Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

(June 2017)	DEF	PARTMENT OF THE IN	TERIOR			EX	pires: O	ctober 31, 2021
	BUR	EAU OF LAND MANA	GEMENT		4	5. Lease Serial No.	NMNM1	21490
		IOTICES AND REPOR				6. If Indian, Allottee	or Tribe	Name
		form for proposals to						
apandone	ea weii. (Use Form 3160-3 (AP	ט) זor such	proposais		TICIL'I COA/A		NY 1/ NY
	UBMIT IN	TRIPLICATE - Other instruc	tions on page .	2		7. If Unit of CA/Agre	eement,	Name and/or No.
1. Type of Well					1	8. Well Name and No). DATT	LESNAKE 28 FED COM/505H
Oil Well	Gas V	_				A DI Wall No	RAII	LESNAKE 28 FED COM/505H
2. Name of Operator EOG						9. API Well No. 30-0		
3a. Address 1111 BAGBY	/ SKY LOE	BBY 2, HOUSTON, TX 770	b. Phone No. <i>(ir</i> 713) 651-7000		e) [1	Field and Pool or BRADLEY; BONE	-	•
4. Location of Well (Footage SEC 28/T26S/R33E/NM		R.,M., or Survey Description)			1	11. Country or Parish LEA/NM	, State	
	12. CHE	CK THE APPROPRIATE BOX	X(ES) TO INDI	CATE NATURI	E OF NOTIC	CE, REPORT OR OT	HER DA	ATA
TYPE OF SUBMISS	SION			TY	PE OF ACT	ION		
Notice of Intent		Acidize	Deepen	1	Produ	ction (Start/Resume)		Water Shut-Off
1 Notice of Intent		Alter Casing	Hydrau	lic Fracturing	Reclai	mation		Well Integrity
Subsequent Report		Casing Repair		onstruction	Recon			Other
Final Abandanmant	Nation		_		= 1	•		
		<u> </u>						
is ready for final inspec	equests an	amendment to our approved	d APD for this				the open	ator has detennined that the site
Change name from	Rattlesnal	ke 28 Fed Com 505H to Rat	tlesnake 28 Fe	ed Com 214H.				
Change BHL from 1	Γ-26-S, R-3	33-E, Sec 33, 2447' FNL, 12	:54' FWL, Lea	Co., NM,				
to T-26-S, R-33-E,	Sec 33, 10	0' FSL, 2360' FWL, Lea Co.	, N.M.					
Change target form	ation to Le	onard B.						
		• •	sted in the Blar	nket Casing De	esign (EOG	BLM Variance 5a/	b - Altei	rnate Shallow Casing
• •		,	ted/Typed)	Regulator	v Specialis	t		
STAR HARRELL / Ph: (432) 848-9	161	Т	itle	,			
Signature (Electronic	Submissio	on)	Ι	Date		03/12/2	2024	
		THE SPACE	FOR FEDEI	RAL OR ST	ATE OF	CE USE		
Approved by								
Subsequent Report						03/19/2024		
	ds legal or e	equitable title to those rights in			ARLSBAD			
Title 18 U.S.C Section 1001	and Title 4	3 U.S.C Section 1212, make it	a crime for any	person knowing	gly and willfi	ully to make to any d	lepartme	nt or agency of the United States

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

DISTRICT I

1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-0161 Fax: (575) 393-0720

DISTRICT II

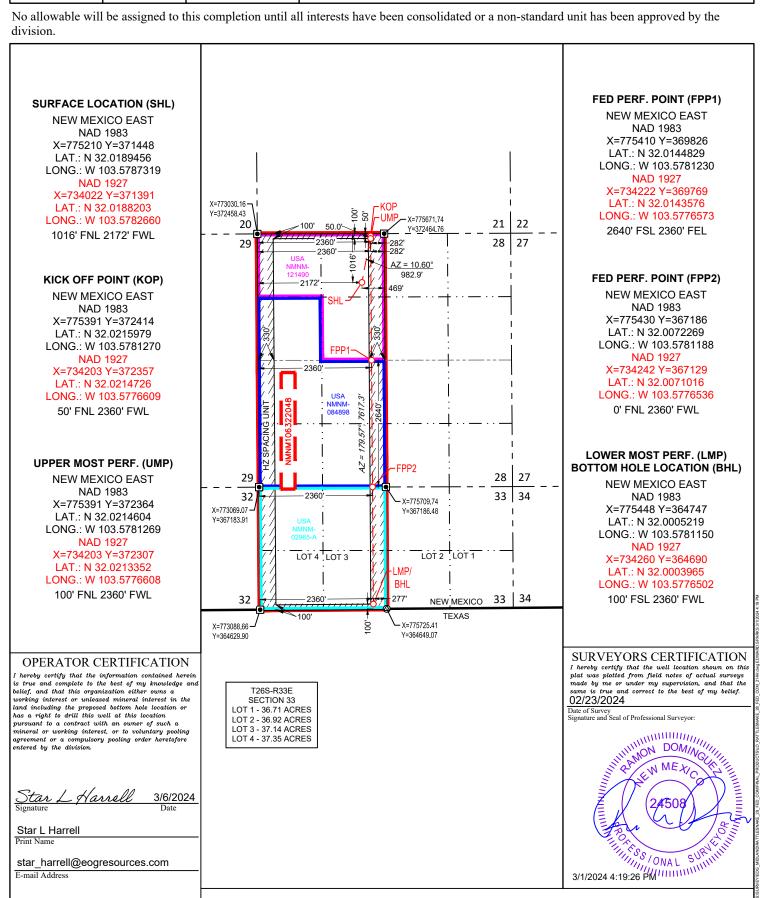
81 I S. First St., Artesin, NM 88210
Phone: (575) 748-9720

DISTRICT III

1000 Rio Brazos Rd., Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV

1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

A	PI Number		Pool Code Pool Name							
30-0	25-51966	;		7280	Bradley; Bone Spring					
Property Co	ode		Property Name Well Number							
31531	7		RATTLESNAKE 28 FED COM 214H							
OGRID N	o.				Operator Name			Elevation	on	
7377			EOG RESOURCES, INC. 3238'						38'	
		•			Surface Loca	tion		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
С	28	26-S	33-E	-	1016'	NORTH	2172'	WEST	LEA	
-			Bott	om Hole	Location If Dif	ferent From Surfac	ce			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
3	33	26-S	33-E	33-E - 100' SOUTH 2360' WEST LEA						
Dedicated Acres	Joint or	Infill	Consolidated Code Order No.							
474.49			NMNM106322048							

Revised Permit Information 02/22/2024:

Well Name: Rattlesnake 28 Fed Com 214H; FKA Rattlesnake 28 Fed Com 505H

Location: SHL: 1016' FNL & 2172' FWL, Section 28, T-26-S, R-33-E, Lea Co., N.M.

BHL: 100' FSL & 2360' FWL, Section 33, T-26-S, R-33-E, Lea Co., N.M.

1. CASING PROGRAM:

Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	1,230	0	1,230	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,245	0	5,160	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	17,506	0	9,965	5-1/2"	20#	P110-EC	DWC/C IS MS

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
1,230'	320	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1,030')
5,160' 8-5/8"	320	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	150	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 4,190')
17,506' 5-1/2"	320	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 4,660')
	570	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 9570')

Additive	Purpose					
Bentonite Gel	Lightweight/Lost circulation prevention					
Calcium Chloride	Accelerator					
Cello-flake	Lost circulation prevention					
Sodium Metasilicate	Accelerator					
MagOx	Expansive agent					
Pre-Mag-M	Expansive agent					
Sodium Chloride	Accelerator					
FL-62	Fluid loss control					
Halad-344	Fluid loss control					
Halad-9	Fluid loss control					
HR-601	Retarder					
Microbond	Expansive Agent					

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,230'	Fresh - Gel	8.6-8.8	28-34	N/c
1,230' – 5,160'	Brine	9.0-10.5	28-34	N/c
5,160' – 17,506'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)

5. TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

1016' FNL 2172' FWL **Revised Wellbore**

KB: 3263' GL: 3238'

Section 28

T-26-S, R-33-E

API: 30-025-51966

Bit Size: 13-1/2" 10-3/4", 40.5#, J-55, STC @ 0' - 1,230' Bit Size: 9-7/8" 8-5/8", 32.#, J-55, BTC-SC @ 0' - 5,160' TOC: 4,660' Bit Size: 6-3/4" 5-1/2", 20.#, P110-EC, DWC/C IS MS @ 0' - 17,506' Lateral: 17,506' MD, 9,965' TVD **Upper Most Perf:** 100' FNL & 2360' FWL Sec. 28 **Lower Most Perf:** 100' FSL & 2360' FWL Sec. 33 BH Location: 100' FSL & 2360' FWL Sec. 33 T-26-S R-33-E KOP: 9,566' MD, 9,338' TVD EOC: 10,316' MD, 9,911' TVD

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,097'
Tamarisk Anhydrite	1,205'
Top of Salt	1,667'
Base of Salt	5,063'
Lamar	5,301'
Bell Canyon	5,326'
Cherry Canyon	6,267'
Brushy Canyon	7,665'
Bone Spring Lime	9,123'
Leonard (Avalon) Shale	9,173'
1st Bone Spring Sand	10,185'
2nd Bone Spring Shale	10,416'
2nd Bone Spring Sand	10,530'
3rd Bone Spring Carb	11,177'
TD	9,965'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	5,326'	Oil
Cherry Canyon	6,267'	Oil
Brushy Canyon	7,665'	Oil
Leonard (Avalon) Shale	9,173'	Oil
1st Bone Spring Sand	10,185'	Oil
2nd Bone Spring Shale	10,416'	Oil
2nd Bone Spring Sand	10,530'	Oil

Midland

Lea County, NM (NAD 83 NME) Rattlesnake 28 Fed Com #214H

OH

Plan: Plan #0.2

Standard Planning Report

05 March, 2024

PEDM Database: Company: Midland

Project:

Rattlesnake 28 Fed Com Site: Well: #214H

Wellbore:

Design:

Lea County, NM (NAD 83 NME)

ОН Plan #0.2 **Local Co-ordinate Reference:**

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

US State Plane 1983 Map System: North American Datum 1983 Geo Datum: New Mexico Eastern Zone Map Zone:

System Datum:

Mean Sea Level

Rattlesnake 28 Fed Com Site

Northing: 371,629.00 usft Site Position: Latitude: 32° 1' 9.870 N From: Мар Easting: 777,030.00 usft Longitude: 103° 34' 22.279 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #214H

Well Position

+N/-S 0.0 usft Northing: 371,448.00 usft Latitude: 32° 1' 8.205 N +E/-W 0.0 usft Easting: 775,210.00 usft Longitude: 103° 34' 43.433 W **Position Uncertainty** 0.0 usft Wellhead Elevation: usft Ground Level: 3,238.0 usft

0.40° **Grid Convergence:**

ОН Wellbore

Model Name Declination Field Strength Magnetics Sample Date Dip Angle (°) (°) (nT) 47,468.05645236 IGRF2020 7/16/2020 6.64 59.74

Design Plan #0.2

Audit Notes:

Version: Phase: PLAN Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 177.97 0.0 0.0 0.0

Plan Survey Tool Program Date 3/5/2024

17,505.9

Plan #0.2 (OH)

Depth From Depth To

0.0

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

MWD + IFR1

EOG MWD+IFR1

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference: TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid Minimum Curvature

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,669.9	9.40	10.61	1,667.8	37.8	7.1	2.00	2.00	0.00	10.61	
7,217.8	9.40	10.61	7,141.2	928.2	173.9	0.00	0.00	0.00	0.00	
7,687.7	0.00	0.01	7,609.0	966.0	181.0	2.00	-2.00	0.00	180.00	
9,566.2	0.00	0.01	9,487.5	966.0	181.0	0.00	0.00	0.00	0.00	KOP(Rattlesnake 28 I
9,786.6	26.46	180.00	9,700.2	916.0	181.0	12.00	12.00	81.65	180.00	FTP(Rattlesnake 28 F
10,316.1	90.00	179.55	9,964.9	488.6	183.3	12.00	12.00	-0.09	-0.51	
12,426.8	90.00	179.55	9,965.0	-1,622.0	200.0	0.00	0.00	0.00	0.00	Fed Perf 1(Rattlesnak
15,066.8	90.00	179.58	9,965.0	-4,262.0	220.0	0.00	0.00	0.00	85.46	Fed Perf 2(Rattlesnak
17,505.9	90.00	179.57	9,965.0	-6,701.0	238.0	0.00	0.00	0.00	-101.54	PBHL(Rattlesnake 28

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

Design.	1 1011 1/ 012								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
F00.0	0.00	0.00	F00 0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	2.00	10.61	1,300.0	1.7	0.3	-1.7	2.00	2.00	0.00
1,400.0	4.00	10.61	1,399.8	6.9	1.3	-6.8	2.00	2.00	0.00
1,500.0	6.00	10.61	1,499.5	15.4	2.9	-15.3	2.00	2.00	0.00
1,600.0	8.00	10.61	1,598.7	27.4	5.1	-27.2	2.00	2.00	0.00
1,669.9	9.40	10.61	1,667.8	37.8	7.1	-37.5	2.00	2.00	0.00
1,700.0	9.40	10.61	1,697.5	42.6	8.0	-42.3	0.00	0.00	0.00
1,800.0	9.40	10.61	1,796.1	58.7	11.0	-58.2	0.00	0.00	0.00
1,900.0	9.40	10.61	1,894.8	74.7	14.0	-74.2	0.00	0.00	0.00
2,000.0	9.40	10.61	1,993.5	90.8	17.0	-90.1	0.00	0.00	0.00
2,100.0	9.40	10.61	2,092.1	106.8	20.0	-106.0	0.00	0.00	0.00
2,200.0	9.40	10.61	2,190.8	122.9	23.0	-122.0	0.00	0.00	0.00
2,300.0	9.40	10.61	2,190.6	138.9	26.0	-122.0	0.00	0.00	0.00
2,300.0	9.40	10.01	2,209.4	130.9	20.0	-137.9	0.00	0.00	0.00
2,400.0	9.40	10.61	2,388.1	155.0	29.0	-153.8	0.00	0.00	0.00
2,500.0	9.40	10.61	2,486.8	171.0	32.0	-169.8	0.00	0.00	0.00
2,600.0	9.40	10.61	2,585.4	187.1	35.1	-185.7	0.00	0.00	0.00
2,700.0			2,684.1	203.1		-201.6	0.00		
	9.40	10.61			38.1			0.00	0.00
2,800.0	9.40	10.61	2,782.7	219.2	41.1	-217.6	0.00	0.00	0.00
2,900.0	9.40	10.61	2,881.4	235.2	44.1	-233.5	0.00	0.00	0.00
3,000.0	9.40	10.61	2,980.0	251.3	47.1	-249.4	0.00	0.00	0.00
3,100.0	9.40	10.61	3,078.7	267.3	50.1	-265.4	0.00	0.00	0.00
3,200.0	9.40	10.61	3,177.4	283.4	53.1	-281.3	0.00	0.00	0.00
3,300.0	9.40	10.61	3,276.0	299.4	56.1	-297.2	0.00	0.00	0.00
3,400.0	9.40	10.61	3,374.7	315.5	59.1	-313.2	0.00	0.00	0.00
3,500.0	9.40	10.61	3,473.3	331.5	62.1	-329.1	0.00	0.00	0.00
3,600.0	9.40	10.61	3,572.0	347.6	65.1	-345.0	0.00	0.00	0.00
3,700.0	9.40	10.61	3,670.6	363.6	68.1	-361.0	0.00	0.00	0.00
3,800.0	9.40	10.61	3,769.3	379.7	71.1	-376.9	0.00	0.00	0.00
3,900.0	9.40	10.61	3,868.0	395.7	74.1	-392.8	0.00	0.00	0.00
4,000.0	9.40	10.61	3,966.6	411.8	77.2	-408.8	0.00	0.00	0.00
			3,966.6 4,065.3						
4,100.0	9.40	10.61	,	427.8	80.2	-424.7	0.00	0.00	0.00
4,200.0	9.40	10.61	4,163.9	443.9	83.2	-440.6	0.00	0.00	0.00
4,300.0	9.40	10.61	4,262.6	459.9	86.2	-456.6	0.00	0.00	0.00
4,400.0	9.40	10.61	4,361.3	476.0	89.2	-472.5	0.00	0.00	0.00
4,500.0	9.40	10.61	4,459.9	492.0	92.2	-488.4	0.00	0.00	0.00
4,600.0	9.40	10.61	4,558.6	508.1	95.2	-504.4	0.00	0.00	0.00
4,700.0	9.40	10.61	4,657.2	524.1	98.2	-520.3	0.00	0.00	0.00
4,800.0	9.40	10.61	4,755.9	540.2	101.2	-536.2	0.00	0.00	0.00
4,900.0	9.40	10.61	4,854.5	556.2	104.2	-552.2	0.00	0.00	0.00
5,000.0	9.40	10.61	4,953.2	572.3	107.2	-568.1	0.00	0.00	0.00
5,100.0									
	9.40	10.61	5,051.9	588.3	110.2	-584.0	0.00	0.00	0.00
5,200.0	9.40	10.61	5,150.5	604.4	113.2	-600.0	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

sign:	FIAIT #U.2								
anned Survey									
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	9.40	10.61	5,249.2	620.4	116.2	-615.9	0.00	0.00	0.00
5,400.0	9.40	10.61	5,347.8	636.5	119.3	-631.8	0.00	0.00	0.00
5,500.0	9.40	10.61	5,446.5	652.5	122.3	-647.8	0.00	0.00	0.00
5,600.0	9.40	10.61	5,545.1	668.6	125.3	-663.7	0.00	0.00	0.00
5,700.0	9.40	10.61	5,643.8	684.6	128.3	-679.6	0.00	0.00	0.00
5,800.0	9.40	10.61	5,742.5	700.7	131.3	-695.6	0.00	0.00	0.00
5,900.0	9.40	10.61	5,841.1	716.7	134.3	-711.5	0.00	0.00	0.00
6,000.0	9.40	10.61	5,939.8	732.8	137.3	-727.4	0.00	0.00	0.00
6,100.0	9.40	10.61	6,038.4	748.8	140.3	-743.4	0.00	0.00	0.00
6,200.0	9.40	10.61	6,137.1	764.9	143.3	-759.3	0.00	0.00	0.00
6,300.0	9.40	10.61	6,235.8	780.9	146.3	-775.2	0.00	0.00	0.00
6,400.0	9.40	10.61	6,334.4	797.0	149.3	-791.2	0.00	0.00	0.00
6,500.0	9.40	10.61	6,433.1	813.0	152.3	-807.1	0.00	0.00	0.00
6,600.0	9.40	10.61	6,531.7	829.1	155.3	-823.0	0.00	0.00	0.00
6,700.0	9.40	10.61	6,630.4	845.1	158.3	-839.0	0.00	0.00	0.00
6,800.0	9.40	10.61	6,729.0	861.2	161.4	-854.9	0.00	0.00	0.00
•									
6,900.0	9.40	10.61	6,827.7	877.2	164.4	-870.8	0.00	0.00	0.00
7,000.0	9.40	10.61	6,926.4	893.3	167.4	-886.8	0.00	0.00	0.00
7,100.0	9.40	10.61	7,025.0	909.3	170.4	-902.7	0.00	0.00	0.00
7,200.0	9.40	10.61	7,123.7	925.4	173.4	-918.6	0.00	0.00	0.00
7,217.8	9.40	10.61	7,141.2	928.2	173.9	-921.4	0.00	0.00	0.00
7,300.0	7.75	10.61	7,222.5	940.3	176.2	-933.4	2.00	-2.00	0.00
7,400.0	5.75	10.61	7,321.8	951.8	178.3	-944.9	2.00	-2.00	0.00
7,500.0	3.75	10.61	7,421.5	960.0	179.9	-953.0	2.00	-2.00	0.00
7,600.0	1.75	10.61	7,521.3	964.7	180.8	-957.7	2.00	-2.00	0.00
7,687.7	0.00	0.01	7,609.0	966.0	181.0	-959.0	2.00	-2.00	0.00
7,700.0	0.00	0.00	7,621.3	966.0	181.0	-959.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,721.3	966.0	181.0	-959.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,821.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,000.0	0.00	0.00	7,921.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,021.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,121.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,221.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,321.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,421.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,521.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
			,						
8,700.0	0.00	0.00	8,621.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,721.3	966.0	181.0	-959.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,821.3	966.0	181.0	-959.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,921.3	966.0	181.0	-959.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,021.3	966.0	181.0	-959.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,121.3	966.0	181.0	-959.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,121.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,321.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,321.3 9,421.3	966.0	181.0	-959.0 -959.0	0.00	0.00	0.00
9,500.0 9,566.2	0.00	0.00	9,421.3 9,487.5		181.0	-959.0 -959.0	0.00	0.00	0.00
	0.00	0.01		966.0	101.0	-909.0	0.00	0.00	
9,575.0	1.06	180.00	9,496.3	965.9	181.0	-958.9	12.00	12.00	0.00
9,600.0	4.06	180.00	9,521.3	964.8	181.0	-957.8	12.00	12.00	0.00
9,625.0	7.06	180.00	9,546.2	962.4	181.0	-955.3	12.00	12.00	0.00
9,650.0	10.06	180.00	9,570.9	958.7	181.0	-951.6	12.00	12.00	0.00
9,675.0	13.06	180.00	9,595.4	953.6	181.0	-946.6	12.00	12.00	0.00
9,700.0	16.06	180.00	9,619.6	947.4	101 0	040.2	12.00	12.00	0.00
9,700.0 9,725.0	16.06 19.06	180.00	9,619.6 9,643.4	947.4 939.8	181.0 181.0	-940.3 -932.8	12.00 12.00	12.00	0.00
9,725.0 9,750.0	22.06	180.00	9,643.4 9,666.8	939.8 931.0	181.0	-932.8 -924.0	12.00	12.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

isign:	FIAII #0.2								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,775.0	25.06	180.00	9,689.7	921.1	181.0	-914.0	12.00	12.00	0.00
9,786.6	26.46	180.00	9,700.2	916.0	181.0	-909.0	12.00	12.00	0.00
9,800.0	28.06	179.97	9,712.1	909.9	181.0	-902.9	12.00	12.00	-0.22
9,825.0	31.06	179.92	9,733.8	897.5	181.0	-890.5	12.00	12.00	-0.19
9,850.0	34.06	179.88	9,754.9	884.1	181.0	-877.1	12.00	12.00	-0.16
9,875.0	37.06	179.85	9,775.2	869.5	181.1	-862.6	12.00	12.00	-0.14
9,900.0	40.06	179.82	9,794.8	854.0	181.1	-847.0	12.00	12.00	-0.12
9,925.0	43.06	179.79	9,813.5	837.4	181.2	-830.4	12.00	12.00	-0.11
9,950.0	46.06	179.76	9,831.3	819.8	181.2	-812.9	12.00	12.00	-0.10
9,975.0	49.06	179.74	9,848.2	801.4	181.3	-794.5	12.00	12.00	-0.09
10,000.0	52.06	179.72	9,864.0	782.1	181.4	-775.2	12.00	12.00	-0.08
10,025.0	55.06	179.70	9,878.9	762.0	181.5	-755.1	12.00	12.00	-0.07
10,050.0 10,075.0	58.06 61.06	179.69 179.67	9,892.7 9,905.3	741.1 719.6	181.6 181.7	-734.2 -712.7	12.00 12.00	12.00 12.00	-0.07 -0.06
10,100.0	64.06	179.67	9,905.3 9,916.8	697.4	181.9	-7 12.7 -690.5	12.00	12.00	-0.06
10,125.0	67.06	179.64	9,927.2	674.6	182.0	-667.7	12.00	12.00	-0.06
10,150.0	70.06	179.63	9,936.3	651.4	182.2	-644.5	12.00	12.00	-0.05
10,175.0	73.06	179.62	9,944.2	627.6	182.3	-620.8	12.00	12.00	-0.05
10,200.0	76.06	179.60	9,950.9	603.6	182.5	-596.7	12.00	12.00	-0.05
10,225.0 10,250.0	79.06 82.06	179.59 179.58	9,956.3 9,960.4	579.1 554.5	182.7 182.8	-572.3 -547.6	12.00 12.00	12.00 12.00	-0.05 -0.05
10,275.0	85.06	179.56	9,963.2	529.6	183.0	-547.0 -522.8	12.00	12.00	-0.05
10,300.0	88.06	179.56	9,964.7	504.7	183.2	-497.9	12.00	12.00	-0.05
10,316.1	90.00	179.55	9,964.9	488.6	183.3	-481.7	12.00	12.00	-0.05
10,400.0	90.00	179.55	9,964.9	404.7	184.0	-397.9	0.00	0.00	0.00
10,500.0 10,600.0	90.00 90.00	179.55 179.55	9,965.0 9,965.0	304.7 204.7	184.8 185.6	-298.0 -198.0	0.00 0.00	0.00 0.00	0.00 0.00
10,700.0	90.00	179.55	9,965.0	104.7	186.4	-98.0	0.00	0.00	0.00
10,800.0	90.00	179.55	9,965.0	4.7	187.2	1.9	0.00	0.00	0.00
10,900.0	90.00	179.55	9,965.0	-95.3	187.9	101.9	0.00	0.00	0.00
11,000.0	90.00 90.00	179.55	9,965.0	-195.3	188.7 189.5	201.9	0.00	0.00	0.00
11,100.0		179.55	9,965.0	-295.3		301.8	0.00	0.00	0.00
11,200.0	90.00	179.55	9,965.0	-395.3	190.3	401.8	0.00	0.00	0.00
11,300.0	90.00	179.55	9,965.0	-495.3	191.1	501.7	0.00	0.00	0.00
11,400.0	90.00	179.55	9,965.0	-595.3	191.9	601.7	0.00	0.00	0.00
11,500.0	90.00	179.55	9,965.0	-695.3	192.7	701.7	0.00	0.00	0.00
11,600.0	90.00	179.55	9,965.0	-795.3	193.5	801.6	0.00	0.00	0.00
11,700.0	90.00	179.55	9,965.0	-895.3	194.3	901.6	0.00	0.00	0.00
11,800.0	90.00	179.55	9,965.0	-995.3	195.1	1,001.6	0.00	0.00	0.00
11,900.0	90.00	179.55	9,965.0	-1,095.3	195.8	1,101.5	0.00	0.00	0.00
12,000.0	90.00	179.55	9,965.0	-1,195.3	196.6	1,201.5	0.00	0.00	0.00
12,100.0	90.00	179.55	9,965.0	-1,295.2	197.4	1,301.4	0.00	0.00	0.00
12,200.0	90.00	179.55	9,965.0	-1,395.2	198.2	1,401.4	0.00	0.00	0.00
12,300.0	90.00	179.55	9,965.0	-1,495.2	199.0	1,501.4	0.00	0.00	0.00
12,400.0	90.00	179.55	9,965.0	-1,595.2	199.8	1,601.3	0.00	0.00	0.00
12,426.8	90.00	179.55	9,965.0	-1,622.0	200.0	1,628.1	0.00	0.00	0.00
12,500.0	90.00	179.55	9,965.0	-1,695.2	200.6	1,701.3	0.00	0.00	0.00
12,600.0	90.00	179.55	9,965.0	-1,795.2	201.4	1,801.2	0.00	0.00	0.00
12,700.0	90.00	179.55	9,965.0	-1,895.2	202.1	1,901.2	0.00	0.00	0.00
12,800.0	90.00	179.55	9,965.0	-1,995.2	202.9	2,001.2	0.00	0.00	0.00
12,900.0	90.00	179.55	9,965.0	-2,095.2	203.7	2,101.1	0.00	0.00	0.00
13,000.0	90.00	179.56	9,965.0	-2,195.2	204.5	2,201.1	0.00	0.00	0.00
13,100.0	90.00	179.56	9,965.0	-2,295.2	205.3	2,301.1	0.00	0.00	0.00
13,200.0	90.00	179.56	9,965.0	-2,395.2	206.0	2,401.0	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
13,300.0	90.00	179.56	9,965.0	-2,495.2	206.8	2,501.0	0.00	0.00	0.00
13,400.0	90.00	179.56	9,965.0	-2,595.2	207.6	2,600.9	0.00	0.00	0.00
13,500.0	90.00	179.56	9,965.0	-2,695.2	208.3	2,700.9	0.00	0.00	0.00
13,600.0	90.00	179.56	9,965.0	-2,795.2	209.1	2,800.9	0.00	0.00	0.00
13,700.0	90.00	179.57	9,965.0	-2,895.2	209.9	2,900.8	0.00	0.00	0.00
13,800.0	90.00	179.57	9,965.0	-2,995.2	210.6	3,000.8	0.00	0.00	0.00
13,900.0	90.00	179.57	9,965.0	-3,095.2	211.4	3,100.7	0.00	0.00	0.00
14,000.0	90.00	179.57	9,965.0	-3,195.2	212.1	3,200.7	0.00	0.00	0.00
14,100.0	90.00	179.57	9,965.0	-3,295.2	212.9	3,300.7	0.00	0.00	0.00
14,200.0	90.00	179.57	9,965.0	-3,395.2	213.6	3,400.6	0.00	0.00	0.00
14,300.0	90.00	179.57	9,965.0	-3,495.2	214.4	3,500.6	0.00	0.00	0.00
14,400.0	90.00	179.58	9,965.0	-3,595.2	215.1	3,600.5	0.00	0.00	0.00
14,500.0	90.00	179.58	9,965.0	-3,695.2	215.8	3,700.5	0.00	0.00	0.00
14,600.0	90.00	179.58	9,965.0	-3,795.2	216.6	3,800.5	0.00	0.00	0.00
14,700.0	90.00	179.58	9,965.0	-3,895.2	217.3	3,900.4	0.00	0.00	0.00
14,800.0	90.00	179.58	9,965.0	-3,995.2	218.1	4,000.4	0.00	0.00	0.00
14,900.0	90.00	179.58	9,965.0	-4,095.2	218.8	4,100.4	0.00	0.00	0.00
15,000.0	90.00	179.58	9,965.0	-4,195.2	219.5	4,200.3	0.00	0.00	0.00
15,066.8	90.00	179.58	9,965.0	-4,262.0	220.0	4,267.1	0.00	0.00	0.00
15,100.0	90.00	179.58	9,965.0	-4,295.2	220.2	4,300.3	0.00	0.00	0.00
15,200.0	90.00	179.58	9,965.0	-4,395.2	221.0	4,400.2	0.00	0.00	0.00
15,300.0	90.00	179.58	9,965.0	-4,495.2	221.7	4,500.2	0.00	0.00	0.00
15,400.0	90.00	179.58	9,965.0	-4,595.2	222.4	4,600.2	0.00	0.00	0.00
15,500.0	90.00	179.58	9,965.0	-4,695.2	223.2	4,700.1	0.00	0.00	0.00
15,600.0	90.00	179.58	9,965.0	-4,795.1	223.9	4,800.1	0.00	0.00	0.00
15,700.0	90.00	179.58	9,965.0	-4,895.1	224.6	4,900.0	0.00	0.00	0.00
15,800.0	90.00	179.58	9,965.0	-4,995.1	225.3	5,000.0	0.00	0.00	0.00
15,900.0	90.00	179.58	9,965.0	-5,095.1	226.1	5,100.0	0.00	0.00	0.00
16,000.0	90.00	179.58	9,965.0	-5,195.1	226.8	5,199.9	0.00	0.00	0.00
16,100.0	90.00	179.58	9,965.0	-5,295.1	227.6	5,299.9	0.00	0.00	0.00
16,200.0	90.00	179.58	9,965.0	-5,395.1	228.3	5,399.8	0.00	0.00	0.00
16,300.0	90.00	179.58	9,965.0	-5,495.1	229.0	5,499.8	0.00	0.00	0.00
16,400.0	90.00	179.58	9,965.0	-5,595.1	229.8	5,599.8	0.00	0.00	0.00
16,500.0	90.00	179.58	9,965.0	-5,695.1	230.5	5,699.7	0.00	0.00	0.00
16,600.0	90.00	179.58	9,965.0	-5,795.1	231.2	5,799.7	0.00	0.00	0.00
16,700.0	90.00	179.57	9,965.0	-5,895.1	232.0	5,899.6	0.00	0.00	0.00
16,800.0	90.00	179.57	9,965.0	-5,995.1	232.7	5,999.6	0.00	0.00	0.00
16,900.0	90.00	179.57	9,965.0	-6,095.1	233.5	6,099.6	0.00	0.00	0.00
17,000.0	90.00	179.57	9,965.0	-6,195.1	234.2	6,199.5	0.00	0.00	0.00
17,100.0	90.00	179.57	9,965.0	-6,295.1	235.0	6,299.5	0.00	0.00	0.00
17,200.0	90.00	179.57	9,965.0	-6,395.1	235.7	6,399.4	0.00	0.00	0.00
17,300.0	90.00	179.57	9,965.0	-6,495.1	236.5	6,499.4	0.00	0.00	0.00
17,400.0	90.00	179.57	9,965.0	-6,595.1	237.2	6,599.4	0.00	0.00	0.00
17,505.9	90.00	179.57	9,965.0	-6,701.0	238.0	6,705.2	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Rattlesnake 28 Fed Com

 Well:
 #214H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #214H KB @ 3264.0usft KB @ 3264.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Rattlesnake 28 Fed - plan hits target cen - Point	0.00 ter	0.01	9,487.5	966.0	181.0	372,414.00	775,391.00	32° 1' 17.751 N	103° 34' 41.252 W
FTP(Rattlesnake 28 Fed - plan hits target cen - Point	0.00 ter	0.01	9,700.2	916.0	181.0	372,364.00	775,391.00	32° 1' 17.257 N	103° 34' 41.256 W
PBHL(Rattlesnake 28 Fe - plan hits target cen - Point	0.00 ter	0.00	9,965.0	-6,701.0	238.0	364,747.00	775,448.00	32° 0' 1.878 N	103° 34' 41.212 W
Fed Perf 2(Rattlesnake 2 - plan hits target cen - Point	0.00 ter	0.00	9,965.0	-4,262.0	220.0	367,186.00	775,430.00	32° 0' 26.015 N	103° 34' 41.223 W
Fed Perf 1(Rattlesnake 2 - plan hits target cen - Point	0.00 ter	0.00	9,965.0	-1,622.0	200.0	369,826.00	775,410.00	32° 0' 52.141 N	103° 34' 41.241 W

leogresources

1200

1500-

2100

2400

3000

3300

3600

3900

9600

- - - - + - - -

++++--

Lea County, NM (NAD 83 NME)

Rattlesnake 28 Fed Com #214H

Plan #0.2

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980
Zone: New Mexico Eastern Zone

PBHL(Rattlesnake 28 Fed Com #505H)

To convert a Magnetic Direction to a Grid Direction, Add 6.24°

To convert a Magnetic Direction to a True Direction, Add 6.64° East

To convert a True Direction to a Grid Direction, Subtract 0.40°

To convert a True Direction to a Grid Direction, Subtract 0.40°

To convert a True Direction to a Grid Direction, Subtract 0.40°

WELL DETAILS: #214H

3238.0

KB @ 3264.0usft
Northing Easting Latit

Azimuths to Grid North

Magnetic North: 6.24°

Strength: 47468.1nT

Dip Angle: 59.74°

Date: 7/16/2020

Model: IGRF2020

True North: -0.40°

Magnetic Field

 Northing
 Easting
 Latittude
 Longitude

 371448.00
 775210.00
 32° 1' 8.205 N
 103° 34' 43.433 W

SECTION DETAILS +N/-S **VSect** MD **TVD** +E/-W **Target** Sec Azi Dleg **TFace** Inc 0.00 0.00 0.00 0.00 1200.0 0.0 0.00 1200.0 9.40 1667.8 10.61 1669.9 10.61 928.2 0.00 173.9 -921.4 9.40 10.61 7141.2 7217.8 181.0 -959.0 7609.0 966.0 7687.7 0.00 2.00 180.00 0.00 181.0 9566.2 0.00 9487.5 966.0 0.00 -959.0 KOP(Rattlesnake 28 Fed Com #505H) 180.00 9700.2 916.0 180.00 -909.0 FTP(Rattlesnake 28 Fed Com #505H) 488.6 -481.7 179.55 9964.9 183.3 -0.51 10316.1 90.00 12.00 Fed Perf 1(Rattlesnake 28 Fed Com #505H) 12426.8 179.55 9965.0 -1622.0 200.0 0.00 1628.1 Fed Perf 2(Rattlesnake 28 Fed Com #505H) 9965.0 -4262.0 220.0 85.46 4267.1 15066.8 179.58

CASING DETAILS

No casing data is available

179.57

9965.0

-6701.0

WELLBORE TARGET DETAILS (MAP CO-ORDINATES) Name TVD **Northing Easting** 9487.5 775391.00 KOP(Rattlesnake 28 Fed Com #505H) 372414.00 FTP(Rattlesnake 28 Fed Com #505H) 9700.2 916.0 372364.00 775391.00 Fed Perf 1(Rattlesnake 28 Fed Com #505H) 9965.0 -1622.0 775410.00 369826.00 Fed Perf 2(Rattlesnake 28 Fed Com #505H) 9965.0 -4262.0 367186.00 775430.00 PBHL(Rattlesnake 28 Fed Com #505H) 9965.0 -6701.0 364747.00 775448.00

6705.2

750-**250** -250 -750--1250 -1500--1750 -2000 -2250 -2500 -3500 -3750 West(-)/East(+)

3000

3900

4500

2700

1800

2100

2400

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sh	Shallow Design Boundary Conditions										
	Deepest	Deepest	Max Inc	Max DLS							
	MD (ft)	TVD (ft)	(deg)	(°/100usft)							
Surface	2030	2030	0	0							
Intermediate	7793	5650	40	8							
Production	28578	11225	90	25							

Shallow Design A

1. CASING PROGRAM

Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

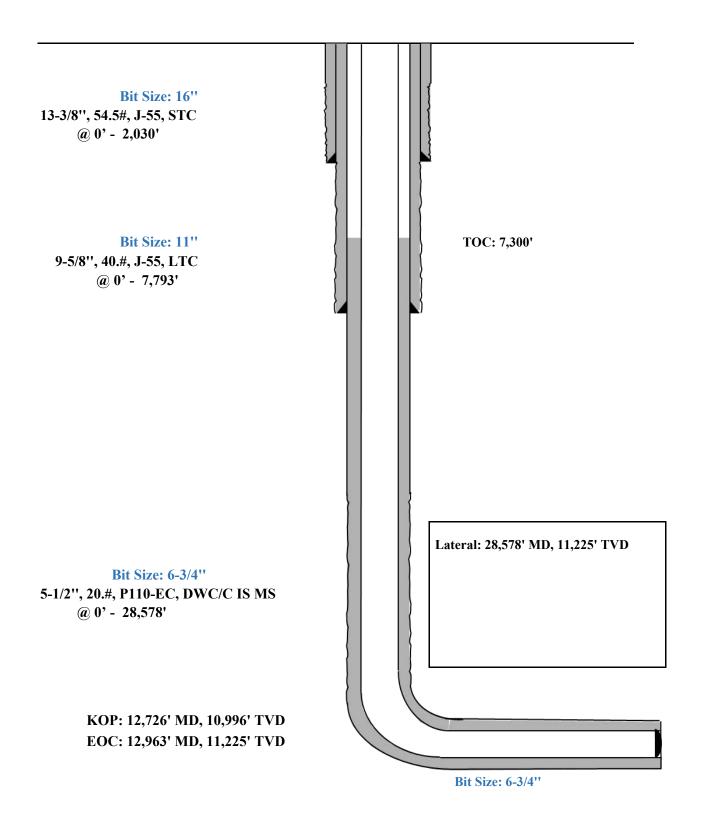
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

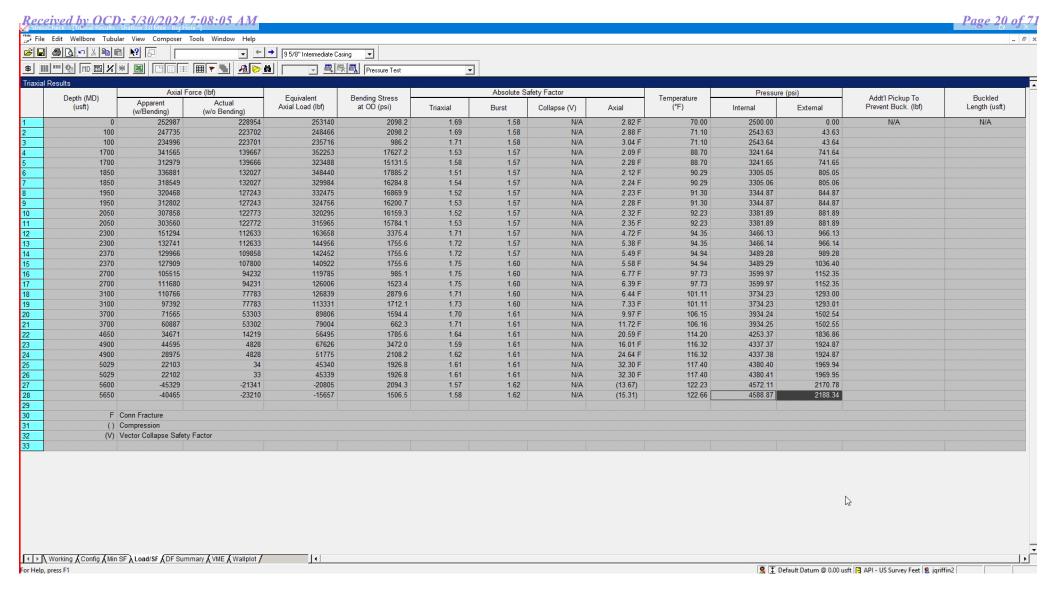
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

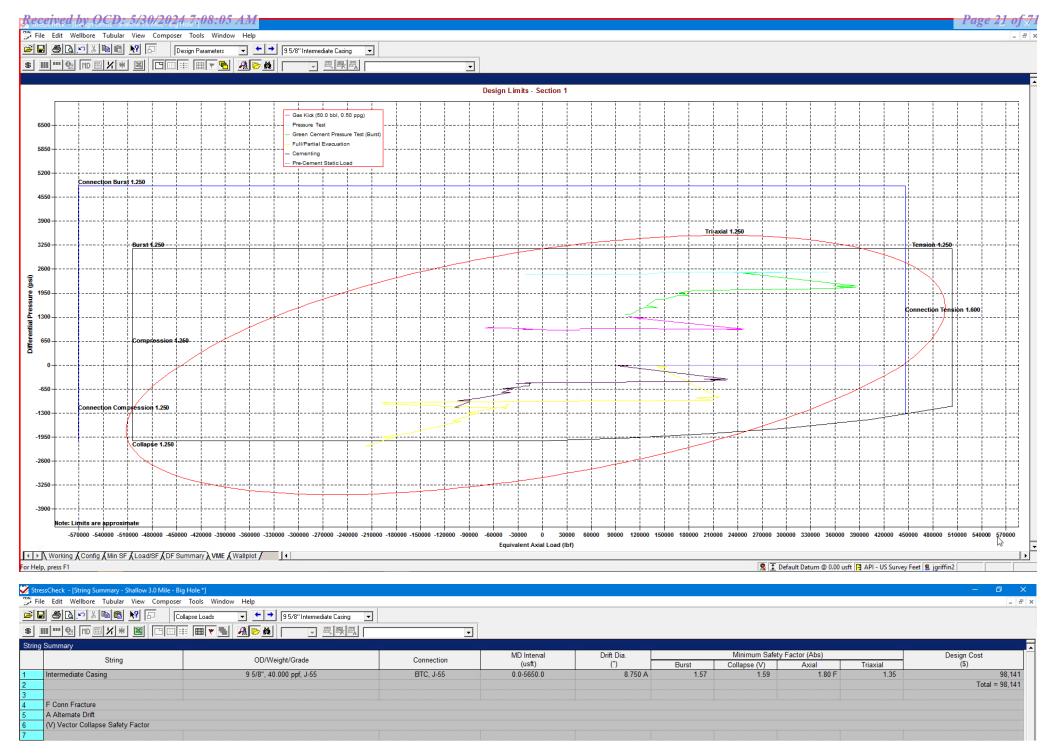

		1101110		
		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	410	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

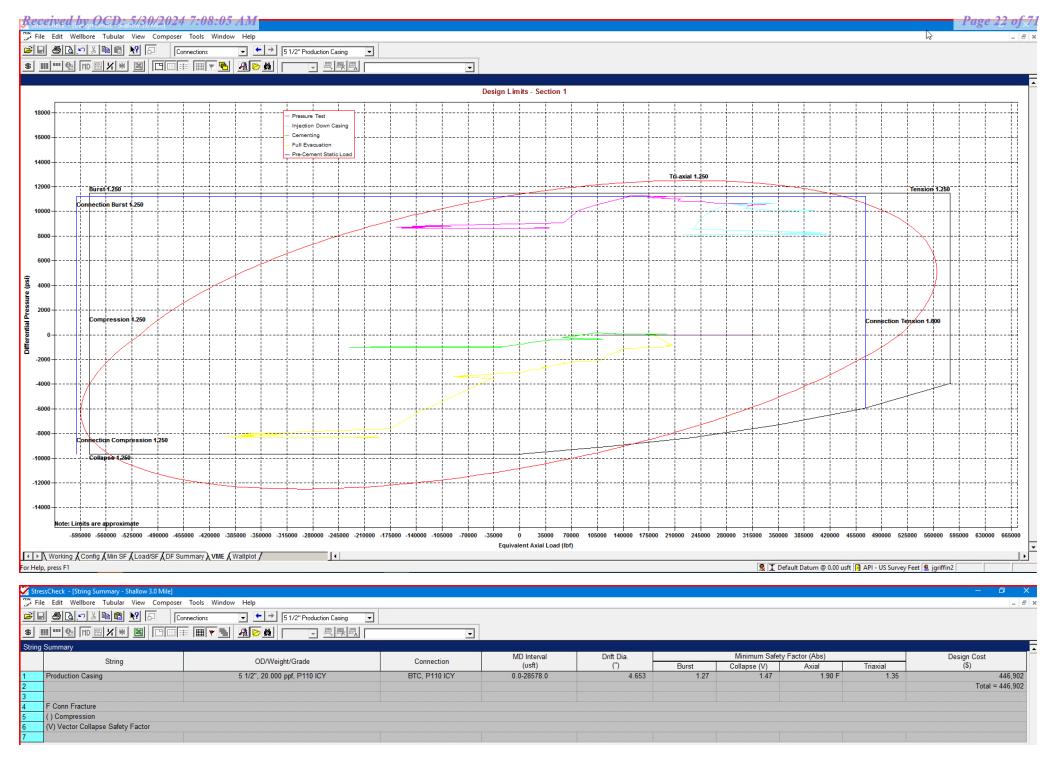


Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 32

Shallow Design B

1. CASING PROGRAM

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,030	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

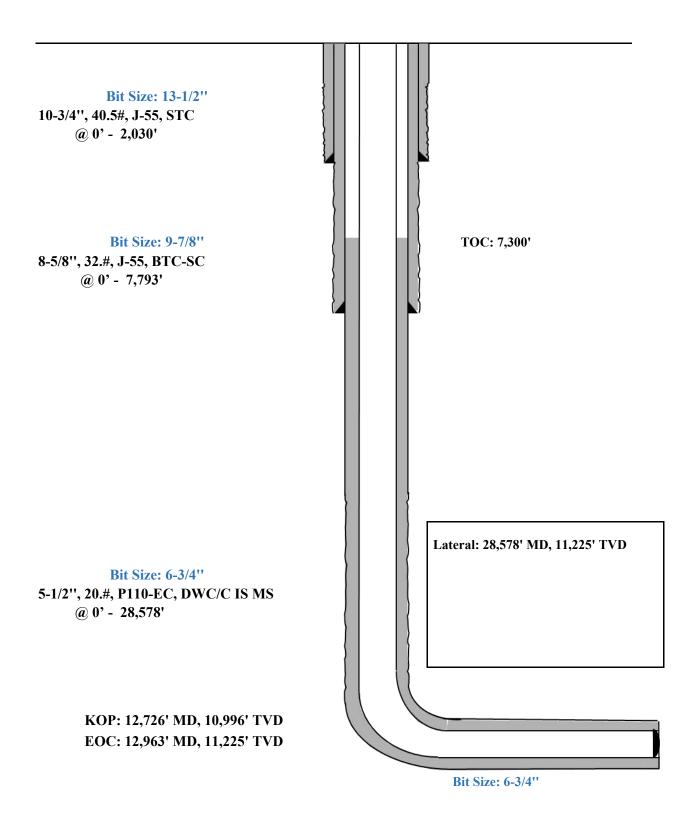
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

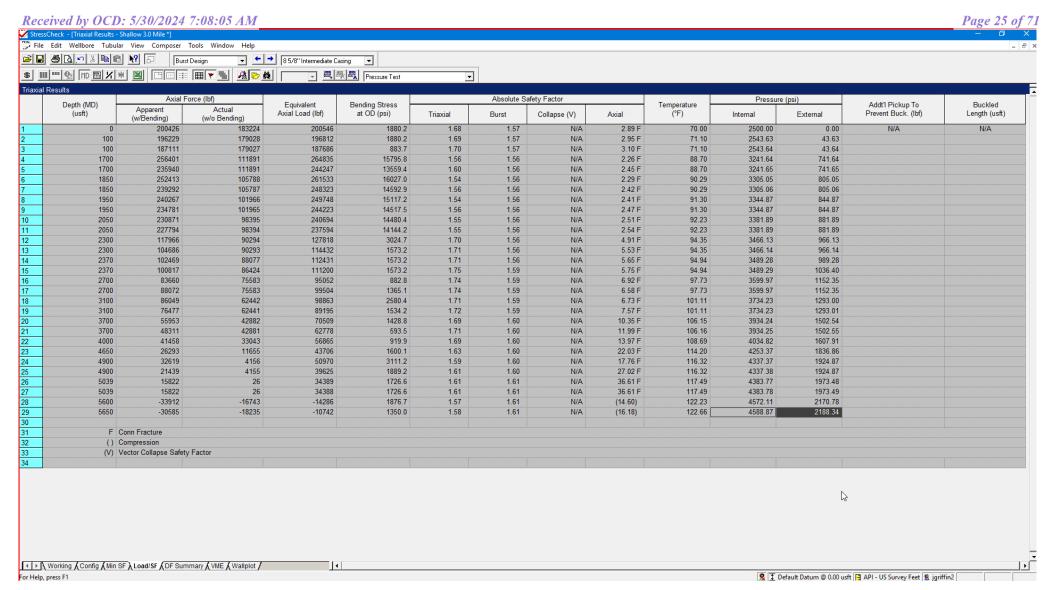
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

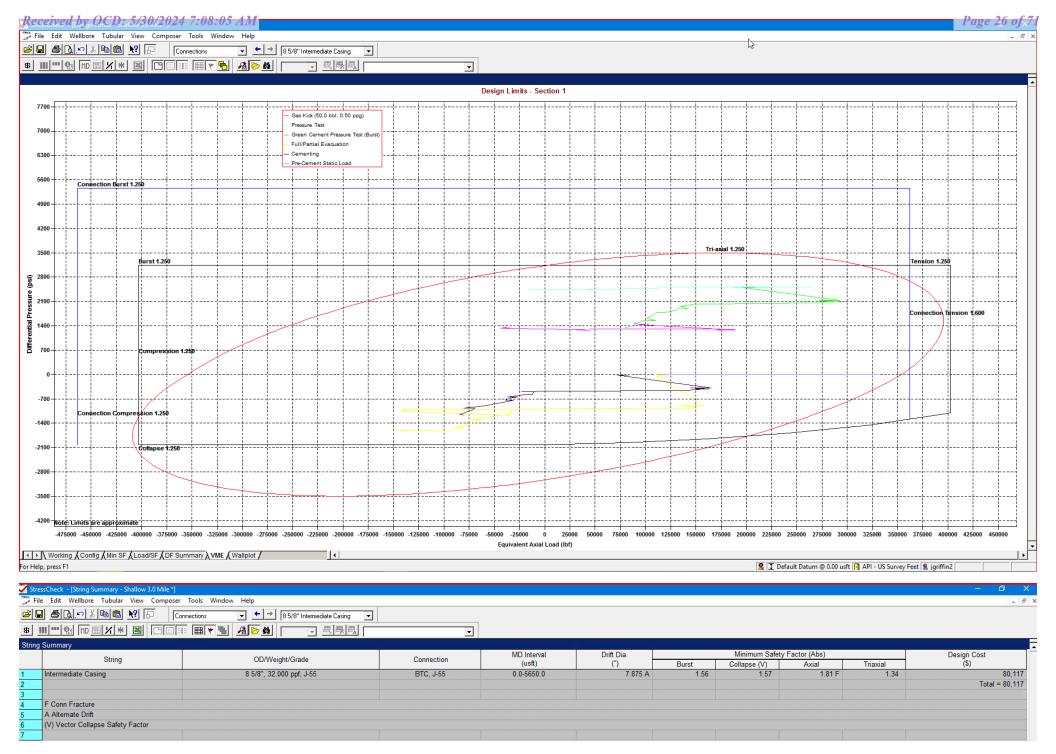

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
10-3/4''				Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	460	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
8-5/8''				Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	400	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

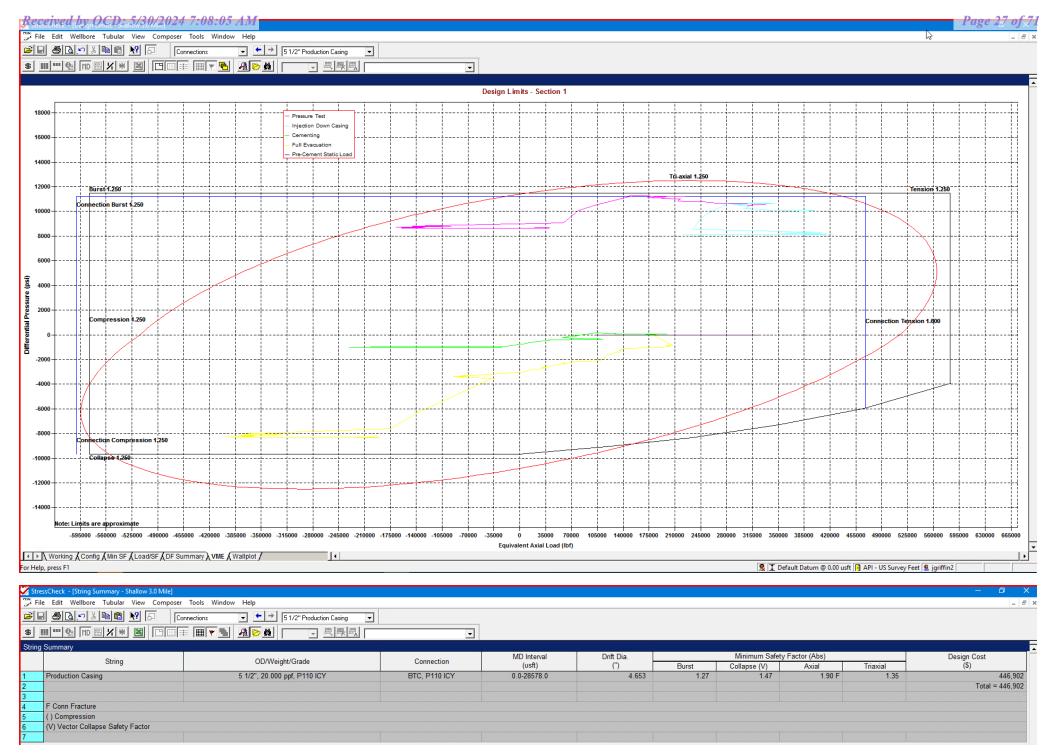


Shallow Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 32

Shallow Design C

1. CASING PROGRAM

Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	28,578	0	11,225	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

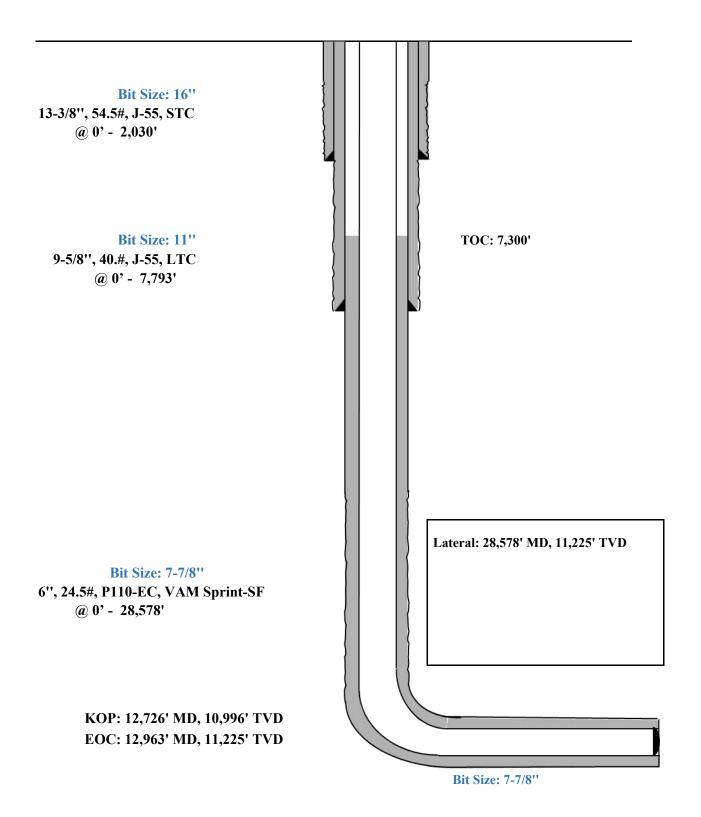
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

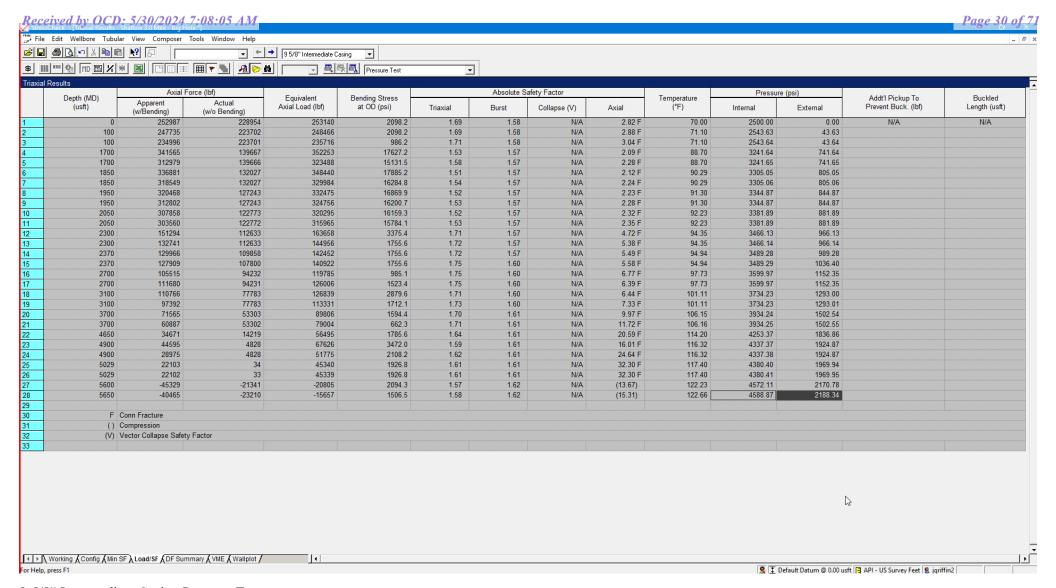
Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

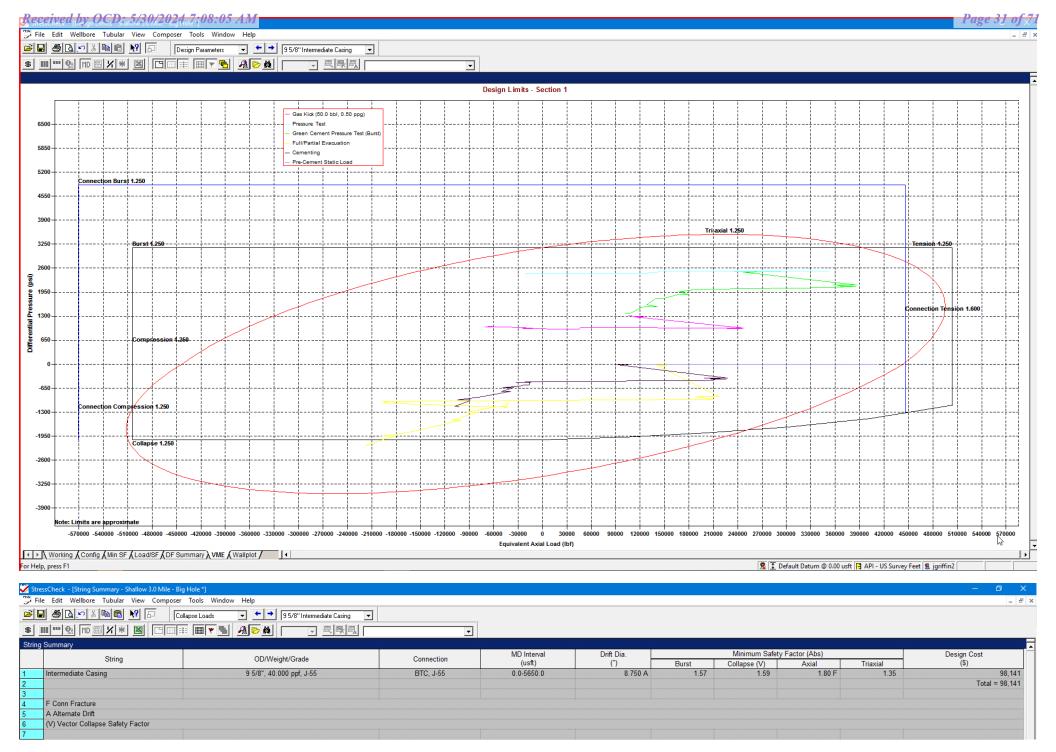

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
6''				@ 7300')
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

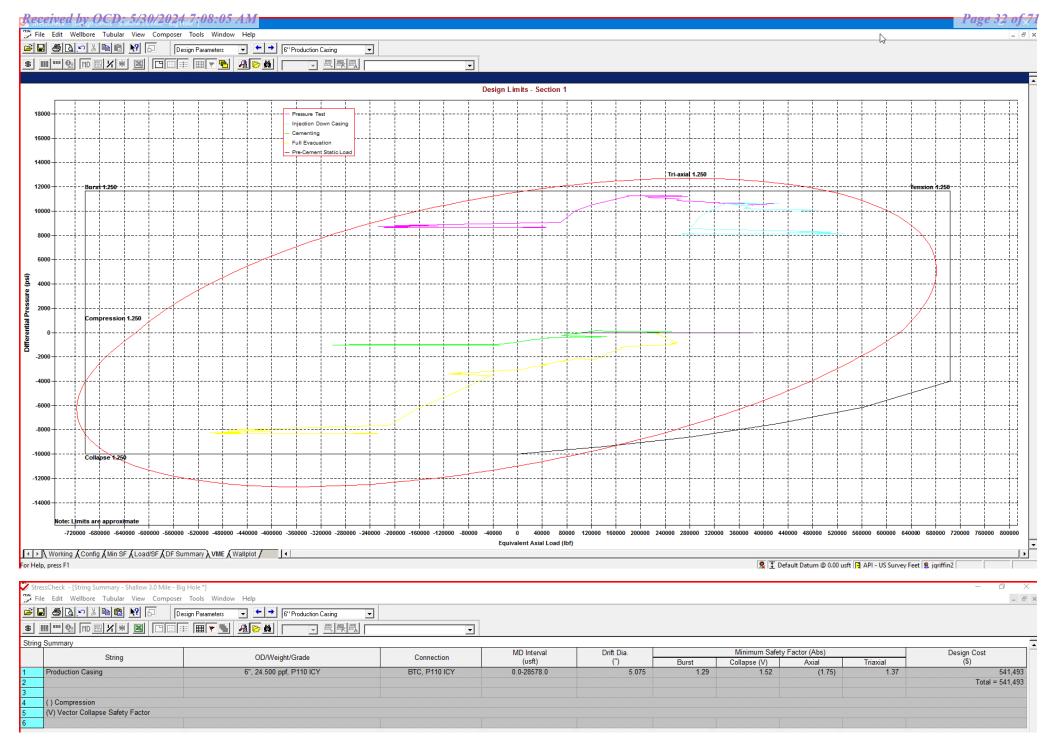


Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	12,626	0	10,896	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

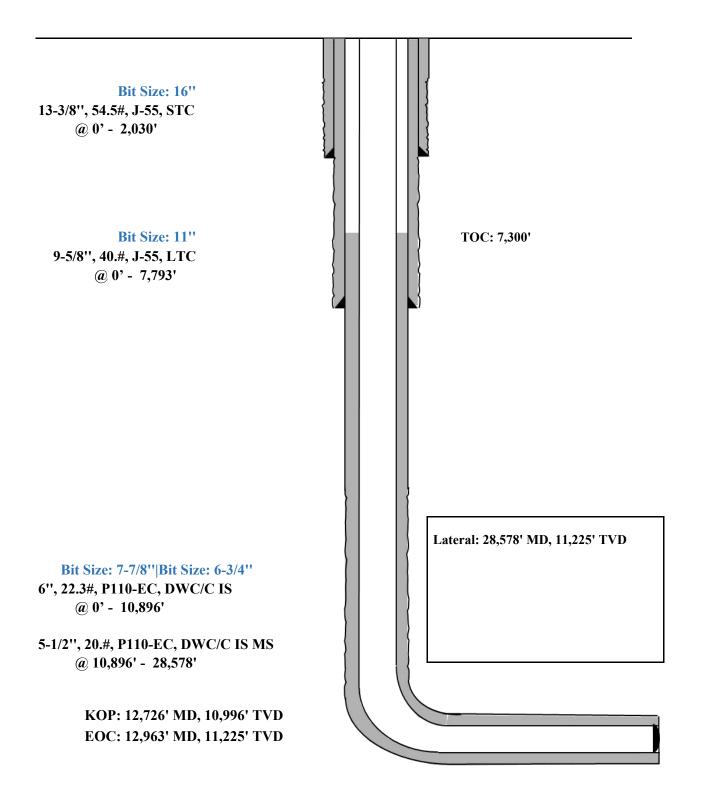
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

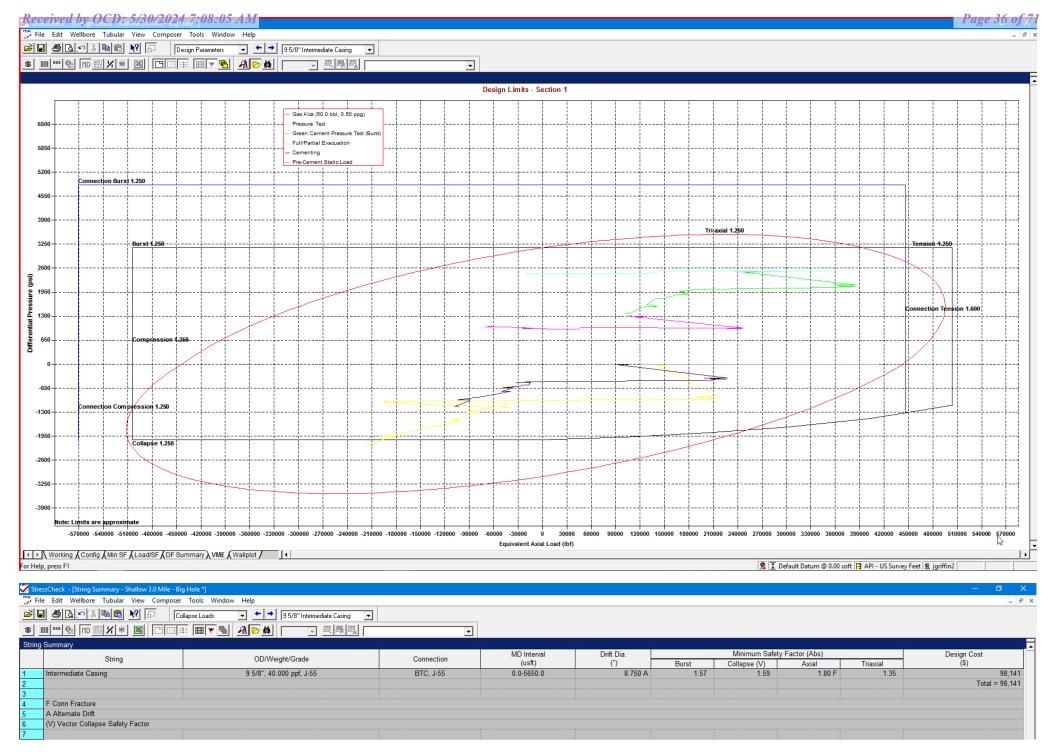
5. CEMENTING PROGRAM:

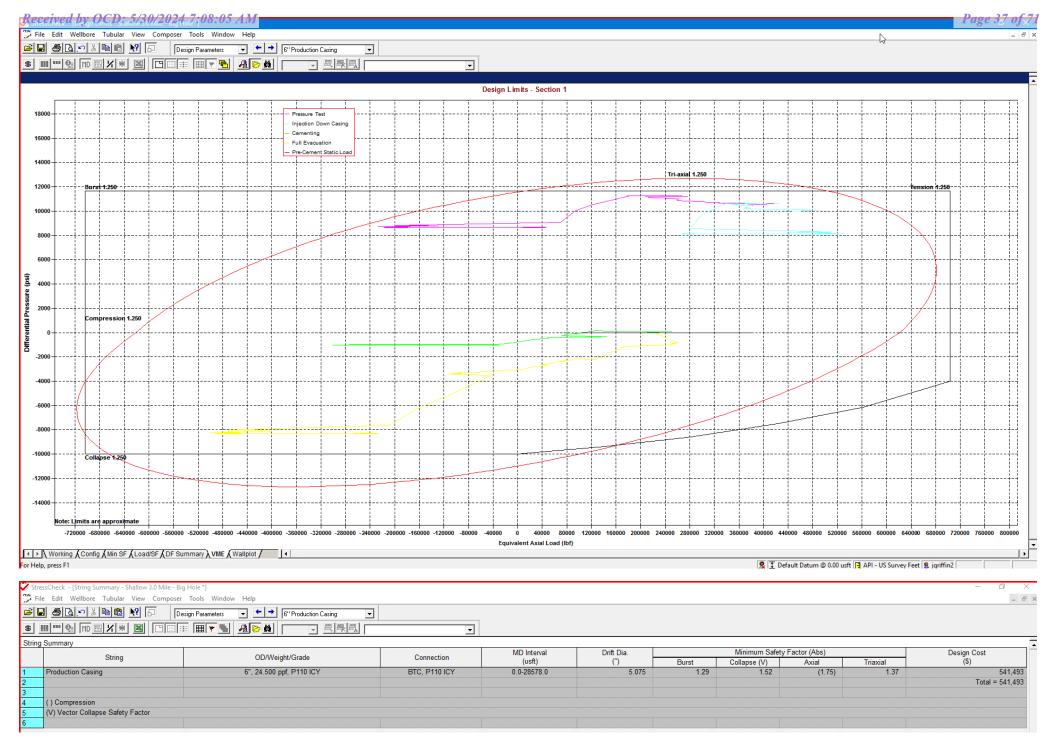

J. C		1101110	01111111	
		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
6''				@ 7300')
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

Shallow Design D

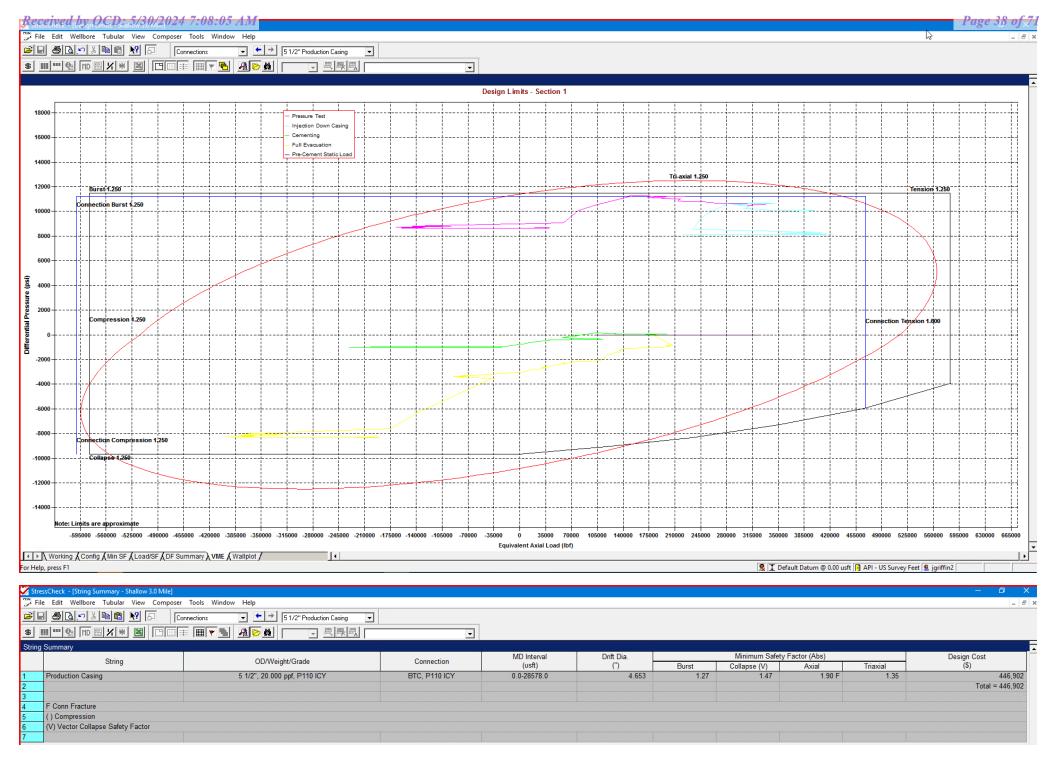
Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 32

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

CEMENTING ADDITIVES:

Additive	Purpose	
Bentonite Gel	Lightweight/Lost circulation prevention	
Calcium Chloride	Accelerator	
Cello-flake	Lost circulation prevention	
Sodium Metasilicate	Accelerator	
MagOx	Expansive agent	
Pre-Mag-M	Expansive agent	
Sodium Chloride	Accelerator	
FL-62	Fluid loss control	
Halad-344	Fluid loss control	
Halad-9	Fluid loss control	
HR-601	Retarder	
Microbond	Expansive Agent	

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

New Search »

Maximum Make-Up Torque

ft-lbs

6,430

u Back to Previous List USC AMetric 6/8/2015 10:04:37 AM **Mechanical Properties** Pipe BTC LTC STC Minimum Yield Strength 55,000 psi 80,000 Maximum Yield Strength psi 75,000 Minimum Tensile Strength psi Dimensions Pipe BTC LTC STC **Outside Diameter** 13.375 14.375 14.375 in. Wall Thickness 0.380 in. 12.615 12.615 12.615 Inside Diameter in. 12.459 12.459 12.459 Standard Drift in. Alternate Drift in. Nominal Linear Weight, T&C 54.50 lbs/ft --Plain End Weight 52.79 lbs/ft Performance Pipe BTC LTC STC Minimum Collapse Pressure 1,130 1,130 1,130 psi Minimum Internal Yield Pressure 2,740 2,740 2,740 psi Minimum Pipe Body Yield Strength 853.00 1000 lbs Joint Strength 909 1000 lbs 514 11,125 6,290 Reference Length ft Make-Up Data BTC Pipe LTC STC Make-Up Loss 4.81 3.50 in. Minimum Make-Up Torque 3,860 ft-lbs Released to Imaging: 1/16/2025 10:47:22 AM Page 24 of 32

New Search »

« Back to Previous List USC Metric 6/8/2015 10:23:27 AM **Mechanical Properties** BTC LTC STC Pipe 55,000 Minimum Yield Strength psi Maximum Yield Strength 80.000 psi 75,000 Minimum Tensile Strength psi **Dimensions** Pipe BTC LTC STC **Outside Diameter** 9.625 10.625 10.625 10.625 in. Wall Thickness 0.395 in. Inside Diameter 8.835 8.835 8.835 8.835 in. Standard Drift 8.679 8.679 8.679 8.679 in. Alternate Drift 8.750 8.750 8.750 8.750 in. Nominal Linear Weight, T&C 40.00 lbs/ft Plain End Weight 38.97 lbs/ft Performance Pipe BTC LTC STC Minimum Collapse Pressure 2,570 2,570 2,570 2,570 psi Minimum Internal Yield Pressure 3,950 3,950 3,950 3.950 psi Minimum Pipe Body Yield Strength 630.00 1000 lbs Joint Strength 714 520 452 1000 lbs Reference Length 11,898 8,665 7,529 ft Make-Up Data Pipe BTC LTC STC Make-Up Loss 4.81 4.75 3.38 in. Minimum Make-Up Torque 3,900 3,390 ft-lbs Page 25 of 32 Released to Imaging: 1/16/2025 10:47:22 AM Maximum Make-Up Torque 6,500 5,650 ft-lbs

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC

12,090

API DRIFT (in.) 4.653 RBW% 87.5 CONNECTION
DWC/C-IS MS

Plain End: 19.83

PIPE PROPERTIES				
Outside Diameter	5.500	in.		
Inside Diameter	4.778	in.		
Nominal Area	5.828	sq.in.		
Grade Type	API 5CT			
Min. Yield Strength	125	ksi		
Max. Yield Strength	140	ksi		
Min. Tensile Strength	135	ksi		
Yield Strength	729	klb		
Ultimate Strength	787	klb		
Min. Internal Yield	14,360	psi		

CONNECTION PROPERTIES				
Connection Type	Semi-Prem	ium T&C		
Connection O.D. (nom)	6.115	in.		
Connection I.D. (nom)	4.778	in.		
Make-Up Loss	4.125	in.		
Coupling Length	9.250	in.		
Critical Cross Section	5.828	sq.in.		
Tension Efficiency	100.0%	of pipe		
Compression Efficiency	100.0%	of pipe		
Internal Pressure Efficiency	100.0%	of pipe		
External Pressure Efficiency	100.0%	of pipe		
	Connection Type Connection O.D. (nom) Connection I.D. (nom) Make-Up Loss Coupling Length Critical Cross Section Tension Efficiency Compression Efficiency Internal Pressure Efficiency	Connection Type Semi-Prem Connection O.D. (nom) 6.115 Connection I.D. (nom) 4.778 Make-Up Loss 4.125 Coupling Length 9.250 Critical Cross Section 5.828 Tension Efficiency 100.0% Compression Efficiency 100.0% Internal Pressure Efficiency 100.0%		

CONNECTION PERFORMANCES				
Yield Strength	729	klb		
Parting Load	787	klb		
Compression Rating	729	klb		
Min. Internal Yield	14,360	psi		
External Pressure	12,090	psi		
Maximum Uniaxial Bend Rating	104.2	°/100 ft		
Reference String Length w 1.4 Design Factor	26,040	ft		

	FIELD END TORQUE VALUES					
2	Min. Make-up torque	16,100	ft.lb			
5	Opti. Make-up torque	17,350	ft.lb			
2	Max. Make-up torque	18,600	ft.lb			
i	Min. Shoulder Torque	1,610	ft.lb			
i	Max. Shoulder Torque	12,880	ft.lb			
t	Min. Delta Turn	-	Turns			
t	Max. Delta Turn	0.200	Turns			
	Maximum Operational Torque	21,100	ft.lb			
	Maximum Torsional Value (MTV)	23,210	ft.lb			

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

Collapse

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com
Tech Support Email: tech.support@vam-usa.com

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

PDF

10.750 40.50/0.350 J55

New Search »

Minimum Pipe Body Yield Strength

Joint Strength

Reference Length

Make-Up Data

Make-Up Loss

Minimum Make-Up Torque

Maximum Make-Up Torque

Released to Imaging: 1/16/2025 10:47:22 AM

6/8/2015 10:14:05 AM

« Back to Previous List

JSC Metric

1000 lbs

1000 lbs

in.

ft-lbs

ft-lbs

420

6,915

STC

3.50

3,150

5,250

Mechanical Properties	ripe	BIL	LIC	SIL	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130		3,130	psi

629.00

Ptpe

Page 28 of 32

700

11,522

BTC

4.81

LTC

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)				
Pipe				
Minimum Yield Strength:	55 ksi			
Maximum Yield Strength:	80 ksi			
Minimum Tensile Strength:	75 ksi			
Coupling				
Minimum Yield Strength:	55 ksi			
Maximum Yield Strength:	80 ksi			
Minimum Tensile Strength:	75 ksi			

Pipe Body Data (PE)				
Geometry				
Nominal ID:	7.92 inch			
Nominal Area:	9.149 in ²			
*Special/Alt. Drift:	7.875 inch			
Performan	ce			
Pipe Body Yield Strength:	503 kips			
Collapse Resistance:	2,530 psi			
Internal Yield Pressure: (API Historical)	3,930 psi			

API Connection Data Coupling OD: 9.625"					
STC Perform	ance				
STC Internal Pressure:	3,930 psi				
STC Joint Strength:	372 kips				
LTC Perform	ance				
LTC Internal Pressure:	3,930 psi				
LTC Joint Strength:	417 kips				
SC-BTC Performance - Cplg OD = 9.125"					
BTC Internal Pressure:	3,930 psi				
BTC Joint Strength:	503 kips				

API Connection Torque								
	STC Torque (ft-lbs)							
Min:	2,793	Opti:	3,724	Max:	4,655			
	L	_TC Tor	que (ft-lb	s)				
Min:	3,130	Opti:	4,174	Max:	5,217			
	-	OTO To:		\				
	BTC Torque (ft-lbs)							
follow API guidelines regarding positional make up								

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

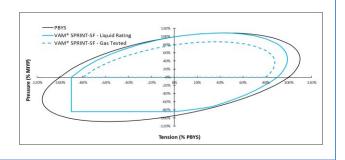
Connection Data Sheet

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

Nominal: 24.50
Plain End: 23.95

Wall Th. Grade API Drift: Connection

VAM® SPRINT-SF


PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES						
Tensile Yield Strength	801	klb				
Compression Resistance	801	klb				
Internal Yield Pressure	14,580	psi				
Collapse Resistance	12,500	psi				
Max. Structural Bending	83	°/100ft				
Max. Bending with ISO/API Sealability	30	°/100ft				

TORQUE VALUES						
Min. Make-up torque	21,750	ft.lb				
Opt. Make-up torque	24,250	ft.lb				
Max. Make-up torque	26,750	ft.lb				
Max. Torque with Sealability (MTS)	53,000	ft.lb				

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES		
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	ium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VALU	JES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Received by OCD: 5/30/2024 7:08:05 AM

Page 49 of 71

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

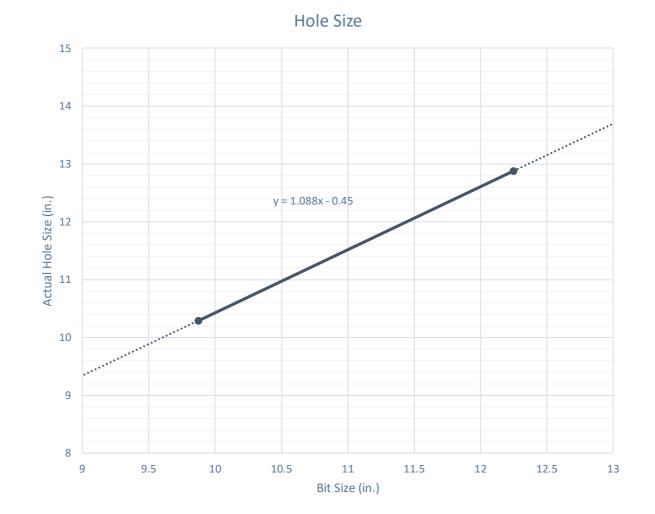
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

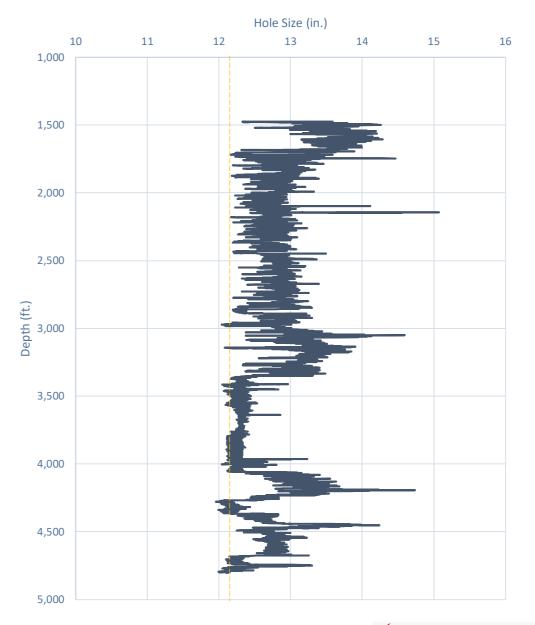

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

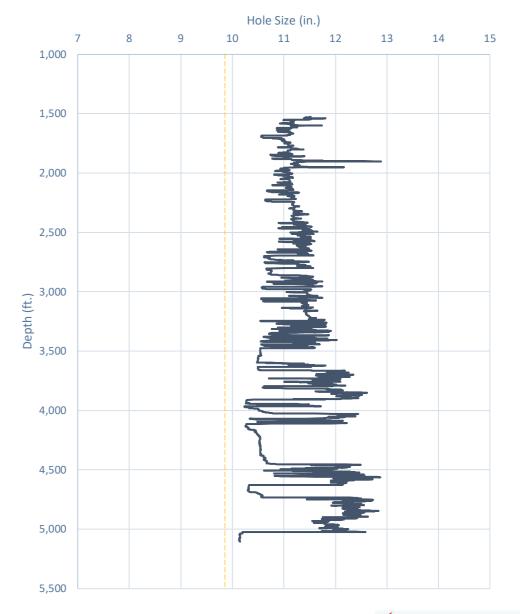


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

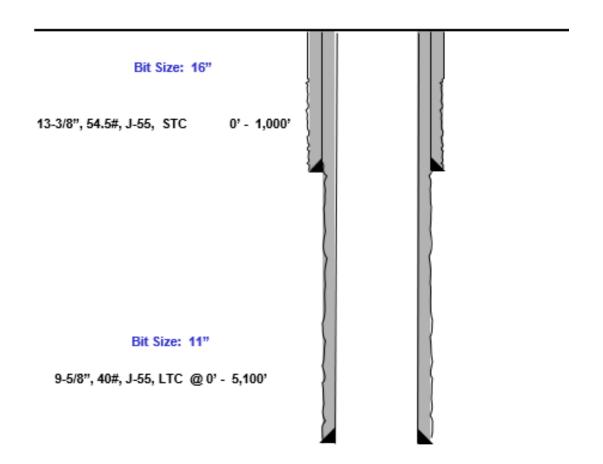
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

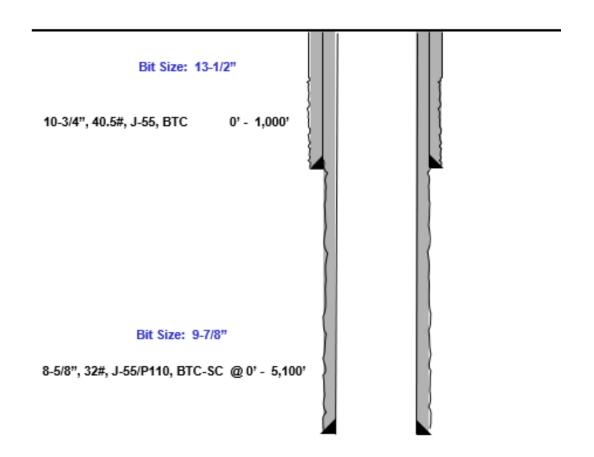
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{^{2}}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 5/30/2024 7:08:05 AM

Page 57 of 71

Index

Released to Imaging: 1/16/2025 10:47:22 AM

Nom. Pipe Body Area

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	1

Connection Parameters						
Connection OD	10.625	in				
Coupling Length	10.500	in				
Threads Per Inch	8	tpi				
Standoff Thread Turns	3.50	turns				
Make-Up Loss	4.750	in				
Min. Internal Yield Pressure	3,950	psi				

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

« Back to Previous List

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	P1pe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

5,250

ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric 6/8/2015 10:14:05 AM BTC STC Ptpe Mechanical Properties Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diamete 10.750 11.750 in. Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 in. Alternate Drift in. 40.50 Nominal Linear Weight, T&C lbs/ft Plain End Weight 38.91 lbs/ft Performance Ptpe BTC STC Minimum Collapse Pressure psi Minimum Internal Yield Pressure 3,130 3.130 3.130 629.00 1000 lbs Minimum Pipe Body Yield Strength 700 420 Joint Strength 1000 lbs Reference Length 11,522 6,915 BTC STC Make-Up Data Ptpe 4.81 Make-Up Loss 3.50 in. Minimum Make-Up Torque 3,150 ft-lbs

П						V °'	/al	lour	ec
	API 5CT, 10th Ed. Connection Data Sh						Sheet		
A FT LB		ft) 32.00 31.13	WALL (- 1	GRADE J55	* API DRIF 1 7.796	Γ (in)	RBW 87.	
MADE IN USA	Material Propertie	s (PE)				Pipe Body [Data (I	PE)	
DEI	Pipe					Geom	etry		
	Minimum Yield Strength:	55	ksi		Nominal ID:			7.92 i	nch
#Od	Maximum Yield Strength:	80	ksi		Nominal Are	a:		9.149 j	n ²
* NTS	Minimum Tensile Strength:	75	ksi		*Special/Alt.	Drift:		7.875 i	nch
	Coupling					Perform	ance		
#O/M	Minimum Yield Strength:	55	ksi		Pipe Body Y	ield Strength	:	503 k	ips
_	Maximum Yield Strength:	80	ksi		Collapse Re	sistance:		2,530 p	osi
DA 7.875	Minimum Tensile Strength:	75	ksi		Internal Yield Pressure: (API Historical)			3,930 psi	
					,				
S2L2	API Connection Coupling OD: 9.6				А	PI Connecti	on To	rque	
S S	STC Performa	nce				STC Torqu	e (ft-lk	os)	
4 155	STC Internal Pressure:	3,930	psi		Min: 2,793	Opti:	3,724	Max:	4,655
32#	STC Joint Strength:		kips						
8.625	LTC Performan	nce				LTC Torqu	e (ft-lk	os)	
AR	LTC Internal Pressure:	3,930	psi		Min: 3,130	Opti:	4,174	Max:	5,217
ST	LTC Joint Strength:		kips						
JREC	SC-BTC Performance - Cpl	lg OD =	9.125"			BTC Torqu	e (ft-ll	os)	
VALLOUREC STAR	BTC Internal Pressure:	3,930	psi		follow API g	uidelines regard	•	•	ke up
VAI	BTC Joint Strength:	503	kips						

e

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to

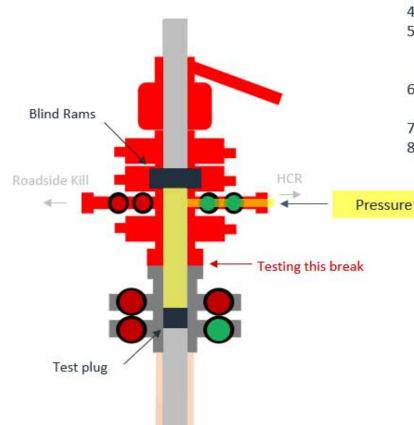
100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF;

AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, THESES FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALUE OR OF THE STEEP ESPONSIBLE FOR ANY INDIRECT. SPECIAL

INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT UNITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSS OR DAMAGES WERE FORESECABLE OR VALLOURED OR ITS AFFILIATES WERE ADVISED OF THE

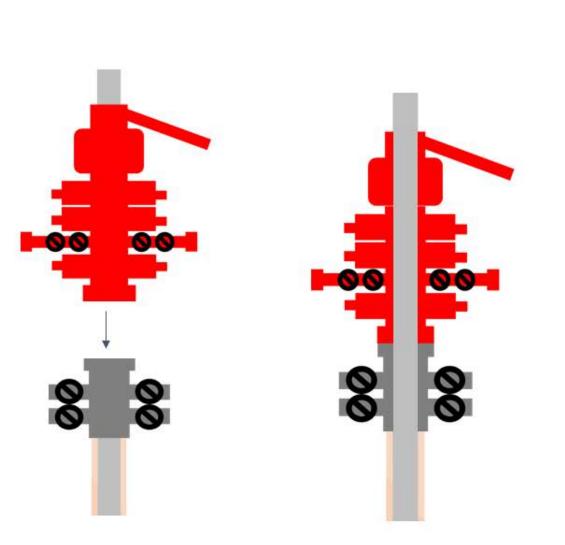
Maximum Make-Up Torque

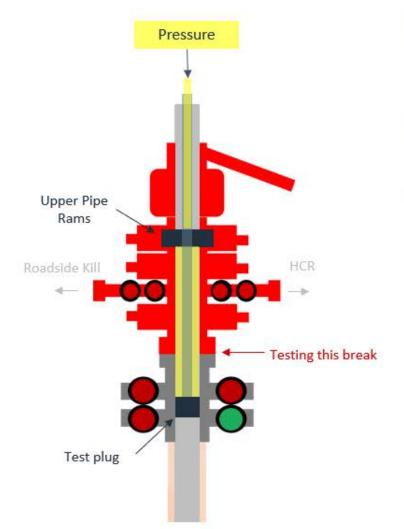


Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.


Break Test Diagram (HCR valve)



Steps

- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill
- 4. Open HCR (pressure application)
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

2/24/2022

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

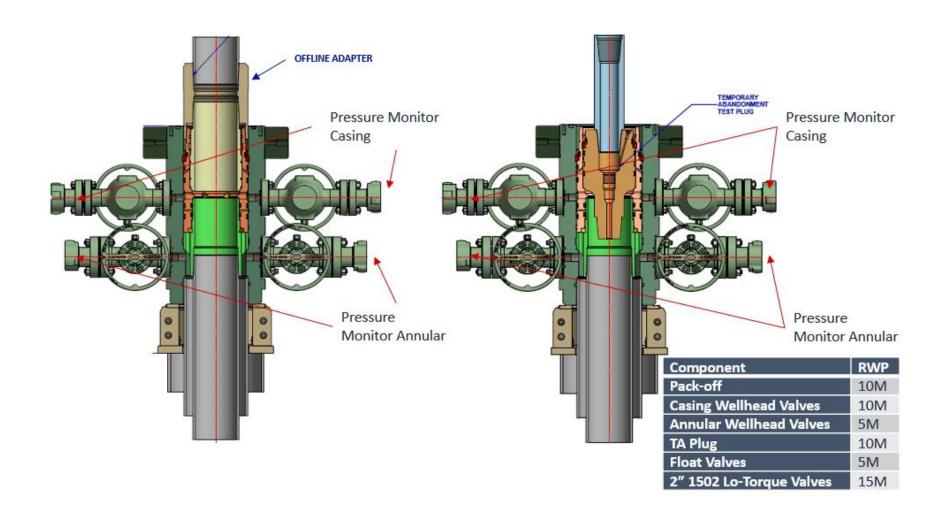
- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

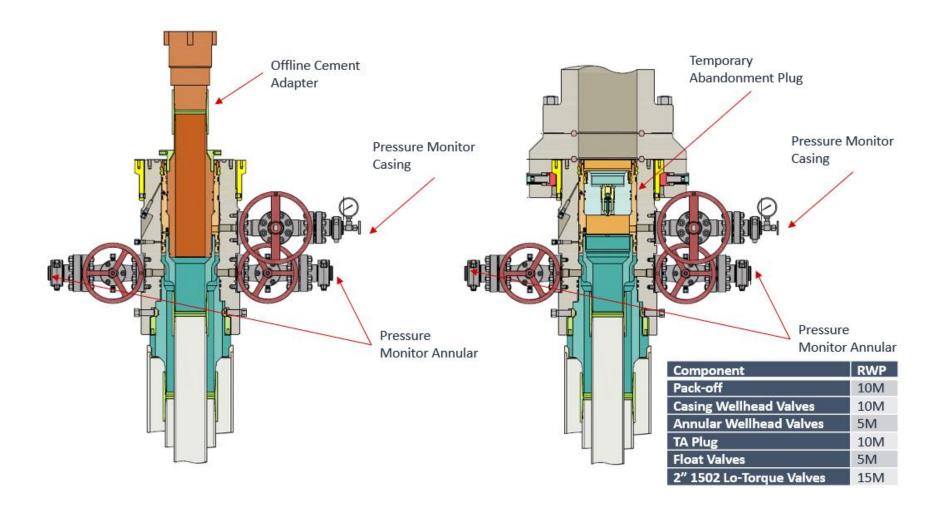
General Procedure While Cementing


- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

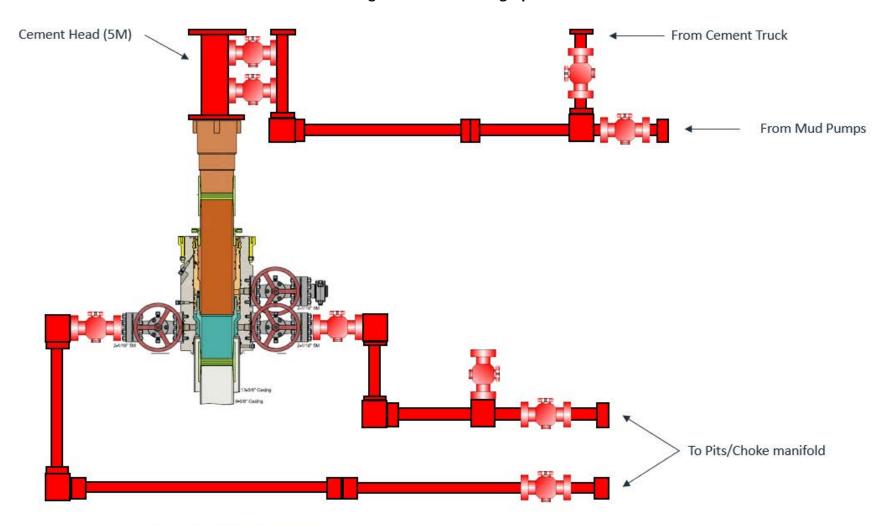
Figure 1: Cameron TA Plug and Offline Adapter Schematic



Page | 5

2/24/2022

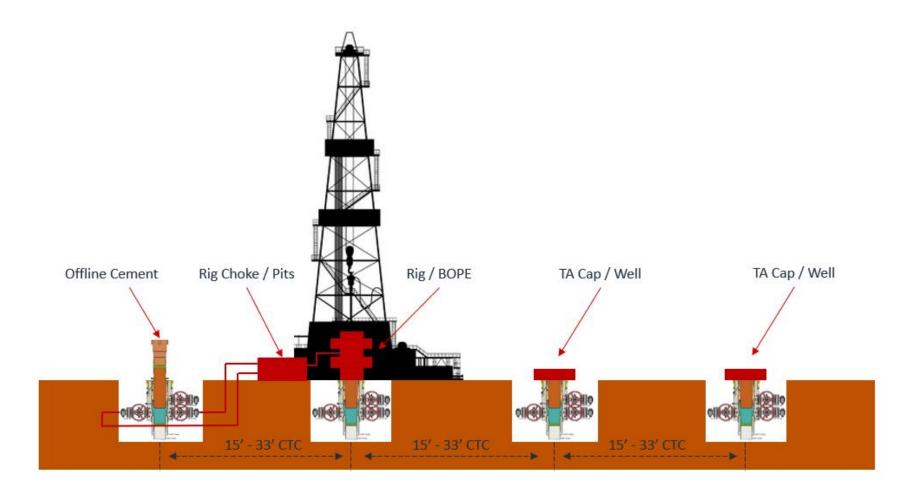
Figure 2: Cactus TA Plug and Offline Adapter Schematic



Page | 6

2/24/2022

Figure 3: Back Yard Rig Up


*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Figure 4: Rig Placement Diagram

Page | 8

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 349170

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	349170
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	1/16/2025
pkautz	REQUIRES NSP	1/16/2025
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing.	1/16/2025