Sundry Print Reports

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: COTTON DRAW UNIT Well Location: T25S / R31E / SEC 1 /

LOT 4 / 32.165732 / -103.736813

County or Parish/State: EDDY /

NM

Well Number: 632H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM0503 Unit or CA Name: COTTON DRAW Unit or C

UNIT

Unit or CA Number: NMNM70928X

US Well Number: 3001555296 Operator: DEVON ENERGY

PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2816659

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 11/05/2024 Time Sundry Submitted: 12:41

Date proposed operation will begin: 10/11/2024

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the casing design, BHL, TVD, pool code and spacing on the subject well. Devon also requests a break test and offline cementing variance. New leases have been added since approved APD and notification has been given. Please see attached revised C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. Permitted BHL: SWSW, 20 FSL, 550 FWL, 12-25S-31E Proposed BHL: NWNW, 20 FNL, 600 FWL, 25-24S-31E Permitted TVD/MD: 12663/22775 - Purple Sage/Wolfcamp Proposed TVD/MD: 9804/20050 - Paduca/Bone Spring

NOI Attachments

Procedure Description

COTTON_DRAW_UNIT_632H_R111Q_20241111163122.pdf

10.75_45.5lb_J55_BTC_20241105123802.pdf

break_test_variance_BOP_1_15_24_20241105123758.pdf

WA018390652_COTTON_DRAW_UNIT_632H_WL_R1_SIGNED_20241105123758.pdf

8.625_32lb_P110_HSCY_MO_FXL_20241105123758.pdf

5.5_20lb_P110HP_CDC_HTQ_20241105123758.pdf

13.375_54.5lb_J55_20241105123755.pdf

 $COTTON_DRAW_UNIT_632H_Directional_Plan_09_18_24_20241105123756.pdf$

eceived by OCD: 11/18/2024 11:22:40 AM Well Name: COLTON DRAW UNIT

Well Location: T25S / R31E / SEC 1 /

LOT 4 / 32.165732 / -103.736813

County or Parish/State: Page 2 of

NM

Well Number: 632H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM0503

US Well Number: 3001555296

Unit or CA Name: COTTON DRAW

UNIT

Unit or CA Number: NMNM70928X

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Offline_Cementing___Variance_Request_20241105123754.pdf

Conditions of Approval

Specialist Review

Cotton_Draw_Unit_632H_Sundry_ID_2816659_20241113102352.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: NOV 11, 2024 04:31 PM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer

BLM POC Phone: 5759885402 BLM POC Email Address: LVO@BLM.GOV

Disposition: Approved **Disposition Date:** 11/13/2024

Signature: Long Vo

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUR	5. Lease Serial No.							
Do not use this t	NOTICES AND REPO form for proposals to Use Form 3160-3 (Al	o drill or to re-	enter an	6. If Indian, Allottee or Trib	e Name			
SUBMIT IN	TRIPLICATE - Other instru	ctions on page 2		7. If Unit of CA/Agreement	7. If Unit of CA/Agreement, Name and/or No.			
1. Type of Well Oil Well Gas V	Vell Other	8. Well Name and No.						
2. Name of Operator		9. API Well No.						
3a. Address		10. Field and Pool or Explor	ratory Are	ea				
4. Location of Well (Footage, Sec., T., F	R.,M., or Survey Description)			11. Country or Parish, State				
12. CHE	CK THE APPROPRIATE BO	OX(ES) TO INDICAT	ΓΕ NATURE	OF NOTICE, REPORT OR O	THER DA	ATA		
TYPE OF SUBMISSION			TYP	E OF ACTION				
Notice of Intent	Acidize Alter Casing	Deepen Hydraulic 1	Fracturing	Production (Start/Resume	e)	Water Shut-Off Well Integrity		
Subsequent Report	Casing Repair	New Const	_	Recomplete		Other		
Subsequent Report	Change Plans	Plug and A	bandon	Temporarily Abandon				
Final Abandonment Notice	Convert to Injection	Plug Back		Water Disposal				
is ready for final inspection.)	two and someth News /D.	utod/Timed)						
14. I hereby certify that the foregoing is	true and correct. Name (Prin	nted/Typed) Title						
		Title						
Signature		Date	:					
	THE SPACE	FOR FEDERA	L OR STA	ATE OFICE USE				
Approved by								
			Title		Date			
Conditions of approval, if any, are attackertify that the applicant holds legal or which would entitle the applicant to con	equitable title to those rights i	Office		•				
Title 18 U.S.C Section 1001 and Title 4	3 U.S.C Section 1212, make i	it a crime for any pers	son knowingl	y and willfully to make to any	departme	nt or agency of the United States		

any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: LOT 4 / 332 FNL / 1013 FWL / TWSP: 25S / RANGE: 31E / SECTION: 1 / LAT: 32.165732 / LONG: -103.736813 (TVD: 8346 feet, MD: 8412 feet) PPP: LOT 4 / 100 FNL / 550 FWL / TWSP: 25S / RANGE: 31E / SECTION: 1 / LAT: 32.166377 / LONG: -103.738308 (TVD: 11650 feet, MD: 11695 feet) BHL: SWSW / 20 FSL / 550 FWL / TWSP: 25S / RANGE: 31E / SECTION: 12 / LAT: 32.137613 / LONG: -103.73833 (TVD: 12663 feet, MD: 22775 feet)

1. Geologic Formations

TVD of target	9804	Pilot hole depth	N/A
MD at TD:	20050	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	660		
Salt	1105		
Base of Salt	4310		
Delaware	4385		
Cherry Canyon	5440		
Brushy Canyon	6790		
Bone Spring 1st lime	8360		
Bone Spring 1st	9148		
Bone Spring 2nd lime	9675		
Salado, #126	1803	*	

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	685 MD	0	685 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0.0	4410 MD	0	4410 TVD
9 7/8	8 5/8	32.0	P110	MOFXL	0	9152	0	9152
7 7/8	5 1/2	20.0	P110HP	CDC-HTQ	0	20050 MD	0	9804 TVD

- •All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.
- The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program	# Sks	TOC	Wt.	Yld	Slurry Description
Casing	# SKS	100	(lb/gal)	(ft3/sack)	Sturry Description
Surface	534	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	294	Surf	9	3.27	Lead: Class C Cement + additives
III I	101	3910	13.2	1.44	Tail: Class H / C + additives
Int 2					
III 2	69	8360	13.2	1.44	Tail: Class H / C + additives
Int 2	393	3910	9	1.44	Post Squeeze Lead: Class C Cement + additives
Intermediate Squeeze, Post					
completions					
Production	117	7252	9	3.27	Lead: Class H /C + additives
roduction	1429	9252	13.2	1.44	Tail: Class H / C + additives

- •Devon will design around R111-Q: 4 String, Open 1st Int and 2nd Int Annulus, Figure D
- •Int 2 TOC will be, prior to completion, brought up to the 1st Bone Lime, leaving an open annulus for pressure monitoring
- •Following completion, a cement top out will be performed to bring TOC 500ft into Int 1, but below the POTASH interval
- •The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program

.Int 2 cement will adhere to R111-Q requirements

Casing String	% Excess
Surface	50%
Intermediate1	30%
Intermediate 2	0%
Prod	10%

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

2. Casing Program (Secondary Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	685 MD	0	685 TVD
12 1/4	9 5/8	40.0	J-55	ВТС	0.0	4410 MD	0	4410 TVD
8 3/4	7 5/8	29.7	P110HP	Talon SFC	0	9152	0	9152
6 3/4	5 1/2	20.0	P110HP	Talon RD	0	20050 MD	0	9804 TVD

- •All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.
- The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (Secondary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	534	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	480	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	154	3910	13.2	1.44	Tail: Class H / C + additives
Int 2					
Int 2	53	8360	13.2	1.44	Tail: Class H / C + additives
Int 2	310	3910	9	1.44	Post Squeeze Lead: Class C Cement + additives
Intermediate Squeeze, Post					
completions					
Production	62	7252	9	3.27	Lead: Class H /C + additives
Froduction	689	9252	13.2	1.44	Tail: Class H / C + additives

- •Devon will design around R111-Q: 4 String, Open 1st Int and 2nd Int Annulus, Figure D
- •Int 2 TOC will be, prior to completion, brought up to the 1st Bone Lime, leaving an open annulus for pressure monitoring
- •Following completion, a cement top out will be performed to bring TOC 500ft into Int 1, but below the POTASH interval
- •The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program

.Int 2 cement will adhere to R111-Q requirements

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 2	0%
Prod	10%

4. Pressure Control Equipment (Four String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	Туре		✓	Tested to:										
			An	nular	X	50% of rated working pressure										
Int 1	13-5/8"	5M	Bline	d Ram	X											
	13-3/6	J1V1	Pipe	Ram		5M										
			Doub	le Ram	X	JIVI										
			Other*													
	13-5/8"		Annular (5M)		X	100% of rated working pressure										
Int 2		5M	Bline	d Ram	X											
IIIt 2		13-3/6	13-3/6	13-3/6	13-3/8	13-3/8	SIVI	J1VI	13-3/6 3141	J1V1	J1V1	J1V1	Pipe	Ram		5M
										Doub	le Ram	X	3101			
				Other*												
			Annul	ar (5M)	X	100% of rated working pressure										
Production	12 5/0" 5M	13-5/8" 5M	12 5/9" 5M		d Ram	X										
rioduction	13-3/6	JIVI	Pipe Ram			5M										
			Doub	le Ram	X	JIVI										
			Other*													
N A variance is requested fo	r the use of a	diverter on	the surface	casing. See	attached for s	chematic.										
N A variance is requested to	run a 5 M an	nular on a	10M system	1												

5. Mud Program (Four String Design)

Section	Туре	Weight (ppg)
Surface	WBM	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Intermediate 2	WBM	8.5-9
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing					
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
X	Completion Report and shumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additional	l logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5353
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present

	TYGG !
N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>				
<u>Dimensions (Nominal)</u>							
Outside Diameter			10.750	in.			
Wall			0.400	in.			
Inside Diameter			9.950	in.			
Drift			9.875	in.			
Weight, T&C			45.500	lbs/ft			
Weight, PE			44.260	lbs/ft			
<u>Performance</u>	<u>Properties</u>						
Collapse			2090	psi			
Internal Yield Press	ure at Minimum Yield						
1	PE		3580	psi			
9	STC		3580	psi			
J	втс		3580	psi			
Yield Strength, Pipe	e Body		715	1000 lbs			
Joint Strength							
:	STC		493	1000 lbs			
1	ВТС		796	1000 lbs			
I	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs			

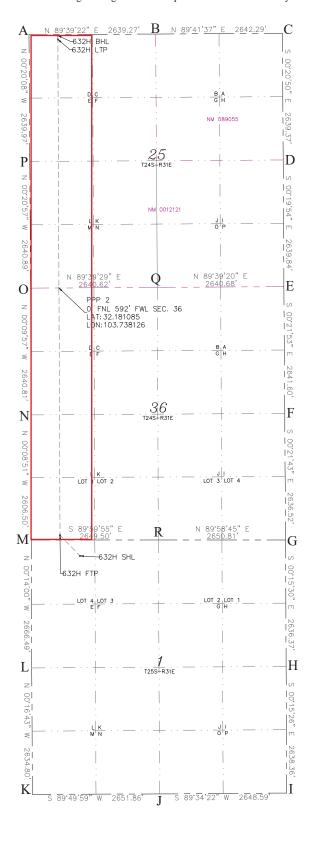
Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third



<u>C-1</u>	02		Fnergy	Minera	State of	New Mexico	rtment		Rev	vised July, 2024
Submit E	Submit Electronically OIL CONSERVAT			al Resources Department FION DIVISION						
Via OCD Permitting					Submittal	☐ Initial Submittal	ļ.			
				Type:	☐ Amended Repor	rt				
						☐ As Drilled				
WELL LOCAT				ON INFORMATION						
				Pool Name						
30-015-55296 96641 Property Code Property Name				PADUCA; BONE SPRING Well Number						
1	v				COTT	N DRAW UNIT 632H				
OGRID No. Operator Name Ground Level 6137 DEVON ENERGY PRODUCTION COMPANY, L.P. 3473.9'				Elevation						
Surfac	e Owner:	□State □	∟ Fee □Trib	al Fe	deral	Mineral Owner:	□State	□Fee □	Tribal XFederal	
					Sur	rface Location				
UL	Section	Township	Range	Lot	Ft. from N		Latitude		Longitude	County
	1	25-S	31-E	4	332' N	1013' W	32.165	5732	103.736813	EDDY
					Botto	om Hole Location				
UL	Section	Township	Range	Lot	Ft. from N		Latitude		Longitude	County
D	25	24-S	31-E		20' N	600' W	32.195	546	103.738106	EDDY
Dedicat	ed Acres l	Infill or Def	ining Well	Defining	Well API Ove	erlapping Spacing Uni	t (Y/N)	Consolid	ation Code	
319					717 3					
Order	Numbers				Wel	ll setbacks are under	Common	Ownersh	ıp: ∐Yes ∐No	
					Kick 0	off Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N	I/S Ft. from E/W	Latitude		Longitude	County
	36	24S	31E	1	41 S	601 W	32.1667		103.7382	EDDY
				•	First T	Take Point (FTP)				
UL	Section	Township	Range	Lot	Ft. from N		Latitude		Longitude	County
	36	24-S	31-E	1	100' S	600' W	32.166	926	103.738145	EDDY
					Last T	Take Point (LTP)				
UL	Section	Township	Range	Lot	Ft. from N	' I ' '	Latitude		Longitude	County
D	25	24-S	31-E		100' N	600' W	32.195	326	103.738106	EDDY
					Spacing	Unit Type XHorizon	tal Verti	cal	Ground Floor Ele	vation:
1	TOR CERTI					SURVEYOR CERTIFIC	CATIONS			
					omplete to the best onal well, that this	I hereby certify that the we				
		ns a working inte bottom hole loca			this well at this	of actual surveys made by correct to the best of my b		upervision, a		
location p	pursuant to a c	ontract with an o	owner of a wor	king interes	t or unleased				ERT R. C	EHO
	re entered by the		ng agreement o	r a compuis	sory pooling order				MEX MEX	DEHOLOS
If this we	ell is a horizon	tal well, I further	r certify that th	s organizat	ion has received the	e				6
consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's			23261							
completed interval will be located or obtained a compulsory pooling order from the				,	78 / Meles	A.5 /				
division.										
Signa	ture	1	Date			Signature and Seal	of Profes	ssional S	Surveyor / ONAL	50,
Che	loen ,	Diraca	, 1	0/01/202	4					
Printe	ed Name	Bert Artito				Certificate Number	Date of	Survey		
	elsey Gree	n				23261	07/20	24		
Email Address chelsey.green@dvn.com				20201	01/20	~4				

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

C= N:435430.04 E:730140.88 D= N:432790.73 E:730156.88 E= N:430150.93 E:730172.17 F= N:427509.39 E:730188.98 G= N:424872.92 E:730205.63 H= N:422236.58 E:730217.51 I= N:419598.25 E:730229.36 J= N:419570.77 E:724929.00 L= N:42205.54 E:724916.18 M= N:424872.01 E:724905.32 N= N:427478.51 E:724898.61 O= N:430119.30 E:724898.61 O= N:430119.30 E:724874.87 Q= N:430135.06 E:727551.54 R= N:424871.96 E:727554.82

A=N:435400.07 E:724859.41 B=N:435415.91 E:727498.63

etal One Corp.	MO-FXL			MO-FXL 8-	
			CDS#	P110H	
Metal <mark>O</mark> ne	*1 Pipe Body: Borusan P110HS	02011	MinYS125ksi		
	95%RBW Special Drift		95%RBW :		
	Connection Data	Sheet	Date	e 16-Jan-24	
	Geometry				
	Occinically	<u>Imperia</u>	<u>l</u>	<u>S.I.</u>	
	Pipe Body				
	Grade *1	P110HSCY		P110HSCY	
	MinYS *1	125	ksi	125	ksi
	Pipe OD (D)	8 5/8	in	219.08	mm
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m
	Actual weight	31.10		46.34	kg/m
	Wall Thickness (t)	0.352	in	8.94	mm
	Pipe ID (d)	7.921	in	201.19	mm
	Pipe body cross section	9.149	in ²	5,902	mm ²
1	Special Drift Dia. *1	7.875	in	200.03	mm
	-	-	_	-	_
		<u> </u>	l		
Box	Connection				
area	Box OD (W)	8.625	in	219.08	mm
	PIN ID	7.921	in	201.19	mm
	Make up Loss	3.847	in	97.71	mm
	Box Critical Area	5.853	in ²	3686	mm ²
← d	DOX CITICAL ATEA	0.000			
	_	69	%	69	%
Make Make	Joint load efficiency Thread Taper			69 2" per ft)	%
	Joint load efficiency	69	/ 10 (1.		%
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance	69	/ 10 (1.	2" per ft)	%
Make up loss D	Joint load efficiency Thread Taper Number of Threads	69	/ 10 (1. 5	2" per ft)	% kN
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1	69 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	/ 10 (1. 5 kips	2" per ft) TPI	kN
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1	69 1,144 9,690	/ 10 (1. 5	2" per ft) TPI 5,087	kN MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	69 1,144 9,690 4,300	kips psi psi	2" per ft) TPI 5,087 66.83 29.66	kN MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif	69 1,144 9,690 4,300 ied Minimum YIE	kips psi psi LD Strer	2" per ft) TPI 5,087 66.83 29.66 agth of Pipe bod	kN MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield	kips psi psi LD Strer	2" per ft) TPI 5,087 66.83 29.66 agth of Pipe bod	kN MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023	kips psi psi LD Strer	2" per ft) TPI 5,087 66.83 29.66 igth of Pipe body	kN MPa MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.875	kips psi psi LD Strer Pressur	2" per ft) TPI 5,087 66.83 29.66 igth of Pipe body	kN MPa MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.879 for Connection	kips psi psi LD Strer Pressur	2" per ft) TPI 5,087 66.83 29.66 Igth of Pipe body se Strength 4,3	kN MPa MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load	for Pipe Body 1,144 9,690 4,300 led Minimum YIE um Internal Yield v.2, 10/17/2023 %RBW, SD7.875 for Connectior 789 kips (kips psi psi LD Strer Pressur 5, Collap	5,087 66.83 29.66 agth of Pipe body se Strength 4,3 of S.M.Y.S.	kN MPa MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 6%RBW, SD7.875 for Connection 789 kips (789 kips (kips psi psi LD Strer Pressur 5, Collap	5,087 66.83 29.66 agth of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.)	kN MPa MPa MPa
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,144 9,690 4,300 led Minimum YIE um Internal Yield v.2, 10/17/2023 %RBW, SD7.875 for Connectior 789 kips (kips psi psi LD Strer Pressur 5, Collap 69% 70%	5,087 66.83 29.66 agth of Pipe body se Strength 4,3 of S.M.Y.S.) of M.I.Y.P.)	kN MPa MPa y
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 6%RBW, SD7.875 for Connection 789 kips (789 kips (kips psi psi LD Strer Pressur 69% 69% 70% 100% c	5,087 66.83 29.66 agth of Pipe body se Strength 4,3 of S.M.Y.S.) of M.I.Y.P.) of Collapse St	kN MPa MPa y
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 6%RBW, SD7.875 for Connection 789 kips (789 kips (kips psi psi LD Strer Pressur 5, Collap 69% 70%	5,087 66.83 29.66 agth of Pipe body se Strength 4,3 of S.M.Y.S.) of M.I.Y.P.) of Collapse St	kN MPa MPa y
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 6%RBW, SD7.875 for Connection 789 kips 6,780 psi (kips psi psi LD Strer Pressur 5, Collap 69% 69% 100% c	5,087 66.83 29.66 Ight of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Strength	kN MPa MPa y 00psi
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.875 for Connection 789 kips 789 kips 6,780 psi (kips psi psi LD Strer Pressur 69% 69% 100% c 2	5,087 66.83 29.66 Igth of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Strength	kN MPa MPa y 00psi
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.875 for Connection 789 kips 789 kips 6,780 psi (13,600 14,900	kips psi psi LD Strer Pressur 69% 69% 100% c 22	5,087 66.83 29.66 Igth of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Strength 9	kN MPa MPa y 00psi rength
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.875 for Connection 789 kips 789 kips 6,780 psi (kips psi psi LD Strer Pressur 69% 69% 100% c 2	5,087 66.83 29.66 1gth of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Strength 9 18,400 20,200 21,900	kN MPa MPa y 00psi
Make up loss D	Joint load efficiency Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: Borusan: SOP-12-F05 Re P110HSCY: MinYS125ksi, 95 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield v.2, 10/17/2023 9%RBW, SD7.875 for Connection 789 kips 789 kips 6,780 psi (13,600 14,900	kips psi psi LD Strer Pressur 69% 69% 100% c 22	5,087 66.83 29.66 Igth of Pipe body se Strength 4,3 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Strength 9	kN MPa MPa y 00psi rength

The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information.

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

2/21/2024 7:47:29 AM

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

P110 HP USS-CDC HTQ[®]

MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]	
Minimum Yield Strength	125,000		psi
Maximum Yield Strength	140,000		psi
Minimum Tensile Strength	130,000		psi
DIMENSIONS	Pipe	USS-CDC HTQ [®]	
Outside Diameter	5.500	6.300	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.778	in.
Standard Drift	4.653	4.653	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	20.00		lb/ft
Plain End Weight	19.83		lb/ft
SECTION AREA	Pipe	USS-CDC HTQ [®]	
Critical Area	5.828	5.828	sq. in.
Joint Efficiency		97.0	%
ERFORMANCE	Pipe	USS-CDC HTQ [®]	
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,520	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lb
Joint Strength		707,000	lb
Compression Rating		424,000	lb
Reference Length		23,567	ft
Maximum Uniaxial Bend Rating		60.6	deg/100 ft
MAKE-UP DATA	Pipe	USS-CDC HTQ [®]	
Make-Up Loss		4.63	in.
Minimum Make-Up Torque		14,500	ft-lb
Maximum Make-Up Torque		20,500	ft-lb
Connection Yield Torque		25,300	ft-lb

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.
- 5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

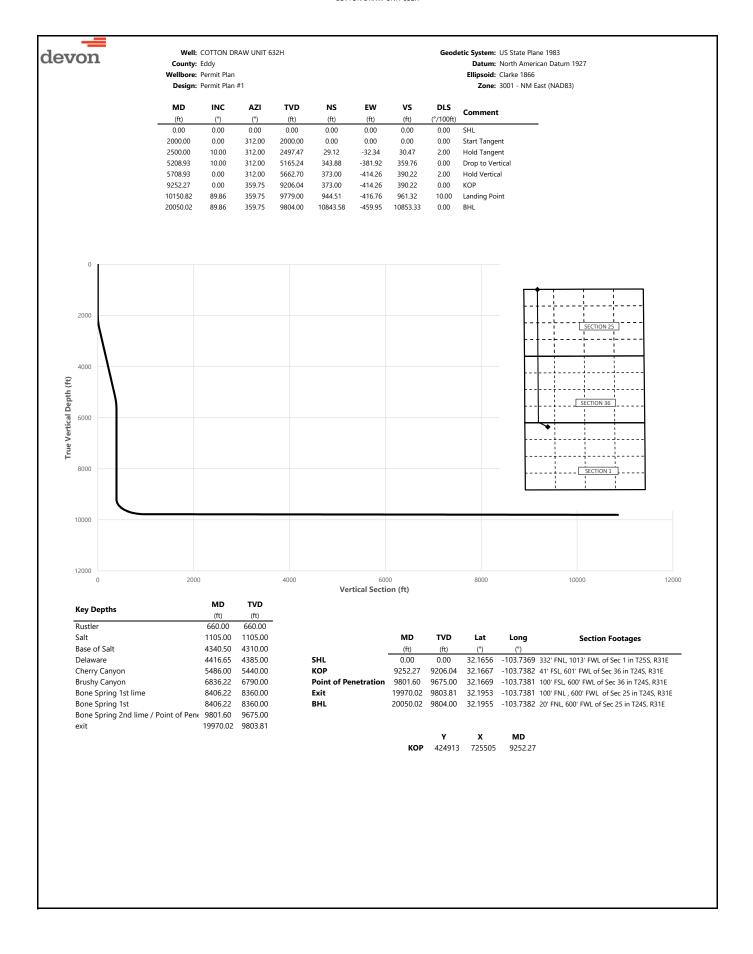
Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

connections@uss.com www.usstubular.com

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>


Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)				
MD	INC	AZI	TVD	NS	EW	vs	DLS			
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL		
100.00	0.00	312.00	100.00	0.00	0.00	0.00	0.00			
200.00	0.00	312.00	200.00	0.00	0.00	0.00	0.00			
300.00	0.00	312.00	300.00	0.00	0.00	0.00	0.00			
400.00	0.00	312.00	400.00	0.00	0.00	0.00	0.00			
500.00	0.00	312.00	500.00	0.00	0.00	0.00	0.00			
600.00	0.00	312.00	600.00	0.00	0.00	0.00	0.00			
660.00	0.00	312.00	660.00	0.00	0.00	0.00	0.00	Rustler		
700.00	0.00	312.00	700.00	0.00	0.00	0.00	0.00			
800.00	0.00	312.00	800.00	0.00	0.00	0.00	0.00			
900.00	0.00	312.00	900.00	0.00	0.00	0.00	0.00			
1000.00	0.00	312.00	1000.00	0.00	0.00	0.00	0.00			
1100.00	0.00	312.00	1100.00	0.00	0.00	0.00	0.00			
1105.00	0.00	312.00	1105.00	0.00	0.00	0.00	0.00	Salt		
1200.00	0.00	312.00	1200.00	0.00	0.00	0.00	0.00			
1300.00	0.00	312.00	1300.00	0.00	0.00	0.00	0.00			
1400.00	0.00	312.00	1400.00	0.00	0.00	0.00	0.00			
1500.00	0.00	312.00	1500.00	0.00	0.00	0.00	0.00			
1600.00	0.00	312.00	1600.00	0.00	0.00	0.00	0.00			
1700.00	0.00	312.00	1700.00	0.00	0.00	0.00	0.00			
1800.00	0.00	312.00	1800.00	0.00	0.00	0.00	0.00			
1900.00	0.00	312.00	1900.00	0.00	0.00	0.00	0.00			
2000.00	0.00	312.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent		
2100.00	2.00	312.00	2099.98	1.17	-1.30	1.22	2.00			
2200.00	4.00	312.00	2199.84	4.67	-5.19	4.89	2.00			
2300.00	6.00	312.00	2299.45	10.50	-11.66	10.99	2.00			
2400.00	8.00	312.00	2398.70	18.66	-20.72	19.52	2.00			
2500.00	10.00	312.00	2497.47	29.12	-32.34	30.47	2.00	Hold Tangent		
2600.00	10.00	312.00	2595.95	40.74	-45.25	42.62	0.00			
2700.00	10.00	312.00	2694.43	52.36	-58.15	54.78	0.00			
2800.00	10.00	312.00	2792.91	63.98	-71.06	66.93	0.00			
2900.00	10.00	312.00	2891.39	75.60	-83.96	79.09	0.00			
3000.00	10.00	312.00	2989.87	87.22	-96.87	91.25	0.00			
3100.00	10.00	312.00	3088.35	98.84	-109.77	103.40	0.00			
3200.00	10.00	312.00	3186.83	110.46	-122.68	115.56	0.00			
3300.00	10.00	312.00	3285.31	122.08	-135.58	127.71	0.00			
3400.00	10.00	312.00	3383.79	133.70	-148.49	139.87	0.00			
3500.00	10.00	312.00	3482.27	145.31	-161.39	152.02	0.00			
3600.00	10.00	312.00	3580.75	156.93	-174.29	164.18	0.00			
3700.00	10.00	312.00	3679.23	168.55	-187.20	176.34	0.00			
3800.00	10.00	312.00	3777.72	180.17	-200.10	188.49	0.00			
3900.00	10.00	312.00	3876.20	191.79	-213.01	200.65	0.00			
4000.00	10.00	312.00	3974.68	203.41	-225.91	212.80	0.00			
4100.00	10.00	312.00	4073.16	215.03	-238.82	224.96	0.00			
4200.00	10.00	312.00	4171.64	226.65	-251.72	237.11	0.00			
4300.00	10.00	312.00	4270.12	238.27	-264.63	249.27	0.00	Page of Calt		
4340.50	10.00	312.00	4310.00	242.97	-269.85 277.52	254.19 261.43	0.00	Base of Salt		
4400.00	10.00	312.00	4368.60	249.89	-277.53 279.68		0.00	Dolawara		
4416.65 4500.00	10.00 10.00	312.00 312.00	4385.00 4467.08	251.82 261.51	-279.68 -290.44	263.45 273.58	0.00	Delaware		
4600.00	10.00	312.00	4565.56	273.13	-303.34	285.74	0.00			
4700.00	10.00	312.00	4664.04	284.75	-303.34	297.89	0.00			
4800.00	10.00	312.00	4762.52	296.37	-310.23	310.05	0.00			
4900.00	10.00	312.00	4861.00	307.98	-342.05	322.20	0.00			
5000.00	10.00	312.00	4959.48	319.60	-354.96	334.36	0.00			
5100.00	10.00	312.00	5057.97	331.22	-367.86	346.52	0.00			
5200.00	10.00	312.00	5156.45	342.84	-380.77	358.67	0.00			
5208.93	10.00	312.00	5165.24	343.88	-381.92	359.76	0.00	Drop to Vertical		
5300.00	8.18	312.00	5255.16	353.51	-392.61	369.83	2.00	- Francisco		
5400.00	6.18	312.00	5354.37	361.87	-401.90	378.58	2.00			
5486.00	4.46	312.00	5440.00	367.20	-407.82	384.16	2.00	Cherry Canyon		
5500.00	4.18	312.00	5453.96	367.91	-408.60	384.89	2.00	<i>y</i> y -		
5600.00	2.18	312.00	5553.80	371.62	-412.72	388.78	2.00			
5700.00	0.18	312.00	5653.78	372.99	-414.25	390.22	2.00			
5708.93	0.00	312.00	5662.70	373.00	-414.26	390.22	2.00	Hold Vertical		
	0.00	359.75	5753.78	373.00	-414.26	390.23	0.00	**		
				373.00	-414.26	390.23	0.00			
5800.00 5900.00	0.00	359.75	5853.78	373.00						
5800.00	0.00	359.75 359.75	5853.78 5953.78	373.00	-414.26	390.23	0.00			
5800.00 5900.00										

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design.	r errint riai						Zone. 3001 - NIVI East (NADOS)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)		(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6300.00	(°) 0.00	359.75	6253.78	373.00	-414.26	390.23	0.00	
6400.00	0.00	359.75	6353.78	373.00	-414.26	390.23		
6500.00						390.23	0.00	
	0.00	359.75	6453.78	373.00	-414.26		0.00	
6600.00	0.00	359.75	6553.78	373.00	-414.26	390.23	0.00	
6700.00	0.00	359.75	6653.78	373.00	-414.26	390.23	0.00	
6800.00	0.00	359.75	6753.78	373.00	-414.26	390.23	0.00	
6836.22	0.00	359.75	6790.00	373.00	-414.26	390.23	0.00	Brushy Canyon
6900.00	0.00	359.75	6853.78	373.00	-414.26	390.23	0.00	
7000.00	0.00	359.75	6953.78	373.00	-414.26	390.23	0.00	
7100.00	0.00	359.75	7053.78	373.00	-414.26	390.23	0.00	
7200.00	0.00	359.75	7153.78	373.00	-414.26	390.23	0.00	
7300.00	0.00	359.75	7253.78	373.00	-414.26	390.23	0.00	
7400.00	0.00	359.75	7353.78	373.00	-414.26	390.23	0.00	
7500.00	0.00	359.75	7453.78	373.00	-414.26	390.23	0.00	
7600.00	0.00	359.75	7553.78	373.00	-414.26	390.23	0.00	
7700.00	0.00	359.75	7653.78	373.00	-414.26	390.23	0.00	
7800.00	0.00	359.75	7753.78	373.00	-414.26	390.23	0.00	
7900.00	0.00	359.75	7853.78	373.00	-414.26	390.23	0.00	
8000.00	0.00	359.75	7953.78	373.00	-414.26	390.23	0.00	
8100.00	0.00	359.75	8053.78	373.00	-414.26	390.23	0.00	
8200.00	0.00	359.75	8153.78	373.00	-414.26	390.23	0.00	
8300.00	0.00	359.75	8253.78	373.00	-414.26	390.23	0.00	
8400.00	0.00	359.75	8353.78		-414.26		0.00	
				373.00		390.23		Pana Caring 1st lima
8406.22	0.00	359.75	8360.00	373.00	-414.26	390.23	0.00	Bone Spring 1st lime
8500.00	0.00	359.75	8453.78	373.00	-414.26	390.23	0.00	
8600.00	0.00	359.75	8553.78	373.00	-414.26	390.23	0.00	
8700.00	0.00	359.75	8653.78	373.00	-414.26	390.23	0.00	
8800.00	0.00	359.75	8753.78	373.00	-414.26	390.23	0.00	
8900.00	0.00	359.75	8853.78	373.00	-414.26	390.23	0.00	
9000.00	0.00	359.75	8953.78	373.00	-414.26	390.23	0.00	
9100.00	0.00	359.75	9053.78	373.00	-414.26	390.23	0.00	
9194.22	0.00	359.75	9148.00	373.00	-414.26	390.23	0.00	Bone Spring 1st
9200.00	0.00	359.75	9153.78	373.00	-414.26	390.23	0.00	
9252.27	0.00	359.75	9206.04	373.00	-414.26	390.22	0.00	KOP
9300.00	4.77	359.75	9253.72	374.99	-414.27	392.21	10.00	
9400.00	14.77	359.75	9352.14	391.94	-414.35	409.15	10.00	
9500.00	24.77	359.75	9446.13	425.73	-414.49	442.91	10.00	
9600.00	34.77	359.75	9532.82	475.32	-414.71	492.47	10.00	
9700.00	44.77	359.75	9609.58	539.22	-414.99	556.32	10.00	
9800.00	54.77	359.75	9674.08	615.47	-415.32	632.52	10.00	
9801.60	54.93	359.75	9675.00	616.78	-415.33	633.82	10.00	Bone Spring 2nd lime / Point of Penetration
9900.00	64.77	359.75	9724.36	701.76	-415.70	718.75	10.00	bone Spring and lime / Form of Fenetiation
10000.00	74.77	359.75	9758.89	795.48	-416.11	812.40	10.00	
10100.00	84.77	359.75	9776.62		-416.54	910.61	10.00	
				893.76				Landina Daint
10150.82	89.86	359.75	9779.00	944.51	-416.76	961.32	10.00	Landing Point
10200.00	89.86	359.75	9779.12	993.69	-416.97	1010.47	0.00	
10300.00	89.86	359.75	9779.38	1093.69	-417.41	1110.39	0.00	
10400.00	89.86	359.75	9779.63	1193.69	-417.85	1210.32	0.00	
10500.00	89.86	359.75	9779.88	1293.68	-418.28	1310.25	0.00	
10600.00	89.86	359.75	9780.13	1393.68	-418.72	1410.18	0.00	
10700.00	89.86	359.75	9780.39	1493.68	-419.16	1510.10	0.00	
10800.00	89.86	359.75	9780.64	1593.68	-419.59	1610.03	0.00	
10900.00	89.86	359.75	9780.89	1693.68	-420.03	1709.96	0.00	
11000.00	89.86	359.75	9781.15	1793.68	-420.47	1809.89	0.00	
11100.00	89.86	359.75	9781.40	1893.68	-420.90	1909.81	0.00	
11200.00	89.86	359.75	9781.65	1993.68	-421.34	2009.74	0.00	
11300.00	89.86	359.75	9781.90	2093.67	-421.78	2109.67	0.00	
11400.00	89.86	359.75	9782.16	2193.67	-422.21	2209.60	0.00	
11500.00	89.86	359.75	9782.41	2293.67	-422.65	2309.52	0.00	
11600.00	89.86	359.75	9782.66	2393.67	-423.09	2409.45	0.00	
11700.00	89.86	359.75	9782.91	2493.67	-423.52	2509.38	0.00	
11800.00	89.86	359.75	9783.17	2593.67	-423.96	2609.30	0.00	
						2709.23		
11900.00	89.86	359.75	9783.42	2693.67	-424.40		0.00	
12000.00	89.86	359.75	9783.67	2793.67	-424.83	2809.16	0.00	
12100.00	89.86	359.75	9783.93	2893.66	-425.27	2909.09	0.00	
12200.00	89.86	359.75	9784.18	2993.66	-425.71	3009.01	0.00	
12300.00	89.86	359.75	9784.43	3093.66	-426.15	3108.94	0.00	
12400.00	89.86	359.75	9784.68	3193.66	-426.58	3208.87	0.00	
12500.00	89.86	359.75	9784.94	3293.66	-427.02	3308.80	0.00	
12600.00	89.86	359.75	9785.19	3393.66	-427.46	3408.72	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design: Permit Plan #1					Zone: 3001 - NM East (NAD83)				
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
12700.00	89.86	359.75	9785.44	3493.66	-427.89	3508.65	0.00			
12800.00	89.86	359.75	9785.69	3593.65	-428.33	3608.58	0.00			
12900.00	89.86	359.75	9785.95	3693.65	-428.77	3708.51	0.00			
13000.00 13100.00	89.86 89.86	359.75 359.75	9786.20 9786.45	3793.65 3893.65	-429.20 -429.64	3808.43 3908.36	0.00			
13200.00	89.86	359.75	9786.70	3993.65	-429.04	4008.29	0.00			
13300.00	89.86	359.75	9786.96	4093.65	-430.51	4108.22	0.00			
13400.00	89.86	359.75	9787.21	4193.65	-430.95	4208.14	0.00			
13500.00	89.86	359.75	9787.46	4293.65	-431.39	4308.07	0.00			
13600.00	89.86	359.75	9787.72	4393.64	-431.82	4408.00	0.00			
13700.00	89.86	359.75	9787.97	4493.64	-432.26	4507.93	0.00			
13800.00	89.86	359.75	9788.22	4593.64	-432.70	4607.85	0.00			
13900.00	89.86	359.75	9788.47	4693.64	-433.14	4707.78	0.00			
14000.00 14100.00	89.86	359.75 359.75	9788.73 9788.98	4793.64	-433.57	4807.71 4907.64	0.00			
14200.00	89.86 89.86	359.75	9789.23	4893.64 4993.64	-434.01 -434.45	5007.56	0.00			
14300.00	89.86	359.75	9789.48	5093.64	-434.43	5107.49	0.00			
14400.00	89.86	359.75	9789.74	5193.63	-435.32	5207.42	0.00			
14500.00	89.86	359.75	9789.99	5293.63	-435.76	5307.34	0.00			
14600.00	89.86	359.75	9790.24	5393.63	-436.19	5407.27	0.00			
14700.00	89.86	359.75	9790.49	5493.63	-436.63	5507.20	0.00			
14800.00	89.86	359.75	9790.75	5593.63	-437.07	5607.13	0.00			
14900.00	89.86	359.75	9791.00	5693.63	-437.50	5707.05	0.00			
15000.00	89.86	359.75	9791.25	5793.63	-437.94	5806.98	0.00			
15100.00 15200.00	89.86 89.86	359.75	9791.51 9791.76	5893.63 5993.62	-438.38	5906.91 6006.84	0.00			
15300.00	89.86	359.75 359.75	9792.01	6093.62	-438.81 -439.25	6106.76	0.00			
15400.00	89.86	359.75	9792.26	6193.62	-439.69	6206.69	0.00			
15500.00	89.86	359.75	9792.52	6293.62	-440.12	6306.62	0.00			
15600.00	89.86	359.75	9792.77	6393.62	-440.56	6406.55	0.00			
15700.00	89.86	359.75	9793.02	6493.62	-441.00	6506.47	0.00			
15800.00	89.86	359.75	9793.27	6593.62	-441.44	6606.40	0.00			
15900.00	89.86	359.75	9793.53	6693.62	-441.87	6706.33	0.00			
16000.00	89.86	359.75	9793.78	6793.61	-442.31	6806.26	0.00			
16100.00 16200.00	89.86 89.86	359.75 359.75	9794.03 9794.28	6893.61 6993.61	-442.75 -443.18	6906.18 7006.11	0.00			
16300.00	89.86	359.75	9794.54	7093.61	-443.62	7106.04	0.00			
16400.00	89.86	359.75	9794.79	7193.61	-444.06	7205.97	0.00			
16500.00	89.86	359.75	9795.04	7293.61	-444.49	7305.89	0.00			
16600.00	89.86	359.75	9795.30	7393.61	-444.93	7405.82	0.00			
16700.00	89.86	359.75	9795.55	7493.61	-445.37	7505.75	0.00			
16800.00	89.86	359.75	9795.80	7593.60	-445.80	7605.67	0.00			
16900.00	89.86	359.75	9796.05	7693.60	-446.24	7705.60	0.00			
17000.00	89.86	359.75	9796.31	7793.60	-446.68	7805.53	0.00			
17100.00	89.86 89.86	359.75 259.75	9796.56 9796.81	7893.60 7993.60	-447.11 -447.55	7905.46	0.00			
17200.00 17300.00	89.86	359.75 359.75	9796.81	8093.60	-447.55 -447.99	8005.38 8105.31	0.00			
17400.00	89.86	359.75	9797.32	8193.60	-448.43	8205.24	0.00			
17500.00	89.86	359.75	9797.57	8293.60	-448.86	8305.17	0.00			
17600.00	89.86	359.75	9797.82	8393.59	-449.30	8405.09	0.00			
17700.00	89.86	359.75	9798.07	8493.59	-449.74	8505.02	0.00			
17800.00	89.86	359.75	9798.33	8593.59	-450.17	8604.95	0.00			
17900.00	89.86	359.75	9798.58	8693.59	-450.61	8704.88	0.00			
18000.00	89.86	359.75 259.75	9798.83	8793.59	-451.05	8804.80	0.00			
18100.00 18200.00	89.86 89.86	359.75 359.75	9799.09 9799.34	8893.59 8993.59	-451.48 -451.92	8904.73 9004.66	0.00			
18300.00	89.86	359.75	9799.59	9093.58	-451.92	9104.59	0.00			
18400.00	89.86	359.75	9799.84	9193.58	-452.79	9204.51	0.00			
18500.00	89.86	359.75	9800.10	9293.58	-453.23	9304.44	0.00			
18600.00	89.86	359.75	9800.35	9393.58	-453.67	9404.37	0.00			
18700.00	89.86	359.75	9800.60	9493.58	-454.10	9504.30	0.00			
18800.00	89.86	359.75	9800.85	9593.58	-454.54	9604.22	0.00			
18900.00	89.86	359.75	9801.11	9693.58	-454.98	9704.15	0.00			
19000.00	89.86	359.75	9801.36	9793.58	-455.41	9804.08	0.00			
19100.00	89.86	359.75	9801.61	9893.57	-455.85	9904.01	0.00			
19200.00 19300.00	89.86 89.86	359.75 359.75	9801.87 9802.12	9993.57	-456.29 -456.73	10003.93 10103.86	0.00			
19400.00	89.86	359.75	9802.12	10093.57 10193.57	-456.73 -457.16	10203.79	0.00			
19500.00	89.86	359.75	9802.62	10193.57	-457.60	10203.73	0.00			
19600.00	89.86	359.75	9802.88	10393.57	-458.04	10403.64	0.00			

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866
Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19700.00	89.86	359.75	9803.13	10493.57	-458.47	10503.57	0.00	
19800.00	89.86	359.75	9803.38	10593.57	-458.91	10603.50	0.00	
19900.00	89.86	359.75	9803.63	10693.56	-459.35	10703.42	0.00	
19970.02	89.86	359.75	9803.81	10763.58	-459.65	10773.39	0.00	exit
20000.00	89.86	359.75	9803.89	10793.56	-459.78	10803.35	0.00	
20050.02	89.86	359.75	9804.00	10843.58	-459.95	10853.33	0.00	BHL

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Reports
11/13/2024

Well Name: COTTON DRAW UNIT Well Location: T25S / R31E / SEC 1 /

LOT 4 / 32.165732 / -103.736813

County or Parish/State: EDDY /

NM

Well Number: 632H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM0503 Unit or CA Name: COTTON DRAW Unit o

UNIT

Unit or CA Number:

NMNM70928X

US Well Number: 3001555296 Operator: DEVON ENERGY

PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2816659

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 11/05/2024 Time Sundry Submitted: 12:41

Date proposed operation will begin: 10/11/2024

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the casing design, BHL, TVD, pool code and spacing on the subject well. Devon also requests a break test and offline cementing variance. New leases have been added since approved APD and notification has been given. Please see attached revised C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. Permitted BHL: SWSW, 20 FSL, 550 FWL, 12-25S-31E Proposed BHL: NWNW, 20 FNL, 600 FWL, 25-24S-31E Permitted TVD/MD: 12663/22775 - Purple Sage/Wolfcamp Proposed TVD/MD: 9804/20050 - Paduca/Bone Spring

NOI Attachments

Procedure Description

COTTON_DRAW_UNIT_632H_R111Q_20241111163122.pdf

10.75_45.5lb_J55_BTC_20241105123802.pdf

break_test_variance_BOP_1_15_24_20241105123758.pdf

WA018390652_COTTON_DRAW_UNIT_632H_WL_R1_SIGNED_20241105123758.pdf

8.625_32lb_P110_HSCY_MO_FXL_20241105123758.pdf

5.5_20lb_P110HP_CDC_HTQ_20241105123758.pdf

 $13.375_54.5lb_J55_20241105123755.pdf$

 $COTTON_DRAW_UNIT_632H_Directional_Plan_09_18_24_20241105123756.pdf$

Page 1 of 2

eceived by OCD: 11/18/2024 11:22:40 AM
Well Name: COTTON DRAW UNIT

Well Location: T25S / R31E / SEC 1 /

LOT 4 / 32.165732 / -103.736813

County or Parish/State: Page 27 of

NM

Zip:

Well Number: 632H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM0503

Unit or CA Name: COTTON DRAW

UNIT

Unit or CA Number: NMNM70928X

US Well Number: 3001555296

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Offline_Cementing___Variance_Request_20241105123754.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: NOV 11, 2024 04:31 PM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

State:

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

Page 2 of 2

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LF -

LOCATION: Section 1, T.25 S., R.31 E., NMPM

COUNTY: Eddy County, New Mexico

WELL NAME & NO.: Cotton Draw Unit 632H

ATS/API ID: 30-015-55296 APD ID: 10400081456

Sundry ID: 2816659

 \mathbf{COA}

Primary Design:

	,		
H2S	Yes		
Potash	R-111-Q •	Figure D 🔻	
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	■ None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔽	
Other	✓ 4 String ☐ 5 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter Int 2	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	□ СОМ	☑ Unit
Special Requirements	☐ Batch Sundry	Waste Prevention None	
Special Requirements Variance	✓ Break Testing	✓ Offline Cementing	☐ Casing Clearance

Alternate Design:

Potash	R-111-Q 🔻	Figure D 🔻	
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Other	✓ 4 String ☐ 5 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter Int 2	Primary Cement Squeeze None

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

PRIMARY DESIGN

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 725 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing shall be set at approximately 4410 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - The top of cement in the annulus between the 1st intermediate and the 2nd intermediate casing strings shall stand un-cemented at least **500 feet** below the 1st intermediate shoe. Zero percent excess shall be pumped on the cement slurry to ensure no tie-back into the previous shoe.
 - After hydraulic fracturing operations have been concluded and no longer than 180 days after the well is brought online, the operator shall bradenhead cement at least 500 feet tie-back into the previous casing but not higher than USGS Marker Bed No. 126. (Squeeze 393 sxs Class C and 93.5 bbls Displacement Fluid)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus post completion. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore. Report the amount of fluid utilized to pump the cement slurry and the calculated top of cement slurry to the BLM. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure and ensure cement tie-back requirement.

Operator has proposed an open annulus completion in R-111-Q. <u>Submit results to the BLM</u>. <u>Pressure monitoring device and Pressure Safety Valves must be installed at surface on the 10-3/4" x 8-5/8" annulus for the life of the well.</u>

In the event of a casing failure during completion, the operator must contact the BLM at (575-706-2779) and (575-361-2822 Eddy County).

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back **500 feet** into the previous casing but not higher than USGS Marker Bed No. 126. Operator must run a CBL from TD of the production casing to surface to verify top of cement. Submit results to the BLM.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or

similar method that reflects the as-drilled size of the wellbore.

ALTERNATE DESIGN

C. CASING

- 5. The 13-3/8 inch surface casing shall be set at approximately 725 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 6. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 4410 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 7. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
 - The top of cement in the annulus between the 1st intermediate and the 2nd intermediate casing strings shall stand un-cemented at least **500 feet** below the 1st intermediate shoe. Zero percent excess shall be pumped on the cement slurry to ensure no tie-back into the previous shoe.
 - After hydraulic fracturing operations have been concluded and no longer than 180 days after the well is brought online, the operator shall bradenhead cement at least 500 feet tie-back into the previous casing but not higher than USGS Marker Bed No. 126. (Squeeze 393 sxs Class C and 72.5 bbls Displacement Fluid)

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus post completion. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore. Report the amount of fluid utilized to pump the cement slurry and the calculated top of cement slurry to the BLM. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure and ensure cement tie-back requirement.

Operator has proposed an open annulus completion in R-111-Q. <u>Submit results to the BLM</u>. <u>Pressure monitoring device and Pressure Safety Valves must be installed at surface on the 9-5/8" x 7-5/8" annulus for the life of the well.</u>

In the event of a casing failure during completion, the operator must contact the BLM at (575-706-2779) and (575-361-2822 Eddy County).

- 8. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back **500 feet** into the previous casing but not higher than USGS Marker Bed No. 126. Operator must run a CBL from TD of the production casing to surface to verify top of cement. Submit results to the BLM.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

D. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi. Annular which shall be tested to 2100 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

E. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone

- Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☑ Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

- if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 11/13/2024

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BURE		5. Lease Serial No.					
Do not use this f	OTICES AND REPORTS form for proposals to di Use Form 3160-3 (APD)	rill or to re-en	ter an	6. If Indian, Allottee or Tribe N	Name		
SUBMIT IN 1	TRIPLICATE - Other instruction	s on page 2		7. If Unit of CA/Agreement, Name and/or No.			
1. Type of Well	7-11 O41		-	8. Well Name and No.			
Oil Well Gas W	/ell Other		9. API Well No.				
3a. Address	3b. P		10. Field and Pool or Explorat	ory Area			
		•	,				
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)			11. Country or Parish, State			
12. CHE	CK THE APPROPRIATE BOX(E	S) TO INDICATE	NATURE OF	F NOTICE, REPORT OR OTH	IER DATA	<u> </u>	
TYPE OF SUBMISSION	TYPE	OF ACTION					
Notice of Intent	Acidize	Deepen		Production (Start/Resume)	=	ater Shut-Off	
	Alter Casing	Hydraulic Fra		Reclamation	=	ell Integrity	
Subsequent Report	Casing Repair	New Construc		Recomplete	Ot	her	
Final Abandonment Notice	Change Plans Convert to Injection	Plug and Abar Plug Back	ndon	Temporarily Abandon Water Disposal			
is ready for final inspection.)							
14. I hereby certify that the foregoing is	true and correct. Name (Printed/	Typed)					
Title							
Signature		Date					
	THE SPACE FO	R FEDERAL	OR STAT	E OFICE USE			
Approved by		Ti	itle	I	Date		
Conditions of approval, if any, are attach certify that the applicant holds legal or e which would entitle the applicant to con-	equitable title to those rights in the	not warrant or	ffice]*			
Title 18 U.S.C Section 1001 and Title 43	3 U.S.C Section 1212, make it a cr	rime for any person	knowingly	and willfully to make to any de	partment	or agency of the United States	

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: LOT 4 / 332 FNL / 1013 FWL / TWSP: 25S / RANGE: 31E / SECTION: 1 / LAT: 32.165732 / LONG: -103.736813 (TVD: 8346 feet, MD: 8412 feet) PPP: LOT 4 / 100 FNL / 550 FWL / TWSP: 25S / RANGE: 31E / SECTION: 1 / LAT: 32.166377 / LONG: -103.738308 (TVD: 11650 feet, MD: 11695 feet) BHL: SWSW / 20 FSL / 550 FWL / TWSP: 25S / RANGE: 31E / SECTION: 12 / LAT: 32.137613 / LONG: -103.73833 (TVD: 12663 feet, MD: 22775 feet)

1. Geologic Formations

TVD of target	9804	Pilot hole depth	N/A
MD at TD:	20050	Deepest expected fresh water	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	660	Zone:	
Salt	1105		
Base of Salt	4310		
Delaware	4385		
Cherry Canyon	5440		
Brushy Canyon	6790		
Bone Spring 1st lime	8360		
Bone Spring 1st	9148		
Bone Spring 2nd lime	9675		
Salado, #126	1803		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	685 MD	0	685 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0.0	4410 MD	0	4410 TVD
9 7/8	8 5/8	32.0	P110	MOFXL	0	9152	0	9152
7 7/8	5 1/2	20.0	P110HP	CDC-HTQ	0	20050 MD	0	9804 TVD

- •All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.
- The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	534	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	294	Surf	9	3.27	Lead: Class C Cement + additives
III I	101	3910	13.2	1.44	Tail: Class H / C + additives
Int 2					
Int 2	69	8360	13.2	1.44	Tail: Class H / C + additives
Int 2	393	3910	9	1.44	Post Squeeze Lead: Class C Cement + additives
Intermediate Squeeze, Post					
completions					
Production	117	7252	9	3.27	Lead: Class H /C + additives
Froduction	1429	9252	13.2	1.44	Tail: Class H / C + additives

- •Devon will design around R111-Q: 4 String, Open 1st Int and 2nd Int Annulus, Figure D
- •Int 2 TOC will be, prior to completion, brought up to the 1st Bone Lime, leaving an open annulus for pressure monitoring
- •Following completion, a cement top out will be performed to bring TOC 500ft into Int 1, but below the POTASH interval
- •The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program

.Int 2 cement will adhere to R111-Q requirements

Casing String	% Excess
Surface	50%
Intermediate1	30%
Intermediate 2	0%
Prod	10%

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

2. Casing Program (Secondary Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	685 MD	0	685 TVD
12 1/4	9 5/8	40.0	J-55	ВТС	0.0	4410 MD	0	4410 TVD
8 3/4	7 5/8	29.7	P110HP	Talon SFC	0	9152	0	9152
6 3/4	5 1/2	20.0	P110HP	Talon RD	0	20050 MD	0	9804 TVD

- •All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.
- The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (Secondary Design)

Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	534	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	480	Surf	9	3.27	Lead: Class C Cement + additives
III I	154	3910	13.2	1.44	Tail: Class H / C + additives
Int 2					
Int 2	53	8360	13.2	1.44	Tail: Class H / C + additives
Int 2	310	3910	9	1.44	Post Squeeze Lead: Class C Cement + additives
Intermediate Squeeze, Post					
completions					
Production	62	7252	9	3.27	Lead: Class H /C + additives
Fioduction	689	9252	13.2	1.44	Tail: Class H / C + additives

- •Devon will design around R111-Q: 4 String, Open 1st Int and 2nd Int Annulus, Figure D
- •Int 2 TOC will be, prior to completion, brought up to the 1st Bone Lime, leaving an open annulus for pressure monitoring
- •Following completion, a cement top out will be performed to bring TOC 500ft into Int 1, but below the POTASH interval
- •The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program

.Int 2 cement will adhere to R111-Q requirements

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 2	0%
Prod	10%

4. Pressure Control Equipment (Four String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	Туре		✓	Tested to:														
			Annular		X	50% of rated working pressure														
Int 1	13-5/8"	5M	Bline	d Ram	X															
IIIL I	13-3/6	J1V1	Pipe	Ram		5M														
			Doub	le Ram	X	JIVI														
			Other*																	
	13-5/8"		Annular (5M)		X	100% of rated working pressure														
Int 2		5M	Blind Ram		X															
IIIt 2		13-3/6 3WI	13-3/6 3101	13-3/6 3101	13-3/6 JWI	13-3/6	13-3/6	13-3/0	13-3/0 3WI	13-3/6 3101	13-3/6 3WI	13-3/6 3IVI	13-3/6 3IVI	"/ JIVI	13-3/0 3IVI	J1V1	Pipe	Ram		5M
			Double Ram		X	3101														
			Other*																	
					Annul	ar (5M)	X	100% of rated working pressure												
Production	13-5/8"	5M	Bline	d Ram	X															
Troduction	13-3/6	JIVI	Pipe	Ram		5M														
			Doub	le Ram	X	JIVI														
			Other*																	
N A variance is requested fo	r the use of a	diverter on	the surface	casing. See	attached for s	chematic.														
N A variance is requested to	run a 5 M an	nular on a	10M system	1																

5. Mud Program (Four String Design)

Section	Туре	Weight (ppg)
Surface	WBM	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Intermediate 2	WBM	8.5-9
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing					
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
X	Completion Report and shumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additional logs planned		Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5353
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present

	TYGG !
N	H2S is present
Y	H2S plan attached.

COTTON DRAW UNIT 632H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

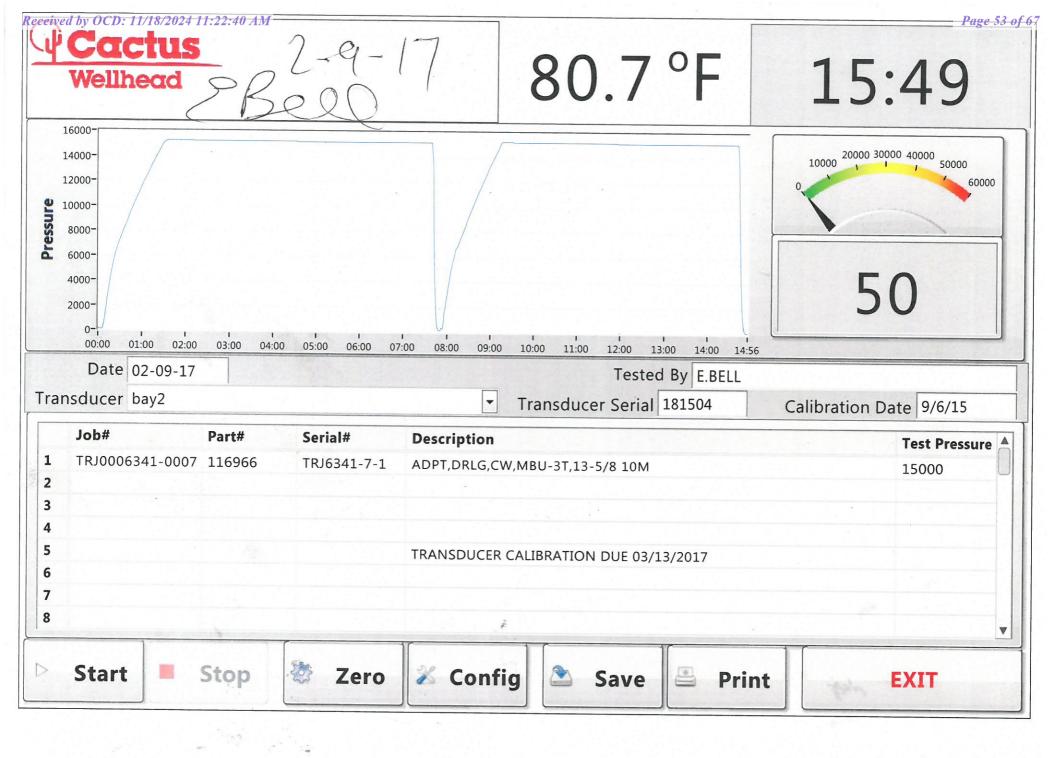
NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>					
<u>Dimensions (Nominal)</u>								
Outside Diameter			10.750	in.				
Wall			0.400	in.				
Inside Diameter			9.950	in.				
Drift			9.875	in.				
Weight, T&C			45.500	lbs/ft				
Weight, PE			44.260	lbs/ft				
<u>Performance</u>	Properties							
Collapse			2090	psi				
Internal Yield Pres	sure at Minimum Yield							
	PE		3580	psi				
	STC		3580	psi				
	ВТС		3580	psi				
Yield Strength, Pip	e Body		715	1000 lbs				
Joint Strength								
	STC		493	1000 lbs				
	BTC		796	1000 lbs				
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs				

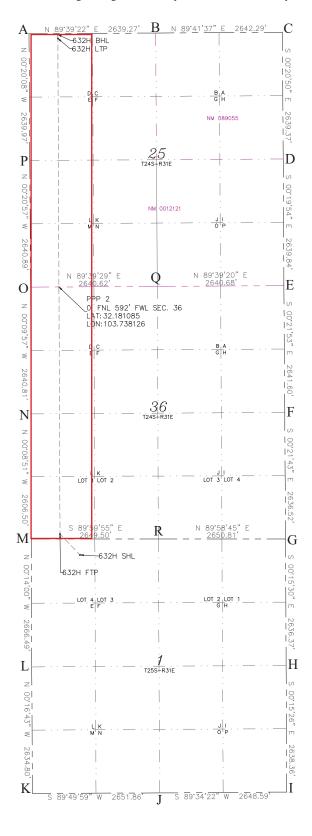

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third



<u>C-1</u>	02		Fnergy	Minera	State of	New Mexico al Resources Depa	rtment		Rev	vised July, 2024
Submit Electronically OIL CONSERVAT										
	Permitting							Submittal	☐ Initial Submittal	ļ.
								Type:	☐ Amended Repor	rt
						☐ As Drilled				
WELL LOCAT				TION INFORMATIC	N					
	umber	_	Pool Cod			Pool Name				
30-015-55296 96641 Property Code Property Name			PADUCA; BON	E SPRING	r .	Well Number				
				ON DRAW UNIT			632H			
OGRID	No. 6137		Operator		N ENERGY I	PRODUCTION COMPA	ANY, L.P.		Ground Level 3473.9'	Elevation
Surfac	e Owner:	□State □	∟ Fee □Trib	al Fe	deral	Mineral Owner:	□State	□Fee □	Tribal XFederal	
					Sur	rface Location				
UL	Section	Township	Range	Lot	Ft. from N		Latitude		Longitude	County
	1	25-S	31-E	4	332' N	1013' W	32.165	5732	103.736813	EDDY
					Botto	om Hole Location				
UL	Section	Township	Range	Lot	Ft. from N		Latitude		Longitude	County
D	25	24-S	31-E		20' N	600' W	32.195	546	103.738106	EDDY
Dedicat	ed Acres l	Infill or Def	ining Well	Defining	Well API Ove	erlapping Spacing Uni	t (Y/N)	Consolid	ation Code	
319					717 3					
Order	Numbers				Wel	ll setbacks are under	Common	Ownersh	ıp: ∐Yes ∐No	
					Kick 0	off Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N	I/S Ft. from E/W	Latitude		Longitude	County
	36	24S	31E	1	41 S	601 W	32.1667		103.7382	EDDY
				•	First T	Take Point (FTP)				
UL	Section	Township	Range	Lot	Ft. from N	.	Latitude		Longitude	County
	36	24-S	31-E	1	100' S	600' W	32.166	926	103.738145	EDDY
					Last T	Take Point (LTP)				
UL	Section	Township	Range	Lot	Ft. from N	' I ' '	Latitude		Longitude	County
D	25	24-S	31-E		100' N	600' W	32.195	326	103.738106	EDDY
					Spacing	Unit Type XHorizon	tal Verti	cal	Ground Floor Ele	vation:
1	TOR CERTI					SURVEYOR CERTIFIC	CATIONS			
					omplete to the best onal well, that this	I hereby certify that the we				
		ns a working inte bottom hole loca			this well at this	of actual surveys made by correct to the best of my b		upervision, a		
location p	pursuant to a c	ontract with an o	owner of a wor	king interes	t or unleased				ERT R. C	EHO
	re entered by the		ng agreement o	r a compuis	sory pooling order				MEX MEX	DEHOLOS
If this we	ell is a horizon	tal well, I further	r certify that th	s organizat	ion has received the	e				6
		lessee or owner of			leased mineral part of the well's				23261	
complete					ng order from the			,	78 / Meles	A.5 /
division.										
Signa	ture	1	Date			Signature and Seal	of Profes	ssional S	Surveyor / ONAL	50,
Che	loen ,	Diraca	, 1	0/01/202	4					
Printe	ed Name	Bert Artito				Certificate Number	Date of	Survey		
	elsey Gree	n				23261	07/20	24		
Email Address chelsey.green@dvn.com				20201	01/20	~4				

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

B=N:435415.91 E:727498.63 C=N:435430.04 E:730140.88 D=N:432790.73 E:730156.88 E=N:430150.93 E:730172.17 F=N:427509.39 E:730188.98 G=N:424872.92 E:730205.63 H=N:422236.58 E:730217.51 I=N:419598.25 E:730229.36 J=N:419578.50 E:727580.84 K=N:419570.77 E:724992.00 L=N:422205.54 E:724916.13 M=N:424872.01 E:724916.32 N=N:430119.30 E:724898.61 O=N:430119.30 E:724874.87 Q=N:430135.06 E:727531.54 R=N:424871.96 E:727554.82

A=N:435400.07 E:724859.41

Metal One Corp.	MO EVI			MO-FXL 8-	-5/8 32.0	
·	MO-FXL	CDS#	P110HSCY			
Metal One	*1 Pipe Body: Borusan P110HSCY MinYS125ksi			MinYS125ksi		
	95%RBW Special Dr		95%RBW	SD7.875		
	Connection Dat	Date	16-Jan-24			
	2					
	Geometry	<u>Imperia</u>	<u>1</u>	<u>S.I.</u>		
_	Pipe Body		_			
	Grade *1	P110HSCY		P110HSCY		
	MinYS *1	125	ksi	125	ksi	
	Pipe OD (D)	8 5/8	in	219.08	mm	
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m	
	Actual weight	31.10		46.34	kg/m	
	Wall Thickness (t)	0.352	in	8.94	mm	
	Pipe ID (d)	7.921	in	201.19	mm	
	Pipe body cross section	9.149	in ²	5,902	mm ²	
\uparrow	Special Drift Dia. *1	7.875	in	200.03	mm	
	-	-	-	-	-	
Box	Connection					
critical	Box OD (W)	8.625	in	219.08	mm	
area	PIN ID	7.921	in	201.19	mm	
	Make up Loss	3.847	in	97.71	mm	
d d	Box Critical Area	5.853	in ²	3686	mm ²	
	Joint load efficiency 69		%	69	%	
Make	Thread Taper			2" per ft)	70	
loss D	Number of Threads 5 TPI					
5 .	Performance					
Pin critical						
area	Performance Properties			5.007		
	S.M.Y.S. *1	1,144	kips	5,087	kN	
	M.I.Y.P. *1	9,690	psi	66.83	MPa	
	Collapse Strength *1	4,300	psi	29.66	MPa	
<u> </u>		fied Minimum YIE		-	ıy	
	*1: Borusan: SOP-12-F05 R	num Internal Yield	ressur	e of Pipe body		
	P110HSCY: MinYS125ksi, 9		E Collon	oo Strongth 4.2	00poi	
	Performance Properties			ise Silerigili 4,3	oopsi	
	Tensile Yield load	789 kips		of S.M.Y.S.)		
	Min. Compression Yield	789 kips	:	of S.M.Y.S.)		
	Internal Pressure	6,780 psi (-	of M.I.Y.P.		
	External Pressure	0,100		of Collapse St	renath	
Max. DLS (deg. /100ft)			2		5	
	, , ,	!		-		
	Recommended Torque					
	Min.	13,600	ft-lb	18,400	N-m	
	Opti.	14,900	ft-lb	20,200	N-m	
	Max.	16,200	ft-lb	21,900	N-m	
	Operational Max.	28,400	ft-lb	38,500	N-m	
	Note : Operational Max. t	· · · · · · · · · · · · · · · · · · ·				
	· 					
Legal Notice						

Legal Notice

The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

2/21/2024 7:47:29 AM

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

P110 HP USS-CDC HTQ®

		Y		
MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-CDC HTQ [®]		
Outside Diameter	5.500	6.300	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-CDC HTQ [®]		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		97.0	%	
PERFORMANCE	Pipe	USS-CDC HTQ [®]		
Minimum Collapse Pressure	13,150	13,150	psi	
Minimum Collapse Pressure External Pressure Leak Resistance	13,150 	13,150 10,520	psi psi	
·	13,150 14,360	•	•	
External Pressure Leak Resistance		10,520	psi	
External Pressure Leak Resistance Minimum Internal Yield Pressure	 14,360	10,520 14,360	psi psi	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength	 14,360	10,520 14,360 	psi psi Ib	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength	 14,360	10,520 14,360 707,000	psi psi Ib Ib	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating	 14,360	10,520 14,360 707,000 424,000	psi psi Ib Ib	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating Reference Length	 14,360	10,520 14,360 707,000 424,000 23,567	psi psi Ib Ib Ib	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating Reference Length Maximum Uniaxial Bend Rating	 14,360 729,000 	10,520 14,360 707,000 424,000 23,567 60.6	psi psi Ib Ib Ib	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating Reference Length Maximum Uniaxial Bend Rating MAKE-UP DATA	 14,360 729,000 	10,520 14,360 707,000 424,000 23,567 60.6 USS-CDC HTQ [®]	psi psi lb lb ft deg/100 ft	
External Pressure Leak Resistance Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating Reference Length Maximum Uniaxial Bend Rating MAKE-UP DATA Make-Up Loss	 14,360 729,000 	10,520 14,360 707,000 424,000 23,567 60.6 USS-CDC HTQ[®] 4.63	psi psi psi lb lb ft deg/100 ft in.	

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.
- 5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

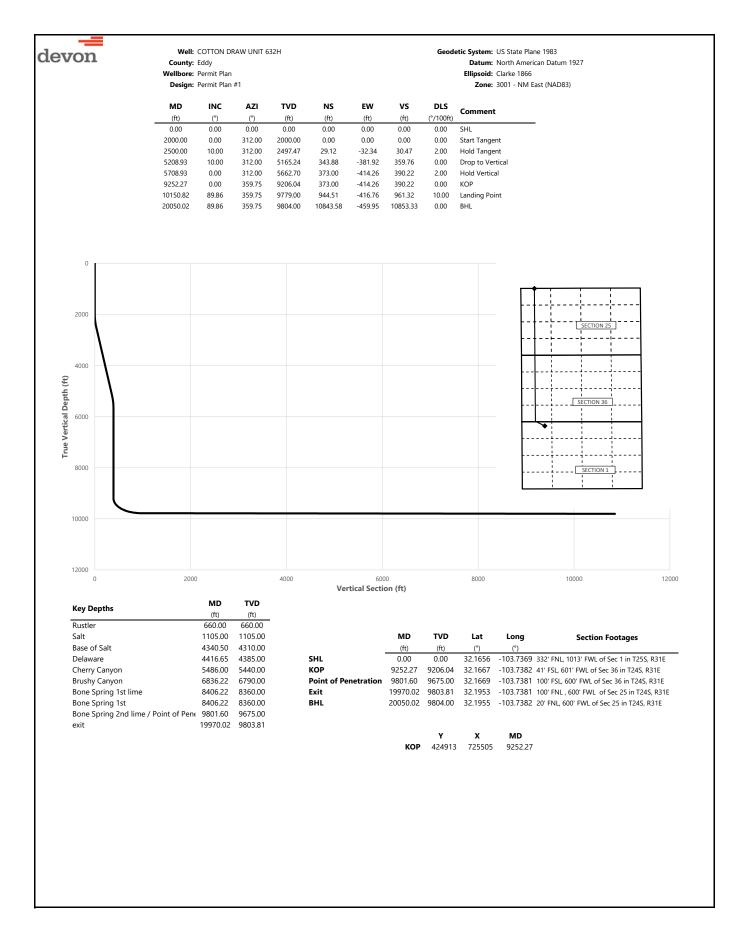
Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>


Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design:	Permit Plan	n #1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	_
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	312.00	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	312.00	200.00	0.00	0.00	0.00	0.00	
300.00	0.00	312.00	300.00	0.00	0.00	0.00	0.00	
400.00	0.00	312.00	400.00	0.00	0.00	0.00	0.00	
500.00	0.00	312.00	500.00	0.00	0.00	0.00	0.00	
600.00 660.00	0.00	312.00 312.00	600.00 660.00	0.00	0.00	0.00	0.00	Rustler
700.00	0.00	312.00	700.00	0.00	0.00	0.00	0.00	rustiei
800.00	0.00	312.00	800.00	0.00	0.00	0.00	0.00	
900.00	0.00	312.00	900.00	0.00	0.00	0.00	0.00	
1000.00	0.00	312.00	1000.00	0.00	0.00	0.00	0.00	
1100.00	0.00	312.00	1100.00	0.00	0.00	0.00	0.00	
1105.00	0.00	312.00	1105.00	0.00	0.00	0.00	0.00	Salt
1200.00	0.00	312.00	1200.00	0.00	0.00	0.00	0.00	
1300.00	0.00	312.00	1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	312.00	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	312.00	1500.00	0.00	0.00	0.00	0.00	
1600.00 1700.00	0.00	312.00 312.00	1600.00 1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	312.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	312.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	312.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	312.00	2099.98	1.17	-1.30	1.22	2.00	
2200.00	4.00	312.00	2199.84	4.67	-5.19	4.89	2.00	
2300.00	6.00	312.00	2299.45	10.50	-11.66	10.99	2.00	
2400.00	8.00	312.00	2398.70	18.66	-20.72	19.52	2.00	
2500.00	10.00	312.00	2497.47	29.12	-32.34	30.47	2.00	Hold Tangent
2600.00 2700.00	10.00	312.00 312.00	2595.95 2694.43	40.74	-45.25 -58.15	42.62	0.00	
2800.00	10.00 10.00	312.00	2792.91	52.36 63.98	-71.06	54.78 66.93	0.00	
2900.00	10.00	312.00	2891.39	75.60	-83.96	79.09	0.00	
3000.00	10.00	312.00	2989.87	87.22	-96.87	91.25	0.00	
3100.00	10.00	312.00	3088.35	98.84	-109.77	103.40	0.00	
3200.00	10.00	312.00	3186.83	110.46	-122.68	115.56	0.00	
3300.00	10.00	312.00	3285.31	122.08	-135.58	127.71	0.00	
3400.00	10.00	312.00	3383.79	133.70	-148.49	139.87	0.00	
3500.00	10.00	312.00	3482.27	145.31	-161.39	152.02	0.00	
3600.00	10.00	312.00	3580.75	156.93	-174.29	164.18	0.00	
3700.00	10.00	312.00	3679.23	168.55	-187.20	176.34	0.00	
3800.00 3900.00	10.00 10.00	312.00 312.00	3777.72 3876.20	180.17 191.79	-200.10 -213.01	188.49 200.65	0.00	
4000.00	10.00	312.00	3974.68	203.41	-215.01	212.80	0.00	
4100.00	10.00	312.00	4073.16	215.03	-238.82	224.96	0.00	
4200.00	10.00	312.00	4171.64	226.65	-251.72	237.11	0.00	
4300.00	10.00	312.00	4270.12	238.27	-264.63	249.27	0.00	
4340.50	10.00	312.00	4310.00	242.97	-269.85	254.19	0.00	Base of Salt
4400.00	10.00	312.00	4368.60	249.89	-277.53	261.43	0.00	
4416.65	10.00	312.00	4385.00	251.82	-279.68	263.45	0.00	Delaware
4500.00	10.00	312.00	4467.08	261.51	-290.44	273.58	0.00	
4600.00	10.00	312.00	4565.56	273.13	-303.34	285.74	0.00	
4700.00 4800.00	10.00 10.00	312.00 312.00	4664.04 4762.52	284.75 296.37	-316.25 -329.15	297.89 310.05	0.00	
4900.00	10.00	312.00	4861.00	307.98	-329.15 -342.05	322.20	0.00	
5000.00	10.00	312.00	4959.48	319.60	-354.96	334.36	0.00	
5100.00	10.00	312.00	5057.97	331.22	-367.86	346.52	0.00	
5200.00	10.00	312.00	5156.45	342.84	-380.77	358.67	0.00	
5208.93	10.00	312.00	5165.24	343.88	-381.92	359.76	0.00	Drop to Vertical
5300.00	8.18	312.00	5255.16	353.51	-392.61	369.83	2.00	
5400.00	6.18	312.00	5354.37	361.87	-401.90	378.58	2.00	
5486.00	4.46	312.00	5440.00	367.20	-407.82	384.16	2.00	Cherry Canyon
5500.00	4.18	312.00	5453.96	367.91	-408.60	384.89	2.00	
5600.00	2.18	312.00	5553.80	371.62	-412.72	388.78	2.00	
5700.00	0.18	312.00	5653.78 5662.70	372.99	-414.25 414.26	390.22	2.00	Hold Vortical
5708.93 5800.00	0.00	312.00 359.75	5662.70 5753.78	373.00 373.00	-414.26 -414.26	390.22	2.00 0.00	Hold Vertical
5900.00	0.00	359.75 359.75	5753.78 5853.78	373.00 373.00	-414.26 -414.26	390.23 390.23	0.00	
6000.00	0.00	359.75	5953.78	373.00	-414.26 -414.26	390.23	0.00	
6100.00	0.00	359.75	6053.78	373.00	-414.26	390.23	0.00	
6200.00	0.00	359.75	6153.78	373.00	-414.26	390.23	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

		remitriai						Zone: 3001 - NW Last (NADOS)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6300.00	0.00	359.75	6253.78	373.00	-414.26	390.23	0.00	
6400.00	0.00	359.75	6353.78	373.00	-414.26	390.23	0.00	
6500.00	0.00	359.75	6453.78	373.00	-414.26	390.23	0.00	
6600.00	0.00	359.75	6553.78	373.00	-414.26	390.23	0.00	
6700.00	0.00	359.75	6653.78	373.00	-414.26	390.23	0.00	
6800.00	0.00	359.75	6753.78		-414.26	390.23	0.00	
				373.00				Develor Common
6836.22	0.00	359.75	6790.00	373.00	-414.26	390.23	0.00	Brushy Canyon
6900.00	0.00	359.75	6853.78	373.00	-414.26	390.23	0.00	
7000.00	0.00	359.75	6953.78	373.00	-414.26	390.23	0.00	
7100.00	0.00	359.75	7053.78	373.00	-414.26	390.23	0.00	
7200.00	0.00	359.75	7153.78	373.00	-414.26	390.23	0.00	
7300.00	0.00	359.75	7253.78	373.00	-414.26	390.23	0.00	
7400.00	0.00	359.75	7353.78	373.00	-414.26	390.23	0.00	
7500.00	0.00	359.75	7453.78	373.00	-414.26	390.23	0.00	
7600.00	0.00	359.75	7553.78	373.00	-414.26	390.23	0.00	
7700.00	0.00	359.75	7653.78	373.00	-414.26	390.23	0.00	
7800.00	0.00	359.75	7753.78	373.00	-414.26	390.23	0.00	
7900.00	0.00	359.75	7853.78	373.00	-414.26	390.23	0.00	
8000.00	0.00	359.75	7953.78	373.00	-414.26	390.23	0.00	
8100.00	0.00	359.75	8053.78	373.00	-414.26	390.23	0.00	
8200.00	0.00	359.75	8153.78	373.00	-414.26	390.23	0.00	
8300.00	0.00	359.75	8253.78	373.00	-414.26	390.23	0.00	
8400.00	0.00	359.75	8353.78	373.00	-414.26	390.23	0.00	
8406.22		359.75				390.23		Rono Spring 1st lime
8500.00	0.00	359.75	8360.00 8453.78	373.00 373.00	-414.26 -414.26	390.23	0.00	Bone Spring 1st lime
						390.23		
8600.00	0.00	359.75	8553.78	373.00	-414.26		0.00	
8700.00	0.00	359.75	8653.78	373.00	-414.26	390.23	0.00	
8800.00	0.00	359.75	8753.78	373.00	-414.26	390.23	0.00	
8900.00	0.00	359.75	8853.78	373.00	-414.26	390.23	0.00	
9000.00	0.00	359.75	8953.78	373.00	-414.26	390.23	0.00	
9100.00	0.00	359.75	9053.78	373.00	-414.26	390.23	0.00	
9194.22	0.00	359.75	9148.00	373.00	-414.26	390.23	0.00	Bone Spring 1st
9200.00	0.00	359.75	9153.78	373.00	-414.26	390.23	0.00	
9252.27	0.00	359.75	9206.04	373.00	-414.26	390.22	0.00	KOP
9300.00	4.77	359.75	9253.72	374.99	-414.27	392.21	10.00	
9400.00	14.77	359.75	9352.14	391.94	-414.35	409.15	10.00	
9500.00	24.77	359.75	9446.13	425.73	-414.49	442.91	10.00	
9600.00	34.77	359.75	9532.82	475.32	-414.71	492.47	10.00	
9700.00	44.77	359.75	9609.58	539.22	-414.99	556.32	10.00	
9800.00	54.77	359.75	9674.08	615.47	-415.32	632.52	10.00	
9801.60	54.93	359.75	9675.00	616.78	-415.33	633.82	10.00	Bone Spring 2nd lime / Point of Penetration
9900.00	64.77	359.75	9724.36	701.76	-415.70	718.75	10.00	bone Spring Zhu linie / Foint of Fenetiation
10000.00	74.77	359.75	9758.89	795.48	-416.11	812.40	10.00	
10100.00		359.75		893.76			10.00	
	84.77		9776.62		-416.54	910.61		Landing Daint
10150.82	89.86	359.75	9779.00	944.51	-416.76	961.32	10.00	Landing Point
10200.00	89.86	359.75	9779.12	993.69	-416.97	1010.47	0.00	
10300.00	89.86	359.75	9779.38	1093.69	-417.41	1110.39	0.00	
10400.00	89.86	359.75	9779.63	1193.69	-417.85	1210.32	0.00	
10500.00	89.86	359.75	9779.88	1293.68	-418.28	1310.25	0.00	
10600.00	89.86	359.75	9780.13	1393.68	-418.72	1410.18	0.00	
10700.00	89.86	359.75	9780.39	1493.68	-419.16	1510.10	0.00	
10800.00	89.86	359.75	9780.64	1593.68	-419.59	1610.03	0.00	
10900.00	89.86	359.75	9780.89	1693.68	-420.03	1709.96	0.00	
11000.00	89.86	359.75	9781.15	1793.68	-420.47	1809.89	0.00	
11100.00	89.86	359.75	9781.40	1893.68	-420.90	1909.81	0.00	
11200.00	89.86	359.75	9781.65	1993.68	-421.34	2009.74	0.00	
11300.00	89.86	359.75	9781.90	2093.67	-421.78	2109.67	0.00	
11400.00	89.86	359.75	9782.16	2193.67	-422.21	2209.60	0.00	
11500.00	89.86	359.75	9782.41	2293.67	-422.65	2309.52	0.00	
11600.00	89.86	359.75	9782.66	2393.67	-423.09	2409.45	0.00	
11700.00	89.86	359.75	9782.00	2493.67	-423.52	2509.38	0.00	
		359.75		2593.67				
11800.00	89.86		9783.17		-423.96 424.40	2609.30	0.00	
11900.00	89.86	359.75	9783.42	2693.67	-424.40	2709.23	0.00	
12000.00	89.86	359.75	9783.67	2793.67	-424.83	2809.16	0.00	
12100.00	89.86	359.75	9783.93	2893.66	-425.27	2909.09	0.00	
12200.00	89.86	359.75	9784.18	2993.66	-425.71	3009.01	0.00	
12300.00	89.86	359.75	9784.43	3093.66	-426.15	3108.94	0.00	
12400.00	89.86	359.75	9784.68	3193.66	-426.58	3208.87	0.00	
12500.00	89.86	359.75	9784.94	3293.66	-427.02	3308.80	0.00	
12600.00	89.86	359.75	9785.19	3393.66	-427.46	3408.72	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
12700.00	89.86	359.75	9785.44	3493.66	-427.89	3508.65	0.00	
12800.00	89.86	359.75	9785.69	3593.65	-428.33	3608.58	0.00	
12900.00 13000.00	89.86	359.75	9785.95 9786.20	3693.65 3793.65	-428.77	3708.51	0.00	
13100.00	89.86 89.86	359.75 359.75	9786.20	3893.65	-429.20 -429.64	3808.43 3908.36	0.00	
13200.00	89.86	359.75	9786.70	3993.65	-430.08	4008.29	0.00	
13300.00	89.86	359.75	9786.96	4093.65	-430.51	4108.22	0.00	
13400.00	89.86	359.75	9787.21	4193.65	-430.95	4208.14	0.00	
13500.00	89.86	359.75	9787.46	4293.65	-431.39	4308.07	0.00	
13600.00	89.86	359.75	9787.72	4393.64	-431.82	4408.00	0.00	
13700.00	89.86	359.75	9787.97	4493.64	-432.26	4507.93	0.00	
13800.00 13900.00	89.86	359.75	9788.22	4593.64 4693.64	-432.70	4607.85	0.00	
14000.00	89.86 89.86	359.75 359.75	9788.47 9788.73	4793.64	-433.14 -433.57	4707.78 4807.71	0.00	
14100.00	89.86	359.75	9788.98	4893.64	-433.37	4907.64	0.00	
14200.00	89.86	359.75	9789.23	4993.64	-434.45	5007.56	0.00	
14300.00	89.86	359.75	9789.48	5093.64	-434.88	5107.49	0.00	
14400.00	89.86	359.75	9789.74	5193.63	-435.32	5207.42	0.00	
14500.00	89.86	359.75	9789.99	5293.63	-435.76	5307.34	0.00	
14600.00	89.86	359.75	9790.24	5393.63	-436.19	5407.27	0.00	
14700.00	89.86	359.75	9790.49	5493.63	-436.63	5507.20	0.00	
14800.00	89.86	359.75	9790.75	5593.63	-437.07	5607.13	0.00	
14900.00	89.86	359.75	9791.00	5693.63	-437.50	5707.05	0.00	
15000.00 15100.00	89.86 89.86	359.75 359.75	9791.25 9791.51	5793.63 5893.63	-437.94 -438.38	5806.98 5906.91	0.00	
15200.00	89.86	359.75	9791.76	5993.62	-438.81	6006.84	0.00	
15300.00	89.86	359.75	9792.01	6093.62	-439.25	6106.76	0.00	
15400.00	89.86	359.75	9792.26	6193.62	-439.69	6206.69	0.00	
15500.00	89.86	359.75	9792.52	6293.62	-440.12	6306.62	0.00	
15600.00	89.86	359.75	9792.77	6393.62	-440.56	6406.55	0.00	
15700.00	89.86	359.75	9793.02	6493.62	-441.00	6506.47	0.00	
15800.00	89.86	359.75	9793.27	6593.62	-441.44	6606.40	0.00	
15900.00 16000.00	89.86 89.86	359.75 359.75	9793.53 9793.78	6693.62 6793.61	-441.87 -442.31	6706.33 6806.26	0.00	
16100.00	89.86	359.75	9794.03	6893.61	-442.75	6906.18	0.00	
16200.00	89.86	359.75	9794.28	6993.61	-443.18	7006.11	0.00	
16300.00	89.86	359.75	9794.54	7093.61	-443.62	7106.04	0.00	
16400.00	89.86	359.75	9794.79	7193.61	-444.06	7205.97	0.00	
16500.00	89.86	359.75	9795.04	7293.61	-444.49	7305.89	0.00	
16600.00	89.86	359.75	9795.30	7393.61	-444.93	7405.82	0.00	
16700.00	89.86	359.75	9795.55	7493.61	-445.37	7505.75	0.00	
16800.00 16900.00	89.86 89.86	359.75 359.75	9795.80 9796.05	7593.60 7693.60	-445.80 -446.24	7605.67 7705.60	0.00	
17000.00	89.86	359.75	9796.31	7793.60	-446.68	7805.53	0.00	
17100.00	89.86	359.75	9796.56	7893.60	-447.11	7905.46	0.00	
17200.00	89.86	359.75	9796.81	7993.60	-447.55	8005.38	0.00	
17300.00	89.86	359.75	9797.06	8093.60	-447.99	8105.31	0.00	
17400.00	89.86	359.75	9797.32	8193.60	-448.43	8205.24	0.00	
17500.00	89.86	359.75	9797.57	8293.60	-448.86	8305.17	0.00	
17600.00	89.86	359.75	9797.82	8393.59	-449.30	8405.09	0.00	
17700.00 17800.00	89.86 89.86	359.75 359.75	9798.07 9798.33	8493.59 8593.59	-449.74 -450.17	8505.02 8604.95	0.00	
17800.00	89.86	359.75 359.75	9798.33	8593.59 8693.59	-450.17 -450.61	8604.95 8704.88	0.00	
18000.00	89.86	359.75	9798.83	8793.59	-451.05	8804.80	0.00	
18100.00	89.86	359.75	9799.09	8893.59	-451.48	8904.73	0.00	
18200.00	89.86	359.75	9799.34	8993.59	-451.92	9004.66	0.00	
18300.00	89.86	359.75	9799.59	9093.58	-452.36	9104.59	0.00	
18400.00	89.86	359.75	9799.84	9193.58	-452.79	9204.51	0.00	
18500.00	89.86	359.75	9800.10	9293.58	-453.23	9304.44	0.00	
18600.00	89.86	359.75	9800.35	9393.58	-453.67	9404.37	0.00	
18700.00 18800.00	89.86 89.86	359.75 359.75	9800.60 9800.85	9493.58	-454.10 -454.54	9504.30 9604.22	0.00	
18900.00	89.86 89.86	359.75 359.75	9800.85	9593.58 9693.58	-454.54 -454.98	9604.22	0.00	
19000.00	89.86	359.75	9801.36	9793.58	-455.41	9804.08	0.00	
19100.00	89.86	359.75	9801.61	9893.57	-455.85	9904.01	0.00	
19200.00	89.86	359.75	9801.87	9993.57	-456.29	10003.93	0.00	
19300.00	89.86	359.75	9802.12	10093.57	-456.73	10103.86	0.00	
19400.00	89.86	359.75	9802.37	10193.57	-457.16	10203.79	0.00	
19500.00	89.86	359.75	9802.62	10293.57	-457.60	10303.71	0.00	
19600.00	89.86	359.75	9802.88	10393.57	-458.04	10403.64	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19700.00	89.86	359.75	9803.13	10493.57	-458.47	10503.57	0.00	
19800.00	89.86	359.75	9803.38	10593.57	-458.91	10603.50	0.00	
19900.00	89.86	359.75	9803.63	10693.56	-459.35	10703.42	0.00	
19970.02	89.86	359.75	9803.81	10763.58	-459.65	10773.39	0.00	exit
20000.00	89.86	359.75	9803.89	10793.56	-459.78	10803.35	0.00	
20050.02	89.86	359.75	9804.00	10843.58	-459.95	10853.33	0.00	BHL

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Cotton Draw Unit 632H

13 3/8	surf	ace csg in a	17 1/2	inch hole.		Design I	Factors -			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	54.50		j 55	btc	21.59	3.33	1.13	725	9	1.90	6.30	39,51
"B"				btc				0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	osig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	725				39,51
Comparison o		nimum Required Ceme										,- :
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cr
17 1/2	0.6946	534	769	504	53	9.00	1435	2M				1.56
	0.0010	00-7	700	004	00	0.00	1100					
10 3/4	casin	g inside the	13 3/8			Design I	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weig
"A"	45.50		j 55	btc sc	2.52	0.87	0.84	4,410	1	1.58	1.46	200,6
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	psig: 582				Totals:	4,410				200,6
		The cement v	olume(s) are inten	ded to achieve a top of	0	ft from su	rface or a	725				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min D
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
12 1/4	0.1882	395	1107	866	28	10.50	2265	3M				0.50
D V Tool(s):							sum of sx	Σ CuFt				Σ%exce
by stage % :		#VALUE!	#VALUE!				395	1107				28
class 'C' tail cm	nt yld > 1.35											
		./										
surst Frac Grac	dient(s) for Segmer	it(s): A, B, C, D = 0.81, b	, c, d All > 0.70, C	ıK.								
85/8	casin	g inside the	10 3/4			Design Fac	ctors			Int 2		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weig
"A"	32.00		p 110	mo-fxl	2.69	1	1.17	9,152	1	1.96	1.90	292,8
"B"								0				0
"C"								0				0
"D"								0				0
D	w/8.4#/	g mud, 30min Sfc Csg Test	osig: 381				Totals:	9,152				292,8
n				ded to achieve a top of	3910	ft from su	rface or a	500				overlap.
"ט"					1 Stage	Drilling	Calc	Reg'd				Min D
Hole	Annular		1 Stage	Min	i Staue							
Hole		1 Stage	1 Stage CuFt Cmt		•	-		BOPE				Hole-C
Hole Size	Annular Volume	1 Stage Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
Hole	Annular Volume 0.1261	1 Stage Cmt Sx 69	CuFt Cmt 99		•	-	MASP 3191	BOPE 5M				0.63
Hole Size 9 7/8	Annular Volume 0.1261	1 Stage Cmt Sx	CuFt Cmt 99	Cu Ft	% Excess	Mud Wt	MASP	BOPE				

Tail cmt												
5 1/2	cas	sing inside the	8 5/8			Design I	actors			Prod 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00		p 110	cdc-htq	3.27	2.28	2.36	20,050	2	3.96	3.82	401,000
"B"								0				0
	w/8.	4#/g mud, 30min Sfc Csg Test psi	ig: 2,157				Totals:	20,050				401,000
!		The cement vol	ume(s) are inten	ded to achieve a top of	8652	ft from su	rface or a	500				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
7 7/8	0.1733	1546	2440	1977	23	10.50						0.79
Class 'H' tail cr	mt yld > 1.20		Capitan Reef e	st top XXXX.								
1												

Carlsbad Field Office 11/13/2024

Cotton Draw Unit 632H

13 3/8	surfa	ace csg in a	17 1/2	inch hole.		Design F	actors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50		j 55	btc	21.59	3.33	1.13	725	9	1.90	6.30	39,513
"B"				btc				0				0
	w/8.4#/g	mud, 30min Sfc Csg Tes	t psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	725				39,513
Comparison of	Proposed to Min	imum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	534	769	504	53	9.00	1435	2M				1.56
9 5/8		g inside the	13 3/8			Design F				Int 1		

9 5/8	casi	ng inside the	13 3/8			Design	Factors -			Int 1	,	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	3.57	1.07	0.92	4,410	2	1.74	1.79	176,400
"B"								0				0
	w/8.4#	/g mud, 30min Sfc Csg Test	t psig: 841				Totals:	4,410				176,400
		The cement	volume(s) are intende	ed to achieve a top of	0	ft from su	ırface or a	725				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	634	1791	1417	26	10.50	2265	3M				0.81
D V Tool(s):							sum of sx	Σ CuFt				Σ%excess
by stage %:		#VALUE!	#VALUE!				634	1791				26
Class 'C' tail cm	yld > 1.35											
Duret Free Cred	iont/s) for Comm	m#/s\. A B C D = 0.0 h	. c. d All > 0.70. OK.									
Burst Frac Grau	lent(s) for Segme	ent(s): A, B, C, D = 0.9, b	, c, u All > 0.70, OK.									

7 5/8	casin	g inside the	9 5/8			Design Fa	ctors			Int 2		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70	р	110	talon sfc	3.37	1.7	2.01	9,152	3	3.37	3.20	271,814
"B"								0				0
"C"								0				0
"D"								0				0
	w/8.4#/ ₈	g mud, 30min Sfc Csg Test psig:	2,013				Totals:	9,152				271,814
		The cement volur	ne(s) are intend	led to achieve a top of	3910	ft from su	rface or a	500				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
8 3/4	0.1005	53	76	531	-86	9.00	3191	5M				0.43
	Setti	ing Depths for D V Tool(s):	8360				sum of sx	Σ CuFt				<u>Σ%excess</u>
% exces	ss cmt by stage:		-1				363	523				-2
Class 'C' tail cm	nt yld > 1.35											

Tail cmt												
5 1/2	casi	ing inside the	7 5/8	_		Design I	Factors			Prod 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00		p 110	talon rd	3.72	2.46	2.69	20,050	3	4.50	4.12	401,000
"B"								0				0
	w/8.4#	#/g mud, 30min Sfc Csg Test ps	sig: 2,157				Totals:	20,050				401,000
!		The cement vo	lume(s) are intend	led to achieve a top of	8652	ft from su	rface or a	500				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
6 3/4	0.0835	751	1195	954	25	10.50						0.43
Class 'H' tail cm	t yld > 1.20		Capitan Reef es	t top XXXX.								
<u> </u>												

Carlsbad Field Office 11/13/2024

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 404313

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	404313
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing.	11/22/2024
ward.rikala	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	11/22/2024
ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	11/22/2024