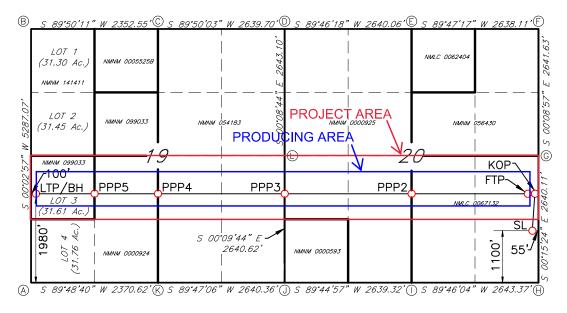
Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMLC067132 **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: Oil Well 1b. Type of Well: Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone PRETTY BIRD 20/19 FED COM 616H 2. Name of Operator 9. API Well No. 30-015**-5**5923 MEWBOURNE OIL COMPANY 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory PALMILLO EAST/BONE SPRING P O BOX 5270, HOBBS, NM 88241 (575) 393-5905 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 20/T18S/R29E/NMP At surface SESE / 1100 FSL / 55 FEL / LAT 32.7287299 / LONG -104.0885192 At proposed prod. zone NWSW / 1980 FSL / 100 FWL / LAT 32.7311 / LONG -104.121454 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State **EDDY** NM 10 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 210 feet location to nearest property or lease line, ft. 640.0 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 330 feet 8299 feet / 18495 feet FED: NM1693 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3511 feet 10/16/2021 60 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the Name (Printed/Typed) Date 25. Signature BRADLEY BISHOP / Ph: (575) 393-5905 09/03/2024 (Electronic Submission) Title Regulatory Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 12/11/2024 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the

applicant to conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.


<u>C-102</u>	_		Ene			al Resources Dep	July 9, 2024						
	Electronica CD Permittir			OIL	CONSERVAT	ΓΙΟΝ DIVISION	I		✓ Initial Submit				
7	/D 1 5	15					Submittal Submittal						
								Type:	☐ As Drilled				
					WELL LOCAT	ΓΙΟΝ INFORMATIC)N						
API Nu:	mber 80-015-5	55923	Pool Code	49	9553	Pool Name PAI	LMILLO; E	BONE S	SPRING, EAS'	Γ			
Property	x Code 336608		Property Na	ame P	RETTY BIF	RD 20/19 FE	ED COM		Vell Number	616H			
OGRID	No.	14744	Operator Na	ame	MEWBOUR	NE OIL COM	PANY	G	Fround Level Elevation	3511'			
Surface	Owner:	State ☑ Fee □	☐Tribal ☐ F	ederal		Mineral Owner:	☐ State ☐ Fee	☐ Tribal 🗹	Federal				
					Surf	ace Location							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	I	ongitude	County			
P	20	18S	29E		1100 FSL	55 FEL	32.72873	30°N 1	04.088519°W	EDDY			
	-		-	-		Hole Location		-					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	I	ongitude	County			
L	19	18S	29E	3	1980 FSL	100 FWL	32.73110)0°N 1	04.121454°W	EDDY			
	ed Acres	Infill or Defin		Defining	g Well API	Overlapping Spacing Unit (Y/N) Consolidation Code							
Order N	lumbers.	1				Well setbacks ar	e under Common	Ownership:	: 🗆 Yes 🗆 No				
					Kick C	Off Point (KOP)							
UL Section Township Range Lot Ft. from N/S						Ft. from E/W	Latitude	Lo	ongitude	County			
I	20	18S	29E		1980 FSL	L 10 FEL	32.73114	- 1	04.088379°W	EDDY			
					First Ta	ake Point (FTP)							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Lo	ongitude	County			
I	20	18S	29E		1980 FSL	L 100 FEL	32.73114	18°N 1	04.088672°W	EDDY			
			<u>-</u>			ake Point (LTP)							
		Township	Range	Lot	Ft. from N/S		Latitude	I	ongitude	County			
L	19	18S	29E	3	1980 FSL	100 FWL	32.73110)0°N 1	104.121454°W EDD				
Unitized	d Area or Aı	rea of Uniform	Interest	Spacing	Unit Type ☑ Hor	rizontal 🗌 Vertical	Groun	nd Floor Ele	evation: or o				
									353	·9·			
OPER A	ATOR CER	TIFICATIONS	<u> </u>			SURVEYOR CERTIFICATIONS							
					plete to the best of	I hereby certify that the well location shown on this plat was plotted from field notes of actual							
		ef, and , if the wel. ns a working inter				surveys made by me under my supervision, and that he same is true and correct to the best of							
including	g the proposed	bottom hole locat	tion or has a rigi	ht to drill thi			10/4	W METIC					
interest,		ary pooling agreen			g order heretofore	10000							
	•	tal well, I further o	certify that this o	organization	has received the		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<i>[5]</i>				
consent of in each tr	of at least one i ract (in the tar	lessee or owner oj	f a working inter tìon) in which ar	rest or unleas ny part of the	sed mineral interest e well's completed	PROTITIONAL SURVEY							
Ana	<u>lrew (</u>	VTaylo	72 <u> </u>	8/2	<u> 29/2024</u>	<u> </u>		SIAME					
Signature	Irow T	ovlor	Date			Signature and Seal of Pro	fessional Surveyor	+					
Printed Na	Irew T	ayıu				Certificate Number	Date of Surve	ey					
atav	lor@m	ewbourr	ne com			10000		0.4	/40 /0004				
Email Add	trace	CVVDOGII	10.00111			19680		04,	/18/2024				

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

PRETTY BIRD 20/19 FED COM #616H

NAD 83 GRID - NM EAST

SURFACE LOCATION (SL)
N: 628930.4 - E: 616620.7
LAT: 32.728730* N
LONG: 104.088519* W

KICK OFF POINT (KOP) 1980' FSL & 10' FEL (SEC.20) N: 629810.4 - E: 616661.8 LAT: 32.731148' N LON: 104.088379' W

FIRST TAKE POINT (FTP) 1980' FSL & 100' FEL (SEC.20) N: 629810.0 - E: 616571.8 LAT: 32.731148' N LON: 104.088672' W

PROPOSED PENETRATION POINT 2 (PPP2)

1980' FSL & 2640' FWL (SEC.20)

N: 629800.1 - E: 614032.9

LAT: 32.731136' N

LON: 104.096928' W

PROPOSED PENETRATION POINT 3 (PPP3)

1982' FSL & 0' FWL (SEC.20)

N: 629789.9 - E: 611393.7

LAT: 32.731124' N

LON: 104.105511' W

PROPOSED PENETRATION POINT 4 (PPP4)

1981' FSL & 2364' FWL (SEC.19)

N: 629779.6 - E: 608754.5

LAT: 32.731111' N

LON: 104.114093' W

PROPOSED PENETRATION POINT 5 (PPP5)

1981' FSL & 1044' FWL (SEC.19)

N: 629774.4 - E: 607434.9

LAT: 32.731104' N

LON: 104.118385' W

LAST TAKE POINT (LTP)/BOTTOM HOLE (BH) N: 629770.8 - E: 606491.3 LAT: 32.731100* N LON: 104.121454* W CORNER DATA
NAD 83 GRID - NM EAST

A: FOUND BRASS CAP "1916" N 627790.9 - E 606389.6

B: FOUND BRASS CAP "1916" N 633076.7 - E 606394.1

C: FOUND BRASS CAP "1916" N 633083.4 - E 608746.1

D: FOUND BRASS CAP "1916" N 633091.0 - E 611385.1

E: FOUND BRASS CAP "1916' N 633101.6 - E 614024.5

F: FOUND BRASS CAP "1916" N 633111.3 - E 616661.9

G: FOUND BRASS CAP "1916" N 630470.3 - E 616668.8

H: FOUND BRASS CAP "1916" N 627830.9 - E 616680.7

I: FOUND BRASS CAP "1916" N 627820.2- E 614038.0

J: FOUND BRASS CAP "1916" N 627808.7 - E 611399.3

K: FOUND BRASS CAP "1916" N 627798.7 - E 608759.6

L: FOUND BRASS CAP "1916" N 630448.6 - E 611391.8

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Mewbourne Oil Company OGRID: 14744 Date: 08 / 21 / 2024														
II. Type: ☐ Original ☐ Amendment due to ☐ 19.15.27.9.D(6)(a) NMAC ☐ 19.15.27.9.D(6)(b) NMAC ☐ Other.														
If Other, please describe:														
III. Well(s): Provide the be recompleted from a sir					wells proposed to	be drilled or proposed t								
Well Name API ULSTR Footages Anticipated Oil BBL/D Gas MCF/D Produced Water BBL/D														
Pretty Bird 20/19 Fed Com 616H		20, 18S, 29E	1080 FSL & 55 FE	1500	2000	3000								
				Y1: 300; Y2: 200; Y3:100	Y1: 400; Y2: 250; Y3: 150	Y1: 600; Y2 400; Y3; 200								
IV. Central Delivery Point Name:Pretty Bird 20/19 Fed Com #616H [See 19.15.27.9(D)(1) NMAC] V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point. Well Name														
			Date	Commencement										
Pretty Bird 20/19 Fed Com #616H		12/21/2024	01/21/2025	02/21/2025	03/05	/2025 03/10/2025								
VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.														

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system	□ will □ will 1	not have capacity t	o gather 10	0% of the antici	pated natu	ıral gas
production volume from the well	prior to the date of firs	t production.					

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

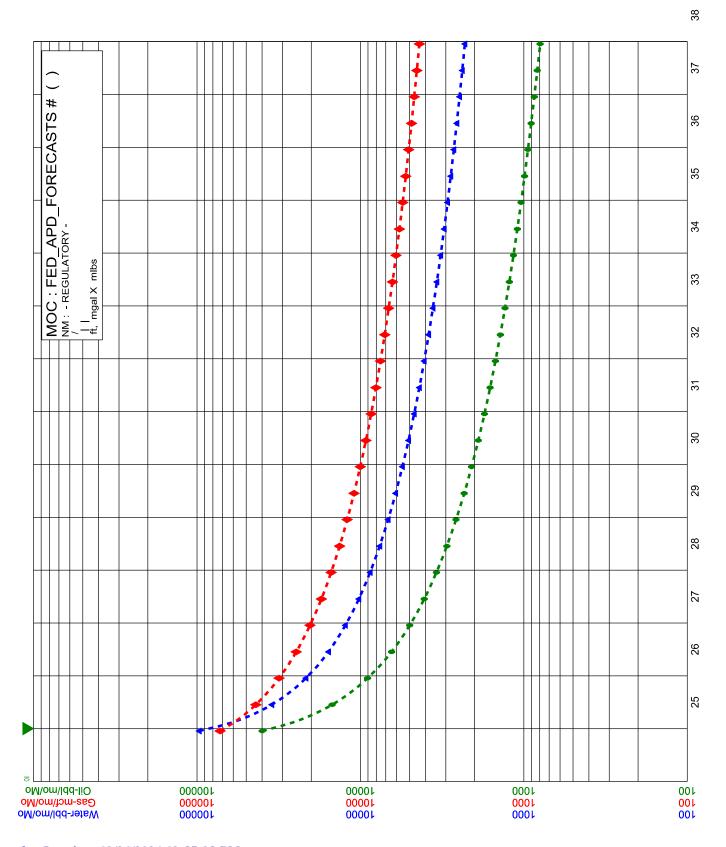
Attach Operator's plan to manage production in response to the increased line pressur		
	sonce to the inc	e to the increased line pressure

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information pro	vided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific info	ormation
for which confidentiality is asserted and the basis for such assertion.	

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🖾 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; (b) (c) compression on lease; (d) liquids removal on lease;


- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Bradley Bishop
Printed Name: BRADLEY BISHOP
Title: REGULATORY MANAGER
E-mail Address: BBISHOP@MEWBOURNE.COM
Date: 08/21/2024
Phone: 575-393-5905
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400100651 **Submission Date**: 09/03/2024

Operator Name: MEWBOURNE OIL COMPANY

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14664115	UNKNOWN	3511	28	28	OTHER : Topsoil	NONE	N
14664126	TOP SALT	3191	320	320	SALT	NONE	N
14664127	BASE OF SALT	2636	875	875	SALT	NONE	N
14664119	YATES	2506	1005	1005	SANDSTONE	NATURAL GAS, OIL	N
14664128	SEVEN RIVERS	2161	1350	1350	DOLOMITE	NATURAL GAS, OIL	N
14664120	QUEEN	1501	2010	2010	DOLOMITE	NATURAL GAS, OIL	N
14664121	GRAYBURG	1141	2370	2370	DOLOMITE, SANDSTONE	NATURAL GAS, OIL	N
14664129	SAN ANDRES	681	2830	2830	LIMESTONE	NATURAL GAS, OIL	N
14664123	BONE SPRING	-349	3860	3860	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
14664124	BONE SPRING 1ST	-3119	6630	6630	SANDSTONE	NATURAL GAS, OIL	N
14664125	BONE SPRING 2ND	-3759	7270	7270	SANDSTONE	NATURAL GAS, OIL	N
14664114	BONE SPRING 3RD	-4829	8340	8340	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 18495

Equipment: Annular Pipe Rams Blind Rams Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart. Anchors are not required by manufacturer. A variance is requested to use a multi-bowl wellhead. A variance is requested to perform break testing according to the attached procedure. If a break testing variance is approved & incorporated, API Std 53 will

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

be incorporated & testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater, will be performed.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

Pretty_Bird_20_19_Fed_Com_616H_3M_BOPE_Choke_Diagram_20240827110125.pdf
Pretty_Bird_20_19_Fed_Com_616H_Flex_Line_Specs_API_16C_20240827110125.pdf

BOP Diagram Attachment:

Pretty_Bird_20_19_Fed_Com_616H_3M_BOPE_Schematic_20240827110143.pdf

Mewbourne_Break_Testing_Variance_20240827110143.pdf

Pretty_Bird_20_19_Fed_Com_616H_5M_Multi_Bowl_WH_20240827110143.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	275	0	275	3511	3236	275	H-40	48	ST&C	6.26	14.0 7	DRY	24.3 9	DRY	40.9 8
2		12 . 2 5	9.625	NEW	API	N	0	1050	0	1050		2461	1050	J-55	36	LT&C	3.63	6.32	DRY	11.9 8	DRY	14.9 2
3	PRODUCTI ON	8.75	7.0	NEW	API	N	0	7995	0	7936		-4425	7995	P- 110	26	LT&C	1.56	2.49	DRY	3.33	DRY	3.99
4		6.12 5	4.5	NEW	API	N	7795	18495	7736	8509	-4221	-4998	10700	P- 110	13.5	LT&C	2.41	2.8	DRY	2.34	DRY	2.92

Casing Attachments

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Casing	Attach	nments
--------	--------	--------

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pretty_Bird_20_19_Fed_Com_616H_CsgAssumptions_20240830153645.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pretty_Bird_20_19_Fed_Com_616H_CsgAssumptions_20240830153702.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pretty_Bird_20_19_Fed_Com_616H_CsgAssumptions_20240830153654.pdf

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Casing Attachments

Casing ID: 4

String

LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pretty_Bird_20_19_Fed_Com_616H_CsgAssumptions_20240830153710.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	90	60	2.12	12.5	130	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail	0	90	275	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	377	70	2.12	12.5	150	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail		377	1050	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead		850	5482	410	2.12	12.5	870	25	Class C	Salt, Gel, Extender, LCM, Defoamer
PRODUCTION	Tail		5482	7995	400	1.18	15.6	472	25	Class H	Retarder, Fluid loss, defoamer
LINER	Lead		7795	1849 5	680	1.85	13.5	1260	25	Class C	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-settling Agent

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material, sweeps, mud scavengers

Describe the mud monitoring system utilized: Pason/PVT/visual monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	275	SPUD MUD	8.4	8.8)					
275	1050	SALT SATURATED	9.5	10.2	1						
1050	7995	WATER-BASED MUD	8.6	9.7							
7995	1849 5	OIL-BASED MUD	8.6	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Ran GR/CNL in offset Pretty Bird 20/19 Fed Com #618H (30-015-53748)

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGIC LITHOLOGY LOG,

Coring operation description for the well:

None

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4425 Anticipated Surface Pressure: 2562

Anticipated Bottom Hole Temperature(F): 140

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

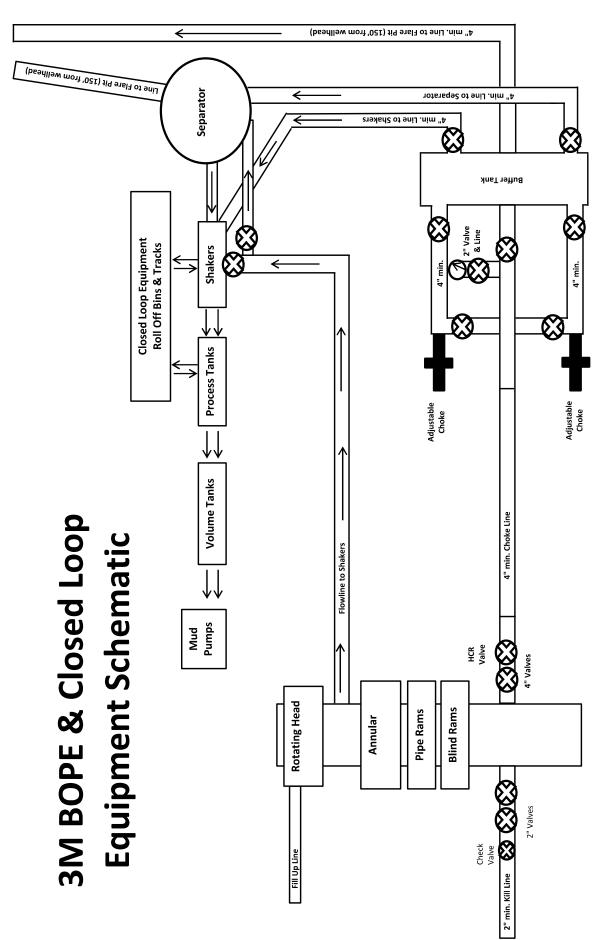
Hydrogen sulfide drilling operations

Pretty_Bird_20_19_Fed_Com_616H_H2S_Plan_20240827110716.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Pretty_Bird_20_19_Fed_Com_616H_Dir_Plan_20240827110920.pdf Pretty_Bird_20_19_Fed_Com_616H_Dir_Plot_20240827110921.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:

Pretty_Bird_20_19_Fed_Com_616H_NGMP_20240827111031.pdf EDDYBS2.0_20240827111408.pdf Pretty_Bird_20_19_Fed_Com_616H_Drlg_Program_20240830153802.pdf

Other Variance attachment:

Mewbourne_Offline_Cementing_Variance_20240822150432.pdf

Drawing not to scale

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

HYDROSTATIC TESTING REPORT

LTYY/QR-5.7.1-28

№: 230826015

Product Name	Cho	ke And Kill Hose		Standard	AP)	Spec 16C 3 rd edition	
Product Specification	n 3″×1000	0psi×60ft(18.29m) S	Serial Num	ber	7660144	
Inspection Equipme	nt MTU	J-BS-1600-3200-E		Test mediu	ım	Water	
Inspection Departme	nt (Q.C. Department	Ir	nspection [Date	2023.08.26	
	*	Rate of le	ngth change		•		
Standard requirement	ts At working pr	essure, the rate of le	ngth change sh	ould not m	ore than ±29	6	
Testing result	10000psi (69.0	MPa) ,Rate of lengt	th change 0.7%	ś			
		Hydrosta	tic testing				
Standard requirements At 1.5 times working pressure, the initial pressure-holding period of not less than three not the second pressure-holding period of not less than one hour, no leaks.							
Testing result	15000psi (103	.5MPa), 3 min for th	ne first time, 60	min for th	ne second time	, no leakage	
raph of pressure test	ing:					West 5	
	M21 715627 715627 715627 715			23-07-58 23-55-5		002958 003958 00	
Conclusion	The inspec	eted items meet stand	dard requireme	ents of API	Spec 16C 3 rd e	edition	

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

CERTIFICATE OF QUALITY

LTYY/QR-5.7.1-19B

№: LT2023-126-002

Customer Name	A	Austin Hose							
Product Name	Chok	Choke And Kill Hose							
Product Specification	3"×10000psi×60ft (18.29m)	Quantity	2PCS						
Serial Number	7660143~7660144	FSL	FSL3						
Temperature Range	-29℃~+121℃	Standard	API Spec 16C 3 rd edition						
Inspection Department	Q.C. Department	Inspection date	2023.08.26						

	Inspectio	n Items	3			Inspection result	s		
	Appearance C	Checking	g		In accordance with API Spec 16C 3 rd edition				
	Size and Le	engths			In accordance with API Spec 16C 3 rd edition				
D	Dimensions and Tolerances					In accordance with API Spec 16C 3 rd edition			
End Connections: 4-1	/16"×10000psi In	ntegral fla	ange for sour gas ser	vice	In accordance with API Spec 6A 21st edition				
End Connections: 4-1	/16"×10000psi In	ntegral fla	ange for sour gas ser	vice	In accorda	nce with API Spec	17D 3 rd edition		
	Hydrostatic 7	Testing			In accordance with API Spec 16C 3 rd edition				
	product Ma	arking			In accordance with API Spec 16C 3 rd edition				
Inspection cor	nclusion		The inspected ite	ms m	eet standard require	ments of API Spec	16C 3 rd edition		
Remark	s								
Approver	Jian long C	iken	Auditor	1/1	liging Dong	Inspector	Zhansheng Wang		

LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD

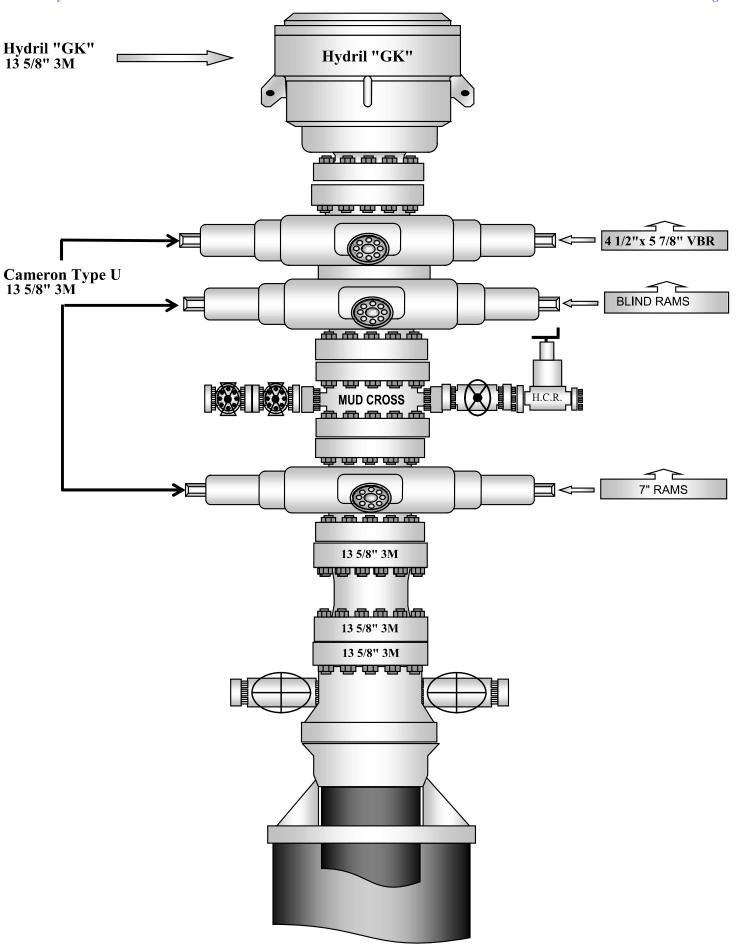
CERTIFICATE OF CONFORMANCE

№:LT230826016

Product Name: Choke And Kill Hose

Product Specification: 3"×10000psi×60ft (18.29m)

Serial Number: 7660143~7660144


End Connections: 4-1/16"×10000psi Integral flange for sour gas service

The Choke And Kill Hose assembly was produced by LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD. in Aug 2023, and inspected by LUOHE LETONE HYDRAULICS TECHNOLOGY CO.,LTD. according to API Spec 16C 3rd edition on Aug 26, 2023. The overall condition is good. This is to certify that the Choke And Kill Hose complies with all current standards and specifications for API Spec 16C 3rd edition.

Jian long Chen

QC Manager:

Date: Aug 26, 2023

Mewbourne Oil Co.

BOP Break Testing Variance

Mewbourne Oil Company requests a variance from the minimum standards for well control equipment testing of 43 CFR 3172 to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with batch drilling & offline cementing operations. Modern rig upgrades which facilitate pad drilling allow the BOP stack to be moved between wells on a multi-well pad without breaking any BOP stack components apart. Widespread use of these technologies has led to break testing BOPE being endorsed as safe and reliable. American Petroleum Institute (API) best practices are frequently used by regulators to develop their regulations. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (5th Ed., Dec. 2018) Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component."

Procedures

- 1. Full BOPE test at first installation on the pad.
 - Full BOPE test at least every 21 days.
 - Function test BOP elements per 43 CFR 3172.
 - Contact the BLM if a well control event occurs.
- After the well section is secured and the well is confirmed to be static, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad. Two breaks on the BOPE will be made (Fig. 1).
 - Connection between the flex line and the HCR valve
 - Connection between the wellhead and the BOP quick connect (Fig. 5 & 6).
- 3. A capping flange will be installed after cementing per wellhead vendor procedure & casing pressure will be monitored via wellhead valve.
- 4. The BOP will be removed and carried by a hydraulic carrier (Fig. 3 & 4).
- 5. The rig will then walk to the next well.
- 6. Confirm that the well is static and remove the capping flange.
- 7. The connection between the flex line and HCR valve and the connection between the wellhead and the BOP quick connect will be reconnected.
- 8. Install a test plug into the wellhead.
- 9. A test will then be conducted against the upper pipe rams and choke, testing both breaks (Fig. 1 & 2).
- 10. The test will be held at 250 psi low and to the high value submitted in the APD, not to exceed 5000 psi.
- 11. The annular, blind rams and lower pipe rams will then be function tested.
- 12. If a pad consists of three or more wells, steps 4 through 11 will be repeated.

13. A break test will only be conducted if the intermediate section can be drilled and cased within 21 days of the last full BOPE test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool and/or cement head
- Capping flange after cementing

Summary

A variance is requested to only test broken pressure seals on the BOPE when moving between wells on a multi-well pad if the following conditions are met:

- A full BOPE test is conducted on the first well on the pad. API Standard 53 requires testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater.
- If the first well on the pad is not the well with the deepest intermediate section, a full BOPE test will also be performed when moving to a deeper well.
- The hole section being drilled has a MASP under 5000 psi.
- If a well control event occurs, Mewbourne will contact BLM for permission to continue break testing.
- If significant (>50%) losses occur, full BOPE testing will be required going forward.
- Full BOPE test will be required prior to drilling the production hole.

While walking the rig, the BOP stack will be secured via hydraulic winch or hydraulic carrier. A full BOPE test will be performed at least every 21 days.

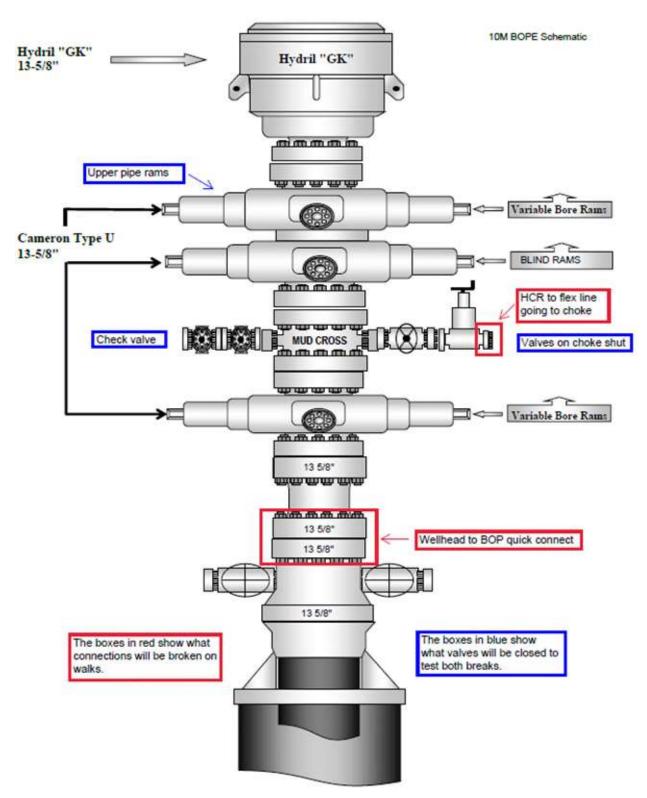


Figure 1. BOP diagram

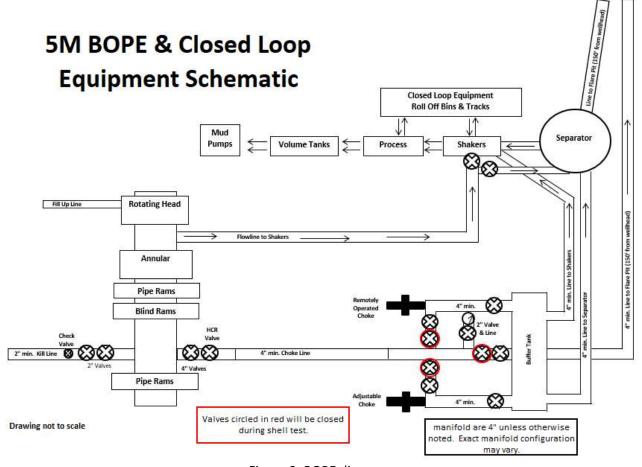


Figure 2. BOPE diagram

Figure 3. BOP handling system

Figure 4. BOP handling system

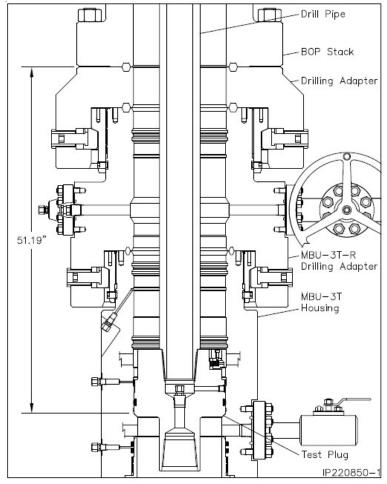
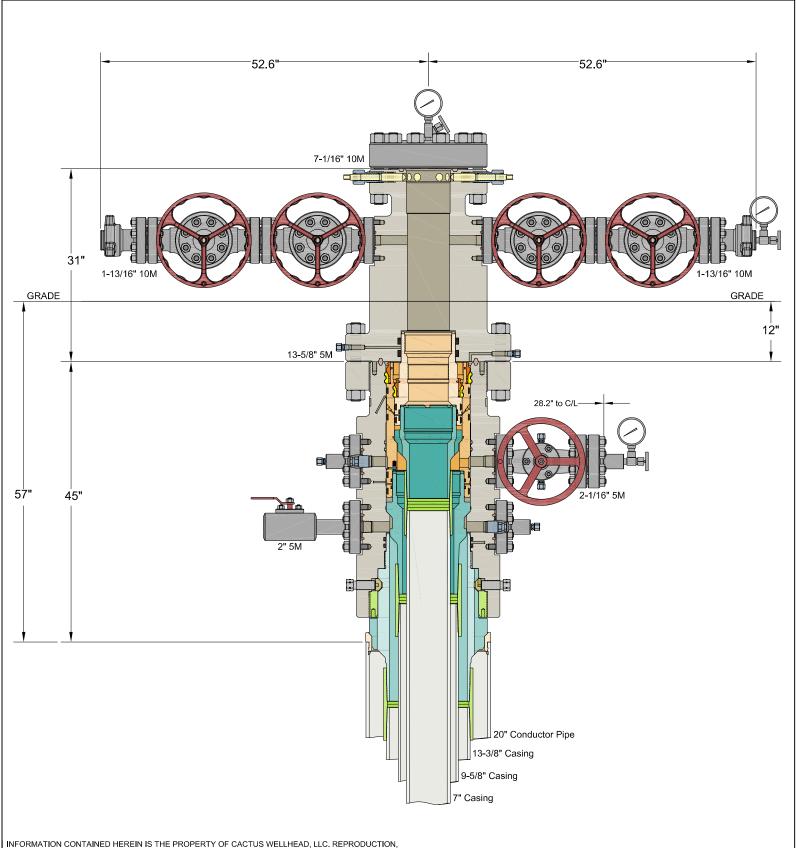



Figure 5. Cactus 5M wellhead with BOP quick connect

Figure 6. Vault 5M wellhead with BOP quick connect

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

CACTUS WELLHEAD LLC

20" x 13-3/8" x 9-5/8" x 7" MBU-3T-CFL-R-DBLO Wellhead System With 9-5/8" & 7" Fluted Mandrel Casing Hangers And 13-5/8" 5M x 7-1/16" 10M CTH-DBLHPS Tubing Head

ALL DIMENSIONS APPROXIMATE MEWBOURNE OIL COMPANY

DRAWN DLE 18APR22
APPRV

NEW MEXICO

DRAWING NO. HBE0000660

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

		Casing Prog	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	7995'	7936'	7" 26# P110 LTC	1.56	2.49	3.33	3.99
Liner	6.125"	7795'	7736'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.34	2.92

Cement Program

- comence rogemin								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9.625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.023 111	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	410	12.5	2.12	850' - 5482'	870	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
7 111	TAIL	400	15.6	1.18	5482' - 7995'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	680	13.5	1.85	7795' - 18495'	1260	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 7995'	8.6 - 9.7	Cut-Brine
7995' - 18495'	8.6 - 10.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing?	1
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
is well located in critical Cave/Karst?	N
If ves, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

		Casing Prog	ram Design B			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	8908'	8509'	7" 26# P110 LTC	1.45	2.32	2.99	3.58
Liner	6.125"	7995'	7936'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.38	2.98

Design B - Cement Program

- tangin - comment to ag								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9.625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	377' - 1050'	268	23%	Class C: Retarder
7 in	LEAD	490	12.5	2.12	850' - 6393'	1040	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	6393' - 8908'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	670	13.5	1.85	7995' - 18495'	1240	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 8908'	8.6 - 9.7	Cut-Brine
8908' - 18495'	8.6 - 10.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.	Y						
Is premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above easing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, easing design criteria).							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the easing?	Y						
Is well located within Capitan Reef?	N						
If yes, does production casing cement tie back a minimum of 50' above the Reef?							
Is well within the designated 4 string boundary.	N						
Is well located in SOPA but not in R-111-Q?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-Q and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2^{nd} string set 100' to 600' below the base of salt?							
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.							
Is an engineered weak point used to satisfy R-111-Q?							
If yes, at what depth is the weak point planned?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?							
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

		Casing Prog	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	7995'	7936'	7" 26# P110 LTC	1.56	2.49	3.33	3.99
Liner	6.125"	7795'	7736'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.34	2.92

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.575 III	TAIL	200	14.8	1.34	90' - 275'	268	10076	Class C: Retarder
9,625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	410	12.5	2.12	850' - 5482'	870	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
7 III	TAIL	400	15.6	1.18	5482' - 7995'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	680	13.5	1.85	7795' - 18495'	1260	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 7995'	8.6 - 9.7	Cut-Brine
7995' - 18495'	8.6 - 10.	OBM

Geolog

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N							
Is casing new? If used, attach certification as required in Onshore Order #1	Y							
Is casing API approved? If no, attach casing specification sheet.	Y							
s premium or uncommon casing planned? If yes attach casing specification sheet.								
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y							
Is well located within Capitan Reef?	N							
If yes, does production casing cement tie back a minimum of 50' above the Reef?								
Is well within the designated 4 string boundary.	N							
Is well located in SOPA but not in R-111-Q?	N							
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	1							
Is well located in R-111-Q and SOPA?	N							
If yes, are the first three strings cemented to surface?								
Is 2 nd string set 100' to 600' below the base of salt?								
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.								
Is an engineered weak point used to satisfy R-111-Q?								
If yes, at what depth is the weak point planned?								
Land United in Fish Conf. (Conf.)								
Is well located in high Cave/Karst?	N							
If yes, are there two strings cemented to surface?								
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?								
is well located in critical Cave/Karst?	N							
If ves, are there three strings cemented to surface?								

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

		Casing Prog	ram Design B			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	8908'	8509'	7" 26# P110 LTC	1.45	2.32	2.99	3.58
Liner	6.125"	7995'	7936'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.38	2.98

Design B - Cement Program

- tangar - common rough								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	90' - 275'	268	10076	Class C: Retarder
9,625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	490	12.5	2.12	850' - 6393'	1040	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	6393' - 8908'	472	2376	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	670	13.5	1.85	7995' - 18495'	1240	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 8908'	8.6 - 9.7	Cut-Brine
8908' - 18495'	8.6 - 10.	OBM

Geology

Formation	ormation Est. Top (TVD) Mineral Resource		Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2^{nd} string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

Casing Program Design A					BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet	
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	7995'	7936'	7" 26# P110 LTC	1.56	2.49	3.33	3.99
Liner	6.125"	7795'	7736'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.34	2.92

Cement Program

- comence rogemin								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9.625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.023 111	TAIL	200	14.8	1.34	377' - 1050'	268	2376	Class C: Retarder
7 in	LEAD	410	12.5	2.12	850' - 5482'	870	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
7 111	TAIL	400	15.6	1.18	5482' - 7995'	472	2376	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	680	13.5	1.85	7795' - 18495'	1260	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 7995'	8.6 - 9.7	Cut-Brine
7995' - 18495'	8.6 - 10.	OBM

Geolog

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler	-2 2 (- 2 - 7		Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

Casing Program Design B					BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet	
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	8908'	8509'	7" 26# P110 LTC	1.45	2.32	2.99	3.58
Liner	6.125"	7995'	7936'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.38	2.98

Design B - Cement Program

- tongo - comment rogin								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9.625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.025 III	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	490	12.5	2.12	850' - 6393'	1040	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	6393' - 8908'	472	2376	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	670	13.5	1.85	7995' - 18495'	1240	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 8908'	8.6 - 9.7	Cut-Brine
8908' - 18495'	8.6 - 10.	OBM

Geology

Geology				Est. Top (TVD)	
Formation	Est. Top (TVD)	Mineral Resources	l Resources Formation		Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is easing new? If used, attach certification as required in Onshore Order #1	Y
Is easing API approved? If no, attach easing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the easing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

Casing Program Design A						BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	7995'	7936'	7" 26# P110 LTC	1.56	2.49	3.33	3.99
Liner	6.125"	7795'	7736'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.34	2.92

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13,375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.575 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9,625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	410	12.5	2.12	850' - 5482'	870	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
7 111	TAIL	400	15.6	1.18	5482' - 7995'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	680	13.5	1.85	7795' - 18495'	1260	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design A - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 7995'	8.6 - 9.7	Cut-Brine
7995' - 18495'	8.6 - 10.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach easing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Lord House desirble Certine Deep	
Is well located within Capitan Reef? If yes, does production easing cement tie back a minimum of 50' above the Reef?	N
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
	N
If yes, are there two strings comented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

	Casing Program Design B						1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	275'	275'	13.375" 48# H40 STC	6.26	14.07	24.39	40.98
Int	12.25"	0'	0'	1050'	1050'	9.625" 36# J55 LTC	3.63	6.32	11.98	14.92
Production	8.75"	0'	0'	8908'	8509'	7" 26# P110 LTC	1.45	2.32	2.99	3.58
Liner	6.125"	7995'	7936'	18495'	8509'	4.5" 13.5# P110 LTC	2.41	2.80	2.38	2.98

Design B - Cement Program

- tangin - comment to ag								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	60	12.5	2.12	0' - 90'	130	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	90' - 275'	268	100%	Class C: Retarder
9.625 in	LEAD	70	12.5	2.12	0' - 377'	150	25%	Class C: Salt, Gel, Extender, LCM
9.023 III	TAIL	200	14.8	1.34	377' - 1050'	268	2370	Class C: Retarder
7 in	LEAD	490	12.5	2.12	850' - 6393'	1040	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	6393' - 8908'	472	2370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	670	13.5	1.85	7995' - 18495'	1240	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design B - Mud Program

Depth	Mud Wt	Mud Type
	8.4 - 8.6	
0' - 275'	8.4 - 8.6	Fresh Water
275' - 1050'	9.5 - 10.2	Brine
1050' - 8908'	8.6 - 9.7	Cut-Brine
8908' - 18495'	8.6 - 10.	OBM

Geology

Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)		
Salt Top	320'	None	Bell Canyon		
Salt Base	875'	None	Cherry Canyon		
Yates	1005'	Oil/Natural Gas	Manzanita Marker		
Seven Rivers	1350'	Oil/Natural Gas	Basal Brushy Canyon		
Queen	2010'	Oil/Natural Gas	Bone Spring	3860'	Oil/Natural Gas
Capitan			1st Bone Spring	6630'	Oil/Natural Gas
Grayburg	2370'	None	2nd Bone Spring	7270'	Oil/Natural Gas
San Andres	2830'	Oil/Natural Gas	3rd Bone Spring	8340'	Oil/Natural Gas
Glorieta			Wolfcamp		

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the easing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SHL: 1100' FSL 55' FEL (Sec 20) BHL: 1980' FSL 100' FWL (Sec 19)

Operator Name:	Property Name:	Well Number
Mewbourne Oil Company	Pretty Bird 20/19 Fed Com	616H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
I	20	18	29	-	1980'	FSL	10'	FEL	Eddy
		Latitude					NAD		
32.731148					-104.08837	790			83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
I	20	18	29	-	1980'	FSL	100'	FEL	Eddy
Latitude					Longitude				NAD
32.731148					-104.0886720				83

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
L	19	18	29	_	1980'	FSL	100'	FWL	Eddy
Latitude					Longitude				NAD
32.7311 -104.1214540							83		

Is this well the defining well for the Is this well an infill well?	Horizontal Spacing Unit?	Y	
If infill is yes please provide API if a Spacing Unit.	vailable, Operator Name an	d well number for Defining well for	Horizontal
API#			
Operator Name:	Property Name:		Well Number

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Pretty Bird 20/19 Fed Com #616H Sec 20, T18S, R29E

SHL: 1100' FSL & 55' FEL, Sec 20 BHL: 1980' FSL & 100' FWL, Sec 19

Plan: Design #1

Standard Planning Report

27 June, 2024

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Pretty Bird 20/19 Fed Com #616H

Well: Sec 20, T18S, R29E

Wellbore: BHL: 1980' FSL & 100' FWL, Sec 19

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H

WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

Grid

Minimum Curvature

Project Eddy County, New Mexico NAD 83

Map System: US State Plane 1983
Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

tate Plane 1983 System Datum:

Ground Level

Site Pretty Bird 20/19 Fed Com #616H

 Site Position:
 Northing:
 628,930.40 usft
 Latitude:
 32.7287297

 From:
 Map
 Easting:
 616,620.70 usft
 Longitude:
 -104.0885192

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 20, T18S, R29E

 Well Position
 +N/-S
 0.0 usft
 Northing:
 628,930.40 usft
 Latitude:
 32.7287297

 +E/-W
 0.0 usft
 Easting:
 616,620.70 usft
 Longitude:
 -104.0885192

Position Uncertainty0.0 usftWellhead Elevation:3,539.0 usftGround Level:3,511.0 usft

Grid Convergence: 0.13 °

Wellbore BHL: 1980' FSL & 100' FWL, Sec 19

 Magnetics
 Model Name
 Sample Date (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2010
 12/31/2014
 7.43
 60.48
 48,482.87673204

Design #1

Audit Notes:

Version:Phase:PROTOTYPETie On Depth:0.0

 Vertical Section:
 Depth From (TVD)
 +N/-S
 +E/-W
 Direction (usft)

 0.0
 0.0
 0.0
 0.0
 274.74

Plan Survey Tool Program Date 6/27/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 18,494.8 Design #1 (BHL: 1980' FSL & 100

lan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,489.3	7.79	2.67	1,488.1	26.4	1.2	2.00	2.00	0.00	2.67	
7,605.5	7.79	2.67	7,548.0	854.0	39.9	0.00	0.00	0.00	0.00	
7,994.8	0.00	0.00	7,936.0	880.4	41.1	2.00	-2.00	0.00	180.00 I	KOP: 1980' FSL & 10
8,907.6	91.26	269.77	8,509.0	878.1	-544.5	10.00	10.00	0.00	-90.23	
18,494.8	91.26	269.77	8,299.0	840.4	-10,129.4	0.00	0.00	0.00	0.00 1	3HL: 1980' FSL & 10

Hobbs Database:

Company: Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Project: Pretty Bird 20/19 Fed Com #616H Site:

Well: Sec 20, T18S, R29E

BHL: 1980' FSL & 100' FWL, Sec 19 Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

nned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 1100' F	SL & 55' FEL (2	20)							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	2.00	2.67	1,200.0	1.7	0.1	0.1	2.00	2.00	0.00
1,300.0	4.00	2.67	1,299.8	7.0	0.3	0.3	2.00	2.00	0.00
1,400.0	6.00	2.67	1,399.5	15.7	0.7	0.6	2.00	2.00	0.00
1,489.3	7.79	2.67	1,488.1	26.4	1.2	1.0	2.00	2.00	0.00
1,500.0	7.79	2.67	1,498.7	27.8	1.3	1.0	0.00	0.00	0.00
1,600.0	7.79	2.67	1,597.8	41.4	1.9	1.5	0.00	0.00	0.00
1,700.0	7.79	2.67	1,696.9	54.9	2.6	2.0	0.00	0.00	0.00
1,800.0	7.79	2.67	1,795.9	68.4	3.2	2.5	0.00	0.00	0.00
1,900.0	7.79	2.67	1,895.0	82.0	3.8	3.0	0.00	0.00	0.00
2,000.0	7.79	2.67	1,994.1	95.5	4.5	3.5	0.00	0.00	0.00
2,100.0	7.79	2.67	2,093.2	109.0	5.1	3.9	0.00	0.00	0.00
2,200.0	7.79	2.67	2,192.3	122.6	5.7	4.4	0.00	0.00	0.00
2,300.0	7.79	2.67	2,291.3	136.1	6.4	4.9	0.00	0.00	0.00
2,400.0	7.79	2.67	2,390.4	149.6	7.0	5.4	0.00	0.00	0.00
2,500.0	7.79	2.67	2,489.5	163.1	7.6	5.9	0.00	0.00	0.00
2,600.0	7.79	2.67	2,588.6	176.7	8.2	6.4	0.00	0.00	0.00
2,700.0	7.79	2.67	2,687.6	190.2	8.9	6.9	0.00	0.00	0.00
2,800.0	7.79	2.67	2,786.7	203.7	9.5	7.4	0.00	0.00	0.00
2,900.0	7.79	2.67	2,885.8	217.3	10.1	7.9	0.00	0.00	0.00
3,000.0	7.79	2.67	2,984.9	230.8	10.8	8.3	0.00	0.00	0.00
3,100.0	7.79	2.67	3,084.0	244.3	11.4	8.8	0.00	0.00	0.00
3,200.0	7.79	2.67	3,183.0	257.9	12.0	9.3	0.00	0.00	0.00
3,300.0	7.79	2.67	3,282.1	271.4	12.7	9.8	0.00	0.00	0.00
3,400.0	7.79	2.67	3,381.2	284.9	13.3	10.3	0.00	0.00	0.00
3,500.0	7.79 7.79	2.67	3,480.3	204.9 298.5	13.3	10.3	0.00	0.00	0.00
3,600.0	7.79	2.67	3,579.3	312.0	14.6	11.3	0.00	0.00	0.00
3,700.0	7.79	2.67	3,678.4	325.5	15.2	11.8	0.00	0.00	0.00
3,800.0	7.79	2.67	3,777.5	339.1	15.8	12.3	0.00	0.00	0.00
3,900.0	7.79	2.67	3,876.6	352.6	16.5	12.7	0.00	0.00	0.00
4,000.0	7.79 7.79	2.67	3,975.7	366.1	17.1	13.2	0.00	0.00	0.00
4,100.0	7.79	2.67	4,074.7	379.7	17.1	13.7	0.00	0.00	0.00
4,200.0	7.79	2.67	4,173.8	393.2	18.4	14.2	0.00	0.00	0.00
4,300.0	7.79	2.67	4,272.9	406.7	19.0	14.7	0.00	0.00	0.00
4,400.0 4,500.0	7.79 7.70	2.67	4,372.0	420.3	19.6	15.2 15.7	0.00	0.00	0.00
4,500.0 4,600.0	7.79 7.79	2.67 2.67	4,471.1 4,570.1	433.8 447.3	20.3 20.9	15.7 16.2	0.00 0.00	0.00 0.00	0.00 0.00
4,600.0 4,700.0	7.79 7.79	2.67 2.67	4,570.1 4,669.2	447.3 460.8	20.9 21.5	16.2 16.7	0.00	0.00	0.00
4,800.0	7.79 7.79	2.67 2.67	4,069.2 4,768.3	460.6 474.4	21.5 22.1	17.2	0.00	0.00	0.00
4,900.0	7.79	2.67	4,867.4	487.9	22.8	17.6	0.00	0.00	0.00
5,000.0	7.79	2.67	4,966.4	501.4	23.4	18.1	0.00	0.00	0.00
5,100.0	7.79	2.67	5,065.5	515.0	24.0	18.6	0.00	0.00	0.00

Hobbs Database:

Site:

Wellbore:

Company: Mewbourne Oil Company Project:

Eddy County, New Mexico NAD 83 Pretty Bird 20/19 Fed Com #616H

Well: Sec 20, T18S, R29E BHL: 1980' FSL & 100' FWL, Sec 19

Design: Design #1 Local Co-ordinate Reference: TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

csigii.										
lanned	Survey									
	Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	(usit)	(°)	(°)	(usit)	(usft)	(usft)	(usit)	(/ loudsit)	(/ loousit)	(/ loudsit)
	5,200.0	7.79	2.67	5,164.6	528.5	24.7	19.1	0.00	0.00	0.00
	5,300.0	7.79	2.67	5,263.7	542.0	25.3	19.6	0.00	0.00	0.00
	•			•						
	5,400.0	7.79	2.67	5,362.8	555.6	25.9	20.1	0.00	0.00	0.00
	5,500.0	7.79	2.67	5,461.8	569.1	26.6	20.6	0.00	0.00	0.00
	5,600.0	7.79	2.67	5,560.9	582.6	27.2	21.1	0.00	0.00	0.00
	5,700.0	7.79	2.67	5,660.0	596.2	27.8	21.6	0.00	0.00	0.00
	5,800.0	7.79	2.67	5,759.1	609.7	28.5	22.0	0.00	0.00	0.00
	5,900.0	7.79	2.67	5,858.1	623.2	29.1	22.5	0.00	0.00	0.00
	6,000.0	7.79	2.67	5,957.2	636.8	29.7	23.0	0.00	0.00	0.00
	6,100.0	7.79	2.67	6,056.3	650.3	30.4	23.5	0.00	0.00	0.00
	6,200.0	7.79	2.67	6,155.4	663.8	31.0	24.0	0.00	0.00	0.00
	6,300.0	7.79	2.67	6,254.5	677.4	31.6	24.5	0.00	0.00	0.00
										0.00
	6,400.0	7.79	2.67	6,353.5	690.9	32.3	25.0	0.00	0.00	0.00
	6,500.0	7.79	2.67	6,452.6	704.4	32.9	25.5	0.00	0.00	0.00
	6,600.0	7.79	2.67	6,551.7	718.0	33.5	26.0	0.00	0.00	0.00
	6,700.0	7.79	2.67	6,650.8	731.5	34.1	26.4	0.00	0.00	0.00
	6,800.0	7.79	2.67	6,749.8	745.0	34.8	26.9	0.00	0.00	0.00
	0.000.0	7.70	0.07	0.040.0	750.5		07.4	0.00	0.00	0.00
	6,900.0	7.79	2.67	6,848.9	758.5	35.4	27.4	0.00	0.00	0.00
	7,000.0	7.79	2.67	6,948.0	772.1	36.0	27.9	0.00	0.00	0.00
	7,100.0	7.79	2.67	7,047.1	785.6	36.7	28.4	0.00	0.00	0.00
	7,200.0	7.79	2.67	7,146.2	799.1	37.3	28.9	0.00	0.00	0.00
	7,300.0	7.79	2.67	7,245.2	812.7	37.9	29.4	0.00	0.00	0.00
	7 400 0	7.70	0.07	7.044.0	000.0	00.0	00.0	0.00	0.00	0.00
	7,400.0	7.79	2.67	7,344.3	826.2	38.6	29.9	0.00	0.00	0.00
	7,500.0	7.79	2.67	7,443.4	839.7	39.2	30.4	0.00	0.00	0.00
	7,605.5	7.79	2.67	7,548.0	854.0	39.9	30.9	0.00	0.00	0.00
	7,700.0	5.90	2.67	7,641.7	865.3	40.4	31.3	2.00	-2.00	0.00
	7,800.0	3.90	2.67	7,741.4	873.8	40.8	31.6	2.00	-2.00	0.00
	7,900.0	1.90	2.67	7,841.2	878.8	41.0	31.8	2.00	-2.00	0.00
	,									
	7,994.8	0.00	0.00	7,936.0	880.4	41.1	31.8	2.00	-2.00	0.00
		SL & 10' FEL (2								
	8,000.0	0.52	269.77	7,941.2	880.4	41.1	31.9	10.00	10.00	0.00
	8,050.0	5.52	269.77	7,991.1	880.4	38.4	34.5	10.00	10.00	0.00
	8,100.0	10.52	269.77	8,040.6	880.4	31.5	41.4	10.00	10.00	0.00
	•									
	8,150.0	15.51	269.77	8,089.3	880.3	20.2	52.6	10.00	10.00	0.00
	8,200.0	20.51	269.77	8,136.9	880.3	4.8	68.0	10.00	10.00	0.00
	8,250.0	25.51	269.77	8,182.9	880.2	-14.8	87.5	10.00	10.00	0.00
	8,300.0	30.51	269.77	8,227.0	880.1	-38.3	110.9	10.00	10.00	0.00
	8,320.4	32.55	269.77	8,244.4	880.0	-48.9	121.5	10.00	10.00	0.00
	FTP: 1980' F	SL & 100' FEL (2	20)							
	8,350.0	35.51	269.77	8,268.9	880.0	-65.5	138.0	10.00	10.00	0.00
	8,400.0	40.51	269.77	8,308.3	879.9	-96.3	168.7	10.00	10.00	0.00
	8,450.0	45.51	269.77	8,344.9	879.7	-130.4	202.7	10.00	10.00	0.00
	8,500.0	50.51	269.77	8,378.3	879.6	-167.5	239.7	10.00	10.00	0.00
	8,550.0	55.51	269.77	8,408.4	879.4	-207.4	279.4	10.00	10.00	0.00
	8,600.0	60.50	269.77	8,434.9	879.3	-249.8	321.7	10.00	10.00	0.00
	8,650.0	65.50	269.77	8,457.5	879.1	-294.4	366.0	10.00	10.00	0.00
	8,700.0	70.50	269.77	8,476.3	878.9	-340.7	412.2	10.00	10.00	0.00
	8,750.0	75.50	269.77	8,490.9	878.7	-388.5	459.8	10.00	10.00	0.00
	8,800.0	80.50	269.77	8,501.3	878.5	-437.4	508.5	10.00	10.00	0.00
	8,850.0	85.50	269.77	8,507.4	878.3	-487.0	558.0	10.00	10.00	0.00
	8,900.0	90.50	269.77	8,509.1	878.1	-537.0	607.7	10.00	10.00	0.00
	8,907.5	91.25	269.77	8,509.0	878.1	-544.5	615.2	10.00	10.00	0.00
		L & 594' FEL (20	2)							

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Pretty Bird 20/19 Fed Com #616H

Well: Sec 20, T18S, R29E

Wellbore: BHL: 1980' FSL & 100' FWL, Sec 19

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

Grid

		sign:	
Depth (usff)		nned Survey	
9,100.0 91.26 269.77 8,504.8 877.3 -736.9 806.9 0.00 0.00 9.200.0 91.26 269.77 8,500.4 876.6 -836.9 1,006.1 0.00 0.00 9.300.0 91.26 269.77 8,500.4 876.6 -836.9 1,006.1 0.00 0.00 9.500.0 91.26 269.77 8,496.0 875.8 -1.136.8 1,105.7 0.00 0.00 9.500.0 91.26 269.77 8,496.0 875.8 -1.136.8 1,205.3 0.00 0.00 9.500.0 91.26 269.77 8,496.0 875.8 -1.136.8 1,205.3 0.00 0.00 9.700.0 91.26 269.77 8,496.0 875.8 -1.136.8 1,205.3 0.00 0.00 9.700.0 91.26 269.77 8,491.8 875.4 -1.236.8 1,304.9 0.00 0.00 9.900.0 91.26 269.77 8,491.8 875.4 -1.236.8 1,304.9 0.00 0.00 9.900.0 91.26 269.77 8,481.3 874.6 -1.436.7 1,504.1 0.00 0.00 9.900.0 91.26 269.77 8,485.1 873.8 -1.436.7 1,504.1 0.00 0.00 0.00 9.900.0 91.26 269.77 8,485.1 873.8 -1.636.7 1,703.3 0.00 0.00 0.00 1.00 0.00 91.26 269.77 8,485.1 873.8 -1.636.7 1,703.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00		Depth	Depth
9,100.0 91.26 269.77 8,504.8 877.3 -736.9 806.9 0.00 0.00 9,200.0 91.26 269.77 8,500.4 876.6 -836.9 1,006.1 0.00 0.00 9,200.0 91.26 269.77 8,500.4 876.6 -936.9 1,006.1 0.00 0.00 9,200.0 91.26 269.77 8,498.0 876.2 -1,036.8 1,105.7 0.00 0.00 9,500.0 91.26 269.77 8,498.0 875.8 -1,136.8 1,205.3 0.00 0.00 9,500.0 91.26 269.77 8,498.0 875.8 -1,136.8 1,205.3 0.00 0.00 9,500.0 91.26 269.77 8,498.0 875.4 -1,236.8 1,304.9 0.00 0.00 9,500.0 91.26 269.77 8,491.6 875.0 -1,336.8 1,404.5 0.00 0.00 9,500.0 91.26 269.77 8,491.6 875.0 -1,336.8 1,404.5 0.00 0.00 9,500.0 91.26 269.77 8,481.3 874.2 -1,536.7 1,504.1 0.00 0.00 0.00 9,500.0 91.26 269.77 8,482.9 874.6 -1,436.7 1,504.1 0.00 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,504.1 0.00 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,506.9 0.00 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,506.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00	269.77	9.000.0	8.507.0
9,200.0 91.26 269.77 8,502.6 876.9 -836.9 906.5 0.00 0.00 9,300.0 91.26 269.77 8,496.2 876.2 -1,036.8 1,105.7 0.00 0.00 9,500.0 91.26 269.77 8,496.0 875.8 -1,136.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,496.0 875.8 -1,136.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,495.8 875.8 -1,136.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,495.8 875.8 -1,136.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,495.8 875.8 -1,136.8 1,304.9 0.00 0.00 9,800.0 91.26 269.77 8,495.8 874.6 -1,436.7 1,504.1 0.00 0.00 9,800.0 91.26 269.77 8,485.1 874.2 -1,536.7 1,503.7 0.00 0.00 1,000.0 91.26 269.77 8,485.1 874.2 -1,536.7 1,503.7 0.00 0.00 1,000.0 91.26 269.77 8,485.1 873.8 -1,736.7 1,703.3 0.00 0.00 1,000.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 1,000.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 1,000.0 91.26 269.77 8,482.9 873.8 -1,736.7 1,802.9 0.00 0.00 1,000.0 91.26 269.77 8,482.9 873.8 -1,736.7 1,802.9 0.00 0.00 1,000.0 91.26 269.77 8,482.9 873.8 1,200.0 1,000.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 1,000.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 1,000.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 1,000.0 91.26 269.77 8,478.9 871.4 2,136.6 2,002.1 0.00 0.00 1,000.0 91.26 269.77 8,479.9 871.4 2,236.5 2,300.9 0.00 0.00 1,000.0 91.26 269.77 8,479.9 871.4 2,236.5 2,500.1 0.00 0.00 1,000.0 91.26 269.77 8,469.7 8,469.7 871.0 2,236.5 2,500.1 0.00 0.00 1,000.0 91.26 269.77 8,469.7 8,469.7 871.0 2,236.5 2,500.1 0.00 0.00 1,000.0 91.26 269.77 8,469.7 8,469.7 871.0 2,236.5 2,500.1 0.00 0.00 1,000.0 91.26 269.77 8,469.7		-,	
9,300.0 91.26 269.77 8,499.5 875.6 -936.9 1,006.1 0.00 0.00 9,400.0 91.26 269.77 8,498.2 876.2 -1,038.8 1,105.7 0.00 0.00 9,500.0 91.26 269.77 8,498.3 875.4 -1,236.8 1,304.9 0.00 0.00 9,700.0 91.26 269.77 8,498.1 8,75.4 -1,236.8 1,304.9 0.00 0.00 9,700.0 91.26 269.77 8,498.5 874.6 -1,436.7 1,504.1 0.00 0.00 1,500.0 91.26 269.77 8,487.3 874.2 -1,536.8 1,404.5 0.00 0.00 1,500.0 91.26 269.77 8,487.3 874.2 -1,536.8 1,404.5 0.00 0.00 1,500.0 91.26 269.77 8,487.3 874.2 -1,536.7 1,504.1 0.00 0.00 1,500.0 91.26 269.77 8,487.3 874.2 -1,536.7 1,503.7 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.8 -1,636.7 1,703.3 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.8 -1,736.7 1,502.5 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 1,500.0 91.26 269.77 8,482.9 873.8 -1,366.6 1,902.5 0.00 0.00 1,500.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,002.1 0.00 0.00 1,500.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,002.1 0.00 0.00 1,500.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,002.1 0.00 0.00 1,500.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,002.1 0.00 0.00 1,500.0 91.26 269.77 8,476.1 871.8 -2,136.6 2,201.3 0.00 0.00 1,600.0 91.26 269.77 8,476.9 871.4 -2,235.5 2,300.9 0.00 0.00 1,600.0 91.26 269.77 8,487.9 871.4 -2,235.5 2,300.9 0.00 0.00 1,600.0 91.26 269.77 8,487.9 871.4 -2,236.5 2,200.5 0.00 0.00 1,600.0 91.26 269.77 8,487.5 870.7 -2,436.5 2,200.5 0.00 0.00 1,600.0 91.26 269.77 8,487.5 870.7 -2,436.5 2,200.5 0.00 0.00 1,000.0 91.26 269.77 8,485.4 870.3 -2,536.5 2,509.7 0.00 0.00 1,000.0 91.26 269.77 8,485.4 870.3 -2,536.5 2,509.7 0.00 0.00 1,000.0 91.26 269.77 8,485.4 870.3 -2,536.5 2,509.7 0.00 0.00 1,000.0 91.26 269.77 8,485.4 870.3 -2,536.5 2,509.7 0.00 0.00 1,000.0 91.26 269.77 8,485.8 869.1 -2,836.4 2,899.3 0.00 0.00 1,000.0 91.26 269.77 8,485.8 869.1 -2,836.4 2,899.5 0.00 0.00 1,000.0 91.26 269.77 8,445.4 868.3 -3,036.3 3,097.7 0.00 0.00 1,000.0 91.26 269.77 8,445.4 868.3 -3,036.3 3,097.7 0.00 0.00 1,000.0 91.26 269.77 8,445.4 868.3 -3,036.3 3,097.7 0.00 0.00 0.00 1,000.0 91.26 269.77 8,445.4 868.3 -3,036.3 3,097.7 0.00 0		•	·
9,400.0 91.26 269.77 8,498.2 876.2 -1,036.8 1,106.7 0.00 0.00 9,500.0 91.26 269.77 8,493.8 875.4 -1,236.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,493.8 875.4 -1,236.8 1,304.9 0.00 0.00 9,800.0 91.26 269.77 8,495.5 874.6 -1,436.6 1,404.5 1,000 0.00 0.00 0.00 0.00 0.00 0.00 0.0			•
9,500.0 91.26 269.77 8,496.0 875.8 -1,136.8 1,205.3 0.00 0.00 9,600.0 91.26 269.77 8,493.8 875.4 -1,236.8 1,304.9 0.00 0.00 9,700.0 91.26 269.77 8,489.5 874.6 -1,336.8 1,404.5 0.00 0.00 9,900.0 91.26 269.77 8,489.5 874.6 -1,436.7 1,504.1 0.00 0.00 10,000.0 91.26 269.77 8,485.3 874.2 -1,536.7 1,603.7 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 -1,636.7 1,703.3 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 -1,636.7 1,703.3 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 -1,336.6 1,902.5 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 -1,336.6 1,902.5 0.00 0.00 10,000.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,000.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,476.3 872.2 -2,036.5 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,476.3 872.0 -2,236.5 2,300.5 0.00 0.00 10,500.0 91.26 269.77 8,466.7 871.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,466.7 871.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,466.2 870.7 -2,436.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,466.2 870.7 -2,436.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,468.2 870.1 -2,587.8 2,650.9 0.00 0.00 10,951.3 91.26 269.77 8,468.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,951.3 91.26 269.77 8,468.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,951.3 91.26 269.77 8,468.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,468.2 870.9 -3,136.3 3,197.3 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861 -2,366.4 2,869.5 0.00 0.00 0.00 11,100.0 91.26 269.77 8,458.8 861.9 3,366.2 3,366.1 3,369.5 0.00 0.00 0.00 11,100.0 91.26 269.77 8,458.8 8		·	
9,600.0 91.26 269.77 8,493.8 875.4 -1,236.8 1,304.9 0.00 0.00 9,700.0 91.26 269.77 8,499.5 874.6 -1,336.8 1,404.5 0.00 0.00 9,800.0 91.26 269.77 8,489.5 874.6 -1,436.7 1,504.1 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 874.2 -1,536.7 1,503.3 0.00 0.00 10,000.0 91.26 269.77 8,485.1 873.8 -1,536.7 1,703.3 0.00 0.00 10,100.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,300.0 91.26 269.77 8,478.5 872.6 -1,936.6 1,902.5 0.00 0.00 10,300.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 2-1,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.1 871.8 2-1,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,600.0 91.26 269.77 8,475.8 872.0 -2,336.5 2,400.5 0.00 0.00 10,800.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,951.3 91.26 269.77 8,465.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,465.2 869.9 -2,636.4 2,899.5 0.00 0.00 11,200.0 91.26 269.77 8,465.2 869.9 -2,636.4 2,898.5 0.00 0.00 11,200.0 91.26 269.77 8,465.8 869.9 -2,636.8 2,999.1 0.00 0.00 11,200.0 91.26 269.77 8,465.8 869.9 -2,336.8 2,999.7 0.00 0.00 11,200.0 91.26 269.77 8,465.8 869.9 -3,336.3 3,397.7 0.00 0.00 11,200.0 91.26 269.77 8,455.8 869.9 -3,336.3 3,397.7 0.00 0.00 11,200.0 91.26 269.77 8,455.8 869.9 -3,336.3 3,399.7 0.00 0.00 11,200.0 91.26 269.77 8,455.8 869.9 -3,336.2 3,395.5 0.00 0.00 11,200.0 91.26 269.77 8,455.8 866.9 -3,336.3 3,399.7 0.00 0.00 11,200.0 91.26 269.77 8,455.8 866.9 -3,336.3 3,399.7 0.00 0.00 11,200.0 91.26 269.77 8,455.8 865.9 -3,336.2 3,395.5 0.00 0.00 11,200.0 91.26 269.77 8,445.8 867.1 -3,336.3 3,399.5 0.00 0.00 11,200.0 91.26 269.77 8,445.8 867.1 -3,336.3 3,399.5 0.00 0.00 11,200.0 91.26 269.77 8,445.8 866.9 -3,336.2 3,395.5 0.00 0.00 11,200.0 91.26 269.77 8,445.8 866.9 -3,336.2 3,395.5 0.00 0.00 11,200.0 91.26 269.77 8,4		·	
9,700.0 91.26 269.77 8,491.6 875.0 -1,336.8 1,404.5 0.00 0.00 9,800.0 91.26 269.77 8,489.5 874.6 -1,436.7 1,504.1 0.00 0.00 10,000.0 91.26 269.77 8,482.9 874.2 -1,536.7 1,603.7 0.00 0.00 10,000.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,000.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,000.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,000.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,400.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 2,136.6 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,476.3 872.2 -2,036.5 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,469.7 871.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,500.0 91.26 269.77 8,469.7 871.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,469.7 871.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,469.7 871.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,469.7 870.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,469.7 870.0 -2,336.5 2,500.1 0.00 0.00 10,500.0 91.26 269.77 8,468.4 870.3 -2,536.5 2,5509.7 0.00 0.00 10,501.3 91.26 269.77 8,468.4 870.3 -2,536.4 2,699.3 0.00 0.00 10,951.3 91.26 269.77 8,468.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,951.3 91.26 269.77 8,468.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,090.0 91.26 269.77 8,468.8 869.1 -2,336.4 2,889.5 0.00 0.00 11,000.0 91.26 269.77 8,468.8 869.1 -2,336.4 2,889.5 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.4 2,889.5 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.3 3,309.7 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.3 3,309.7 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.3 3,309.7 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.3 3,309.5 0.00 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,336.3 3,309.5 0.00 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.9 -3,336.2 3,369.5 0.00 0.00 0.00 11,000.0 91.26 269.77 8,445.8 869.9 -3,358.2 3,369.5 0.00 0.00 0.00 11,000.0 91.26 269.77 8,445.9 863.9 -3,358.2 3,369.5 0.00 0.00 0.00 0			
9,800.0 91,26 269.77 8,487.3 874.2 -1,156.7 1,504.1 0.00 0.00 10,000.0 91,26 289.77 8,487.3 874.2 -1,156.7 1,603.7 0.00 0.00 10,000.0 91,26 269.77 8,482.9 673.4 -1,736.7 1,802.9 0.00 0.00 10,100.0 91,26 269.77 8,482.9 673.4 -1,736.7 1,802.9 0.00 0.00 10,000 91,26 289.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,300.0 91,26 289.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,400.0 91,26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,600.0 91,26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,600.0 91,26 269.77 8,476.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91,26 269.77 8,476.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91,26 269.77 8,476.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91,26 269.77 8,467.5 870.7 -2,436.5 2,300.9 0.00 0.00 10,900.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,900.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,590.1 0.00 0.00 10,951.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,951.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,951.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 11,090.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 11,090.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,599.3 0.00 0.00 11,090.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 11,090.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 11,090.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,599.1 0.00 0.00 11,090.0 91,26 269.77 8,465.4 868.3 -3,336.3 3,997.7 0.00 0.00 11,090.0 91,26 269.77 8,465.8 869.9 -2,636.4 2,899.5 0.00 0.00 11,100.0 91,26 269.77 8,465.6 866.7 -2,336.4 2,899.5 0.00 0.00 11,100.0 91,26 269.77 8,465.6 866.7 -3,366.3 3,396.5 0.00 0.00 11,100.0 91,26 269.77 8,455.6 866.7 -3,366.3 3,396.5 0.00 0.00 11,100.0 91,26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,100.0 91,26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,100.0 91,26 269.77 8,445.5 866.9 -3,636.2 3,996.5 0.00 0.00 0.00 11,100.0 91,26 269.77 8,445.5 866.9 -3,636.2 3,996.5 0.00 0.00 0.00 11,100.0 91,26 269.77 8,445.5 866.9 -3,636.2 3,996.5 0.00 0.00 0.00 11,200.0 91,26 269	269.77	9,600.0	8,493.8
9,900.0 91.26 269.77 8,485.1 873.8 1-1,536.7 1,603.7 0.00 0.00 1,000.0 91.26 269.77 8,485.1 873.8 1-1,636.7 1,703.3 0.00 0.00 1,000.0 91.26 269.77 8,485.1 873.8 1-1,636.7 1,703.3 0.00 0.00 1,000.0 91.26 269.77 8,476.5 872.6 1,936.6 1,902.5 0.00 0.00 1,000 1,000 91.26 269.77 8,476.3 872.6 1,936.6 2,002.1 0.00 0.00 1,000 1,000 91.26 269.77 8,476.3 872.2 2,036.6 2,101.7 0.00 0.00 1,000 1,000 91.26 269.77 8,476.3 872.2 2,036.6 2,001.3 0.00 0.00 1,000 1,000 91.26 269.77 8,476.3 872.2 2,036.6 2,201.3 0.00 0.00 1,000	269.77	9,700.0	8,491.6
10,000.0 91.26 269.77 8,485.1 873.8 1,636.7 1,703.3 0.00 0.00 10,100.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,200.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,300.0 91.26 269.77 8,478.5 872.6 1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,478.1 871.8 -2,236.6 2,002.1 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,600.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,800.0 91.26 269.77 8,466.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,900.0 91.26 269.77 8,466.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,900.0 91.26 269.77 8,466.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,900.0 91.26 269.77 8,466.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,466.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,466.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,465.8 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,000.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.5 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.5 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.7 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.7 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.7 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,995.7 0.00 0.00 11,000.0 91.26 269.77 8,452.2 867.9 -3,136.1 3,994.1 0.00 0.00 11,000.0 91.26 269.77 8,445.5 866.9 -3,363.2 3,995.7 0.00 0.00 11,000.0 91.26 269.77 8,445.5 866.9 -3,363.2 3,995.1 0.00 0.00 11,000.0 91.26 269.77 8,445.9 865.5 -3,736.2 3,995.1 0.00 0.00 11,000.0 91.26 269.77 8,445.9 86	269.77	9,800.0	8,489.5
10,100.0 91.26 269.77 8,482.9 873.4 -1,736.7 1,802.9 0.00 0.00 10,200.0 91.26 269.77 8,480.7 873.0 -1,836.6 1,902.5 0.00 0.00 10,300.0 91.26 269.77 8,476.3 872.6 -1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,500.0 91.26 269.77 8,474.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,600.0 91.26 269.77 8,474.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,800.0 91.26 269.77 8,475.9 871.4 -2,236.5 2,500.1 0.00 0.00 10,800.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,400.5 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,901.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,901.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,699.3 0.00 0.00 10,901.3 91.26 269.77 8,465.4 870.3 -2,536.5 2,699.3 0.00 0.00 11,0901.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,699.3 0.00 0.00 11,0901.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,465.4 870.1 -2,587.8 2,680.9 0.00 0.00 11,000.0 91.26 269.77 8,465.8 869.9 -2,636.4 2,699.3 0.00 0.00 11,100.0 91.26 269.77 8,465.8 869.1 -2,836.4 2,998.1 0.00 0.00 11,300.0 91.26 269.77 8,456.8 869.1 -2,836.4 2,998.1 0.00 0.00 11,300.0 91.26 269.77 8,456.8 869.1 -2,836.4 2,998.1 0.00 0.00 11,300.0 91.26 269.77 8,456.8 869.1 -2,836.4 2,998.1 0.00 0.00 11,300.0 91.26 269.77 8,456.8 869.1 -2,336.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,455.0 867.9 -3,136.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,455.0 866.7 -3,336.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,455.0 866.7 -3,336.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,445.5 866.3 -3,336.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,445.5 866.7 -3,336.3 3,997.7 0.00 0.00 11,500.0 91.26 269.77 8,445.5 866.7 -3,336.3 3,994.9 0.00 0.00 12,200.0 91.26 269.77 8,435.5 866.3 -3,536.2 3,695.3 0.00 0.00 12,200.0 91.26 269.77 8,435.5 866.7 -3,336.3 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.5 866.7 -3,336.3 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.5 866.7 -3,436.2 4,436.0 4,492.1 0.00 0.00 12,200.0 91.26 269.7	269.77	9,900.0	8,487.3
10,200.0 91.26 269.77 8,480.7 873.0 -1,836.6 1,902.5 0.00 0.00 10,300.0 91.26 269.77 8,478.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,478.1 872.2 -2,036.6 2,002.1 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,474.1 871.8 -2,136.5 2,300.9 0.00 0.00 10,800.0 91.26 269.77 8,465.4 870.3 -2,336.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,586.5 2,500.1 0.00 0.00 10,901.3 91.26 269.77 8,465.4 870.1 -2,587.8 2,650.9 0.00 0.00 10,901.3 91.26 269.77 8,465.4 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,465.4 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,465.8 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,465.8 869.9 -2,636.4 2,898.5 0.00 0.00 11,000.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,898.5 0.00 0.00 11,000.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,898.5 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,898.1 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -3,336.3 3,197.3 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -3,336.3 3,197.3 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -3,336.3 3,396.9 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -3,336.3 3,396.9 0.00 0.00 11,400.0 91.26 269.77 8,456.9 867.5 -3,236.3 3,296.9 0.00 0.00 11,400.0 91.26 269.77 8,445.8 868.3 -3,356.2 3,595.7 0.00 0.00 11,400.0 91.26 269.77 8,445.5 866.3 -3,336.2 3,595.7 0.00 0.00 11,400.0 91.26 269.77 8,445.5 866.3 -3,336.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,443.5 866.3 -3,336.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,443.5 866.3 -3,336.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,443.5 866.3 -3,336.1 3,894.5 0.00 0.00 12,500.0 91.26 269.77 8,443.5 866.3 -4,236.0 4,491.3 1,493.3 0.00 0.00 12,500.0 91.26 269.77	269.77	10,000.0	8,485.1
10,300.0 91.26 269.77 8,476.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,200.9 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.0 -2,336.5 2,400.5 0.00 0.00 10,800.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,901.0 91.26 269.77 8,466.4 870.3 -2,536.5 2,509.7 0.00 0.00 10,951.3 91.26 269.77 8,466.2 870.1 -2,587.8 2,650.9 0.00 0.00 10,951.3 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,456.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,200.0 91.26 269.77 8,456.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,200.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,455.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,500.0 91.26 269.77 8,455.8 869.1 -3,336.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.8 869.1 -3,336.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.8 866.8 -3,536.1 3,894.5 0.00 0.00 11,200.0 91.26 269.77 8,445.8 866.8 -3,936.1 3,894.5 0.00 0.00 11,200.0 91.26 269.77 8,435.9	269.77	10,100.0	8,482.9
10,300.0 91.26 269.77 8,476.5 872.6 -1,936.6 2,002.1 0.00 0.00 10,400.0 91.26 269.77 8,476.3 872.2 -2,306.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.0 -2,336.5 2,400.5 0.00 0.00 10,800.0 91.26 269.77 8,466.4 870.3 -2,336.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,466.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,951.3 91.26 269.77 8,466.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,951.3 91.26 269.77 8,466.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,466.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,455.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,455.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,500.0 91.26 269.77 8,455.8 869.1 -2,236.4 2,898.5 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,455.2 867.9 -3,136.3 3,996.5 0.00 0.00 11,500.0 91.26 269.77 8,455.8 866.3 -3,536.2 3,596.9 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.9 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,500.0 91.26 269.77 8,445.6 866.2 -3,836.1 3,894.5 0.00 0.00 11,500.0 91.26 269.77 8,445.5	260.77	10 200 0	9 490 7
10,400.0 91.26 269.77 8,476.3 872.2 -2,036.6 2,101.7 0.00 0.00 10,500.0 91.26 269.77 8,474.1 871.8 -2,136.6 2,201.3 0.00 0.00 10,600.0 91.26 269.77 8,471.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,700.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,800.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,500.1 0.00 0.00 10,91.9 10,9		· ·	
10.500.0 91.26 269.77 8.474.1 871.8 -2.136.6 2.201.3 0.00 0.00 10.600.0 91.26 269.77 8.474.1 871.8 -2.136.6 2.201.3 0.00 0.00 10.600.0 91.26 269.77 8.474.9 871.4 -2.236.5 2.300.9 0.00 0.00 10.700.0 91.26 269.77 8.465.5 870.7 -2.436.5 2.500.1 0.00 0.00 10.900.0 91.26 269.77 8.465.4 870.3 -2.536.5 2.599.7 0.00 0.00 10.900.0 91.26 269.77 8.466.4 870.3 -2.536.5 2.599.7 0.00 0.00 10.951.3 91.26 269.77 8.464.2 870.1 -2.587.8 2.650.9 0.00 0.00 10.951.3 91.26 269.77 8.464.2 870.1 -2.587.8 2.650.9 0.00 0.00 11.100.0 91.26 269.77 8.464.2 869.9 -2.636.4 2.699.3 0.00 0.00 11.100.0 91.26 269.77 8.456.8 869.9 -2.636.4 2.699.3 0.00 0.00 11.300.0 91.26 269.77 8.456.6 868.7 -2.936.4 2.898.5 0.00 0.00 11.300.0 91.26 269.77 8.456.6 868.7 -2.936.4 2.898.5 0.00 0.00 11.400.0 91.26 269.77 8.456.6 868.7 -2.936.4 2.998.1 0.00 0.00 11.400.0 91.26 269.77 8.456.6 868.7 -3.336.3 3.097.7 0.00 0.00 11.400.0 91.26 269.77 8.456.6 868.7 -3.336.3 3.997.7 0.00 0.00 11.400.0 91.26 269.77 8.456.6 868.7 -3.336.3 3.997.7 0.00 0.00 11.400.0 91.26 269.77 8.456.6 868.7 -3.336.3 3.997.7 0.00 0.00 11.400.0 91.26 269.77 8.456.6 866.7 -3.336.3 3.996.9 0.00 0.00 11.400.0 91.26 269.77 8.456.0 867.5 -3.236.3 3.996.9 0.00 0.00 11.400.0 91.26 269.77 8.456.0 867.5 -3.236.3 3.996.9 0.00 0.00 11.400.0 91.26 269.77 8.456.0 866.7 -3.436.2 3.396.5 0.00 0.00 11.900.0 91.26 269.77 8.445.8 867.1 -3.336.3 3.996.5 0.00 0.00 11.900.0 91.26 269.77 8.445.8 867.1 -3.336.3 3.996.5 0.00 0.00 11.900.0 91.26 269.77 8.445.8 867.1 -3.336.3 3.996.5 0.00 0.00 11.900.0 91.26 269.77 8.445.8 866.3 -3.536.2 3.595.7 0.00 0.00 11.200.0 91.26 269.77 8.445.8 866.3 -3.536.2 3.595.7 0.00 0.00 11.200.0 91.26 269.77 8.445.8 866.3 -3.536.2 3.595.7 0.00 0.00 11.200.0 91.26 269.77 8.445.8 866.3 -3.536.2 3.995.3 0.00 0.00 11.200.0 91.26 269.77 8.445.5 866.4 -4.036.4 4.933.7 0.00 0.00 11.200.0 91.26 269.77 8.445.5 866.4 -4.036.0 4.991.7 0.00 0.00 11.200.0 91.26 269.77 8.425.9 865.2 -3.836.1 3.894.5 0.00 0.00 11.200.0 91.26 269.77 8.425.9 865.2 -3.836.1 3.994.1 0.00 0.00 11.200.0 91.26 269.77 8.425.9		· ·	
10,600.0 91,26 269.77 8,471.9 871.4 -2,236.5 2,300.9 0.00 0.00 10,700.0 91,26 269.77 8,469.7 871.0 -2,436.5 2,400.5 0.00 0.00 10,900.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,509.7 0.00 0.00 10,900.0 91,26 269.77 8,465.4 870.3 -2,536.5 2,509.7 0.00 0.00 10,900.0 91,26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 10,951.3 91,26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 10,000 91,26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 11,1000.0 91,26 269.77 8,464.0 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91,26 269.77 8,458.8 869.1 -2,836.4 2,788.9 0.00 0.00 11,200.0 91,26 269.77 8,456.6 868.7 -2,936.4 2,898.5 0.00 0.00 11,400.0 91,26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,400.0 91,26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91,26 269.77 8,456.6 868.7 -3,236.3 3,296.9 0.00 0.00 11,500.0 91,26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91,26 269.77 8,454.4 868.3 -3,336.3 3,395.5 0.00 0.00 11,700.0 91,26 269.77 8,454.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,700.0 91,26 269.77 8,454.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,700.0 91,26 269.77 8,454.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,700.0 91,26 269.77 8,445.8 866.7 -3,436.2 3,595.7 0.00 0.00 11,700.0 91,26 269.77 8,445.8 866.7 -3,436.2 3,595.7 0.00 0.00 11,200.0 91,26 269.77 8,445.8 866.7 -3,436.2 3,595.7 0.00 0.00 11,200.0 91,26 269.77 8,441.3 865.9 -3,636.2 3,595.7 0.00 0.00 12,200.0 91,26 269.77 8,441.3 865.9 -3,636.2 3,595.7 0.00 0.00 12,200.0 91,26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,200.0 91,26 269.77 8,435.9 863.2 -4,436.0 4,992.9 0.00 0.00 12,200.0 91,26 269.77 8,435.9 8		· ·	
10,700.0 91.26 269.77 8,469.7 871.0 -2,336.5 2,400.5 0.00 0.00 10,800.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,509.7 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,509.7 0.00 0.00 0.00 10,951.3 91.26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 0.00 11,000.0 91.26 269.77 8,464.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,000.0 91.26 269.77 8,461.0 869.5 -2,736.4 2,798.9 0.00 0.00 11,200.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,500.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,454.6 866.7 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,454.6 866.7 -3,366.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,454.6 866.7 -3,366.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,454.6 866.7 -3,366.3 3,396.5 0.00 0.00 11,700.0 91.26 269.77 8,454.6 866.7 -3,366.2 3,596.5 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,100.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,100.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,100.0 91.26 269.77 8,445.5 866.3 -3,536.2 3,595.7 0.00 0.00 11,200.0 91.26 269.77 8,435.8 866.3 -3,536.2 3,595.7 0.00 0.00 12,200.0 91.26 269.77 8,435.8 866.3 -3,536.2 3,595.7 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,435.8 864.8 -3,936.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.8 864.8 -3,936.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 863.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 4,4036.1 4,193.7 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 4,4036.1 4,193.3 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 4,4036.0 4,492.1 0.00 0.00 12,200.0 91.26 269.77 8,425.9 863.2 -4,436.0 4,492.1 0.00 0.00 12,200.0 91.26 269.77 8,425.9 863.2 -4,436.0 4,492.1 0.00 0.00 12,200.0 91.26 269.7		· ·	
10,800.0 91.26 269.77 8,467.5 870.7 -2,436.5 2,500.1 0.00 0.00 10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,509.7 0.00 0.00 0.00 10,951.3 91.26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 0.00 10,951.3 91.26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 0.00 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,100.0 91.26 269.77 8,461.0 869.5 -2,736.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,461.0 869.5 -2,364.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,700.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.7 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,596.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,596.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,596.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,596.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,596.7 0.00 0.00 12,000.0 91.26 269.77 8,435.9 865.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -3,836.1 3,994.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -3,836.1 4,935.9 4,90.1 0.00 0.00 12,200.0 91.26 269.77 8,435.9 865.2 -4,336.0 4,992.5 0.00 0.00 12,200.0 91.26 269.77 8,435.9 863.2 -4,336.0 4,992.5 0.00 0.00 12,200.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,992.5 0.00 0.00 12,200.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,992.5 0.00 0.00 12,200.0 91.26 269.77 8,445.0 860.4 -4,035.9 4,990.1 0.00 0.00 13,300.0		·	
10,900.0 91.26 269.77 8,465.4 870.3 -2,536.5 2,599.7 0.00 0.00 10,951.3 91.26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 0.00 11,0951.3 91.26 269.77 8,464.2 870.1 -2,587.8 2,650.9 0.00 0.00 0.00 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,200.0 91.26 269.77 8,465.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,296.9 0.00 0.00 11,600.0 91.26 269.77 8,454.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,700.0 91.26 269.77 8,445.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 11,800.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,200.0 91.26 269.77 8,443.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,200.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,434.7 865.9 -3,636.2 3,894.5 0.00 0.00 12,200.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,894.5 0.00 0.00 12,200.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,894.5 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,200.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,336.0 4,392.5 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,336.0 4,392.5 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,336.0 4,392.5 0.00 0.00 12,200.0 91.26 269.77 8,428.1 863.6 -4,336.9 4,890.5 0.00 0.00 13,300.0 91.26 269.		· ·	
10,951.3		· ·	
PPP2: 1980' FSL & 2639' FWL (20) 11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 0.00 11,100.0 91.26 269.77 8,461.0 869.5 -2,736.4 2,798.9 0.00 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.		•	8,465.4
11,000.0 91.26 269.77 8,463.2 869.9 -2,636.4 2,699.3 0.00 0.00 11,100.0 91.26 269.77 8,461.0 869.5 -2,736.4 2,798.9 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,296.9 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,236.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,445.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77	269.77	10,951.3	8,464.2
11,100.0 91.26 269.77 8,461.0 869.5 -2,736.4 2,798.9 0.00 0.00 11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,500.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,296.9 0.00 0.00 11,900.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77		PPP2: 1980' I	
11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 12,000.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77	269.77	11,000.0	8,463.2
11,200.0 91.26 269.77 8,458.8 869.1 -2,836.4 2,898.5 0.00 0.00 11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,000.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77	269.77	11.100.0	8.461.0
11,300.0 91.26 269.77 8,456.6 868.7 -2,936.4 2,998.1 0.00 0.00 11,400.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,445.6 866.7 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,439.1 865.5 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77			
11,400.0 91.26 269.77 8,454.4 868.3 -3,036.3 3,097.7 0.00 0.00 11,500.0 91.26 269.77 8,452.2 867.9 -3,136.3 3,197.3 0.00 0.00 11,600.0 91.26 269.77 8,445.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,431.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77	269.77		8,456.6
11,600.0 91.26 269.77 8,450.0 867.5 -3,236.3 3,296.9 0.00 0.00 11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,438.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,432.5 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,500.0 91.26 269.77	269.77		
11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,894.5 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77	269.77	11,500.0	8,452.2
11,700.0 91.26 269.77 8,447.8 867.1 -3,336.3 3,396.5 0.00 0.00 11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,894.5 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77	260.77	11 600 0	8 450 0
11,800.0 91.26 269.77 8,445.6 866.7 -3,436.2 3,496.1 0.00 0.00 11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,436.9 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,400.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77			
11,900.0 91.26 269.77 8,443.5 866.3 -3,536.2 3,595.7 0.00 0.00 12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77			
12,000.0 91.26 269.77 8,441.3 865.9 -3,636.2 3,695.3 0.00 0.00 12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,421.5 862.8 -4,436.0 4,492.1 0.00 0.00 13,000.0 91.26 269.77			
12,100.0 91.26 269.77 8,439.1 865.5 -3,736.2 3,794.9 0.00 0.00 12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,600.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,421.5 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77			
12,200.0 91.26 269.77 8,436.9 865.2 -3,836.1 3,894.5 0.00 0.00 12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,200.0 91.26 269.77			
12,300.0 91.26 269.77 8,434.7 864.8 -3,936.1 3,994.1 0.00 0.00 12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,200.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77			
12,400.0 91.26 269.77 8,432.5 864.4 -4,036.1 4,093.7 0.00 0.00 12,500.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77		· ·	•
12,500.0 91.26 269.77 8,430.3 864.0 -4,136.1 4,193.3 0.00 0.00 12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77			
12,600.0 91.26 269.77 8,428.1 863.6 -4,236.0 4,292.9 0.00 0.00 12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77		·	
12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00	269.77	12,500.0	8,430.3
12,700.0 91.26 269.77 8,425.9 863.2 -4,336.0 4,392.5 0.00 0.00 12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00	269.77	12.600.0	8,428.1
12,800.0 91.26 269.77 8,423.7 862.8 -4,436.0 4,492.1 0.00 0.00 12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00			
12,900.0 91.26 269.77 8,421.5 862.4 -4,536.0 4,591.7 0.00 0.00 13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00			
13,000.0 91.26 269.77 8,419.4 862.0 -4,635.9 4,691.3 0.00 0.00 13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00			
13,100.0 91.26 269.77 8,417.2 861.6 -4,735.9 4,790.9 0.00 0.00 13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00			
13,200.0 91.26 269.77 8,415.0 861.2 -4,835.9 4,890.5 0.00 0.00 13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00	269 77	13 100 0	8 417 2
13,300.0 91.26 269.77 8,412.8 860.8 -4,935.9 4,990.1 0.00 0.00 13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00		•	
13,400.0 91.26 269.77 8,410.6 860.4 -5,035.8 5,089.7 0.00 0.00 13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00		· ·	
13,500.0 91.26 269.77 8,408.4 860.0 -5,135.8 5,189.3 0.00 0.00		· ·	
	269.77	13,591.2	8,406.4
PPP3: 1980' FSL & 0' FEL (19)	260.77		0.400.0
13,600.0 91.26 269.77 8,406.2 859.6 -5,235.8 5,288.9 0.00 0.00			
13,700.0 91.26 269.77 8,404.0 859.3 -5,335.8 5,388.5 0.00 0.00			
13,800.0 91.26 269.77 8,401.8 858.9 -5,435.7 5,488.1 0.00 0.00 13,900.0 91.26 269.77 8,399.6 858.5 -5,535.7 5,587.7 0.00 0.00			

Hobbs Database:

Wellbore:

Company: Mewbourne Oil Company Eddy County, New Mexico NAD 83 Project:

Pretty Bird 20/19 Fed Com #616H Site:

Well: Sec 20, T18S, R29E

BHL: 1980' FSL & 100' FWL, Sec 19 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,000.0	91.26	269.77	8,397.5	858.1	-5,635.7	5,687.3	0.00	0.00	0.00
14,100.0	91.26	269.77	8,395.3	857.7	-5,735.7	5,786.9	0.00	0.00	0.00
14,200.0	91.26	269.77	8,393.1	857.3	-5,835.6	5,886.5	0.00	0.00	0.00
14,300.0	91.26	269.77	8,390.9	856.9	-5,935.6	5,986.1	0.00	0.00	0.00
14,400.0	91.26	269.77	8,388.7	856.5	-6,035.6	6,085.8	0.00	0.00	0.00
14,500.0	91.26	269.77	8,386.5	856.1	-6,135.6	6,185.4	0.00	0.00	0.00
14,600.0	91.26	269.77	8,384.3	855.7	-6,235.5	6,285.0	0.00	0.00	0.00
14,700.0	91.26	269.77	8,382.1	855.3	-6,335.5	6,384.6	0.00	0.00	0.00
•			•						
14,800.0	91.26	269.77	8,379.9	854.9	-6,435.5	6,484.2	0.00	0.00	0.00
14,900.0	91.26	269.77	8,377.7	854.5	-6,535.5	6,583.8	0.00	0.00	0.00
15,000.0	91.26	269.77	8,375.6	854.1	-6,635.5	6,683.4	0.00	0.00	0.00
15,100.0	91.26	269.77	8,373.4	853.7	-6,735.4	6,783.0	0.00	0.00	0.00
15,200.0	91.26	269.77	8,371.2	853.4	-6,835.4	6,882.6	0.00	0.00	0.00
15,300.0	91.26	269.77	8,369.0	853.0	-6,935.4	6,982.2	0.00	0.00	0.00
15,400.0	91.26	269.77	8,366.8	852.6	-7,035.4	7,081.8	0.00	0.00	0.00
15,500.0	91.26	269.77	8,364.6	852.2	-7,135.3	7,181.4	0.00	0.00	0.00
15,600.0	91.26	269.77	8,362.4	851.8	-7,235.3	7,281.0	0.00	0.00	0.00
15,700.0	91.26	269.77	8,360.2	851.4	-7,335.3	7.380.6	0.00	0.00	0.00
15,800.0	91.26	269.77	8,358.0	851.0	-7,435.3	7,480.2	0.00	0.00	0.00
15,900.0	91.26	269.77	8,355.8	850.6	-7,535.2	7,579.8	0.00	0.00	0.00
16,000.0	91.26	269.77	8,353.6	850.2	-7,635.2	7,679.4	0.00	0.00	0.00
16,100.0	91.26	269.77	8,351.5	849.8	-7,735.2	7,779.0	0.00	0.00	0.00
16,200.0	91.26	269.77	8,349.3	849.4	-7,835.2	7,878.6	0.00	0.00	0.00
16,231.1	91.26	269.77	8,348.6	849.3	-7,866.2	7,909.5	0.00	0.00	0.00
PPP4: 1980' I	FSL & 2364' FW	L (19)							
16,300.0	91.26	269.77	8,347.1	849.0	-7,935.1	7,978.2	0.00	0.00	0.00
16,400.0	91.26	269.77	8,344.9	848.6	-8,035.1	8,077.8	0.00	0.00	0.00
16,500.0	91.26	269.77	8,342.7	848.2	-8,135.1	8,177.4	0.00	0.00	0.00
16,600.0	91.26	269.77	8,340.5	847.9	-8,235.1	8,277.0	0.00	0.00	0.00
16,700.0	91.26	269.77	8,338.3	847.5	-8,335.0	8,376.6	0.00	0.00	0.00
16,800.0	91.26	269.77	8,336.1	847.1	-8,435.0	8,476.2	0.00	0.00	0.00
16,900.0	91.26	269.77	8,333.9	846.7	-8,535.0	8,575.8	0.00	0.00	0.00
17,000.0	91.26	269.77	8,331.7	846.3	-8,635.0	8,675.4	0.00	0.00	0.00
17,100.0	91.26	269.77	8,329.6	845.9	-8,734.9	8,775.0	0.00	0.00	0.00
17,100.0	91.26	269.77	8,327.4	845.5	-8,834.9	8,874.6	0.00	0.00	0.00
17,300.0	91.26	269.77	8,325.2	845.1	-8,934.9	8,974.2	0.00	0.00	0.00
•									
17,400.0	91.26	269.77	8,323.0	844.7	-9,034.9	9,073.8	0.00	0.00	0.00
17,500.0	91.26	269.77	8,320.8	844.3	-9,134.8	9,173.4	0.00	0.00	0.00
17,561.8	91.26	269.77	8,319.4	844.1	-9,196.6	9,234.9	0.00	0.00	0.00
17,600.0	FSL & 1033' FW 91.26	L (19) 269.77	8,318.6	843.9	-9,234.8	9,273.0	0.00	0.00	0.00
17,700.0	91.26	269.77 269.77	8,316.6 8,316.4	843.9 843.5	-9,234.8 -9,334.8	9,273.0	0.00	0.00	0.00
17,800.0	91.26	269.77	8,314.2	843.1	-9,434.8	9,472.2	0.00	0.00	0.00
17,900.0	91.26	269.77	8,312.0	842.7	-9,534.7	9,571.8	0.00	0.00	0.00
18,000.0	91.26	269.77	8,309.8	842.3	-9,634.7	9,671.4	0.00	0.00	0.00
18,100.0	91.26	269.77	8,307.6	842.0	-9,734.7	9,771.0	0.00	0.00	0.00
18,200.0	91.26	269.77	8,305.5	841.6	-9,834.7	9,870.6	0.00	0.00	0.00
18,300.0	91.26	269.77	8,303.3	841.2	-9,934.6	9,970.2	0.00	0.00	0.00
	91.26	269.77	8,301.1	840.8	-10,034.6	10,069.8	0.00	0.00	0.00
18,400.0 18,494.8	91.26	269.77	8,299.0	840.4	-10,129.4	10,164.2	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

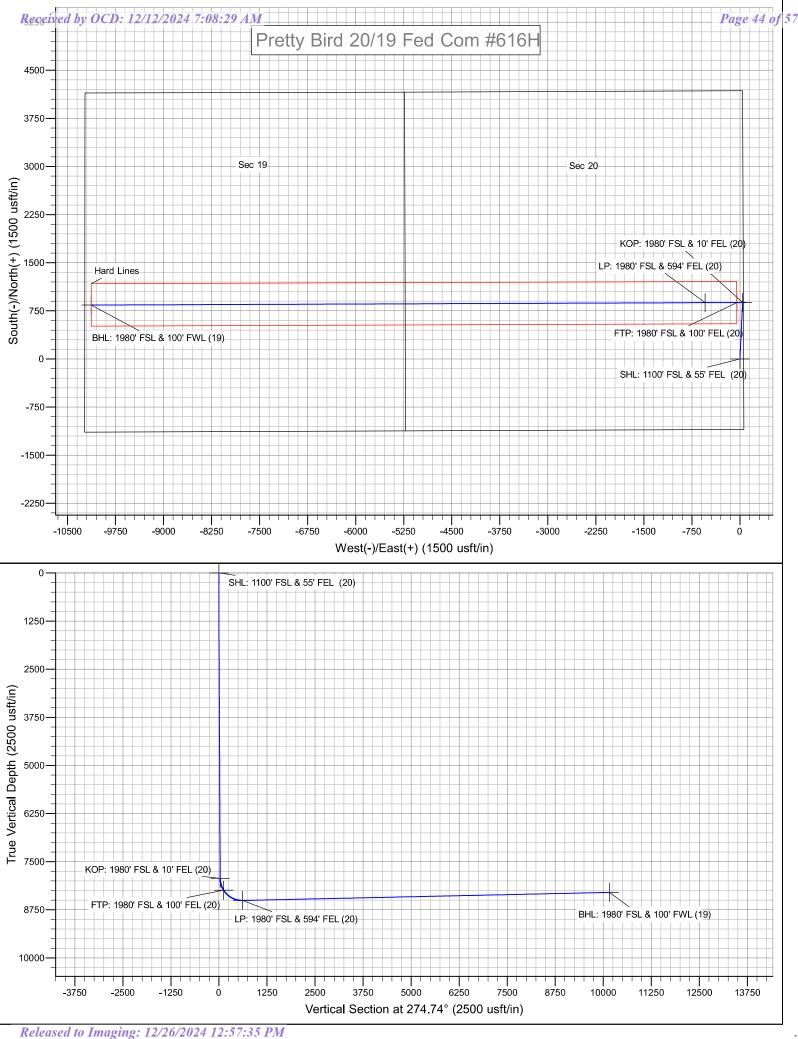
Project: Eddy County, New Mexico NAD 83
Site: Pretty Bird 20/19 Fed Com #616H

Well: Sec 20, T18S, R29E

Wellbore: BHL: 1980' FSL & 100' FWL, Sec 19

Design: Design #1

Local Co-ordinate Reference:


TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Pretty Bird 20/19 Fed Com #616H WELL @ 3539.0usft (Original Well Elev) WELL @ 3539.0usft (Original Well Elev)

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 1100' FSL & 55' FE - plan hits target cent - Point	0.00 er	0.00	0.0	0.0	0.0	628,930.40	616,620.70	32.7287297	-104.0885192
KOP: 1980' FSL & 10' Ft - plan hits target cent - Point	0.00 er	0.00	7,936.0	880.4	41.1	629,810.80	616,661.80	32.7311494	-104.0883789
FTP: 1980' FSL & 100' F - plan hits target cent - Point	0.00 er	0.00	8,244.4	880.0	-48.9	629,810.45	616,571.80	32.7311490	-104.0886716
BHL: 1980' FSL & 100' F - plan hits target cent - Point	0.00 er	0.00	8,299.0	840.4	-10,129.4	629,770.80	606,491.30	32.7310997	-104.1214534
PPP5: 1980' FSL & 1033 - plan hits target cent - Point	0.00 er	0.00	8,319.4	844.1	- 9,196.6	629,774.47	607,424.10	32.7311046	- 104.1184199
PPP4: 1980' FSL & 2364 - plan hits target cent - Point	0.00 er	0.00	8,348.6	849.3	-7,866.2	629,779.71	608,754.50	32.7311115	-104.1140935
PPP3: 1980' FSL & 0' FE - plan hits target cent - Point	0.00 er	0.00	8,406.4	859.7	-5,227.0	629,790.08	611,393.70	32.7311248	-104.1055108
PPP2: 1980' FSL & 2639 - plan hits target cent - Point	0.00 er	0.00	8,464.2	870.1	-2,587.8	629,800.46	614,032.90	32.7311374	-104.0969281
LP: 1980' FSL & 594' FE - plan hits target cent - Point	0.00 er	0.00	8,509.0	878.1	-544.5	629,808.50	616,076.20	32.7311468	-104.0902833

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: MEWBOURNE OIL COMPANY

PRETTY BIRD 20/19 FED COM 616H WELL NAME & NO.:

> APD ID: 10400100651

LOCATION: Section 20, T.18 S., R.29 E. NMP. **COUNTY:**

Eddy County, New Mexico

COA

H ₂ S	0	No	• Yes			
Potash /	None	Secretary	O R-111-Q	☐ Open Annulus		
WIPP				□ WIPP		
Cave / Karst	• Low	Medium	O High	O Critical		
Wellhead	Conventional	Multibowl	O Both	Diverter		
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	☐ DV Tool		
Special Req	☐ Capitan Reef	☐ Water Disposal	✓ COM	Unit		
Waste Prev.	O Self-Certification	• Waste Min. Plan	O APD Submitted 1	prior to 06/10/2024		
Additional	▼ Flex Hose	☐ Casing Clearance	☐ Pilot Hole	Break Testing		
Language	\square Four-String	Offline Cementing	☐ Fluid-Filled			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated **AT SPUD**. As a result, the Hydrogen Sulfide area must meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING DESIGN

Primary Casing Program

- 1. The 13-3/8 inch surface casing shall be set at approximately 275 ft. (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8

- **hours** or **500 psi compressive strength**, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 1,050 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Note: Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 3. Operator has proposed to set 7 in. production casing at approximately 7,995 ft. (7,936 ft. TVD). The minimum required fill of cement behind the 7 in. production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back at least 100 feet into previous casing string. Operator shall provide method of verification.

Alternate Casing Program

- 1. The 13-3/8 inch surface casing shall be set at approximately 275 ft. (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or **500 psi compressive strength**, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that

string.

- 2. The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 1,050 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Note: Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 3. Operator has proposed to set 7 in. production casing at approximately 8,908 ft. (8,509 ft. TVD). The minimum required fill of cement behind the 7 in. production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back at least 100 feet into previous casing string. Operator shall provide method of verification.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Surface and intermediate(s) intervals**. Offline cementing should commence within 24 hours of landing the casing for the interval. Notify the BLM 4hrs prior to the commencement of any offline cementing procedure at **Eddy County:** 575-361-2822.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi. Before drilling out surface casing shoe, BOP/BOPE and annular preventer must be pressure tested in accordance with title 43 CFR 3172 and API Standard 53.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822.

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the doghouse or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and

- equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (Only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing

valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

SA 11/19/2024

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. <u>Visual Warning Systems</u>

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Cente	er of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office Fax 2 nd Fax	575-393-5905 575-397-6252 575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Operator Name: MEWBOURNE OIL COMPANY

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Waste type: SEWAGE

Waste content description: Human waste & grey water

Amount of waste: 1500 gallons

Waste disposal frequency: Weekly

Safe containment description: 2,000 gallon plastic container

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: GARBAGE

Waste content description: Garbage & Trash

Amount of waste: 1500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Enclosed trash trailer

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.) Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Operator Name: MEWBOURNE OIL COMPANY

Well Name: PRETTY BIRD 20/19 FED COM Well Number: 616H

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.) Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

PRETTY_BIRD_20_19_FED_COM_616Hwellsitelayout_20240823084145.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Puma Blanca 22 B3AD & B3HE Fed Com

wells

Multiple Well Pad Number: 2

Recontouring

Drainage/Erosion control construction: NONE

Drainage/Erosion control reclamation: NONE

Well pad proposed disturbance Well pad interim reclamation (acres): Well pad long term disturbance

(acres): 5.92 1.27 (acres): 4.65

Road proposed disturbance (acres): Road interim reclamation (acres): 0 Road long term disturbance (acres): 0 0.18

Powerline proposed disturbance (acres): 0 Powerline interim reclamation (acres): Powerline long term disturbance (acres): 0

(acres): 0 0 (acres): 0

Pipeline proposed disturbance Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

acres): 0 (acres): 0

Other proposed disturbance (acres): 0 Other interim reclamation (acres): 0 Other long term disturbance (acres): 0

Total proposed disturbance: 6.1 Total interim reclamation: 1.27 Total long term disturbance: 4.65

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 410938

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	410938
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
mleal	Cement is required to circulate on both surface and intermediate1 strings of casing.	12/12/2024
mleal	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	12/12/2024
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	12/26/2024
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	12/26/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	12/26/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	12/26/2024