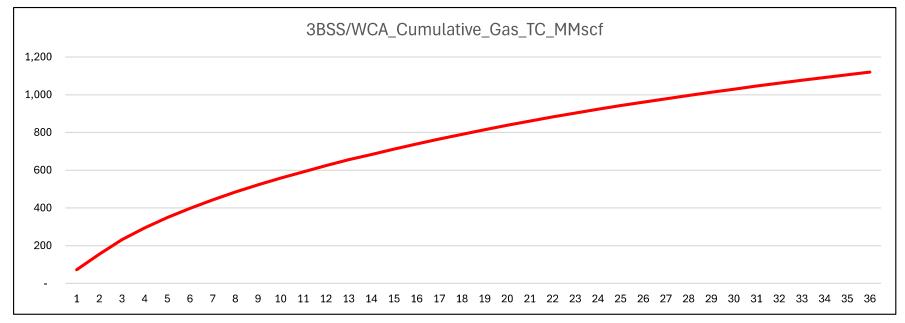
VII. Operational Practices

Actions Operator will take to comply with the requirements below:

- B. Drilling Operations
 - During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
 - Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- C. Completion Operations
 - During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
 - Individual well test separators will be set to properly separate gas and liquids. A temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline.
- D. Venting and flaring during production operations
 - During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
 - During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
 - Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.
- E. Performance standards for separation, storage tank and flare equipment
 - All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8 Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
 - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
 - All measurement devices installed will meet accuracy ratings per AGA and API standards.
 - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.


VIII. Best Management Practices


- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared.
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Mayte Reyes
Printed Name: Mayte Reyes
Title: Sr. Regulatory Coodinator
E-mail Address: mayte.x.reyes@conocophillips.com
Date: 9/13/2024
Phone: 575-748-6945
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
(Only applicable when submitted as a standarone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Anticipated Production Decline Curve

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400083287

Operator Name: COG OPERATING LLC Well Name: PITCHBLENDE 24-25 FEDERAL COM Well Type: OIL WELL

Submission Date: 02/15/2022 Federal/Indian APD: FED Well Number: 703H Well Work Type: Drill

Highlighted data reflects the most recent changes <u>Show Final Text</u>

10/21/2024

APD Print Report

Application

Section 1 - General		
APD ID: 10400083287	Tie to previous NOS? N	Submission Date: 02/15/2022
BLM Office: Carlsbad	User: MAYTE REYES	Title: Regulatory Analyst
Federal/Indian APD: FED	Is the first lease penetrate	ed for production Federal or Indian? FED
Lease number: NMNM122624	Lease Acres:	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	ent:
Agreement number:		
Agreement name:		
Keep application confidential? Y		
Permitting Agent? NO	APD Operator: COG OPE	RATING LLC
Operator letter of		

Operator Info

Operator Organization Name: COO	OPERATING LLC	
Operator Address: ONE CONCHO	CENTER 600 W ILLINOIS AVENUE	7 in 70701 4007
Operator PO Box:		Zip: 79701-4287
Operator City: MIDLAND	State: TX	
Operator Phone: (432)685-4342		
Operator Internet Address:		

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Well in Master Development Plan? NO	Master Development Plan nan	ne:					
Well in Master SUPO? NO	Master SUPO name:						
Well in Master Drilling Plan? NO	Master Drilling Plan name:						
Well Name: PITCHBLENDE 24-25 FEDERAL COM	Well Number: 703H	Well API Number:					
Field/Pool or Exploratory? Field and Pool	Field Name: DOGIE DRAW	Pool Name: Wolfcamp					
In the way and well in an area containing other wind							

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium produ	uction area? N	Use Existing Well Pad? N	New surface disturbance?
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name: PITCHBLENDE 24-25 FEDERAL	Number: 604H, 703H, 802H,
Well Class: HORIZONTAL		COM Number of Legs: 1	- 704H, 603H and 702H
Well Work Type: Drill			
Well Type: OIL WELL			
Describe Well Type:			
Well sub-Type: EXPLORATORY (WILD	CAT)		
Describe sub-type:			
Distance to town:	Distance to ne	earest well: 30 FT Distan	ce to lease line: 50 FT
Reservoir well spacing assigned acres	s Measurement	: 1280 Acres	
Well plat: COG_Pitchblende_24_25_	_703H_C102_20	220211132139.pdf	
Well work start Date: 01/01/2023		Duration: 30 DAYS	

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore NS-Foot NS Indicator EW-Foot EW Indicator Twsp Range Section Latitude Latitude County State State Meridian Lease Type Lease Type
de benerator cator at cator benerator bene
de de cator
de de cator
de de cator
de de contraction de la contra
de de la
de de Lot/Tr
de de los
Latitude Longitude County State Meridian Lease Type
Longitude County State Meridian Lease Type
County State Meridian Lease Type
State Meric
Merio
ease
Lease Number
Elevation
MD
TVD
Will this well produce from this

Approval Date: 10/18/2024

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

~																			
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	210	FNL	148 0	FEL	25S	34E	24	Aliquot NWNE	32.12261 2	- 103.4199 16	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 122624	335 3	0	0	Y
KOP Leg #1	210		148 0	FEL	25S	34E	24	Aliquot NWNE	32.12261 2	- 103.4199 16	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 122624	335 3	0	0	Y
PPP Leg #1-1	100	FNL	148 0	FEL	25S	34E	24	Aliquot NWNE	32.12291 4	- 103.4199 16	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 122624	- 930 5	127 00	126 58	Y
EXIT Leg #1	100	FSL	148 0	FEL	25S	34E	25	Aliquot SWSE	32.09444 4	- 103.4199 22	LEA	NEW MEXI CO		E.	NMNM 136223	- 948 3	229 73	128 36	Y
BHL Leg #1	50	FSL	148 0	FEL	25S	34E	25	Aliquot SWSE	32.09430 7	- 103.4199 22	LEA	NEW MEXI CO		F	NMNM 136223	- 944 3	230 22	127 96	Y

Drilling Plan

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14339618	QUATERNARY	3353	0	Ō	ALLUVIUM	NONE	N
14339615	RUSTLER	2397	956	956	GYPSUM	NONE	N
14339614	TOP SALT	1871	1482	1482	SALT	NONE	N
14339597	BASE OF SALT	-1841	5194	5194	SALT	NONE	N
14339616	LAMAR	-2147	5500	5500	SANDSTONE	NONE	N
14339599	BELL CANYON	-2180	5533	5533	SANDSTONE	NONE	N
14339605	CHERRY CANYON	-3110	6463	6463	SANDSTONE	NATURAL GAS, OIL	N
14339620	BRUSHY CANYON	-4657	8010	8010	SANDSTONE	NATURAL GAS, OIL	N

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producin Formatio
14339610	BONE SPRING LIME	-5972	9325	9325	LIMESTONE	NATURAL GAS, OIL	N
14339612		-10937	9653	9653			N
14339602	BONE SPRING 1ST	-7124	10477	10477	SANDSTONE	NATURAL GAS, OIL	N
14339603	BONE SPRING 2ND	-7665	11018	11018	SANDSTONE	NATURAL GAS, OIL	N
14339596	BONE SPRING 3RD	-8771	12124	12124	SANDSTONE	NATURAL GAS, OIL	N
14339627	WOLFCAMP	-9210	12563	12563	SHALE	NATURAL GAS, OIL	Y
14339634	WOLFCAMP	-9571	12924	12924	SHALE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 12796

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: Request a 5M variance on a 10M system. (5M variance attached in section 8). A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Pitchblende_10M_Choke_20220204220423.pdf

BOP Diagram Attachment:

COG_Pitchblende_10M_BOP_20220204220436.pdf

Pitchblende_Flex_Hose_Variance_20240913110808.pdf

Pressure Rating (PSI): 5M

Rating Depth: 12100

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher

Approval Date: 10/18/2024

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Pitchblende_5M_Choke_20220204220245.pdf

BOP Diagram Attachment:

COG_Pitchblende_5M_BOP_20230121161439.pdf

Pitchblende_Flex_Hose_Variance_20240913110824.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	17.8 10int SF	Body SF Type	DOM CE
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1350	0	1350	3353	2003	1350	N-80	1	OTHER - BTC	4	1.67	DRY	17.8 6	DRY	16 3
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	8500	0	12100	3353	-8747		OTH ER		OTHER - W513	1.3	1.38	DRY	1.57	DRY	2.
3	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	23022	0	12796	-6907	-9443	23022	P- 110	-	OTHER - W441	1.75	2.06	DRY	2.25	DRY	2.

Casing Attachments

Casing ID: 1

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

String

Pitchblende_24_25_703H_Updated_Casing_Prog_20240913110947.pdf

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Casing Attachments

Casing ID:	2	String	INTERMEDIATE
Inspection De	ocument:		
Spec Docum	ent:		
Toporod Strip			
Tapered Strir	ig Spec:		
Pitchble	ende_24_25	_703H_Upd	lated_Casing_Prog_20240913111132.pdf
Casing Desig	yn Assumpt	tions and W	Vorksheet(s):
Pitchble	ende_24_25	_703H_Upd	lated_Casing_Prog_20240913111234.pdf
Casing ID:	3	String	PRODUCTION
Inspection De	ocument:		
·			
Spec Docum	ent:		
Tapered Strin	ng Spec:		
Pitchble	ende_24_25	_703H_Upd	lated_Casing_Prog_20240913111302.pdf

Casing Design Assumptions and Worksheet(s):

Pitchblende_24_25_703H_Updated_Casing_Prog_20240913111317.pdf

		_	_								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1350	644	1.75	13.5	1127	50	Class C	4% Gel + 1% CaC12
SURFACE	Tail		0	1350	250	1.34	14.8	335	50	С	2% CaCl2
INTERMEDIATE	Lead		0	1210 0	850	3.3	10.3	2805	50	Tuned Light Blend	No additives
INTERMEDIATE	Tail		0	1210 0	250	1.35	14.8	337	50	Class H	No additives

Section 4 - Cement

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		1279 6	2302 2	538	2	12.7	1076	35	Lead: 50:50:10 H Blend	No additives
PRODUCTION	Tail		1279 6	2302 2	1077	1.24	14.4	1335	35	Tail: 50:50:2 Class H Blend	No additives

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1350	1210 0	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
1210 0	2302 2	OIL-BASED MUD	9.6	12.5							ОВМ
0	1350	OTHER : Fresh water gel	8.6	8.8							Fresh water gel

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well: COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8320

Anticipated Surface Pressure: 5496

Anticipated Bottom Hole Temperature(F): 185

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

COG_Pitchblende_H2S_SUP_20220204222457.pdf COG_Pitchblende_24_25_604H_703H_802H_704H_603H_702H_Schem_20240913111756.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

PITCHBLENDE_24_25_FED_703H_PWP1_AC_RPT_20240913111906.pdf PITCHBLENDE_24_25_FED_703H_PWP1_WP_20240913111907.pdf PITCHBLENDE_2425_FED_703H_PWP1_SVY_RPT_20240913111908.pdf

Other proposed operations facets description:

Drilling Program. Cement Program. GCP.

Other proposed operations facets attachment:

COG_Pitchblende_24_25_703H_GCP_20240913112519.pdf Pitchblende_24_25_703H_Updated_Cement_Prog_20240913112520.pdf Pitchblende_24_25_703H_Updated_Drilling_Prog_20240913112520.pdf Pitchblende_24_25_703H_Updated_Casing_Prog_20240913112520.pdf API_BTC_7.625_0.375_L80_ICY_20240913112550.pdf Wedge_441_5.500_0.415_P110_CY_20240913112554.pdf Approval Date: 10/18/2024

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

API_BTC_Special_Clearance_10.750_0.400_J55__Casing__20240913112554.pdf Wedge_513_7.625_0.375_P110_ICY_20240913112554.pdf TXP_BTC_5.500_0.415_P110_CY_20240913112554.pdf COP_BOP_Break_Testing_Documentation_6_07_23_20240913112555.pdf

Other Variance attachment:

COG_5M_Variance_Well_Plan_20200513161353.pdf

SUPO

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

COG_Pitchblende_Existing_Roads_20220211115822.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Pitchblende_Road_Plats_20220204222737.pdf

New road type: RESOURCE

Length: 653.2

Width (ft.): 30

Max slope (%): 33

Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? N

Feet

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage and to be consistent with local drainage patterns. **New road access plan or profile prepared?** N

Approval Date: 10/18/2024

Row(s) Exist? NO

Well Name: PITCHBLENDE 24-25 FEDERAL COM

New road access plan

Access road engineering design? N

Access road engineering design

Turnout? N

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth:

Offsite topsoil source description: Caliche

Onsite topsoil removal process:

Access other construction information:

Access miscellaneous information: Access Road: 57.5'

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None needed.

Road Drainage Control Structures (DCS) description: None needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

COG_Pitchblende_24_25_703H_1_Mile_Data_20220211132217.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Pitchblende Federal 24 B CTB. This CTB will be built to accommodate the Pitchblende Federal 604H, 703H, 802H, 704H, 603H, 702H, 606H, 705H, 803H, 706H, & 605H. We plan to install (1) buried 4 FP 601HT production flowline from each wellhead to the inlet manifold of the proposed CTB (11 lines total). We will install (1) buried 4 gas lines for gas lift supply from the CTB to each gas lift compressor (11 lines total). Pitchblende 24 25 & Pitchblende 19 30 Project Flowline: 4397.2' Gas Line: 4397' Powerline: 8142.5

Approval Date: 10/18/2024

Operator Name: COG OPERATING L	LC	
Well Name: PITCHBLENDE 24-25 FE	DERAL COM Well Numb	ber: 703H
Production Facilities map:		
COG_Pitchblende_Fed_24_B_CTB_20	240913110247.pdf	
COG_Pitchblende_24_25_Flowlines_O	il_Gas_Plats_20240913110248.pd	f
COG_Pitchblende_24_25_Powerline_2	0240913110249.pdf	
Section 5 - Location an	d Types of Water Supply	,
Water Source Tabl	e	
Water source type: OTHER		
Describe type: Fresh Water. See Be	elow.	
Water source use type:	SURFACE CASING	
	STIMULATION	
	ICE PAD CONSTRUCTION & MAINTENANCE	
Source latitude:		Source longitude:
Source datum:		
Water source permit type:	PRIVATE CONTRACT	
Water source transport method:	PIPELINE	
Source land ownership: PRIVATE		
Source transportation land owners		
Water source volume (barrels): 45		Source volume (acre-feet): 58.001892
Source volume (gal): 18900000	0000	Source volume (acre-reet). 56.001892
Water source type: OTHER		
Describe type: Brine Water. See Be	low.	
Water source use type:	INTERMEDIATE/PRODUCTION	
Source latitude:	CASING	Seuree lengitude.
Source latum:		Source longitude:
Water source permit type:	PRIVATE CONTRACT	
Mater Source permit type.		
Water source transport method:	TRUCKING	
Source land ownership: COMMER	CIAL	

•

Received by OCD: 10/31/2024 4:16:56 PM		Page 22 of
Operator Name: COG OPERATING LLC)	
Well Name: PITCHBLENDE 24-25 FEDE	ERAL COM W	ell Number: 703H
Source transportation land ownersh	ip: COMMERCIAL	
Water source volume (barrels): 3000	0	Source volume (acre-feet): 3.866793
Source volume (gal): 1260000		
Water source and transportation		
COG_Pitchblende_25_24_Brine_H2O_20	220314110241.pdf	
COG_Pitchblende_25_24_Fresh_H2O_20)220314110304.pdf	
Water source comments: See attached	maps.	
New water well? N		
New Water Well Inf	0	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thick	ness of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing	ı type:
Well casing outside diameter (in.):	Well casing	j inside diameter (in.):
New water well casing?	Used casing	g source:
Drilling method:	Drill materia	al:
Grout material:	Grout depth	n:
Casing length (ft.):	Casing top	depth (ft.):
Well Production type:	Completion	Method:
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be obtained from Quail Ranch caliche pit located in Section 6, T25S, R35E. SENW **Construction Materials source location**

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Page 23 of 76

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil land water while drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal facility.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY **Disposal type description**:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations.

Amount of waste: 500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility **Safe containmant attachment:**

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Cuttings area width (ft.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Roll off cutting containers on tracks

Cuttings area length (ft.)

Cuttings area depth (ft.) Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

PITCHBLENDE_24_25_FED_604H_703H_802H_704H_603H_702H_Layout_20240913110323.pdf

Comments:

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Section 10 - Plans for Surface Reclamation

 Type of disturbance: New Surface Disturbance
 Multiple Well Pad Name: PITCHBLENDE 24-25 FEDERAL COM

Recontouring

Multiple Well Pad Number: 604H, 703H, 802H, 704H, 603H and 702H

COG_Pitchblende_24_25_604H_703H_802H_704H_603H_702H_Reclamation_20220211115946.pdf

Drainage/Erosion control construction: Immediately following construction, straw waddles will be placed as necessary at the well site to reduce sediment impacts to fragile/sensitive soils. **Drainage/Erosion control reclamation:** Southeast 50', South 50'

Well pad proposed disturbance (acres): 14.88 Road proposed disturbance (acres): 0.45	Well pad interim reclamation (acres): 1.8 Road interim reclamation (acres): 0.45	(acres): 10.62
Powerline proposed disturbance (acres): 5.61 Pipeline proposed disturbance (acres): 6.06 Other proposed disturbance (acres): 4.44	Powerline interim reclamation (acres): 5.61 Pipeline interim reclamation (acres): 6.06 Other interim reclamation (acres): 4.44	(acres): 5.61 Pipeline long term disturbance (acres): 6.06
Total proposed disturbance: 31.44	Total interim reclamation: 18.36	Total long term disturbance: 27.18

Disturbance Comments:

Reconstruction method: Portions of the pad not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused. The stockpiled topsoil will be spread out over reclaimed area and reseeded with BLM approved seed mixture. **Topsoil redistribution:** 30' x pad length.

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland

- Existing Vegetation Community at the road
- Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland
- Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances

Approval Date: 10/18/2024

Operator Name: COG OPERATING LLC	
Well Name: PITCHBLENDE 24-25 FEDERAL COM	Well Number: 703H
Non native seed used? N	
Non native seed description:	
Seedling transplant description:	
Will seedlings be transplanted for this project? N	
Seedling transplant description	
Will seed be harvested for use in site reclamation?	N
Seed harvest description:	
Seed harvest description attachment:	
Seed	
Seed Table	
Seed Summary	Total pounds/Acre:
Seed Type Pounds/Acre	
Seed reclamation	
Operator Contact/Responsible	e Official
First Name:	Last Name:
Phone:	Email:
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? N	
Existing invasive species treatment description:	
Existing invasive species treatment	
Weed treatment plan description: N/A	
Weed treatment plan	
Monitoring plan description: N/A	
Monitoring plan	
Success standards: N/A	

•

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Page 27 of 76

Pit closure description: N/A

Pit closure attachment:

COG_Pitchblende_Closed_Loop_20240913110510.pdf

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other

Right of Way needed? N ROW Type(s):

ROW

Use APD as ROW?

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

SUPO Additional Information: SUP Attached Federal Surface.

Use a previously conducted onsite? Y

Previous Onsite information: Onsite completed on November 2nd, 2021 by Gerald Herrera (COG), Keely Watland (BLM) and Zane Kirsch (BLM).

Other SUPO

COG_Pitchblende_24_25_703H_C102_20220211132342.pdf COG_Pitchblende_24_25_703H_1_Mile_Data_20220211132342.pdf COG_Pitchblende_Existing_Roads_20220211120159.pdf COG_Pitchblende_Road_Plats_20220209152450.pdf COG_Pitchblende_25_24_Brine_H2O_20220405085310.pdf COG_Pitchblende_25_24_Fresh_H2O_20220405085318.pdf COG_Pitchblende_24_25_703H_SUP_20220505100823.pdf PITCHBLENDE_24_25_FED_604H_703H_802H_704H_603H_702H_Layout_20240913110557.pdf COG_Pitchblende_24_25_FED_604H_703H_802H_704H_603H_702H_Layout_20240913110557.pdf COG_Pitchblende_24_25_FED_604H_703H_802H_704H_603H_702H_Layout_20240913110557.pdf COG_Pitchblende_24_25_FED_604H_703H_802H_704H_603H_702H_Layout_20240913110557.pdf COG_Pitchblende_24_25_FIOwlines_Oil_Gas_Plats_20240913110629.pdf COG_Pitchblende_Fed_24_B_CTB_20240913110627.pdf COG_Pitchblende_24_25_Powerline_20240913110629.pdf

PWD

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N

Operator Name: COG OPERATING LLC	
Well Name: PITCHBLENDE 24-25 FEDERAL COM	Well Number: 703H
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Lined pit PWD on or off channel:	
Lined pit PWD discharge volume (bbl/day):	
Lined pit	
Pit liner description:	
Pit liner manufacturers	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal	
Lined pit precipitated solids disposal schedule:	
Lined pit precipitated solids disposal schedule	
Lined pit reclamation description:	
_ined pit reclamation	
Leak detection system description:	
Leak detection system	
Lined pit Monitor description:	
Lined pit Monitor	
Lined pit: do you have a reclamation bond for the pit?	
s the reclamation bond a rider under the BLM bond?	
Lined pit bond number:	
Lined pit bond amount:	
Additional bond information	
Section 3 - Unlined	
Would you like to utilize Unlined Pit PWD options? N	
Produced Water Disposal (PWD) Location:	
PWD disturbance (acres): PWD sur	face owner:
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	

Approval Date: 10/18/2024

•

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Page 30 of 76

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Injection well API number:

Injection well name:

PWD disturbance (acres):

Approval Date: 10/18/2024

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Approval Date: 10/18/2024

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

Bond Info

Bond

Federal/Indian APD: FED BLM Bond number: BIA Bond number: Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? BLM reclamation bond number:

PWD disturbance (acres):

PWD disturbance (acres):

Well Number: 703H

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

Operator Certification

Payment Info

Payment

APD Fee Payment Method: PAY.GOV

pay.gov Tracking ID: 26UUUC4F

Received by OCD: 10/31/2024 4:16:56 PM

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400083287

Operator Name: COG OPERATING LLC Well Name: PITCHBLENDE 24-25 FEDERAL COM Well Type: OIL WELL

Submission Date: 02/15/2022

Highlighted data reflects the most recent changes Show Final Text

Application Data

Section 1 - General

APD ID:	10400083287	Tie to previous NOS?	N	Submission Date: 02/15/2022
BLM Office:	: Carlsbad	User: MAYTE REYES	Title	e: Regulatory Analyst
Federal/Ind	ian APD: FED	Is the first lease penetr	ated for producti	on Federal or Indian? FED
Lease numl	ber: NMNM122624	Lease Acres:		
Surface acc	ess agreement in place?	Allotted?	Reservation:	
Agreement	in place? NO	Federal or Indian agree	ement:	
Agreement	number:			
Agreement	name:			
Keep applic	ation confidential? Y			
Permitting	Agent? NO	APD Operator: COG OF	PERATING LLC	
Operator le	tter of			

Operator Info

Operator Organization Name: COG OPERATING LLC Operator Address: ONE CONCHO CENTER 600 W ILLINOIS AVENUE Zip: 79701-4287 **Operator PO Box: Operator City: MIDLAND** State: TX **Operator Phone:** (432)685-4342

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name	e:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: PITCHBLENDE 24-25 FEDERAL COM	Well Number: 703H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: DOGIE DRAW	Pool Name: Wolfcamp

10/21/2024

Well Number: 703H Well Work Type: Drill

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium produc	ction area? N	Use Existing Well Pad	? N	New surface disturbance?
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Nam PITCHBLENDE 24-25 F		Number: 604H, 703H, 802H,
Well Class: HORIZONTAL		COM Number of Legs: 1	EDERAL	704H, 603H and 702H
Well Work Type: Drill				
Well Type: OIL WELL				
Describe Well Type:				
Well sub-Type: EXPLORATORY (WILDO	CAT)			
Describe sub-type:				
Distance to town:	Distance to ne	arest well: 30 FT	Distanc	e to lease line: 50 FT
Reservoir well spacing assigned acres	Measurement	1280 Acres		
Well plat: COG_Pitchblende_24_25_7	703H_C102_20	220211132139.pdf		
Well work start Date: 01/01/2023		Duration: 30 DAYS		

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	210	FNL	148 0	FEL	25S	34E	24	Aliquot NWNE	32.12261 2	- 103.4199 16	LEA	NEW MEXI CO		F	NMNM 122624		0	0	Y
KOP Leg #1	210	FNL	148 0	FEL	25S	34E	24	Aliquot NWNE	32.12261 2	- 103.4199 16	LEA	NEW MEXI CO		F	NMNM 122624	335 3	0	0	Y

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP	100	FNL	148	FEL	25S	34E	24	Aliquot	32.12291		LEA	1	NEW	F	NMNM	-	127	126	Y
Leg			0					NWNE	4	103.4199 16		MEXI CO	CO		122624	930 5	00	58	
#1-1												<u> </u>				5			
EXIT	100	FSL	148	FEL	25S	34E	25	Aliquot	32.09444		LEA	1		F	NMNM		229	128	Y
Leg			0					SWSE	4	103.4199		MEXI			136223	948	73	36	
#1										22		со	co			3			
BHL	50	FSL	148	FEL	25S	34E	25	Aliquot	32.09430	-	LEA	NEW	NEW	F	NMNM	-	230	127	Y
Leg			0					SWSE	7	103.4199		MEXI			136223	944	22	96	
#1										22		со	со			3			

Received by OCD: 10/31/2024 4:16:56 PM

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Type: OIL WELL

Well Number: 703H Well Work Type: Drill

Submission Date: 02/15/2022

Highlighted data reflects the most recent changes

10/21/2024

Drilling Plan Data Report

Show Final Text

Section 1 - Geologic Formations

Sec	Section 1 - Geologic Formations													
Formation	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio							
14339618	QUATERNARY	3353	0	0	ALLUVIUM	NONE	N							
14339615	RUSTLER	2397	956	956	GYPSUM	NONE	N							
14339614	TOP SALT	1871	1482	1482	SALT	NONE	N							
14339597	BASE OF SALT	-1841	5194	5194	SALT	NONE	N							
14339616	LAMAR	-2147	5500	5500	SANDSTONE	NONE	N							
14339599	BELL CANYON	-2180	5533	5533	SANDSTONE	NONE	N							
14339605	CHERRY CANYON	-3110	6463	6463	SANDSTONE	NATURAL GAS, OIL	N							
14339620	BRUSHY CANYON	-4657	8010	8010	SANDSTONE	NATURAL GAS, OIL	N							
14339610	BONE SPRING LIME	-5972	9325	9325	LIMESTONE	NATURAL GAS, OIL	N							
14339612		-10937	9653	9653			N							
14339602	BONE SPRING 1ST	-7124	10477	10477	SANDSTONE	NATURAL GAS, OIL	N							
14339603	BONE SPRING 2ND	-7665	11018	11018	SANDSTONE	NATURAL GAS, OIL	N							
14339596	BONE SPRING 3RD	-8771	12124	12124	SANDSTONE	NATURAL GAS, OIL	N							
14339627	WOLFCAMP	-9210	12563	12563	SHALE	NATURAL GAS, OIL	Y							
14339634	WOLFCAMP	-9571	12924	12924	SHALE	NATURAL GAS, OIL	N							

Section 2 - Blowout Prevention

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Pressure Rating (PSI): 10M

Rating Depth: 12796

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: Request a 5M variance on a 10M system. (5M variance attached in section 8). A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Pitchblende_10M_Choke_20220204220423.pdf

BOP Diagram Attachment:

COG_Pitchblende_10M_BOP_20220204220436.pdf

Pitchblende_Flex_Hose_Variance_20240913110808.pdf

Pressure Rating (PSI): 5M

Rating Depth: 12100

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Pitchblende_5M_Choke_20220204220245.pdf

BOP Diagram Attachment:

COG_Pitchblende_5M_BOP_20230121161439.pdf

Pitchblende_Flex_Hose_Variance_20240913110824.pdf

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Page 38 of 76

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1350	0	1350	3353	2003	1350	N-80		OTHER - BTC	4	1.67	DRY	17.8 6	DRY	16.9 3
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	8500	0	12100	3353	-8747		OTH ER		OTHER - W513	1.3	1.38	DRY	1.57	DRY	2.62
3	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	23022	0	12796	-6907	-9443	23022	P- 110	-	OTHER - W441	1.75	2.06	DRY	2.25	DRY	2.48

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pitchblende_24_25_703H_Updated_Casing_Prog_20240913110947.pdf

Received by OCD: 10/31/2024 4:16:56 PM

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Casing Attachments

Casing ID: 2	String	INTERMEDIATE
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Pitchblende_24_25	_703H_Upda	ated_Casing_Prog_20240913111132.pdf
Casing Design Assumption	tions and W	orksheet(s):
Pitchblende 24 25	703H Upda	ated_Casing_Prog_20240913111234.pdf
Casing ID: 3	String	PRODUCTION
Inspection Document:		
Spec Document:		

Tapered String Spec:

Pitchblende_24_25_703H_Updated_Casing_Prog_20240913111302.pdf

Casing Design Assumptions and Worksheet(s):

Pitchblende_24_25_703H_Updated_Casing_Prog_20240913111317.pdf

Oconom			•								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1350	644	1.75	13.5	1127	50	Class C	4% Gel + 1% CaC12
SURFACE	Tail		0	1350	250	1.34	14.8	335	50	С	2% CaCl2
INTERMEDIATE	Lead		0	1210 0	850	3.3	10.3	2805	50	Tuned Light Blend	No additives
INTERMEDIATE	Tail		0	1210 0	250	1.35	14.8	337	50	Class H	No additives
PRODUCTION	Lead		1279 6	2302 2	538	2	12.7	1076	35	Lead: 50:50:10 H Blend	No additives

Section 4 - Cement

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		1279 6	2302 2	1077	1.24	14.4	1335	35	Tail: 50:50:2 Class H Blend	No additives

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1350	1210 0	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
1210 0	2302 2	OIL-BASED MUD	9.6	12.5							ОВМ
0	1350	OTHER : Fresh water gel	8.6	8.8							Fresh water gel

Received by OCD: 10/31/2024 4:16:56 PM

Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: None planned

List of open and cased hole logs run in the well: COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8320

Anticipated Surface Pressure: 5496

Anticipated Bottom Hole Temperature(F): 185

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

COG_Pitchblende_H2S_SUP_20220204222457.pdf COG_Pitchblende_24_25_604H_703H_802H_704H_603H_702H_Schem_20240913111756.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

PITCHBLENDE_24_25_FED_703H_PWP1_AC_RPT_20240913111906.pdf PITCHBLENDE_24_25_FED_703H_PWP1_WP_20240913111907.pdf PITCHBLENDE_2425_FED_703H_PWP1_SVY_RPT_20240913111908.pdf

Other proposed operations facets description:

Drilling Program. Cement Program. GCP.

Other proposed operations facets attachment:

COG_Pitchblende_24_25_703H_GCP_20240913112519.pdf Pitchblende_24_25_703H_Updated_Cement_Prog_20240913112520.pdf Pitchblende_24_25_703H_Updated_Drilling_Prog_20240913112520.pdf Pitchblende_24_25_703H_Updated_Casing_Prog_20240913112520.pdf API_BTC_7.625_0.375_L80_ICY_20240913112550.pdf Wedge_441_5.500_0.415_P110_CY_20240913112554.pdf API_BTC_Special_Clearance_10.750_0.400_J55__Casing__20240913112554.pdf Operator Name: COG OPERATING LLC

Well Name: PITCHBLENDE 24-25 FEDERAL COM

Well Number: 703H

Wedge_513_7.625_0.375_P110_ICY_20240913112554.pdf TXP_BTC_5.500_0.415_P110_CY_20240913112554.pdf COP_BOP_Break_Testing_Documentation_6_07_23_20240913112555.pdf

Other Variance attachment:

COG_5M_Variance_Well_Plan_20200513161353.pdf

DELAWARE BASIN EAST

BULLDOG PROSPECT (NM-E) PITCHBLENDE 24-25 FEDERAL PROJECT PITCHBLENDE 24-25 FED 703H

OWB

Plan: PWP1

Standard Survey Report

02 December, 2021

ConocoPhillips

Survey Report

Project: B Site: P Well: P Wellbore: O	ELAWARE BAS ULLDOG PROS ITCHBLENDE 2 ITCHBLENDE 2 WB WP1	PECT (NM-E) 4-25 FEDERA		TVD Refe MD Refe North Re	rence: eference: Calculation M		Well PITCHBI KB=30' @ 338 KB=30' @ 338 Grid Minimum Curr EDT 15 Centr	NQUEST)			
Project	BULLDOG P	ROSPECT (NN	И-Е)								
Map System: Geo Datum: Map Zone:	US State Plan NAD 1927 (NA New Mexico E	DCON CONU		System	n Datum:		Mean Sea Le	vel			
Well	PITCHBLEND	DE 24-25 FED	703H								
Well Position	+N/-S	0.0 usft	Northing:		409,482.	80 usft	Latitude:		32° 7' 20).951 N	
	+E/-W	0.0 usft	Easting:		782,927.	10 usft	Longitude:		103° 25' 10	.019 V	
Position Uncertai	nty	3.0 usft	Wellhead El	evation:		usft	Ground Leve	l:	3,353	3.2 us	
Wellbore	OWB										
Magnation	Model Na		ample Data	Deal	lination	Di	n Anglo	Field	Strongth		
Magnetics	woder Na	me Sa	ample Date		(°)		p Angle (°)		Strength (nT)		
	BGGN	//2021	11/30/2021		6.33		59.74	47,	551.01752065		
Design	PWP1										
Audit Notes:											
Version:			Phase:	PLAN	-	Tie On Dept	:h:			0.0	
Vertical Section:		Depth Fro	om (TVD)	+N/-S		+E/-W		Direction			
							-		°)		
		(us	ft)	(usft)		(usft)		(°)	0.50		
) 0.0	(usft) 0.0			9.53		
Survey Tool Prog			ft) 0.0			• •			9.53		
Survey Tool Prog From (usft)	То	(us	ft) 0.0		0.0 Tool Name	0.0	Description	17			
From	To (usft) \$ 12,323.01	(us Date 12/1/20	ft) 0.0		0.0	0.0	Standard Wir		/er 1.0.4		
From (usft) 0.0	To (usft) \$ 12,323.01	Under (Us) Date 12/1/20 Survey (Wellb) PWP1 (OWB)	ft) 0.0		0.0 Tool Name Standard Kee	0.0	Standard Wir	17 eline Keeper v	/er 1.0.4		
From (usft) 0.0 12,323.0	To (usft) \$ 12,323.01	Under (Us) Date 12/1/20 Survey (Wellb) PWP1 (OWB)	ft) 0.0		0.0 Tool Name Standard Kee	0.0	Standard Wir	17 eline Keeper v	/er 1.0.4		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth	To (usft) s 12,323.0 F 23,022.7 F	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 021 ore) Vertical Depth	+N/-S (usft) 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W	0.0 eper 104 FDIR Vertical Section	Standard Wir OWSG MWE Dogleg Rate (°/100usft) 0.00	17 reline Keeper v) + IFR1 + FDI Build Rate	rer 1.0.4 R Correction Turn Rate		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0	To (usft) s 12,323.0 F 23,022.7 F Inclination (°) 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0	+N/-S (usft) 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0	Standard Wir OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00	17 reline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0	To (usft) s 12,323.0 F 23,022.7 F Inclination (°) 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0	+N/-S (usft) 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0	Standard Wir OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0	To (usft) s 12,323.0 F 23,022.7 F Inclination (°) 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00	ft) 0.0 021 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0.00 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0	To (usft) s 12,323.0 F 23,022.7 F Inclination (°) 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0	+N/-S (usft) 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 021 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 Peper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWE Covernment (*/100usft) 0.00 0.00 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 021 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE Covernment (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 021 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE Covernment (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 021 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE Covernment (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	17 Peline Keeper v 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	17 eline Keeper v + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	17 eline Keeper v + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	To (usft) s 12,323.0 F 23,022.7 F 12,022.7 F 0.00 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(us Date 12/1/20 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	17 eline Keeper v + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		
From (usft) 0.0 12,323.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0	To (usft) s 12,323.0 F 23,022.7 F Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Oate 12/1/20 Date 12/1/20 Survey (Wellb PWP1 (OWB) Azimuth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 021 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0	+N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 eper 104 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Standard Wir OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	17 eline Keeper v + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00	rer 1.0.4 R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		

12/2/2021 12:43:18PM

Survey Report

Company:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
Project:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Site:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Well:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1.500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build	2.00								
2,600.0	2.00	359.60	2,600.0	1.7	0.0	-1.7	2.00	2.00	0.00
2,700.0	4.00	359.60	2,699.8	7.0	0.0	-7.0	2.00	2.00	0.00
Start 1563.	5 hold at 2700	0.0 MD							
2,800.0	4.00	359.60	2,799.6	14.0	-0.1	-14.0	0.00	0.00	0.00
2,900.0	4.00	359.60	2,899.4	20.9	-0.1	-20.9	0.00	0.00	0.00
3,000.0	4.00	359.60	2,999.1	27.9	-0.2	-27.9	0.00	0.00	0.00
3,100.0	4.00	359.60	3,098.9	34.9	-0.2	-34.9	0.00	0.00	0.00
3,200.0	4.00	359.60	3,198.6	41.9	-0.3	-41.9	0.00	0.00	0.00
3,300.0	4.00	359.60	3,298.4	48.8	-0.3	-48.8	0.00	0.00	0.00
3,400.0	4.00	359.60	3,398.1	55.8	-0.4	-55.8	0.00	0.00	0.00
3,500.0	4.00	359.60	3,497.9	62.8	-0.4	-62.8	0.00	0.00	0.00
3,600.0	4.00	359.60	3,597.6	69.8	-0.5	-69.8	0.00	0.00	0.00
3,700.0	4.00	359.60	3,697.4	76.7	-0.5	-76.7	0.00	0.00	0.00
3,800.0	4.00	359.60	3,797.2	83.7	-0.6	-83.7	0.00	0.00	0.00
3,900.0	4.00	359.60	3,896.9	90.7	-0.6	-90.7	0.00	0.00	0.00
4,000.0	4.00	359.60	3,996.7	97.7	-0.7	-97.7	0.00	0.00	0.00
4,100.0	4.00	359.60	4,096.4	104.6	-0.7	-104.6	0.00	0.00	0.00
4,200.0	4.00	359.60	4,196.2	111.6	-0.8	-111.6	0.00	0.00	0.00
4,263.5	4.00	359.60	4,259.6	116.0	-0.8	-116.0	0.00	0.00	0.00
Start Drop 4,300.0	-1.00 3.64	359.60	4,295.9	118.5	-0.8	-118.5	1.00	-1.00	0.00
4,400.0	2.64	359.60	4,395.8	123.9	-0.9	-123.9	1.00	-1.00	0.00
4,500.0	1.64	359.60	4,495.7	123.3	-0.9	-127.7	1.00	-1.00	0.00
4,600.0	0.64	359.60	4,595.7	129.6	-0.9	-129.7	1.00	-1.00	0.00
4,663.5	0.00	0.00	4,659.3	130.0	-0.9	-130.0	1.00	-1.00	0.00
	2 hold at 4663		1,000.0	100.0	0.0	100.0	1.00	1.00	0.00
4,700.0	0.00	0.00	4,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,000.0	0.00	0.00	4,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00

12/2/2021 12:43:18PM

Released to Imaging: 11/20/2024 3:29:52 PM

.

Survey Report

Company:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
Project:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Site:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Well:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	0.00	0.00	5,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
,				130.0	-0.9		0.00	0.00	0.00
5,400.0	0.00	0.00	5,395.7			-130.0			
5,500.0	0.00	0.00	5,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,600.0	0.00	0.00	5,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,700.0	0.00	0.00	5,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,800.0	0.00	0.00	5,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
5,900.0	0.00	0.00	5,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,000.0	0.00	0.00	5,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,100.0	0.00	0.00	6,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,200.0	0.00	0.00	6,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,300.0	0.00	0.00	6,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,400.0	0.00	0.00	6,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,500.0	0.00	0.00	6,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,600.0	0.00	0.00	6,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,700.0	0.00	0.00	6,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,800.0	0.00	0.00	6,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
6,900.0	0.00	0.00	6,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,000.0	0.00	0.00	6.995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,000.0	0.00	0.00	7,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
									0.00
7,200.0	0.00	0.00	7,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,300.0	0.00	0.00	7,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,400.0	0.00	0.00	7,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,000.0	0.00	0.00	7,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
0,200.0	0.00	0.00		100.0	-0.9			0.00	
8,300.0	0.00	0.00	8,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,095.7 9,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00

12/2/2021 12:43:18PM

Survey Report

Company:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
Project:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Site:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Well:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,600.0	0.00	0.00	9,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,800.0	0.00	0.00	9,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
9,900.0	0.00	0.00	9,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,000.0	0.00	0.00	9,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,100.0	0.00	0.00	10,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,400.0	0.00	0.00	10,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,500.0	0.00	0.00	10,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,600.0	0.00	0.00	10,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,000.0	0.00	0.00	10,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,100.0	0.00	0.00	11,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,200.0	0.00	0.00	11,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,300.0	0.00	0.00	11,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,400.0	0.00	0.00	11,395.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,500.0	0.00	0.00	11,495.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,600.0	0.00	0.00	11,595.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,700.0	0.00	0.00	11,695.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,800.0	0.00	0.00	11,795.7	130.0	-0.9	-130.0	0.00	0.00	0.00
11,900.0	0.00	0.00	11,895.7	130.0	-0.9	-130.0	0.00	0.00	0.00
12,000.0	0.00	0.00	11,995.7	130.0	-0.9	-130.0	0.00	0.00	0.00
12,100.0	0.00	0.00	12,095.7	130.0	-0.9	-130.0	0.00	0.00	0.00
12,200.0	0.00	0.00	12,195.7	130.0	-0.9	-130.0	0.00	0.00	0.00
12,300.0	0.00	0.00	12,295.7	130.0	-0.9	-130.0	0.00	0.00	0.00
12,322.8	0.00	0.00	12,318.5	130.0	-0.9	-130.0	0.00	0.00	0.00
12,400.0	12.00 TFO 179 9.26	.53 179.53	12,395.4	123.8	-0.8	-123.8	12.00	12.00	0.00
12,400.0	9.26 21.26	179.53	12,395.4 12,491.7	123.8 97.5	-0.8 -0.6	-123.8 -97.5	12.00	12.00	0.00
12,600.0	33.26	179.53	12,491.7	51.8	-0.8	-51.8	12.00	12.00	0.00
12,700.0	45.26	179.53	12,657.7	-11.4	0.3	11.4	12.00	12.00	0.00
12,800.0	57.26	179.53	12,720.1	-89.3	0.9	89.3	12.00	12.00	0.00
12,900.0	69.26	179.53	12,765.0	-178.4	1.6	178.4	12.00	12.00	0.00
13,000.0	81.26	179.53	12,790.4	-274.9	2.4	274.9	12.00	12.00	0.00
13,070.9	89.77	179.53	12,796.0	-345.5	3.0	345.5	12.00	12.00	0.00
	8 hold at 1307								
13,100.0	89.77	179.53	12,796.1	-374.7	3.3	374.7	0.00	0.00	0.00
13,100.0	89.77	179.53	12,796.5	-474.6	4.1	474.7	0.00	0.00	0.00
13,200.0	89.77	179.53	12,796.9	-474.0	4.1	574.7	0.00	0.00	0.00
13,300.0	89.77	179.53	12,790.9	-674.6	4.9 5.7	674.7	0.00	0.00	0.00
13,400.0	89.77	179.53	12,797.3	-074.0	5.7 6.6	774.7	0.00	0.00	0.00
 10,000.0	00.11	170.00	12,101.1		0.0	717.1	0.00	0.00	0.00

12/2/2021 12:43:18PM

Released to Imaging: 11/20/2024 3:29:52 PM

COMPASS 5000.15 Build 91E

.

Survey Report

Company:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
Project:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Site:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Well:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,600.0	89.77	179.53	12,798.1	-874.6	7.4	874.7	0.00	0.00	0.00
	89.77		12,798.5	-974.6		974.7	0.00	0.00	0.00
13,700.0		179.53			8.2				
13,800.0	89.77	179.53	12,798.9	-1,074.6	9.0	1,074.7	0.00	0.00	0.00
13,900.0	89.77	179.53	12,799.3	-1,174.6	9.8	1,174.7	0.00	0.00	0.00
14,000.0	89.77	179.53	12,799.7	-1,274.6	10.7	1,274.7	0.00	0.00	0.00
14,100.0	89.77	179.53	12,800.1	-1,374.6	11.5	1,374.7	0.00	0.00	0.00
14,200.0	89.77	179.53	12,800.5	-1,474.6	12.3	1,474.7	0.00	0.00	0.00
14,300.0	89.77	179.53	12,800.9	-1,574.6	13.1	1,574.7	0.00	0.00	0.00
14,400.0	89.77	179.53	12,801.3	-1,674.6	14.0	1,674.7	0.00	0.00	0.00
14,500.0	89.77	179.53	12,801.7	-1,774.6	14.8	1,774.7	0.00	0.00	0.00
14,600.0	89.77	179.53	12,802.1	-1,874.6	15.6	1,874.7	0.00	0.00	0.00
14,700.0	89.77	179.53	12,802.5	-1,974.6	16.4	1,974.7	0.00	0.00	0.00
14,800.0	89.77	179.53	12,802.9	-2,074.6	17.3	2,074.7	0.00	0.00	0.00
14,900.0	89.77	179.53	12,803.3	-2,174.6	18.1	2,174.7	0.00	0.00	0.00
15,000.0	89.77	179.53	12,803.7	-2,274.6	18.9	2,274.7	0.00	0.00	0.00
15 100 0	90.77	170 52	10 004 1	0.074.6	10.7	0.074.6	0.00	0.00	0.00
15,100.0	89.77	179.53	12,804.1	-2,374.6	19.7	2,374.6	0.00	0.00	0.00
15,200.0	89.77	179.53	12,804.5	-2,474.6	20.6	2,474.6	0.00	0.00	0.00
15,300.0	89.77	179.53	12,804.9	-2,574.6	21.4	2,574.6	0.00	0.00	0.00
15,400.0	89.77	179.53	12,805.3	-2,674.6	22.2	2,674.6	0.00	0.00	0.00
15,500.0	89.77	179.53	12,805.7	-2,774.6	23.0	2,774.6	0.00	0.00	0.00
15,600.0	89.77	179.53	12,806.1	-2,874.5	23.9	2,874.6	0.00	0.00	0.00
15,700.0	89.77	179.53	12,806.5	-2,974.5	24.7	2,974.6	0.00	0.00	0.00
15,800.0	89.77	179.53	12,806.9	-3,074.5	25.5	3,074.6	0.00	0.00	0.00
15,900.0	89.77	179.53	12,807.3	-3,174.5	26.3	3,174.6	0.00	0.00	0.00
16,000.0	89.77	179.53	12,807.7	-3,274.5	27.1	3,274.6	0.00	0.00	0.00
16,100.0	89.77	179.53	12,808.1	-3,374.5	28.0	3,374.6	0.00	0.00	0.00
16,200.0	89.77	179.53	12,808.6	-3,474.5	28.8	3,474.6	0.00	0.00	0.00
16,300.0	89.77	179.53	12,809.0	-3,574.5	29.6	3,574.6	0.00	0.00	0.00
16,400.0	89.77	179.53	12,809.4	-3,674.5	30.4	3,674.6	0.00	0.00	0.00
16,500.0	89.77	179.53	12,809.8	-3,774.5	31.3	3,774.6	0.00	0.00	0.00
16,600.0	89.77	179.53	12,810.2	-3,874.5	32.1	3,874.6	0.00	0.00	0.00
16.700.0	89.77	179.53	12,810.6	-3,974.5	32.9	3,974.6	0.00	0.00	0.00
16,800.0	89.77	179.53	12,811.0	-4,074.5	33.7	4,074.6	0.00	0.00	0.00
16,900.0	89.77	179.53	12,811.4	-4,174.5	34.6	4,174.6	0.00	0.00	0.00
17,000.0	89.77	179.53	12,811.8	-4,274.5	35.4	4,274.6	0.00	0.00	0.00
17,100.0	89.77	179.53	12,812.2	-4,374.5	36.2	4,374.6	0.00	0.00	0.00
17,200.0	89.77	179.53	12,812.6	-4,474.5	37.0	4,474.6	0.00	0.00	0.00
17,300.0	89.77	179.53	12,813.0	-4,574.5	37.9	4,574.6	0.00	0.00	0.00
17,400.0	89.77	179.53	12,813.4	-4,674.5	38.7	4,674.6	0.00	0.00	0.00
17,500.0	89.77	179.53	12,813.8	-4,774.5	39.5	4,774.6	0.00	0.00	0.00
17,600.0	89.77	179.53	12,814.2	-4,874.5	40.3	4,874.6	0.00	0.00	0.00
17,700.0	89.77	179.53	12,814.6	-4,974.5	41.2	4,974.6	0.00	0.00	0.00
17,800.0	89.77	179.53	12,815.0	-5,074.5	42.0	5,074.6	0.00	0.00	0.00
,			,	-,		.,			

12/2/2021 12:43:18PM

Released to Imaging: 11/20/2024 3:29:52 PM

Survey Report

С	ompany:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
P	roject:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
S	ite:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
W	/ell:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
W	/ellbore:	OWB	Survey Calculation Method:	Minimum Curvature
D	esign:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 900 0	89 77	179 53	12 815 4	-5 174 4	42.8	5 174 6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18,100.0	89.77	179.53	12,816.2	-5,374.4	44.4	5,374.6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18,200.0	89.77	179.53	12,816.6	-5,474.4	45.3	5,474.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,300.0	89.77	179.53	12,817.0	-5,574.4	46.1	5,574.6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18,400.0	89.77	179.53	12,817.4	-5,674.4	46.9	5,674.6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18,500.0	89.77	179.53	12,817.8	-5,774.4	47.7	5,774.6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18,600.0		179.53	,	-5,874.4	48.6				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,000.0	89.77	179.53	12,819.8	-6,274.4	51.9	6,274.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,100.0	89.77	179.53	12,820.2	-6,374.4	52.7	6,374.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,200.0					53.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,500.0	89.77	179.53	12,821.8	-6,774.4	56.0	6,774.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,600.0	89.77	179.53	12,822.2	-6,874.4	56.8	6,874.6	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,700.0	89.77	179.53	12,822.6	-6,974.4	57.6	6,974.6	0.00	0.00	0.00
20,000.0 89.77 179.53 12,823.8 -7,274.4 60.1 7,274.6 0.00 0.00 0.00 20,100.0 89.77 179.53 12,824.2 -7,374.4 60.9 7,374.6 0.00 0.00 0.00 20,100.0 89.77 179.53 12,825.0 -7,574.3 62.6 7,574.6 0.00 0.00 0.00 20,400.0 89.77 179.53 12,825.4 -7,674.3 63.4 7,674.6 0.00 0.00 0.00 20,500.0 89.77 179.53 12,825.9 -7,774.3 64.2 7,774.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.7 -7,974.3 65.0 7,874.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,827.9 -8,274.3 68.3 8,274.6 0.00 0.00 0.00 <td>19,800.0</td> <td>89.77</td> <td>179.53</td> <td>12,823.0</td> <td>-7,074.4</td> <td>58.5</td> <td>7,074.6</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	19,800.0	89.77	179.53	12,823.0	-7,074.4	58.5	7,074.6	0.00	0.00	0.00
20,100.0 89.77 179.53 12,824.2 -7,374.4 60.9 7,374.6 0.00 0.00 0.00 20,200.0 89.77 179.53 12,824.6 -7,474.4 61.7 7,474.6 0.00 0.00 0.00 20,300.0 89.77 179.53 12,825.0 -7,574.3 62.6 7,574.6 0.00 0.00 0.00 20,400.0 89.77 179.53 12,825.9 -7,774.3 63.4 7,674.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,827.5 -8,174.3 65.9 7,974.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,827.5 -8,174.3 66.7 8,074.6 0.00 0.00 0.00 20,900.0 89.77 179.53 12,827.5 -8,174.3 67.5 8,174.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,828.7 -8,474.3 70.0	19,900.0	89.77	179.53	12,823.4	-7,174.4	59.3	7,174.6	0.00	0.00	0.00
20,200.0 89.77 179.53 12,824.6 -7,474.4 61.7 7,474.6 0.00 0.00 0.00 20,300.0 89.77 179.53 12,825.0 -7,574.3 62.6 7,574.6 0.00 0.00 0.00 20,400.0 89.77 179.53 12,825.4 -7,674.3 63.4 7,674.6 0.00 0.00 0.00 20,500.0 88.77 179.53 12,826.3 -7,774.3 64.2 7,774.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,827.1 -8,074.3 66.7 8,074.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,827.5 -8,174.3 67.5 8,174.6 0.00 0.00 0.00 20,900.0 89.77 179.53 12,828.7 -8,274.3 68.3 8,274.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,828.7 -8,474.3 70.0	20,000.0	89.77	179.53	12,823.8	-7,274.4	60.1	7,274.6	0.00	0.00	0.00
20,300.0 89.77 179.53 12,825.0 -7,574.3 62.6 7,574.6 0.00 0.00 0.00 20,400.0 89.77 179.53 12,825.4 -7,674.3 63.4 7,674.6 0.00 0.00 0.00 20,500.0 89.77 179.53 12,825.9 -7,774.3 64.2 7,774.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,800.0 89.77 179.53 12,827.1 -8,074.3 66.7 8,074.6 0.00 0.00 0.00 20,800.0 89.77 179.53 12,827.9 -8,274.3 68.7 8,074.6 0.00 0.00 0.00 20,800.0 89.77 179.53 12,827.9 -8,274.3 68.3 8,274.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,828.7 -8,474.3 70.0 8,474.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,828.7 -8,674.3 71.6	20,100.0	89.77	179.53	12,824.2	-7,374.4	60.9	7,374.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20,200.0	89.77	179.53	12,824.6	-7,474.4	61.7	7,474.6	0.00	0.00	0.00
20,500.0 89.77 179.53 12,825.9 -7,774.3 64.2 7,774.6 0.00 0.00 0.00 20,600.0 89.77 179.53 12,826.3 -7,874.3 65.0 7,874.6 0.00 0.00 0.00 20,700.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,800.0 89.77 179.53 12,827.1 -8,074.3 66.7 8,074.6 0.00 0.00 0.00 20,900.0 89.77 179.53 12,827.5 -8,174.3 67.5 8,174.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,828.7 -8,374.3 69.2 8,374.6 0.00 0.00 0.00 21,100.0 89.77 179.53 12,828.7 -8,474.3 70.0 8,474.6 0.00 0.00 0.00 21,200.0 89.77 179.53 12,828.7 -8,474.3 70.0 8,474.6 0.00 0.00 0.00 21,400.0 89.77 179.53 12,829.5 -8,674.3 71.6	20,300.0				-7,574.3	62.6				
20,600.089.77179.5312,826.3-7,874.365.07,874.60.000.000.0020,700.089.77179.5312,826.7-7,974.365.97,974.60.000.000.0020,800.089.77179.5312,827.1-8,074.366.78,074.60.000.000.0020,900.089.77179.5312,827.5-8,174.367.58,174.60.000.000.0021,000.089.77179.5312,827.9-8,274.368.38,274.60.000.000.0021,100.089.77179.5312,828.3-8,374.369.28,374.60.000.000.0021,200.089.77179.5312,828.7-8,474.370.08,474.60.000.000.0021,300.089.77179.5312,829.1-8,574.370.88,574.60.000.000.0021,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,400.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,600.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,600.089.77179.5312,830.7-8,974.373.38,874.60.000.000.00 </td <td>20,400.0</td> <td>89.77</td> <td>179.53</td> <td>12,825.4</td> <td>-7,674.3</td> <td>63.4</td> <td>7,674.6</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	20,400.0	89.77	179.53	12,825.4	-7,674.3	63.4	7,674.6	0.00	0.00	0.00
20,700.0 89.77 179.53 12,826.7 -7,974.3 65.9 7,974.6 0.00 0.00 0.00 20,800.0 89.77 179.53 12,827.1 -8,074.3 66.7 8,074.6 0.00 0.00 0.00 20,900.0 89.77 179.53 12,827.5 -8,174.3 67.5 8,174.6 0.00 0.00 0.00 21,000.0 89.77 179.53 12,827.9 -8,274.3 68.3 8,274.6 0.00 0.00 0.00 21,100.0 89.77 179.53 12,828.7 -8,474.3 70.0 8,474.6 0.00 0.00 0.00 21,200.0 89.77 179.53 12,828.7 -8,474.3 70.0 8,474.6 0.00 0.00 0.00 21,300.0 89.77 179.53 12,829.1 -8,574.3 70.8 8,574.6 0.00 0.00 0.00 21,400.0 89.77 179.53 12,829.9 -8,774.3 72.5 8,774.6 0.00 0.00 0.00 21,600.0 89.77 179.53 12,830.3 -8,874.3 73.3	20,500.0	89.77	179.53	12,825.9	-7,774.3	64.2	7,774.6	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20,600.0	89.77	179.53	12,826.3	-7,874.3	65.0	7,874.6	0.00	0.00	0.00
20,900.089.77179.5312,827.5-8,174.367.58,174.60.000.000.0021,000.089.77179.5312,827.9-8,274.368.38,274.60.000.000.0021,100.089.77179.5312,828.3-8,374.369.28,374.60.000.000.0021,200.089.77179.5312,828.7-8,474.370.08,474.60.000.000.0021,300.089.77179.5312,829.1-8,574.370.88,574.60.000.000.0021,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,600.089.77179.5312,830.3-8,974.374.18,974.60.000.000.0021,600.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,600.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,800.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0021,900.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00 </td <td></td>										
21,000.089.77179.5312,827.9-8,274.368.38,274.60.000.000.0021,100.089.77179.5312,828.3-8,374.369.28,374.60.000.000.0021,200.089.77179.5312,828.7-8,474.370.08,474.60.000.000.0021,300.089.77179.5312,829.1-8,574.370.88,574.60.000.000.0021,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,600.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,600.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,800.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0021,900.089.77179.5312,831.9-9,274.376.69,274.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	20,800.0		179.53	12,827.1	-8,074.3	66.7	8,074.6		0.00	
21,100.089.77179.5312,828.3-8,374.369.28,374.60.000.000.0021,200.089.77179.5312,828.7-8,474.370.08,474.60.000.000.0021,300.089.77179.5312,829.1-8,574.370.88,574.60.000.000.0021,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,600.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,800.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0021,900.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00				-						
21,200.089.77179.5312,828.7-8,474.370.08,474.60.000.000.0021,300.089.77179.5312,829.1-8,574.370.88,574.60.000.000.0021,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,600.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,700.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,000.0	89.77	179.53	12,827.9	-8,274.3	68.3	8,274.6	0.00	0.00	0.00
21,300.0 89.77 179.53 12,829.1 -8,574.3 70.8 8,574.6 0.00 0.00 0.00 21,400.0 89.77 179.53 12,829.5 -8,674.3 71.6 8,674.6 0.00 0.00 0.00 21,500.0 89.77 179.53 12,829.9 -8,774.3 72.5 8,774.6 0.00 0.00 0.00 21,600.0 89.77 179.53 12,830.3 -8,874.3 73.3 8,874.6 0.00 0.00 0.00 21,600.0 89.77 179.53 12,830.7 -8,974.3 74.1 8,974.6 0.00 0.00 0.00 21,700.0 89.77 179.53 12,830.7 -8,974.3 74.1 8,974.6 0.00 0.00 0.00 21,800.0 89.77 179.53 12,831.1 -9,074.3 74.9 9,074.6 0.00 0.00 0.00 21,900.0 89.77 179.53 12,831.5 -9,174.3 75.8 9,174.6 0.00 0.00 0.00 22,000.0 89.77 179.53 12,831.9 -9,274.3 76.6	21,100.0	89.77	179.53		- /	69.2	,	0.00	0.00	0.00
21,400.089.77179.5312,829.5-8,674.371.68,674.60.000.000.0021,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,700.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00			179.53			70.0				
21,500.089.77179.5312,829.9-8,774.372.58,774.60.000.000.0021,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,700.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,300.0	89.77	179.53	12,829.1		70.8	8,574.6	0.00	0.00	
21,600.089.77179.5312,830.3-8,874.373.38,874.60.000.000.0021,700.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,400.0	89.77	179.53	12,829.5	-8,674.3	71.6	8,674.6	0.00	0.00	0.00
21,700.089.77179.5312,830.7-8,974.374.18,974.60.000.000.0021,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,500.0	89.77	179.53	12,829.9	-8,774.3	72.5	8,774.6	0.00	0.00	0.00
21,800.089.77179.5312,831.1-9,074.374.99,074.60.000.000.0021,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,600.0		179.53	12,830.3	-8,874.3	73.3	8,874.6		0.00	0.00
21,900.089.77179.5312,831.5-9,174.375.89,174.60.000.000.0022,000.089.77179.5312,831.9-9,274.376.69,274.60.000.000.00	21,700.0	89.77	179.53	12,830.7	-8,974.3	74.1	8,974.6	0.00	0.00	0.00
22,000.0 89.77 179.53 12,831.9 -9,274.3 76.6 9,274.6 0.00 0.00 0.00	21,800.0	89.77			-9,074.3	74.9	9,074.6	0.00	0.00	0.00
	21,900.0	89.77	179.53		-9,174.3	75.8	9,174.6	0.00	0.00	0.00
22,100.0 89.77 179.53 12,832.3 -9,374.3 77.4 9,374.6 0.00 0.00 0.00	22,000.0	89.77	179.53	12,831.9	-9,274.3	76.6	9,274.6	0.00	0.00	0.00
	22,100.0	89.77	179.53	12,832.3	-9,374.3	77.4	9,374.6	0.00	0.00	0.00

Released to Imaging: 11/20/2024 3:29:52 PM

.

Survey Report

Company:	DELAWARE BASIN EAST	Local Co-ordinate Reference:	Well PITCHBLENDE 24-25 FED 703H
Project:	BULLDOG PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Site:	PITCHBLENDE 24-25 FEDERAL PROJECT	MD Reference:	KB=30' @ 3383.2usft (SCAN QUEST)
Well:	PITCHBLENDE 24-25 FED 703H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDT 15 Central Prod

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
22,200.0	89.77	179.53	12,832.7	-9,474.3	78.2	9,474.6	0.00	0.00	0.00
22,300.0	89.77	179.53	12,833.1	-9,574.3	79.0	9,574.6	0.00	0.00	0.00
22,400.0	89.77	179.53	12,833.5	-9,674.3	79.9	9,674.6	0.00	0.00	0.00
22,500.0	89.77	179.53	12,833.9	-9,774.3	80.7	9,774.6	0.00	0.00	0.00
22,600.0	89.77	179.53	12,834.3	-9,874.3	81.5	9,874.6	0.00	0.00	0.00
22,700.0	89.77	179.53	12,834.7	-9,974.2	82.3	9,974.6	0.00	0.00	0.00
22,800.0	89.77	179.53	12,835.1	-10,074.2	83.2	10,074.6	0.00	0.00	0.00
22,900.0	89.77	179.53	12,835.5	-10,174.2	84.0	10,174.6	0.00	0.00	0.00
23,000.0	89.77	179.53	12,835.9	-10,274.2	84.8	10,274.6	0.00	0.00	0.00
23,022.7	89.77	179.53	12,836.0	-10,296.9	85.0	10,297.2	0.00	0.00	0.00
TD at 23022	2.7								

Design Targets

Target Name

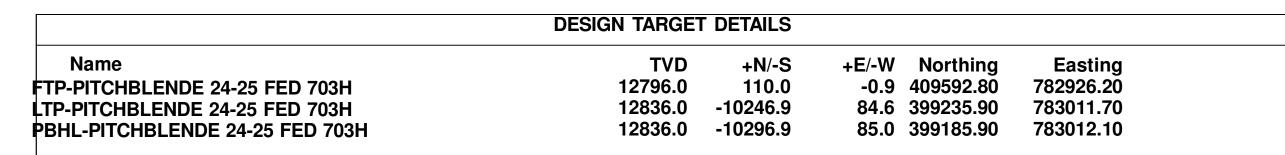
- hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP-PITCHBLENDE : - plan misses targe - Circle (radius 50.0	,		,	110.0 sft MD (1265	-0.9 7.7 TVD, -11	409,592.80 .4 N, 0.3 E)	782,926.20	32° 7' 22.039 N	103° 25' 10.018 W
PBHL-PITCHBLENDE - plan hits target ce - Point	0.00 nter	0.00	12,836.0	-10,296.9	85.0	399,185.90	783,012.10	32° 5' 39.052 N	103° 25' 10.045 W
LTP-PITCHBLENDE 2 - plan misses targe - Point	0.00 t center by		12,836.0 2972.7usft	-10,246.9 MD (12835.8	84.6 8 TVD, -1024	399,235.90 6.9 N, 84.6 E)	783,011.70	32° 5' 39.547 N	103° 25' 10.045 W

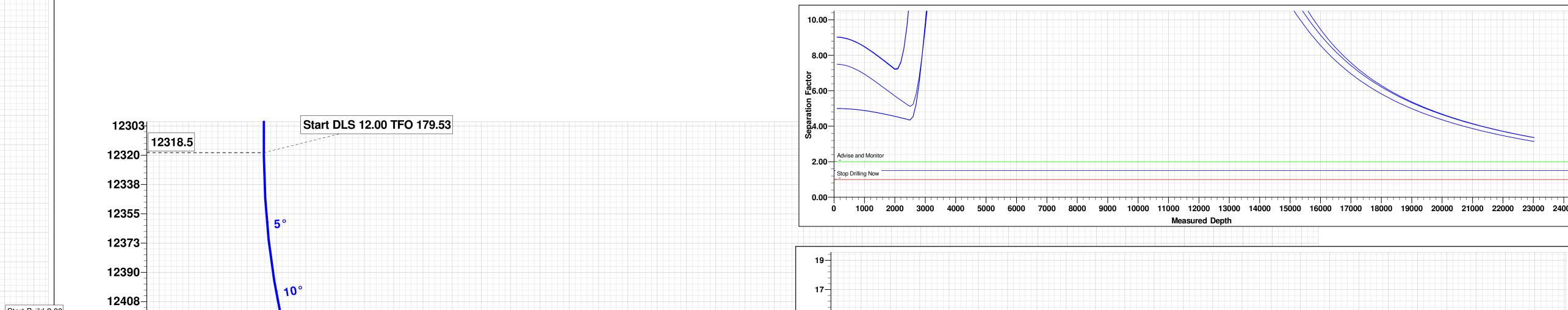
Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
2500	2500	0	0	Start Build 2.00
2700	2700	7	0	Start 1563.5 hold at 2700.0 MD
4264	4260	116	-1	Start Drop -1.00
4664	4659	130	-1	Start 7659.2 hold at 4663.5 MD
12,323	12,319	130	-1	Start DLS 12.00 TFO 179.53
13,071	12,796	-346	3	Start 9951.8 hold at 13070.9 MD
23,023	12,836	-10,297	85	TD at 23022.7

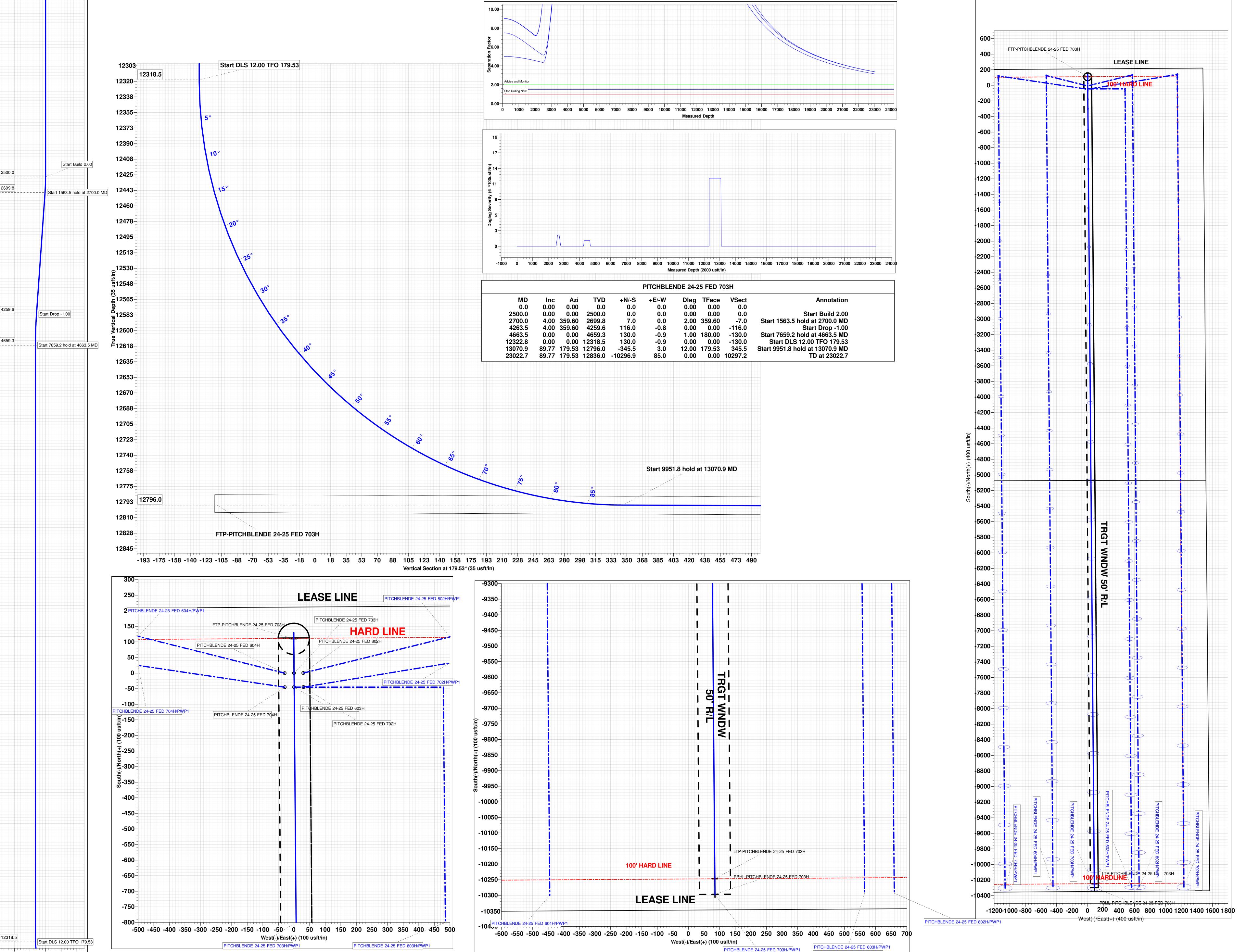
Checked By:

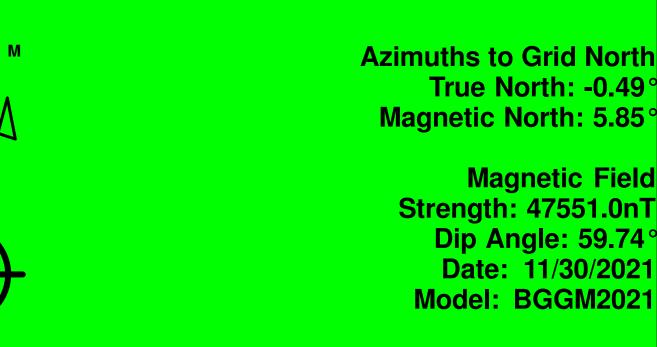
Approved By:

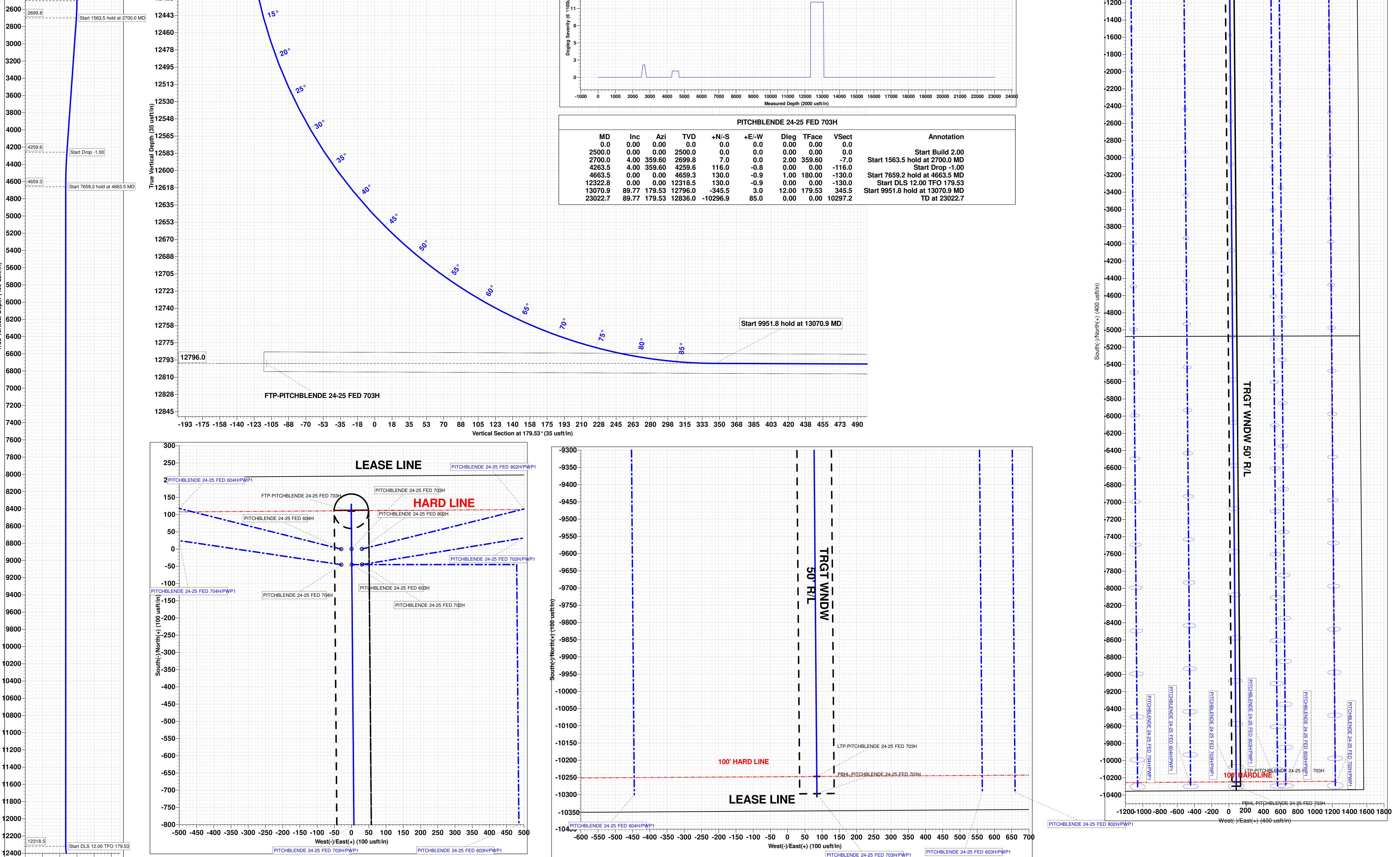

Date:


12/2/2021 12:43:18PM

Project: BULLDOG PROSPECT (NM-E) Site: PITCHBLENDE 24-25 FEDERAL PROJECT Well: PITCHBLENDE 24-25 FED 703H Wellbore: OWB Design: PWP1 GL: 3353.2 KB=30' @ 3383.2usft (SCAN QUEST)


WELL DETAILS: PITCHBLENDE 24-25 FED 703H


+N/-S	+E/-W	Northing	Easting	Latittude	Longitude	
0.0	0.0	409482.80	782927.10	32°7' 20.951 N	103°25' 10.019 W	



ConocoPhillips

Magnetic Field Strength: 47551.0nT Dip Angle: 59.74 Date: 11/30/2021 Model: BGGM202

-200

200-

400

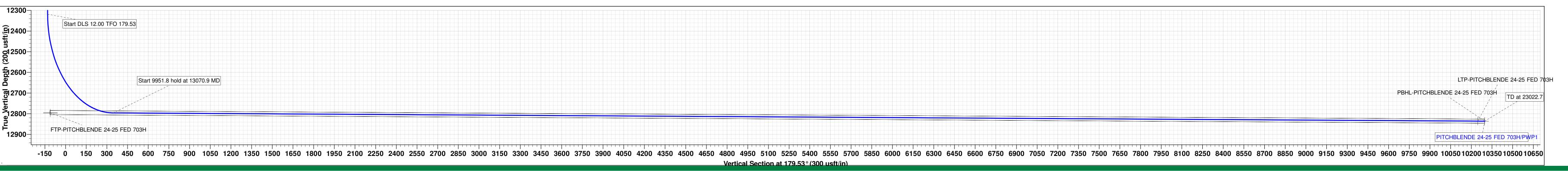
600

800

1000

1200

1400-


1600-

1800

2000

2200

2400

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: COG OPERATING LLC WELL NAME & NO.: PITCHBLENDE 24-25 FED COM 703H SURFACE HOLE FOOTAGE: 210'/N & 1480'/E BOTTOM HOLE FOOTAGE 50'/S & 1480'/E LOCATION: Section 24, T.25 S., R.34 E. COUNTY: Lea County, New Mexico

COA

H2S	• Yes	C No	
Potash	None	© Secretary	© R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	Section Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Wellhead Variance	C Diverter		
Other	4 String	Capitan Reef	□WIPP
Other	Fluid Filled	Pilot Hole	□ Open Annulus
Cementing	Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	Water Disposal	COM	🗖 Unit
Special Requirements	Batch Sundry		
Special Requirements	Break Testing	□ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

1. The **10-3/4** inch surface casing shall be set at approximately **1350 feet** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable

fresh water) and cemented to the surface. The surface hole shall be **14 3/4 inch** in diameter.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Contingency:

Operator has proposed a contingency if losses are encountered, a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 3. The W441 connection should tie back 500'+ into the W513 intermediate casing for clearance overlap. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Casing Clearance:

• The W441 connection should tie back 500'+ into the W513 intermediate casing for clearance overlap.

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Page 4 of 9

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per 43 CFR 3172 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

 Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that

Page 5 of 9

of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8</u> hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before

cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time

between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JS 10/7/2024

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

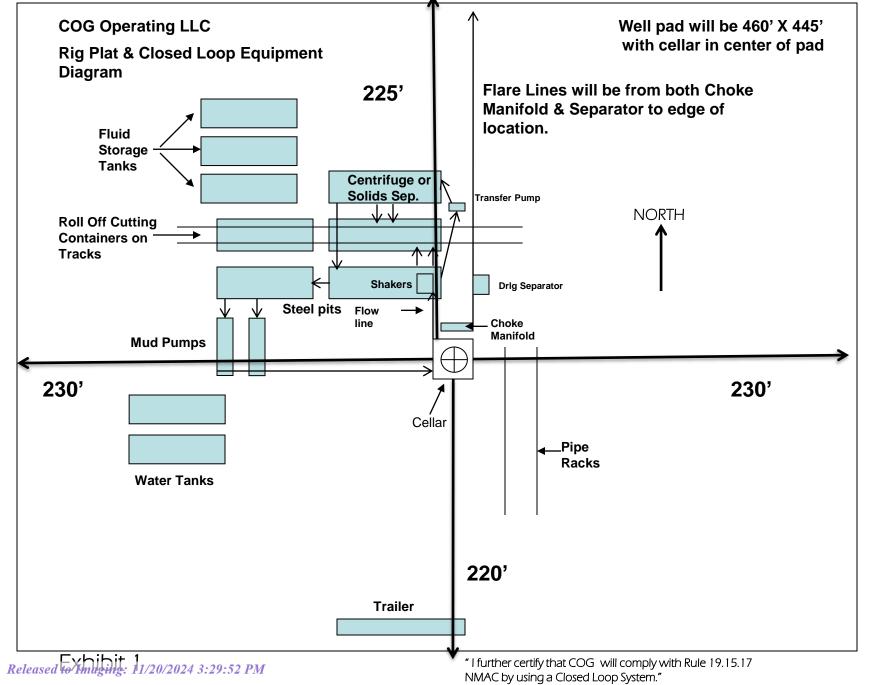
- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 - 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.


.

EMERGENCY CALL LIST

	<u>OFFICE</u>	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

1. Geologic Formations

TVD of target	12,796' EOC	Pilot hole depth	NA
MD at TD:	23,022'	Deepest expected fresh water:	155'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	956	Water	
Top of Salt	1482	Salt	
Base of Salt	5194	Salt	
Lamar	5500	Salt Water	
Bell Canyon	5533	Salt Water	
Cherry Canyon	6463	Oil/Gas	
Brushy Canyon	8010	Oil/Gas	
Bone Spring Lime	9325	Oil/Gas	
1st Bone Spring Sand	10477	Oil/Gas	
2nd Bone Spring Sand	11018	Oil/Gas	
3rd Bone Spring Sand	12124	Oil/Gas	
Wolfcamp A	12563	Target	
Wolfcamp B	12924	Not Penetrated	
Wolfcamp D	0	Not Penetrated	

2. Casing Program

Hole Size	Casing	g Interval	Csg. Size	Weight SF sg. Size Grade Conn. SF		SF Burst	SF	SF		
11016 5126	From	То	CSy. 5126	(lbs)	Grade	Conn.	Collapse	Si Buist	Body	Joint
14.75"	0	1350	10.75"	45.5	N80	BTC	4.00	1.67	16.93	17.86
9.875"	0	8500	7.625"	29.7	HCL80	BTC	1.56	1.04	2.88	2.90
8.750"	8500	12100	7.625"	29.7	P110 RY	W 513	1.30	1.38	2.62	1.57
6.75"	0	11600	5.5"	23	P110	BTC	1.93	2.28	2.73	2.71
6.75"	11600	23,022	5.5"	23	P110	W441	1.75	2.06	2.48	2.25
				DIMI	Minimum Sa	foty Easter	1.125	1	1.6 Dry	1.6 Dry
					viiniinum Sa		1.125	I	1.8 Wet	1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5 1/2" talon casing will be run back 200' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

1

ConocoPhillips - Pitchblende 24-25 Federal Com 703H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is 2 string set 100 to 600 below the base of sait?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

.

ConocoPhillips - Pitchblende 24-25 Federal Com 703H

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	YId ft3/ sack	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	644	13.5	1.75	9	12	Lead: Class C + 4% Gel + 1% CaCl2
Sun.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	850	10.3	3.3	22	24	Tuned light Blend
Stage 1	250	14.8	1.35	6.6	8	Tail: Class H
Prod	538	12.7	2	10.7	72	Lead: 50:50:10 H Blend
FIUU	1077	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

If losses are encountered in the intermediate section a DV/ECP tool will be run ~50' above the Lamar Lime top, cement will be adjusted accordingly if this contingency is necessary.

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	11,600'	35% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.	

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		x	Tested to:		
			Ann	ular	Х	2500psi		
		8-5/8" 5M	Blind F		Ram	Х		
9-7/8"	13-5/8"		Pipe Ram		Х	5000psi		
					Double	e Ram	Х	3000psi
			Other*					
			5M Ai	nnular	Х	5000psi		
			Blind	Ram	Х			
6-3/4"	13-5/8"	10M	Pipe	Ram	Х	10000psi		
			Double	e Ram	Х	rooopsi		
			Other*					

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

ConocoPhillips - Pitchblende 24-25 Federal Com 703H

5. Mud Program

	Depth	Туре	Weight	Viscosity	Water Loss	
From	То	туре	(ppg)	VISCOSILY	Water L055	
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C	
Surf csg	7-5/8" Int shoe	Brine Diesel Emulsion	8.4 - 9	28-34	N/C	
7-5/8" Int shoe	Lateral TD	OBM	9.6 - 12.5	35-45	<20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Y	No Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Additional logs planned		Interval
Ν	Resistivity	Pilot Hole TD to ICP
Ν	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
Ν	PEX	

5

ConocoPhillips - Pitchblende 24-25 Federal Com 703H

7. Drilling Conditions

Condition	Specify what type and where?	
BH Pressure at deepest TVD	8320 psi at 12796' TVD	
Abnormal Temperature	NO 185 Deg. F.	

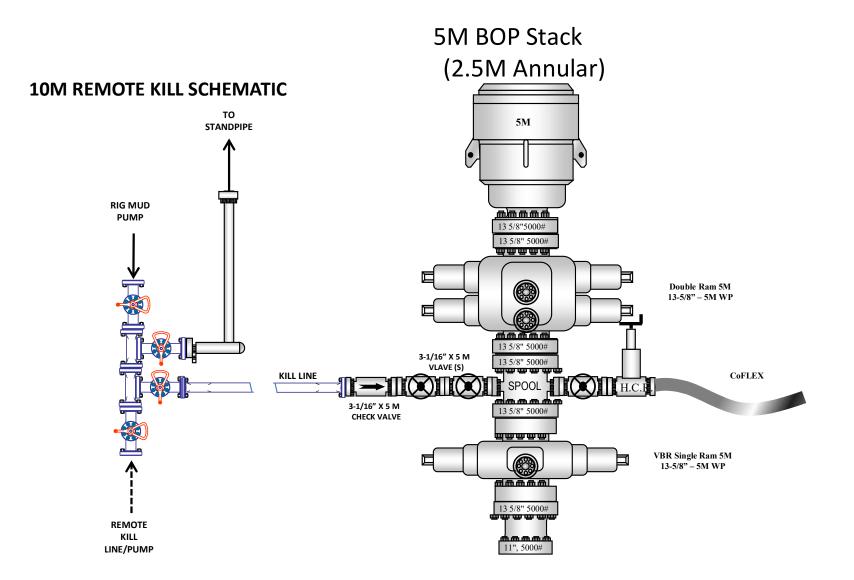
No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

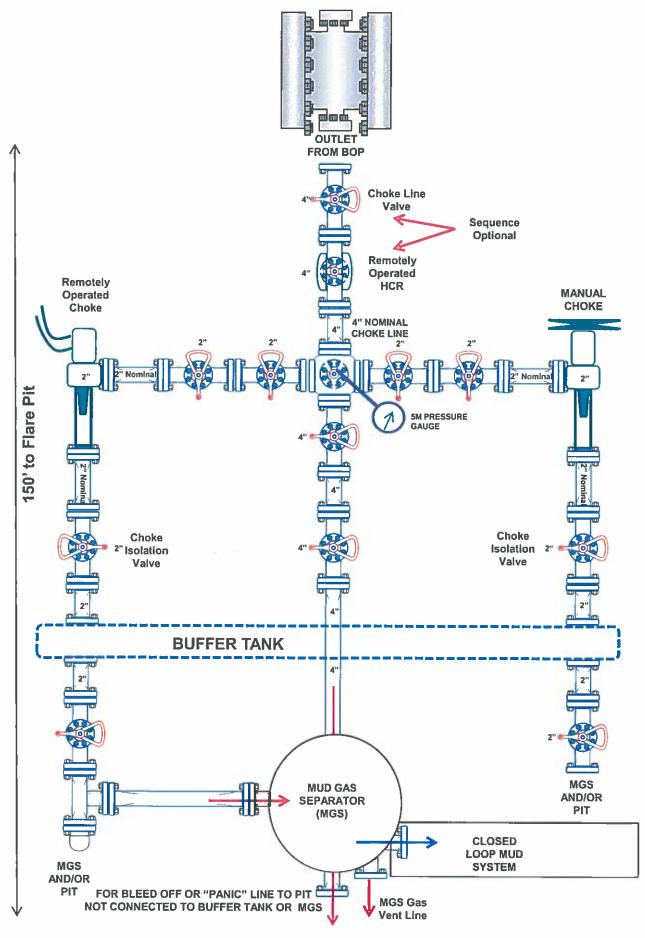
Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is presentY H2S Plan attached

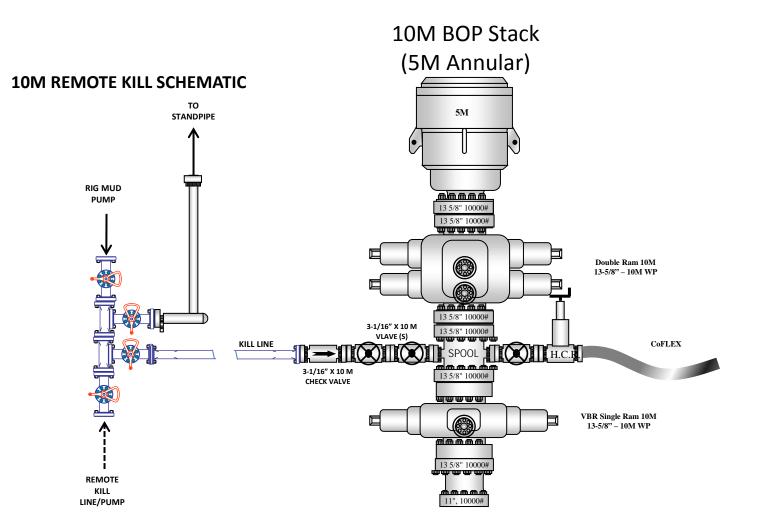
8. Other Facets of Operation

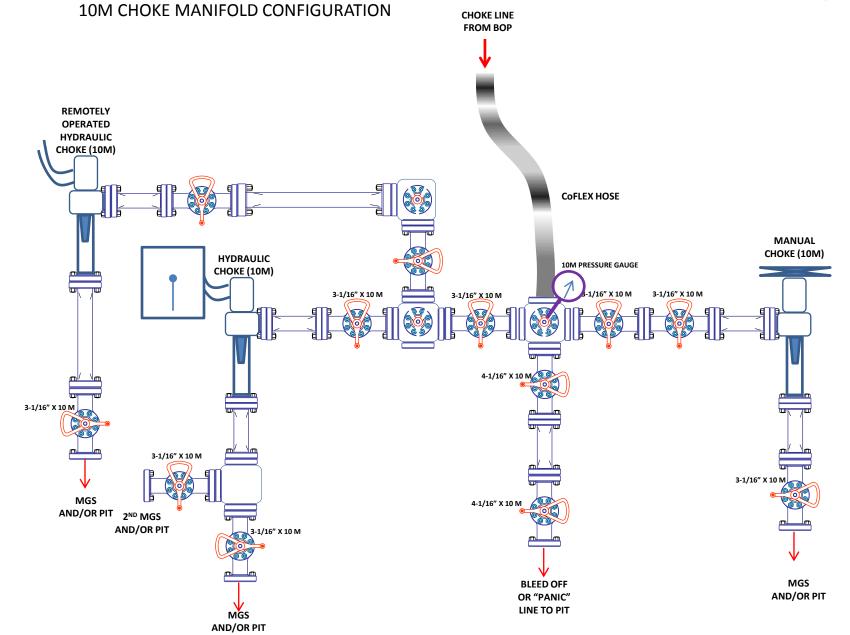

Y	Is it a walking operation?
Y	Is casing pre-set?

x	H2S Plan.
x	BOP & Choke Schematics.
x	Directional Plan


Page 71 of 76

6


5M BOP Stack



5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

Page 73 of 76

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	398064
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition			
mreyes4	nreyes4 Cement is required to circulate on both surface and intermediate1 strings of casing.			
mreyes4	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.			
pkautz	File As Drilled C-102 and a directional Survey with C-104 completion packet.	11/20/2024		
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.			
pkautz	pkautz Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. based mud, drilling fluids and solids must be contained in a steel closed loop system.			

CONDITIONS

Action 398064

Page 76 of 76

.