

Application for Permit to Drill

U.S. Department of the Interior Bureau of Land Management

APD Package Report

Date Printed:

APD ID: Well Status:

APD Received Date: Well Name:

Operator: Well Number:

APD Package Report Contents

- Form 3160-3
- Operator Certification Report
- Application Report
- Application Attachments
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 1 file(s)
 - -- Casing Spec Documents: 3 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 5 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 2 file(s)
 - -- Other Facets: 1 file(s)
 - -- Other Variances: 5 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 2 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 3 file(s)
- PWD Report
- PWD Attachments
 - -- None

- Bond ReportBond Attachments
 - -- None

Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-015-55997 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: NWNW / 430 FNL / 1207 FWL / TWSP: 20S / RANGE: 30E / SECTION: 11 / LAT: 32.5938029 / LONG: -103.9473294 (TVD: 0 feet, MD: 0 feet) PPP: NESE / 1639 FSL / 0 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.5996654 / LONG: -103.9856038 (TVD: 9545 feet, MD: 20513 feet) PPP: NWSE / 1635 FSL / 1318 FEL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.5996259 / LONG: -103.9727677 (TVD: 9545 feet, MD: 16560 feet) PPP: NESE / 1650 FSL / 100 FEL / TWSP: 20S / RANGE: 30E / SECTION: 3 / LAT: 32.5995578 / LONG: -103.9515571 (TVD: 9545 feet, MD: 10028 feet) PPP: NESE / 1634 FSL / 0 FEL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.5996125 / LONG: -103.9684891 (TVD: 9545 feet, MD: 15242 feet) BHL: NWSE / 1650 FSL / 2560 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.59969 / LONG: -103.9939165 (TVD: 9545 feet, MD: 23073 feet)

BLM Point of Contact

Name: JANET D ESTES Title: ADJUDICATOR Phone: (575) 234-6233

Email: JESTES@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Michelada 5 FED COM 133H

APD - Geology COAs (Potash or WIPP)

- For at least one well per pad (deepest well within initial development preferred) the record of the drilling rate (ROP) along with the Gamma Ray (GR) and Neutron (CNL) well logs run from TVD to surface in the vertical section of the hole shall be submitted to the BLM office as well as all other logs run on the full borehole 30 days from completion. Any other logs run on the wellbore, excluding cement remediation, should also be sent. Only digital copies of the logs in .TIF or .LAS formats are necessary; paper logs are no longer required. Logs shall be emailed to blm-cfo-geology@doimspp.onmicrosoft.com. Well completion report should have .pdf copies of any CBLs or Temp Logs run on the wellbore.
- Exceptions: In areas where there is extensive log coverage (in particular the salt zone
 adjacent to a pad), Operators are encouraged to contact BLM Geologists to discuss if
 additional GR and N logs are necessary on a pad. Operator may request a waiver of the GR
 and N log requirement due to good well control or other reasons to be approved by BLM
 Geologist prior to well completion. A waiver approved by BLM must be attached to
 completion well report to satisfy COAs.
- The top of the Rustler, top and bottom of the Salt, and the top of the Capitan Reef (if present) are to be recorded on the Completion Report.
- No H2S has been reported within one mile of the proposed project.

Drilling COAs within Known Potash Leasing Area:

Any oil and gas well operator within the KPLA must notify both potash operators as soon as possible if any of the following conditions are encountered during oil and gas operations: (1) Indication of any well collision event, (2) Suspected well fluid flow (oil, gas, or produced water) outside of casing, (3) Sustained annulus pressure between the 1st intermediate and next innermost casing string in excess of 500 psi above the baseline pressure of the well, or above 1500 psi total, (4) Increasing pressure buildup rates (psi/day) across multiple successive bleed-off cycles on the annulus between the 1st intermediate and next innermost casing during well production, or (5) Sustained losses in excess of 50% through the salt interval during drilling.

Questions? Contact Thomas Evans, BLM Geologist at 575-234-5965 or tvevans@blm.gov

PECOS DISTRICT

SURFACE USE

CONDITIONS OF APPROVAL

OPERATOR'S NAME: CENTENNIEL RESOURCES PRODUCTION, LLC

LEASE NO.: NMNM06781, NMNM138847, NMNM114354, NMNM135240

COUNTY: | Eddy County, New Mexico

Wells:

Michelada 5 West Well Pad

Michelada 5 Fed Com 121H

Surface Hole Location: 427 feet from north line (FNL) and 1613 feet from west line (FEL), Section

5, T. 20 S., R. 30 E.

Bottom Hole Location: 660 feet FNL and 10 feet FEL, Section 3, T. 20 S, R 30 E.

Michelada 5 Fed Com 122H

Surface Hole Location: 435 feet FNL and 1645 feet FEL, Section 5, T. 20 S., R. 30 E. Bottom Hole Location: 1980 feet FNL and 10 feet FEL, Section 3, T. 20 S, R 30 E.

Michelada 5 Fed Com 131H

Surface Hole Location: 411 feet FNL and 1549 feet from west line (FWL), Section 5, T. 20 S., R.

30 E.

Bottom Hole Location: 990 feet FNL and 10 feet FEL, Section 3, T. 20 S, R 30 E.

Michelada 5 Fed Com 132H

Surface Hole Location: 419 feet FNL and 1581 feet FWL, Section 5, T. 20 S., R. 30 E. Bottom Hole Location: 2310 feet FNL and 10 feet FEL, Section 3, T. 20 S, R 30 E.

Mezcal 10 North Well Pad

Mezcal 10 Fed Com 121H

Surface Hole Location: 488 feet FNL and 1062 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 660 feet FNL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 131H

Surface Hole Location: 497 feet FNL and 1091 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 990 feet FNL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 132H

Surface Hole Location: TBD, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: TBD, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 133H

Surface Hole Location: 516 feet FNL and 1148 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 1650 feet FSL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 134H

Surface Hole Location: 525 feet FNL and 1177 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 330 feet FSL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Michelada 3 Fed Com 123H

Surface Hole Location: 410 feet FNL and 1144 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 1980 feet FSL and 2560 feet FEL, Section 5, T. 20 S, R 30 E.

Page 1 of 20

Michelada 3 Fed Com 124H

Surface Hole Location: 400 feet FNL and 1113 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 660 feet FSL and 2560 feet FEL, Section 5, T. 20 S, R 30 E.

Michelada 3 Fed Com 133H

Surface Hole Location: 430 feet FNL and 1207 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 1650 feet FSL and 2560 feet FEL, Section 5, T. 20 S, R 30 E.

Michelada 3 Fed Com 134H

Surface Hole Location: 420 feet FNL and 1176 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 330 feet FSL and 2560 feet FEL, Section 5, T. 20 S, R 30 E.

Mezcal 10 South Well Pad

Mezcal 10 Fed Com 122H

Surface Hole Location: 1128 feet FSL and 1302 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 1980 feet FNL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 123H

Surface Hole Location: 1111 feet FSL and 1277 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 1980 feet FSL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

Mezcal 10 Fed Com 124H

Surface Hole Location: 1094 feet FSL and 1253 feet FWL, Section 11, T. 20 S., R. 30 E. Bottom Hole Location: 660 feet FSL and 10 feet FWL, Section 9, T. 20 S, R 30 E.

TABLE OF CONTENTS

1.	GEN	ERAL PROVISIONS	5
1	1.1.	ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES	5
1	1.2.	RANGELAND RESOURCES	5
	1.2.1	. Cattleguards	5
	1.2.2	. Fence Requirement	6
	1.2.3	. Livestock Watering Requirement	6
1	1.3.	NOXIOUS WEEDS	6
	1.3.1	African Rue (Peganum harmala)	6
1	1.4.	LIGHT POLLUTION	6
	1.4.1	. Downfacing	6
	1.4.2	. Shielding	6
	1.4.3	. Lighting Color	6
2.	SPEC	CIAL REQUIREMENTS	7
2	2.1.	CAVE/KARST	7
	2.1.1	. General Construction	7
	2.1.2	. Pad Construction	7
	2.1.3	. Road Construction	7
	2.1.4	. Buried Pipeline/Cable Construction	8
	2.1.5	. Powerline Construction	8
	2.1.6	Surface Flowlines Installation	8
	2.1.7	. Production Mitigation	8
	2.1.8	. Residual and Cumulative Mitigation	8
	2.1.9	. Plugging and Abandonment Mitigation	8
2	2.3 S	SPECIAL STATUS PLANT SPECIES	7
2	2.4 V	/ISUAL RESOURCE MANAGEMENT	8
	2.5.1	VRM IV	8
	2.5.2	VRM III Facility Requirement	8
3.	CON	STRUCTION REQUIRENMENTS	9
3	3.1	CONSTRCUTION NOTIFICATION	9
3	3.2 T	TOPSOIL	9
3	3.3	CLOSED LOOP SYSTEM	9
3	3.4 F	FEDERAL MINERAL PIT	9
3	3.5 V	WELL PAD & SURFACING	9
3	3.6 E	EXCLOSURE FENCING (CELLARS & PITS)	9
3	3.7	ON LEASE ACESS ROAD1	0
	3.7.1	Road Width1	0

	3.7.2	Surfacing	10
	3.7.3	Crowning	10
	3.7.4	Ditching	10
	3.7.5	Turnouts	10
	3.7.6	Drainage	10
	3.7.7	Public Access	11
4.	PIPELIN	JES	13
	4.1 BUR	RIED PIPELINES	13
	4.2 RAN	IGLAND MITIGATION FOR PIPELINES	15
	4.5.1 Fer	nce Requirement	15
	4.5.2 Cat	ttleguards	15
	4.5.3 Liv	vestock Watering Requirement	15
5.	OVERH	EAD ELECTRIC LINES	16
6.	PRODU	CTION (POST DRILLING)	17
	5.1 WEI	L STRUCTURES & FACILITIES	17
	5.1.1 Pla	cement of Production Facilities	17
	5.1.2 Exc	closure Netting (Open-top Tanks)	17
		nemical and Fuel Secondary Containment and Exclosure Screening	
	5.1.4. Op	pen-Vent Exhaust Stack Exclosures	18
	5.1.5. Co	ontainment Structures	18
7.	RECLA	MATION	18
	6.1 ROAD	AND SITE RECLAMATION	18
	6.2 EROSI	ON CONTROL	18
	6.3 INTER	IM RECLAMATION	18
	6.4 FINAL	ABANDONMENT & RECLAMATION	19
	6.5 SEEDII	NG TECHNIQUES	19
	6.6 SOIL S	PECIFIC SEED MIXTURE	19

1. GENERAL PROVISIONS

The failure of the operator to comply with these requirements may result in the assessment of liquidated damages or penalties pursuant to 43 CFR 3163.1 or 3163.2. A copy of these conditions of approval shall be present on the location during construction, drilling and reclamation activity. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

1.1. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural resource (historic or prehistoric site or object) discovered by the operator, or any person working on the operator's behalf, on the public or federal land shall be immediately reported to the Authorized Officer. The operator shall suspend all operations in the immediate area (within 100ft) of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer, in conjunction with a BLM Cultural Resource Specialist, to determine appropriate actions to prevent the loss of significant scientific values. The operator shall be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer after consulting with the operator.

Traditional Cultural Properties (TCPs) are protected by NHPA as codified in 36 CFR 800 for possessing traditional, religious, and cultural significance tied to a certain group of individuals. Though there are currently no designated TCPs within the project area or within a mile of the project area, but it is possible for a TCP to be designated after the approval of this project. If a TCP is designated in the project area after the project's approval, the BLM Authorized Officer will notify the operator of the following conditions and the duration for which these conditions are required.

- 1. Temporary halting of all construction, drilling, and production activities to lower noise.
- 2. Temporary shut-off of all artificial lights at night.

The operator is hereby obligated to comply with procedures established in the Native American Graves Protection and Repatriation Act (NAGPRA), specifically NAGPRA Subpart B regarding discoveries, to protect human remains, associated funerary objects, sacred objects, and objects of cultural patrimony discovered during project work. If any human skeletal remains, funerary objects, sacred objects, or objects of cultural patrimony are discovered at any time during construction, all construction activities shall halt and a BLM-CFO Authorized Officer will be notified immediately. The BLM will then be required to be notified, in writing, within 24 hours of the discovery. The written notification should include the geographic location by county and state, the contents of the discovery, and the steps taken to protect said discovery. You must also include any potential threats to the discovery and a conformation that all activity within 100ft of the discovery has ceased and work will not resume until written certification is issued. All work on the entire project must halt for a minimum of 3 days and work cannot resume until an Authorized Officer grants permission to do so.

Any paleontological resource discovered by the operator, or any person working on the operator's behalf, on public or Federal land shall be immediately reported to the Authorized Officer. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. The operator will be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer after consulting with the operator.

1.2. RANGELAND RESOURCES

1.2.1. Cattleguards

Where a permanent cattleguard is approved, an appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at fence crossing(s). Any existing cattleguard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguard(s) that are in place and are utilized during lease operations. A gate shall be constructed on one side of the cattleguard and fastened securely to H-braces.

1.2.2. Fence Requirement

Where entry granted across a fence line, the fence must be braced and tied off on both sides of the passageway prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fence(s).

1.2.3. Livestock Watering Requirement

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

1.3. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA, New Mexico Department of Agriculture, and BLM requirements and policies.

1.3.1 African Rue (Peganum harmala)

Spraying: The spraying of African Rue must be completed by a licensed or certified applicator. In order to attempt to kill or remove African Rue the proper mix of chemical is needed. The mix consists of 2% Arsenal (Imazapyr) and 2% Roundup (Glyphosate) along with a nonionic surfactant. Any other chemicals or combinations shall be approved by the BLM Noxious Weeds Coordinator prior to treatment. African Rue shall be sprayed in connection to any dirt working activities or disturbances to the site being sprayed. Spraying of African Rue shall be done on immature plants at initial growth through flowering and mature plants between budding and flowering stages. Spraying shall not be conducted after flowering when plant is fruiting. This will ensure optimal intake of chemical and decrease chances of developing herbicide resistance. After spraying, the operator or necessary parties must contact the Carlsbad Field Office to inspect the effectiveness of the application treatment to the plant species. No ground disturbing activities can take place until the inspection by the authorized officer is complete. The operator may contact the Environmental Protection Department or the BLM Noxious Weed Coordinator at (575) 234-5972 or BLM_NM_CFO_NoxiousWeeds@blm.gov.

Management Practices: In addition to spraying for African Rue, good management practices should be followed. All equipment should be washed off using a power washer in a designated containment area. The containment area shall be bermed to allow for containment of the seed to prevent it from entering any open areas of the nearby landscape. The containment area shall be excavated near or adjacent to the well pad at a depth of three feet and just large enough to get equipment inside it to be washed off. This will allow all seeds to be in a centrally located area that can be treated at a later date if the need arises.

1.4. LIGHT POLLUTION

1.4.1. **Downfacing**

All permanent lighting will be pointed straight down at the ground in order to prevent light spill beyond the edge of approved surface disturbance.

1.4.2. Shielding

All permanent lighting will use full cutoff luminaires, which are fully shielded (i.e., not emitting direct or indirect light above an imaginary horizontal plane passing through the lowest part of the light source).

1.4.3. Lighting Color

Lighting shall be 3,500 Kelvin or less (Warm White) except during drilling, completion, and workover operations. No bluish-white lighting shall be used in permanent outdoor lighting.

2. SPECIAL REQUIREMENTS

2.1. CAVE/KARST

2.1.1. General Construction

- No blasting
- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave
 passages, or voids are penetrated during construction, and no additional construction shall occur until
 clearance has been issued by the Authorized Officer.
- All linear surface disturbance activities will avoid sinkholes and other karst features to lessen the
 possibility of encountering near surface voids during construction, minimize changes to runoff, and
 prevent untimely leaks and spills from entering the karst drainage system.
- This is a sensitive area and all spills or leaks will be reported to the BLM immediately for their immediate and proper treatment, as defined in NTL 3A for Major Undesirable Events.

2.1.2. Pad Construction

- The pad will be constructed and leveled by adding the necessary fill and caliche. No blasting will be used for any construction or leveling activities.
- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised (i.e. an access road crossing the berm cannot be lower than the berm height).
- Following a rain event, all fluids will be vacuumed off of the pad and hauled off-site and disposed at a proper disposal facility.

2.1.3. Road Construction

- Turnout ditches and drainage leadoffs will not be constructed in such a manner as to alter the natural flow
 of water into or out of cave or karst features.
- Special restoration stipulations or realignment may be required if subsurface features are discovered during construction.

Page 7 of 20

2.1.4. Buried Pipeline/Cable Construction

Rerouting of the buried line(s) may be required if a subsurface void is encountered during construction to
minimize the potential subsidence/collapse of the feature(s) as well as the possibility of leaks/spills
entering the karst drainage system.

2.1.5. Powerline Construction

- Smaller powerlines will be routed around sinkholes and other karst features to avoid or lessen the
 possibility of encountering near surface voids and to minimize changes to runoff or possible leaks and
 spills from entering karst systems.
- Larger powerlines will adjust their pole spacing to avoid cave and karst features.
- Special restoration stipulations or realignment may be required if subsurface voids are encountered.

2.1.6. Surface Flowlines Installation

• Flowlines will be routed around sinkholes and other karst features to minimize the possibility of leaks/spills from entering the karst drainage system.

2.1.7. **Production Mitigation**

- Tank battery locations and facilities will be bermed and lined with a 20-mil thick permanent liner that has a 4 oz. felt backing, or equivalent, to prevent tears or punctures. Secondary containment holding capacity must be large enough to contain 1 ½ times the content of the largest tank or 24-hour production, whichever is greater (displaced volume from all tanks within the berms MUST be subtracted from total volume of containment in calculating holding capacity).
- Implementation of a leak detection system to provide an early alert to operators when a leak has occurred.
- Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize
 the effects of catastrophic line failures used in production or drilling.

2.1.8. Residual and Cumulative Mitigation

The operator will perform annual pressure monitoring on all casing annuli. If the test results indicate a casing failure has occurred, contact a BLM Engineer immediately, and take remedial action to correct the problem.

2.1.9. Plugging and Abandonment Mitigation

Upon well abandonment in high cave karst areas, additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

2.3 VISUAL RESOURCE MANAGEMENT

2.5.1 **VRM IV**

Above-ground structures including meter housing that are not subject to safety requirements are painted a flat non-reflective paint color, Carlsbad Canyon from the BLM Standard Environmental Color Chart (CC-001: June 2008).

2.5.2 VRM III Facility Requirement

Above-ground structures including meter housing that are not subject to safety requirements are painted a flat non-reflective paint color, Carlsbad Canyon from the BLM Standard Environmental Color Chart (CC-001: June 2008).

Potash Resources

Lessees must comply with the 2012Secretarial Potash Order. The Order is designed to manage the efficient development of oil, gas, and potash resources. Section 6 of the Order provides general provisions which must be followed to minimize conflict between the industries and ensure the safety of operations.

Page 8 of 20

To minimize impacts to potash resources, the proposed well is confined within the boundaries of the established Mezcal Drill Island.

3. CONSTRUCTION REQUIRENMENTS

3.1. CONSTRCUTION NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at BLM_NM_CFO_Construction_Reclamation@blm.gov at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and COAs on the well site and they shall be made available upon request by the Authorized Officer.

3.1 TOPSOIL

The operator shall strip the topsoil (the A horizon) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. No more than the top 6 inches of topsoil shall be removed. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (the B horizon and below) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

3.2 CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No reserve pits will be used for drill cuttings. The operator shall properly dispose of drilling contents at an authorized disposal site.

3.3 FEDERAL MINERAL PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

3.4 WELL PAD & SURFACING

Any surfacing material used to surface the well pad will be removed at the time of interim and final reclamation.

3.5 EXCLOSURE FENCING (CELLARS & PITS)

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the well cellar is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

The operator will also install and maintain mesh netting for all open well cellars to prevent access to smaller wildlife before and after drilling operations until the well cellar is free of fluids and the operator. Use a maximum netting mesh size of $1\frac{1}{2}$ inches. The netting must not have holes or gaps.

3.6 ON LEASE ACESS ROAD

3.6.1 **Road Width**

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

3.6.2 **Surfacing**

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements will be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

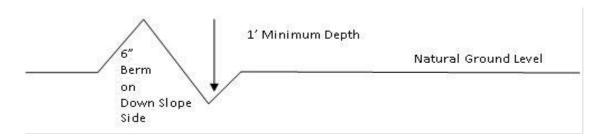
3.6.3 **Crowning**

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

3.6.4 **Ditching**

Ditching shall be required on both sides of the road.

3.6.5 Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

3.7.6 **Drainage**

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing

intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope:
$$\underline{400'} + 100' = 200'$$
 lead-off ditch interval

3.7.7 **Public Access**

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

- Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road
- Revegetate slopes

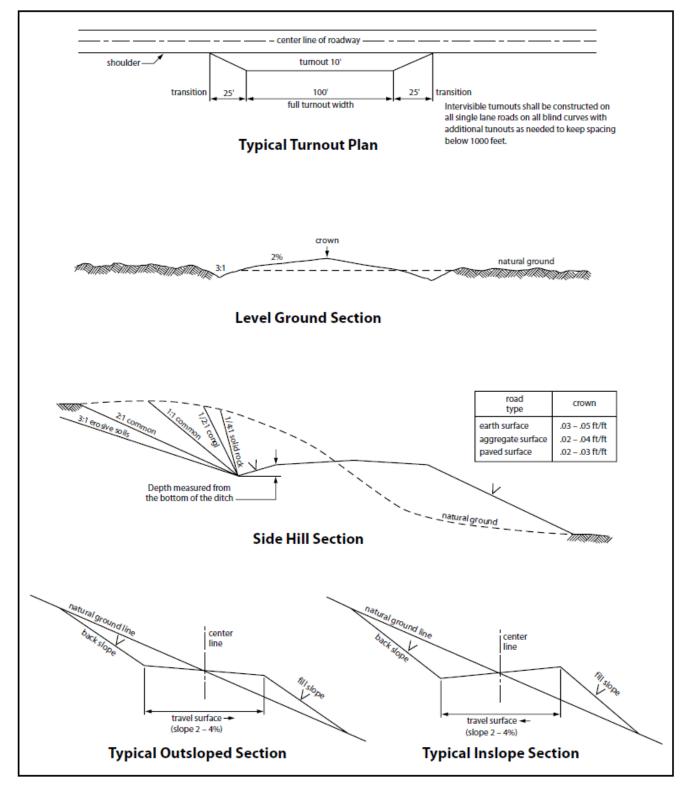


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

4. PIPELINES

- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, passages, or voids are intersected by trenching, and no pipe will be laid in the trench at that point until clearance has been issued by the Authorized Officer.
- A leak detection plan <u>will be submitted to the BLM Carlsbad Field Office for approval</u> prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.
- Regular monitoring is required to quickly identify leaks for their immediate and proper treatment.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

4.1 BURIED PIPELINES

A copy of the application (APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request a copy of your permit during construction to ensure compliance with all stipulations.

Operator agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Operator shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this APD.
- 2. The Operator shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the operator shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the pipeline corridor or on facilities authorized under this APD. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The operator agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Pipeline corridor (unless the release or threatened release is wholly unrelated to the operator's activity on the pipeline corridor), or resulting from the activity of the Operator on the pipeline corridor. This agreement applies without regard to whether a release is caused by the operator, its agent, or unrelated third parties.
- 4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant is discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of operator, regardless of fault. Upon failure of operator to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the operator. Such action by the Authorized Officer shall not relieve operator of any responsibility as provided herein.

Page 13 of 20

- 5. All construction and maintenance activity will be confined to the authorized pipeline corridor.
- 6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.
- 7. The maximum allowable disturbance for construction in this pipeline corridor will be 30 feet:
 - Blading of vegetation within the pipeline corridor will be allowed: maximum width of blading operations will not exceed <u>20</u> feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation*.)
 - Clearing of brush species within the pipeline corridor will be allowed: maximum width of clearing operations will not exceed 30 feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
 - The remaining area of the pipeline corridor (if any) shall only be disturbed by compressing the vegetation. (*Compressing can be caused by vehicle tires, placement of equipment, etc.*)
- 8. The operator shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately ___6__ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.
- 9. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this pipeline corridor and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire pipeline corridor shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted, and a 6-inch berm will be left over the ditch line to allow for settling back to grade.
- 10. The pipeline will be identified by signs at the point of origin and completion of the pipeline corridor and at all road crossings. At a minimum, signs will state the operator's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.
- 11. The operator shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the operator before maintenance begins. The operator will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the operator to construct temporary deterrence structures.
- 12. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 13. <u>Escape Ramps</u> The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:
 - a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them alive at least 100 yards from the trench.
 - b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30-degree slope and spaced no more than 500 feet apart) shall be placed in the trench. Before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them alive at least 100 yards from the trench.

14. Special Stipulations:

Karst:

- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, passages, or voids are intersected by trenching, and no pipe will be laid in the trench at that point until clearance has been issued by the Authorized Officer.
- If a void is encountered, alignments may be rerouted to avoid the karst feature and lessen the potential of subsidence or collapse of karst features, buildup of toxic or combustible gas, or other possible impacts to cave and karst resources from the buried pipeline.
- Special restoration stipulations or realignment may be required at such intersections, if any.
- A leak detection plan <u>will be submitted to the BLM Carlsbad Field Office for approval</u> prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.
- Regular monitoring is required to quickly identify leaks for their immediate and proper treatment.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

4.2 RANGELAND MITIGATION FOR PIPELINES

4.5.1 Fence Requirement

Where entry is granted across a fence line, the fence must be braced and tied off on both sides of the passageway with H-braces prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. The operator shall notify the private surface landowner or the grazing allotment operator prior to crossing any fence(s).

4.5.2 Cattleguards

An appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at road-fence crossing(s). Any existing cattleguard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguard(s) that are in place and are utilized during lease operations. A gate shall be constructed on one side of the cattleguard and fastened securely to H-braces.

4.5.3 Livestock Watering Requirement

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment operator if any damage occurs to structures that provide water to livestock.

- Livestock operators will be contacted, and adequate crossing facilities will be provided as needed to ensure livestock are not prevented from reaching water sources because of the open trench.
- Wildlife and livestock trails will remain open and passable by adding soft plugs (areas where the
 trench is excavated and replaced with minimal compaction) during the construction phase. Soft
 plugs with ramps on either side will be left at all well-defined livestock and wildlife trails along
 the open trench to allow passage across the trench and provide a means of escape for livestock and
 wildlife that may enter the trench.
- Trenches will be backfilled as soon as feasible to minimize the amount of open trench. The
 Operator will avoid leaving trenches open overnight to the extent possible and open trenches that

cannot be backfilled immediately will have escape ramps (wooden) placed at no more than 2,500 feet intervals and sloped no more than 45 degrees.

5. OVERHEAD ELECTRIC LINES

A copy of the APD and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Operator agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The operator shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this APD.
- 2. The operator shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the operator shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the powerline corridor or on facilities authorized under this powerline corridor. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The operator agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Powerline corridor(unless the release or threatened release is wholly unrelated to the operator's activity on the powerline corridor), or resulting from the activity of the Operator on the powerline corridor. This agreement applies without regard to whether a release is caused by the operator, its agent, or unrelated third parties.
- 4. There will be no clearing or blading of the powerline corridor unless otherwise agreed to in writing by the Authorized Officer.
- 5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The operator shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this powerline corridor, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the operator without liability or expense to the United States.
- 6. Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.
- 7. The operator shall minimize disturbance to existing fences and other improvements on public lands. The operator is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The operator will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
- 8. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

- 9. Upon cancellation, relinquishment, or expiration of this APD, the operator shall comply with those abandonment procedures as prescribed by the Authorized Officer.
- 10. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this APD, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

11. Special Stipulations:

• For reclamation remove poles, lines, transformer, etc. and dispose of properly. Fill in any holes from the poles removed.

12. Karst stipulations for overhead electric lines

- Smaller powerlines will be routed around sinkholes and other karst features to avoid or lessen the
 possibility of encountering near surface voids and to minimize changes to runoff or possible leaks
 and spills from entering karst systems. Larger powerlines will adjust their pole spacing to avoid
 cave and karst features.
- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction.
- No further construction will be done until clearance has been issued by the Authorized Officer.
- Special restoration stipulations or realignment may be required.

6. PRODUCTION (POST DRILLING)

5.1 WELL STRUCTURES & FACILITIES

5.1.1 Placement of Production Facilities

Production facilities must be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

5.1.2 Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

5.1.3. Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the

Page 17 of 20

operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

5.1.4. Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

5.1.5. Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

7. RECLAMATION

Stipulations required by the Authorized Officer on specific actions may differ from the following general guidelines

6.1 ROAD AND SITE RECLAMATION

Any roads constructed during the life of the well will have the caliche removed or linear burial. If contaminants are indicated then testing will be required for chlorides and applicable contaminate anomalies for final disposal determination (disposed of in a manner approved by the Authorized Officer within Federal, State and Local statutes, regulations, and ordinances) and seeded to the specifications in sections 6.5 and 6.6.

6.2 EROSION CONTROL

Install erosion control berms, windrows, and hummocks. Windrows must be level and constructed perpendicular to down-slope drainage; steeper slopes will require greater windrow density. Topsoil between windrows must be ripped to a depth of at least 12", unless bedrock is encountered. Any large boulders pulled up during ripping must be deep-buried on location. Ripping must be perpendicular to down-slope. The surface must be left rough in order to catch and contain rainfall on-site. Any trenches resulting from erosion cause by run-off shall be addressed immediately.

6.3 INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations must undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators must work with BLM surface protection specialists (BLM_NM_CFO_Construction_Reclamation@blm.gov) to devise the best strategies to reduce the size of the location. Interim reclamation must allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche and any other surface material is required. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area

will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided in section 6.6.

Upon completion of interim reclamation, the operator shall submit a Sundry Notice, Subsequent Report of Reclamation (Form 3160-5).

6.4 FINAL ABANDONMENT & RECLAMATION

Prior to surface abandonment, the operator shall submit a Notice of Intent Sundry Notice and reclamation plan.

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding will be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM. After earthwork and seeding is completed, the operator is required to submit a Sundry Notice, Subsequent Report of Reclamation.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (BLM_NM_CFO_Construction_Reclamation@blm.gov).

6.5 SEEDING TECHNIQUES

Seeds shall be hydro-seeded, mechanically drilled, or broadcast, with the broadcast-seeded area raked, ripped or dragged to aid in covering the seed. The seed mixture shall be evenly and uniformly planted over the disturbed area.

6.6 SOIL SPECIFIC SEED MIXTURE

The lessee/permitee shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed land application will be accomplished by mechanical planting using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area. Smaller/heavier seeds tend to drop the bottom of the drill and are planted first; the operator shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory BLM or Soil Conservation

District stand is established as determined by the Authorized Officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding or until several months of precipitation have occurred, enabling a full four months of growth, with one or more seed generations being established.

Page 19 of 20

Seed Mixture #1 for Loamy Sites

Species to be planted in pounds of pure live seed* per acre:

Species

	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

^{*}Pounds of pure live seed:

Pounds of seed \mathbf{x} percent purity \mathbf{x} percent germination = pounds pure live seed

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Centennial Resource Production LLC

WELL NAME & NO.: Michelada 3 Fed Com 133H

LOCATION: Sec 5-20S-30E-NMP

COUNTY: Eddy County, New Mexico

COA

H_2S	•	No	0	Yes
Potash /	None	Secretary	⊙ R-111-Q	☐ Open Annulus
WIPP	4-String Design: Ope	en 2nd Int x Production Ca Zone)	asing (ICP 2 above R	elief
Cave / Karst	• Low	Medium	C High	Critical
Wellhead	Conventional	Multibowl	O Both	Diverter
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	□ DV Tool
Special Req	☐ Capitan Reef	Water Disposal	▼ COM	Unit
Waste Prev.	C Self-Certification	C Waste Min. Plan	APD Submitted p	rior to 06/10/2024
Additional	▼ Flex Hose	☐ Casing Clearance	☐ Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	☐ Fluid-Filled	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

APD is within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the updated order.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **440** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Set depth adjusted per BLM geologist*.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing (set at 1740' per BLM geologist) is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing (set at 3770' per BLM geologist) is:
 - Cement should tie-back 500 feet or 50 on top of capitan into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 500 feet into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular
 preventer must be tested to a minimum of 70% of BOPE working pressure and shall be
 higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM_NM_CFO_DrillingNotifications@BLM.GOV**; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following

Page 5 of 8

- conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification Data Report 10/14/2024

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: ASHLEY BROW	/N	Signed on: 04/19/2023		
Title: Sr. Regulatory An	alyst			
Street Address: 300 N	MARIENFELD STREET SUITE 1000			
City: MIDLAND	State: TX	Zip : 79701		
Phone: (432)599-5624				
Email address: ASHLE	Y.BROWN@PERMIANRES.COM			
Field				
Representative Name:				
Street Address:				
City:	State:	Zip:		
Phone:				
Email address:				

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data

APD ID: 10400091730 **Submission Date:** 04/19/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes Show Final Text

Section 1 - General

BLM Office: Carlsbad User: ASHLEY BROWN Title: Sr. Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM135240 Lease Acres:

Surface access agreement in place? Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: CENTENNIAL RESOURCE PRODUCTION LLC

Zip: 79701

Operator letter of

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC

Operator Address: 300 N MARIENFIELD STREET SUITE 1000

Operator PO Box:

Operator City: MIDLAND State: TX

Operator Phone: (432)695-4222

Operator Internet Address: KANICIA.SCHLICHTING@PERMIANRES.COM

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: MICHELADA 3 FED COM Well Number: 133H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: GATUNA CANYON Pool Name: Bone Spring

Well Name: MICHELADA 3 FED COM Well Number: 133H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

MEZCAL 10 NWNW 1

Well Class: HORIZONTAL Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL

Describe sub-type:

Distance to town: Distance to nearest well: 30 FT Distance to lease line: 430 FT

Reservoir well spacing assigned acres Measurement: 400 Acres

Well plat: Michelada_3_Fed_Com_133H_C102_REV_2_LPP_Final_20230418132915.pdf

Well work start Date: 08/31/2023 Duration: 18 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

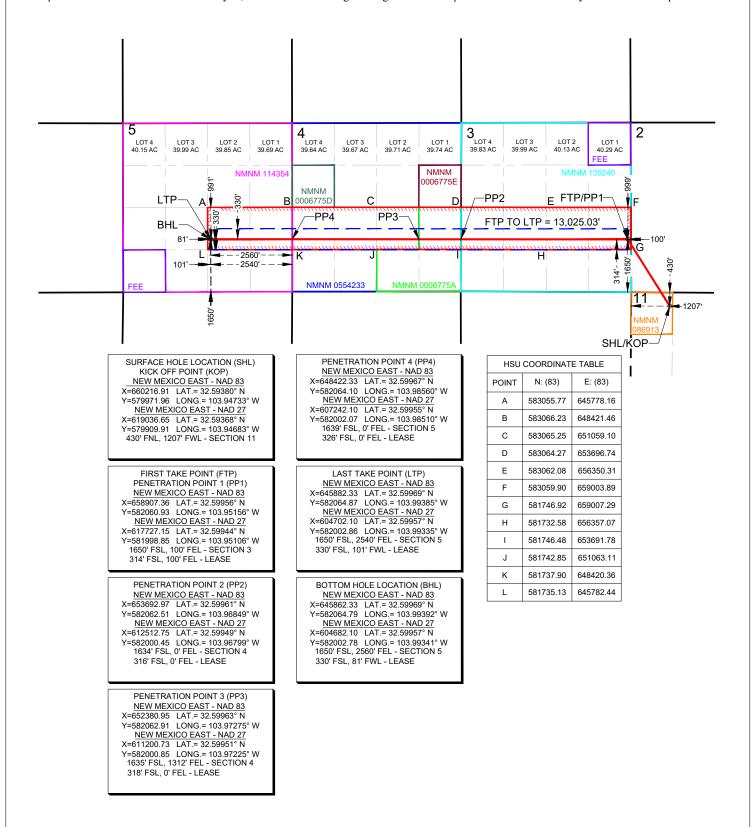
Datum: NAD83 Vertical Datum: NAVD88

Survey number: 25490 Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL	430	FNL	120	FW	20S	30E	11	Aliquot	32.59380	-	EDD	NEW	FIRS	F	NMNM	322	0	0	N
Leg			7	L				NWN	29	103.9473	Υ	MEXI	T		86913	5			
#1								W		294		СО	PRIN						
KOP	430	FNL	120	FW	20S	30E	11	Aliquot	32.59380	-	EDD	NEW	FIRS	F	NMNM	-	935	915	N
Leg			7	L				NWN	29	103.9473	Υ	MEXI	T		86913	592	8	3	
#1								W		294		СО	PRIN			8			
PPP	165	FSL	100	FEL	20S	30E	3	Aliquot	32.59955	-	EDD	NEW	FIRS	F	NMNM	-	100	954	Υ
Leg	0							NESE	78	103.9515	Υ	MEXI	T		135240	632	28	5	
#1-1										571		СО	PRIN			U			

Well Name: MICHELADA 3 FED COM Well Number: 133H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP Leg #1-2	163 4	FSL	0	FEL	20S	30E	4	Aliquot NESE	32.59961 25	- 103.9684 891	EDD Y	NEW MEXI CO	FIRS T PRIN	F	NMNM 06775A	- 632 0	152 42	954 5	Y
PPP Leg #1-3	163 5	FSL	131 8	FEL	20S	30E		Aliquot NWSE	32.59962 59	- 103.9727 677	EDD Y	NEW MEXI CO	FIRS T PRIN	F	NMNM 055423 3	- 632 0		954 5	Υ
PPP Leg #1-4	163 9	FSL	0	FEL	20S	30E	5	Aliquot NESE	32.59966 54	- 103.9856 038	EDD Y	NEW MEXI CO	FIRS T PRIN	F	NMNM 114354	- 632 0	205 13	954 5	Y
EXIT Leg #1	165 0	FSL	254 0	FEL	20S	30E	•	Aliquot NWSE	32.59969 01	- 103.9938 516	EDD Y	NEW MEXI CO	FIRS T PRIN	F	NMNM 114354	- 632 0	230 53	954 5	Y
BHL Leg #1	165 0	FSL	256 0	FEL	20S	30E	5	Aliquot NWSE	32.59969		EDD Y	NEW MEXI CO	FIRS T PRIN	F	NMNM 114354	- 632 0	230 73	954 5	N


<u>C-10</u>	<u>)2</u>		En			ral Resources Departs	ment			Revised July 9, 2024
	Electronically D Permitting	у		OIL (CONSERVA	TION DIVISION			☐ Initial Su	ıbmittal
Via OO	D I cilliang							Submittal Type:	☐ X Amende	d Report
								Type.	☐ As Drille	
					WELL LOCA	TION INFORMATION			•	
API Nı	umber 30-015	-55997	Pool Code		96688	Pool Name GATUNA CAN	NYON;BONE SI	PRING		
Propert	ty Code 33648	2	Property Na	ame	MICHEL AT	DA 3 FED COM			Well Numb	per 133H
OGRII			Operator N			CES OPERATING, LLC			Ground Lev	rel Elevation 3225.37'
Surface		State \square Fee \square	Tribal ⊠ Fed		SIGNIFITY RESOUR	Mineral Owner: □	State Fee	☐ Tribal 🛛	Federal	3223.31
T.11	G .:	Township	Range	T .	1	face Location	T .:. 1	1	Longitude	County
UL	Section		_	Lot	Ft. from N/S	Ft. from E/W	Latitude		_	,
D	11	20-S	30-E		430' N	1207' W	32.59380)* N	103.94733° W	EDDY
UL	Section	Township	Range	Lot	Ft. from N/S	m Hole Location Ft. from F/W	Latitude		Longitude	County
J	5	20-S	30-E	Lot	1650' S	2560' E	32.59969		103.99392° W	EDDY
	3	20-5	30-L		1030 5	2300 E	32.3770	7 11	103.77372 ***	EDD 1
	ted Acres	Infill or Defin	_		g Well API -55689	Overlapping Spacing	g Unit (Y/N)	Consolida	tion Code	
Order 1	Numbers.					Well setbacks are ur	nder Common (Ownership:	X Yes □No	
					Kick (Off Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
D	11	20-S	30-E		430' N	1207' W	32.59380)° N	103.94733° W	EDDY
					First 7	Take Point (FTP)				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
I	3	20-S	30-E		1650' S	100' E	32.59956	5° N	103.95156° W	EDDY
	1	1			•	Take Point (LTP)		-		ì
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
J	5	20-S	30-E		1650' S	2540' E	32.59969	9° N	103.99385° W	EDDY
Unitize	od Area or Ar	ea of Uniform I	ntaract	Cussins	Hait Tema ▽ Har	inoutol [] Wantical	Group	nd Floor Ele	evetion:	
Omuze	tu Alea oi Ali	ea of Chilofili i	niciesi	Spacing	Unit Type & Hoi	rizontal Vertical	Gloui	nu Floor En	evation.	
OPER.	ATOR CERT	IFICATIONS				SURVEYOR CERTIF	ICATIONS			
		e information cont ef, and, if the well			nplete to the best of	I hereby certify that the v surveys made by me or un				
organiza	ation either owi	ns a working inter bottom hole loca	est or unleased	mineral inte	erest in the land	my beliefs.	ider my supervisio	on, and that t		a correct to the vest of
location	pursuant to a	contract with an o	wner of a work	ing interest o	or unleased mineral ag order heretofore		CHARLES W M	L. JURIC		
	by the division.		пені от а сотрі	usory pooun	ig order neretojore	,	CY AN N	MEX/C)	y \	
					has received the	1		490	1	
in each	tract (in the tar	getmool or forma	tion) in which a	ny part of th	used mineral interest se well's completed		X		11/01/2024	
interval	will be located	or obtained a cor	npulsory poolin	g order fron		Mar	XXXX	11/2	El a	
Signatur	<u>/ </u>	NOOF	Date	4	12/23/2024	Signature and Seal of Profe	essional Serveyor	TAL SURVE		
	nifer Elr	ν					7			
Printed	-	<u>u</u>				Certificate Number	Date of Surve	ey .		
		d@permi	anres co	m						
Email A		<u>a@heiiili</u>	<u> </u>							

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400091730 **Submission Date:** 04/19/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14301120	RUSTLER	2880	375	375	SANDSTONE	USEABLE WATER	N
14301121	TOP SALT	2283	597	597	SALT	POTASH	N
14301122	TANSILL	1125	1755	1755	ANHYDRITE, SHALE	NATURAL GAS, OIL	N
14301123	YATES	1011	1869	1869	ANHYDRITE, SHALE	NATURAL GAS, OIL	N
14301124	CAPITAN REEF	845	2035	2035	OTHER : CARBONATE	USEABLE WATER	N
14301126	DELAWARE SAND	-680	3560	3560	SANDSTONE	NATURAL GAS, OIL	N
14301127	BONE SPRING LIME	-3555	6435	6435	OTHER, SHALE : CARBONATE	NATURAL GAS, OIL	N
14301128	BONE SPRING 1ST	-4765	7645	7645	OTHER, SANDSTONE, SHALE : CARBONATE	NATURAL GAS, OIL	N
14301129	BONE SPRING 2ND	-5345	8225	8225	SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 8270

Equipment: BOPE will meet all requirements for above listed system per 43 CFR 3172. BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional, tested, and will meet all requirements per 43 CFR 3172. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing of the surface x intermediate annulus without breaking the connection between the BOP & wellhead. A variance is requested to utilize a flexible choke line (flexhose) from the BOP to choke manifold.

Requesting Variance? YES

Variance request: Multibowl Wellhead, Flexhose, Breaktesting, Offline Cementing Variances. Attachments in Section 8.

Testing Procedure: Operator requests to ONLY test broken pressure seals per API Standard 53 and the attachments in Section 8. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed, b. whenever any seal subject to test pressure is broken, c.

Well Name: MICHELADA 3 FED COM Well Number: 133H

following related repairs, d. at 21-day intervals. Testing of the ram type preventer(s) and annual type preventer(s) shall be tested per 43 CFR 3172. The BOPE configuration, choke manifold layout, and accumulator system will be in compliance with 43 CFR 3172. Bleed lines will discharge 100' from wellhead in non-H2S scenarios and 150' from wellhead in H2S scenarios.

Choke Diagram Attachment:

Michelada_Fed_5MCM_20240730065450.pdf

BOP Diagram Attachment:

Michelada_Fed_5MBOP_20240730065453.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	400	0	400	3225	2825	400	J-55	54.5	BUTT	5.72	3.67	DRY	7.46	DRY	7
2	INTERMED IATE	12.2 5	10.75	NEW	NON API	N	0	1780	0	1780	3226	1445	1780	J-55		OTHER - BTC SCC	10.7 1	4.43	DRY	5.87	DRY	5.75
	INTERMED IATE	9.87 5	8.625	NEW	NON API	N	0	3510	0	3510	3226	-285	3510	HCL -80		OTHER - MO-FXL	5.95	1.53	DRY	2.38	DRY	3.45
- 1	PRODUCTI ON	7.87 5	5.5	NEW	NON API	N	0	21710	0	8270	3225	-5045	21710	OTH ER		OTHER - GEOCONN	1.74	1.82	DRY	2.27	DRY	2.27

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Michelada_3_Fed_133H_Csg_20240806043406.pdf

Well Name: MICHELADA 3 FED COM Well Number: 133H

Casing Attachments

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Michelada_Fed_Int1_Spec_Sheet_20240806043654.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Michelada_3_Fed_133H_Csg_20240806043511.pdf$

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

Michelada_Fed_Int2_Spec_Sheet_20240806043702.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Michelada_3_Fed_133H_Csg_20240806043555.pdf

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Michelada_Fed_Prod_Spec_Sheet_20240806043643.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Michelada_3_Fed_133H_Csg_20240806043635.pdf

Section 4 - Cement

Well Name: MICHELADA 3 FED COM Well Number: 133H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	400	680	1.34	14.8	310	50	CLASS C	Accelerator

INTERMEDIATE	Lead	0	1420	790	1.88	12.9	1480	50	CLASS C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	1420	1780	290	1.34	14.8	380	50	CLASS C	Retarder
INTERMEDIATE	Lead	0	2800	610	1.88	12.9	1130	50	CLASS C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	2800	3510	220	1.33	14.8	280	25	CLASS C	Salt
PRODUCTION	Lead	2100	4010	225	2.41	11.5	542.2 5	50	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail	4010	2171 0	2462	1.73	12.5	4260	25	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: MICHELADA 3 FED COM Well Number: 133H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	400	SPUD MUD	8.6	9.5							
400	1780	SALT SATURATED	10	10							
1780	3510	OTHER : Fresh Water	8.6	9.5							
3510	2171 0	OTHER : Brine, OBM	9	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4970 Anticipated Surface Pressure: 2870

Anticipated Bottom Hole Temperature(F): 151

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

H2S_Contingency_Plan_Mezcal_10_Fed_Com_and_Michelada_3_Fed_Com_20230411160402.pdf

Well Name: MICHELADA 3 FED COM Well Number: 133H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

 $Michelada_3_Fed_133H_DD_20240730065535.pdf$

Michelada_3_Fed_133H_AC_20240730065535.pdf

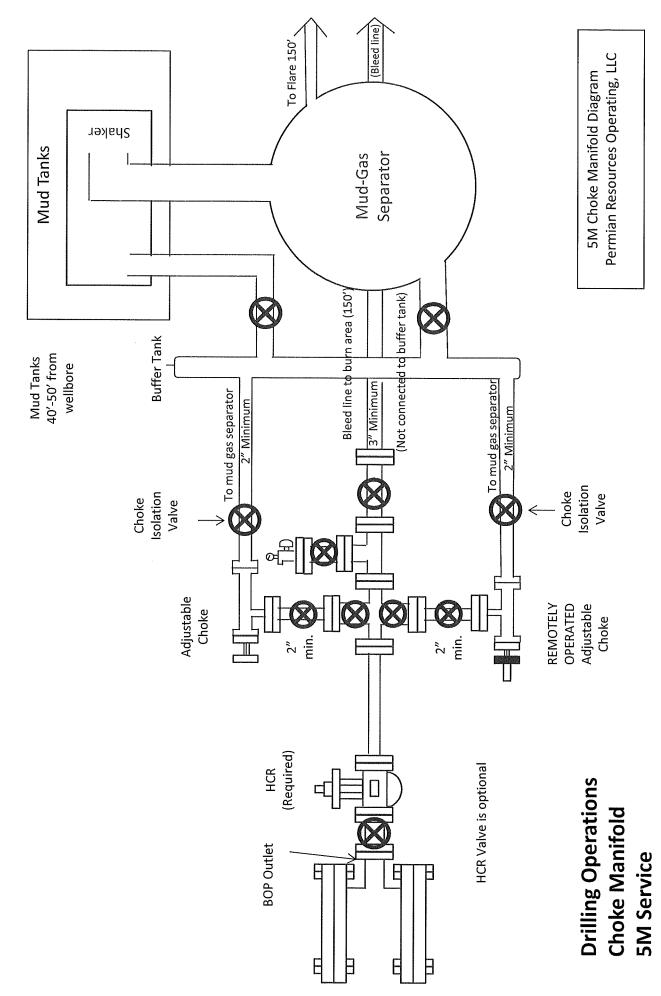
Other proposed operations facets description:

R-111-Q Process Attached

Other proposed operations facets attachment:

Michelada_Fed_R111Q_Process_ExWBD_20240730065515.pdf

Other Variance attachment:


Michelada_Fed_MBS_20240730065524.pdf

Michelada_Fed_Break_20240730065524.pdf

Michelada_Fed_Batch_20240730065524.pdf

Michelada_Fed_FH_20240730065524.pdf

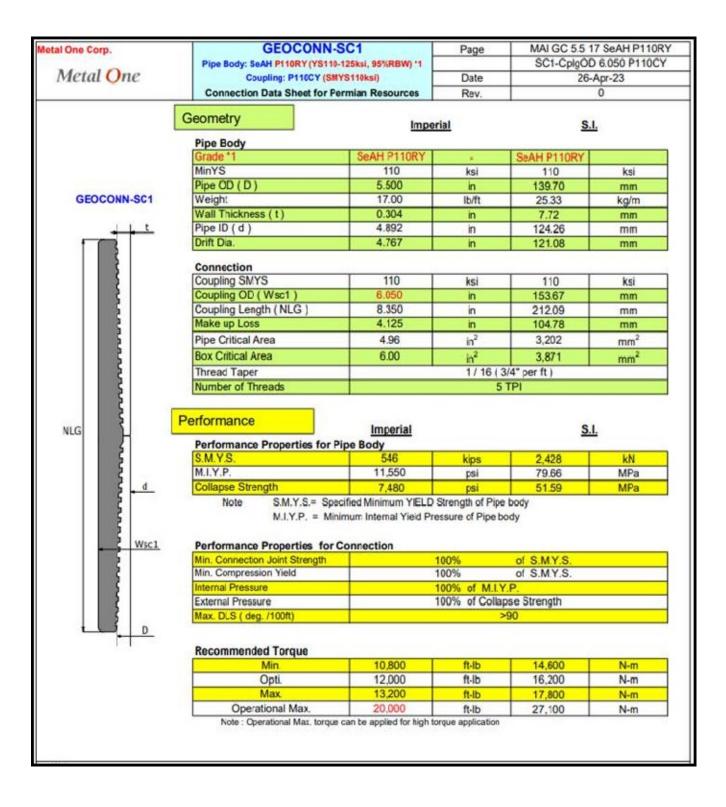
Michelada_Fed_OLCV_20240730065524.pdf

Released to Imaging: 1/15/2025 3:46:08 PM

Bleed lines will discharge 100' from WH in non-H2S scenarios

and 150' from WH in H2S scenarios.

Bleed lines will discharge 100' from WH in non-H2S scenarios and 150' from WH in H2S scenarios.


SOP-12-F05 Performance Data Sheet

API 5CT Casing Performance Data Sheet 10.750" 45.50 lb/ft J55

	50" 45.50 lb/ft J55 ions of API SCT 10th edition and bears the API monogram.
Grade	155
	Sizes and Weights
OD	10.750 in
Nominal Wall Thickness	0.400 in
Nominal Weight, T&C	45.50 lb/ft
Nominal Weight, PE	44.26 lb/ft
Nominal ID	9.950 in
Standard Drift	9.794 in
Alternate Drift	9.875 in
h	Pipe Body Mechanical Properties
Minimum Yield Strength	55,000 psi
Maximum Yield Strength	80,000 psi
Minimum Tensile Strength	75,000 psi
Maximum Hardness	N/A
	Minimum Performance
Collapse Pressure	2,470 psi
Minimal Internal Pressure Yield	5,210 psi
Pipe body Tension Yield	1,040,000 lbs
Joint Strength STC	692,000 lbs
Joint Strength LTC	N/A
Joint Strength BTC	1,063,000 lbs
Internal Pressure Leak Resistance STC/LTC Connections	6,880 lbs
Internal Pressure Leak Resistance BTC Connections	7,450 lbs
	Special Clearance Coupling
OD	N/A
Minimum Length (NL)	10.625"
Diameter at Counterbore	13.515"
Width of Bearing Face	0.375"
	Inspection and Testing
Visual	OD Longitudinal and independent 3rd party SEA
NDT	Weldline UT after hydrotest. Calibration notch sensitivity (% of specified wall thickness): 12.5%
	<u>Color code</u>
Pipe ends	One green band
Couplings	Green with one white band (alternate coupling: K55 - green)

Metal One Corp.	MO-FXL			MO-FXL 8	
			CDS#	P110H	
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HS0	CY MinYS125ksi		MinYS1	
	Min95%WT	01		Min959	
	Connection Data	Sheet	Date	8-Sep)-21
	Geometry	Imperia	al	S.I.	
	Pipe Body		_	_	
	Grade *1	P110HSCY		P110HSCY	
	MinYS *1	125	ksi	125	ksi
	Pipe OD (D)	8 5/8	in	219.08	mm
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m
	Actual weight	31.10		46.34	kg/m
	Wall Thickness (t)	0.352	in	8.94	mm
	Pipe ID (d)	7.921	in	201.19	mm
	Pipe body cross section	9.149	in ²	5,902	mm ²
	Drift Dia.	7.796	in	198.02	mm
	-	-	-	-	-
	Connection				
<u> </u>	Box OD (W)	8.625	in	219.08	mm
	PIN ID	7.921	in	201.19	mm
	Make up Loss	3.847	in	97.71	mm
Box	Box Critical Area	5.853	in ²	3686	mm ²
critical	Joint load efficiency	69	%	69	%
	Thread Taper			.2" per ft)	_~
	Number of Threads			TPI	
Make up loss	Performance Performance Properties	for Pipe Body	,		
	S.M.Y.S. *1	1,144	kips	5,087	kN
	M.I.Y.P. *1	9,690	psi	66.83	MPa
Pin	Collapse Strength *1	4,300	psi	29.66	MPa
area	Note S.M.Y.S.= Speci	fied Minimum YII	LD Stre	ngth of Pipe bo	dy
	M.I.Y.P. = Minin				
<u> </u>	*1: BMP P110HSCY: MinYS			pse Strength 4,	300psi
	Performance Properties				
₩	Tensile Yield load			of S.M.Y.S.)	
	Min. Compression Yield	789 kips		of S.M.Y.S.)	
	Internal Pressure External Pressure	6,780 psi		of M.I.Y.P.) of Collapse St	ronath
	Max. DLS (deg. /100ft)				rengin
	Max. DES (deg. / 100it)			9	
	Recommended Torque				
	Min.	13,600	ft-lb	18,400	N-m
	Opti.	14,900	ft-lb	20,200	N-m
	Max.	16,200	ft-lb	21,900	N-m
	Operational Max.	28,400	ft-lb	38,500	N-m
	Note : Operational Max. t	orque can be appli	ed for high		

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a
 depth where the hydrostatic pressure of the mud column equals pore pressure at the
 depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls
 to a depth where the hydrostatic pressure of the mud column equals pore pressure at the
 depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	400	0	400	400	J55		BTC	5.72	3.67	Dry	7.46	Dry	7.00
Intermediate 1	12.25	10.75	0	1780	0	1780	1780	J55	45.5	BTC SCC	10.71	4.43	Dry	5.87	Dry	5.75
Intermediate 2	9.875	8.625	0	3510	0	3510	3510	HCL-80	32	MO-FXL	5.95	1.53	Dry	2.38	Dry	3.45
Production	7.875	5.5	0	21710	0	8270	21710	P110RY	17	GeoConn	1.74	1.82	Dry	2.27	Dry	2.27
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	400	0	400	400	J55	7 7 7 7 7 7 7 7	BTC	5.72	3.67	Dry	7.46	Dry	7.00
Intermediate 1	12.25	10.75	0	1780	0	1780	1780	J55	45.5	BTCSCC	10.71	4.43	Dry	5.87	Dry	5.75
Intermediate 2	9.875	8.625	0	3510	0	3510	3510	HCL-80	32	MO-FXL	5.95	1.53	Dry	2.38	Dry	3.45
Production	7.875	5.5	0	21710	0	8270	21710	P110RY	17	GeoConn	1.74	1.82	Dry	2.27	Dry	2.27
				- 0	0.0	9.9		BLM Mi	n Safe	ty Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	400	0	400	400	J55	7.7	BTC	5.72	3.67	Dry	7.46	Dry	7.00
Intermediate 1	12.25	10.75	0	1780	0	1780	1780	J55	45.5	BTCSCC	10.71	4.43	Dry	5.87	Dry	5.75
Intermediate 2	9.875	8.625	0	3510	0	3510	3510	HCL-80	32	MO-FXL	5.95	1.53	Dry	2.38	Dry	3.45
Production	7.875	5.5	0	21710	0	8270	21710	P110RY	17	GeoConn	1.74	1.82	Dry	2.27	Dry	2.27
	, ,	0 .5%					8	BLM Mi	n Safe	ty Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	400	0	400	400	J55		BTC	5.72	3.67	Dry	7.46	Dry	7.00
Intermediate 1	12.25	10.75	0	1780	0	1780	1780	J55	45.5	BTC SCC	10.71	4.43	Dry	5.87	Dry	5.75
Intermediate 2	9.875	8.625	0	3510	0	3510	3510	HCL-80	32	MO-FXL	5.95	1.53	Dry	2.38	Dry	3.45
Production	7.875	5.5	0	21710	0	8270	21710	P110RY	17	GeoConn	1.74	1.82	Dry	2.27	Dry	2.27
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

PERMIAN RESOURCES

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation
Mezcal 10 Fed Com 121H, 131H, 132H, 133H, 134H
Michelada 3 Fed Com 123H, 124H, 133H, 134H
Eddy County, New Mexico

01-20-2023
This plan is subject to updating

Permian Resources Corporation H₂S Contingency Plan Eddy County, New Mexico Mezcal 10 Fed Com 121H, 131H 132H, 133H, 134H

Table of Contents

Section	1.0 – Introduction
l.	Purpose
II.	Scope & Applicability
Section	2.0 - Plan Implementation3
l.	Activation Requirements
II.	Emergency Evacuation
III.	Emergency Response Activities
	3.0 - Potential Hazardous Conditions4
Section	4.0 - Notification of H2S Release Event6
I.	Local & State Law Enforcement
II.	General Public
III.	New Mexico Oil Conservation Division
IV.	New Mexico Environment Department
V.	Bureau of Land Management
Section	5.0 - Emergency Contact List7
I.	Permian Resources Management Personnel
II.	Eddy County Sheriff
III.	New Mexico State Highway Patrol
IV.	Fire / EMS
V.	Carlsbad Medical Center
VI.	Emergency Response Contractors
VII.	New Mexico Oil Conservation Division
VIII.	New Mexico Environment Department
IX.	Bureau of Land Management
Χ.	Other Agencies
Section	6.0 – Drilling Location Information9-12
I.	Site Safety Information
II.	Directions to Location
III.	Plat of Location including GPS Coordinates
IV.	Routes of Ingress & Egress (MAP)
V.	ROE Map
VI.	Residences in ROE
VII.	Public Roads in ROE
Section	7.0 – Hazard Communication13-15
l.	Physical Characteristics of Hydrogen Sulfide Gas
II.	Human Health Hazards / Toxicological Information
III.	Environmental Hazards
Section	8.0 - Regulatory Information15-17
I.	OSHA Information
II.	New Mexico Oil Conservation Division & Bureau of Land Management
	9.0 - Training Requirements17
	10.0 - Personal Protective Equipment
Appena	lices

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

- I. Appendix A − H₂S SDS
- II. Appendix B SO₂ SDS

Section 1.0 - Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H₂S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H₂S gas, or SO², which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H_2S , there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions are identified in the tables below.

H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER	✓
H ₂ S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH -> WARNING SIGREEN	GN
H ₂ S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H ₂ S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H ₂ S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H ₂ S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4 , Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

Permian Resources Corporation

Eddy County, New Mexico

Mezo	cal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	
H ₂ S CONDITION 3: EXTREME DANGER	R TO LIFE AND HEALTH → WARNING SIGN RED	
	ected by location monitors: Extreme danger to life	
General Actions During Condition 3	•	
Sound H ₂ S alarm and/or display red fla		
Account for on-site personnel	**************************************	
Move away from H ₂ S source and get of	out of the affected area.	
Proceed to designated safe briefing are		
Account for personnel at safe briefing	area.	
	measures to control source H2S discharge and	
eliminate possible ignition sources necessary to correct or control the	s. Initiate Emergency Shutdown procedures as deemed specific situation.	
Notify vehicles or situation and divert		
Permian Resources Peron-in-Charge w	vill make appropriate community notifications.	
	until the situation has been corrected and the Permian mines it is safe to resume operations under Condition	
Notify management of the condition a	nd action taken. If H ₂ S concentration is increasing and	
•	ot successful – or at any time if well control is e parties for possible activation of the H ₂ S Contingency	
Plan. If well control at the surface	is lost, determine if situation warrants igniting the	_
well. If uncontrolled flow at the surface occ	urs, the Permian Resources PIC, with approval, if	
	the emergency (as specified in the site-specific H_2S	
	e for determining if the situation warrants igniting the s decision should be made only as a last resort and in a	
	uman life is in danger and there is no hope of	
controlling the flow under prevaili		
	be converted to sulphur dioxide (SO ₂), which is also	
	rea is safe after the flow is ignited. If the well is nandatory, because SO ₂ will remain in low-lying	
places under no-wind conditions.		
Keep Site Supervisor / Permian Resou	rces PIC informed. s and local law enforcement (Appendix A)	
	rs within the Radius of Exposure (ROE), see example	
in Figure 5-11.		

H₂S Contingency Plan

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Continuously monitor H ₂ S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
IF ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	
Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	
Make recommendations to public officials regarding evacuating the public and assist as appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H_2S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H_2S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

Section 5.0 - Emergency Contact List

EMERGENCY CONTACT LIST								
PERMIAN RESOURCES CORPORATION.								
POSITION	NAME	OFFICE	CELL	ALT PHONE				
Operations								
Operations Superintendent	Rick Lawson		432.530.3188					
TX Operations Superintendent	Josh Graham	432.940.3191	432.940.3191					
NM Operations Superintendent	Manual Mata	432.664.0278	575.408.0216					
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916					
Drilling Engineer	Ronny Hise	432.315.0144	432.770.4786					
Production Manager	Levi Harris	432.219.8568	720.261.4633					
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494					
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140					
HSE & Regulatory								
H&S Manager	Adam Hicks	720.499.2377	903.426.4556					
Regulatory Manager	Sarah Ferreyros	720.499.1454	720.854.9020					
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321					
Environmental Representative	<u> </u>							
HSE Consultant	Blake Wisdom		918-323-2343					
l	ocal, State, & F	ederal Agen	cies					
Eddy County Sheriff		575-887-7551		911				
New Mexico State Highway Patrol		505-757-2297		911				
Eunice Fire / EMS		575-628-5450		911				
Carlsbad Medical Center		575-887-4100						
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707					
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161						
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910						
New Mexico Oil Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161						
Bureau of Land Management – Carlsbad, NM		575-234-5972						
U.S. Fish & Wildlife		502-248-6911						

Section 6.0 – Drilling Location Information

I. Site Safety Information

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

1. Safe Briefing Area

a. There shall be two areas that will be designated as "SAFE BRIEFING AREAS". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

2. Wind Indicators

a. 4 Windsocks will be installed at strategic points on the facility.

3. Danger Signs

a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

4. H₂S Detectors and Alarms

a. Continuous monitoring type H₂S detectors, capable of sensing a minimum of 5ppm H₂S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO₂ detector will also be located at the combustor. The automatic H₂S alarm/flashing light will be located at the site entrance and in front of tank battery.

5. Safety Trailer

a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.

6. Well Control Equipment

- a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
- b. The location shall be equipped with a remotely operated choke system and a mud gas separator.

7. Mud Program

a. Company shall have a mud program that contains sufficient weight and additives to control H_2S .

8. Metallurgy

a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.

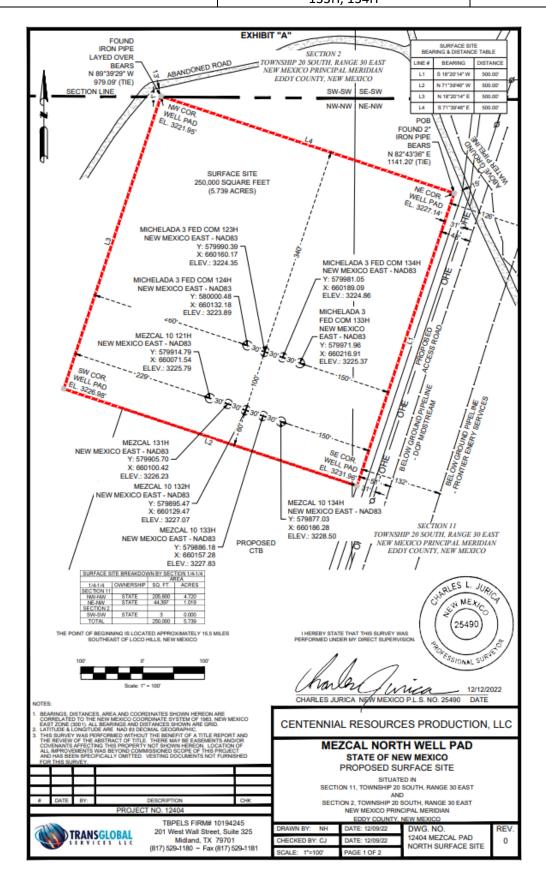
9. Communication

a. The location shall be equipped with a means of effective communication such as a cell

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

phones, intercoms, satellite phones or landlines.

II. Directions to Location


From Intersection of NM 360 & US 180, Go Northeast on NM 360 for 4.4 miles. Turn Right and Go Southeast for 0.54 miles. Turn Right Go South 0.42 Miles, Turn Right Go South 97 Feet, Turn Left onto Crazy Horse Rd and Go Northeast 1.2 Miles to the Southeast Pad Corner for this location.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Plat of Location

Permian Resources Corporation H₂S Contingency Plan Mezcal 10 Fed Com 121H, 131H 132H, 133H, 134H

Eddy County, New Mexico

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

1. Routes of Ingress & Egress (MAP)

2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation H₂S Contingency Plan Eddy County, New Mexico Mezcal 10 Fed Com 121H, 131H 132H, 133H, 134H

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H₂S in PPM 1500

Enter Gas flow in mcf/day (maximum worst case conditions) 2500

500 ppm radius of exposure (public road) 105 feet
300 ppm radius of exposure (public area) 146 feet
100 ppm radius of exposure (public area) 230 feet

- Location GPS Coordinates Lat: 32.593584, Long: -103.947702
- 3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico Crazy Horse Rd, which is 450' from the location.

Section 7.0 - Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Hydrogen sulfide (H_2S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0.**

With H_2S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1.**

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Table 7.0. Physical Properties of H₂S

Properties of H2S	Description
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production.
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air.

Although H_2S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Table 7.1. Hazards & Toxicity

Concentration	Symptoms/Effects	
(ppm)		

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients.
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

 H_2S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO_2 is produced as a constituent of flaring H_2S Gas and can present hazards associated, which are similar to H_2S . Although SO_2 is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

SULFUR DIOXIDE TOXICITY		
Conce	entration	Effects
%SO ₂	PPM	
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.
0.15	150	So irritating that it can only be endured for a few minutes.
0.05	500	Causes a sense of suffocation, even with first breath.

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description	
NIOSH PEL 10 PPM	PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day.	
OSHA General Industry Ceiling PEL – 20 PPM	The maximum exposure limit, which cannot be exceeded for any length of time.	
IDLH 100 PPM	■ Immediately Dangerous to Life and Health	
Permian Resources PEL 10 PPM	Permian Resources Policy Regarding H2S for employee safety	

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H_2S contingency plan for sites where the H_2S concentrations are as follows.

Table 8.1. Calculating H₂S Radius of Exposure

H ₂ S Radius of Exposure	Description	Control and Equipment Requirements
100 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 100ppm	ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated). ROE > 3,000-ft

Permian Resources Corporation	H ₂ S Contingency Plan Mezcal 10 Fed Com 121H, 131H 132H,	Eddy County, New Mexico
	133H, 134H	

500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

The ROE of an H_2S release is calculated to determine if a potentially hazardous volume of H_2S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H_2S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **100 ppm ROE**:

 $x = [(1.589) \text{ (mole fraction } H_2S)(Q)]^{(.6258)}.$

To determine the extent of the **500 ppm ROE**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}.$

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description
X =	ROE in feet
Q =	Max volume of gas released determined to be released in cubic feet per day (ft³/d) normalized to standard temperature and pressure, 60°F and 14.65 psia
Mole fraction H₂S =	Mole fraction of H ₂ S in the gaseous mixture released.

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

- Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.
- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - o **CASE 1** -100 ppm ROE < 50'

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

- CASE 2 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
- CASE 3 -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

Table 8.3. NMAC 19.15.11 Compliance Requirements Drilling & Production

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS - DRILLING & PRODUCTION				
PROVISION	CASE 1	CASE 2	CASE 3	
H ₂ S Concentration Test	X	X	X	
H-9	X	X	X	
Training	X	X	X	
District Office Notification	X	X	X	
Drill Stem Tests Restricted	X*	X*	X	
BOP Test	X*	X*	X	
Materials		X	X	
Warning and Marker		X	X	
Security		X	X	
Contingency Plan			X	
Control and Equipment Safety			X	
Monitors		X**	X**	
Mud (ph Control or Scavenger)			X*	
Wind Indicators		X**	X	
Protective Breathing Equipment		X**	X	
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X	
Flare Stacks			X*	

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H_2S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 CFR Part 1910.134).
- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. Personal H₂S Monitors

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes

III. Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. Respiratory Protection

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.
- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Appendix A H₂S SDS

PRAXAIR

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)
Date of issue: 10-15-1979 Revision date: 08-10-2016 Si

Supersedes: 10-15-2013

SECTION 1: Identification

Product form Substance Name Hydrogen sulfide CAS No : 7783-06-4 Formula H2S Other means of identification Hydrogen sulfide Product group Core Products

1.2. Recommended use and restrictions on use

Recommended uses and restrictions Industrial use Use as directed

1.3. Supplier

Praxair Canada inc. 1200 – 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-1682 www.praxair.ca

1.4. Emergency telephone number

Emergency number

1-800-363-0042

Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product.

For routine information, contact your supplier or Praxair sales representative.

SECTION 2: Hazard identification

Classification of the substance or mixture

GHS-CA classification

Flam. Gas 1 Liquefied gas H220 H280 H330 Acute Tox. 2 (Inhalation: gas) STOT SE 3 H335

GHS Label elements, including precautionary statements

GHS-CA labelling

Hazard pictograms

Signal word : DANGER

Hazard statements

: EXTREMELY FLAMMABLE GAS
CONTAINS GAS UNDER PRESSURE; MAY EXPLODE IF HEATED
FATAL IF INHALED
MAY CAUSE RESPIRATORY IRRITATION
MAY FORM EXPLOSIVE MIXTURES WITH AIR
SYMPTOMS MAY BE DELAYED
EXTENDED EXPOSURE TO GAS REDUCES THE ABILITY TO SMELL SULFIDES

Precautionary statements

Do not handle until all safety precautions have been read and understood Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website. EN (English) SDS ID : E-4611

1/9

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Do not breathe gas

Use and store only outdoors or in a well-ventilated area

Avoid release to the environment

Wear protective gloves, protective clothing, eye protection, respiratory protection, and/or face

Leaking gas fire: Do not extinguish, unless leak can be stopped safely

In case of leakage, eliminate all ignition sources Store locked up

Dispose of contents/container in accordance with container Supplier/owner instructions

Protect from sunlight when ambient temperature exceeds 52°C (125°F)

Close valve after each use and when empty

Do not open valve until connected to equipment prepared for use

When returning cylinder, install leak tight valve outlet cap or plug

Do not depend on odour to detect the presence of gas

Other hazards

Other hazards not contributing to the classification

: Contact with liquid may cause cold burns/frostbite.

Unknown acute toxicity (GHS-CA)

No data available

SECTION 3: Composition/information on ingredients

Substances

Name	CAS No.	% (Vol.)	Common Name (synonyms)
Hydrogen sulfide (Main constituent)	(CAS No) 7783-06-4		Hydrogen sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / Sulfureted hydrogen / Dihydrogen sulphide / Hydrogensulfide

3.2. Mixtures

Not applicable

SECTION 4: First-aid measures

Description of first aid measures

First-aid measures after inhalation

- : Remove to fresh air and keep at rest in a position comfortable for breathing. If not breathing, give artificial respiration. If breathing is difficult, trained personnel should give oxygen. Call a physician.
- First-aid measures after skin contact
- The liquid may cause frostbite. For exposure to liquid, immediately warm frostbite area with warm water not to exceed 105°F (41°C). Water temperature should be tolerable to normal skin. Maintain skin warming for at least 15 minutes or until normal coloring and sensation have returned to the affected area. In case of massive exposure, remove clothing while showering

First-aid measures after eye contact

with warm water. Seek medical evaluation and treatment as soon as possible. Immediately flush eyes thoroughly with water for at least 15 minutes. Hold the eyelids open and away from the eyeballs to ensure that all surfaces are flushed thoroughly. Contact an

First-aid measures after ingestion

ophthalmologist immediately. : Ingestion is not considered a potential route of exposure.

Most important symptoms and effects (acute and delayed)

No additional information available

Immediate medical attention and special treatment, if necessary

Other medical advice or treatment

: Obtain medical assistance. Treat with corticosteroid spray as soon as possible after inhalation.

SECTION 5: Fire-fighting measures

Suitable extinguishing media

Suitable extinguishing media

Carbon dioxide, Dry chemical, Water spray or fog. Use extinguishing media appropriate for surrounding fire

Unsuitable extinguishing media

No additional information available

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 2/9

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Specific hazards arising from the hazardous product

Fire hazard

: EXTREMELY FLAMMABLE GAS. If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard. Vapors can be ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharge, or other ignition sources at locations distant from product handling point. Explosive atmospheres may linger. Before entering an area, especially a confined area, check the atmosphere with an appropriate device.

Explosion hazard : EXTREMELY FLAMMABLE GAS. Forms explosive mixtures with air and oxidizing agents.

Reactivity : No reactivity hazard other than the effects described in sub-sections below. Reactivity in case of fire : No reactivity hazard other than the effects described in sub-sections below.

5.4. Special protective equipment and precautions for fire-fighters

Firefighting instructions

: DANGER! Toxic, flammable liquefied gas

Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective clothing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fire if safe to do so. On-site fire brigades must comply with their provincial and local fire code regulations.

Special protective equipment for fire fighters

Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire

Other information

Containers are equipped with a pressure relief device. (Exceptions may exist where authorized by TC.).

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedure

General measures

DANGER! Toxic, flammable liquefied gas . Forms explosive mixtures with air and oxidizing agents. Immediately evacuate all personnel from danger area. Use self-contained breathing apparatus where needed. Remove all sources of ignition if safe to do so. Reduce vapors with fog or fine water spray, taking care not to spread liquid with water. Shut off flow if safe to do so. Ventilate area or move container to a well-ventilated area. Flammable vapors may spread from leak and could explode if reignited by sparks or flames. Explosive atmospheres may linger. Before entering area, especially confined areas, check atmosphere with an appropriate device.

Methods and materials for containment and cleaning up

Methods for cleaning up

: Try to stop release. Reduce vapour with fog or fine water spray. Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution. Dispose of contents/container in accordance with local/regional/national/international regulations. Contact supplier for any special requirements.

Reference to other sections

For further information refer to section 8: Exposure controls/personal protection

SECTION 7: Handling and storage

Precautions for safe handling

Precautions for safe handling

: Leak-check system with soapy water; never use a flame

All piped systems and associated equipment must be grounded

Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only non-sparking tools. Use only explosion-proof equipment

Wear leather safety gloves and safety shoes when handling cylinders. Protect cylinders from physical damage; do not drag, roll, slide or drop. While moving cylinder, always keep in place removable valve cover. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Never insert an object (e.g, wrench, screwdriver, pry bar) into cap openings; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. Slowly open the valve. If the valve is hard to open, discontinue use and contact your supplier. Close the container valve after each use; keep closed even when empty. Never apply flame or localized heat directly to any part of the container. High temperatures may damage the container and could cause the pressure relief device to fail prematurely, venting the container contents. For other precautions in using this product, see section 16.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 3/9

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions

: Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g, NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing full containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

SECTION 8: Exposure controls/personal protection			
3.1. Control parameters			
Hydrogen sulfide (7783-06-4)			
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm	
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm	
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm	
Canada (Quebec)	VECD (mg/m³)	21 mg/m³	
Canada (Quebec)	VECD (ppm)	15 ppm	
Canada (Quebec)	VEMP (mg/m³)	14 mg/m³	
Canada (Quebec)	VEMP (ppm)	10 ppm	
Alberta	OEL Ceiling (mg/m³)	21 mg/m³	
Alberta	OEL Ceiling (ppm)	15 ppm	
Alberta	OEL TWA (mg/m³)	14 mg/m³	
Alberta	OEL TWA (ppm)	10 ppm	
British Columbia	OEL Ceiling (ppm)	10 ppm	
Manitoba	OEL STEL (ppm)	5 ppm	
Manitoba	OEL TWA (ppm)	1 ppm	
New Brunswick	OEL STEL (mg/m³)	21 mg/m³	
New Brunswick	OEL STEL (ppm)	15 ppm	
New Brunswick	OEL TWA (mg/m³)	14 mg/m³	
New Brunswick	OEL TWA (ppm)	10 ppm	
New Foundland & Labrador	OEL STEL (ppm)	5 ppm	
New Foundland & Labrador	OEL TWA (ppm)	1 ppm	
Nova Scotia	OEL STEL (ppm)	5 ppm	
Nova Scotia	OEL TWA (ppm)	1 ppm	
Nunavut	OEL Ceiling (mg/m³)	28 mg/m³	
Nunavut	OEL Ceiling (ppm)	20 ppm	
Nunavut	OEL STEL (mg/m³)	21 mg/m³	
Nunavut	OEL STEL (ppm)	15 ppm	
Nunavut	OEL TWA (mg/m³)	14 mg/m³	
Nunavut	OEL TWA (ppm)	10 ppm	
Northwest Territories	OEL STEL (ppm)	15 ppm	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 4/9

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (7783-06-4)			
Northwest Territories	OEL TWA (ppm)	10 ppm	
Ontario	OEL STEL (ppm)	15 ppm	
Ontario	OEL TWA (ppm)	10 ppm	
Prince Edward Island	OEL STEL (ppm)	5 ppm	
Prince Edward Island	OEL TWA (ppm)	1 ppm	
Québec	VECD (mg/m³)	21 mg/m³	
Québec	VECD (ppm)	15 ppm	
Québec	VEMP (mg/m³)	14 mg/m³	
Québec	VEMP (ppm)	10 ppm	
Saskatchewan	OEL STEL (ppm)	15 ppm	
Saskatchewan	OEL TWA (ppm)	10 ppm	
Yukon	OEL STEL (mg/m³)	27 mg/m³	
Yukon	OEL STEL (ppm)	15 ppm	
Yukon	OEL TWA (mg/m³)	15 mg/m³	
Yukon	OEL TWA (ppm)	10 ppm	
Annualista annia annualis			

Appropriate engineering controls

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and lighting.

Individual protection measures/Personal protective equipment

Personal protective equipment

Other information

: Safety glasses. Face shield. Gloves.

: Wear work gloves when handling containers. Wear heavy rubber gloves where contact with Hand protection product may occur.

Eye protection

Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard Z94.3, "Industrial Eye and Face Protection", and

any provincial regulations, local bylaws or guidelines

Respiratory protection Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators."

Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).

Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN Thermal hazard protection

511 - Cold insulating gloves.

Other protection: Safety shoes for general handling at customer sites. Metatarsal shoes and cuffless trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing

SECTION 9: Physical and chemical properties

Information on basic physical and chemical properties : Gas

Physical state

Appearance : Colorless gas. Colorless liquid at low temperature or under high pressure.

Molecular mass : 34 g/mol Colour : Colourless.

Odour : Odour can persist. Poor warning properties at low concentrations. Rotten eggs.

Odour threshold : Odour threshold is subjective and inadequate to warn of overexposure.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 5/9

PRAXAIR

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

рΗ : Not applicable. pH solution : No data available : No data available Relative evaporation rate (butylacetate=1) Relative evaporation rate (ether=1) : Not applicable. Melting point : -86 °C : -82.9 °C Freezing point : -60.3 °C Boiling point Flash point : Not applicable. Critical temperature : 100.4 °C : 260 °C Auto-ignition temperature Decomposition temperature : No data available

Vapour pressure : 1880 kPa Vapour pressure at 50 °C : No data available : 8940 kPa Critical pressure

Relative vapour density at 20 °C : >=

Relative density of saturated gas/air mixture : No data available Density : No data available

Relative gas density : 1.2

Solubility : Water: 3980 mg/l : Not applicable. Log Pow : Not applicable. Log Kow Viscosity, kinematic : Not applicable. Viscosity, dynamic : Not applicable. Viscosity, kinematic (calculated value) (40 °C) : No data available : Not applicable. Explosive properties

Oxidizing properties : None.

Flammability (solid, gas)

4.3 - 46 vol %

: No data available

Other information

: Liquefied gas Gas group

Additional information : Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below

SECTION 10: Stability and reactivity

10.1.

Relative density

Reactivity : No reactivity hazard other than the effects described in sub-sections below.

Chemical stability : Stable under normal conditions.

Possibility of hazardous reactions : May react violently with oxidants. Can form explosive mixture with air. Conditions to avoid

: Avoid moisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. No smoking.

: Ammonia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat). Incompatible materials Copper, (powdered), Fluorine, Lead, Lead oxide, Mercury, Nitric acid, Nitrogen trifluoride

nitrogen sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. (and moisture). Water

Hazardous decomposition products : Thermal decomposition may produce : Sulfur. Hydrogen.

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity (oral) : Not classified Acute toxicity (dermal) : Not classified

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 6/9

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Acute toxicity (inhalation) : Inhalation:gas: FATAL IF INHALED.

Hydrogen sulfide (\f)7783-06-4		
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)	
LC50 inhalation rat (ppm)	356 ppm/4h	
ATE CA (gases)	356.00000000 ppmv/4h	
ATE CA (vapours)	0.99000000 mg/l/4h	
ATE CA (dust,mist)	0.99000000 mg/l/4h	

Skin corrosion/irritation : Not classified

pH: Not applicable.

: Not classified
pH: Not applicable.

: Not classified

: Not classified

: Not classified

Reproductive toxicity : Not classified

Specific target organ toxicity (single exposure) : MAY CAUSE RESPIRATORY IRRITATION.

Specific target organ toxicity (repeated

Serious eye damage/irritation

Germ cell mutagenicity

Carcinogenicity

Respiratory or skin sensitization

exposure)

: Not classified

Aspiration hazard : Not classified

CECTION 42.	Castas	كسنام من	
SECTION 12:	ECOIOC	iicai int	ormation

12.1. Toxicity

Ecology - general : VERY TOXIC TO AQUATIC LIFE.

Hydrogen sulfide (7783-06-4)		
LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])	
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])	

12.2. Persistence and degradability

Hydrogen sulfide (7783-06-4)	
Persistence and degradability	Not applicable for inorganic gases.

12.3. Bioaccumulative potential

Hydrogen sulfide (7783-06-4)		
BCF fish 1 (no bioaccumulation expected)		
Log Pow	Not applicable.	
Log Kow	Not applicable.	
Bioaccumulative potential	No data available.	

12.4. Mobility in soil

Hydrogen sulfide (7783-06-4)		
Mobility in soil	No data available.	
Log Pow	Not applicable.	
Log Kow	Not applicable.	
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution.	

12.5. Other adverse effects

Other adverse effects : May cause pH changes in aqueous ecological systems.

Effect on the ozone layer : None

Effect on global warming : No known effects from this product

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 7/9

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

SECTION 13: Disposal considerations

Disposal methods

Waste disposal recommendations : Do not attempt to dispose of residual or unused quantities. Return container to supplier.

SECTION 14: Transport information

Basic shipping description

In accordance with TDG

TDG

UN-No. (TDG) : UN1053

TDG Primary Hazard Classes : 2.3 - Class 2.3 - Toxic Gas.

: 2.1 TDG Subsidiary Classes

: HYDROGEN SULPHIDE Proper shipping name

ERAP Index : 500 Explosive Limit and Limited Quantity Index : 0 Passenger Carrying Ship Index : Forbidden Passenger Carrying Road Vehicle or Passenger : Forbidden

Carrying Railway Vehicle Index

14.3. Air and sea transport

IMDG

UN-No. (IMDG) : 1053

Proper Shipping Name (IMDG) : HYDROGEN SULPHIDE

Class (IMDG) : 2 - Gases MFAG-No : 117 IATA

UN-No. (IATA) : 1053 Proper Shipping Name (IATA) : Hydrogen sulphide

Class (IATA) : 2

SECTION 15: Regulatory information

15.1. National regulations

Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List)

15.2. International regulations

Hydrogen sulfide (7783-06-4)

Listed on the AICS (Australian Inventory of Chemical Substances)

Listed on IECSC (Inventory of Existing Chemical Substances Produced or Imported in China)

Listed on the EEC inventory EINECS (European Inventory of Existing Commercial Chemical Substances) Listed on the Japanese ENCS (Existing & New Chemical Substances) inventory

Listed on the Korean ECL (Existing Chemicals List)

Listed on NZIoC (New Zealand Inventory of Chemicals)

Listed on PICCS (Philippines Inventory of Chemicals and Chemical Substances) Listed on the United States TSCA (Toxic Substances Control Act) inventory

Listed on INSQ (Mexican national Inventory of Chemical Substances)

SECTION 16: Other information Date of issue

: 15/10/1979 Revision date : 10/08/2016 Supersedes : 15/10/2013

Indication of changes:

Training advice : Users of breathing apparatus must be trained. Ensure operators understand the toxicity hazard.

Ensure operators understand the flammability hazard.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

SDS ID : E-4611 EN (English) 8/9

PRAXAIR Safety Data Sheet E-4611

Hydrogen sulfide

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Other information

: When you mix two or more chemicals, you can create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture. Consult an industrial hygienist or other trained person when you evaluate the end product. Before using any plastics, confirm their compatibility with this product

Praxair asks users of this product to study this SDS and become aware of the product hazards and safety information. To promote safe use of this product, a user should (1) notify employees, agents, and contractors of the information in this SDS and of any other known product hazards and safety information, (2) furnish this information to each purchaser of the product, and (3) ask each purchaser to notify its employees and customers of the product hazards and safety

The opinions expressed herein are those of qualified experts within Praxair Canada Inc. We believe that the information contained herein is current as of the date of this Safety Data Sheet. Since the use of this information and the conditions of use are not within the control of Praxair Canada Inc, it is the user's obligation to determine the conditions of safe use of the product. Praxair Canada Inc, SDSs are furnished on sale or delivery by Praxair Canada Inc, or the independent distributors and suppliers who package and sell our products. To obtain current SDSs for these products, contact your Praxair sales representative, local distributor, or supplier, or download from www.praxair.ca. If you have questions regarding Praxair SDSs, would like the document number and date of the latest SDS, or would like the names of the Praxair suppliers in your area, phone or write Praxair Canada Inc, (Phone: 1-888-257-5149; Address: Praxair Canada Inc, 1 City Centre Drive, Suite 1200, Mississauga, Ontario, L5B 1M2).

PRAXAIR and the Flowing Airstream design are trademarks or registered trademarks of Praxair Technology, Inc. in the United States and/or other countries.

NFPA health hazard

: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was

NFPA fire hazard

: 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn

readily.

NFPA reactivity

: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water.

HMIS III Rating

Flammability

Physical

: 2 Moderate Hazard - Temporary or minor injury may occur

: 4 Severe Hazard - Flammable gases, or very volatile flammable liquids with flash points below 73 F, and boiling points below 100 F. Materials may ignite spontaneously with air. (Class IA)

: 2 Moderate Hazard - Materials that are unstable and may undergo violent chemical changes at normal temperature and pressure with low risk for explosion. Materials may react violently with water or form peroxides upon exposure to air.

SDS Canada (GHS) - Praxair

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Appendix B SO₂ SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Section 1 - PRODUCT AND COMPANY IDENTIFICATION

Material Name

SULFUR DIOXIDE

Synonyms

MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXIDE; SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR OXIDE; SULFUR OXIDE(SO2)

Chemical Family

inorganic, gas

Product Description

Classification determined in accordance with Compressed Gas Association standards.

Product Use

Industrial and Specialty Gas Applications.

Restrictions on Use

None known.

Details of the supplier of the safety data sheet

MATHESON TRI-GAS, INC.

3 Mountainview Road

Warren, NJ 07059

General Information: 1-800-416-2505 Emergency #: 1-800-424-9300 (CHEMTREC) Outside the US: 703-527-3887 (Call collect)

Section 2 - HAZARDS IDENTIFICATION

Classification in accordance with paragraph (d) of 29 CFR 1910.1200.

Gases Under Pressure - Liquefied gas

Acute Toxicity - Inhalation - Gas - Category 3

Skin Corrosion/Irritation - Category 1B

Serious Eye Damage/Eye Irritation - Category 1

Simple Asphyxiant

GHS Label Elements

Symbol(s)

Signal Word

Danger

Hazard Statement(s)

Contains gas under pressure; may explode if heated.

Toxic if inhaled.

Causes severe skin burns and eye damage.

May displace oxygen and cause rapid suffocation.

Precautionary Statement(s)

Prevention

Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

Page 1 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Wash thoroughly after handling. Do not breathe dusts or mists.

Response

IF INHALED: Remove person to fresh air and keep comfortable for breathing.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.

Continue rinsing.

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower.

Wash contaminated clothing before reuse.

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Immediately call a POISON CENTER or doctor.

Specific treatment (see label).

Storage

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Protect from sunlight.

Disposal

Dispose of contents/container in accordance with local/regional/national/international regulations.

Other Hazards

Contact with liquified gas may cause frostbite.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
CAS Component Name Percent			
7446-09-5 Sulfur dioxide 100.0			
Section 4 - FIDST AID MEASURES			

Section 4 - FIRST AID MEASURE

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skir

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention.

Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

No information on significant adverse effects.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Section 5 - FIRE FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media

carbon dioxide, regular dry chemical, Large fires: Use regular foam or flood with fine water spray.

Unsuitable Extinguishing Media

None known.

Special Hazards Arising from the Chemical

Negligible fire hazard.

Hazardous Combustion Products

sulfur oxides

Fire Fighting Measures

Move container from fire area if it can be done without risk. Cool containers with water spray until well after the fire is out. Stay away from the ends of tanks. Keep unnecessary people away, isolate hazard area and deny entry.

Special Protective Equipment and Precautions for Firefighters

Wear full protective fire fighting gear including self contained breathing apparatus (SCBA) for protection against possible exposure.

Section 6 - ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

Wear personal protective clothing and equipment, see Section 8.

Methods and Materials for Containment and Cleaning Up

Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind and keep out of low areas. Ventilate closed spaces before entering. Evacuation radius: 150 feet. Stop leak if possible without personal risk. Reduce vapors with water spray. Do not get water directly on material.

Environmental Precautions

Avoid release to the environment.

Section 7 - HANDLING AND STORAGE

Precautions for Safe Handling

Do not get in eyes, on skin, or on clothing. Do not breathe gas, fumes, vapor, or spray. Wash hands thoroughly after handling. Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing/eye protection/face protection. Contaminated work clothing should not be allowed out of the workplace. Do not eat, drink or smoke when using this product. Keep only in original container. Avoid release to the environment.

Conditions for Safe Storage, Including any Incompatibilities

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Protect from sunlight.

Store and handle in accordance with all current regulations and standards. Protect from physical damage. Store outside or in a detached building. Keep separated from incompatible substances.

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Component Exposure Limits Sulfur dioxide 7446-09-5 ACGIH: 0.25 ppm STEL

Page 3 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA; 5 mg/m3 TWA
	5 ppm STEL; 13 mg/m3 STEL
	100 ppm IDLH
OSHA (US):	5 ppm TWA; 13 mg/m3 TWA
Mexico:	0.25 ppm STEL [PPT-CT]

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)
There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits.

Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact.

Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES			
Appearance	colorless gas	Physical State	gas
Odor	irritating odor	Color	colorless
Odor Threshold	3 - 5 ppm	рН	(Acidic in solution)
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)
Boiling Point Range	Not available	Freezing point	Not available
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available
Autoignition Temperature	Not available	Flash Point	(Not flammable)
Lower Explosive Limit	Not available	Decomposition temperature	Not available
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 °C
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C

Page 4 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Water Solubility	22.8 % (@ 0 °C)	Partition coefficient: n- octanol/water	Not available	
Viscosity	Not available	Kinematic viscosity	Not available	
Solubility (Other)	Not available	Density	Not available	
Physical Form	liquified gas	Molecular Formula	S-O2	
Molecular Weight	64.06			

Solvent Solubility

Soluble

alcohol, acetic acid, sulfuric acid, ether, chloroform, Benzene, sulfuryl chloride, nitrobenzenes, Toluene, acetone

Section 10 - STABILITY AND REACTIVITY

Reactivity

No reactivity hazard is expected.

Chemical Stability

Stable at normal temperatures and pressure.

Possibility of Hazardous Reactions

Will not polymerize.

Conditions to Avoid

Minimize contact with material. Containers may rupture or explode if exposed to heat.

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Hazardous decomposition products

oxides of sulfur

Section 11 - TOXICOLOGICAL INFORMATION

Information on Likely Routes of Exposure

Inhalation

Toxic if inhaled. Causes damage to respiratory system, burns, difficulty breathing

Skin Contact

skin burns

Eye Contact

eye burns

Ingestion

burns, nausea, vomiting, diarrhea, stomach pain

Acute and Chronic Toxicity

Component Analysis - LD50/LC50

The components of this material have been reviewed in various sources and the following selected endpoints are published:

Sulfur dioxide (7446-09-5)

Inhalation LC50 Rat 965 - 1168 ppm 4 h

Product Toxicity Data

Acute Toxicity Estimate

No data available.

Immediate Effects

Page 5 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed Effects

No information on significant adverse effects.

Irritation/Corrosivity Data

respiratory tract burns, skin burns, eye burns

Respiratory Sensitization

No data available.

Dermal Sensitization

No data available.

Component Carcinogenicity

Sulfur dioxide	7446-09-5					
ACGIH:	A4 - Not Classifiable as a Human Carcinogen					
IARC:	Monograph 54 [1992] (Group 3 (not classifiable))					

Germ Cell Mutagenicity

No data available.

Tumorigenic Data

No data available

Reproductive Toxicity

No data available.

Specific Target Organ Toxicity - Single Exposure

No target organs identified.

Specific Target Organ Toxicity - Repeated Exposure

No target organs identified.

Aspiration hazard

Not applicable.

Medical Conditions Aggravated by Exposure

respiratory disorders

Section 12 - ECOLOGICAL INFORMATION

Component Analysis - Aquatic Toxicity

No LOLI ecotoxicity data are available for this product's components.

Persistence and Degradability

No data available.

Bioaccumulative Potential

No data available.

Mobility

No data available.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of contents/container in accordance with local/regional/national/international regulations.

Component Waste Numbers

The U.S. EPA has not published waste numbers for this product's components.

Section 14 - TRANSPORT INFORMATION

US DOT Information:

Shipping Name: SULFUR DIOXIDE

Page 6 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3

IMDG Information:

Shipping Name: SULPHUR DIOXIDE

Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

TDG Information:

Shipping Name: SULFUR DIOXIDE

Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

International Bulk Chemical Code

This material does not contain any chemicals required by the IBC Code to be identified as dangerous chemicals in

Section 15 - REGULATORY INFORMATION

U.S. Federal Regulations

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), CERCLA (40 CFR 302.4), TSCA 12(b), and/or require an OSHA process safety plan.

Sulfur dioxide	7446-09-5				
SARA 302:	500 lb TPQ				
OSHA (safety):	1000 lb TQ (Liquid)				
SARA 304:	500 lb EPCRA RQ				

SARA Section 311/312 (40 CFR 370 Subparts B and C) reporting categories

Gas Under Pressure; Acute toxicity; Skin Corrosion/Irritation; Serious Eye Damage/Eye Irritation; Simple Asphyxiant

U.S. State Regulations

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA
Sulfur dioxide	7446-09-5	Yes	Yes	Yes	Yes	Yes

California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)

This product can expose you to chemicals including Sulfur dioxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Page 7 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Mezcal 10 Fed Com 121H, 131H 132H,	
	133H, 134H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Sulfur dioxide						
Repro/Dev. Tox	developmental toxicity, 7/29/2011					

Component Analysis - Inventory

Sulfur dioxide (7446-09-5)

US	CA	AU	CN	EU	JP - ENCS	JP - ISHL	KR KECI - Annex 1	KR KECI - Annex 2	
Yes	DSL	Yes	Yes	EIN	Yes	Yes	Yes	No	

KR - REACH CCA	MX NZ		PH	TH-TECI	TW, CN	VN (Draft)	
No	Yes	Yes	Yes	Yes	Yes	Yes	

Section 16 - OTHER INFORMATION

NFPA Ratings

Health: 3 Fire: 0 Instability: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

Summary of Changes SDS update: 02/10/2016

Key / Legend

ACGIH - American Conference of Governmental Industrial Hygienists; ADR - European Road Transport; AU -Australia; BOD - Biochemical Oxygen Demand; C - Celsius; CA - Canada; CA/MA/MN/NJ/PA -California/Massachusetts/Minnesota/New Jersey/Pennsylvania*; CAS - Chemical Abstracts Service; CERCLA -Comprehensive Environmental Response, Compensation, and Liability Act; CFR - Code of Federal Regulations (US); CLP - Classification, Labelling, and Packaging; CN - China; CPR - Controlled Products Regulations; DFG -Deutsche Forschungsgemeinschaft; DOT - Department of Transportation; DSD - Dangerous Substance Directive; DSL - Domestic Substances List; EC - European Commission; EEC - European Economic Community; EIN -European Inventory of (Existing Commercial Chemical Substances); EINECS - European Inventory of Existing Commercial Chemical Substances; ENCS - Japan Existing and New Chemical Substance Inventory; EPA -Environmental Protection Agency; EU - European Union; F - Fahrenheit; F - Background (for Venezuela Biological Exposure Indices); IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; ICAO - International Civil Aviation Organization; IDL - Ingredient Disclosure List; IDLH -Immediately Dangerous to Life and Health; IMDG - International Maritime Dangerous Goods; ISHL - Japan Industrial Safety and Health Law; IUCLID - International Uniform Chemical Information Database; JP - Japan; Kow - Octanol/water partition coefficient; KR KECI Annex 1 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL); KR KECI Annex 2 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL), KR - Korea; LD50/LC50 - Lethal Dose/ Lethal Concentration; KR REACH CCA Korea Registration and Evaluation of Chemical Substances Chemical Control Act; LEL - Lower Explosive Limit; LLV - Level Limit Value; LOLI - List Of LIsts™ - ChemADVISOR's Regulatory Database; MAK - Maximum Concentration Value in the Workplace; MEL - Maximum Exposure Limits; MX - Mexico; Ne- Non-specific; NFPA National Fire Protection Agency; NIOSH - National Institute for Occupational Safety and Health; NJTSR - New Jersey Trade Secret Registry; Nq - Non-quantitative; NSL - Non-Domestic Substance List (Canada); NTP -National Toxicology Program; NZ - New Zealand; OSHA - Occupational Safety and Health Administration; PEL-Permissible Exposure Limit; PH - Philippines; RCRA - Resource Conservation and Recovery Act; REACH-Registration, Evaluation, Authorisation, and restriction of Chemicals; RID - European Rail Transport; SARA -Superfund Amendments and Reauthorization Act; Sc - Semi-quantitative; STEL - Short-term Exposure Limit;

Page 8 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

NEW MEXICO

(SP) EDDY MICHELADA FED COM MICHELADA 3 FED COM 133H

OWB

Plan: PWP0

Standard Planning Report - Geographic

26 June, 2024

Planning Report - Geographic

Database: Company: Project:

Compass **NEW MEXICO** (SP) EDDY

MICHELADA FED COM MICHELADA 3 FED COM 133H

Wellbore: **OWB** PWP0 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Grid

Minimum Curvature

Project

Site

Site:

Well:

(SP) EDDY

Map System: Geo Datum: Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

MICHELADA FED COM

Site Position: From:

Well Position

Wellbore

Мар Position Uncertainty:

Northing: Easting: Slot Radius: 585,277.78 usft 644,676.60 usft 13-3/16 "

Latitude: Longitude:

32° 36' 30.715 N 103° 59' 51.842 W

Well MICHELADA 3 FED COM 133H

> +N/-S +E/-W

0.0 usft 0.0 usft 0.0 usft Northing: Easting: Wellhead Elevation:

579,971.96 usft 660,216.91 usft usft

7.95

Latitude: Longitude: Ground Level:

32° 35' 37.691 N 103° 56' 50.386 W

3,225.0 usft

Position Uncertainty Grid Convergence:

0.21°

0.0 usft

OWB

PWP0

Magnetics **Model Name** Sample Date IGRF200510 12/31/2009 Declination (°)

Dip Angle (°)

Field Strength (nT)

60.52 48,975.43135234

Design

Audit Notes:

Version: Vertical Section:

Phase: Depth From (TVD)

(usft)

0.0

PROTOTYPE +N/-S

(usft)

0.0

Tie On Depth: +E/-W

(usft)

0.0

0.0

Direction (°) 278.30

Plan Survey Tool Program

6/26/2024

Depth From Depth To (usft)

(usft)

Survey (Wellbore)

Tool Name

MWD+IFR1+MS

Remarks

0.0 21,710.2 PWP0 (OWB)

OWSG_Rev2_ MWD + IFR1 +

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
3,531.7	30.63	327.92	3,459.8	338.8	-212.4	2.00	2.00	0.00	327.92	
6,800.9	30.63	327.92	6,272.7	1,750.2	-1,097.2	0.00	0.00	0.00	0.00	
8,332.7	0.00	0.00	7,732.5	2,089.0	-1,309.5	2.00	-2.00	0.00	180.00	
8,392.7	0.00	0.00	7,792.5	2,089.0	-1,309.5	0.00	0.00	0.00	0.00	
9,142.7	90.00	270.02	8,270.0	2,089.1	-1,787.0	12.00	12.00	-12.00	270.02	
21,710.2	90.00	270.02	8,270.0	2,092.8	-14,354.6	0.00	0.00	0.00	0.00	MICHELADA 3 FED (

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO

Project:

Site: MICHELADA FED COM
Well: MICHELADA 3 FED COM 133H

(SP) EDDY

Wellbore: OWB
Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Grid

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
100.0	0.00	0.00	100.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
200.0	0.00	0.00	200.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
300.0	0.00	0.00	300.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
400.0	0.00	0.00	400.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
500.0	0.00	0.00	500.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
600.0	0.00	0.00	600.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56′ 50.386 W
700.0	0.00	0.00	700.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
800.0	0.00	0.00	800.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
900.0	0.00	0.00	900.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	579,971.96	660,216.91	32° 35′ 37.691 N	103° 56' 50.386 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
2,000.0 Start Buil	0.00	0.00	2,000.0	0.0	0.0	579,971.96	660,216.91	32° 35' 37.691 N	103° 56' 50.386 W
2,100.0	2.00	327.92	2,100.0	1.5	-0.9	579,973.44	660,215.99	32° 35' 37.705 N	103° 56' 50.397 W
2,200.0	4.00	327.92	2,199.8	5.9	-3.7	579,977.88	660,213.21	32° 35' 37.749 N	103° 56' 50.429 W
2,300.0	6.00	327.92	2,299.5	13.3	-8.3	579,985.26	660,208.58	32° 35' 37.823 N	103° 56' 50.483 W
2,400.0	8.00	327.92	2,398.7	23.6	-14.8	579,995.59	660,202.11	32° 35′ 37.925 N	103° 56' 50.558 W
2,500.0	10.00	327.92	2,497.5	36.9	-23.1	580,008.84	660,193.80	32° 35' 38.056 N	103° 56' 50.655 W
2,600.0	12.00	327.92	2,595.6	53.0	-33.3	580,025.00	660,183.66	32° 35' 38.217 N	103° 56' 50.772 W
2,700.0	14.00	327.92	2,693.1	72.1	-45.2	580,044.06	660,171.72	32° 35' 38.406 N	103° 56' 50.911 W
2,800.0	16.00	327.92	2,789.6	94.0	-58.9	580,065.99	660,157.97	32° 35′ 38.623 N	103° 56' 51.071 W
2,900.0	18.00	327.92	2,885.3	118.8	-74.5	580,090.76	660,142.44	32° 35′ 38.869 N	103° 56' 51.251 W
3,000.0	20.00	327.92	2,979.8	146.4	-91.8	580,118.35	660,125.15	32° 35′ 39.142 N	103° 56' 51.452 W
3,100.0	22.00	327.92	3,073.2	176.7	-110.8	580,148.71	660,106.12	32° 35' 39.444 N	103° 56' 51.674 W
3,200.0	24.00	327.92	3,165.2	209.8	-131.6	580,181.81	660,085.36	32° 35' 39.772 N	103° 56' 51.915 W
3,300.0	26.00	327.92	3,255.8	245.7	-154.0	580,217.62	660,062.92	32° 35′ 40.127 N	103° 56' 52.176 W
3,400.0	28.00	327.92	3,344.9	284.1	-178.1	580,256.08	660,038.80	32° 35′ 40.508 N	103° 56' 52.456 W
3,500.0	30.00	327.92	3,432.4	325.2	-203.9	580,297.16	660,013.06	32° 35′ 40.916 N	103° 56' 52.755 W
3,531.7	30.63	327.92	3,459.8	338.8	-212.4	580,310.73	660,004.55	32° 35′ 41.050 N	103° 56' 52.854 W
	9.2 hold at 35		0.510.5	000.0	000.0	500 040 05	050 000 07	000 051 44 040 1	1000 501 50 000 11
3,600.0	30.63	327.92	3,518.5	368.2	-230.8	580,340.20	659,986.07	32° 35' 41.343 N	103° 56' 53.069 W
3,700.0	30.63	327.92	3,604.6	411.4	-257.9	580,383.38	659,959.01	32° 35' 41.771 N	103° 56' 53.383 W
3,800.0	30.63	327.92	3,690.6	454.6	-285.0	580,426.55	659,931.94	32° 35' 42.199 N	103° 56' 53.698 W
3,900.0	30.63	327.92	3,776.7	497.8	-312.0	580,469.72	659,904.87	32° 35' 42.627 N	103° 56' 54.012 W
4,000.0	30.63	327.92	3,862.7	540.9	-339.1	580,512.90	659,877.81	32° 35' 43.056 N	103° 56' 54.327 W
4,100.0	30.63	327.92	3,948.7	584.1	-366.2	580,556.07	659,850.74	32° 35' 43.484 N	103° 56' 54.641 W 103° 56' 54.956 W
4,200.0 4,300.0	30.63 30.63	327.92 327.92	4,034.8	627.3 670.5	-393.2 -420.3	580,599.25 580,642.42	659,823.68 659,796.61	32° 35' 43.912 N 32° 35' 44.340 N	103° 56′ 55.270 W
4,400.0	30.63	327.92	4,120.8 4,206.9	713.6	-420.3 -447.4	580,685.59	659,769.55	32° 35' 44.768 N	103° 56' 55.585 W
4,400.0	30.63	327.92	4,200.9	713.6 756.8	-447.4 -474.4	580,728.77	659,742.48	32° 35' 45.196 N	103° 56' 55.900 W
4,600.0	30.63	327.92	4,292.9	800.0	-474.4 -501.5	580,771.94	659,715.42	32° 35' 45.625 N	103° 56' 56.214 V
4,700.0	30.63	327.92	4,465.0	843.2	-528.6	580,815.12	659,688.35	32° 35' 46.053 N	103° 56' 56.529 W
		327.92	4,551.0	886.3	-555.6	580,858.29	659,661.29	32° 35' 46.481 N	103° 56' 56.843 W
4,800.0	อน.ตอ						,		
4,800.0 4,900.0	30.63 30.63	327.92	4,637.1	929.5	-582.7	580,901.46	659,634.22	32° 35′ 46.909 N	103° 56' 57.158 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) EDDY

Site: MICHELADA FED COM
Well: MICHELADA 3 FED COM 133H

Wellbore: OWB
Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft Grid

Design:	PWP	0							
Planned Survey									
r iainica carvey									
Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
5,100.0	30.63	327.92	4,809.2	1,015.8	-636.8	580,987.81	659,580.09	32° 35′ 47.766 N	103° 56' 57.787 W
5,200.0	30.63	327.92	4,895.2	1,059.0	-663.9	581,030.99	659,553.03	32° 35′ 48.194 N	103° 56' 58.101 W
5,300.0		327.92	4,981.3	1,102.2	-691.0	581,074.16	659,525.96	32° 35' 48.622 N	103° 56' 58.416 W
5,400.0		327.92	5,067.3	1,145.4	-718.0	581,117.33	659,498.90	32° 35' 49.050 N	103° 56' 58.731 W
5,500.0		327.92	5,153.4	1,188.5	-745.1	581,160.51	659,471.83	32° 35' 49.478 N	103° 56' 59.045 W
5,600.0 5,700.0		327.92 327.92	5,239.4 5,325.4	1,231.7 1,274.9	-772.1 -799.2	581,203.68 581,246.86	659,444.77 659,417.70	32° 35' 49.906 N 32° 35' 50.335 N	103° 56' 59.360 W 103° 56' 59.674 W
5,800.0		327.92	5,411.5	1,318.1	-826.3	581,290.03	659,390.63	32° 35' 50.763 N	103° 56' 59.989 W
5,900.0		327.92	5,497.5	1,361.2	-853.3	581,333.20	659,363.57	32° 35' 51.191 N	103° 57' 0.303 W
6,000.0		327.92	5,583.6	1,404.4	-880.4	581,376.38	659,336.50	32° 35' 51.619 N	103° 57' 0.618 W
6,100.0	30.63	327.92	5,669.6	1,447.6	-907.5	581,419.55	659,309.44	32° 35' 52.047 N	103° 57' 0.932 W
6,200.0	30.63	327.92	5,755.7	1,490.8	-934.5	581,462.73	659,282.37	32° 35′ 52.476 N	103° 57' 1.247 W
6,300.0		327.92	5,841.7	1,533.9	-961.6	581,505.90	659,255.31	32° 35′ 52.904 N	103° 57' 1.562 W
6,400.0		327.92	5,927.7	1,577.1	-988.7	581,549.07	659,228.24	32° 35' 53.332 N	103° 57' 1.876 W
6,500.0		327.92	6,013.8	1,620.3	-1,015.7	581,592.25	659,201.18	32° 35' 53.760 N	103° 57' 2.191 W
6,600.0		327.92	6,099.8	1,663.5	-1,042.8	581,635.42	659,174.11	32° 35' 54.188 N	103° 57' 2.505 W
6,700.0 6,800.9		327.92 327.92	6,185.9 6,272.7	1,706.6 1,750.2	-1,069.9 -1,097.2	581,678.60	659,147.05	32° 35′ 54.616 N	103° 57' 2.820 W 103° 57' 3.137 W
		321.92	0,212.1	1,750.2	-1,097.2	581,722.17	659,119.73	32° 35' 55.049 N	103 57 3.137 W
6,900.0	•	327.92	6,358.8	1,791.7	-1,123.2	581,763.69	659.093.71	32° 35' 55.460 N	103° 57' 3.440 W
7,000.0		327.92	6,447.4	1,831.0	-1,147.9	581,803.01	659,069.06	32° 35' 55.850 N	103° 57' 3.726 W
7,100.0		327.92	6,537.5	1,867.7	-1,170.9	581,839.69	659,046.06	32° 35' 56.214 N	103° 57' 3.994 W
7,200.0		327.92	6,629.1	1,901.7	-1,192.2	581,873.68	659,024.75	32° 35' 56.551 N	103° 57' 4.241 W
7,300.0		327.92	6,722.1	1,933.0	-1,211.8	581,904.94	659,005.16	32° 35' 56.861 N	103° 57' 4.469 W
7,400.0	18.65	327.92	6,816.2	1,961.5	-1,229.6	581,933.43	658,987.29	32° 35' 57.144 N	103° 57' 4.677 W
7,500.0	16.65	327.92	6,911.5	1,987.2	-1,245.7	581,959.13	658,971.19	32° 35' 57.399 N	103° 57' 4.864 W
7,600.0		327.92	7,007.8	2,010.0	-1,260.1	581,981.99	658,956.86	32° 35' 57.625 N	103° 57' 5.030 W
7,700.0		327.92	7,105.0	2,030.0	-1,272.6	582,001.98	658,944.32	32° 35' 57.824 N	103° 57' 5.176 W
7,800.0	10.65	327.92	7,202.9	2,047.1	-1,283.3	582,019.10	658,933.59	32° 35′ 57.993 N	103° 57' 5.301 W
7,900.0		327.92	7,301.5	2,061.3	-1,292.2	582,033.30	658,924.68	32° 35′ 58.134 N	103° 57' 5.404 W
8,000.0		327.92 327.92	7,400.6	2,072.6 2,081.0	-1,299.3 1 204.5	582,044.59 582,052.93	658,917.61 658,912.38	32° 35′ 58.246 N	103° 57' 5.487 W
8,100.0 8,200.0		327.92	7,500.1 7,599.9	2,081.0	-1,304.5 -1,307.9	582,058.33	658,909.00	32° 35' 58.329 N 32° 35' 58.383 N	103° 57' 5.547 W 103° 57' 5.587 W
8,300.0		327.92	7,699.8	2,088.8	-1,307.5	582,060.78	658,907.46	32° 35' 58.407 N	103° 57' 5.604 W
8,332.7		0.00	7,732.5	2,089.0	-1,309.5	582,060.93	658,907.36	32° 35' 58.408 N	103° 57' 5.606 W
	0 hold at 8332		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,	1,00010	,	,		
8,392.7	0.00	0.00	7,792.5	2,089.0	-1,309.5	582,060.93	658,907.36	32° 35' 58.408 N	103° 57' 5.606 W
Start DL	S 12.00 TFO 2	70.02							
8,400.0	0.88	270.02	7,799.8	2,089.0	-1,309.6	582,060.93	658,907.31	32° 35′ 58.408 N	103° 57' 5.606 W
8,425.0		270.02	7,824.8	2,089.0	-1,310.6	582,060.93	658,906.27	32° 35′ 58.408 N	103° 57' 5.618 W
8,450.0		270.02	7,849.7	2,089.0	-1,313.0	582,060.93	658,903.93	32° 35' 58.408 N	103° 57' 5.646 W
8,475.0		270.02	7,874.4	2,089.0	-1,316.6	582,060.94	658,900.28	32° 35' 58.409 N	103° 57' 5.688 W
8,500.0		270.02	7,898.9	2,089.0	-1,321.6	582,060.94	658,895.35	32° 35′ 58.409 N	103° 57' 5.746 W
8,525.0		270.02	7,923.2	2,089.0	-1,327.8	582,060.94	658,889.14	32° 35′ 58.409 N	103° 57' 5.819 W
8,550.0 8,575.0		270.02 270.02	7,947.0 7,970.4	2,089.0 2,089.0	-1,335.2 -1,343.9	582,060.94 582,060.94	658,881.67 658,872.97	32° 35' 58.409 N 32° 35' 58.410 N	103° 57' 5.906 W 103° 57' 6.008 W
8,600.0		270.02	7,970.4 7,993.4	2,089.0	-1,343.9 -1,353.9	582,060.95	658,863.05	32° 35' 58.410 N	103° 57' 6.124 W
8,625.0		270.02	8,015.8	2,089.0	-1,365.0	582,060.95	658,851.94	32° 35' 58.410 N	103° 57' 6.254 W
8,650.0		270.02	8,037.6	2,089.0	-1,377.2	582,060.95	658,839.68	32° 35' 58.411 N	103° 57' 6.397 W
8,675.0		270.02	8,058.7	2,089.0	-1,390.6	582,060.96	658,826.29	32° 35' 58.411 N	103° 57' 6.553 W
8,700.0		270.02	8,079.1	2,089.0	-1,405.1	582,060.96	658,811.81	32° 35′ 58.412 N	103° 57' 6.723 W
8,725.0		270.02	8,098.6	2,089.0	-1,420.6	582,060.97	658,796.29	32° 35′ 58.413 N	103° 57' 6.904 W
8,750.0		270.02	8,117.4	2,089.0	-1,437.1	582,060.97	658,779.77	32° 35′ 58.413 N	103° 57' 7.097 W
8,775.0	45.88	270.02	8,135.3	2,089.0	-1,454.6	582,060.98	658,762.29	32° 35' 58.414 N	103° 57' 7.302 W

Planning Report - Geographic

Database: Compass Company: **NEW MEXICO** Project: (SP) EDDY

MICHELADA FED COM Site: Well: MICHELADA 3 FED COM 133H

Wellbore: OWB Design: PWP0 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: **Survey Calculation Method:**

Grid

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Planned Survey									
Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
8,800.0	48.88	270.02	8,152.2	2,089.0	-1,473.0	582,060.98	658,743.89	32° 35' 58.415 N	103° 57' 7.517 W
8,825.0	51.88	270.02	8,168.1	2,089.0	-1,492.3	582,060.99	658,724.64	32° 35' 58.415 N	103° 57' 7.742 W
8,850.0	54.88	270.02	8,183.0	2,089.0	-1,512.3	582,060.99	658,704.57	32° 35' 58.416 N	103° 57' 7.976 W
8,875.0	57.88	270.02	8,196.9	2,089.0	-1,533.2	582,061.00	658,683.76	32° 35' 58.417 N	103° 57' 8.220 W
8,900.0	60.88	270.02	8,209.6	2,089.0	-1,554.7	582,061.01	658,662.24	32° 35' 58.418 N	103° 57' 8.471 W
8,925.0	63.88	270.02	8,221.2	2,089.0	-1,576.8	582,061.01	658,640.10	32° 35′ 58.419 N	103° 57' 8.730 W
8,950.0	66.88	270.02	8,231.6	2,089.1	-1,599.5	582,061.02	658,617.37	32° 35′ 58.419 N	103° 57' 8.996 W
8,975.0	69.88	270.02	8,240.8	2,089.1	-1,622.8	582,061.03	658,594.13	32° 35′ 58.420 N	103° 57' 9.267 W
9,000.0	72.88	270.02	8,248.8	2,089.1	-1,646.5	582,061.03	658,570.44	32° 35′ 58.421 N	103° 57' 9.544 W
9,025.0	75.88	270.02	8,255.5	2,089.1	-1,670.5	582,061.04	658,546.37	32° 35′ 58.422 N	103° 57' 9.826 W
9,050.0	78.88	270.02	8,261.0	2,089.1	-1,694.9	582,061.05	658,521.98	32° 35' 58.423 N	103° 57' 10.111 W
9,075.0	81.88	270.02	8,265.2	2,089.1	-1,719.6	582,061.05	658,497.33	32° 35′ 58.424 N	103° 57' 10.399 W
9,100.0	84.88	270.02	8,268.1	2,089.1	-1,744.4	582,061.06	658,472.50	32° 35′ 58.425 N	103° 57' 10.689 W
9,125.0	87.88	270.02	8,269.6	2,089.1	-1,769.4	582,061.07	658,447.55	32° 35′ 58.426 N	103° 57' 10.981 W
9,142.7	90.00	270.02	8,270.0	2,089.1	-1,787.0	582,061.07	658,429.90	32° 35' 58.427 N	103° 57' 11.187 W
	67.6 hold at 9								
9,200.0	90.00	270.02	8,270.0	2,089.1	-1,844.4	582,061.09	658,372.56	32° 35′ 58.429 N	103° 57' 11.857 W
9,300.0	90.00	270.02	8,270.0	2,089.2	-1,944.4	582,061.12	658,272.56	32° 35' 58.433 N	103° 57' 13.026 W
9,400.0	90.00	270.02	8,270.0	2,089.2	-2,044.4	582,061.15	658,172.56	32° 35′ 58.437 N	103° 57' 14.195 W
9,500.0	90.00	270.02	8,270.0	2,089.2	-2,144.4	582,061.18	658,072.56	32° 35′ 58.440 N	103° 57' 15.364 W
9,600.0	90.00	270.02	8,270.0	2,089.2	-2,244.4	582,061.21	657,972.56	32° 35′ 58.444 N	103° 57' 16.533 W
9,700.0	90.00	270.02	8,270.0	2,089.3	-2,344.4	582,061.24	657,872.56	32° 35' 58.448 N	103° 57' 17.702 W
9,800.0	90.00	270.02	8,270.0	2,089.3	-2,444.4	582,061.27	657,772.56	32° 35' 58.452 N	103° 57' 18.871 W
9,900.0	90.00	270.02	8,270.0	2,089.3	-2,544.4	582,061.30	657,672.56	32° 35′ 58.456 N	103° 57' 20.040 W
10,000.0	90.00	270.02	8,270.0	2,089.4	-2,644.4	582,061.33	657,572.56	32° 35' 58.459 N	103° 57' 21.209 W
10,100.0	90.00	270.02	8,270.0	2,089.4	-2,744.4	582,061.36	657,472.56	32° 35' 58.463 N	103° 57' 22.378 W
10,200.0	90.00	270.02	8,270.0	2,089.4	-2,844.4	582,061.39	657,372.56	32° 35' 58.467 N	103° 57' 23.547 W
10,300.0	90.00	270.02	8,270.0	2,089.5	-2,944.4	582,061.42	657,272.56	32° 35' 58.471 N	103° 57' 24.716 W
10,400.0	90.00	270.02	8,270.0	2,089.5	-3,044.4	582,061.45	657,172.56	32° 35' 58.475 N	103° 57' 25.885 W
10,500.0	90.00	270.02	8,270.0	2,089.5	-3,144.4	582,061.48	657,072.56	32° 35' 58.478 N	103° 57' 27.054 W
10,600.0	90.00	270.02	8,270.0	2,089.5	-3,244.4	582,061.51	656,972.56	32° 35' 58.482 N	103° 57' 28.223 W
10,700.0	90.00	270.02	8,270.0	2,089.6	-3,344.4	582,061.54	656,872.56	32° 35' 58.486 N	103° 57' 29.392 W
10,800.0	90.00	270.02	8,270.0	2,089.6	-3,444.4	582,061.56	656,772.56	32° 35' 58.490 N	103° 57' 30.561 W
10,900.0	90.00	270.02	8,270.0	2,089.6	-3,544.4	582,061.59	656,672.56	32° 35' 58.494 N	103° 57' 31.730 W
11,000.0	90.00	270.02	8,270.0	2,089.7	-3,644.4	582,061.62	656,572.56	32° 35' 58.497 N	103° 57' 32.899 W
11,100.0	90.00	270.02	8,270.0	2,089.7	-3,744.4	582,061.65	656,472.56	32° 35' 58.501 N	103° 57' 34.068 W
11,200.0	90.00	270.02	8,270.0	2,089.7	-3,844.4	582,061.68	656,372.56	32° 35′ 58.505 N	103° 57' 35.237 W
11,300.0	90.00	270.02	8,270.0	2,089.7	-3,944.4	582,061.71	656,272.56	32° 35' 58.509 N 32° 35' 58.512 N	103° 57' 36.406 W
11,400.0	90.00 90.00	270.02	8,270.0 8,270.0	2,089.8 2,089.8	-4,044.4 4 144.4	582,061.74 582,061.77	656,172.56		103° 57' 37.575 W 103° 57' 38.744 W
11,500.0		270.02	8,270.0		-4,144.4 4.244.4	582,061.77	656,072.56 655,972.56	32° 35' 58.516 N	
11,600.0 11,700.0	90.00 90.00	270.02 270.02	8,270.0 8,270.0	2,089.8 2,089.9	-4,244.4 -4,344.4	582,061.80 582,061.83	655,972.56	32° 35' 58.520 N 32° 35' 58.524 N	103° 57' 39.913 W 103° 57' 41.082 W
11,800.0	90.00	270.02	8,270.0	2,089.9	-4,344.4 -4,444.4	582,061.86	655,772.56	32° 35' 58.527 N	103° 57' 42.251 W
11,900.0	90.00	270.02	8,270.0	2,089.9	-4,444.4 -4,544.4	582,061.89	655,672.56	32° 35' 58.531 N	103° 57' 42.251 W
	90.00	270.02	8,270.0	2,089.9	-4,544.4 -4,644.4	582,061.92	655,572.56	32° 35' 58.535 N	103° 57' 44.589 W
12,000.0 12,100.0	90.00	270.02	8,270.0	2,090.0	-4,044.4 -4,744.4	582,061.95	655,472.56	32° 35' 58.539 N	103° 57' 44.569 W
12,100.0	90.00	270.02	8,270.0	2,090.0	-4,744.4 -4,844.4	582,061.98	655,372.56	32° 35' 58.542 N	103° 57' 46.927 W
12,300.0	90.00	270.02	8,270.0	2,090.0	-4,044.4 -4,944.4	582,062.01	655,272.56	32° 35' 58.546 N	103° 57' 48.096 W
12,400.0	90.00	270.02	8,270.0	2,090.0	-4,944.4 -5,044.4	582,062.01	655,172.56	32° 35' 58.550 N	103° 57' 49.265 W
12,500.0	90.00	270.02	8,270.0	2,090.1	-5,044.4 -5,144.4	582,062.07	655,072.56	32° 35' 58.554 N	103° 57' 49.265 W
12,600.0	90.00	270.02	8,270.0	2,090.1	-5,144.4 -5,244.4	582,062.10	654,972.56	32° 35' 58.557 N	103° 57' 51.603 W
12,700.0	90.00	270.02	8,270.0	2,090.1	-5,344.4	582,062.13	654,872.56	32° 35' 58.561 N	103° 57' 52.772 W
12,800.0	90.00	270.02	8,270.0	2,090.2	-5,444.4	582,062.16	654,772.56	32° 35' 58.565 N	103° 57' 53.941 W
12,900.0	90.00	270.02	8,270.0	2,090.2	-5,544.4	582,062.19	654,672.56	32° 35' 58.568 N	103° 57' 55.110 W
.2,555.0	00.00		2,2.0.0	_,500.2	-,	,0020			

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) EDDY

Site: MICHELADA FED COM
Well: MICHELADA 3 FED COM 133H

Wellbore: OWB
Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
13,000.0	90.00	270.02	8,270.0	2,090.3	-5,644.4	582,062.22	654,572.56	32° 35′ 58.572 N	103° 57' 56.279 W
13,100.0	90.00	270.02	8,270.0	2,090.3	-5,744.4	582,062.25	654,472.56	32° 35′ 58.576 N	103° 57' 57.448 W
13,200.0	90.00	270.02	8,270.0	2,090.3	-5,844.4	582,062.27	654,372.56	32° 35′ 58.580 N	103° 57' 58.617 W
13,300.0	90.00	270.02	8,270.0	2,090.3	-5,944.4	582,062.30	654,272.56	32° 35' 58.583 N	103° 57' 59.786 W
13,400.0	90.00	270.02	8,270.0	2,090.4	-6,044.4	582,062.33	654,172.56	32° 35' 58.587 N	103° 58' 0.955 W
13,500.0	90.00	270.02	8,270.0	2,090.4	-6,144.4	582,062.36	654,072.56	32° 35' 58.591 N	103° 58' 2.124 W
13,600.0	90.00	270.02	8,270.0	2,090.4	-6,244.4	582,062.39	653,972.56	32° 35' 58.594 N	103° 58' 3.293 W
13,700.0	90.00	270.02 270.02	8,270.0 8,270.0	2,090.5	-6,344.4	582,062.42	653,872.56 653,772.56	32° 35′ 58.598 N	103° 58' 4.462 W 103° 58' 5.631 W
13,800.0 13,900.0	90.00 90.00	270.02	8,270.0	2,090.5 2,090.5	-6,444.4 -6,544.4	582,062.45 582,062.48	653,672.56	32° 35' 58.602 N 32° 35' 58.605 N	103° 58' 6.799 W
14,000.0	90.00	270.02	8,270.0	2,090.5	-6,544.4 -6,644.4	582,062.51	653,572.56	32° 35' 58.609 N	103° 58' 7.968 W
14,100.0	90.00	270.02	8,270.0	2,090.5	-6,744.4	582,062.54	653,472.56	32° 35' 58.613 N	103° 58' 9.137 W
14,200.0	90.00	270.02	8,270.0	2,090.6	-6,844.4	582,062.57	653,372.56	32° 35' 58.617 N	103° 58' 10.306 W
14,300.0	90.00	270.02	8,270.0	2,090.6	-6,944.4	582,062.60	653,272.56	32° 35' 58.620 N	103° 58' 11.475 W
14,400.0	90.00	270.02	8,270.0	2,090.7	-7,044.4	582,062.63	653,172.56	32° 35' 58.624 N	103° 58' 12.644 W
14,500.0	90.00	270.02	8,270.0	2,090.7	-7,144.4	582,062.66	653,072.56	32° 35' 58.628 N	103° 58' 13.813 W
14,600.0	90.00	270.02	8,270.0	2,090.7	-7,244.4	582,062.69	652,972.56	32° 35' 58.631 N	103° 58' 14.982 W
14,700.0	90.00	270.02	8,270.0	2,090.8	-7,344.4	582,062.72	652,872.56	32° 35' 58.635 N	103° 58' 16.151 W
14,800.0	90.00	270.02	8,270.0	2,090.8	-7,444.4	582,062.75	652,772.56	32° 35' 58.639 N	103° 58' 17.320 W
14,900.0	90.00	270.02	8,270.0	2,090.8	-7,544.4	582,062.78	652,672.56	32° 35' 58.642 N	103° 58' 18.489 W
15,000.0	90.00	270.02	8,270.0	2,090.8	-7,644.4	582,062.81	652,572.56	32° 35' 58.646 N	103° 58' 19.658 W
15,100.0	90.00	270.02	8,270.0	2,090.9	-7,744.4	582,062.84	652,472.56	32° 35' 58.650 N	103° 58' 20.827 W
15,200.0	90.00	270.02	8,270.0	2,090.9	-7,844.4	582,062.87	652,372.56	32° 35′ 58.653 N	103° 58' 21.996 W
15,300.0	90.00	270.02	8,270.0	2,090.9	-7,944.4	582,062.90	652,272.56	32° 35′ 58.657 N	103° 58' 23.165 W
15,400.0	90.00	270.02	8,270.0	2,091.0	-8,044.4	582,062.93	652,172.56	32° 35′ 58.660 N	103° 58' 24.334 W
15,500.0	90.00	270.02	8,270.0	2,091.0	-8,144.4	582,062.96	652,072.56	32° 35′ 58.664 N	103° 58' 25.503 W
15,600.0	90.00	270.02	8,270.0	2,091.0	-8,244.4	582,062.99	651,972.56	32° 35′ 58.668 N	103° 58' 26.672 W
15,700.0	90.00	270.02	8,270.0	2,091.1	-8,344.4	582,063.01	651,872.56	32° 35' 58.671 N	103° 58' 27.841 W
15,800.0	90.00	270.02	8,270.0	2,091.1	-8,444.4	582,063.04	651,772.56	32° 35' 58.675 N	103° 58' 29.010 W
15,900.0	90.00	270.02	8,270.0	2,091.1	-8,544.4	582,063.07	651,672.56	32° 35' 58.679 N	103° 58' 30.179 W
16,000.0	90.00	270.02	8,270.0	2,091.1	-8,644.4	582,063.10	651,572.56	32° 35' 58.682 N	103° 58' 31.348 W
16,100.0	90.00	270.02	8,270.0	2,091.2	-8,744.4	582,063.13	651,472.56	32° 35' 58.686 N	103° 58' 32.517 W
16,200.0	90.00	270.02	8,270.0	2,091.2	-8,844.4	582,063.16	651,372.56	32° 35' 58.689 N	103° 58' 33.686 W
16,300.0	90.00	270.02	8,270.0 8,270.0	2,091.2	-8,944.4 -9,044.4	582,063.19	651,272.56 651,172.56	32° 35′ 58.693 N	103° 58' 34.855 W
16,400.0 16,500.0	90.00 90.00	270.02 270.02	8,270.0	2,091.3 2,091.3	-9,044.4 -9,144.4	582,063.22 582,063.25	651,072.56	32° 35' 58.697 N 32° 35' 58.700 N	103° 58' 36.024 W 103° 58' 37.193 W
16,600.0	90.00	270.02	8,270.0	2,091.3	-9,144.4 -9,244.4	582,063.28	650,972.56	32° 35' 58.704 N	103° 58' 38.362 W
16,700.0	90.00	270.02	8,270.0	2,091.3	-9,244.4 -9,344.4	582,063.31	650,872.56	32° 35' 58.708 N	103° 58' 39.531 W
16,800.0	90.00	270.02	8,270.0	2,091.3	-9,344.4 -9,444.4	582,063.34	650,772.56	32° 35' 58.711 N	103° 58' 40.700 W
16,900.0	90.00	270.02	8,270.0	2,091.4	-9, 444.4 -9,544.4	582,063.37	650,672.56	32° 35' 58.715 N	103° 58' 41.869 W
17,000.0	90.00	270.02	8,270.0	2,091.4	-9,644.4	582,063.40	650,572.56	32° 35' 58.718 N	103° 58' 43.038 W
17,100.0	90.00	270.02	8,270.0	2,091.5	-9,744.4	582,063.43	650,472.56	32° 35' 58.722 N	103° 58' 44.207 W
17,200.0	90.00	270.02	8,270.0	2,091.5	-9,844.4	582,063.46	650,372.56	32° 35' 58.726 N	103° 58' 45.376 W
17,300.0	90.00	270.02	8,270.0	2,091.5	-9,944.4	582,063.49	650,272.56	32° 35' 58.729 N	103° 58' 46.545 W
17,400.0	90.00	270.02	8,270.0	2,091.6	-10,044.4	582,063.52	650,172.56	32° 35' 58.733 N	103° 58' 47.714 W
17,500.0	90.00	270.02	8,270.0	2,091.6	-10,144.4	582,063.55	650,072.56	32° 35′ 58.736 N	103° 58' 48.883 W
17,600.0	90.00	270.02	8,270.0	2,091.6	-10,244.4	582,063.58	649,972.56	32° 35′ 58.740 N	103° 58' 50.052 W
17,700.0	90.00	270.02	8,270.0	2,091.6	-10,344.4	582,063.61	649,872.56	32° 35′ 58.743 N	103° 58' 51.221 W
17,800.0	90.00	270.02	8,270.0	2,091.7	-10,444.4	582,063.64	649,772.56	32° 35' 58.747 N	103° 58' 52.390 W
17,900.0	90.00	270.02	8,270.0	2,091.7	-10,544.4	582,063.67	649,672.56	32° 35' 58.751 N	103° 58' 53.559 W
18,000.0	90.00	270.02	8,270.0	2,091.7	-10,644.4	582,063.70	649,572.56	32° 35' 58.754 N	103° 58' 54.728 W
18,100.0	90.00	270.02	8,270.0	2,091.8	-10,744.4	582,063.72	649,472.56	32° 35' 58.758 N	103° 58' 55.897 W
18,200.0	90.00	270.02	8,270.0	2,091.8	-10,844.4	582,063.75	649,372.56	32° 35' 58.761 N	103° 58' 57.066 W
18,300.0	90.00	270.02	8,270.0	2,091.8	-10,944.4	582,063.78	649,272.56	32° 35' 58.765 N	103° 58' 58.235 W
18,400.0	90.00	270.02	8,270.0	2,091.9	-11,044.4	582,063.81	649,172.56	32° 35' 58.768 N	103° 58' 59.404 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) EDDY

Site:MICHELADA FED COMWell:MICHELADA 3 FED COM 133H

Wellbore: OWB
Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
18,500.0	90.00	270.02	8,270.0	2,091.9	-11,144.4	582,063.84	649,072.56	32° 35' 58.772 N	103° 59' 0.573 W
18,600.0	90.00	270.02	8,270.0	2,091.9	-11,244.4	582,063.87	648,972.56	32° 35' 58.775 N	103° 59' 1.742 W
18,700.0	90.00	270.02	8,270.0	2,091.9	-11,344.4	582,063.90	648,872.56	32° 35' 58.779 N	103° 59' 2.911 W
18,800.0	90.00	270.02	8,270.0	2,092.0	-11,444.4	582,063.93	648,772.56	32° 35' 58.783 N	103° 59' 4.080 W
18,900.0	90.00	270.02	8,270.0	2,092.0	-11,544.4	582,063.96	648,672.56	32° 35' 58.786 N	103° 59' 5.249 V
19,000.0	90.00	270.02	8,270.0	2,092.0	-11,644.4	582,063.99	648,572.56	32° 35' 58.790 N	103° 59' 6.418 V
19,100.0	90.00	270.02	8,270.0	2,092.1	-11,744.4	582,064.02	648,472.56	32° 35' 58.793 N	103° 59' 7.587 V
19,200.0	90.00	270.02	8,270.0	2,092.1	-11,844.4	582,064.05	648,372.56	32° 35' 58.797 N	103° 59' 8.756 V
19,300.0	90.00	270.02	8,270.0	2,092.1	-11,944.4	582,064.08	648,272.56	32° 35' 58.800 N	103° 59' 9.925 W
19,400.0	90.00	270.02	8,270.0	2,092.1	-12,044.4	582,064.11	648,172.56	32° 35' 58.804 N	103° 59' 11.094 V
19,500.0	90.00	270.02	8,270.0	2,092.2	-12,144.4	582,064.14	648,072.56	32° 35' 58.807 N	103° 59' 12.263 V
19,600.0	90.00	270.02	8,270.0	2,092.2	-12,244.4	582,064.17	647,972.56	32° 35' 58.811 N	103° 59' 13.432 V
19,700.0	90.00	270.02	8,270.0	2,092.2	-12,344.4	582,064.20	647,872.56	32° 35' 58.814 N	103° 59' 14.601 V
19,800.0	90.00	270.02	8,270.0	2,092.3	-12,444.4	582,064.23	647,772.56	32° 35' 58.818 N	103° 59' 15.770 V
19,900.0	90.00	270.02	8,270.0	2,092.3	-12,544.4	582,064.26	647,672.56	32° 35' 58.821 N	103° 59' 16.938 V
20,000.0	90.00	270.02	8,270.0	2,092.3	-12,644.4	582,064.29	647,572.56	32° 35' 58.825 N	103° 59' 18.107 V
20,100.0	90.00	270.02	8,270.0	2,092.4	-12,744.4	582,064.32	647,472.56	32° 35' 58.828 N	103° 59' 19.276 V
20,200.0	90.00	270.02	8,270.0	2,092.4	-12,844.4	582,064.35	647,372.56	32° 35' 58.832 N	103° 59' 20.445 V
20,300.0	90.00	270.02	8,270.0	2,092.4	-12,944.4	582,064.38	647,272.56	32° 35' 58.835 N	103° 59' 21.614 V
20,400.0	90.00	270.02	8,270.0	2,092.4	-13,044.4	582,064.41	647,172.56	32° 35' 58.839 N	103° 59' 22.783 V
20,500.0	90.00	270.02	8,270.0	2,092.5	-13,144.4	582,064.43	647,072.56	32° 35' 58.842 N	103° 59' 23.952 V
20,600.0	90.00	270.02	8,270.0	2,092.5	-13,244.4	582,064.46	646,972.56	32° 35' 58.846 N	103° 59' 25.121 V
20,700.0	90.00	270.02	8,270.0	2,092.5	-13,344.4	582,064.49	646,872.56	32° 35' 58.849 N	103° 59' 26.290 V
20,800.0	90.00	270.02	8,270.0	2,092.6	-13,444.4	582,064.52	646,772.56	32° 35' 58.853 N	103° 59' 27.459 V
20,900.0	90.00	270.02	8,270.0	2,092.6	-13,544.4	582,064.55	646,672.56	32° 35' 58.856 N	103° 59' 28.628 V
21,000.0	90.00	270.02	8,270.0	2,092.6	-13,644.4	582,064.58	646,572.56	32° 35' 58.860 N	103° 59' 29.797 V
21,100.0	90.00	270.02	8,270.0	2,092.6	-13,744.4	582,064.61	646,472.56	32° 35' 58.863 N	103° 59' 30.966 V
21,200.0	90.00	270.02	8,270.0	2,092.7	-13,844.4	582,064.64	646,372.56	32° 35' 58.867 N	103° 59' 32.135 V
21,300.0	90.00	270.02	8,270.0	2,092.7	-13,944.4	582,064.67	646,272.56	32° 35′ 58.870 N	103° 59' 33.304 \
21,400.0	90.00	270.02	8,270.0	2,092.7	-14,044.4	582,064.70	646,172.56	32° 35′ 58.874 N	103° 59' 34.473 V
21,500.0	90.00	270.02	8,270.0	2,092.8	-14,144.4	582,064.73	646,072.56	32° 35′ 58.877 N	103° 59' 35.642 V
21,600.0	90.00	270.02	8,270.0	2,092.8	-14,244.4	582,064.76	645,972.56	32° 35′ 58.880 N	103° 59' 36.811 \
21,700.0	90.00	270.02	8,270.0	2,092.8	-14,344.4	582,064.79	645,872.56	32° 35′ 58.884 N	103° 59' 37.980 \
21,710.2	90.00	270.02	8,270.0	2,092.8	-14,354.6	582,064.79	645,862.33	32° 35′ 58.884 N	103° 59' 38.100 \
TD at 217	10.2								

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
MICHELADA 3 FED CC - plan misses targe - Point		0.00 usft at 21690	8,270.0 .2usft MD (8	2,092.9 270.0 TVD, 20	-14,334.6 092.8 N, -1433	582,064.87 34.6 E)	645,882.33	32° 35′ 58.884 N	103° 59' 37.866 W
MICHELADA 3 FED CC - plan hits target ce - Point		0.00	8,270.0	2,092.8	-14,354.6	582,064.79	645,862.33	32° 35' 58.884 N	103° 59' 38.100 W
MICHELADA 3 FED CO - plan misses targe - Point		0.00 .8usft at 876	8,270.0 9.8usft MD (2,089.0 8131.6 TVD, 2	-1,309.5 2089.0 N, -145	582,060.93 50.9 E)	658,907.36	32° 35′ 58.408 N	103° 57' 5.606 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) EDDY

Site: MICHELADA FED COM
Well: MICHELADA 3 FED COM 133H

Wellbore: OWB
Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

Grid

Plan Annotations				
Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
2,000.0	2,000.0	0.0	0.0	Start Build 2.00
3,531.7	3,459.8	338.8	-212.4	Start 3269.2 hold at 3531.7 MD
6,800.9	6,272.7	1,750.2	-1,097.2	Start Drop -2.00
8,332.7	7,732.5	2,089.0	-1,309.5	Start 60.0 hold at 8332.7 MD
8,392.7	7,792.5	2,089.0	-1,309.5	Start DLS 12.00 TFO 270.02
9,142.7	8,270.0	2,089.1	-1,787.0	Start 12567.6 hold at 9142.7 MD
21,710.2	8,270.0	2,092.8	-14,354.6	TD at 21710.2

NEW MEXICO

(SP) EDDY
MICHELADA FED COM
MICHELADA 3 FED COM 133H

OWB PWP0

Anticollision Report

26 June, 2024

Anticollision Report

TVD Reference:

MD Reference:

Company: NEW MEXICO Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

Reference: Well MICHELADA 3 FED COM 133H

GL @ 3225.0usft GL @ 3225.0usft

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma
Database: Compass
Offset TVD Reference: Reference Datum

Reference PWP0

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria

Interpolation Method: Stations Error Model: ISCWSA

 Depth Range:
 Unlimited
 Scan Method:
 Closest Approach 3D

 Results Limited by:
 Maximum centre distance of 1,000.0usft
 Error Surface:
 Pedal Curve

 Warning Levels Evaluated at:
 2.00 Sigma
 Casing Method:
 Not applied

Survey Tool Program Date 6/26/2024

From To

(usft) (usft) Survey (Wellbore) Tool Name Description

0.0 21,710.2 PWP0 (OWB) MWD+IFR1+MS OWSG_Rev2_ MWD + IFR1 + Multi-Station Correction

Summary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)	nce Between Ellipses (usft)	Separation Factor	Warning
MEZCAL 10 FED COM						
MEZCAL 10 FED COM 131H - OWB - PWP0 MEZCAL 10 FED COM 131H - OWB - PWP0 MEZCAL 10 FED COM 131H - OWB - PWP0 MEZCAL 10 FED COM 132H - OWB - PWP0 MEZCAL 10 FED COM 132H - OWB - PWP0 MEZCAL 10 FED COM 132H - OWB - PWP0 MEZCAL 10 FED COM 133H - OWB - PWP0 MEZCAL 10 FED COM 133H - OWB - PWP0 MEZCAL 10 FED COM 134H - OWB - PWP0 MEZCAL 10 FED COM 134H - OWB - PWP0	1,966.3 2,000.0 2,200.0 1,466.0 1,500.0 1,710.0 1,800.0 1,965.5 2,000.0	1,967.5 2,000.0 2,191.9 1,468.0 1,500.0 1,594.4 1,712.8 1,800.0 1,969.0 2,003.3	134.0 134.0 140.5 116.2 116.2 119.4 104.5 105.4 99.7 99.8	119.9 119.7 124.9 105.7 105.4 108.0 92.2 92.5 85.6 85.4	9.504 CC 9.347 ES 8.964 SF 11.046 CC 10.805 ES 10.461 SF 8.514 CC, ES 8.172 SF 7.073 CC 6.951 ES, SF	
MICHELADA FED COM						
MICHELADA 3 FED COM 134H - OWB - PWP0 MICHELADA 3 FED COM 134H - OWB - PWP0 MICHELADA 5 FED COM 131H - OWB - PWP0 MICHELADA 5 FED COM 132H - OWB - PWP0	1,710.0 1,800.0	1,710.0 1,799.5	29.3 29.7	17.0 16.8	2.387 CC 2.302 ES, SF Out of r Out of r	· ·

Offset Des	sign: ME	ZCAL 10 F	ED COM	- MEZCAL	10 FED (COM 131H -	OWB - PWP0						Offset Site Error:	0.0 usft
Survey Progr Refer Measured Depth		MWD Offs Measured Depth	set Vertical Depth	Semi M Reference	Major Axis Offset	Highside Toolface	Offset Wellbo			gned: Minimum Separation Separation Factor		Offset Well Error: Warning	0.0 usft	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
0.0	0.0	1.2	0.0	0.0	0.0	-119.63	-66.3	-116.5	134.0	134.0	0.00	N/A		
100.0	100.0	101.2	100.0	0.4	0.4	-119.63	-66.3	-116.5	134.0	133.3	0.72	185.812		
200.0	200.0	201.2	200.0	0.7	0.7	-119.63	-66.3	-116.5	134.0	132.6	1.44	93.184		
300.0	300.0	301.2	300.0	1.1	1.1	-119.63	-66.3	-116.5	134.0	131.9	2.16	62.185		
400.0	400.0	401.2	400.0	1.4	1.4	-119.63	-66.3	-116.5	134.0	131.1	2.87	46.662		
500.0	500.0	501.2	500.0	1.8	1.8	-119.63	-66.3	-116.5	134.0	130.4	3.59	37.341		
600.0	600.0	601.2	600.0	2.2	2.2	-119.63	-66.3	-116.5	134.0	129.7	4.31	31.123		
700.0	700.0	701.2	700.0	2.5	2.5	-119.63	-66.3	-116.5	134.0	129.0	5.02	26.681		
800.0	800.0	801.2	800.0	2.9	2.9	-119.63	-66.3	-116.5	134.0	128.3	5.74	23.348		
900.0	900.0	901.2	900.0	3.2	3.2	-119.63	-66.3	-116.5	134.0	127.6	6.46	20.756		
1,000.0	1,000.0	1,001.2	1,000.0	3.6	3.6	-119.63	-66.3	-116.5	134.0	126.8	7.17	18.681		
1,100.0	1,100.0	1,101.2	1,100.0	3.9	3.9	-119.63	-66.3	-116.5	134.0	126.1	7.89	16.984		

Anticollision Report

NEW MEXICO Company: Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft OWB Reference Wellbore Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H TVD Reference: GL @ 3225.0usft MD Reference: GL @ 3225.0usft

Grid North Reference:

Survey Calculation Method: Minimum Curvature 2.00 sigma

Output errors are at Compass Database:

Offset TVD Reference: Reference Datum

		ИWD								Dula 4			Off4 W-11 F	0.0
rvey Progr Refer		/WD Off:	set	Semi I	Major Axis		Offset Wellb	ore Centre	Dist	Rule Assi ance	gned:		Offset Well Error:	0.0 u
leasured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
1,200.0	1,200.0	1,201.2	1,200.0	4.3	4.3	-119.63	-66.3	-116.5	134.0	125.4	8.61	15.569		
1,300.0	1,300.0	1,301.2	1,300.0	4.7	4.7	-119.63	-66.3	-116.5	134.0	124.7	9.32	14.372		
1,400.0	1,400.0	1,401.2	1,400.0	5.0	5.0	-119.63	-66.3	-116.5	134.0	124.0	10.04	13.346		
1,500.0	1,500.0	1,501.2	1,500.0	5.4	5.4	-119.63	-66.3	-116.5	134.0	123.3	10.76	12.457		
1,600.0	1,600.0	1,601.2	1,600.0	5.7	5.7	-119.63	-66.3	-116.5	134.0	122.5	11.48	11.679		
1,700.0	1,700.0	1,701.2	1,700.0	6.1	6.1	-119.63	-66.3	-116.5	134.0	121.8	12.19	10.992		
1,800.0	1,800.0	1,801.2	1,800.0	6.5	6.5	-119.63	-66.3	-116.5	134.0	121.1	12.91	10.381		
1,900.0	1,900.0	1,901.2	1,900.0	6.8	6.8	-119.63	-66.3	-116.5	134.0	120.4	13.63	9.835		
1,966.3	1,966.3	1,967.5	1,966.3	7.0	7.1	-119.63	-66.3	-116.5	134.0	119.9	14.10	9.504 CC		
2,000.0	2,000.0	2,000.0	1,998.8	7.2	7.2	-119.63	-66.3	-116.5	134.0	119.7	14.34	9.347 ES		
2,100.0	2,100.0	2,096.7	2,095.4	7.5	7.5	-88.13	-66.9	-118.0	135.6	120.6	15.02	9.029		
2,200.0	2,199.8	2,191.9	2,190.6	7.9	7.8	-89.79	-68.7	-122.4	140.5	124.9	15.68	8.964 SF		
2,300.0	2,299.5	2,286.6	2,284.9	8.2	8.1	-92.29	-71.6	-129.8	148.9	132.6	16.32	9.126		
2,400.0	2,398.7	2,380.5	2,378.2	8.6	8.5	-95.31	-75.8	-139.9	161.0	144.1	16.94	9.507		
2,500.0	2,497.5	2,473.4	2,470.1	9.0	8.8	-98.51	-80.9	-152.7	177.2	159.7	17.55	10.097		
2,600.0	2,595.6	2,565.0	2,560.1	9.3	9.1	-101.63	-87.2	-167.9	197.6	179.5	18.16	10.884		
2,700.0	2,693.1	2,655.1	2,648.2	9.7	9.5	-104.50	-94.3	-185.6	222.3	203.5	18.76	11.852		
2,800.0	2,789.6	2,743.5	2,734.0	10.0	9.8	-107.00	-102.4	-205.4	251.2	231.9	19.35	12.981		
2,900.0	2,885.3	2,832.6	2,819.7	10.4	10.2	-109.22	-111.4	-227.6	284.1	264.1	19.99	14.214		
3,000.0	2,979.8	2,925.0	2,908.6	10.7	10.6	-111.45	-121.0	-251.2	319.3	298.6	20.72	15.413		
3,100.0	3,073.2	3,016.5	2,996.5	11.1	11.0	-113.60	-130.4	-274.6	356.5	335.0	21.46	16.613		
3,200.0	3,165.2	3,106.8	3,083.4	11.5	11.4	-115.65	-139.8	-297.7	395.7	373.5	22.21	17.819		
3,300.0	3,255.8	3,195.9	3,169.0	11.8	11.8	-117.57	-149.1	-320.4	437.1	414.1	22.96	19.034		
3,400.0	3,344.9	3,283.8	3,253.5	12.2	12.2	-119.36	-158.2	-342.9	480.8	457.0	23.73	20.261		
3,500.0	3,432.4	3,370.1	3,336.5	12.6	12.6	-121.01	-167.1	-364.9	526.8	502.3	24.50	21.503		
3,531.7	3,459.8	3,397.2	3,362.5	12.7	12.8	-121.50	-169.9	-371.8	541.9	517.2	24.74	21.901		
3,600.0	3,518.5	3,455.4	3,418.4	13.0	13.1	-123.10	-176.0	-386.7	574.9	549.6	25.27	22.747		
3,700.0	3,604.6	3,540.5	3,500.3	13.4	13.5	-125.14	-184.8	-408.4	623.7	597.6	26.05	23.943		
3,800.0	3,690.6	3,625.7	3,582.1	13.8	13.9	-126.90	-193.6	-430.2	673.1	646.2	26.83	25.082		
3,900.0	3,776.7	3,710.8	3,664.0	14.2	14.3	-128.43	-202.4	-451.9	722.9	695.3	27.63	26.166		
4,000.0	3,862.7	3,796.0	3,745.8	14.6	14.8	-129.76	-202.4	-473.7	773.0	744.6	28.42	27.196		
4,100.0	3,948.7	3,881.1	3,827.7	15.0	15.2	-130.94	-220.1	-495.4	823.5	794.2	29.23	28.173		
4,200.0	4,034.8	3,966.2	3,909.5	15.5	15.2	-130.94	-228.9	-495.4	874.2	844.1	30.04	29.099		
4,300.0 4,400.0	4,120.8 4,206.9	4,051.4 4,136.5	3,991.4 4,073.2	15.9 16.3	16.1 16.5	-132.91 -133.75	-237.8 -246.6	-538.9 -560.7	925.0 976.1	894.2 944.4	30.86 31.68	29.977 30.810		

Anticollision Report

NEW MEXICO Company: Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft OWB Reference Wellbore Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H TVD Reference: GL @ 3225.0usft

MD Reference: GL @ 3225.0usft

Grid North Reference:

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma Compass Database: Offset TVD Reference: Reference Datum

urvey Prog Refe	ram: 0-N rence	MWD Off	set	Semi M	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assi tance	gned:		Offset Well Error:	0.0 u
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	2.0	0.0	0.0	0.0	-131.18	-76.5	-87.4	116.2	116.2	0.01	N/A		
100.0	100.0	102.0	100.0	0.4	0.4	-131.18	-76.5	-87.4	116.2	115.5	0.72	160.437		
200.0	200.0	202.0	200.0	0.7	0.7	-131.18	-76.5	-87.4	116.2	114.7	1.44	80.618		
300.0	300.0	302.0	300.0	1.1	1.1	-131.18	-76.5	-87.4	116.2	114.0	2.16	53.834		
400.0	400.0	402.0	400.0	1.4	1.4	-131.18	-76.5	-87.4	116.2	113.3	2.87	40.409		
500.0	500.0	502.0	500.0	1.8	1.8	-131.18	-76.5	-87.4	116.2	112.6	3.59	32.344		
600.0	600.0	602.0	600.0	2.2	2.2	-131.18	-76.5	-87.4	116.2	111.9	4.31	26.962		
700.0	700.0	702.0	700.0	2.5	2.5	-131.18	-76.5	-87.4	116.2	111.1	5.03	23.116		
800.0	800.0	802.0	800.0	2.9	2.9	-131.18	-76.5	-87.4	116.2	110.4	5.74	20.230		
900.0	900.0	902.0	900.0	3.2	3.2	-131.18	-76.5	-87.4	116.2	109.7	6.46	17.985		
1,000.0	1,000.0	1,002.0	1,000.0	3.6	3.6	-131.18	-76.5	-87.4	116.2	109.0	7.18	16.188		
1,100.0	1,100.0	1,102.0	1,100.0	3.9	4.0	-131.18	-76.5	-87.4	116.2	108.3	7.89	14.718		
1,200.0	1,200.0	1,202.0	1,200.0	4.3	4.3	-131.18	-76.5	-87.4	116.2	107.6	8.61	13.492		
1,300.0	1,300.0	1,302.0	1,300.0	4.7	4.7	-131.18	-76.5	-87.4	116.2	106.8	9.33	12.455		
1,400.0	1,400.0	1,402.0	1,400.0	5.0	5.0	-131.18	-76.5	-87.4	116.2	106.1	10.04	11.566		
1,466.0	1,466.0	1,468.0	1,466.0	5.3	5.3	-131.18	-76.5	-87.4	116.2	105.7	10.52	11.046 CC		
1,500.0	1,500.0	1,500.0	1,498.0	5.4	5.4	-131.18	-76.5	-87.4	116.2	105.4	10.75	10.805 ES		
1,600.0	1,600.0	1,594.4	1,592.4	5.7	5.7	-131.55	-79.1	-89.2	119.4	108.0	11.42	10.461 SF		
1,700.0	1,700.0	1,686.2	1,683.7	6.1	6.0	-132.52	-86.5	-94.3	129.0	116.9	12.02	10.728		
1,800.0	1,800.0	1,776.5	1,772.8	6.5	6.3	-133.84	-98.4	-102.5	144.7	132.1	12.58	11.505		
1,900.0	1,900.0	1,864.6	1,858.7	6.8	6.6	-135.24	-114.5	-113.6	166.5	153.4	13.08	12.728		
2,000.0	2,000.0	1,950.0	1,940.6	7.2	7.0	-136.56	-134.3	-127.1	194.2	180.7	13.53	14.352		
2,100.0	2,100.0	2,033.2	2,019.0	7.5	7.3	-105.36	-157.3	-143.0	227.9	214.0	13.96	16.329		
2,200.0	2,199.8	2,125.7	2,105.4	7.9	7.7	-106.74	-184.6	-161.7	264.9	250.3	14.61	18.132		
2,300.0	2,299.5	2,217.5	2,191.1	8.2	8.2	-108.24	-211.7	-180.3	303.2	287.9	15.27	19.859		
2,400.0	2,398.7	2,308.5	2,276.0	8.6	8.6	-109.78	-238.5	-198.7	342.9	327.0	15.93	21.529		
2,500.0	2,497.5	2,398.5	2,360.1	9.0	9.1	-111.32	-265.0	-217.0	384.2	367.6	16.59	23.155		
2,600.0	2,595.6	2,487.4	2,443.1	9.3	9.6	-112.82	-291.3	-235.0	427.2	409.9	17.26	24.748		
2,700.0	2,693.1	2,575.2	2,525.1	9.7	10.1	-114.26	-317.2	-252.8	472.0	454.1	17.94	26.318		
2,800.0	2,789.6	2,661.7	2,605.9	10.0	10.6	-115.62	-342.7	-270.3	518.8	500.2	18.61	27.872		
2,900.0	2,885.3	2,746.8	2,685.4	10.4	11.1	-116.90	-367.8	-287.5	567.5	548.3	19.30	29.414		
3,000.0	2,979.8	2,830.5	2,763.5	10.7	11.6	-118.08	-392.4	-304.5	618.4	598.4	19.98	30.948		
3,100.0	3,073.2	2,912.6	2,840.1	11.1	12.1	-119.16	-416.7	-321.1	671.3	650.6	20.67	32.477		
3,200.0	3,165.2	2,993.0	2,915.2	11.5	12.6	-120.13	-440.4	-337.4	726.4	705.0	21.36	34.003		
3,300.0	3,255.8	3,071.6	2,988.6	11.8	13.1	-121.00	-463.5	-353.3	783.6	761.6	22.06	35.528		
3,400.0	3,344.9	3,148.3	3,060.3	12.2	13.5	-121.75	-486.2	-368.9	843.1	820.3	22.75	37.054		
3,500.0	3,432.4	3,223.1	3,130.1	12.6	14.0	-122.38	-508.2	-384.0	904.7	881.2	23.45	38.584		
3,531.7	3,459.8	3,246.4	3,151.9	12.7	14.2	-122.56	-515.1	-388.7	924.7	901.0	23.67	39.068		
3,600.0	3,518.5	3,296.3	3,198.5	13.0	14.5	-123.81	-529.8	-398.8	968.1	943.9	24.14	40.102		

Anticollision Report

NEW MEXICO Company: Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft OWB Reference Wellbore Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H TVD Reference: GL @ 3225.0usft GL @ 3225.0usft MD Reference:

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma Compass Database: Offset TVD Reference: Reference Datum

vey Progra		/IWD Offs	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dist	Rule Assi	gned:		Offset Well Error:	0.0 u
easured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
0.0	0.0	2.8	0.0	0.0	0.0	-145.19	-85.8	-59.6	104.5	104.5	0.01	N/A		
100.0	100.0	102.8	100.0	0.4	0.4	-145.19	-85.8	-59.6	104.5	103.7	0.73	143.704		
200.0	200.0	202.8	200.0	0.7	0.7	-145.19	-85.8	-59.6	104.5	103.0	1.44	72.351		
300.0	300.0	302.8	300.0	1.1	1.1	-145.19	-85.8	-59.6	104.5	102.3	2.16	48.346		
400.0	400.0	402.8	400.0	1.4	1.4	-145.19	-85.8	-59.6	104.5	101.6	2.88	36.302		
500.0	500.0	502.8	500.0	1.8	1.8	-145.19	-85.8	-59.6	104.5	100.9	3.59	29.062		
600.0	600.0	602.8	600.0	2.2	2.2	-145.19	-85.8	-59.6	104.5	100.2	4.31	24.229		
700.0	700.0	702.8	700.0	2.5	2.5	-145.19	-85.8	-59.6	104.5	99.4	5.03	20.775		
800.0	800.0	802.8	800.0	2.9	2.9	-145.19	-85.8	-59.6	104.5	98.7	5.75	18.183		
900.0	900.0	902.8	900.0	3.2	3.2	-145.19	-85.8	-59.6	104.5	98.0	6.46	16.165		
1,000.0	1,000.0	1,002.8	1,000.0	3.6	3.6	-145.19	-85.8	-59.6	104.5	97.3	7.18	14.551		
1,100.0	1,100.0	1,102.8	1,100.0	3.9	4.0	-145.19	-85.8	-59.6	104.5	96.6	7.90	13.230		
1,200.0	1,200.0	1,202.8	1,200.0	4.3	4.3	-145.19	-85.8	-59.6	104.5	95.9	8.61	12.129		
1,300.0	1,300.0	1,302.8	1,300.0	4.7	4.7	-145.19	-85.8	-59.6	104.5	95.1	9.33	11.197		
1,400.0	1,400.0	1,402.8	1,400.0	5.0	5.0	-145.19	-85.8	-59.6	104.5	94.4	10.05	10.398		
1,500.0	1,500.0	1,502.8	1,500.0	5.4	5.4	-145.19	-85.8	-59.6	104.5	93.7	10.76	9.705		
1,600.0	1,600.0	1,602.8	1,600.0	5.7	5.7	-145.19	-85.8	-59.6	104.5	93.0	11.48	9.099		
1,700.0	1,700.0	1,702.8	1,700.0	6.1	6.1	-145.19	-85.8	-59.6	104.5	92.3	12.20	8.564		
1,710.0	1,710.0	1,712.8	1,710.0	6.1	6.1	-145.19	-85.8	-59.6	104.5	92.2	12.27	8.514 CC, E	S	
1,800.0	1,800.0	1,800.0	1,797.2	6.5	6.4	-145.31	-86.6	-59.9	105.4	92.5	12.89	8.172 SF		
1,900.0	1,900.0	1,892.2	1,889.2	6.8	6.7	-146.10	-92.4	-62.1	111.8	98.3	13.50	8.283		
2,000.0	2,000.0	1,984.0	1,980.2	7.2	7.0	-147.40	-103.7	-66.3	124.6	110.6	14.07	8.859		
2,100.0	2,100.0	2,073.6	2,068.1	7.5	7.4	-117.02	-119.9	-72.4	144.4	129.8	14.57	9.907		
2,200.0	2,199.8	2,160.0	2,151.6	7.9	7.7	-119.30	-140.4	-80.0	171.9	156.9	15.02	11.447		
2,300.0	2,299.5	2,242.3	2,229.8	8.2	8.0	-121.54	-164.3	-88.9	207.0	191.6	15.40	13.443		
2,400.0	2,398.7	2,319.8	2,302.1	8.6	8.3	-123.45	-190.6	-98.7	249.5	233.8	15.73	15.858		
2,500.0	2,497.5	2,400.0	2,375.1	9.0	8.7	-125.18	-221.6	-110.3	299.0	282.8	16.20	18.452		
2,600.0	2,595.6	2,459.0	2,427.6	9.3	9.0	-125.96	-246.9	-119.7	354.5	338.2	16.28	21.777		
2,700.0	2,693.1	2,520.5	2,481.1	9.7	9.3	-126.58	-275.3	-130.3	415.8	399.3	16.50	25.194		
2,800.0	2,789.6	2,578.9	2,530.6	10.0	9.7	-126.89	-304.2	-141.1	482.2	465.4	16.75	28.781		
2,900.0	2,885.3	2,649.6	2,590.0	10.4	10.1	-127.39	-340.2	-154.5	551.5	534.2	17.32	31.843		
3,000.0	2,979.8	2,718.3	2,647.8	10.7	10.6	-127.71	-375.1	-167.5	622.8	604.9	17.89	34.815		
3,100.0	3,073.2	2,785.0	2,703.8	11.1	11.0	-127.87	-408.9	-180.2	695.8	677.4	18.46	37.703		
3,200.0	3,165.2	2,849.5	2,758.1	11.5	11.5	-127.87	-441.6	-192.4	770.6	751.6	19.02	40.516		
3,300.0	3,255.8	2,911.7	2,810.4	11.8	12.0	-127.72	-473.2	-204.2	847.2	827.6	19.58	43.265		
3,400.0	3,344.9	2,971.7	2,860.7	12.2	12.4	-127.43	-503.6	-215.5	925.4	905.3	20.14	45.954		

Anticollision Report

Company: NEW MEXICO Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

GL @ 3225.0usft Grid

GL @ 3225.0usft

2.00 sigma

Compass

Well MICHELADA 3 FED COM 133H

North Reference: Grid
Survey Calculation Method: Minimum Curvature

Output errors are at Database:

Offset TVD Reference: Reference Datum

MEZCAL 10 FED COM - MEZCAL 10 FED COM 134H - OWB - PWP0 Offset Design: Offset Site Error: 0.0 usft Survey Program: Reference Measured Vertical 0-MWD 0.0 usft Rule Assigned: Offset Well Error Offset ed Vertical Semi Major Axis ence Offset Offset Wellbore Centre Distan Highside Measured Reference Minimum Separation Warning Ellipses Depth Toolface +N/-S +E/-W Separation Depth Depth (usft) (°) 0.0 0.0 0.0 3.5 0.0 0.0 -162.12 -94.9 -30.6 99.7 0.01 7,829.913 100.0 100.0 103.5 100.0 0.4 0.4 -162.12 -94.9 -30.6 99.7 99.0 0.73 136.738 200.0 200.0 203.5 200.0 0.7 0.7 -162.12 -94.9 -30.699.7 98.3 1.45 68.962 300.0 300.0 303.5 300.0 1.1 1.1 -162.12 -94.9 -30.6 99.7 97.6 2.16 46.108 400.0 400.0 403.5 400.0 -162.12 -94.9 -30.6 99.7 96.9 2.88 34.631 500.0 503.5 500.0 1.8 1.8 -162.12 -94.9 99.7 96.2 3.60 27.729 500.0 600.0 600.0 603.5 600.0 22 22 -162.12 -94 9 -30 6 99 7 95.4 4 31 23.121 700.0 700.0 703.5 700.0 2.5 2.5 -162.12 -94.9 -30.6 99.7 94.7 5.03 19.826 -162.12 5.75 800.0 800.0 803.5 800.0 2.9 2.9 -94.9 -30.6 99.7 94.0 17.353 900.0 900.0 903.5 900.0 3.2 3.2 -162.12 -94.9 -30.6 99.7 93.3 6.47 15.429 1,000.0 1,000.0 1,003.5 1,000.0 -162.12 -94.9 -30.6 99.7 92.6 7.18 13.889 3.6 3.6 1 100 0 1 100 0 1 103 5 1 100 0 39 4 0 -162 12 -94 9 -30.6 99 7 919 7.90 12 628 1,200.0 1,200.0 1.203.5 1,200.0 43 43 -162 12 -94 9 -30.6 99.7 91 1 8.62 11.577 1,300.0 1,300.0 -162.12 9.33 10.688 1,300.0 1,303.5 4.7 4.7 -94.9 -30.6 99.7 90.4 1,400.0 1,400.0 -162.12 9.926 1,400.0 1,403.5 5.0 5.0 -94.9 -30.6 99.7 89.7 10.05 1,500.0 1.500.0 1.503.5 1.500.0 5.4 5.4 -162.12 -94.9 -30.6 99.7 89.0 10.77 9.265 1,600.0 1,600.0 1,603.5 1,600.0 5.7 5.7 -162.12 -94.9 -30.6 99.7 88.3 11.48 8.686 1.700.0 1.700.0 1.703.5 1.700.0 6.1 6.1 -162.12 -94.9 -30.6 99.7 87.5 12.20 8.176 1,800.0 1,800.0 1,803.5 1,800.0 6.5 6.5 -162.12 -94.9 -30.6 99.7 86.8 12.92 7.722 1,900.0 1,900.0 1,903.5 1,900.0 6.8 -162.12 -94.9 -30.6 99.7 86.1 13.63 7.316 6.8 1,965.5 1.965.5 1.969.0 1,965.5 7.0 7.1 -162.12 -94.9 99.7 85.6 14.10 7.073 CC 2.000.0 2.000.0 2.003.3 1.999.8 72 7.2 -162.12 -94 9 -30.6 99.8 85.4 14.35 6.951 ES. SF 2,100.0 2,100.0 2,096.5 2,093.0 7.5 7.5 -130.69 -98.0 -31.6 104.4 89.4 15.00 6.959 2.199.8 2.188.4 2.184.4 7.9 7.8 -132.34 -34.2 117.8 102.2 7.563 2.200.0 -106.8 15.57 2,300.0 2.299.5 2.277.8 2.272.6 8.2 8.1 -134.32-120.7-38.3 139.9 123.8 16.08 8.699 2,400.0 2,398.7 2,363.5 2,356.2 8.6 -136.13 -138.9 -43.7 170.5 154.0 16.53 10.314 8.4 2.500.0 2.497.5 2.444.9 2.434.2 9.0 8.7 -137.54 -160.6 -50.2 209.1 192.2 16.92 12.361 2.600.0 2 595 6 2 521 1 2 506 2 93 9.0 -138 53 -184 8 -57.3 255.2 238.0 17.26 14 790 2,700.0 2,693.1 2,600.0 2,579.1 9.7 9.3 -139.27 -213.6 -65.9 308.3 290.6 17.73 17.389 2,789.6 2,657.3 2,630.9 -139.39 -237.0 -72.8 367.3 349.5 20.626 2,800.0 10.0 9.6 17.81 2.900.0 2.885.3 2.717.0 2.683.9 10.4 9.9 -139.36 -263.4 -80.7 432.0 414.0 18.04 23.952 3,000.0 2,979.8 2,771.2 2,731.0 10.7 10.2 -139.06 -289.2 -88.4 501.6 483.4 18.24 27.500 3.073.2 2.820.3 2.772.7 -138.52 -314.0 -95.7 557.2 18.43 31.235 3.100.0 11.1 10.4 575.6 3.200.0 3.165.2 2.864.3 2.809.3 11.5 10.7 -137.73 -337.4 -102.7 653.4 634.8 18.60 35.125 3,300.0 3,255.8 2,900.0 2,838.4 11.8 10.9 -136.59 -357.2 -108.6 734.6 715.9 18.70 39.285 3.400.0 3.344.9 2.938.9 2.869.6 11.2 -135.35 -379.5 -115.2 818.7 18.93 43.258 3.500.0 3.432.4 2.970.1 2 894 1 12 6 11.4 -133 70 -397.9 -120 7 905.3 886 2 19.08 47 452 3,531.7 3,459.8 2,979.1 2,901.2 12.7 11.5 -133.11 -403.4 -122.3 933.3 914.2 19.13 48.792 3,000.0 -416.2 3.600.0 3.518.5 2.917.2 13.0 11.6 -133.70 -126.1 993.9 974.6 19.26 51.608

Anticollision Report

NEW MEXICO Company: Project: (SP) EDDY

MICHELADA FED COM Reference Site:

0.0 usft Site Error:

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H TVD Reference: GL @ 3225.0usft MD Reference: GL @ 3225.0usft

Grid North Reference:

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma Compass Database: Offset TVD Reference: Reference Datum

No. Property Pro	Offset Des	sign: M	ICHELADA	FED COM	1 - MICHEL	ADA 3 FE	ED COM 134	IH - OWB - PW	P0					Offset Site Error:	0.0 usft
Name					01			06474-111	0	D.		gned:		Offset Well Error:	0.0 usft
Company Comp	Measured	Vertical	Measured	Vertical						Between	Between			Warning	
Mathematics	-				(usft)	(usft)						· ·	Factor		
1000 1000 1000 1000 1000 0.04 0.4 0.4 0.4 0.7								9.1	-27.8		(====)	(====)			
Mathematical Color											28.6	0.72	40.822		
March Marc	200.0	200.0	200.0	200.0	0.7	0.7	-71.91	9.1	-27.8	29.3	27.8	1.43	20.411		
	300.0	300.0	300.0	300.0	1.1	1.1	-71.91	9.1	-27.8	29.3	27.1	2.15	13.607		
Mathematics	400.0	400.0	400.0	400.0	1.4	1.4	-71.91	9.1	-27.8	29.3	26.4	2.87	10.206		
Tool	500.0	500.0	500.0	500.0	1.8	1.8	-71.91	9.1	-27.8	29.3	25.7	3.58	8.164		
March Marc	600.0	600.0	600.0	600.0	2.2	2.2	-71.91	9.1	-27.8	29.3	25.0	4.30	6.804		
Mathematical Note Math	700.0	700.0	700.0	700.0	2.5	2.5	-71.91	9.1	-27.8	29.3	24.2	5.02	5.832		
1,000 1,000 1,000 1,000 1,000 1,000 3.8 3.6 7.191 9.1 27.8 29.3 22.1 7.17 4.082	800.0	800.0	800.0	800.0	2.9	2.9	-71.91	9.1	-27.8	29.3	23.5	5.74	5.103		
1,100															
1,200	1,000.0	1,000.0	1,000.0	1,000.0	3.6	3.6	-71.91	9.1	-27.8	29.3	22.1	7.17	4.082		
1,300 1,300 1,300 1,300 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,50	1,100.0	1,100.0	1,100.0	1,100.0	3.9	3.9	-71.91	9.1	-27.8	29.3	21.4	7.89	3.711		
1,400	1,200.0	1,200.0	1,200.0	1,200.0	4.3	4.3	-71.91	9.1	-27.8	29.3	20.7	8.60	3.402		
1,500.0 1,500.0 1,500.0 1,500.0 5,4 5,4 -71.91 9.1 -27.8 29.3 18.5 10.75 2.721 1,600.0 1,600.0 1,600.0 1,500.0 5.7 -71.91 9.1 -27.8 29.3 17.6 11.47 2.551 1,770.0 1,700.	1,300.0	1,300.0	1,300.0	1,300.0	4.7		-71.91	9.1	-27.8	29.3	19.9	9.32	3.140		
1,800															
1,700	1,500.0	1,500.0	1,500.0	1,500.0	5.4	5.4	-71.91	9.1	-27.8	29.3	18.5	10.75	2.721		
1,700	1,600.0	1,600.0	1,600.0	1,600.0	5.7	5.7	-71.91	9.1	-27.8	29.3	17.8	11.47	2.551		
1,800.0 1,800.0 1,709.5 1,709.5 1,709.5 6.5 6.4 -71.72 9.3 -71.72 9.3 -71.72 9.3 -71.72 9.3 -71.72 9.3 -71.72	1,700.0	1,700.0	1,700.0	1,700.0	6.1	6.1	-71.91	9.1	-27.8	29.3	17.1	12.19	2.401		
1,000 1,000 1,888.4 1,888.3 6.8 6.8 -70.44 11.1 -31.1 33.1 19.5 13.59 2.433	1,710.0	1,710.0	1,710.0	1,710.0	6.1	6.1	-71.91	9.1	-27.8	29.3	17.0	12.26	2.387 CC		
2,000.0 2,000.0 1,996.9 1,996.6 7.2 7.1 -88.54 14.5 -37.0 39.9 25.6 14.27 2.793 2,100.0 2,000.0 2,098.0 2,094.2 7.5 7.5 3.563 19.7 -4.5.7 48.6 33.7 14.92 3.259 2,200.0 2,199.5 2,290.2 2,287.0 8.2 8.2 3.836 35.1 -71.5 67.9 51.7 16.19 4.196 2,300.0 2,497.5 2,282.7 8.2 8.2 -38.36 35.1 -71.5 67.9 51.7 16.19 4.196 2,400.0 2,395.6 2,590.5 2,583.1 2,475.7 9.0 8.9 4.340 4.52 -88.5 78.6 61.8 16.79 4.678 2,500.0 2,596.5 2,590.5 2,590.5 2,590.5 9.3 9.2 46.21 70.2 -108.1 9.0 72.6 17.39 51.75 2,700.0 2,893.1 2,679.8 2,798.	1,800.0	1,800.0	1,799.5	1,799.5	6.5	6.4	-71.72	9.3	-28.2	29.7	16.8	12.90	2.302 ES, S	SF.	
2,1000 2,0905 2,0942 7,5 7,5 7,5 3-563 19.7 4.5.7 48.6 33.7 14.92 3.259 2,2000 2,1988 2,192.8 2,191.0 7.9 7.8 -36.51 26.6 -57.2 58.0 42.4 15.56 3.726 2,3000 2,299.5 2,290.2 2,287.0 8.2 8.2 -38.36 35.1 -71.5 67.9 51.7 16.19 4.768 2,500.0 2,497.5 2,483.7 2,475.7 9.0 8.9 4-34.0 56.9 1108.1 90.0 72.6 17.39 5.175 2,500.0 2,698.7 2,679.7 2,664.2 9.7 9.6 4-9.99 84.2 154.1 113.3 94.6 18.74 6.048 2,800.0 2,789.6 2,789.5 10.4 10.3 -53.83 98.3 1.77.8 122.7 103.2 19.48 6.298 2,900.0 2,897.8 2,976.8 2,978.3 3,404.3 11.1 <td>1,900.0</td> <td>1,900.0</td> <td>1,898.4</td> <td>1,898.3</td> <td>6.8</td> <td>6.8</td> <td>-70.44</td> <td>11.1</td> <td>-31.1</td> <td>33.1</td> <td>19.5</td> <td>13.59</td> <td>2.433</td> <td></td> <td></td>	1,900.0	1,900.0	1,898.4	1,898.3	6.8	6.8	-70.44	11.1	-31.1	33.1	19.5	13.59	2.433		
2,200.0 2,198.8 2,192.8 2,191.0 7,9 7,8 -36,51 26.6 -57.2 880 42.4 15,66 3,726 2,300.0 2,299.5 2,290.2 2,287.0 8.2 3,83.6 35.1 -71.5 67.9 51.7 16.19 4,196 2,500.0 2,497.5 2,483.7 2,475.7 9.0 8.9 -43.40 56.9 -108.1 90.0 72.6 17.39 5,175 2,500.0 2,595.6 2,580.5 2,586.9 9.3 9.2 -46.21 70.2 -130.5 102.3 84.2 18.01 5,576 2,800.0 2,788.6 2,778.8 2,759.5 10.0 10.0 -58.63 98.3 -177.8 122.7 103.2 194.8 6,298 2,900.0 2,885.3 2,878.9 2,968.8 2,948.7 10.4 10.3 -58.35 112.4 -201.4 130.7 11.4 6.672 3,000.0 3,073.2 3,075.3 3,044.3 11.1	2,000.0	2,000.0	1,996.9	1,996.6	7.2	7.1	-68.54	14.5	-37.0	39.9	25.6	14.27	2.793		
2.300.0 2.290.5 2.280.0 8.2 8.2 -38.36 33.1 -71.5 67.9 51.7 16.19 4.196 2.400.0 2.386.7 2.387.1 2.381.9 8.6 8.5 -40.74 45.2 -88.5 78.6 61.8 16.79 4.678 2.500.0 2.497.5 2.483.7 2.475.7 9.0 8.9 -43.40 56.9 -10.1 90.0 72.6 17.39 5.175 2.600.0 2.569.5 2.586.9 9.3 9.2 -48.21 70.2 -130.5 102.3 84.2 18.101 5.676 2.700.0 2.693.1 2.679.7 2.664.2 9.7 9.6 48.59 84.2 -154.1 113.3 94.6 18.74 0.048 6.2788 2.900.0 2.885.3 2.877.9 2.854.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6.463 3.000.0 3.075.3 3.043.3 3.043.3 14.4 <	2,100.0	2,100.0	2,095.0	2,094.2	7.5	7.5	-35.63	19.7	-45.7	48.6	33.7	14.92	3.259		
2,400.0 2,398.7 2,387.1 2,381.9 8.6 8.5 -40.74 45.2 -88.5 78.6 61.8 16.79 4.678 2,500.0 2,497.5 2,483.7 2,475.7 9.0 8.9 -43.40 56.9 -108.1 90.0 72.6 17.39 5.175 2,600.0 2,596.5 2,568.9 9.3 9.2 -46.21 70.2 -130.5 102.3 84.2 16.11 15.3 94.6 18.74 6.048 2,800.0 2,789.6 2,778.8 2,759.5 10.0 10.0 -53.63 98.3 -177.8 12.27 103.2 194.8 6.288 2,900.0 2,878.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 2.00 6.575 3,000.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -66.72 14.4 -255.0 188.1 117.1 2.00 6.575 3,200.0 3,252.8 3,779.9	2,200.0	2,199.8	2,192.8	2,191.0	7.9	7.8	-36.51	26.6	-57.2	58.0	42.4	15.56	3.726		
2,500.0 2,497.5 2,483.7 2,475.7 9.0 8.9 -43.40 56.9 -108.1 90.0 72.6 17.39 5.175 2,600.0 2,595.6 2,580.5 2,588.9 9.3 9.2 -46.21 70.2 -130.5 102.3 84.2 18.01 5.676 2,700.0 2,683.1 2,679.7 2,664.2 9.7 9.6 -49.59 84.2 -154.1 113.3 94.6 18.74 6.048 2,600.0 2,799.6 2,778.8 2,759.5 10.0 10.0 -53.63 98.3 -17.7 12.7 103.2 19.48 6.298 2,900.0 2,885.3 2,877.9 2,854.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6.463 3,000.0 2,979.8 2,976.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 210.0 6.575 3,000.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.789 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.35 168.2 -295.2 162.8 139.4 23.39 6.960 3,300.0 3,343.4 3,367.7 3,325.2 12.2 12.2 -90.48 181.9 -318.3 174.6 150.4 24.0 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,331.7 3,489.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,616.3 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,696.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,767.7 3,848.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.738 4,000.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 477.6 327.5 247.6 28.19 9.738 4,000.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 477.6 327.5 297.7 29.76 11.004 4,000.0 4,034.8 4,130.5 4,056.0 15.5 15.1 -127.72 290.2 -503.3 361.4 32.9 35.5 11.602 4,400.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,266.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37	2,300.0	2,299.5	2,290.2	2,287.0	8.2	8.2	-38.36	35.1	-71.5	67.9	51.7	16.19	4.196		
2,800.0 2,580.6 2,580.5 2,580.9 9.3 9.2 -46.21 70.2 -130.5 102.3 84.2 18.01 5.676 2,700.0 2,693.1 2,679.6 2,789.6 2,789.6 2,789.5 10.0 10.0 -53.63 98.3 -177.8 122.7 103.2 19.48 6.298 2,900.0 2,885.3 2,877.9 2,864.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6.463 3,000.0 3,979.8 2,976.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 21.00 6.575 3,100.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.8 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 2,271.9 153.3 130.7 22.58 6.789 3,200.0	2,400.0	2,398.7	2,387.1	2,381.9	8.6	8.5	-40.74	45.2	-88.5	78.6	61.8	16.79	4.678		
2,700.0 2,693.1 2,679.7 2,684.2 9,7 9,6 -49.59 84.2 -154.1 113.3 94.6 18,74 6,048 2,800.0 2,789.6 2,778.8 2,769.5 10.0 10.0 -53.63 98.3 -177.8 122.7 109.2 194.8 6,298 2,900.0 2,988.3 2,877.9 2,864.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6,463 3,000.0 2,978.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 21.00 6,575 3,000.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -225.0 138.1 117.1 21.00 6,575 3,200.0 3,165.2 3,173.4 3,186.6 11.5 11.4 -76.37 145.3 -271.9 153.3 130.7 22.58 6,789 3,400.0 3,342.4 3,483.7 3,417.4 <	2,500.0	2,497.5	2,483.7	2,475.7	9.0	8.9	-43.40	56.9	-108.1	90.0	72.6	17.39	5.175		
2,800.0 2,788.6 2,788.8 2,799.5 10.0 10.0 -53.63 98.3 -177.8 122.7 103.2 19.48 6.298 2,900.0 2,895.3 2,877.9 2,884.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6.463 3,000.0 2,979.8 2,976.8 2,949.7 10.7 -63.74 126.4 -225.0 138.1 117.1 21.00 6.575 3,000.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -225.0 138.1 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.769 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.55 168.2 -295.2 162.8 139.4 23.99 6.960 3,600.0 3,432.4 3,484.0 3,446.5	2,600.0	2,595.6	2,580.5	2,568.9	9.3	9.2	-46.21	70.2	-130.5	102.3	84.2	18.01	5.676		
2,900.0 2,885.3 2,877.9 2,854.7 10.4 10.3 -58.35 112.4 -201.4 130.7 110.5 20.23 6.463 3,000.0 2,979.8 2,976.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 21.00 6.575 3,100.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.789 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.35 168.2 -295.2 162.8 139.4 23.39 6.660 3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 12.2 190.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,694.6 3,654.3 3,600.0 13.0 12.9 -104.32 202.1 -363.9 20.77 181.9 25.82 8.045 3,700.0 3,694.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,804.7 3,940.0 3,870.0 13.6 14.5 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,000.0 3,804.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,000.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,000.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37.77 32.14 12.75 4,000.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37.77 32.14 12.75 4,000.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37.77 32.14 12.75 4,000.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37.77 32.14 12.75 4,000.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 37.77 32.14 12.75 4,000.0 4,206.9 4,310.0 4,206.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,000.0 4,650.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	2,700.0	2,693.1	2,679.7	2,664.2	9.7	9.6	-49.59	84.2	-154.1	113.3	94.6	18.74	6.048		
3,000.0 2,979.8 2,976.8 2,949.7 10.7 10.7 -63.74 126.4 -225.0 138.1 117.1 21.00 6.575 3,100.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.789 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 43.35 168.2 -295.2 162.8 139.4 23.39 6.960 3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 90.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,466.5 12.7 12.7 99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 409.4 251.4 224.0 27.40 9.176 3,900.0 3,767.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 409.4 251.4 224.0 27.40 9.176 4,000.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 477.6 327.5 297.7 29.76 10.04 4,200.0 4,034.8 4,130.5 4,088.0 15.5 15.1 14.7 -125.27 276.7 477.6 327.5 297.7 29.76 10.04 4,000.0 4,034.8 4,130.5 4,088.0 15.5 15.1 14.7 125.27 276.7 477.6 327.5 297.7 29.76 11.004 4,200.0 4,206.9 4,321.0 4,241.0 16.3 15.9 15.5 15.5 12.983 303.7 523.0 381.9 350.6 313.4 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 15.5 15.5 12.88 303.7 524.3 489.0 35.37 14.823	2,800.0	2,789.6	2,778.8	2,759.5	10.0	10.0	-53.63	98.3	-177.8	122.7	103.2	19.48	6.298		
3,100.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,136.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.789 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.35 168.2 -295.2 162.8 139.4 23.39 6.960 3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 -90.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -368.7 22.86 202.0 26.61 8.589 3,800.0 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 432.1 275.7 247.6 28.19 9.783 4,000.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,206.9 4,321.0 4,241.0 16.3 15.9 15.5 129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,600.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,600.0 4,269.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 12.751 4,600.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	2,900.0	2,885.3	2,877.9	2,854.7	10.4	10.3	-58.35	112.4	-201.4	130.7	110.5	20.23	6.463		
3,100.0 3,073.2 3,075.3 3,044.3 11.1 11.1 -69.78 140.4 -248.5 145.3 123.6 21.78 6.672 3,200.0 3,165.2 3,173.4 3,138.6 11.5 11.4 -76.37 154.3 -271.9 153.3 130.7 22.58 6.789 3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.35 168.2 -295.2 162.8 139.4 23.39 6.960 3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 19.0.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,465.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,682.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,048.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,208.9 4,210.0 4,241.0 16.3 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.216 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 131.65 317.2 -545.8 409.8 37.7 32.14 12.751 4,500.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,000.0	2,979.8	2,976.8	2,949.7	10.7	10.7	-63.74	126.4	-225.0	138.1	117.1	21.00	6.575		
3,300.0 3,255.8 3,270.9 3,232.2 11.8 11.8 -83.35 168.2 -295.2 162.8 139.4 23.39 6,960 3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 -90.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,466.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 +110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,767.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 432.1 275.7 247.6 28.19 9.783 4,000.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 447.6 327.5 297.7 297.6 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 32.9 30.55 11.602 4,300.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,600.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 30.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823		3,073.2	3,075.3	3,044.3	11.1	11.1	-69.78	140.4	-248.5	145.3	123.6	21.78	6.672		
3,400.0 3,344.9 3,367.7 3,325.2 12.2 12.2 12.2 12.2 19.0.48 181.9 -318.3 174.6 150.4 24.20 7.215 3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,694.6 3,664.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,767.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,209.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,224.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,200.0	3,165.2	3,173.4	3,138.6	11.5	11.4	-76.37	154.3	-271.9	153.3	130.7	22.58	6.789		
3,500.0 3,432.4 3,463.7 3,417.4 12.6 12.5 -97.53 195.5 -341.2 189.5 164.4 25.01 7.574 3,531.7 3,459.8 3,494.0 3,464.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,300.0	3,255.8	3,270.9	3,232.2	11.8	11.8	-83.35	168.2	-295.2	162.8	139.4	23.39	6.960		
3,531.7 3,459.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,665.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,400.0	3,344.9	3,367.7	3,325.2	12.2	12.2	-90.48	181.9	-318.3	174.6	150.4	24.20	7.215		
3,531.7 3,459.8 3,494.0 3,446.5 12.7 12.7 -99.71 199.8 -348.4 194.9 169.6 25.27 7.713 3,600.0 3,518.5 3,559.0 3,509.0 13.0 12.9 -104.32 209.1 -363.9 207.7 181.9 25.82 8.045 3,700.0 3,604.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,665.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,500.0	3,432.4	3,463.7	3,417.4	12.6	12.5	-97.53	195.5	-341.2	189.5	164.4	25.01	7.574		
3,700.0 3,694.6 3,654.3 3,600.5 13.4 13.3 -110.13 222.6 -386.7 228.6 202.0 26.61 8.589 3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,655.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823															
3,800.0 3,690.6 3,749.5 3,692.0 13.8 13.6 -114.97 236.1 -409.4 251.4 224.0 27.40 9.176 3,900.0 3,776.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	3,600.0	3,518.5	3,559.0	3,509.0	13.0	12.9	-104.32	209.1	-363.9	207.7	181.9	25.82	8.045		
3,900.0 3,76.7 3,844.8 3,783.5 14.2 14.0 -119.01 249.6 -432.1 275.7 247.6 28.19 9.783 4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 1-27.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 129.83 303.7 -523.0 381.9 350.6 31.34 12.185 14.00.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 14.00.0 4,206.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 14.00.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 14.700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 14.823	3,700.0	3,604.6	3,654.3	3,600.5	13.4	13.3	-110.13	222.6	-386.7	228.6	202.0	26.61	8.589		
4,000.0 3,862.7 3,940.0 3,875.0 14.6 14.4 -122.40 263.2 -454.8 301.2 272.2 28.97 10.396 4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6	3,800.0	3,690.6	3,749.5	3,692.0	13.8	13.6	-114.97	236.1	-409.4	251.4	224.0	27.40	9.176		
4,100.0 3,948.7 4,035.3 3,966.5 15.0 14.7 -125.27 276.7 -477.6 327.5 297.7 29.76 11.004 4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,665.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4	3,900.0	3,776.7	3,844.8	3,783.5	14.2	14.0	-119.01	249.6	-432.1	275.7	247.6	28.19	9.783		
4,200.0 4,034.8 4,130.5 4,058.0 15.5 15.1 -127.72 290.2 -500.3 354.4 323.9 30.55 11.602 4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3	4,000.0	3,862.7	3,940.0	3,875.0	14.6	14.4	-122.40	263.2	-454.8	301.2	272.2	28.97	10.396		
4,300.0 4,120.8 4,225.7 4,149.5 15.9 15.5 -129.83 303.7 -523.0 381.9 350.6 31.34 12.185 4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	4,100.0	3,948.7	4,035.3	3,966.5	15.0	14.7	-125.27	276.7	-477.6	327.5	297.7	29.76	11.004		
4,400.0 4,206.9 4,321.0 4,241.0 16.3 15.9 -131.65 317.2 -545.8 409.8 377.7 32.14 12.751 4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	4,200.0	4,034.8	4,130.5	4,058.0	15.5	15.1	-127.72	290.2	-500.3	354.4	323.9	30.55	11.602		
4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	4,300.0	4,120.8	4,225.7	4,149.5	15.9	15.5	-129.83	303.7	-523.0	381.9	350.6	31.34	12.185		
4,500.0 4,292.9 4,416.2 4,332.5 16.8 16.2 -133.25 330.8 -568.5 438.1 405.1 32.94 13.298 4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	4,400.0	4,206.9	4,321.0	4,241.0	16.3	15.9	-131.65	317.2	-545.8	409.8	377.7	32.14	12.751		
4,600.0 4,379.0 4,511.5 4,424.0 17.2 16.6 -134.65 344.3 -591.2 466.6 432.9 33.75 13.826 4,700.0 4,465.0 4,606.7 4,515.5 17.7 17.0 -135.89 357.8 -613.9 495.4 460.8 34.56 14.334 4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823	4,500.0	4,292.9	4,416.2	4,332.5	16.8	16.2		330.8	-568.5	438.1	405.1	32.94	13.298		
4,800.0 4,551.0 4,702.0 4,607.0 18.1 17.4 -137.00 371.3 -636.7 524.3 489.0 35.37 14.823		4,379.0				16.6		344.3	-591.2			33.75	13.826		
	4,700.0	4,465.0	4,606.7	4,515.5	17.7	17.0	-135.89	357.8	-613.9	495.4	460.8	34.56	14.334		
4,900.0 4,637.1 4,797.2 4,698.5 18.6 17.7 -137.99 384.8 -659.4 553.4 517.3 36.19 15.293	4,800.0	4,551.0	4,702.0	4,607.0	18.1	17.4	-137.00	371.3	-636.7	524.3	489.0	35.37	14.823		
	4,900.0	4,637.1	4,797.2	4,698.5	18.6	17.7	-137.99	384.8	-659.4	553.4	517.3	36.19	15.293		

Anticollision Report

NEW MEXICO Company: Project: (SP) EDDY

MICHELADA FED COM Reference Site:

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft OWB Reference Wellbore Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H TVD Reference: GL @ 3225.0usft GL @ 3225.0usft MD Reference:

Grid North Reference:

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma Compass Database: Offset TVD Reference: Reference Datum

Offset De	sign: MI	CHELADA	FED COM	- MICHEL	ADA 3 FE	D COM 134	H - OWB - PW	'P0					Offset Site Error:	0.0 usf
Survey Prog Refe	ram: 0-l	MWD+IFR1+M Off		Semi N	Major Axis		Offset Wellbo	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 usf
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
5,000.0	4,723.1	4,892.5	4,790.0	19.0	18.1	-138.88	398.4	-682.1	582.7	545.7	37.01	15.745		
5,100.0	4,809.2	4,987.7	4,881.5	19.5	18.5	-139.69	411.9	-704.8	612.1	574.2	37.83	16.179		
5,200.0	4,895.2	5,083.0	4,973.0	20.0	18.9	-140.43	425.4	-727.6	641.5	602.9	38.66	16.596		
5,300.0	4,981.3	5,178.2	5,064.5	20.4	19.2	-141.10	438.9	-750.3	671.1	631.6	39.48	16.997		
5,400.0	5,067.3	5,273.5	5,156.0	20.9	19.6	-141.71	452.5	-773.0	700.7	660.4	40.31	17.382		
5,500.0	5,153.4	5,368.7	5,247.5	21.4	20.0	-142.28	466.0	-795.7	730.4	689.3	41.15	17.752		
5,600.0	5,239.4	5,464.0	5,339.0	21.8	20.4	-142.80	479.5	-818.5	760.2	718.2	41.98	18.108		
5,700.0	5,325.4	5,559.2	5,430.6	22.3	20.8	-143.28	493.0	-841.2	790.0	747.2	42.82	18.451		
5,800.0	5,411.5	5,654.5	5,522.1	22.8	21.1	-143.72	506.5	-863.9	819.9	776.2	43.66	18.780		
5,900.0	5,497.5	5,749.7	5,613.6	23.2	21.5	-144.14	520.1	-886.6	849.8	805.3	44.50	19.098		
6,000.0	5,583.6	5,845.0	5,705.1	23.7	21.9	-144.53	533.6	-909.4	879.7	834.4	45.34	19.404		
6,100.0	5,669.6	5,940.2	5,796.6	24.2	22.3	-144.89	547.1	-932.1	909.7	863.5	46.18	19.698		
6,200.0	5,755.7	6,035.5	5,888.1	24.7	22.7	-145.23	560.6	-954.8	939.7	892.7	47.03	19.982		
6,300.0	5,841.7	6,130.7	5,979.6	25.1	23.0	-145.54	574.1	-977.6	969.8	921.9	47.87	20.256		
6,400.0	5,927.7	6,225.9	6,071.1	25.6	23.4	-145.84	587.7	-1,000.3	999.8	951.1	48.72	20.521		

Anticollision Report

Company: NEW MEXICO Project: (SP) EDDY

Reference Site: MICHELADA FED COM

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

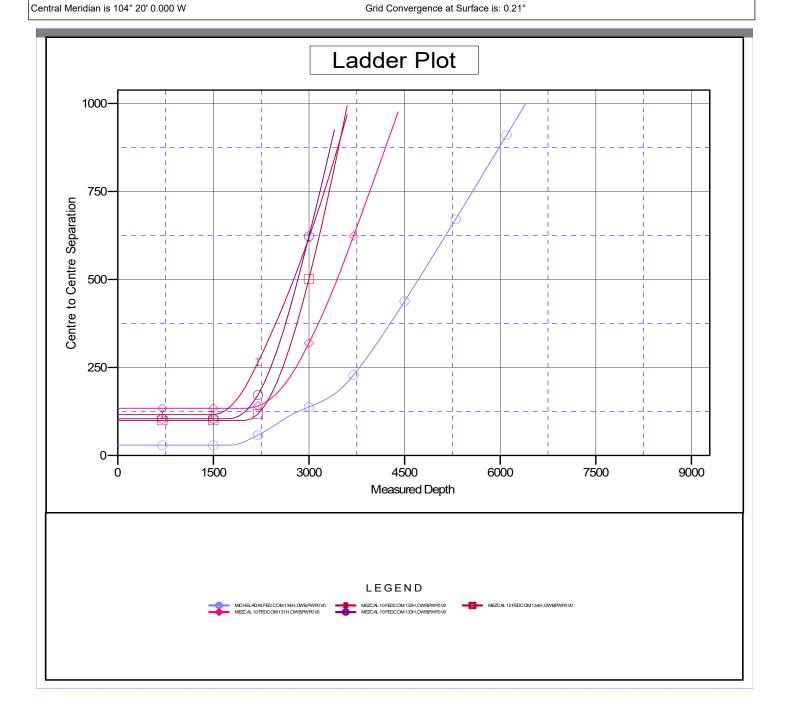
TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method: Output errors are at

Output errors are at Database:

Offset TVD Reference:

Well MICHELADA 3 FED COM 133H


GL @ 3225.0usft GL @ 3225.0usft

Grid

Minimum Curvature 2.00 sigma

Compass
Reference Datum

Reference Depths are relative to GL @ 3225.0usft Offset Depths are relative to Offset Datum Coordinates are relative to: MICHELADA 3 FED COM 133H Coordinate System is US State Plane 1983, New Mexico Eastern Zone

Anticollision Report

North Reference:

Company: **NEW MEXICO** Project: (SP) EDDY

MICHELADA FED COM Reference Site:

Site Error: 0.0 usft

Reference Well: MICHELADA 3 FED COM 133H

Well Error: 0.0 usft Reference Wellbore **OWB** Reference Design: PWP0

Local Co-ordinate Reference:

Well MICHELADA 3 FED COM 133H **TVD Reference:** GL @ 3225.0usft MD Reference:

GL @ 3225.0usft

Grid


Survey Calculation Method: Minimum Curvature

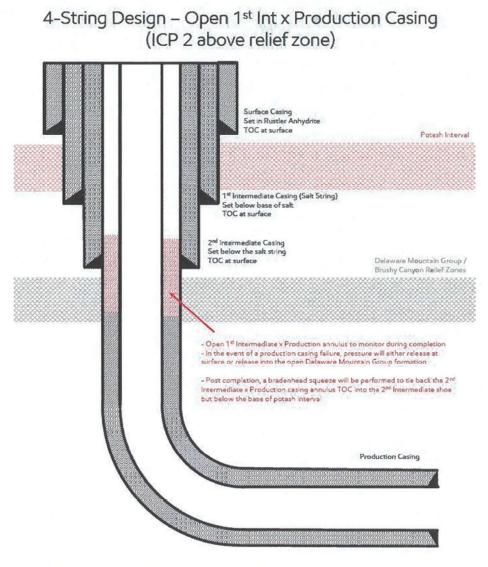
Output errors are at 2.00 sigma Database: Compass Offset TVD Reference: Reference Datum

Reference Depths are relative to GL @ 3225.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

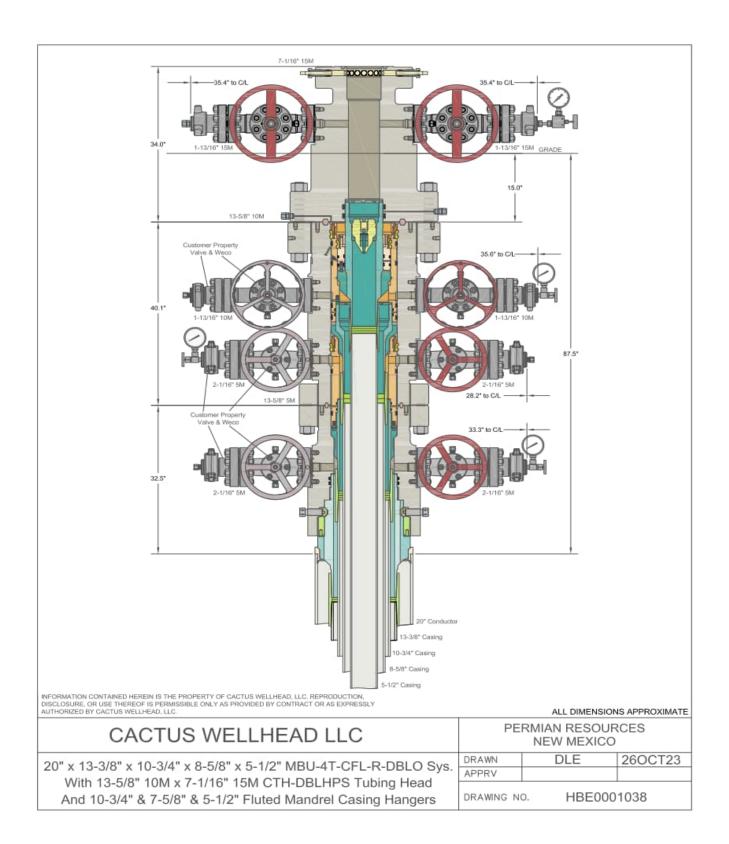
Coordinates are relative to: MICHELADA 3 FED COM 133H Coordinate System is US State Plane 1983, New Mexico Eastern Zone

Grid Convergence at Surface is: 0.21°

R-111-Q Program Being Utilized for Michelada & Mezcal


The WBD below depicts the cement design required for R111Q.

The annulus between the production and intermediate casing strings shall be actively monitored for pressure during hydraulic fracturing operations. If pressure communication is observed, indicating a possible production casing failure, hydraulic fracturing operations must immediately cease, and source of the pressure increase shall be investigated. During hydraulic fracturing operations, a pressure relief valve or appropriate venting system shall be installed to relieve pressure in the event of a production casing failure. The opening pressure of any pressure relief valves must be set below 50% of the intermediate casing burst rating. If the well design features an uncemented intermediate casing shoe (for example as shown in Exhibit B, Figure B) and the well approaches to within ¼ mile of an offset well drilling, completing or producing from the Delaware Mountain Group, then the pressure relief valve opening pressure shall be set no more than 1000 psi and at no time shall the pressure on the annulus be allowed to exceed 1000 psi. This requirement can be waived by the offset well operator.


Production cement will be 500' below the 2nd intermediate shoe with 0% excess leaving the DMG un-cemented as a pressure relief zone.

Bradenhead operations will be performed within 180 days of completing hydraulic fracturing operations, tying back cement at least 500' inside the 2nd intermediate shoe but below Marker Bed 126.

R-111-Q Example Program Being Utilized for Michelada & Mezcal

[Figure E] 4 String – Uncemented Annulus between 2nd Intermediate and Production Casing Strings

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in §§ 3172.6 through 3172.12. All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s).". Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

<u>Supporting Documentation</u>

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

52	API STANDARD	53					
Ta	ble C.4—Initial Pressure Te	sting, Surface BOP Stacks					
	Pressure Test—Low	Pressure Test—High Pressure**					
Component to be Pressure Tested	Pressure** psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket				
Annular preventer	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.				
Fixed pipe, variable bore, blind, and BSR preventers∞	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP				
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2 41)	RWP of side outlet valve or wellhead system, whichever is lower	ІТР				
Choke manifold—upstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP				
Choke manifold—downstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or N whichever is lower	ASP for the well program,				
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program					
	during the evaluation period. The p	ressure shall not decrease below the allest OD drill pipe to be used in well p					
For pad drilling operations, moving pressure-controlling connections	from one wellhead to another within when the integrity of a pressure sea	the 21 days, pressure testing is required to broken.	uired for pressure-containing and				
For surface offshore operations, the	ne ram BOPs shall be pressure test land operations, the ram BOPs sha	ed with the ram locks engaged and Il be pressure tested with the ram loc					

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

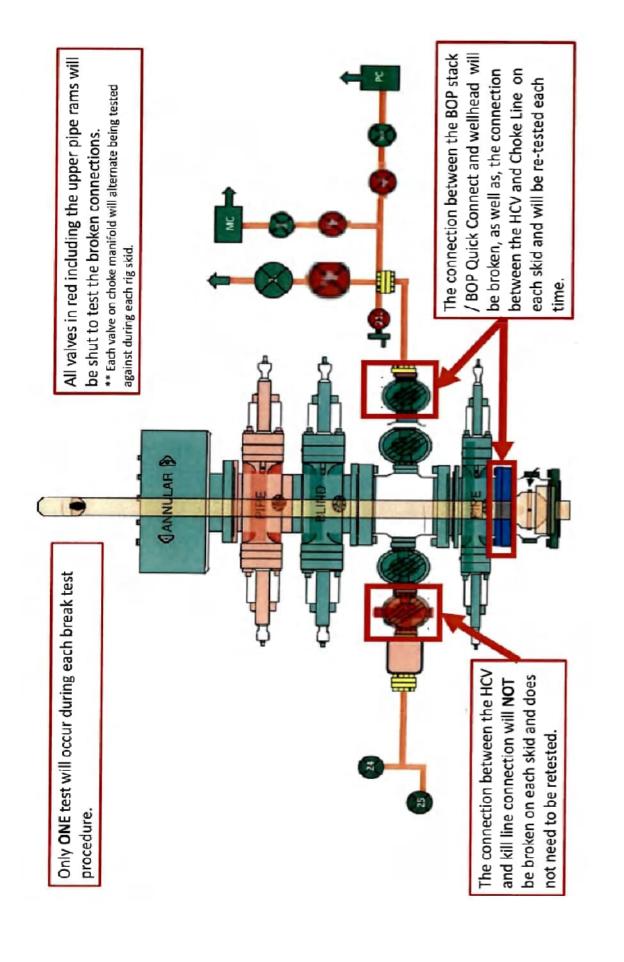
Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

Procedures

- 1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a)A full BOP test will be conducted on the first well on the pad.
- b) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.
- c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d) A full BOP test will be required prior to drilling any production hole.
- 3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a) Between the HCV valve and choke line connection
 - b)Between the BOP quick connect and the wellhead
- 4) The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6) The connections mentioned in 3a and 3b will then be reconnected.
- 7) Install test plug into the wellhead using test joint or drill pipe.
- 8) A shell test is performed against the upper pipe rams testing the two breaks.
- 9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.
- 11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary


A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control

event occurs prior to the commencement of a BOPE Break Testing operation.

Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1) After a full BOP test is conducted on the first well on the pad.
- 2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.
- 3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4) A full BOP test will be required prior to drilling the production hole.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land planned surface casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

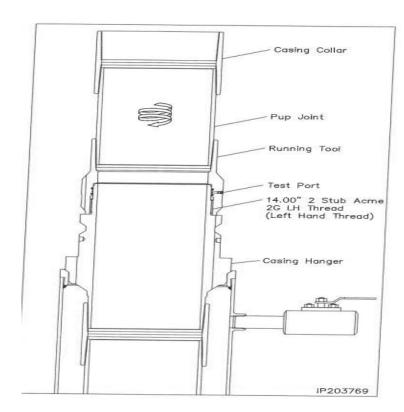


Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD. Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior to testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out surface casing shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

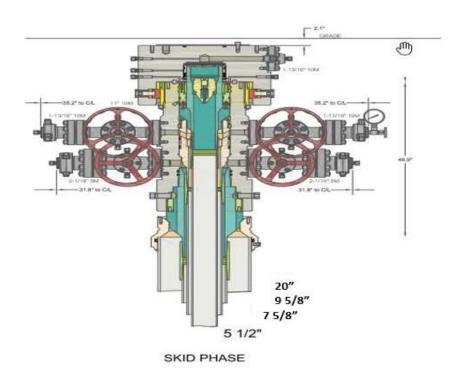


Illustration 2-2

<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Drilling Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
- 6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
- 7. Cement Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in Production mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000 psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

@ntinental<u>⅓</u>

ContiTech Fluid Technology

	Oil & Marine Corp. # 11535 Brittmoore Park Dr., Housto	on, TX Packing list / Delivery note
7041-69	16 USA	Document No. 71461553
		Document Date 28.01.2022
CONSIC	GNEE / Ship-to address:	Customer Number 11697
LICINAC	ERICH & PAYNE INT'L DRILLING CO	Customer VAT No.
	FLEX RIG WHSE - B-BAY	Supplier Number
	AGNOLIA DRIVE	Purchase Order No. /740362040 /
	IA PARK TX 77547	Purchase Order Date 18.01.2022
2.335.		Sales Order Number 1388153
Buyer:		Sales Order Date 18.01.2022
HELME	ERICH & PAYNE INT'L DRILLING CO	
	OUTH BOULDER	Unloading Point
74119	TULSA	RAN-No.
0 ""		
Conditi	ons	Page 1 of 2
Incoter	ms EXW Houston	Weights (Gross / Net)
	Ex Works	Total Gross Weight 2,507.000 LB
		Total Net Weight 2,507.000 LB
Item	Material/Description	Quantity Net Weight Gross Weight
	Buyer: Jack Peebles	
	E-mail: Jackie.Peebles@hpinc.com	
	Tel: 832-782-6000	
į.	Rig/Whse: HOW	/ /
	1000 - 1000 000 000 000 000	0.507.000.10
20	00RECERTIFY	1 PC 2,507.000 LB 2,507.000 LB
20	00RECERTIFY Recert of HP Hoses Serial# 67094	1 PC 2,507.000 LB 2,507.000 LB
20	00RECERTIFY	1 PC 2,507.000 LB 2,507.000 LB
20	00RECERTIFY Recert of HP Hoses Serial# 67094	2,507.000 LB 2,507.000 LB
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C	
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang	e
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes:	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end to minor repairs).	e e c/w BX155 ring groove each end
20	OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flang Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end to minor repairs). Clean & protect end connections Inspection Report	e e c/w BX155 ring groove each end Connections (limited direcertification

ContiTech Rubber Industrial Kft.
H-6728 Szeged Budapesti út 10.
P. O. Box 152 Szeged H-6701
Phone:(62)566-700, Fax:(62)566-713
Tax Number: 11087209-2-06
EU Communitity VAT: HU11087209
Registration No.: Cg. 0609-002502
Registry Court: Csongrád Megyel Cégbíróság
Released to Imaging: 1/15/2025 3:46:08 PM

COMMERZBANK ZRT (HUF) H-1054 Budapest, Széchenyi rakpart 8. H-1245 Budapest P.O. Box 1070 Account No.: 14220108-26830003 IBAN: HU83 1422 0108 2683 0003 0000 0000 SWIFT: COBA HU HXXXX

COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No.: 3 066 156 00 Sort Code: 250 400 66 BIC: COBADEFF250 IBAN: DE41250400660306615600

Hydrostatic Test Certificate

ContiTech

Certificate Number H100122	COM Order Reference 1388153	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740362040	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed: Gerson Mejia-Lazo Date: 02/09/22	

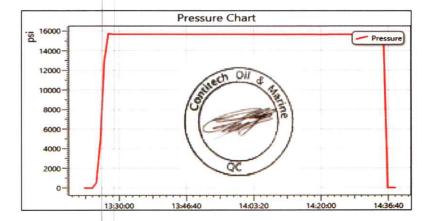
We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qnt	y Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)

20 RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL

67094


10,000

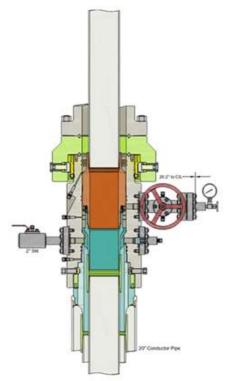
15,000

60

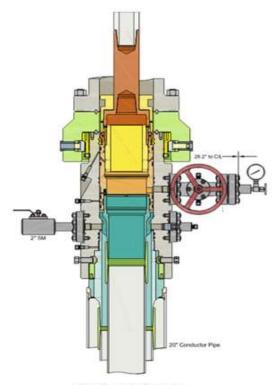
Record I	nformation
Start Time	1/27/2022 13:21:21
End Time	1/27/2022 14:38:28
Interval	00:01:00
Number	78
MaxValue	15849
MinValue	-3
AvgValue	14240
RecordName	67094-sh
RecordNumber	199

Gauge Information					
Model	ADT680				
SN	21817380014				
Range	(0-40000)psi				
Unit	psi				

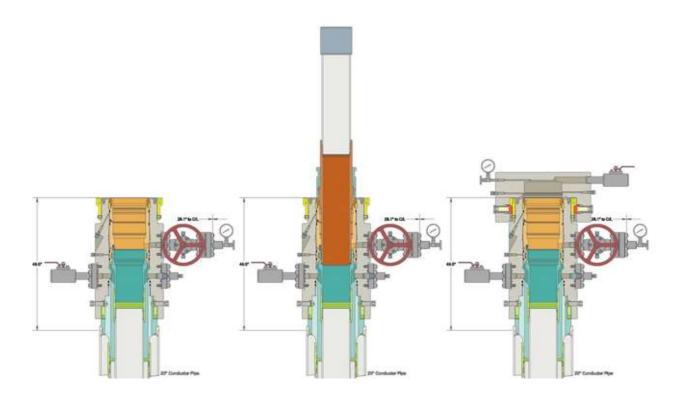
Permian Resources Offline Cementing Procedure Surface & Intermediate Casing


- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.

13 3/8" Surface


CFL Off-Line Cementing Tool

Rig Floor Landing Joint Ground Level 3 Ft Cement Pup for use with Cementing Head Cementing Head 27 Condustre 13-307 Casing SDT-1899 20 SEP18 DOE:


Intermediate

Run 7 5/8" Casing Land Casing on 7 5/8" Mandrel Hanger Cement 7 5/8" Casing Retrieve Running Tool

Run 9 5/8" Packoff
Test Upper and Lower Seals
Engage Lockring
Retrieve Running Tool

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

APD ID: 10400091730 **Submission Date:** 04/19/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Mezcal_North_Well_Pad_Existing_Road_Map_20230302102703.pdf

Existing Road Purpose: ACCESS Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Numerous existing two-track roads that have been used informally for pipeline and power line maintenance will be decommissioned and NOT A ROAD sign will be placed at various entry/exit points along these roads to discourage further use of these roads. All traffic will be diverted to use the new road to be built by Centennial. See attached new road map for details on where signage will be placed.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Mezcal_North_Well_Pad_New_Access_Roads_Map_20230411161553.pdf

New road type: COLLECTOR

Length: 4612 Feet Width (ft.): 30

Max slope (%): 2 Max grade (%): 3

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 24

New road access erosion control: Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

New road access plan or profile prepared? N

Well Name: MICHELADA 3 FED COM Well Number: 133H

New road access plan

Access road engineering design? N

Access road engineering design

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Top 6" of soil and brush will be stockpiled on the southwest side of the south well pad, on the west side of the north well pad, and on the west side of the CTB. CTB topsoil pile will be no higher than 36" and will be seeded in place.

Access other construction information:

Access miscellaneous information:

Number of access turnouts: Access turnout map:

Drainage Control

New road drainage crossing: CULVERT

Drainage Control comments: Will be monitored and repaired, as necessary.

Road Drainage Control Structures (DCS) description: Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Mezcal_North_Well_Pad_Existing_Wells_Map_20230411161516.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: The proposed 400' x 400' Mezcal CTB will be constructed adjacent to the Mezcal North Well Pad and service both the north and south well pads. Flare and/or CBU will be in the northeast corner of the CTB. Process equipment (e. g., separators, heater-treaters, meters, compressor) will

Well Name: MICHELADA 3 FED COM Well Number: 133H

be on the west side of the CTB. Tanks will be located in the center of the CTB. Three (3) thermoplastic composite 4" O.D. flowlines (one per well) will run for 3,999.54' between the south Mezcal well pad and the Mezcal CTB. Pipes will be buried and have a maximum operating pressure of 500 PSI. A portion of the CTB will be used by the north well pad during the drilling phase but most of this additional area will be converted back to CTB use once drilling is complete. A small 100' x 140' (0.322 acres) portion of this area, in the north corner of the CTB, will be reclaimed after drilling operations are completed. See attached plats for further details.

Production Facilities map:

Michelada_3_Fed_FL_20240806052916.pdf Michelada_3_Fed_CTB_20240806052916.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: FRESH WATER SOURCE

Water source use type: STIMULATION

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 450000 Source volume (acre-feet): 58.00189335

Source volume (gal): 18900000

Water source and transportation

Mezcal_North_Well_Pad_Water_Source_Map_20230411161844.pdf

Water source comments: Water will be trucked 3 miles from an existing windmill on private land in NENW 20-20S-30E to the well pads.

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled on the southwest side of the south well pad, on the west side of the north well pad, and on the west side of the CTB. CTB topsoil pile will be no higher than 36" and will be seeded in place. V-doors will face east. Closed loop mud system will be used. Caliche will be hauled from Twin Wells Ranch existing caliche pit on private land in SENW 20-20S-30E. The north pad will be temporarily expanded south by 150' to allow more room for drilling. Once drilling is complete, most of that area will be reverted to CTB use and a small 100' x 140' area will be permanently reclaimed.

Construction Materials source location

Mezcal_North_Well_Pad_Caliche_Source_Map_20230411161904.pdf

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Fresh water based drilling fluid.

Amount of waste: 1500 barrels

Waste disposal frequency: Weekly

Safe containment description: Steel tanks with plastic-lined containment berms.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway.

Waste type: DRILLING

Waste content description: Brine water based drilling fluid.

Amount of waste: 1500 barrels

Waste disposal frequency: Monthly

Well Name: MICHELADA 3 FED COM Well Number: 133H

Safe containment description: Steel tanks with plastic-lined containment berms.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to

R360s state approved (NM-01-0006) disposal site at Halfway.

Waste type: SEWAGE

Waste content description: Grey Water/Human waste.

Amount of waste: 5000 gallons

Waste disposal frequency: Weekly

Safe containment description: Approved waste storage tanks with containment.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater

treatment plant.

Waste type: GARBAGE

Waste content description: General trash/garbage.

Amount of waste: 5000 pounds

Waste disposal frequency: Weekly

Safe containment description: Enclosed trash trailer.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Haul to the Eddy County landfill.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.) Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Well Name: MICHELADA 3 FED COM Well Number: 133H

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location 12460 cubic feet of waste, stored in steel tanks. Hauled off to a commercial State approved facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

Michelada_3_Fed_WSL_N_Pad_20240806052931.pdf

Comments: See rig layout diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: MEZCAL 10 NWNW 1

Multiple Well Pad Number: 8

Recontouring

Michelada_3_Fed_IR_CTB_20240806055310.pdf

Michelada_3_Fed_IR_N_Pad_20240806052946.pdf

Michelada_3_Fed_IR_S_Pad_20240806052946.pdf

Drainage/Erosion control construction: All compacted areas to be seeded will be ripped to a minimum depth of 18 inches with a minimum furrow spacing of 2 feet, followed by recontouring the surface and then evenly spreading the stockpiled topsoil. Prior to seeding, the seedbed will be scarified to a depth of no less than 4-6 inches.

Well Name: MICHELADA 3 FED COM Well Number: 133H

2.753

0.322

Drainage/Erosion control reclamation: Erosion features are equal to or less than surrounding area and erosion control is sufficient so that water naturally infiltrates into the soil and gullying, headcutting, slumping, and deep or excessive rills (greater than 3 inches) are not observed

Well pad proposed disturbance

(acres): 14.05

Road proposed disturbance (acres):

3.598

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 2.753

Other proposed disturbance (acres):

Total proposed disturbance:

24.07399999999998

Well pad interim reclamation (acres): Well pad long term disturbance 1.27

Pipeline interim reclamation (acres):

Other interim reclamation (acres):

Total interim reclamation: 4.345

(acres): 12.78

Road long term disturbance (acres): Road interim reclamation (acres): 0

3.598

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres):

3.351

Total long term disturbance: 19.729

Disturbance Comments:

Reconstruction method: No surface reclamation is planned for this well. Permian Resources requests a variance to interim reclamation until all wells on the drill island have been drilled and completed, at which time, PR will contact the appropriate BLM personnel to discuss appropriate interim reclamation plans.

Topsoil redistribution: No surface reclamation is planned for this well. Permian Resources requests a variance to interim reclamation until all wells on the drill island have been drilled and completed, at which time, PR will contact the appropriate BLM personnel to discuss appropriate interim reclamation plans.

Soil treatment: A self-sustaining, vigorous, diverse, native (or otherwise approved) plan community will be established on the site with a density sufficient to control erosion and invasion by non-native plants and to re-establish wildlife habitat or forage production. At a minimum, the established plant community will consist of species included in the seed mix and/or desirable species occurring in the surrounding natural vegetation.

Existing Vegetation at the well pad: Soil area consist of Berino soils. These soils are associated with the Loamy Sand ecological site (R024CX003NM) which typically supports black grama, dropseed, and bluestem grasslands with an even distribution of sand sage, shinnery oak, and mesquite. The current vegetative community consists of shinnery oak, sand sage, mesquite, soapweed yucca, broom snakeweed, and desert grasses and forbs. The project is undulating landscape with small to moderate dunes (1ft-15ft).

Existing Vegetation at the well pad

Existing Vegetation Community at the road: Soil area consist of Berino soils. These soils are associated with the Loamy Sand ecological site (R024CX003NM) which typically supports black grama, dropseed, and bluestem grasslands with an even distribution of sand sage, shinnery oak, and mesquite. The current vegetative community consists of shinnery oak, sand sage, mesquite, soapweed yucca, broom snakeweed, and desert grasses and forbs. The project is undulating landscape with small to moderate dunes (1ft-15ft).

Existing Vegetation Community at the road

Existing Vegetation Community at the pipeline: Soil area consist of Berino soils. These soils are associated with the Loamy Sand ecological site (R024CX003NM) which typically supports black grama, dropseed, and bluestem grasslands with an even distribution of sand sage, shinnery oak, and mesquite. The current vegetative community consists of shinnery oak, sand sage, mesquite, soapweed yucca, broom snakeweed, and desert grasses and forbs. The project is undulating landscape with small to moderate dunes (1ft-15ft).

Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: Soil area consist of Berino soils. These soils are associated with the Loamy Sand ecological site (R024CX003NM) which typically supports black grama, dropseed, and bluestem grasslands with an even distribution of sand sage, shinnery oak, and mesquite. The current vegetative community consists of shinnery oak, sand sage, mesquite, soapweed yucca, broom

Well Name: MICHELADA 3 FED COM Well Number: 133H

snakeweed, and desert grasses and forbs. The project is undulating landscape with small to moderate dunes (1ft-15ft).

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation

Operator Contact/Responsible Official

First Name: Last Name:

Phone: Email:

Seedbed prep: Initial seedbed preparation will consist of recontouring to the appropriate interim or final reclamation standard. All compacted areas to be seeded will be ripped to a minimum depth of 18 inches with a minimum furrow spacing of 2 feet, followed by recontouring the surface and then evenly spreading the stockpiled topsoil. Prior to seeding, the seedbed will be scarified to a depth of no less than 4-6 inches. If the site is to be broadcast seeded, the surface will be left rough enough to trap seed and snow, control erosion, and increase water infiltration

Seed BMP: If broadcast seeding is to be used and is delayed, final seedbed preparation will consist of contour cultivating to a depth of 4-6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

Seed method: Seeding will be conducted no more than two weeks following completion of final seedbed preparation. A certified weed-free seed mix designed by the BLM to meet reclamation standards will be used. If the site is harrowed or dragged, seed will be covered by no more than 0.25 inch of soil.

Existing invasive species? N

Existing invasive species treatment description:

Well Name: MICHELADA 3 FED COM Well Number: 133H

Existing invasive species treatment

Weed treatment plan description: Weed control for all phases will be through the use of approved pesticides and herbicides according to applicable State, Federal and local laws.

Weed treatment plan

Monitoring plan description: Monitoring of invasive and noxious weeds will be visual and as-needed. If it is determined additional methods are required to monitor invasive and noxious weeds, appropriate BLM authorities will be contacted with a plan of action for approval prior to implementation.

Monitoring plan

Success standards: 100% compliance with applicable regulations.

Pit closure description: There will be no reserve pit as each well will be drilled utilizing a closed loop mud system. The closed loop system will meet the NMOCD requirements 19.15.17.

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: OTHER

Describe: Central Tank Battery

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: MICHELADA 3 FED COM Well Number: 133H

Disturbance type: OTHER

Describe: Flowline

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: MICHELADA 3 FED COM Well Number: 133H

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT, STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: NEW MEXICO STATE LAND OFFICE

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland: USFS Ranger District:

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: MICHELADA 3 FED COM Well Number: 133H

Section 12 - Other

Right of Way needed? Y

Use APD as ROW? Y

ROW Type(s): 281001 ROW - ROADS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,289001 ROW-O&G Well Pad

ROW

SUPO Additional Information:

Use a previously conducted onsite? Y

Previous Onsite information: Lone Mountain Archaeological conducted a block inspection and filed report NMCRIS-150330 on July 1, 2022. The BLM onsite inspection was performed on September 28th, 2022.

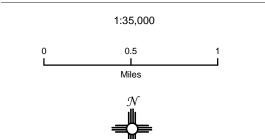
Other SUPO

Junction of Potash Mines Rd (NM-360) & Crazy Horse Rd

103.9833° W

103.9667° W

103.95° W


103.9333° W

Page 143 of 174

103.9167° W

Existing Access Road

New Access Road

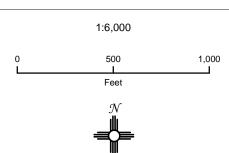
NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., January 26, 2023 for Colgate Operating, LLC

20S 29E 21S 29E

104.0167° W

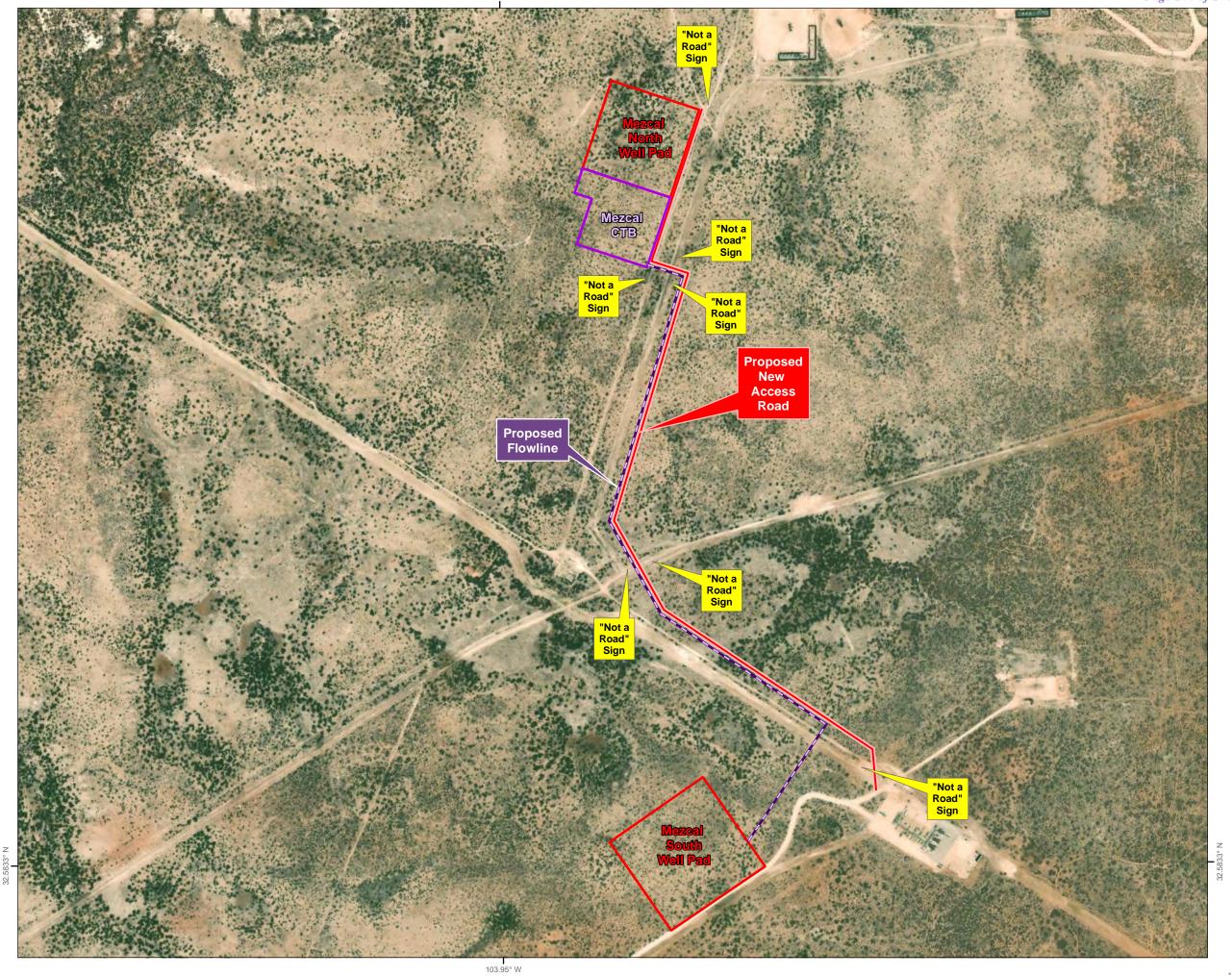
104.0333° W


Released to Imaging: 1/15/2025 3:46:08 PM

CENTENNIAL RESOURCES PRODUCTION

Proposed Mezcal 10 Fed Com Plan of Development Map

Section 11, T20S R30E Hackberry Lake, Eddy County, New Mexico



NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., January 26, 2023 for Centennial Resources Production, LLC

2	02/15/23	JEB	CHANGE EASEMENT WIDTH	CJ
1	01/23/23	CPM	UPDATED ROUTE	CJ
#	DATE	BY:	DESCRIPTION	CHK

PROJECT NO. 12405

TBPELS FIRM# 10194245 201 West Wall Street, Suite 325 Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181

MEZCAL BUREAU OF LAND MANAGEMENT PROPOSED ACCESS ROADS

SITUATED IN SECTION 11 TOWNSHIP 20 SOUTH, RANGE 30 EAST NEW MEXICO PRINCIPAL MERIDIAN EDDY COUNTY, NEW MEXICO

DATE: 09/20/2022

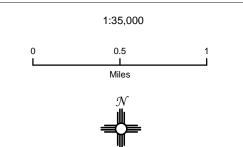
DWG. NO. 12405_01.00_MEZCAL (11-20S-30E) LEASE ROAD REV2

Junction of Potash Mines Rd (NM-360) & Crazy Horse Rd

103.9833° W

103.9667° W

103.95° W


103.9333° W

Page 146 of 174

103.9167° W

Existing Access Road

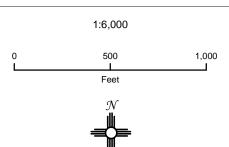
New Access Road

NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., January 26, 2023 for Colgate Operating, LLC

20S 29E 21S 29E

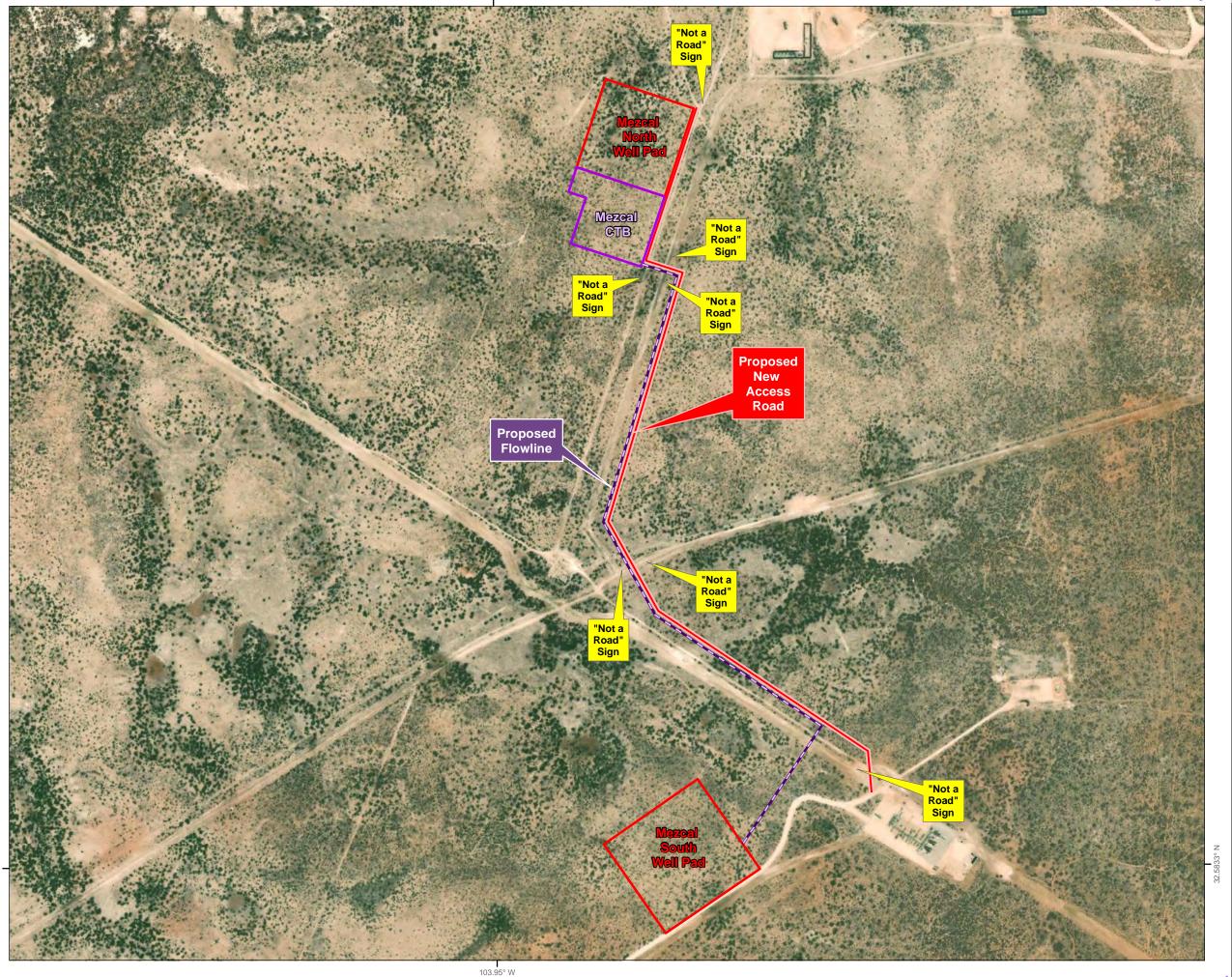
104.0167° W


104.0333° W

CENTENNIAL RESOURCES PRODUCTION

Proposed Mezcal 10 Fed Com Plan of Development Map

Section 11, T20S R30E Hackberry Lake, Eddy County, New Mexico

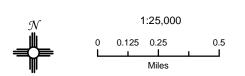


NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., January 26, 2023 for Centennial Resources Production, LLC

TBPELS FIRM# 10194245 201 West Wall Street, Suite 325 Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181

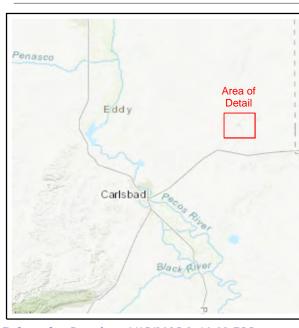
DRAWN BY: JS	DATE: 09/20/2022		
CHECKED BY: CJ	DATE: 09/20/2022		
SCALE: 1"=1000'	PAGE 1 OF 2		

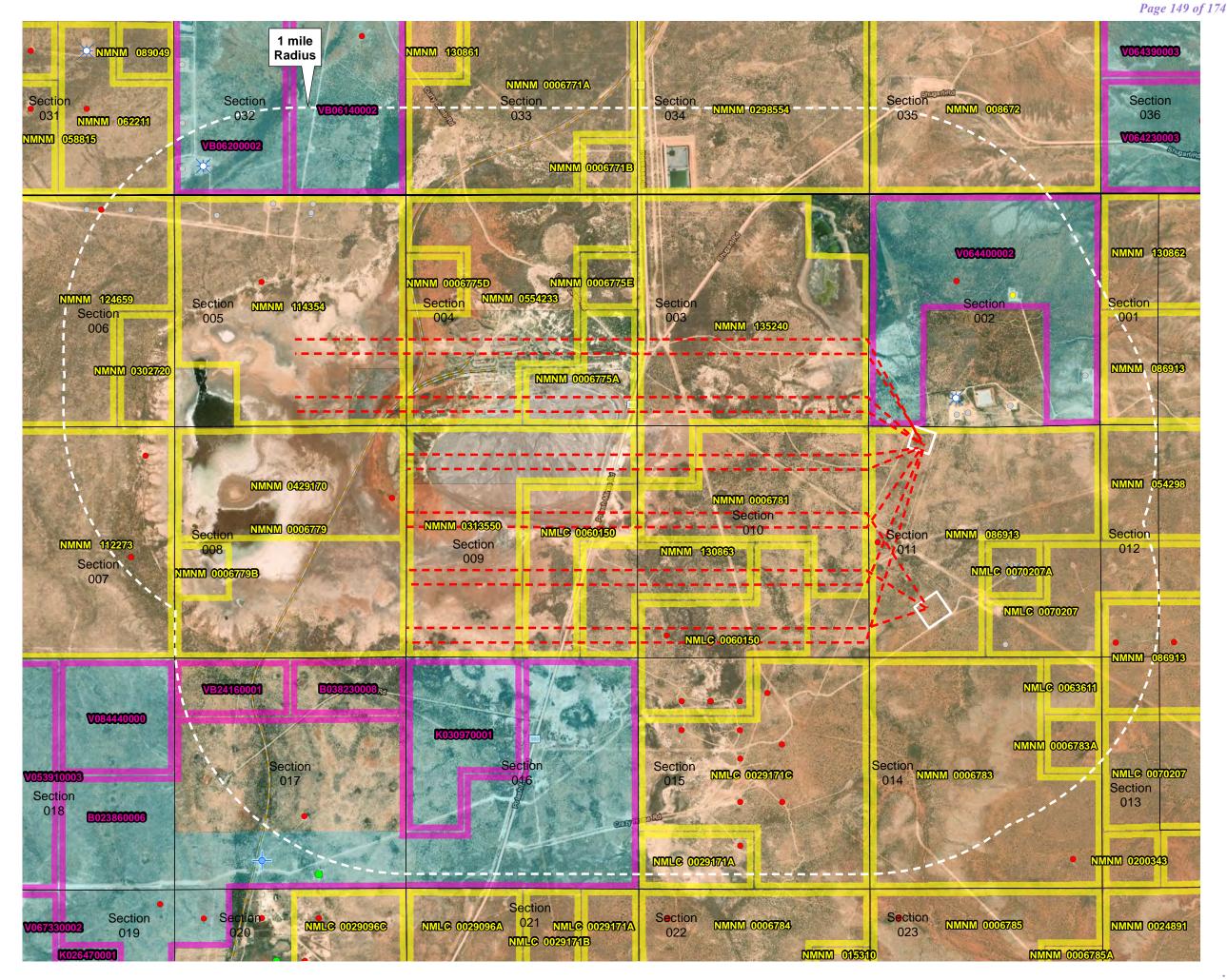

DWG. NO. 12405_01.00_MEZCAL (11-20S-30E) LEASE ROAD REV1 Received by OCD: 12/23/2024 8:46:38 AM

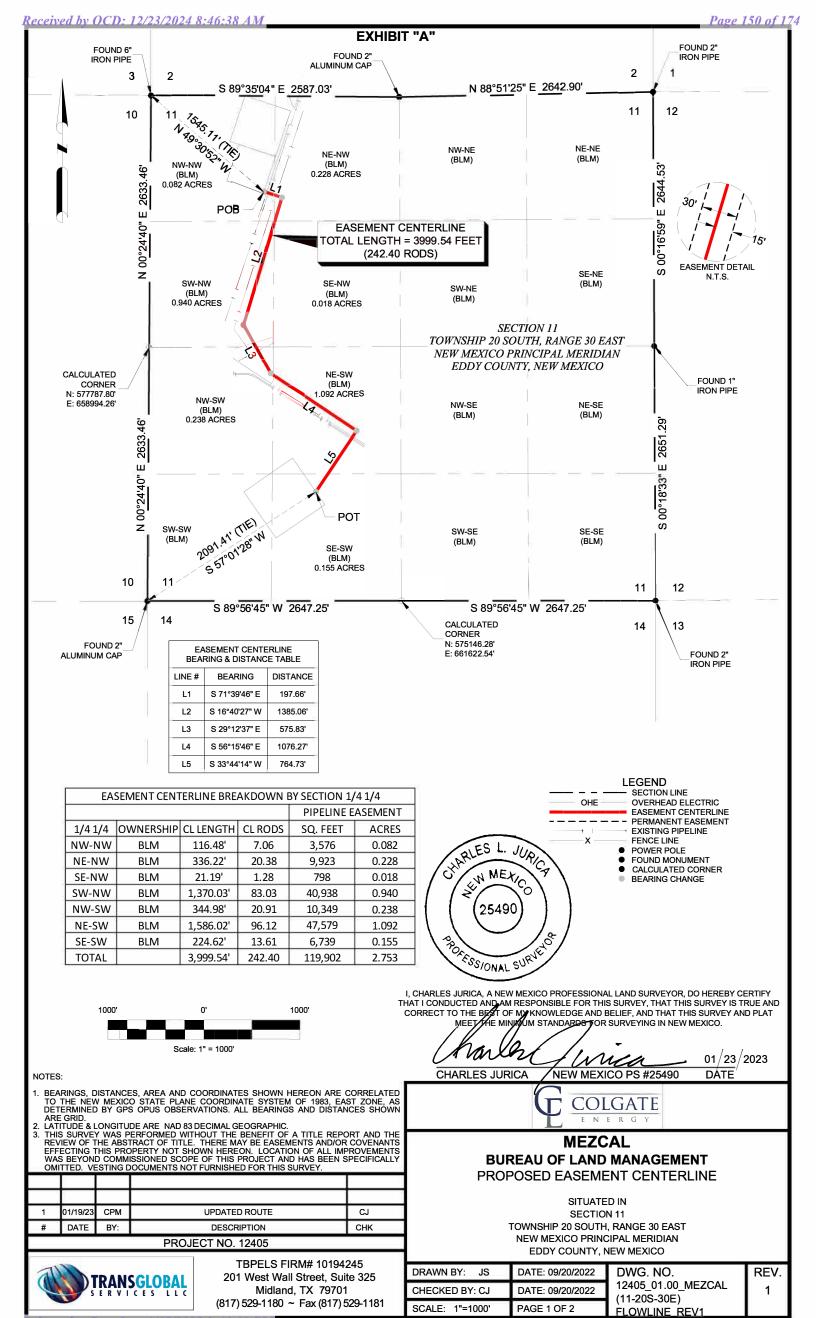
CENTENNIAL RESOURCES PRODUCTION, LLC

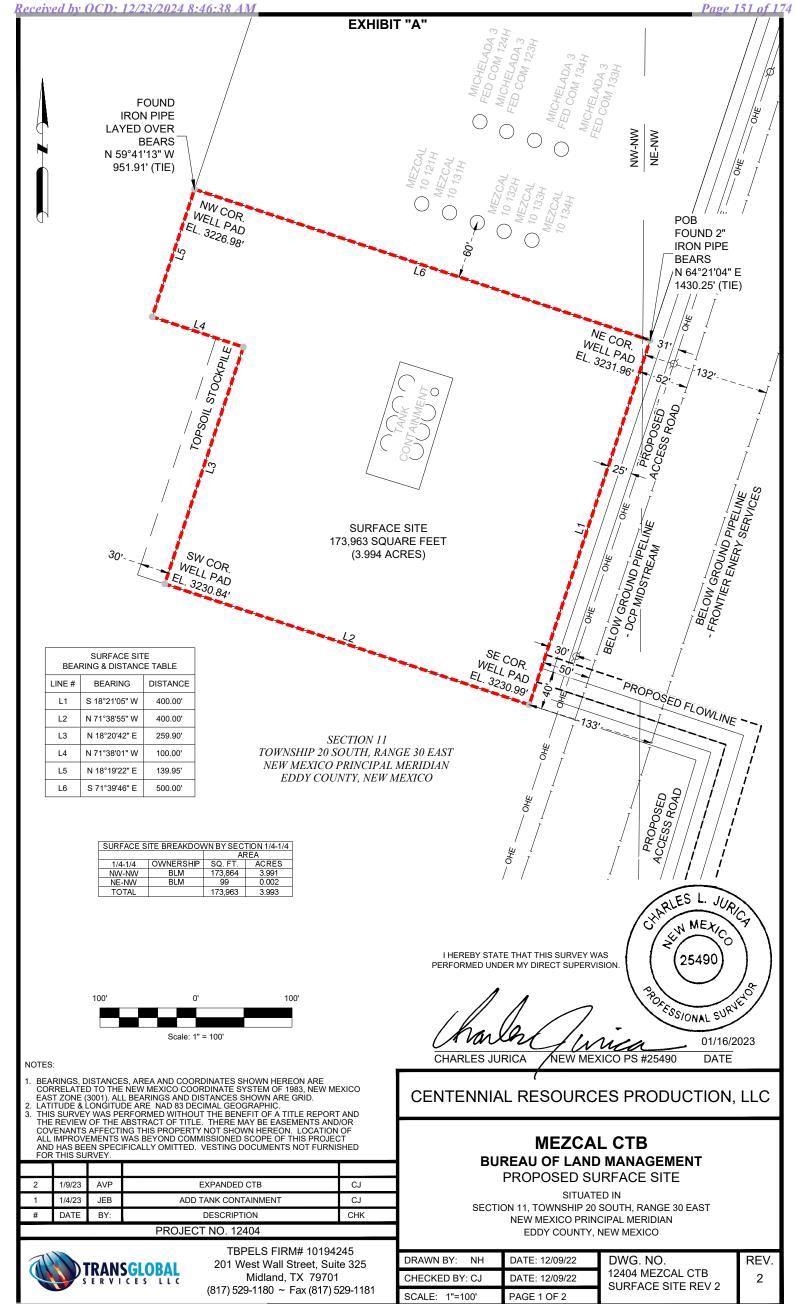
Mezcal 10 Fed Com Well Vicinity & Lease Map

Section 11, T20S R30E Eddy County, New Mexico

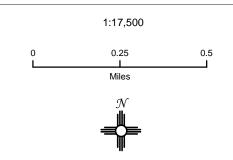





NAD 1983 New Mexico State Plane East FIPS 3001 Feet


PERMITS WEST

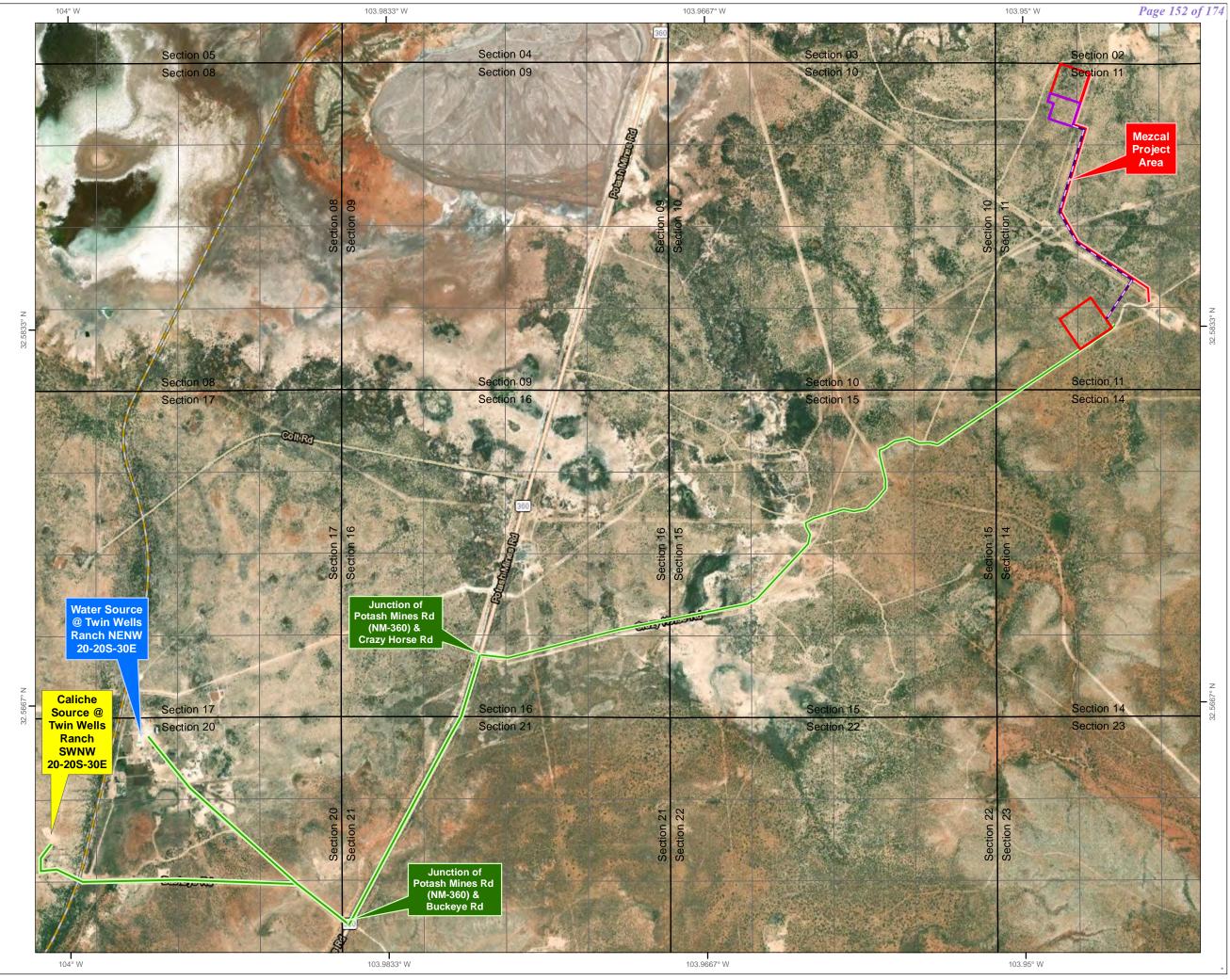
Prepared by Permits West, Inc., January 26, 2023 for CENTENNIAL RESOURCES PRODUCTION, LLC



Centennial Resources Production

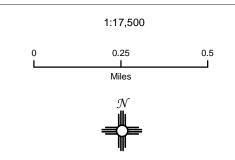
Proposed Mezcal 10 Fed Com Access Map

T18S R30E Hackberry Lake, Eddy County, New Mexico



NAD 1983 New Mexico State Plane East FIPS 3001 Feet

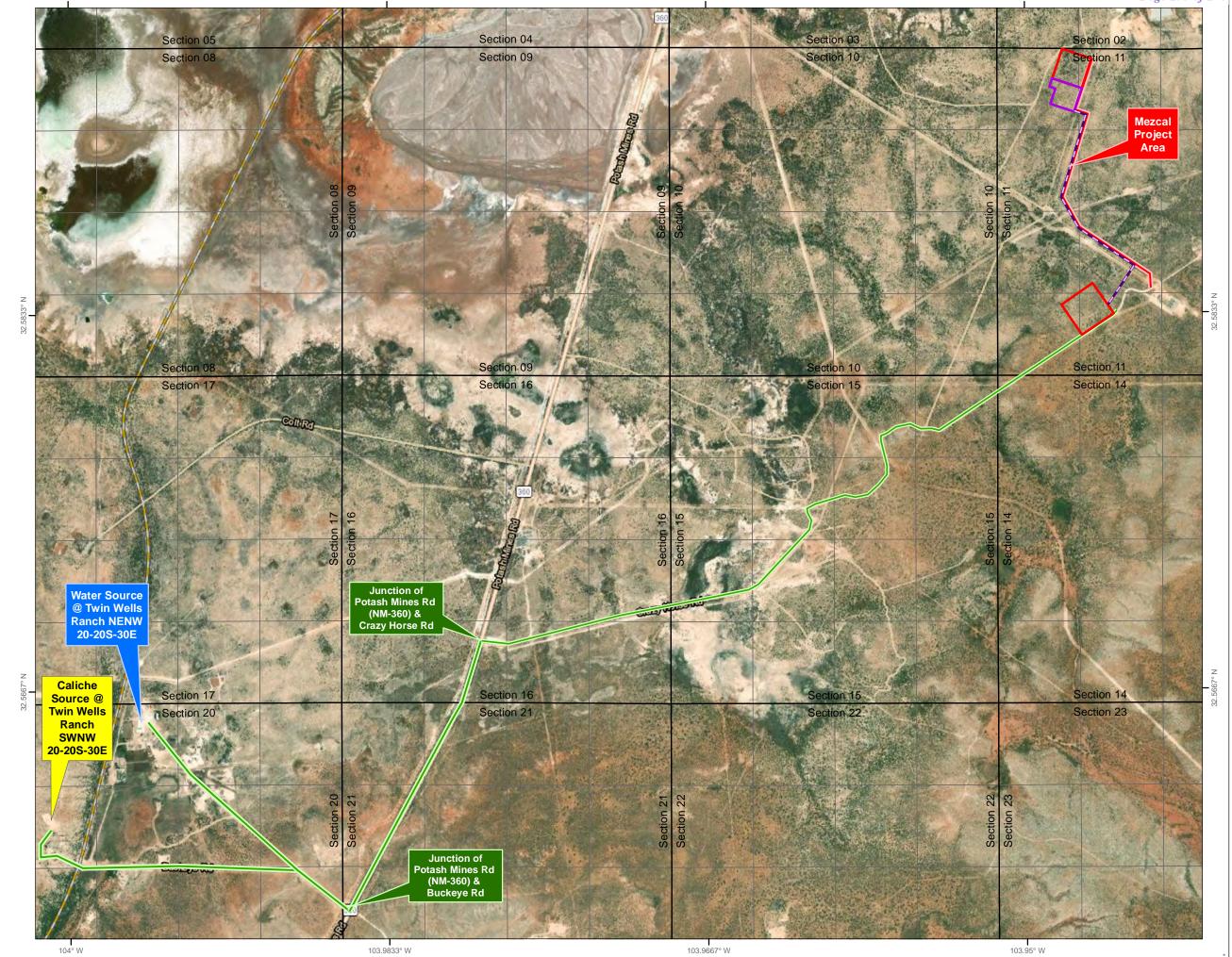
Prepared by Permits West, Inc., January 26, 2022 for Centennial Resource Production, LLC



Centennial Resources Production

Proposed Mezcal 10 Fed Com Access Map

T18S R30E Hackberry Lake, Eddy County, New Mexico




NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., January 26, 2022 for Centennial Resource Production, LLC

METES AND BOUNDS DESCRIPTION

BEING A PROPOSED SURFACE SITE, SITUATED IN SECTION 11, TOWNSHIP 20 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID SURFACE SITE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS

BEGINNING AT A POINT, IN THE NORTH BOUNDARY LINE OF SAID SECTION 11, FROM WHICH A DISTURBED 6" IRON PIPE FOUND FOR THE NORTHWEST CORNER OF SAID SECTION 11 BEARS

N 89°35'04" W, A DISTANCE OF 978.68 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983. EAST ZONE. VALUE OF N:580403.46. E:659991.74 FEET FOR REFERENCE:

THENCE S 89°35'04" E, WITH THE NORTH BOUNDARY LINE OF SAID SECTION 11, A DISTANCE OF 4.30 FEET TO A POINT; THENCE S 71°39'46" E, A DISTANCE OF 495.91 FEET TO A POINT, FROM WHICH A 2" IRON PIPE WITH ALUMINUM CAP FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 11 BEARS N 82°44'23" E, A DISTANCE OF 1142.44 FEET (TIE); THENCE S 18°20'14" W, A DISTANCE OF 500.00 FEET TO A POINT; THENCE N 71°39'46" W, A DISTANCE OF 500.00 FEET TO A POINT;

THENCE N 18°20'14" E. A DISTANCE OF 498.68 FEET TO THE POINT OF BEGINNING.

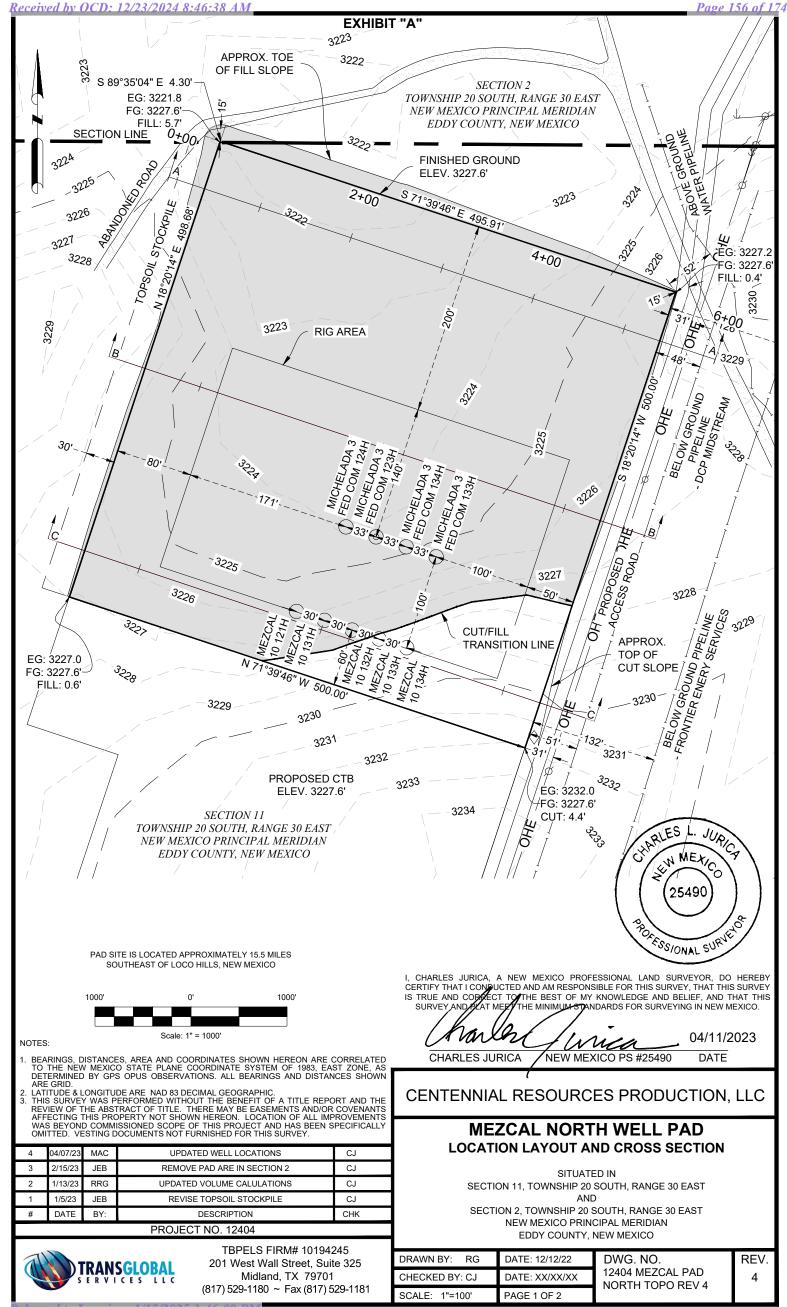
SAID SURFACE SITE CONTAINING A TOTAL OF 249,997 SQUARE FEET OR 5.739 ACRES IN SAID SECTION 11.

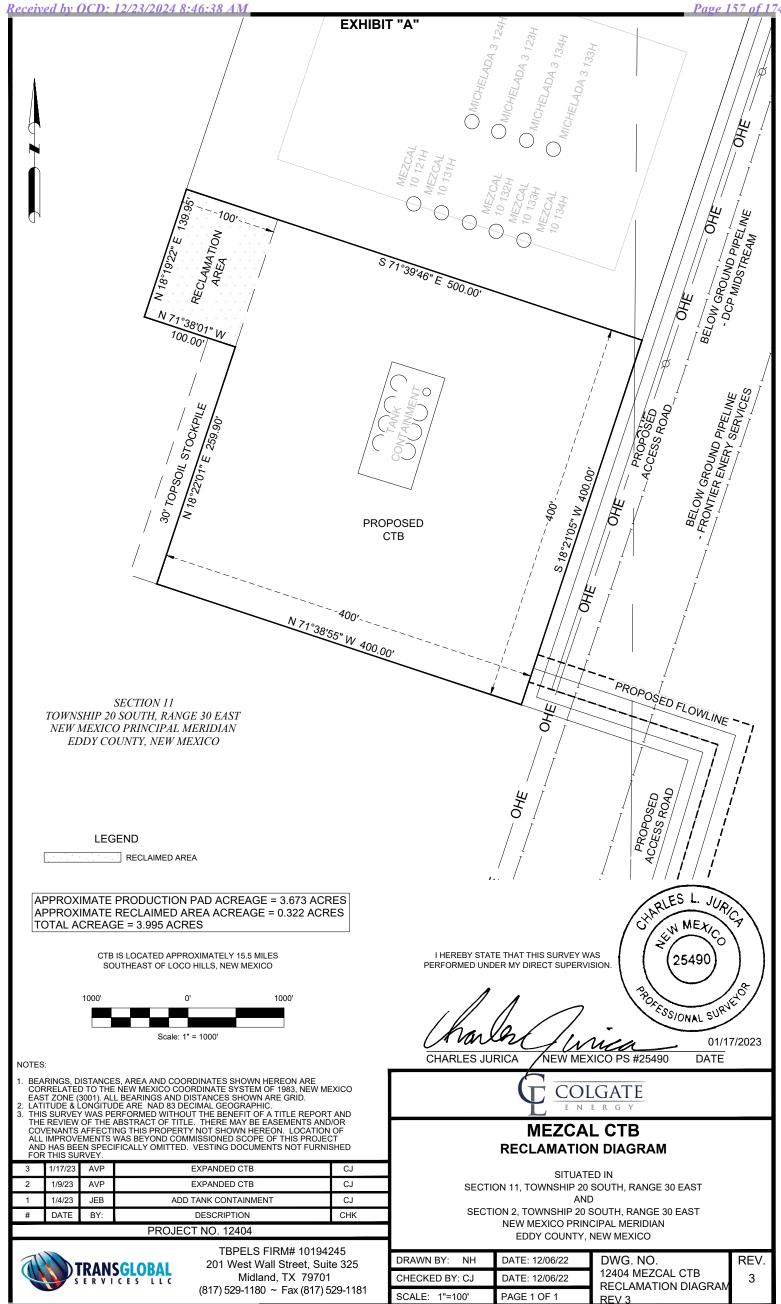
- BEARINGS, DISTANCES, AREA AND COORDINATES SHOWN HEREON ARE CORRELATED TO THE NEW MEXICO COORDINATE SYSTEM OF 1983, NEW MEXICO EAST ZONE (3001). ALL BEARINGS AND DISTANCES SHOWN ARE GRID. LATITUDE & LONGITUDE ARE NAD 83 DECIMAL GEOGRAPHIC. THIS SURVEY WAS PERFORMED WITHOUT THE BENEFIT OF A TITLE REPORT AND THE REVIEW OF THE ABSTRACT OF TITLE. THERE MAY BE EASEMENTS AND/OR COVENANTS AFFECTING THIS PROPERTY NOT SHOWN HEREON. LOCATION OF ALL IMPROVEMENTS WAS BEYOND COMMISSIONED SCOPE OF THIS PROJECT AND HAS BEEN SPECIFICALLY OMITTED. VESTING DOCUMENTS NOT FURNISHED FOR THIS SURVEY.

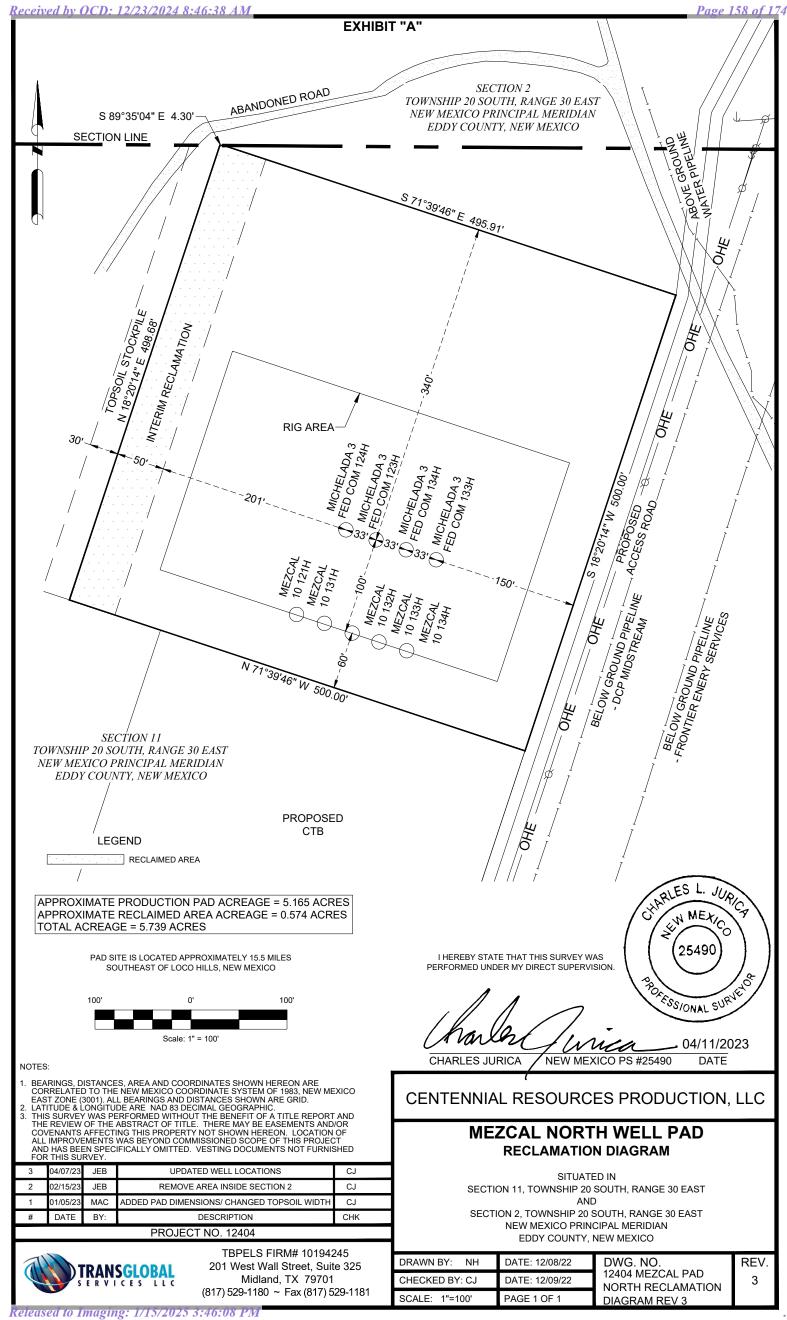
4	04/07/23	MAC	UPDATED WELL LOCATIONS	CJ
3	2/15/23	JEB	REMOVE PAD AREA IN SECTION 2	CJ
2	1/27/23	JEB	CHANGE OWNERSHIP	CJ
1	1/23/23	CM	CHANGE SIZE	CJ
#	DATE	BY:	DESCRIPTION	CHK

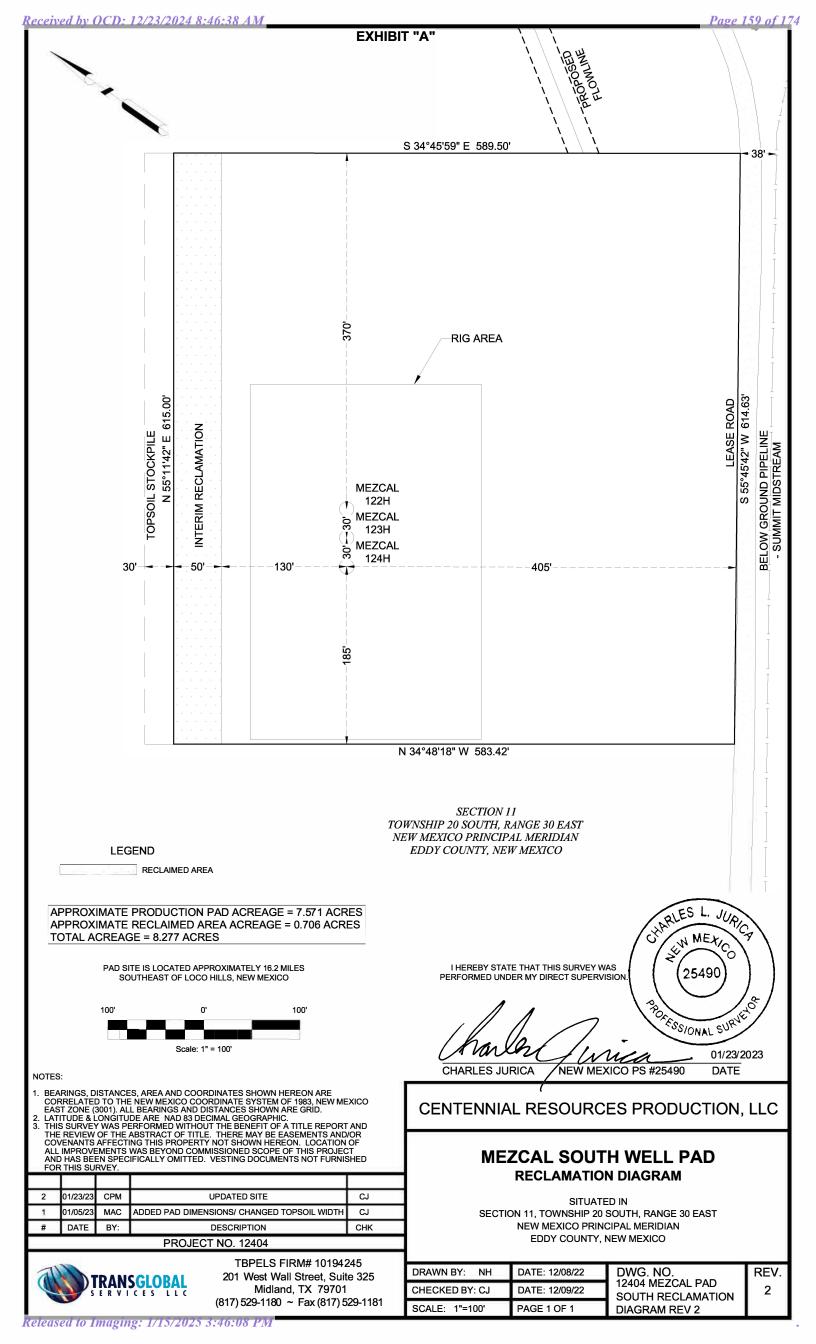
PROJECT NO. 12404

TBPELS FIRM# 10194245 201 West Wall Street, Suite 325 Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181 CENTENNIAL RESOURCES PRODUCTION, LLC


MECAL NORTH WELL PAD LOCATION LAYOUT AND CROSS SECTION


SITUATED IN SECTION 11, TOWNSHIP 20 SOUTH, RANGE 30 EAST AND


SECTION 2, TOWNSHIP 20 SOUTH, RANGE 30 EAST NEW MEXICO PRINCIPAL MERIDIAN EDDY COUNTY, NEW MEXICO


REV

DRAWN BY: NH	DATE: 12/09/22	DWG. NO.
CHECKED BY: CJ	DATE: 12/09/22	12404 MEZCAL PAD NORTH SURFACE SITE
SCALE: 1"=100'	PAGE 2 OF 2	REV 4

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT PWD Data Report

APD ID: 10400091730 **Submission Date:** 04/19/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit

Pit liner description:

Pit liner manufacturers

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule

Lined pit reclamation description:

Lined pit reclamation

Leak detection system description:

Leak detection system

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data

APD ID: 10400091730 **Submission Date:** 04/19/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MICHELADA 3 FED COM Well Number: 133H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes Show Final Text

Bond

Federal/Indian APD: FED

BLM Bond number: NMB001841

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

Date: 10/14/2024

State of New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Permian Resources Operating, LLC OGRID: 372165

I. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.							
f Other, please describe:							
III. Well(s): Provide the foll proposed to be recompleted					vells proposed t	o be drilled or	
Well Name	API	ULSIR	Footages	Anticipated Oil	Anticipated	Anticipated Prod Water	
Mezcal 10 Fed Com 121H		D-11-T20S-R30E	488' FNL – 1062' FWL	1300 BOPD	Gas 1500 MCFD	2600 BWPD	
Mezcal 10 Fed Com 122H		N-11-T20S-R30E	1128' FSL – 1302' FWL	1300 BOPD	1500 MCFD	2600 BWPD	
Mezcal 10 Fed Com 123H		M-11-T20S-R30E	1111' FSL – 1277' FWL	1300 BOPD	1500 MCFD	2600 BWPD	
Mezcal 10 Fed Com 124H		M-11-T20S-R30E	1094' FSL – 1253' FWL	1300 BOPD	1500 MCFD	2600 BWPD	
Mezcal 10 Fed Com 131H		D-11-T20S-R30E	497' FNL-1091' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Mezcal 10 Fed Com 132H		D-11-T20S-R30E	507' FNL-1120' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Mezcal 10 Fed Com 133H		D-11-T20S-R30E	516' FNL-1148' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Mezcal 10 Fed Com 134H		D-11-T20S-R30E	525' FNL – 1177' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Michelada 3 Fed Com 123H		D-11-T20S-R30E	412' FNL-1150' FWL	1300 BOPD	1500 MCFD	2600 BWPD	
Michelada 3 Fed Com 124H		D-11-T20S-R30E	402' FNL-1122' FWL	1300 BOPD	1500 MCFD	2600 BWPD	
Michelada 3 Fed Com 133H		D-11-T20S-R30E	430' FNL – 1207' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Michelada 3 Fed Com 134H		D-11-T20S-R30E	421' FNL-1179' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Michelada 5 Fed Com 121H		3-5-T20S-R30E	427' FNL-1613' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Michelada 5 Fed Com 122H		3-5-T20S-R30E	435' FNL-1645' FWL	1200 BOPD	3000 MCFD	3000 BWPD	
Michelada 5 Fed Com 131H		3-5-T20S-R30E	411' FNL – 1549' FWL	1200 BOPD	3000 MCFD	3000 BWPD	

IV. Central Delivery Point Name: Mezcal/Michelada 10 CTB [See 19.15.27.9(D)(1) NMAC]

419' FNL – 1581' FWL

1200 BOPD

3000 MCFD

3000 BWPD

3-5-T20S-R30E

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Mezcal 10 Fed Com 121H		TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 122H		TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 123H		TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 124H	16.00	TBD	TBD	TBD	TBD	TBD

Released to Imaging: 1/15/2025 3:46:08 PM

Michelada 5 Fed Com 132H

ceived by OCD: 12/23/2024 8:46:3	RAM				Page 166 o
Mezcal 10 Fed Com 131H	TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 132H	TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 133H	TBD	TBD	TBD	TBD	TBD
Mezcal 10 Fed Com 134H	TBD	TBD	TBD	TBD	TBD .
Michelada 3 Fed Com 123H	TBD	TBD	TBD	TBD	TBD
Michelada 3 Fed Com 124H	TBD	TBD	TBD	TBD	TBD
Michelada 3 Fed Com 133H	TBD	TBD	TBD	TBD	TBD
Michelada 3 Fed Com 134H	TBD	TBD	TBD	TBD	TBD
Michelada 5 Fed Com 121H	TBD	TBD	TBD	TBD	TBD
Michelada 5 Fed Com 122H	TBD	TBD	TBD	TBD	TBD
Michelada 5 Fed Com 131H	TBD	TBD	TBD	TBD	TBD
Michelada 5 Fed Com 132H	TBD	TBD	TBD	TBD	TBD

VI. Separation Equipment: \Box Attach a complete description of how Operator will seize separation equipment to optimize gas capture.

VII. Operations Practices: □ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices:

Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan

Effective April 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

□ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well Name	API	Anticipated Average Natural Gas Rate	Anticipated Volume of Natural Gas for the First Year
Mezcal 10 Fed Com 121H	TBD	1000 MCFD	350,000 MCF
Mezcal 10 Fed Com 122H	TBD	1000 MCFD	350,000 MCF
Mezcal 10 Fed Com 123H	TBD	1000 MCFD	350,000 MCF
Mezcal 10 Fed Com 124H	TBD	1000 MCFD	350,000 MCF
Mezcal 10 Fed Com 131H	TBD	2000 MCFD	750,000 MCF
Mezcal 10 Fed Com 132H	TBD	2000 MCFD	750,000 MCF
Mezcal 10 Fed Com 133H	TBD	2000 MCFD	750,000 MCF
Mezcal 10 Fed Com 134H	TBD	2000 MCFD	750,000 MCF
Michelada 3 Fed Com 123H	TBD	1000 MCFD	350,000 MCF
Michelada 3 Fed Com 124H	TBD	1000 MCFD	350,000 MCF
Michelada 3 Fed Com 133H	TBD	2000 MCFD	750,000 MCF
Michelada 3 Fed Com 134H	TBD	2000 MCFD	750,000 MCF
Michelada 5 Fed Com 121H	TBD	2000 MCFD	750,000 MCF
Michelada 5 Fed Com 122H	TBD	2000 MCFD	750,000 MCF
Michelada 5 Fed Com 131H	TBD	2000 MCFD	750,000 MCF
Michelada 5 Fed Com 132H	TBD	2000 MCFD	750,000 MCF

Received by OCD: 12/23/2024 8:46:38 AM X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Volume of Natural Gas for the First Year

connecting the prod	luction operations to the ex	sisting or planned i	nterconnect of the natura	anticipated pipeline route(s) al gas gathering system(s), and the the well(s) will be connected.
portion, of the nature caused by the new	ral gas gathering system(s)	described above w	rill continue to meet antic	ected to the same segment, or ipated increases in line pressure
provided in Section		(2) of Subsection	D of 19.15.27.9 NMAC,	SA 1978 for the information and attached a full description ertion.

Section 3 – Certifications

Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

☐ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient
capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on
the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or
□ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to

transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells

If Operator checks this box, Operator will select one of the following:

Well Shut-In. □ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) Power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;

connected to the pipeline gathering system.

- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 – Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
 - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
 - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, not later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file and update for each Natural Gas Management Plan until the Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
 - (c) OCD may deny or conditionally approve and APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Cooo i Wave-
Printed Name: Cassie Evans
Title: Regulatory Specialist
E-mail Address: Cassie.Evans@permianres.com
Date: 10/14/24
Phone: 432-313-1732
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Permian Resources Operating, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Permian Resources Operating, LLC (Permian) utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion effciency.
- 2) Equipped with an automatic ignitor or continuous pilot.

Released to Imaging: 1/15/2025 3:46:08 PM

3) Anchored and located at least 100 feet from the well and storage tanks.

Permian Resources Operating, LLC (372165)

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable

Measurement or estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.

VIII. Best Management Practices:


Permian Resources utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

Enhanced Natural Gas Management Plan

Operator's Plan to Manage Production in Response to Increased Line Pressure

Permian Resources Operating, LLC (Permian) anticipates that its existing wells connected to the same portion of the natural gas gathering system will continue to meet anticipated increases in line pressure caused by the new wells. Permian will actively monitor line pressure throughout the field and will make necessary adjustments to existing production separators' pressures to send gas to sales. Permian also plans to implement automated alarms on all flare meters to alert of flaring events as they occur. The alarms will send notifications to field operations and engineering staff via text message and email at every occurrence of flaring. In addition, Permian plans to implement automated alarms on all flare meters to alert of any continuous flaring event that has continued for at least 4 hours. The alarms will send notifications to field operations and engineering management. Permian personnel will promptly respond to these alarms, communicate with midstream partners, and take the appropriate action to reduce flaring caused by high line pressure from new well production.

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 414655

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	414655
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
jelrod32	Cement is required to circulate on both surface and intermediate1 strings of casing.	12/23/2024
jelrod32	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	12/23/2024
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	1/15/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	1/15/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	1/15/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	1/15/2025
ward.rikala	Operator must comply with all of the R-111-Q requirements.	1/15/2025