

Pre-Plugging Methane Emissions Monitoring Report

Jennifer Chaveroo SA Unit 24

Prepared by TS-Nano, Inc.
For NM Energy, Minerals and Natural Resources Department, Oil Conservation Division PO# 52100-0000078682

Well information

ID #: 30-041-20105
Name: Jennifer Chaveroo SA Unit 24

Coordinates: 33.68185, -103.49052
Surface Location: Roosevelt County

Device used: Ventbuster device VB100-0139

Test operator: JR Molina

Gas sample taken from well: 12/11/24 14:00 Ventbuster connected to well: 12/11/24 14:23

Continuous monitoring of well flowrate, pressure,

and temperature

Hourly measurement of weather data

Ventbuster disconnected from well: 12/12/24 13:00

Notes: Initial wellhead pressure of 296 kPa (43 psi) was bled down

before beginning test.

Gas sample delivered to laboratory: 12/12/24

Laboratory Name/Location: Laboratory Services / Hobbs, NM

Pre-Plugging Methane Emissions Monitoring Report

Jennifer Chaveroo SA Unit 24

Measurement data

Wellhead pressure (kPa gage)*: 296 kPa
Average flow rate (Sm³/d): 9.487
Average methane mass flow rate (g/hr)
using methane % from lab analysis: 41.24

Methane mass flowrate calculation

Variable	Unit	Value
Pressure (P)	kPaA	Std pressure, 101.3 KPaA
Volumetric flow (V)	Std m^3/day	Measured from the Unit
% methane	% (methane/gas)	Measured from lab sample
Temperature (T)	Kelvin	Std temperature, 288.13 K
Gas constant (R)	m^3 Pa/(K mol)	8.3144626
Molecular weight of methane (Mw)	g/mole	16.04

$$Mass\,flow\,of\,\,methane\,\, \left(\frac{g}{hr}\right) = \frac{\%, methane}{100\%} *V*P*\frac{Mw}{R\,T}*\frac{1000}{24}$$

Pre-Plugging Methane Emissions Monitoring Report

Jennifer Chaveroo SA Unit 24

Weather data

Precipitation during measurement period (in): 0.000

Air	Relative	Barometric	Wind
Temperature	Humidity	Pressure	Speed
(°C)	(%)	(kPaA)	(mph)
11.0	19.0	87.64	8.1
11.7	18.4	87.54	9.9
10.2	17.3	87.44	7.1
10.2	17.5	87.44	7.1
5.8	24.9	87.37	2.8
3.8	31.1	87.33	2.2
2.5	36.6	87.33	2.7
0.9	39.5	87.33	2.4
1.7	36.1	87.30	3.8
1.7	36.9	87.27	3.6
-2.3	51.5	87.23	2.7
-0.3	44.5	87.20	3.1
1.3	36.8	87.17	3.8
2.1	34.4	87.13	4.1
0.8	39.7	87.13	3.0
-0.2	44.0	87.06	2.2
3.3	29.3	87.06	4.4
1.9	31.2	87.06	3.8
0.4	35.3	87.06	2.8
3.3	31.7	87.13	2.3
7.1	23.7	87.17	3.4
8.6	21.8	87.20	5.6
9.6	20.9	87.13	8.0
	Temperature (°C) 11.0 11.7 10.2 10.2 5.8 3.8 2.5 0.9 1.7 1.7 -2.3 -0.3 1.3 2.1 0.8 -0.2 3.3 1.9 0.4 3.3 7.1 8.6	Temperature (°C) (%) 11.0 19.0 11.7 18.4 10.2 17.3 10.2 17.5 5.8 24.9 3.8 31.1 2.5 36.6 0.9 39.5 1.7 36.1 1.7 36.9 -2.3 51.5 -0.3 44.5 1.3 36.8 2.1 34.4 0.8 39.7 -0.2 44.0 3.3 29.3 1.9 31.2 0.4 35.3 3.3 31.7 7.1 23.7 8.6 21.8	Temperature (°C) Humidity (%) Pressure (kPaA) 11.0 19.0 87.64 11.7 18.4 87.54 10.2 17.3 87.44 10.2 17.5 87.44 5.8 24.9 87.37 3.8 31.1 87.33 2.5 36.6 87.33 0.9 39.5 87.33 1.7 36.1 87.30 1.7 36.9 87.27 -2.3 51.5 87.23 -0.3 44.5 87.20 1.3 36.8 87.17 2.1 34.4 87.13 -0.2 44.0 87.06 3.3 29.3 87.06 3.3 31.2 87.06 3.3 31.7 87.13 7.1 23.7 87.17 8.6 21.8 87.20

23070G		Jennifer Chaveroo SA Unit #24 Jennifer Chaveroo SA								
Sample Point Code			Sample Point N		Sample Poi	nt Location				
Laboratory Se	ervices	2024102	887	BAG		JR N	Molina - S	pot		
Source Labora	atory	Lab File	No —	Container Id	entity		Sampler			
USA		USA	<u> </u>	USA		N	ew Mexico			
District		Area Name		Field Name		F	acility Name			
Dec 11, 202	4	Dec	1, 2024		Dec 12, 20	024 11:01	Dec	12, 2024		
Date Sampled		Date	e Effective		Date R	eceived	Date	e Reported		
		System Admi	nistrator			_				
Ambient Temp (°F)	Flow Rate (Mcf)	Analys	t		@ Temp °F Conditions					
				554.65	0011010110					
TS-Nano							NG			
Operator						Lab So	urce Descript	tion		
Component	Normalized	Un-Normalized			Gross	Heating Values (R	eal. BTU/f	†3)		
	Normanzeu	Un-Normalized	GPM	1 1		3	, 2.0,.	- /		
'	Mol %	Mol %	GPM	41	14.696 PSI @ 60.0	00 °F	14.73 PSI	@ 60.00 °F		
H2S (H2S)			GPM	1 1	14.696 PSI @ 60.0 Dry 57.2	00 °F Saturated		@ 60.00 °F Saturated		
H2S (H2S) Nitrogen (N2)	Mol %	Mol %	GPM	1 1	Dry 57.2	00 °F Saturated 450.3	14.73 PSI Dry 458.3	@ 60.00 ŰF Saturated 451.3		
,	Mol % 0.0000	Mol %	GPM	1 1	57.2 Calcu	00 °F Saturated	14.73 PSI Dry 458.3 e Propertie	© 60.00 ŰF Saturated 451.3		
Nitrogen (N2)	Mol % 0.0000 71.9600	Mol % 0 71.961	GPM	1 1	Dry 57.2 Calcu GPA21 Relative Density	00 ŰF Saturated 450.3 lated Total Sampl 45-16 *Calculated at Con	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D	© 60.00 ŰF Saturated 451.3 PS sensity Ideal		
Nitrogen (N2) CO2 (CO2)	Mol % 0.0000 71.9600 0.0280	Mol % 0 71.961 0.028	GPM 1.4640	1 1	Calcu GPA21 Relative Density 0.9633 Molecular Weig	00 ŰF Saturated 450.3 Iated Total Sampl 45-16 *Calculated at Con Real	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D	© 60.00 ŰF Saturated 451.3		
Nitrogen (N2) CO2 (CO2) Methane (C1)	Mol % 0.0000 71.9600 0.0280 15.3840	Mol % 0 71.961 0.028 15.384		1 1	Calcu GPA21 Relative Density 0.9633	00 ŰF Saturated 450.3 Iated Total Sampl 45-16 *Calculated at Con Real	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D	© 60.00 ŰF Saturated 451.3 PS sensity Ideal		
Nitrogen (N2) CO2 (CO2) Methane (C1) Ethane (C2)	Mol % 0.0000 71.9600 0.0280 15.3840 5.4740	Mol % 0 71.961 0.028 15.384 5.474	1.4640	1 1	Calcu GPA21 Relative Density 0.9633 Molecular Weig	on A°F Saturated 450.3 lated Total Sampl 45-16 *Calculated at Con Real wht C6+ Group Prop	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D 0.9	© 60.00 ŰF Saturated 451.3 PS sensity Ideal		
Nitrogen (N2) CO2 (CO2) Methane (C1) Ethane (C2) Propane (C3)	Mol % 0.0000 71.9600 0.0280 15.3840 5.4740 4.7090	Mol % 0 71.961 0.028 15.384 5.474 4.709	1.4640 1.2970	4	Calcu GPA21 Relative Density 0.9633 Molecular Weig	oo â°F Saturated 450.3 lated Total Sampl 45-16 *Calculated at Con Real	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D 0.5	© 60.00 ŰF Saturated 451.3 PS sensity Ideal		
Nitrogen (N2) CO2 (CO2) Methane (C1) Ethane (C2) Propane (C3) I-Butane (IC4)	Mol % 0.0000 71.9600 0.0280 15.3840 5.4740 4.7090 0.6130	Mol % 0 71.961 0.028 15.384 5.474 4.709 0.613	1.4640 1.2970 0.2010	4 C6	Calcu GPA21 Relative Density 0.9633 Molecular Weig 27.8790	on A°F Saturated 450.3 lated Total Sampl 45-16 *Calculated at Con Real with C6+ Group Prop Assumed Composit C7 - 30.000%	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D 0.9 erties ion 6 Ci	© 60.00 ŰF Saturated 451.3 PS IS		
Nitrogen (N2) CO2 (CO2) Methane (C1) Ethane (C2) Propane (C3) I-Butane (IC4) N-Butane (NC4)	Mol % 0.0000 71.9600 0.0280 15.3840 5.4740 4.7090 0.6130 1.3280	Mol % 0 71.961 0.028 15.384 5.474 4.709 0.613 1.328	1.4640 1.2970 0.2010 0.4190	C6 PROTREI Passed	Calcu GPA21 Relative Density 0.9633 Molecular Weig 27.8790	oo °F Saturated 450.3 lated Total Sampl 45-16 *Calculated at Con Real with C6+ Group Prop Assumed Composit C7 - 30.000% n Dec 13, 2024	14.73 PSI Dry 458.3 e Propertie tract Condition Relative D 0.9 erties ion 6 C	© 60.00 ŰF Saturated 451.3 PS IS		

Method(s): Gas C6+ - GPA 2261, Extended Gas - GPA 2286, Calculations - GPA 2172

TOTAL

Δnal	/7Pr	Inform	mation

100.0000

100.0010

Device Type: Gas Chromatograph Device Make: Shimadzu GC-2014 Device Model: Last Cal Date: Sep 9, 2024 VALIDATOR: Ashley Russell

VALIDATOR COMMENTS:

OK

3.5730

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: TS-1	Vano, Inc.									T			BILL TO						Ana	lysis R	Reques	st		
Project Manager: John	n Stormont									PO #:							T		T	T	T	T		
Address: 5901 Indian	School Rd. NE									Com	pany	TS-1	Nano, Inc.		1									
City: Albuquerque		Stat	e: NM			Zip:	87110)		Attn: Jay Kitowski					1									
Phone #: 505-907-4095 Email: jstormont@ts-nano.com							Add	ress: S	ame			1												
Project #:		Proj	ject Owner							City:	1				1									
Project Name:							167			State			Zip:		1									
Project Location:										Phor	ne#: 5	05-4	64-4836		1									
Sampler Name:										Ema	il: jkit	owsk	i@ts-nano.	com	1									
						Ma	trix			Pr	reser	ve	Sam	pling	1									
Lab I.D.	Sample I.D.	(S)POT or (C)OMP	# Container	Groudwater	Wastewater	GAS	Oil	Solid	Other	Acid/Base	Ice/Cool	Other	Date	Time	C-6+ RGA	C-10+ Ext								
	J.C. SA Unit #18	5	1 Tedlar			Х		-	_				12.12.24	10:00am	Х									
	J.C. Sa Unit #19	5	1 Tedlar	\top		X			-				12.12.24	10:00am	Х									
	J.C. SA Unit #20	5	1 Tedlar			X							12.12.24	10:00am	Х									
	J.C. SA Unit #21	5	1 Tedlar			X						- 9	12.12.24	10:00am	X		-							
	J.C. SA Unit #23	5	1 Tedlar			X							12.12.24	10:00am	Х									
	J.C. SA Unit #24	5	1 Tedlar			Х							12.12.24	10:00am	Х		-							
	J.C. SA Unit #26	5	1 Tedlar		2	Х							12.12.24	10:00am	Х									
													1711											
																						1		
Relinguished by JR Moli	Date: 12.12 Time: 10:00			Recei							l <u>u</u>		Phone Resu Email Resu REMARKS:			Yes	No No	Addʻl	Phone	92				
	Time:																							
Deliver by: (circle one) Sampler - UPS - Be	us - other:				Co Yes	ol	e Cond	dition Inta Yes	212077		ecked nitials													

No 🗌

No

Received by OCD: 1/16/2025 5:17:09 PM

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

DEFINITIONS

Action 421830

DEFINITIONS

Operator:	OGRID:
RIDGEWAY ARIZONA OIL CORP.	164557
575 N. Dairy Ashford	Action Number:
Houston, TX 77079	421830
	Action Type:
	[UF-OMA] Pre-Plug Methane Monitoring (UF-OMA-MMA)

DEFINITIONS

The Orphan Well Mitigation Activity (OMA) forms are a subset of the OCD's forms exclusively designed for activities related to State of New Mexico's contracted plugging and reclamation activities. Specifically, these forms are used for orphan wells or associated facilities which are in a "Reclamation Fund Approved" status. This status represents wells or facilities where the OCD has acquired a hearing order allowing the OCD to perform plugging or reclamation on wells and associated facilities that no longer have a viable operator to perform the necessary work. These forms are not to be utilized for any other purpose.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 421830

QUESTIONS

Operator:	OGRID:
RIDGEWAY ARIZONA OIL CORP.	164557
575 N. Dairy Ashford	Action Number:
Houston, TX 77079	421830
	Action Type:
	[UF-OMA] Pre-Plug Methane Monitoring (UF-OMA-MMA)

QUESTIONS

Prerequisites	
[OGRID] Well Operator	[164557] RIDGEWAY ARIZONA OIL CORP.
[API] Well Name and Number	[30-041-20105] JENNIFER CHAVEROO SA UNIT #024
Well Status	Active

Monitoring Event Information						
Please answer all the questions in this group.						
Reason For Filing	Pre-Plug Methane Monitoring					
Date of monitoring	12/11/2024					
Latitude	33.68185					
Longitude	-103.49100					

Monitoring Event Details							
Please answer all the questions in this group.							
Flow rate in cubic meters per day (m³/day)	9.49						
Test duration in hours (hr)	22.6						
Average flow temperature in degrees Celsius (°C)	6.6						
Average gauge flow pressure in kilopascals (kPag)	4.2						
Methane concentration in part per million (ppm)	153,840						
Methane emission rate in grams per hour (g/hr)	41.24						
Testing Method	Steady State						

Monitoring Contractor				
Please answer all the questions in this group.				
Name of monitoring contractor	TS-Nano, Inc.			