Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

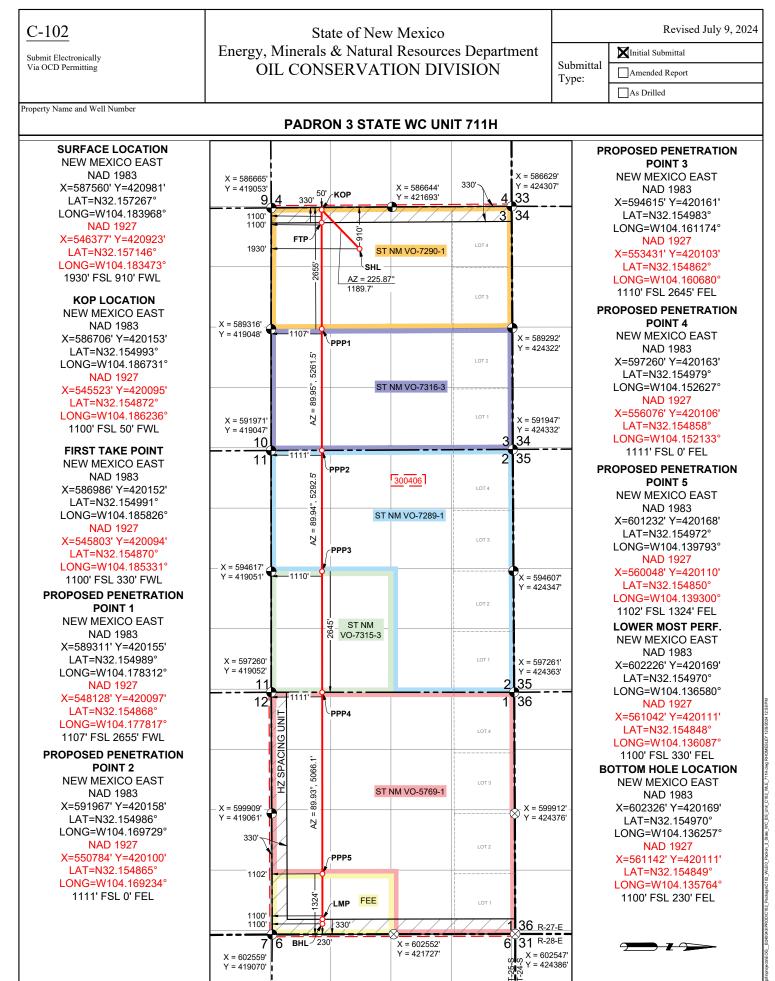
Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 115

Form C-101 August 1, 2011 Permit 380847

APPLICATION FOR PERMIT TO DRILL	RE_ENTER	DEEDEN	DILIGRACK	
			, I LOODAON	


	me and Address									2.00	RID Number	
-	G RESOURCES I										7377	
	9 Champions Driv	/e								3. AP	I Number	
	lland, TX 79706										30-015-5601	12
4. Property Coo 336	de \$863		5. Property		STATE WC UNIT					6. We	711H	
										1		
		1			-	urface Location						
UL - Lot L	Section 3	Township 255	Ran	ge 27E	Lot Idn	Feet From 1930		N/S Line S	Feet From 9	10	E/W Line W	County Eddy
					8. Propose	d Bottom Hole Lo	catio	n				
UL - Lot	Section	Township	Ran	ge	Lot Idn	Feet From		N/S Line	Feet From		E/W Line	County
Р	1	258	6	27E	Р	1100)	S		230	E	Eddy
					9. F	ool Information						
PURPLE SAC	Ge;WOLFCAMP (C	GAS)									98220	
					Additio	nal Well Informati	on					
11. Work Type		12. Well Ty	pe		13. Cable/Rotary		-	Lease Type	15. (Ground L	evel Elevation	
Nev	w Well		GAS					State		32	234	
16. Multiple		17. Propos			18. Formation		19. Contractor 20. Spud Date					
N Depth to Grour	ad water		24563		Wolfcar Distance from neare				Diet		10/2025 earest surface water	
Depth to Groun	iu water				Distance from heare	st fresh water weil			Dista	ince to n	earest surface water	
🛛 We will be u	using a closed-loo	op system in li	eu of lined	pits	1							
	0			•	21 Bronood C	asing and Cemer	t Dra					
Туре	Hole Size	Casin	g Size		Casing Weight/ft	<u> </u>	ing De	-	Sacks of	Cement		Estimated TOC
Surf	12.25		25		36		2398		660			0
Int1	8.75	7.6	25		29.7		8674		1450			0
Prod	6.75	5	.5		17	2	4563	3	14	40		7280
					Casing/Cement P	rogram: Addition	al Coi	mments				
EOG respect	tfully requests the	option to use t	he casing a	and cemer	nt program describe				OCD will be	notified	of EOG's electio	n at spud.
	<i>y</i> 1		5			, v						
	-		1			lowout Preventio	n Pro			<u> </u>		
	Type				Working Pressure			Test Press	ure	Manufacturer		
	Double Ram				5000			3000				
23 Lhereby c	pertify that the info	mation given a	hove is tru	and com	plete to the best of	my			DIL CONSER		DIVISION	
knowledge a		induoir givoir c				,					Division	
I further cert	ify I have complie	d with 19.15.1	4.9 (A) NM/	AC 🛛 and	/or 19.15.14.9 (B) N	IMAC						
🛛, if applical	ble.											
Signature:												
Printed Name:	Flectronics	Illy filed by Pati	icia Donale	4		Approved B		Matthew Go	mez			
Title:		Specialist		4		Title:	у.	wattiew GC	JINGZ			
Email Address:		onald@eogres		n		Approved D	ato:	1/17/2025			Expiration Date: 1/1	7/2027
	1/10/2025	onalu@eogles			00 7604				4	1	Expiration Date: 1/1	112021
Date:	1/10/2025	1/10/2025 Phone: 432-488-7684 Conditions of Approval Attached										

•

C-102									Revis	sed July 9, 2024	
Submit Electronic	ally		Energy	v Mina		lew Mexico	es Department		Initial Submittal		
Via OCD Permitt					ONSERVA		-	Submittal	Amended Report	t	
							VIDIOI	Type:	As Drilled		
Property Name and	Well Number		1					ļ			
				PA	DRON 3 ST	ATE WC UN	NIT 711H				
		WI	ELL LO	CATIO	ON AND A	CREAGE	DEDICATION	N PLAT			
API Number Pool Code 98220						Pool Name	PURPLE SAGE;\	VOLFCAN	IP (GAS)		
30-015- 5 Property Code	6012	Property N							Well Number		
33	36863				PADRON 3	STATE WC	UNIT		7	11H	
OGRID No.		Operator N	ame						Ground Level Ele	evation	
73					EOG RES	OURCES, I			32	234'	
Surface Owner: 🚺	State Fee	TribalFedd	eral		Cf-		: XState Fee Tribal [Federal			
UL or Lot No.	Section	Township	Range	Lot	Surfa Feet from the N/S	ce Location Feet from the E/W	Latitude		Longitude	County	
L	3	25 S	27 E		1930 FSL	910 FWL	N 32.157267°		183968°	EDDY	
	~			I Bottom			t From Surface				
UL or Lot No.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
Р	1	25 S	27 E		1100 FSL	230 FEL	N 32.154970°	W 10	4.136257°	EDDY	
Dedicated Acres	Infill on Dof	ning Well Defir	ing Wall ADI			Overlenning Sr	bacing Unit (Y/N)	Consolidat	ad Cada		
1913.92	INFI	-	-	-015-54	4760	Overlapping Sp	Y	Consondar	U		
Order Numbers		300)406				Well Setbacks	are under Comm	on Ownership: Ye	s No	
					Kick Of	f Point (KOI	<u>P)</u>				
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
М	3	25 S	27 E		1100 FSL	50 FWL	N 32.154993°	W 10	4.186731°	EDDY	
						ke Point (FT		-			
UL or lot no.	Section	Township	Range	Lot		Feet from the E/W	Latitude		Longitude	County	
М	3	25 S	27 E		1100 FSL	330 FWL	N 32.154991°	W 10	04.185826°	EDDY	
UL or lot no.	Section	Township	Range	Lot		Ke Point (LTI			Longitude	County	
Р	1	25 S	27 E		1100 FSL	330 FEL	N 32.154970°	W 10	136580°	EDDY	
	•	200			1100102	000122	1102.101010				
Unitized Area or A	rea of Uniform I UN			Spacing V	Unity Type 🔀 Hori	zontal 🗌 Vertical	Ground F	loor Elevation	3259'		
	•										
OPERATO	OR CERTIF	FICATION				SURVEY	YORS CERTIFICAT	TION			
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief; and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill thi well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.					ell, est	E CONTRACTOR	LL L. MCL	OLE			
If this well is a horizontal well, I further certify that this organization has received The consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.						popped	12/09/2024	Not A			
Kaul	la Mr.	Conne	ll	(01/02/2025			SNAL S			
Signature			Date				Seal of Professional Surveyor ertify that the well locate	Date on shown on		ed from field	
KAYLA M Print Name	CCONNE	ELL				notes of ac is true and	stual surveys made by m I correct to the best of r	e or under my ny belief.	y supervision, and		
KAYLA_N	ICCONNE	ELL@EOC	GRESOU	RCES.C	СОМ		LL L. MCDONAL		L.S.		
E-mail Address						Certificate Nu	Certificate Number 29821 Date of Survey DECEMBER 5, 2024				

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Page 3 of 115

Release Bearings grandingter, 200 distances shown hereon are based on the New Mexico State Plane Coordinate System, East Zone, NAD 83-2011 (EPOCH 2010) framework, as derived by OPUS Solution. The elevations shown hereon are based on NAVD 88.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT COMMENTS

Operator Name and EOG RE	Address: ESOURCES INC [7377]	API Number: 30-015-56012			
5509 Champions Drive Midland, TX 79706		Well: PADRON 3 STATE WC UNIT #711H			
Created By	Comment		Comment Date		
kayla_mcconnell Per NMAC 19.15.15 12 (B)(1) requirement, written waivers from all parties required are attached to application. 3 mile well, dedicated acreage includes Sec 2, T25S, R27E Eddy County 1					
matthew.gomez	natthew.gomez Rejected per operator request.				

Form APD Comments

Permit 380847

Page 4 of 115

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Name and	I Address:	API Number:						
EOG R	ESOURCES INC [7377]	30-015-56012						
5509 C	hampions Drive	Well:						
Midland	i, TX 79706	PADRON 3 STATE WC UNIT #711H						
		•						
OCD Reviewer	Condition							
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.							
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.							
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from t the fresh water zone or zones and shall immediately set in cement the water protection string.	he surface, the operator shall drill without interruption through						
	matthew.gomez Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.							
matthew.gomez	natthew.gomez Cement is required to circulate on both surface and intermediate1 strings of casing.							
matthew.gomez If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.								
matthew.gomez	matthew.gomez File As Drilled C-102 and a directional Survey with C-104 completion packet.							

Form APD Conditions

Permit 380847

Page 5 of 115

Seog resources

EOG Batch Casing

Pad Name:Padron 3 State Unit DEEPSHL: Section 3, Township 25-S, Range 27-E, EDDY County, NM

Well Name	API #	Sur	face	Intermediate		Production	
wen Name	ALI#	MD	TVD	MD	TVD	MD	TVD
Padron 3 State BS Unit #601H	30-025-****	733	733	7,880	7,773	24,399	8,740
Padron 3 State WC Unit #701H	30-025-****	733	733	8,004	7,773	24,615	8,988
Padron 3 State WC Unit #702H	30-025-****	733	733	7,823	7,773	24,456	8,988
Padron 3 State WC Unit #703H	30-025-****	733	733	7,786	7,773	24,433	8,988
Padron 3 State WC Unit #711H	30-025-****	733	733	7,871	7,773	24,563	9,053
Padron 3 State WC Unit #712H	30-025-****	733	733	8,041	7,773	24,725	9,053
Padron 3 State WC Unit #713H	30-025-****	733	733	7,793	7,773	24,502	9,053

EOG Batch Casing

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 2b Wolfcamp Intermediate Casing Setpoint
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement

Seog resources

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Castile	708'
Top of Salt	1,306'
Base of Salt	2,058'
Lamar	2,258'
Bell Canyon	2,285'
Cherry Canyon	3,140'
Brushy Canyon	4,141'
Bone Spring Lime	5,753'
Leonard (Avalon) Shale	5,908'
1st Bone Spring Sand	6,733'
2nd Bone Spring Shale	6,928'
2nd Bone Spring Sand	7,278'
3rd Bone Spring Carb	7,673'
3rd Bone Spring Sand	8,563'
Wolfcamp	8,903'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	2,285'	Oil
Cherry Canyon	3,140'	Oil
Brushy Canyon	4,141'	Oil
Leonard (Avalon) Shale	5,908'	Oil
1st Bone Spring Sand	6,733'	Oil
2nd Bone Spring Shale	6,928'	Oil
2nd Bone Spring Sand	7,278'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 740' and circulating cement back to surface.

5509 Champions Drive, Midland, Texas 79706 Phone: (432) 686-3661 Fax: (432) 686-6961

January 6, 2025

ATTN: Corey Mitchell Mewbourne Oil Company 500 West Texas, Suite 1020 Midland, TX 79701

Re: Multiple Operators within a Spacing Unit Waiver Mewbourne Devon 12-1 W2PI Fee Com 1H EOG Padron State BS-WC Unit

Dear Mr. Mitchell,

This letter agreement (this "**Agreement**") shall constitute the mutual agreement and waiver of concern by and among Mewbourne Oil Company ("**Mewbourne**") and EOG Resources, Inc. ("**EOG**") regarding that certain Devon 12-1 W2PI Fee Com 1H (API No.: 30-015-43880) operated by Mewbourne (the "**Well**") and that certain Padron State BS-WC Unit dated October 1, 2023 (the "**Unit**"). Mewbourne and EOG are sometimes hereinafter referred to individually as a "Party" or, collectively, as the "Parties."


The Well has a SHL location in the NENE of Section 13, Township 25 South, Range 27E and a bottom hole location in the E2SE of Section 1, Township 25 South, Range 27 East and produces from the Wolfcamp formation. The 480-acre spacing unit includes the E2 of Section 12, Township 25 South, Range 27 East and the SE of Section 1, Township 25 South, Range 27 East.

Pursuant to that certain letter submitted to the New Mexico State Land Office on February 28, 2024, by EOG, it is the intention to exclude the Well from the Unit.

A portion of the spacing unit associated with the Well overlaps the Unit in the SE4 of Section 1, Township 25 South, Range 27 East (Unit Tract #17). Per NMSLO Rule 19.15.15.12 Special Rules for Multiple Operators within a Spacing Unit – written waivers from all persons required to be notified shall be submitted with the APD.

The Parties agree to waive concern and exclude the Well given that it was not recently drilled, develops acreage outside the Unit boundary lines, and is operated by Mewbourne.

If the terms of this Agreement are acceptable to you, please indicate your approval below. The Agreement is effective as of December 1, 2024.

Agreed to and accepted this 12 day of January, 2025.

EOG RESOURCES, INC

Matthew W. Smith Land Manager 160

100

MEWBOURNE OIL COMPANY

Cu	y miknen
Name:	Corey Mitchell
Title:	Attomey-in-Fact

Midland

Eddy County, NM (NAD 83 NME) Padron 3 State WC Unit #711H

OH

Plan: Plan #0.1 RT

Standard Planning Report

17 December, 2024

Database: Company: Project: Site: Well: Wellbore: Design: Project	Padron 3 Stat #711H OH Plan #0.1 RT		IME)	Local Co-ordin TVD Reference MD Reference North Referen Survey Calcul	: ce:	Well #711H kb = 26' @ 3260.0 kb = 26' @ 3260.0 Grid	
Project	Eddy County,				ation Method:	Minimum Curvatu	re
		NM (NAD 83 N	ME)				
Geo Datum: N	JS State Plane Iorth American Iew Mexico Ea	Datum 1983		System Datum:		Mean Sea Level	
Site	Padron 3 State	e WC Unit					
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	423,677.(587,009.(13-3/	00 usft Longitu		32° 9' 52.848 N 104° 11' 8.649 W
Well	#711H						
	+N/-S +E/-W	0.0 usft 0.0 usft	Northing: Easting:	58	20,981.00 usft 37,560.00 usft	Latitude: Longitude:	32° 9' 26.161 N 104° 11' 2.282 W
Position Uncertainty Grid Convergence:		0.0 usft 0.08 °	Wellhead Elev	vation:	usft	Ground Level:	3,234.0 usfi
Wellbore	ОН						
Magnetics	Model Na	me	Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IGF	RF2020	12/16/2024		6.41	59.63	47,029.45013337
Design	Plan #0.1 RT						
Audit Notes: Version:			Phase:	PLAN	Tie On Dep	th: 0	.0
Vertical Section:			rom (TVD) sft)	+N/-S (usft)	+E/-W (usft)	Direc (°)
		C	0.0	0.0	0.0	93.	15
Plan Survey Tool Prog	Iram	Date 12/16/	/2024				
Depth From (usft)	Depth To (usft)	Survey (Wellbo	ore)	Tool Name	Rema	ırks	
1 0.0	24,563.1	Plan #0.1 RT (0	DH)	EOG MWD+IFR1 MWD + IFR1			

Database:	PEDMB	Local Co-ordinate Reference:	Well #711H
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,266.3	9.33	225.89	1,264.3	-26.4	-27.2	2.00	2.00	0.00	225.89	
8,138.6	9.33	225.89	8,045.7	-801.6	-826.8	0.00	0.00	0.00	0.00	
8,605.0	0.00	0.00	8,510.0	-828.0	-854.0	2.00	-2.00	0.00	180.00	
8,670.5	0.00	0.00	8,575.5	-828.0	-854.0	0.00	0.00	0.00	0.00	KOP(Padron 3 State
9,217.0	65.56	90.20	9,010.3	-829.0	-574.0	12.00	12.00	16.51	90.20	FTP(Padron 3 State
9,420.6	90.00	89.93	9,053.1	-829.2	-376.5	12.00	12.00	-0.13	-0.65	
24,463.1	90.00	89.93	9,053.0	-812.0	14,666.0	0.00	0.00	0.00	0.00	LTP(Padron 3 State
24,563.1	90.00	90.07	9,053.0	-812.0	14,766.0	0.13	0.00	0.13	90.27	PBHL(Padron 3 Sta

Released to Imaging: 1/17/2025 1:21:49 PM

Database:	PEDMB	Local Co-ordinate Reference:	Well #711H
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH	-	
Design:	Plan #0.1 RT		

Planned Survey

0.0 0.00 0.00 0.0 100.0 0.00 0.00 100.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0	0.00		
	0.0 0.0 0.0	0.0			0.00	0.00
	0.0 0.0		0.0	0.00	0.00	0.00
200.0 0.00 0.00 200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0 0.00 0.00 300.0		0.0	0.0	0.00	0.00	0.00
400.0 0.00 0.00 400.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.0 0.0	0.0 0.0	0.0	0.00 0.00	0.00 0.00	0.00 0.00
	0.0	0.0	0.0 0.0	0.00	0.00	0.00
800.0 0.00 0.00 800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0 2.00 225.89 900.0	-1.2	-1.3	-1.2	2.00	2.00	0.00
1,000.0 4.00 225.89 999.8	-4.9	-5.0	-4.7	2.00	2.00	0.00
1,100.0 6.00 225.89 1,099.5	-10.9	-11.3	-10.7	2.00	2.00	0.00
1,200.0 8.00 225.89 1,198.7	-19.4	-20.0	-18.9	2.00	2.00	0.00
1,266.3 9.33 225.89 1,264.3	-26.4	-27.2	-25.7	2.00	2.00	0.00
1,300.0 9.33 225.89 1,297.5	-30.2	-31.1	-29.4	0.00	0.00	0.00
1,400.0 9.33 225.89 1,396.2	-41.4	-42.7	-40.4	0.00	0.00	0.00
1,500.0 9.33 225.89 1,494.9	-52.7	-54.4	-51.4	0.00	0.00	0.00
1,600.0 9.33 225.89 1,593.5	-64.0	-66.0	-62.4	0.00	0.00	0.00
1,700.0 9.33 225.89 1,692.2	-75.3	-77.6	-73.4	0.00	0.00	0.00
1,800.0 9.33 225.89 1,790.9	-86.6	-89.3	-84.4	0.00	0.00	0.00
1,900.0 9.33 225.89 1,889.6	-97.8	-100.9	-95.4	0.00	0.00	0.00
2,000.0 9.33 225.89 1,988.2	-109.1	-112.6	-106.4	0.00	0.00	0.00
2,100.0 9.33 225.89 2,086.9	-120.4	-124.2	-117.4	0.00	0.00	0.00
2,200.0 9.33 225.89 2,185.6	-131.7	-135.8	-128.4	0.00	0.00	0.00
2,300.0 9.33 225.89 2,284.3	-143.0	-147.5	-139.4	0.00	0.00	0.00
2,400.0 9.33 225.89 2,383.0	-154.3	-159.1	-150.4	0.00	0.00	0.00
2,500.0 9.33 225.89 2,481.6	-165.5	-170.7	-161.4	0.00	0.00	0.00
2,600.0 9.33 225.89 2,580.3	-176.8	-182.4	-172.4	0.00	0.00	0.00
2,700.0 9.33 225.89 2,679.0	-188.1	-194.0	-183.4	0.00	0.00	0.00
2,800.0 9.33 225.89 2,777.7	-199.4	-205.6	-194.4	0.00	0.00	0.00
2,900.0 9.33 225.89 2,876.3	-210.7	-217.3	-205.4	0.00	0.00	0.00
3,000.0 9.33 225.89 2,975.0	-221.9	-228.9	-216.4	0.00	0.00	0.00
3,100.0 9.33 225.89 3,073.7	-233.2	-240.5	-227.4	0.00	0.00	0.00
3,200.0 9.33 225.89 3,172.4	-244.5	-252.2	-238.4	0.00	0.00	0.00
3,300.0 9.33 225.89 3,271.1	-255.8	-263.8	-249.4	0.00	0.00	0.00
3,400.0 9.33 225.89 3,369.7	-267.1	-275.5	-260.4	0.00	0.00	0.00
3,500.0 9.33 225.89 3,468.4	-278.3	-287.1	-271.4	0.00	0.00	0.00
3,600.0 9.33 225.89 3,567.1	-289.6	-298.7	-282.4	0.00	0.00	0.00
3,700.0 9.33 225.89 3,665.8	-300.9	-310.4	-293.4	0.00	0.00	0.00
3,800.0 9.33 225.89 3,764.4	-312.2	-322.0	-304.4	0.00	0.00	0.00
3,900.0 9.33 225.89 3,863.1	-323.5	-333.6	-315.4	0.00	0.00	0.00
4,000.0 9.33 225.89 3,961.8	-334.8	-345.3	-326.4	0.00	0.00	0.00
4,100.0 9.33 225.89 4,060.5	-346.0	-356.9	-337.4	0.00	0.00	0.00
4,200.0 9.33 225.89 4,159.2	-357.3	-368.5	-348.4	0.00	0.00	0.00
4,300.0 9.33 225.89 4,257.8	-368.6	-380.2	-359.4	0.00	0.00	0.00
4,400.0 9.33 225.89 4,356.5	-379.9	-391.8	-370.4	0.00	0.00	0.00
4,500.0 9.33 225.89 4,455.2	-391.2	-403.4	-381.4	0.00	0.00	0.00
4,600.0 9.33 225.89 4,553.9	-402.4	-415.1	-392.4	0.00	0.00	0.00
4,700.0 9.33 225.89 4,652.6	-413.7	-426.7	-403.4	0.00	0.00	0.00
4,800.0 9.33 225.89 4,751.2	-425.0	-438.3	-414.3	0.00	0.00	0.00
4,900.0 9.33 225.89 4,849.9	-436.3	-450.0	-425.3	0.00	0.00	0.00
5,000.0 9.33 225.89 4,948.6	-447.6	-461.6	-436.3	0.00	0.00	0.00
5,100.0 9.33 225.89 5,047.3	-458.8	-473.3	-447.3	0.00	0.00	0.00
5,200.0 9.33 225.89 5,145.9	-470.1	-484.9	-458.3	0.00	0.00	0.00

12/17/2024 8:28:35AM

COMPASS 5000.16 Build 100

Plan #0.1 RT

Planning Report

Planned Survey

Site:

Well:

Design:

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	9.33	225.89	5,244.6	-481.4	-496.5	-469.3	0.00	0.00	0.00
5,400.0	9.33	225.89	5,343.3	-492.7	-508.2	-480.3	0.00	0.00	0.00
5,500.0	9.33	225.89	5,442.0	-504.0	-519.8	-491.3	0.00	0.00	0.00
5,600.0	9.33	225.89	5,540.7	-515.3	-531.4	-502.3	0.00	0.00	0.00
5,700.0	9.33	225.89	5,639.3	-526.5	-543.1	-513.3	0.00	0.00	0.00
5,800.0	9.33	225.89	5,738.0	-537.8	-554.7	-524.3	0.00	0.00	0.00
5,900.0	9.33	225.89	5,836.7	-549.1	-566.3	-535.3	0.00	0.00	0.00
6,000.0	9.33	225.89	5,935.4	-560.4	-578.0	-546.3	0.00	0.00	0.00
6,100.0	9.33	225.89	6,034.0	-571.7	-589.6	-557.3	0.00	0.00	0.00
6,200.0	9.33	225.89	6,132.7	-582.9	-601.2	-568.3	0.00	0.00	0.00
6,300.0	9.33	225.89	6,231.4	-594.2	-612.9	-579.3	0.00	0.00	0.00
6,400.0	9.33	225.89	6,330.1	-605.5	-624.5	-590.3	0.00	0.00	0.00
6,500.0	9.33	225.89	6,428.8	-616.8	-636.1	-601.3	0.00	0.00	0.00
6,600.0	9.33	225.89	6,527.4	-628.1	-647.8	-612.3	0.00	0.00	0.00
6,700.0	9.33	225.89	6,626.1	-639.3	-659.4	-623.3	0.00	0.00	0.00
6,800.0	9.33	225.89	6,724.8	-650.6	-671.1	-634.3	0.00	0.00	0.00
6,900.0	9.33	225.89	6,823.5	-661.9	-682.7	-645.3	0.00	0.00	0.00
7,000.0	9.33	225.89	6,922.1	-673.2	-694.3	-656.3	0.00	0.00	0.00
7,100.0	9.33	225.89	7,020.8	-684.5	-706.0	-667.3	0.00	0.00	0.00
7,200.0	9.33	225.89	7,119.5	-695.7	-717.6	-678.3	0.00	0.00	0.00
7,300.0	9.33	225.89	7,218.2	-707.0	-729.2	-689.3	0.00	0.00	0.00
7,400.0	9.33	225.89	7,316.9	-718.3	-740.9	-700.3	0.00	0.00	0.00
7,500.0	9.33	225.89	7,415.5	-729.6	-752.5	-711.3	0.00	0.00	0.00
7,600.0	9.33	225.89	7,514.2	-740.9	-764.1	-722.3	0.00	0.00	0.00
7,700.0	9.33	225.89	7,612.9	-752.2	-775.8	-733.3	0.00	0.00	0.00
7,800.0	9.33	225.89	7,711.6	-763.4	-787.4	-744.3	0.00	0.00	0.00
7,900.0	9.33	225.89	7,810.2	-774.7	-799.0	-755.3	0.00	0.00	0.00
8,000.0	9.33	225.89	7,908.9	-786.0	-810.7	-766.3	0.00	0.00	0.00
8,100.0	9.33	225.89	8,007.6	-797.3	-822.3	-777.3	0.00	0.00	0.00
8,138.6	9.33	225.89	8,045.7	-801.6	-826.8	-781.5	0.00	0.00	0.00
8,200.0	8.10	225.89	8,106.4	-808.1	-833.5	-787.9	2.00	-2.00	0.00
8,300.0	6.10	225.89	8,205.6	-816.7	-842.4	-796.2	2.00	-2.00	0.00
8,400.0	4.10	225.89	8,305.2	-822.9	-848.7	-802.3	2.00	-2.00	0.00
8,500.0	2.10	225.89	8,405.1	-826.7	-852.6	-805.9	2.00	-2.00	0.00
8,605.0	0.00	0.00	8,510.0	-828.0	-854.0	-807.2	2.00	-2.00	0.00
8,670.5	0.00	0.00	8,575.5	-828.0	-854.0	-807.2	0.00	0.00	0.00
8,675.0	0.54	90.20	8,580.0	-828.0	-854.0	-807.2	12.00	12.00	0.00
8,700.0	3.54	90.20	8,605.0	-828.0	-853.1	-806.3	12.00	12.00	0.00
8,725.0	6.54	90.20	8,629.9	-828.0	-850.9	-804.1	12.00	12.00	0.00
8,750.0	9.54	90.20	8,654.7	-828.0	-847.4	-800.6	12.00	12.00	0.00
8,775.0	12.54	90.20	8,679.2	-828.0	-842.6	-795.9	12.00	12.00	0.00
8,800.0	15.54	90.20	8,703.5	-828.1	-836.5	-789.8	12.00	12.00	0.00
8,825.0	18.54	90.20	8,727.4	-828.1	-829.2	-782.5	12.00	12.00	0.00
8,850.0	21.54	90.20	8,750.8	-828.1	-820.6	-773.9	12.00	12.00	0.00
8,875.0	24.54	90.20	8,773.8	-828.2	-810.9	-764.2	12.00	12.00	0.00
8,900.0	27.54	90.20	8,796.3	-828.2	-799.9	-753.2	12.00	12.00	0.00
8,925.0	30.54	90.20	8,818.2	-828.2	-787.8	-741.1	12.00	12.00	0.00
8,950.0	33.54	90.20	8,839.3	-828.3	-774.5	-727.9	12.00	12.00	0.00
8,975.0	36.53	90.20	8,859.8	-828.3	-760.2	-713.5	12.00	12.00	0.00
9,000.0	39.53	90.20	8,879.5	-828.4	-744.8	-698.1	12.00	12.00	0.00
9,025.0	42.53	90.20	8,898.4	-828.4	-728.3	-681.8	12.00	12.00	0.00
9,050.0	45.53	90.20	8,916.3	-828.5	-711.0	-664.4	12.00	12.00	0.00
9,075.0	48.53	90.20	8,933.4	-828.6	-692.7	-646.1	12.00	12.00	0.00
9,100.0	51.53	90.20	8,949,4	-828.6	-673.5	-627.0	12.00	12.00	0.00

12/17/2024 8:28:35AM

COMPASS 5000.16 Build 100

Databasa	PEDMB	Level Co. ardinata Deference:	Well #711H
Database:	FEDINID	Local Co-ordinate Reference:	
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,125.0	54.53	90.20	8,964.5	-828.7	-653.5	-607.1	12.00	12.00	0.00
9,150.0	57.53	90.20	8,978.4	-828.8	-632.8	-586.4	12.00	12.00	0.00
9,175.0	60.53	90.20	8,991.3	-828.9	-611.4	-564.9	12.00	12.00	0.00
9,200.0	63.53	90.20	9,003.0	-828.9	-589.3	-542.9	12.00	12.00	0.00
9,217.0	65.56	90.20	9,010.3	-829.0	-574.0	-527.6	12.00	12.00	0.00
9,225.0	66.53	90.19	9,013.6	-829.0	-566.6	-520.3	12.00	12.00	-0.15
9,250.0	69.53	90.16	9,022.9	-829.1	-543.5	-497.1	12.00	12.00	-0.14
0.075.0	70 50	00.40	0.004.0		540.0	170 5	10.00	10.00	
9,275.0	72.53	90.12	9,031.0	-829.2	-519.8	-473.5	12.00	12.00	-0.14
9,300.0	75.53	90.09	9,037.9	-829.2	-495.8	-449.5	12.00	12.00	-0.13
9,325.0	78.53	90.06	9,043.5	-829.2	-471.4	-425.2	12.00	12.00	-0.13
9,350.0	81.53	90.02	9,047.9	-829.2	-446.8	-400.6	12.00	12.00	-0.13
9,375.0	84.53	89.99	9,050.9	-829.2	-422.0	-375.8	12.00	12.00	-0.13
0 400 0	07 50	89.96	0.052.6	-829.2	-397.1	-350.9	12.00	12.00	0.12
9,400.0	87.53		9,052.6				12.00	12.00	-0.13
9,420.6	90.00	89.93	9,053.1	-829.2	-376.5	-330.4	12.00	12.00	-0.12
9,500.0	90.00	89.93	9,053.1	-829.1	-297.1	-251.1	0.00	0.00	0.00
9,600.0	90.00	89.93	9,053.1	-829.0	-197.1	-151.3	0.00	0.00	0.00
9,700.0	90.00	89.93	9,053.1	-828.9	-97.1	-51.4	0.00	0.00	0.00
9,800.0	90.00	89.93	9,053.1	-828.8	2.9	48.4	0.00	0.00	0.00
9,900.0	90.00	89.93	9,053.1	-828.7	102.9	148.3	0.00	0.00	0.00
10,000.0	90.00	89.93	9,053.1	-828.6	202.9	248.1	0.00	0.00	0.00
10,100.0	90.00	89.93	9,053.1	-828.4	302.9	348.0	0.00	0.00	0.00
10,200.0	90.00	89.93	9,053.1	-828.3	402.9	447.8	0.00	0.00	0.00
10,300.0	90.00	89.93	9,053.1	-828.2	502.9	547.6	0.00	0.00	0.00
10,300.0	90.00	89.93	9,053.1	-828.1	602.9	647.5	0.00	0.00	0.00
10,500.0	90.00	89.93	9,053.1	-828.0	702.9	747.3	0.00	0.00	0.00
10,600.0	90.00	89.93	9,053.1	-827.9	802.9	847.2	0.00	0.00	0.00
10,700.0	90.00	89.93	9,053.1	-827.8	902.9	947.0	0.00	0.00	0.00
10,800.0	90.00	89.93	9,053.1	-827.6	1,002.9	1,046.9	0.00	0.00	0.00
10,900.0	90.00	89.93	9,053.1	-827.5	1,102.9	1,146.7	0.00	0.00	0.00
11,000.0	90.00	89.93	9,053.1	-827.4	1,202.9	1,246.5	0.00	0.00	0.00
	90.00	89.93	9,053.1		1,302.9		0.00		0.00
11,100.0				-827.3		1,346.4		0.00	
11,200.0	90.00	89.93	9,053.1	-827.2	1,402.9	1,446.2	0.00	0.00	0.00
11,300.0	90.00	89.93	9,053.1	-827.1	1,502.9	1,546.1	0.00	0.00	0.00
11,400.0	90.00	89.93	9,053.1	-827.0	1,602.9	1,645.9	0.00	0.00	0.00
11,500.0	90.00	89.93	9,053.1	-826.8	1,702.9	1,745.8	0.00	0.00	0.00
11,600.0	90.00	89.93	9,053.1	-826.7	1,802.9	1,845.6	0.00	0.00	0.00
11,700.0	90.00	89.93	9,053.1	-826.6	1,902.9	1,945.4	0.00	0.00	0.00
11,700.0					1,502.9	1,540.4			
11,800.0	90.00	89.93	9,053.1	-826.5	2,002.9	2,045.3	0.00	0.00	0.00
11,900.0	90.00	89.93	9,053.1	-826.4	2,102.9	2,145.1	0.00	0.00	0.00
12,000.0	90.00	89.93	9,053.1	-826.3	2,202.9	2,245.0	0.00	0.00	0.00
12,100.0	90.00	89.93	9,053.1	-826.2	2,302.9	2,344.8	0.00	0.00	0.00
12,200.0	90.00	89.93	9,053.1	-826.0	2,402.9	2,444.7	0.00	0.00	0.00
12,300.0	90.00	89.93	9,053.1	-825.9	2,502.9	2,544.5	0.00	0.00	0.00
12,400.0	90.00	89.93	9,053.1	-825.8	2,602.9	2,644.3	0.00	0.00	0.00
12,500.0	90.00	89.93	9,053.1	-825.7	2,702.9	2,744.2	0.00	0.00	0.00
12,600.0	90.00	89.93	9,053.1	-825.6	2,802.9	2,844.0	0.00	0.00	0.00
12,700.0	90.00	89.93	9,053.1	-825.5	2,902.9	2,943.9	0.00	0.00	0.00
12,800.0	90.00	89.93	9,053.1	-825.3	3,002.9	3,043.7	0.00	0.00	0.00
12,900.0	90.00	89.93	9,053.1	-825.2	3,102.9	3,143.6	0.00	0.00	0.00
13,000.0	90.00	89.93	9,053.1	-825.1	3,202.9	3,243.4	0.00	0.00	0.00
13,100.0	90.00	89.93	9,053.1	-825.0	3,302.9	3,343.2	0.00	0.00	0.00
13,200.0	90.00	89.93	9,053.1	-824.9	3,402.9	3,443.1	0.00	0.00	0.00
13,300.0	90.00	89.93	9,053.1	-824.8	3,502.9	3,542.9	0.00	0.00	0.00
13,400.0	90.00	89.93	9,053.1	-824.7	3.602.9	3,642.8	0.00	0.00	0.00

12/17/2024 8:28:35AM

Page 6

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #711H
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,500.0	90.00	89.93	9,053.1	-824.5	3,702.9	3,742.6	0.00	0.00	0.00
13,600.0	90.00	89.93	9,053.1	-824.4	3,802.9	3,842.5	0.00	0.00	0.00
13,700.0	90.00	89.93	9,053.1	-824.3	3,902.9	3,942.3	0.00	0.00	0.00
13,800.0	90.00	89.93	9,053.1	-824.2	4,002.9	4,042.1	0.00	0.00	0.00
13,900.0	90.00	89.93	9,053.1	-824.1	4,102.9	4,142.0	0.00	0.00	0.00
14,000.0	90.00	89.93	9,053.1	-824.0	4,202.9	4,241.8	0.00	0.00	0.00
14,100.0	90.00	89.93	9,053.1	-823.9	4,302.9	4,341.7	0.00	0.00	0.00
14,200.0	90.00	89.93	9,053.1	-823.7	4,402.9	4,441.5	0.00	0.00	0.00
14,300.0	90.00	89.93	9,053.1	-823.6	4,502.9	4,541.4	0.00	0.00	0.00
14,400.0	90.00	89.93	9,053.1	-823.5	4,602.9	4,641.2	0.00	0.00	0.00
14,500.0	90.00	89.93	9,053.1	-823.4	4,702.9	4,741.0	0.00	0.00	0.00
14,600.0	90.00	89.93	9,053.1	-823.3	4,802.9	4,840.9	0.00	0.00	0.00
14,700.0	90.00	89.93	9,053.1	-823.2	4,902.9	4,940.7	0.00	0.00	0.00
14,800.0	90.00	89.93	9,053.1	-823.1	5,002.9	5,040.6	0.00	0.00	0.00
14,900.0	90.00	89.93	9,053.1	-822.9	5,102.9	5,140.4	0.00	0.00	0.00
15,000.0	90.00	89.93	9,053.1	-822.8	5,202.9	5,240.3	0.00	0.00	0.00
15,100.0	90.00	89.93	9,053.1	-822.7	5,302.9	5,340.1	0.00	0.00	0.00
15,200.0	90.00	89.93	9,053.0	-822.6	5,402.9	5,439.9	0.00	0.00	0.00
15,300.0	90.00	89.93	9,053.0	-822.5	5,502.9	5,539.8	0.00	0.00	0.00
15,400.0	90.00	89.93	9,053.0	-822.4	5,602.9	5,639.6	0.00	0.00	0.00
15,500.0	90.00	89.93	9,053.0	-822.3	5,702.9	5,739.5	0.00	0.00	0.00
15,600.0	90.00	89.93	9,053.0	-822.1	5,802.9	5,839.3	0.00	0.00	0.00
15,700.0	90.00	89.93	9,053.0	-822.0	5,902.9	5,939.2	0.00	0.00	0.00
15,800.0	90.00	89.93	9,053.0	-821.9	6,002.9	6,039.0	0.00	0.00	0.00
15,900.0	90.00	89.93	9,053.0	-821.8	6,102.9	6,138.8	0.00	0.00	0.00
16,000.0	90.00	89.93	9,053.0	-821.7	6,202.9	6,238.7	0.00	0.00	0.00
16,100.0	90.00	89.93	9,053.0	-821.6	6,302.9	6,338.5	0.00	0.00	0.00
16,200.0	90.00	89.93	9,053.0	-821.5	6,402.9	6,438.4	0.00	0.00	0.00
16,300.0	90.00	89.93	9,053.0	-821.3	6,502.9	6,538.2	0.00	0.00	0.00
16,400.0	90.00	89.93	9,053.0	-821.2	6,602.9	6,638.1	0.00	0.00	0.00
16,500.0	90.00	89.93	9,053.0	-821.1	6,702.9	6,737.9	0.00	0.00	0.00
16,600.0	90.00	89.93	9,053.0	-821.0	6,802.9	6,837.7	0.00	0.00	0.00
16,700.0	90.00	89.93	9,053.0	-820.9	6,902.9	6,937.6	0.00	0.00	0.00
16,800.0	90.00	89.93	9,053.0	-820.8	7,002.9	7,037.4	0.00	0.00	0.00
16,900.0	90.00	89.93	9,053.0	-820.7	7,102.9	7,137.3	0.00	0.00	0.00
17,000.0	90.00	89.93	9,053.0	-820.5	7,202.9	7,237.1	0.00	0.00	0.00
17,100.0	90.00	89.93	9,053.0	-820.4	7,302.9	7,337.0	0.00	0.00	0.00
17,200.0	90.00	89.93	9,053.0	-820.3	7,402.9	7,436.8	0.00	0.00	0.00
17,300.0	90.00	89.93	9,053.0	-820.2	7,502.9	7,536.6	0.00	0.00	0.00
17,400.0	90.00	89.93	9,053.0	-820.1	7,602.9	7,636.5	0.00	0.00	0.00
17,500.0	90.00	89.93	9,053.0	-820.0	7,702.9	7,736.3	0.00	0.00	0.00
17,600.0	90.00	89.93	9,053.0	-819.9	7,802.9	7,836.2	0.00	0.00	0.00
17,700.0	90.00	89.93	9,053.0	-819.7	7,902.9	7,936.0	0.00	0.00	0.00
17,800.0	90.00	89.93	9,053.0	-819.6	8,002.9	8,035.9	0.00	0.00	0.00
17,900.0	90.00	89.93	9,053.0	-819.5	8,102.9	8,135.7	0.00	0.00	0.00
18,000.0	90.00	89.93	9,053.0	-819.4	8,202.9	8,235.5	0.00	0.00	0.00
18,100.0	90.00	89.93	9,053.0	-819.3	8,302.9	8,335.4	0.00	0.00	0.00
18,200.0	90.00	89.93	9,053.0	-819.2	8,402.9	8,435.2	0.00	0.00	0.00
18,300.0	90.00	89.93	9,053.0	-819.1	8,502.9	8,535.1	0.00	0.00	0.00
18,400.0	90.00	89.93	9,053.0	-818.9	8,602.9	8,634.9	0.00	0.00	0.00
18,500.0	90.00	89.93	9,053.0	-818.8	8,702.9	8,734.8	0.00	0.00	0.00
18,600.0	90.00	89.93	9,053.0	-818.7	8,802.9	8,834.6	0.00	0.00	0.00
18,700.0	90.00	89.93	9,053.0	-818.6	8,902.9	8,934.4	0.00	0.00	0.00
	90.00	89.93	9,053.0	-818.5	9,002.9	9,034.3	0.00	0.00	0.00

12/17/2024 8:28:35AM

Database:	PEDMB	Local Co-ordinate Reference:	Well #711H
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,900.0	90.00	89.93	9,053.0	-818.4	9,102.9	9,134.1	0.00	0.00	0.00
19,000.0	90.00	89.93	9,053.0	-818.3	9,202.9	9,234.0	0.00	0.00	0.00
19,100.0	90.00	89.93	9,053.0	-818.1	9,302.9	9,333.8	0.00	0.00	0.00
19,200.0	90.00	89.93	9,053.0	-818.0	9,402.9	9,433.7	0.00	0.00	0.00
19,300.0	90.00	89.93	9,053.0	-817.9	9,502.9	9,533.5	0.00	0.00	0.00
19,400.0	90.00	89.93	9,053.0	-817.8	9,602.9	9,633.3	0.00	0.00	0.00
19,500.0	90.00	89.93	9,053.0	-817.7	9,702.9	9,733.2	0.00	0.00	0.00
19,600.0	90.00	89.93	9,053.0	-817.6	9,802.9	9,833.0	0.00	0.00	0.00
19,700.0	90.00	89.93	9,053.0	-817.5	9,902.9	9,932.9	0.00	0.00	0.00
19,800.0	90.00	89.93	9,053.0	-817.3	10,002.9	10,032.7	0.00	0.00	0.00
19,900.0	90.00	89.93	9,053.0	-817.2	10,102.9	10,132.6	0.00	0.00	0.00
20,000.0	90.00	89.93	9,053.0	-817.1	10,202.9	10,232.4	0.00	0.00	0.00
20,100.0	90.00	89.93	9,053.0	-817.0	10,302.9	10,332.2	0.00	0.00	0.00
20,200.0	90.00	89.93	9,053.0	-816.9	10,402.9	10,432.1	0.00	0.00	0.00
20,300.0	90.00	89.93	9,053.0	-816.8	10,502.9	10,531.9	0.00	0.00	0.00
20,300.0	90.00	89.93	9,053.0	-816.7	10,602.9	10,631.8	0.00	0.00	0.00
20,400.0	90.00	89.93	9,053.0	-816.5	10,002.9	10,031.6	0.00	0.00	0.00
20,500.0	90.00	89.93	9,053.0	-816.4	10,702.9	10,731.0	0.00	0.00	0.00
,		89.93	9,053.0	-816.3	- ,			0.00	0.00
20,700.0	90.00				10,902.9	10,931.3	0.00		
20,800.0	90.00	89.93	9,053.0	-816.2	11,002.9	11,031.1	0.00	0.00	0.00
20,900.0	90.00	89.93	9,053.0	-816.1	11,102.9	11,131.0	0.00	0.00	0.00
21,000.0	90.00	89.93	9,053.0	-816.0	11,202.9	11,230.8	0.00	0.00	0.00
21,100.0	90.00	89.93	9,053.0	-815.8	11,302.9	11,330.7	0.00	0.00	0.00
21,200.0	90.00	89.93	9,053.0	-815.7	11,402.9	11,430.5	0.00	0.00	0.00
21,300.0	90.00	89.93	9.053.0	-815.6	11.502.9	11,530.4	0.00	0.00	0.00
21,400.0	90.00	89.93	9,053.0	-815.5	11,602.9	11,630.2	0.00	0.00	0.00
21,500.0	90.00	89.93	9,053.0	-815.4	11,702.9	11,730.0	0.00	0.00	0.00
21,600.0	90.00	89.93	9,053.0	-815.3	11,802.9	11,829.9	0.00	0.00	0.00
21,700.0	90.00	89.93	9,053.0	-815.2	11,902.9	11,929.7	0.00	0.00	0.00
21,800.0	90.00	89.93	9,053.0	-815.0	12,002.9	12,029.6	0.00	0.00	0.00
21,900.0	90.00	89.93	9,053.0	-814.9	12,102.9	12,129.4	0.00	0.00	0.00
22,000.0	90.00	89.93	9,053.0	-814.8	12,202.9	12,229.3	0.00	0.00	0.00
22,000.0	90.00	89.93	9,053.0	-814.7	12,202.9	12,229.3	0.00	0.00	0.00
22,100.0	90.00	89.93	9,053.0 9,053.0	-814.7 -814.6	12,302.9	12,329.1	0.00	0.00	0.00
22,300.0	90.00	89.93	9,053.0	-814.5	12,502.9	12,528.8	0.00	0.00	0.00
22,400.0	90.00	89.93	9,053.0	-814.4	12,602.9	12,628.6	0.00	0.00	0.00
22,500.0	90.00	89.93	9,053.0	-814.2	12,702.9	12,728.5	0.00	0.00	0.00
22,600.0	90.00	89.93	9,053.0	-814.1	12,802.9	12,828.3	0.00	0.00	0.00
22,700.0	90.00	89.93	9,053.0	-814.0	12,902.9	12,928.2	0.00	0.00	0.00
22,800.0	90.00	89.93	9,053.0	-813.9	13,002.9	13,028.0	0.00	0.00	0.00
22,900.0	90.00	89.93	9,053.0	-813.8	13,102.9	13,127.8	0.00	0.00	0.00
23,000.0	90.00	89.93	9,053.0	-813.7	13,202.9	13,227.7	0.00	0.00	0.00
23,100.0	90.00	89.93	9,053.0	-813.6	13,302.9	13,327.5	0.00	0.00	0.00
23,200.0	90.00	89.93	9,053.0	-813.4	13,402.9	13,427.4	0.00	0.00	0.00
23,300.0	90.00	89.93	9,053.0	-813.3	13,502.9	13,527.2	0.00	0.00	0.00
23,400.0	90.00	89.93	9,053.0	-813.2	13,602.9	13,627.1	0.00	0.00	0.00
23,500.0	90.00	89.93	9,053.0	-813.1	13,702.9	13,726.9	0.00	0.00	0.00
23,600.0	90.00	89.93	9,053.0	-813.0	13,802.9	13,826.7	0.00	0.00	0.00
23,700.0	90.00	89.93	9,053.0	-812.9	13,902.9	13,926.6	0.00	0.00	0.00
23,800.0	90.00	89.93	9,053.0	-812.8	14,002.9	14,026.4	0.00	0.00	0.00
23,900.0	90.00	89.93	9,053.0	-812.6	14,102.9	14,126.3	0.00	0.00	0.00
24,000.0	90.00	89.93	9,053.0	-812.5	14,202.9	14,226.1	0.00	0.00	0.00
24,000.0	90.00	89.93	9,053.0	-812.4	14,302.9	14,326.0	0.00	0.00	0.00
24,100.0	90.00	89.93	9,053.0	-812.4	14,302.9	14,320.0	0.00	0.00	0.00
27,200.0	90.00	09.93	3,033.0	-012.0	17,402.3	17,420.0	0.00	0.00	0.00

12/17/2024 8:28:35AM

Page 8

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #711H
Company:	Midland	TVD Reference:	kb = 26' @ 3260.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3260.0usft
Site:	Padron 3 State WC Unit	North Reference:	Grid
Well:	#711H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination Azimuth (°) (°)		Vertical Depth +N/-S (usft) (usft)		+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
24,300.0	90.00	89.93	9,053.0	-812.2	14,502.9	14,525.6	0.00	0.00	0.00	
24,400.0	90.00	89.93	9,053.0	-812.1	14,602.9	14,625.5	0.00	0.00	0.00	
24,463.1	90.00	89.93	9,053.0	-812.0	14,666.0	14,688.5	0.00	0.00	0.00	
24,500.0	90.00	89.98	9,053.0	-812.0	14,702.9	14,725.3	0.13	0.00	0.13	
24,563.1	90.00	90.07	9,053.0	-812.0	14,766.0	14,788.3	0.13	0.00	0.13	

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Padron 3 State WC - plan hits target cen - Point	0.00 ter	0.00	8,575.5	-828.0	-854.0	420,153.00	586,706.00	32° 9' 17.979 N	104° 11' 12.230 W
FTP(Padron 3 State WC - plan hits target cen - Point	0.00 ter	0.00	9,010.3	-829.0	-574.0	420,152.00	586,986.00	32° 9' 17.965 N	104° 11' 8.973 W
PBHL(Padron 3 State W - plan hits target cen - Point	0.00 ter	0.00	9,053.0	-812.0	14,766.0	420,169.00	602,326.00	32° 9' 17.890 N	104° 8' 10.524 W
LTP(Padron 3 State WC - plan hits target cen - Point	0.00 ter	0.00	9,053.0	-812.0	14,666.0	420,169.00	602,226.00	32° 9' 17.892 N	104° 8' 11.687 W

Released to Imaging: 1/17/2025 1:21:49 PM

eogresources

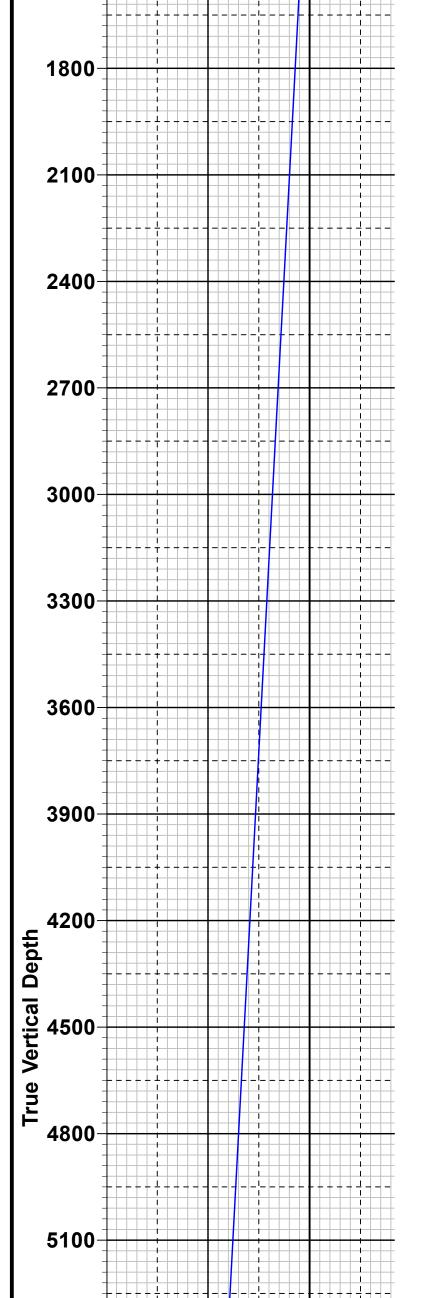
To convert a Magnetic Direction to a Grid Direction, Add 6.33° To convert a Magnetic Direction to a True Direction, Add 6.41° East To convert a True Direction to a Grid Direction, Subtract 0.08° Eddy County, NM (NAD 83 NME)

Padron 3 State WC Unit #711H

Plan #0.1 RT

Azimuths to Grid North True North: -0.08° Magnetic North: 6.33°

> Magnetic Field Strength: 47029.5nT Dip Angle: 59.63° Date: 12/16/2024 Model: IGRF2020


PROJECT DETAILS: Eddy County, NM (NAD 83 NME)

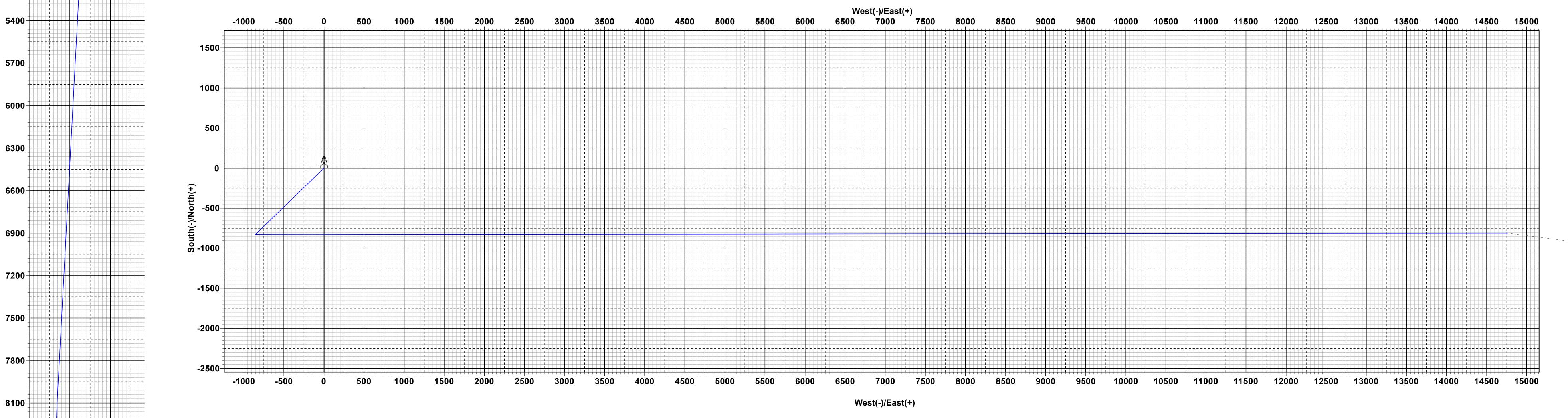
Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

IE)		WELL DETAILS	: #711H					
		3234.0 kb = 26' @ 3260.0usft						
	Northing 420981.00	Easting 587560.00	Latittude 32° 9' 26.161 N	Longitude 104° 11' 2.282 W				

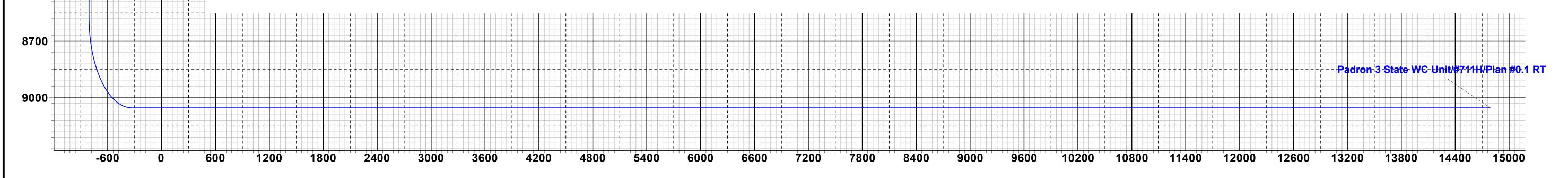
SECTION DETAILS										
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	800.0	0.00	0.00	800.0	0.0	0.0	0.00	0.00	0.0	
3	1266.3	9.33	225.89	1264.3	-26.4	-27.2	2.00	225.89	-25.7	
4	8138.6	9.33	225.89	8045.7	-801.6	-826.8	0.00	0.00	-781.5	
5	8605.0	0.00	0.00	8510.0	-828.0	-854.0	2.00	180.00	-807.2	
6	8670.5	0.00	0.00	8575.5	-828.0	-854.0	0.00	0.00	-807.2	KOP(Padron 3 State WC Unit #711H)
7	9217.0	65.56	90.20	9010.3	-829.0	-574.0	12.00	90.20	-527.6	FTP(Padron 3 State WC Unit #711H)
8	9420.6	90.00	89.93	9053.1	-829.2	-376.5	12.00	-0.65	-330.4	
9	24463.1	90.00	89.93	9053.0	-812.0	14666.0	0.00	0.00	14688.5	LTP(Padron 3 State WC Unit #711H)
10	24563.1	90.00	90.07	9053.0	-812.0	14766.0	0.13	90.27	14788.3	PBHL(Padron 3 State WC Unit #711H)

Name	TVD	+N/-S	+E/-W	Northing	Easting
KOP(Padron 3 State WC Unit #711H)	8575.5	-828.0	-854.0	420153.00	586706.00
FTP(Padron 3 State WC Unit #711H)	9010.3	-829.0	-574.0	420152.00	586986.00
LTP(Padron 3 State WC Unit #711H)	9053.0	-812.0	14666.0	420169.00	602226.00
PBHL(Padron 3 State WC Unit #711H)	9053.0	-812.0	14766.0	420169.00	602326.00

300-


600-

900-


1200-

1500-

.

8400-

Vertical Section at 93.15°

Eddy County, NM (NAD 83 NME) Padron 3 State WC Unit #711H OH Plan #0.1 RT 8:28, December 17 2024

Padron 3 State WC Unit 711H API #: 30-025-***** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

- EOG requests a variance to set the intermediate casing shoe in the Bone Spring formation or the Wolfcamp formation, depending on depletion in the area and well conditions. EOG will monitor the well and ensure the well is static before casing operations begin.

- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

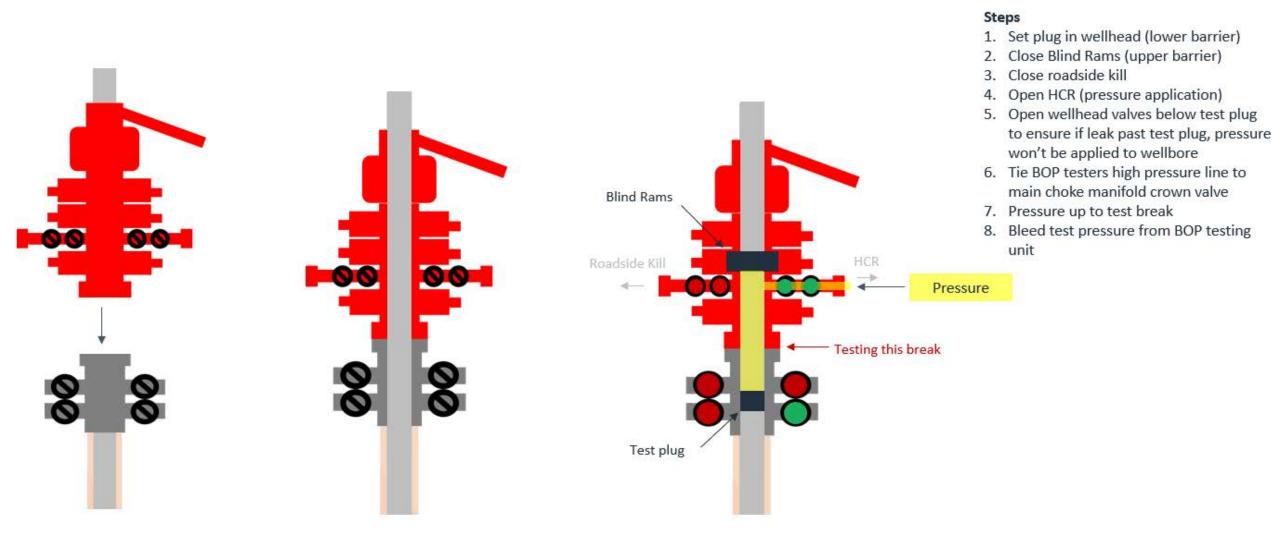
- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 2b Bonespring/Wolfcamp Intermediate Casing Setpoint
- EOG BLM Variance 3a b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 3d Production Offline Cement

Intermediate Bradenhead Cement:

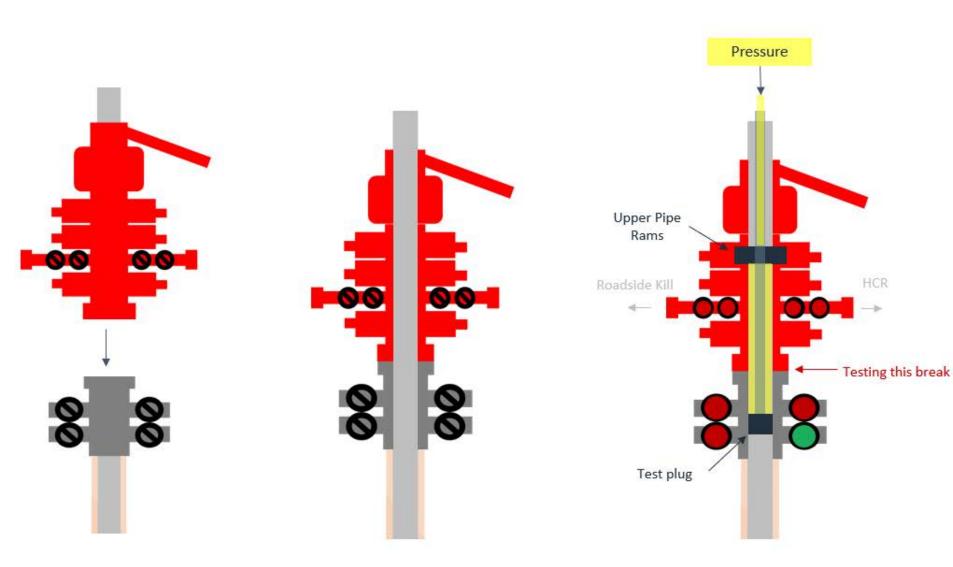
EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Seog resources Offline Intermediate Cementing Procedure

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the **casing will be cemented online**.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Page | 1

2/24/2022

Page 27 of 115

2/24/2022

Seog resources

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

2/24/2022

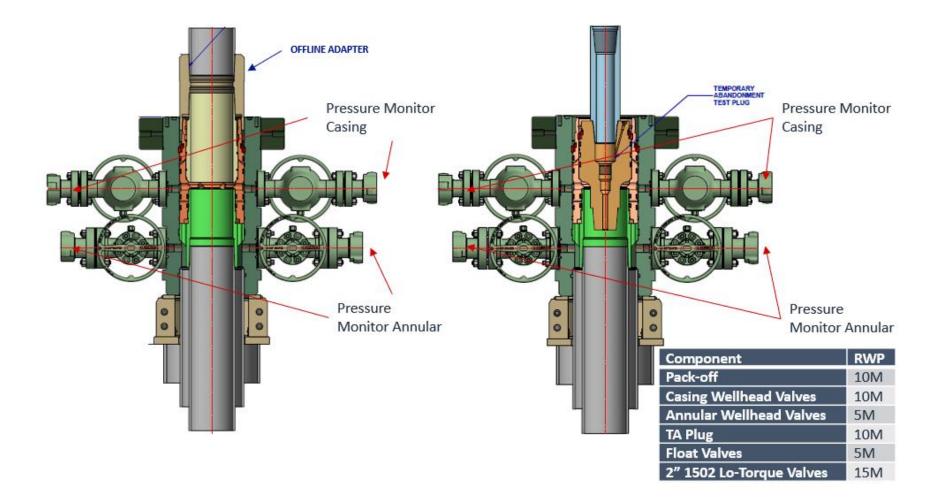
Seog resources

Offline Intermediate Cementing Procedure

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

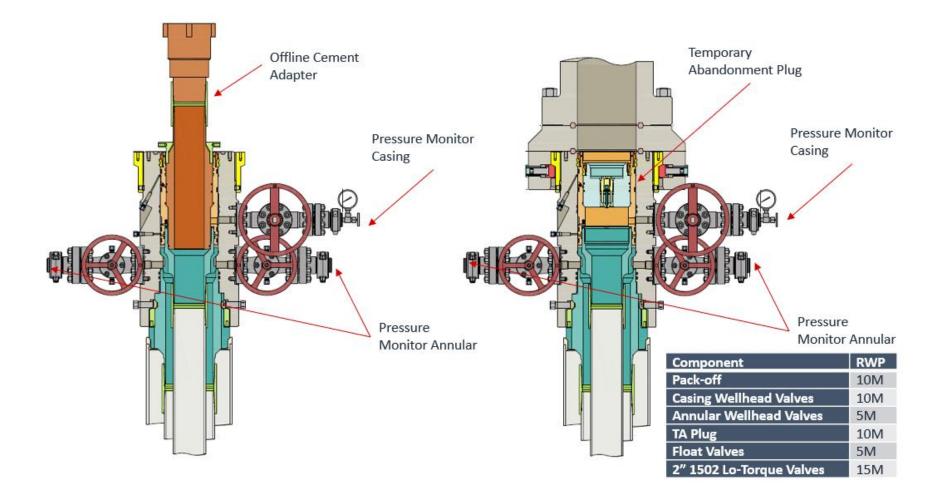
- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

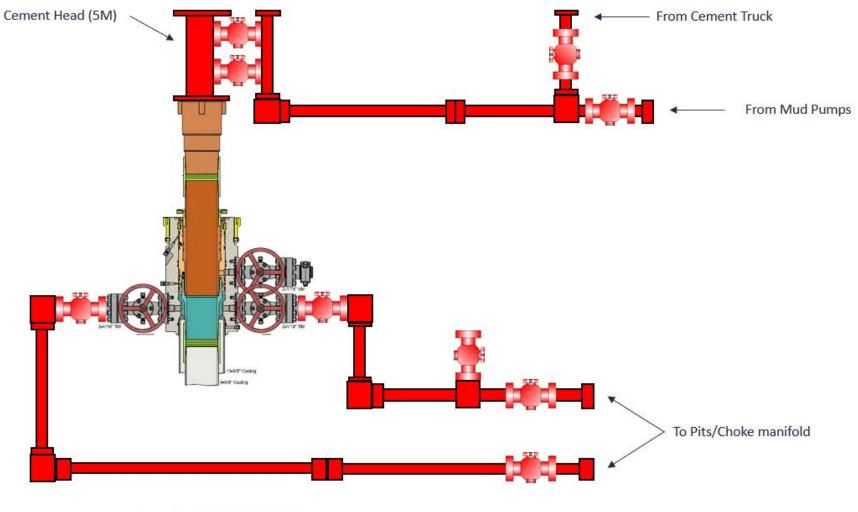
Page | 4

Seog resources Offline Intermediate Cementing Procedure


Figure 1: Cameron TA Plug and Offline Adapter Schematic

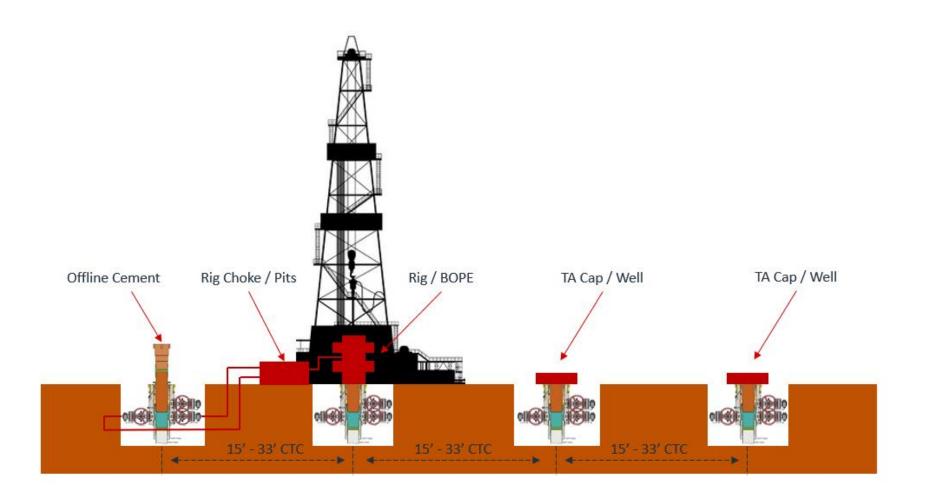
2/24/2022

Offline Intermediate Cementing Procedure


2/24/2022

Page 32 of 115

2/24/2022



*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Shallow Target Offline Bradenhead:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

Offline Production Cement Variance

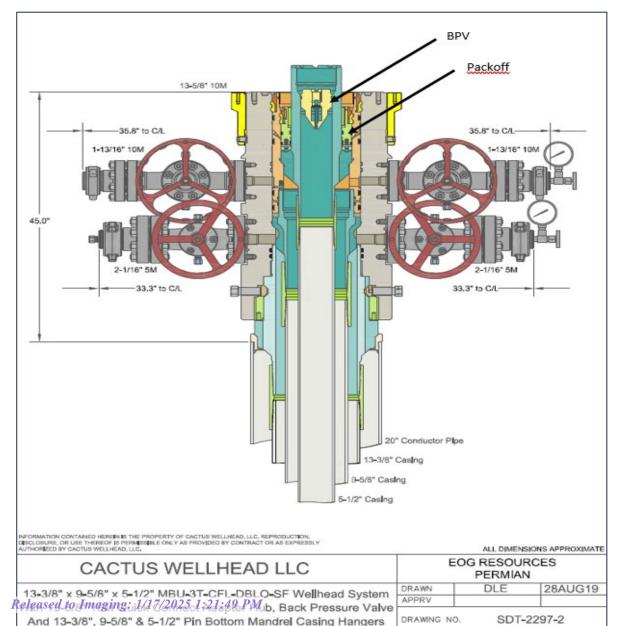
EOG Offline Production Checklist

Offline Checklist

- All items below must be met. If not, the production cement will be done online.
- 1. Offline production cement jobs must be above the Atoka formation.
- 2. Nothing out of the ordinary observed during drilling, tripping or casing running operations in the Production Hole Section.
- 3. Casing must be landed with Hanger.
- EOG Company Man and Superintendent with Well Control certification must be present to monitor returns.
- 5. EOG Cement Advisor must be present to oversee the Cement Job.
- 6. Rig Manager is responsible for walking the rig to the next well.
- 7. The BOP will <u>NOT</u> be nippled down if:
 - 1. ANY barrier fails to test.
 - <u>ANY</u> offset frac operations are observed within 1 mile and within the same producing horizon.
- 8. After all barriers test and the BLM has been notified, the BOP may be <u>nippled</u> down to proceed with offline operations.
- 9. EOG will not Drill out of the next well until Cement Operations have concluded on the offline well.

 $\boldsymbol{\oslash}$

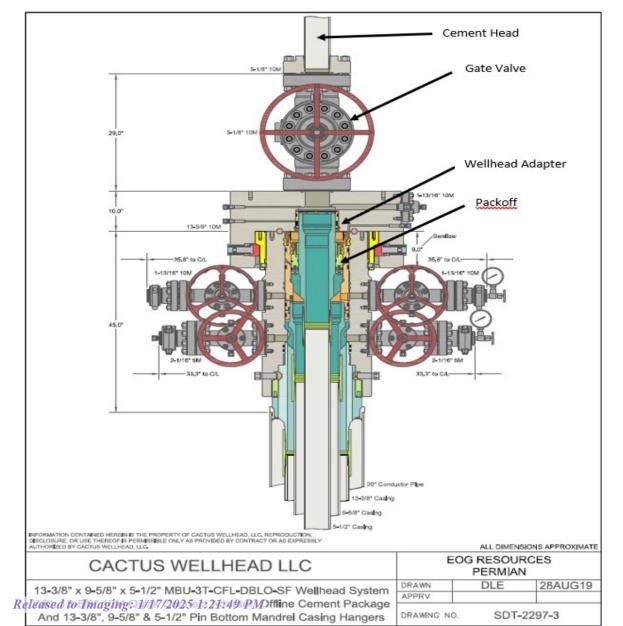
Offline Procedure


- 1. Run casing as per normal operations. Review EOG Offline Requirements Checklist, if the well is a candidate for Offline Cement on the Production continue following this procedure. Conduct negative pressure test while running casing and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to 15,000 psi.
- 2. Land production casing on mandrel hanger.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
 - b. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff rated to 10,000 psi. Pressure test same to 10,000 psi.
 - c. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 10,000 psi. Remove landing joint.
- 3. Install back pressure valve in the casing for a 3rd casing barrier.
 - a. Back pressure valve rated to a minimum of 10,000 psi.
- 4. With the well Secured and BLM notified; Nipple down BOP and secure on hydraulic carrier or cradle and Skid/Walk rig to next well on pad.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded.
 - b. Note, EOG Company Man and Cement Advisor will oversee Cementing Operations while Rig Manager walks the rig and nipples up the BOP.
 - c. Note, EOG will not drill out of the subsequent well until after plug bump.
- 5. Install 10M Gate Valve, with Wellhead Adapter.
 - a. This creates an additional barrier on the annulus and inside the casing.
 - b. Gate valve rated to a minimum of 10,000 psi.
- 6. Test connection between Wellhead Adapter seals against hanger neck and ring gasket to 10,000 psi.
- 7. Remove backpressure valve from the casing.
- 8. Rig up cement head and cementing lines.
- 9. After rig up of cement head and cement lines, and confirmation of the annular barriers and casing barriers, notify the BLM with intent to proceed offline cementing.
- 10. Perform cement job.
- 11. *Note* Procedure continued on the next page.

Offline Procedure

- 12. If an influx is noted during the Cement Job:
 - a. It is the Company Man and Superintendent's responsibility to maintain well control.
 - b. The aux manifold will be redirected to the rig's chokes.
 - c. Backpressure will be held on the well with the chokes to ensure well control is maintained through the remainder of the cement job while circulating out the influx.
 - d. If annular surface pressure approaches 90% tested pressure of the manifold or if circulating the influx out with the cementing pumps is not feasible, the well can be secured by closing the casing valves (10M).
 - e. Once cement is in place, we will close the casing valves and confirm the well is static and floats are holding.
 - f. If the floats fail, the gate valve (10M) or cement head (10M) can be closed to secure the well.
- 13. Confirm well is static and floats are holding after cement job.
- 14. Remove cement head.
- 15. Install back pressure valve.
- 16. Remove 10M Gate Valve and Wellhead Adapter.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi.

 $\boldsymbol{\oslash}$


Offline Barrier Overview

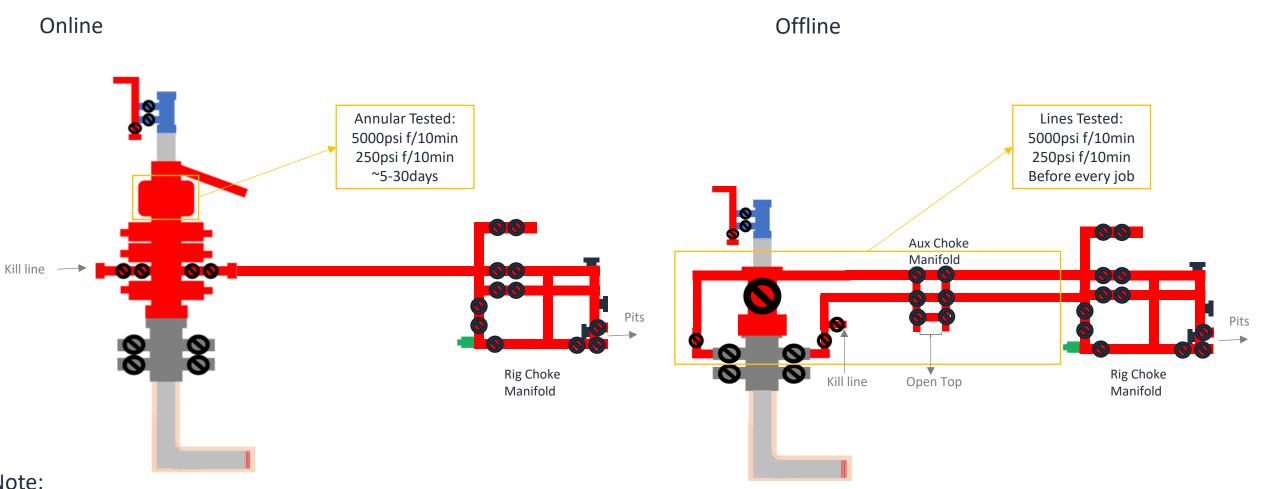
Barriers in Place during removal of BOP						
Operation Casing Annulus						
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	1. Hydrostatic Barrier 2. Mechanical 10M Packoff				

Barriers in Place during Offline Cementing of Production Casing							
Operation	Operation Casing Annulus						
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical Packoff 10M Wellhead Adapter 					
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 					
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 					
Remove Cement Head	 Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 					
Install BPV	 Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 					
Remove 10M Gate Valve	 Float Valves BPV 	 Hydrostatic Barrier Mechanical 10M Packoff 					
Nipple Up TA Cap	 Float Valves BPV 	 Hydrostatic Barrier Mechanical 10M Packoff 					

Offline Barrier Overview

Barriers in Place during removal of BOP						
Operation Casing Annulus						
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	1. Hydrostatic Barrier 2. Mechanical 10M Packoff				

Barriers in Place during Offline Cementing of Production Casing					
Operation	Casing Annulus				
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical Packoff 10M Wellhead Adapter 			
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Remove Cement Head	 Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Install BPV	 Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Remove 10M Gate Valve	 Float Valves BPV 	 Hydrostatic Barrier Mechanical 10M Packoff 			
Nipple Up TA Cap	 Float Valves BPV 	 Hydrostatic Barrier Mechanical 10M Packoff 			


More Control: Meeting/Exceeding Barrier Requirements

Casing Barriers – Online vs Offline						
Operation	Online	Offline				
Install Cement Head	 Hydrostatic Barrier Float Valves 	 Hydrostatic Barrier Float Valves 10M Gate Valve 				
Cement Job	 Hydrostatic Barrier Float Valves Cement Head 	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 				
Remove Cement Head	1. Float Valves	 Float Valves 10M Gate Valve 				
Install BPV & Nipple Down BOP / Offline Adapter	1. Float Valves	 Float Valves BPV 				
Nipple Up TA Cap	1. Float Valves	 Float Valves BPV 				

Annulus Barriers – Online vs Offline						
Operation	Online Offline					
Install Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 				
Cement Job	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 				
Remove Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 				
Install BPV & Nipple Down BOP / Offline Adapter	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off 				
Nipple Up TA Cap	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off 				

Confidential

Return Rig Up Diagram

Note:

- 1) Have the Rig's same Well Control Capabilities as Online
- 2) Have more flexibility with Gate Valve than with a Landing Joint through BOP
 3) Released to Imaging: 1/17/2025 1:21:49 PM Never nad to circulate out a kick during Offline

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

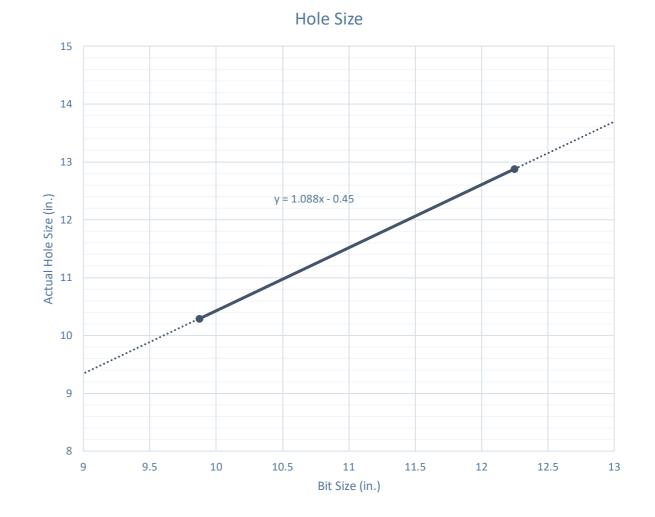
- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

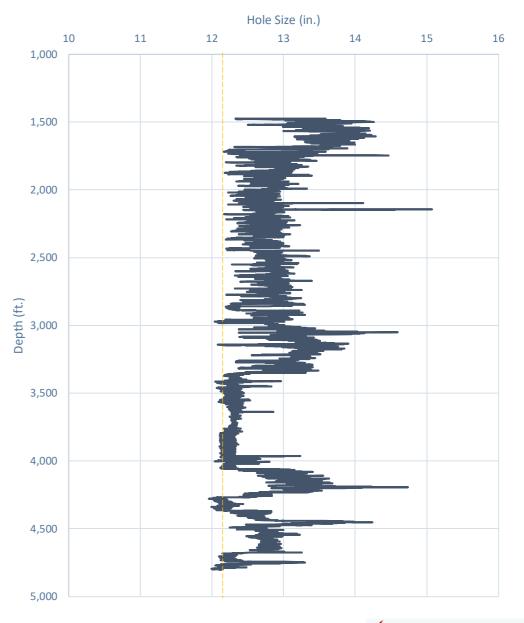

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

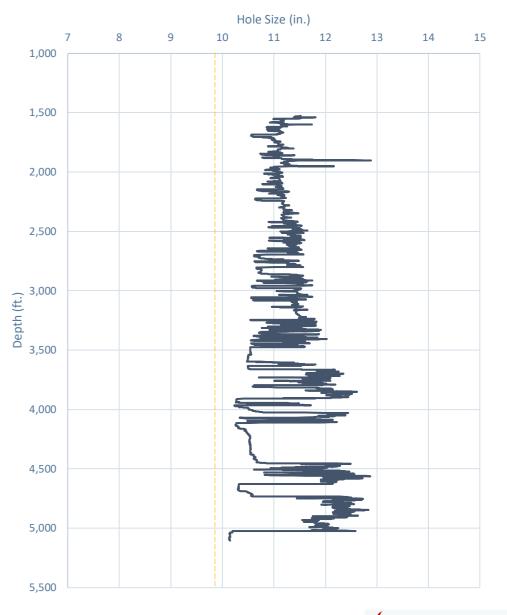


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

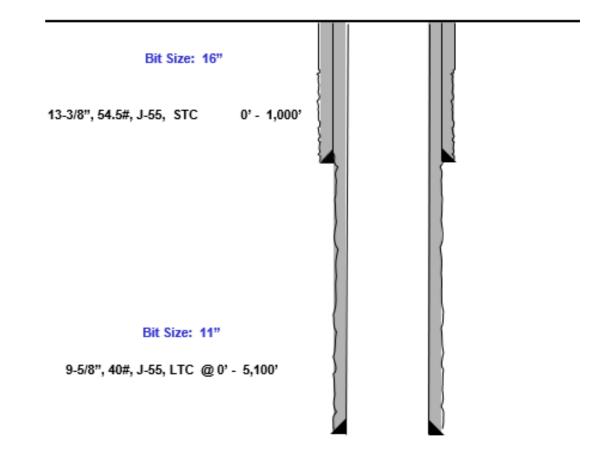
Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

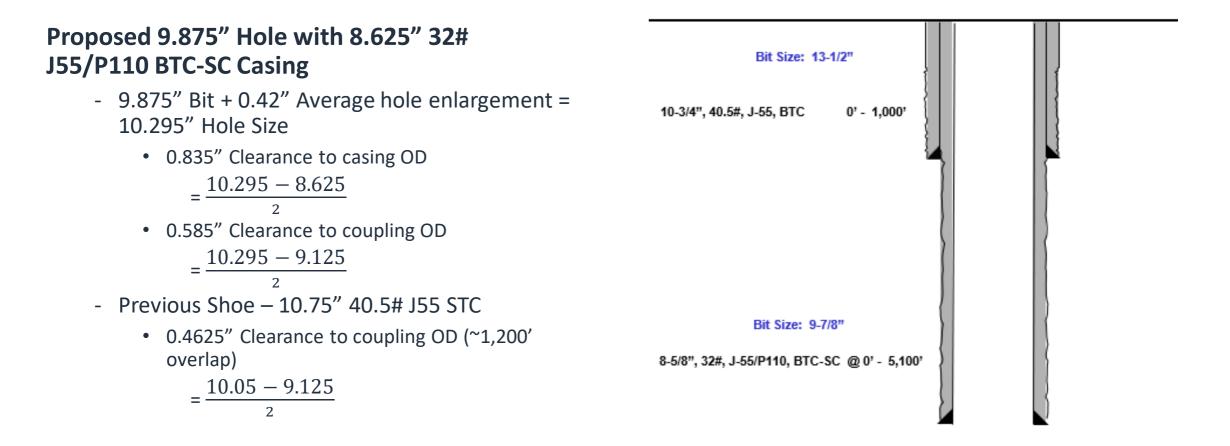
- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD

$$=\frac{11.52 - 9.625}{2}$$

475" Clearance to


to coupling OD • 0.4 - 10.625

$$11.52 - 10.$$


= -

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

9.625	in	Minimum Yield	55	ksi
40.00	lbs/ft	Minimum Tensile	95	ksi
K55 HC		Yield Load	629	kips
38.94	lbs/ft	Tensile Load	1088	kips
0.395	in	Min. Internal Yield Pressure	3,950	psi
8.835	in	Collapse Pressure	3600	psi
8.750	in		•	1
11.454	in²			
	40.00 K55 HC 38.94 0.395 8.835 8.750	40.00 lbs/ft K55 HC 38.94 lbs/ft 0.395 in 8.835 in 8.750 in	40.00Ibs/ftMinimum TensileK55 HCYield Load38.94Ibs/ftTensile Load0.395inMin. Internal Yield Pressure8.835inCollapse Pressure8.750in	40.00lbs/ftMinimum Tensile95K55 HCYield Load62938.94lbs/ftTensile Load10880.395inMin. Internal Yield Pressure3,9508.835inCollapse Pressure36008.750inKenter State1088

Connection Parameters

Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data

New Search »

« Back to Previous List

USC 💽 Metric

PDF

6/8/2015 10:04:37 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	BTC	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	BTC	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength		909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	BTC	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					PD
New Search »					« Back to Previous L
					USC 💽 Metr
5/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350				in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-		lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss		4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

O.D. (AP	I 5CT, 1	10th Ed. Co	nnecti	on Data	She
8.62	Nominal	lb/ft) 32.00 31.13	WALL (in 0.352	´	ADE 55	* API DRIF 1 7.796	Г (in)	RBW 87.	
	Material Proper	ties (PE)			F	Pipe Body [Data (P	'E)	
	Pipe					Geom	etry		
	m Yield Strength:	••	ksi	Nomir				7.92 i	
	um Yield Strength:		ksi		nal Area			9.149 j	
Minimu	m Tensile Strength		ksi	*Spec	ial/Alt. [7.875 i	nch
	Couplin	-				Perform			
	m Yield Strength:		ksi		•	eld Strength	:	503 k	•
	um Yield Strength:		ksi		ose Res I Yield Pro	istance:		2,530 p	
Minimu	m Tensile Strength	: 75	ksi		istorical)			3,930 p	osi
	API Connection				AF	PI Connecti	on Tor	que	
	STC Perform			STC Torque (f				s)	
STC In	ternal Pressure:	3,930	psi	Min:	2,793	Opti:	3,724	Max:	4,65
STC Jo	int Strength:	372	kips						
	LTC Perform					LTC Torqu	e (ft-lb	s)	
	ernal Pressure:	3,930		Min:	3,130	Opti:	4,174	Max:	5,21
	int Strength: C Performance - C		kips						
30-01	C Performance - C	.pig OD =	9.125			BTC Torqu	e (ft-lb	s)	
BTC In	ternal Pressure:	3,930	psi	follo	w API gu	idelines regard	ding posi	itional ma	ke up
	int Strength:	503	kips						
BTC Jo		* 4 14 10 - 14 11	be used unles	ss API Drift	is specifie	ed on order.			
BTC Jo	**If above API connect								

eog

Released to Imaging: 1/17/2025 1:21:49 PM

11

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sł	nallow Desig	n Boundary (Conditions	5
	Deepest	Deepest	Max Inc	Max DLS
	MD (ft)	TVD (ft)	(deg)	(°/100usft)
Surface	2030	2030	0	0
Intermediate	7793	5650	40	8
Production	28578	12000	90	25

Shallow Design A

C		ROOM						
Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

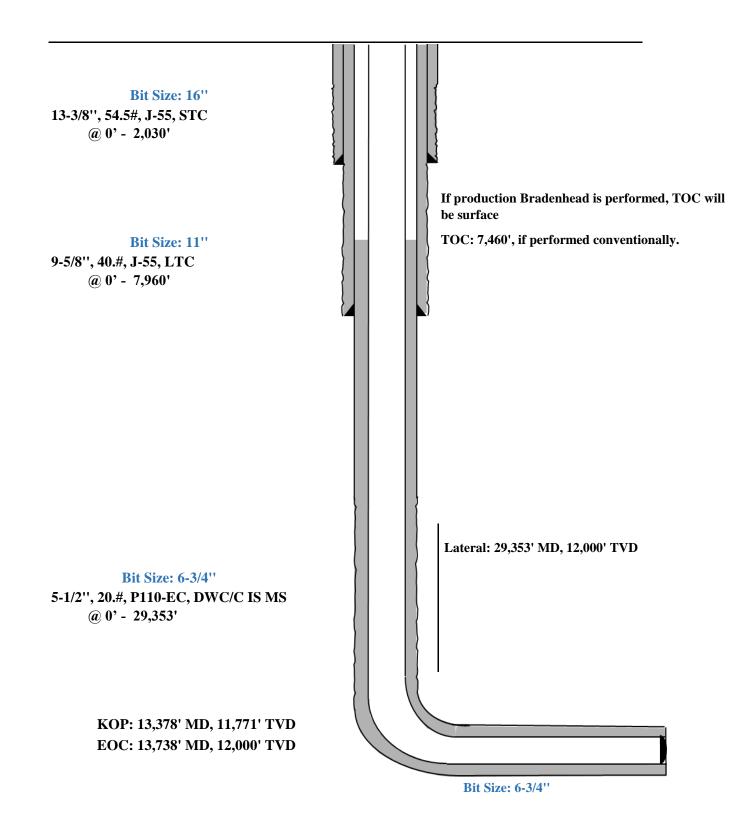
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Seog resources

Shallow Design A

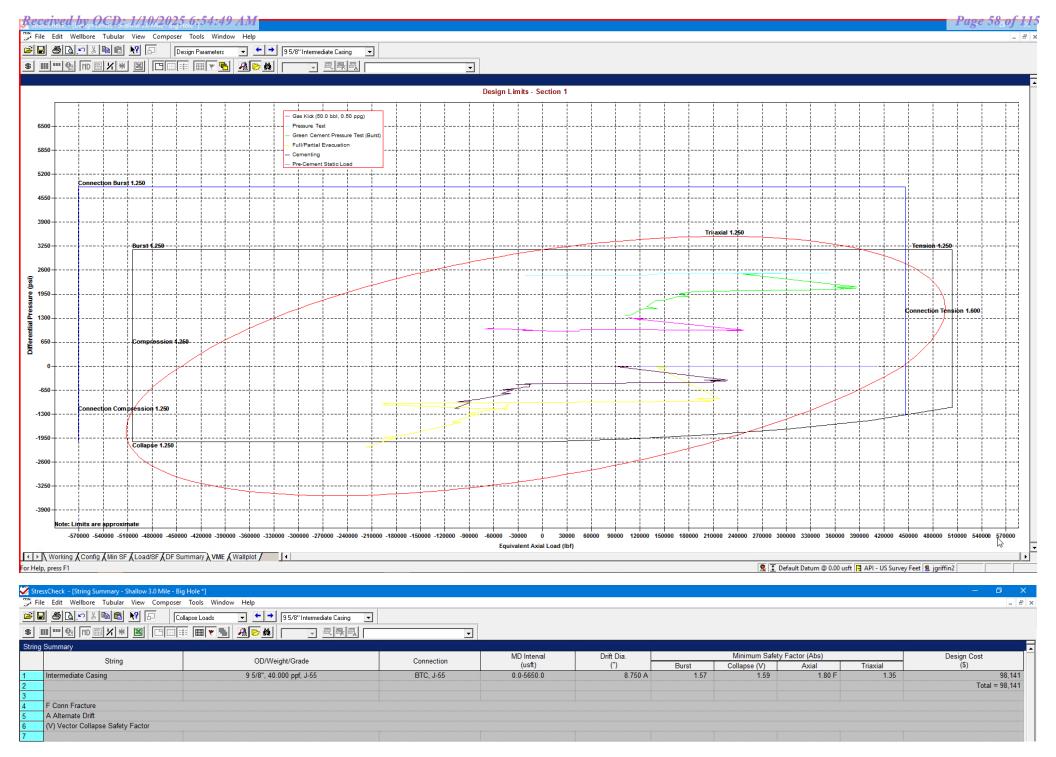
Proposed Wellbore

KB: 3558' GL: 3533'

•

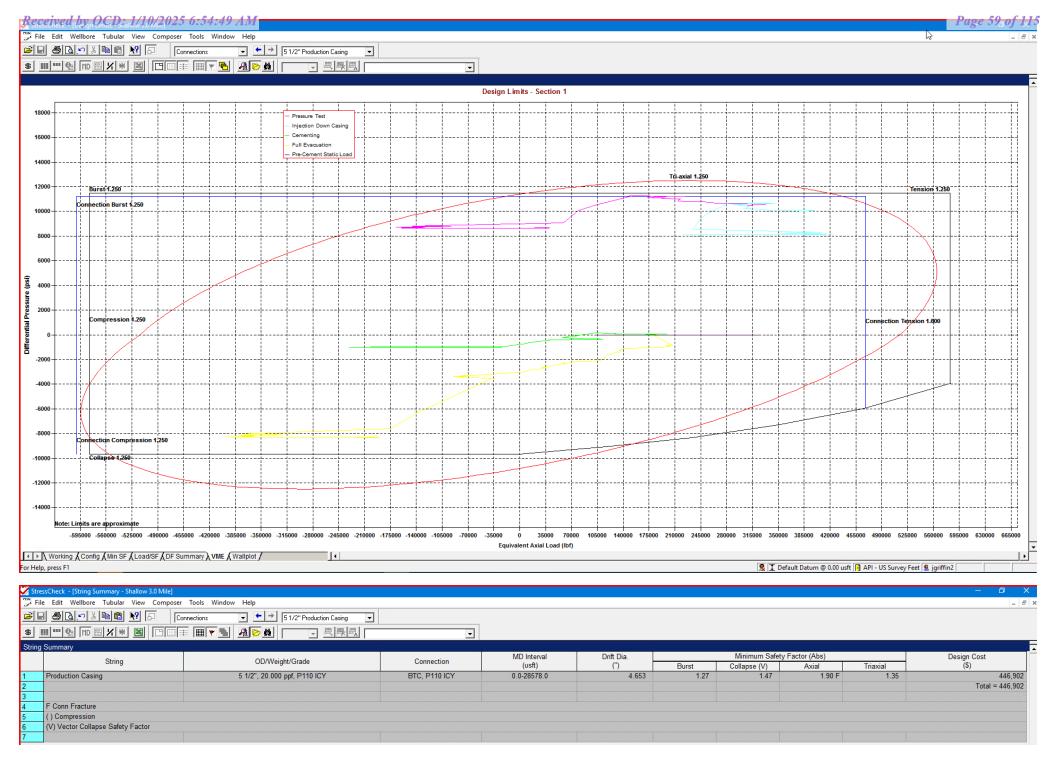
Received by OCD: 1/10/2025 6:54:49 AM File Edit Wellbore Tubular View Composer Tools Window Help

▼ ← → 95/8" Intermediate Casing ▼


100 2 100 2 1700 3 1700 3 1850 3 1950 3 2050 3 2300 2 2300 2 2370 2 2700 3 3100 3700 3700 4650 49900 4900		248466 235716 352253 323488 348440 329984 332475 324756 320295 315965 163658 164252	Bending Stress at OD (psi) 2098.2 2098.2 986.2 17627.2 15131.5 17885.2 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	Triaxial 1.69 1.69 1.71 1.53 1.58 1.51 1.54 1.52 1.53 1.52 1.53	Burst 1.58 1.58 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	Collapse (V) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Axial 2.82 F 2.88 F 3.04 F 2.09 F 2.28 F 2.12 F 2.24 F 2.23 F 2.23 F 2.28 F	Temperature (°F) 70.00 71.10 71.10 88.70 88.70 90.29 90.29 90.29 91.30	Internal 2500.00 2543.63 32543.64 3241.64 3241.65 3305.05 3305.05 3305.05 3344.87 3344.87	External 0.00 43.63 43.64 741.64 741.65 805.05 805.05 805.05 844.87 844.87	Addt'l Pickup To Prevent Buck. (lbf) N/A	Buckled Length (usft) N/A
100 2 1700 3 1700 3 1850 3 1850 3 1950 3 2050 3 2300 3 2370 3 2700 3 3100 3 3700 3 3700 3 3100 4 4650 4900	247735 223702 234996 223701 341565 139667 312979 139666 336881 132027 318549 132027 320468 127243 307858 122773 303560 122772 151294 112633 132741 112633 122996 109686 127909 107800	248466 235716 352253 323488 348440 329984 332475 324756 320295 315965 163658 164252	2098.2 966.2 17627.2 15131.5 17885.2 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.69 1.71 1.53 1.58 1.51 1.54 1.52 1.53 1.52 1.53	1.58 1.58 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	N/A N/A N/A N/A N/A N/A N/A	2.88 F 3.04 F 2.09 F 2.28 F 2.12 F 2.24 F 2.23 F 2.28 F	71.10 71.10 88.70 90.29 90.29 91.30 91.30	2543.63 2543.64 3241.64 3241.65 3305.05 3305.06 3344.87	43.63 43.64 741.64 741.65 805.05 805.06 844.87	N/A	N/A
100 2 1700 3 1700 3 1850 3 1850 3 1950 3 2050 3 2300 3 2370 3 3100 3 3700 3 3700 3 3700 3	234996 223701 341565 139667 312979 139666 335681 132027 318549 132027 312602 12743 312802 127243 307858 122773 303560 122772 151294 112633 132741 12653 1229966 109858 127990 107800	236716 362253 323488 334840 329984 332475 324756 324756 324756 320295 315965 163658 163658 144956	986.2 17627.2 15131.5 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.71 1.53 1.58 1.51 1.54 1.52 1.53 1.52 1.53	1.58 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	N/A N/A N/A N/A N/A N/A	3.04 F 2.09 F 2.28 F 2.12 F 2.24 F 2.23 F 2.28 F	71.10 88.70 90.29 90.29 91.30 91.30	2543.64 3241.64 3241.65 3305.05 3305.06 3344.87	43.64 741.64 741.65 805.05 805.06 844.87		
1700 1 1700 1 1850 1 1850 1 1950 1 2050 2 2050 2 2300 2 2300 2 2370 2 2700 2 2700 2 2700 2 3100 3 3100 3 3700 3 37	341565 139667 312979 139666 336881 132027 318549 132027 320468 127243 312802 127243 307858 122773 303560 122772 303560 122772 151294 112633 132741 112633 122906 109858 122909 107800	352253 323488 348440 329984 3324756 324756 320295 315965 165658 144956 142452	17627.2 15131.5 17885.2 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.53 1.58 1.51 1.54 1.52 1.53 1.52 1.53	1.67 1.67 1.57 1.57 1.67 1.67 1.67 1.67	N/A N/A N/A N/A N/A N/A	2.09 F 2.28 F 2.12 F 2.24 F 2.23 F 2.28 F	88.70 88.70 90.29 90.29 91.30 91.30	3241.64 3241.65 3305.05 3305.06 3344.87	741.64 741.65 805.05 805.06 844.87		
1700 1850 1850 1850 2050 2050 2050 2300 2370 2370 2700 3100 3700 3700 4650 4900	312979 139666 336881 132027 318549 132027 320468 12724 312802 127243 307858 122772 151294 112633 132741 112633 122996 109865 1227909 107800	323488 348440 329984 332475 324756 320295 315965 163658 144956 142452	15131.5 17885.2 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.58 1.51 1.54 1.52 1.53 1.52 1.53	1.57 1.57 1.57 1.57 1.57 1.57 1.57	N/A N/A N/A N/A N/A	2.28 F 2.12 F 2.24 F 2.23 F 2.28 F	88.70 90.29 90.29 91.30 91.30	3241.65 3305.05 3305.06 3344.87	741.65 805.05 805.06 844.87		
1850 3 1850 3 1950 3 2050 3 2050 3 2300 3 2370 3 2700 3 3100 3 3700 3 3100 4 34650 4	336881 132027 318549 132027 320468 127243 307858 122772 303560 122772 151294 112633 1329966 109858 1227909 107800	348440 329984 332475 324756 320295 315965 163658 144956 142452	17885.2 16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.51 1.54 1.52 1.53 1.52 1.53	1.57 1.57 1.57 1.57 1.57 1.57	N/A N/A N/A N/A	2.12 F 2.24 F 2.23 F 2.28 F	90.29 90.29 91.30 91.30	3305.05 3305.06 3344.87	805.05 805.06 844.87		
1850 3 1950 3 1950 3 2050 3 2300 3 2370 3 2700 3 3100 3 3700 3 3700 3 34650 4	318549 132027 320468 127243 312802 127243 307858 122773 303560 122772 151294 112633 132966 109858 122909 107800	329984 332475 324756 320295 315965 163658 144956 142452	16284.8 16869.9 16200.7 16159.3 15784.1 3375.4	1.54 1.52 1.53 1.52 1.53	1.57 1.57 1.57 1.57 1.57	N/A N/A N/A	2.24 F 2.23 F 2.28 F	90.29 91.30 91.30	3305.06 3344.87	805.06 844.87		
1950 3 1950 3 2050 3 2050 3 2300 3 2370 3 2700 3 3100 3 3700 4650 4900 4900	320468 127243 312802 127243 307858 122773 303560 122772 151294 112633 132741 112633 129966 109858 127999 107800	332475 324756 320295 315965 163658 144956 142452	16869.9 16200.7 16159.3 15784.1 3375.4	1.52 1.53 1.52 1.53	1.57 1.57 1.57	N/A N/A	2.23 F 2.28 F	91.30 91.30	3344.87	844.87		
1950 3 2050 3 20300 3 2370 3 2370 3 2700 3 3100 3 3700 3 3700 3 3700 3 34650 4900	312802 127243 307858 122773 303560 122772 151294 112633 132741 112633 122996 109858 127909 107800	324756 320295 315965 163658 144956 142452	16200.7 16159.3 15784.1 3375.4	1.53 1.52 1.53	1.57 1.57	N/A	2.28 F	91.30				
2050 3 2050 3 2300 3 2300 3 2370 3 2370 3 2700 3 2700 3 3100 3 3100 3 3700 3 3700 3 3700 4 650 4900 3	307858 122773 303560 122772 151294 112633 132741 112633 129966 109856 127909 107800	320295 315965 163658 144956 142452	16159.3 15784.1 3375.4	1.52 1.53	1.57				3344.87	844.87		
2050 3 2300 7 2300 7 2370 7 2700 7 2700 7 3100 7 3100 7 3100 3 3700 3700 3700 4 650 4900 7	303560 122772 151294 112633 132741 112633 129966 109858 127909 107800	315965 163658 144956 142452	15784.1 3375.4	1.53		N/A						
2300 2300 2370 2370 2700 3100 3100 3700 3700 4650 4900	151294 112633 132741 112633 129966 109858 127909 107800	163658 144956 142452	3375.4				2.32 F	92.23	3381.89	881.89		
2300	132741 112633 129966 109858 127909 107800	144956 142452				N/A	2.35 F	92.23	3381.89	881.89		
2370	129966 109858 127909 107800	142452	1755.6	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2370 2700 2700 2700 2700 2700 2700 2700	127909 107800			1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2700 2700 3100 3100 3700 3700 4650 4900			1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2700	105515 94232		1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
3100			985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
3100 3700 3700 4650 4900	111680 94231		1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3700 3700 4650 4900	110766 77783		2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3700 4650 4900	97392 77783		1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
4650 4900	71565 53303		1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
4900	60887 53302		662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	34671 14219		1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	44595 4828 28975 4828		3472.0 2108.2	1.59 1.62	1.61 1.61	N/A	16.01 F 24.64 F	116.32 116.32	4337.37 4337.38	1924.87 1924.87		
4900			1926.8	1.62	1.61	N/A N/A	24.64 F 32.30 F	116.32	4337.38	1924.87		
5029 5029	22103 34 22102 33		1926.8	1.61	1.61	N/A N/A	32.30 F	117.40	4380.41	1969.94		
	-45329 -21341		2094.3	1.57	1.61	N/A N/A	(13.67)	122.23	4572.11	2170.78		
	-40465 -23210		1506.5	1.57	1.62	N/A N/A	(15.87)	122.25	4572.11	2170.78		
5050	-40405 -23210	-10007	1500.5	1.00	1.02		(15.51)	122.00	4000.07	2 100.34		
F Conn Fractur												
() Compression												
	apse Safety Factor											

For Help, press F1

🕵 I Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

Page 6 of 31

Shallow Design B

Hole	Interv	al MD	Interval TVD		Csg							
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC				
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC				
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS				

4. CASING PROGRAM

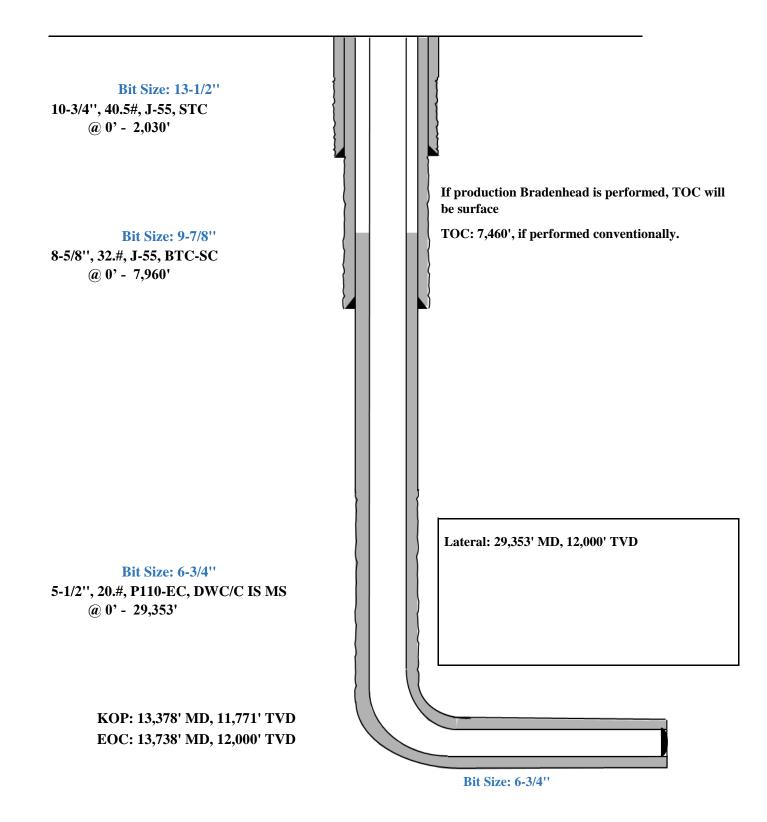
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' ^{8-5/8''}	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

Shallow Casing Design B

Proposed Wellbore KB: 3558'

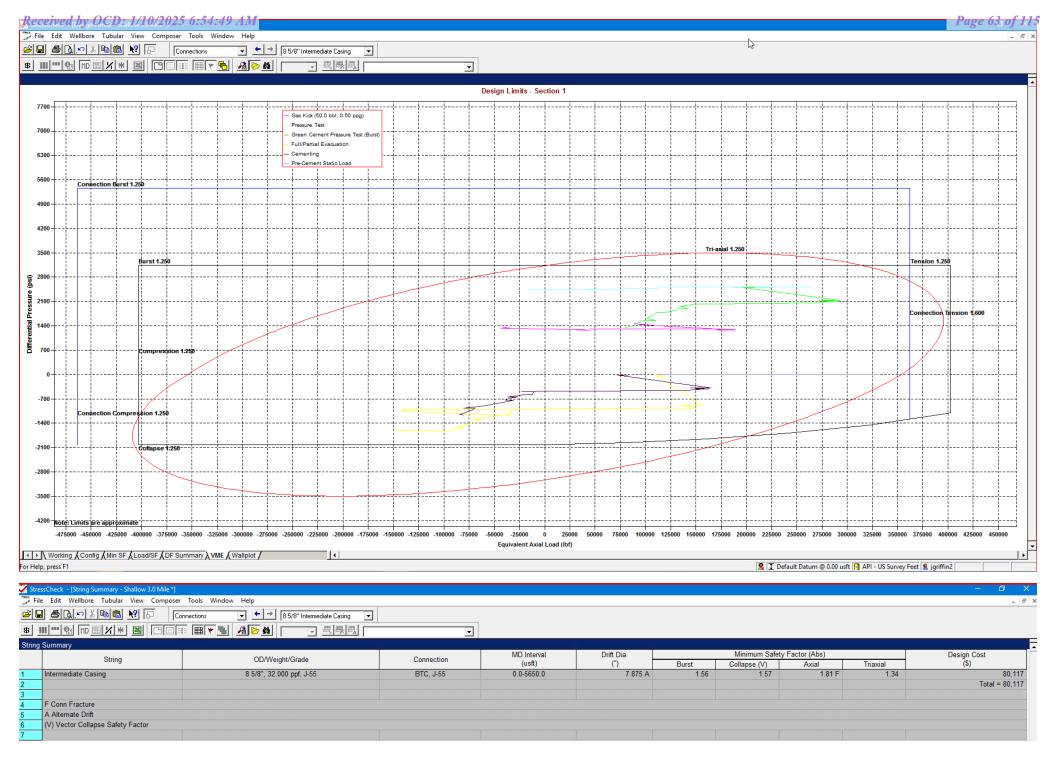
StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

File Edit Wellbore Tubular View Composer Tools Window Help

Image: Image

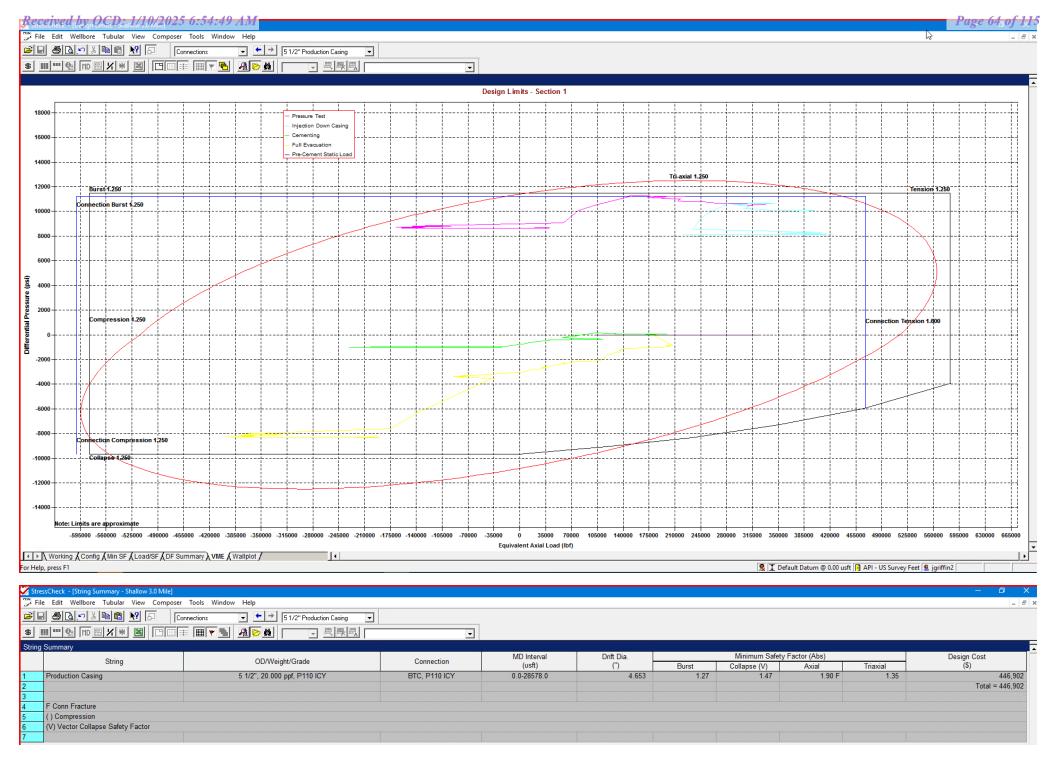
Depth (MD)		Axial F	orce (lbf)	5 . L .			Absolute S	afety Factor		T .	Pressu	re (psi)		D 11 1
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (Ibf)	Buckled Length (usft
_	0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
	1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
	1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
	1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
	1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
	1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
	1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
	2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
	2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
	2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
	2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
	2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
	2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
	2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
	2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
	3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
	3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
	3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
	4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
	4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
	4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
	4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
	5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
	5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
	5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
	5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
	F (Conn Fracture												
	()	Compression												
	(V) \	/ector Collapse Safety	/ Factor											

For Help, press F1


🙎 I Default Datum @ 0.00 usft 📔 API - US Survey Feet 😫 jgriffin2

Page 62 of 115

_ 8 :


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

Page 11 of 31

Shallow Design C

 C		NOUNA						
Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

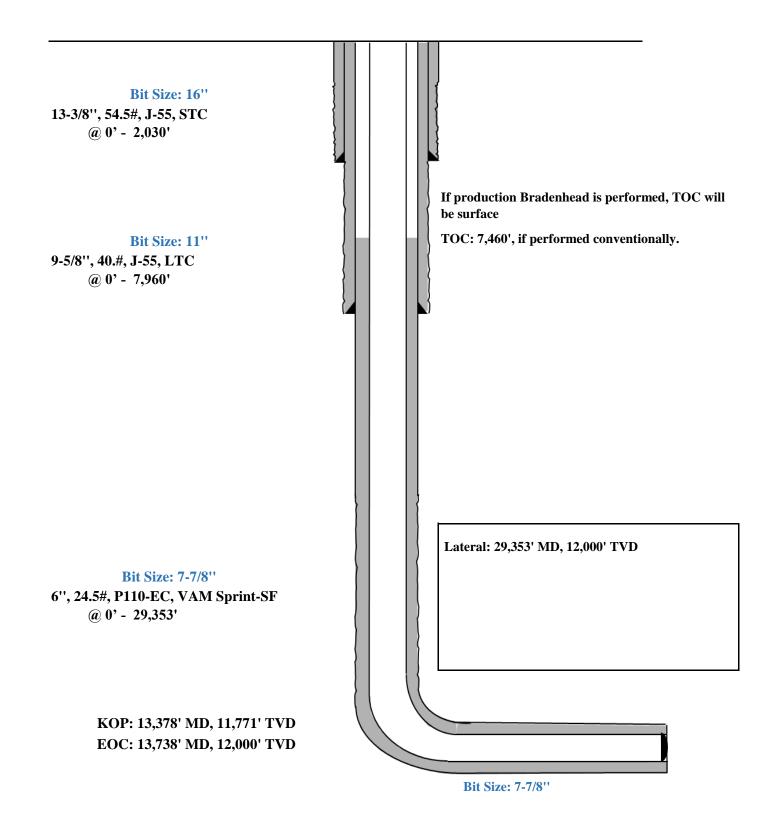
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Siury Description
2,030'	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%
				Sodium Metasilicate (TOC @ 1830')
8,050'	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC
9-5/8''				@ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%
6''				Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of
				Brushy)


5. CEMENTING PROGRAM:

Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'

Released to Imaging: 1/17/2025 1:21:49 PM

FI B C S B

Triaxial Results

Received by OCD: 1/10/2025 6:54:49 AM

File Edit Wellbore Tubular View Composer Tools Window Help

1

Axial Force (lbf

▼ ← → 95/8" Intermediate Casing ▼

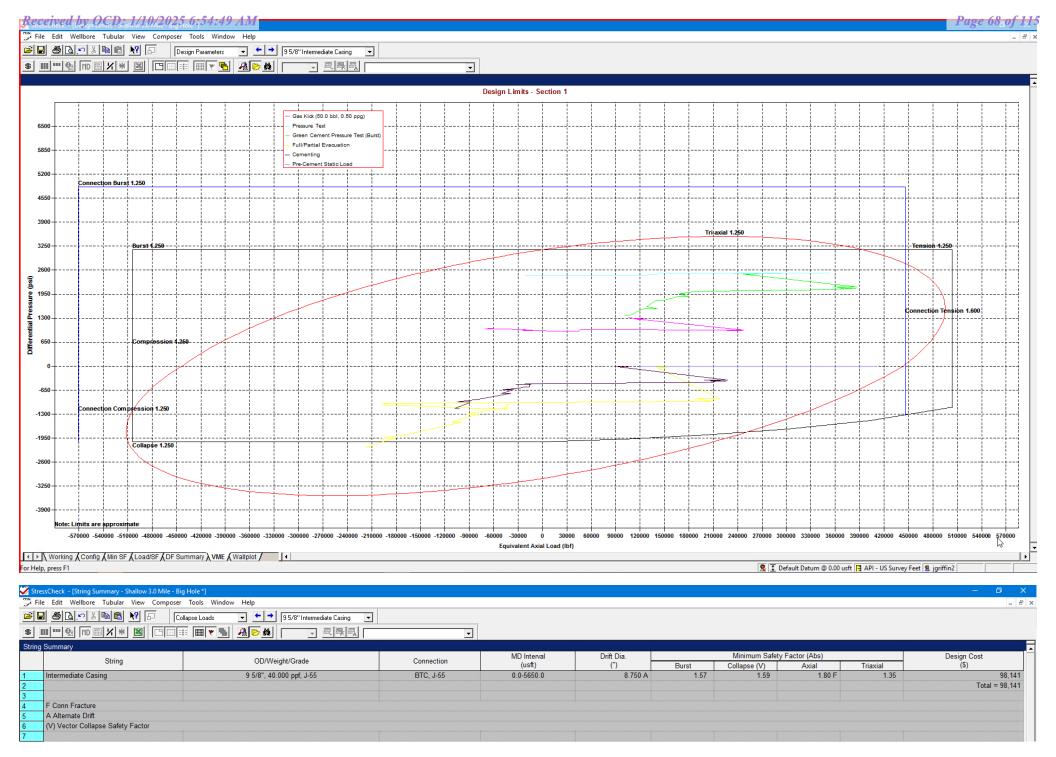
	Depth (MD)	Axial F	orce (IDI)	Equivalent	Bending Stress		Absolute 5	aloty r dotor		Temperature	Pressure (psi)		Addt'l Pickup To Buckled	
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft)
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100		223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100		223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700		139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700		139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850		132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950		127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950		127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050		122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050		122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300		112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300		112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370		109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370		107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
		Conn Fracture												
		Compression												
	(\vee)	Vector Collapse Safety	/ Factor											
8 9 0 1 2 3		: !												

Absolute Safety Factor

-

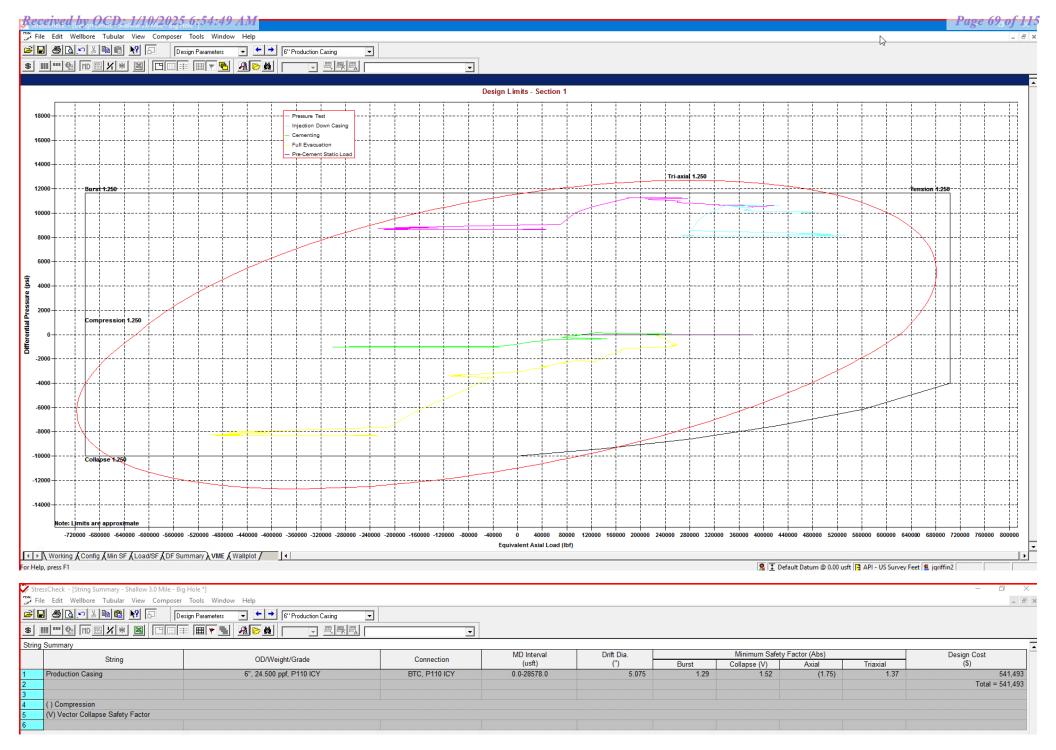
✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1

🤶 🛨 Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


Pressure (psi)

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


Released to Imaging: 1/17/2025 1:21:49 PM

Page 67 of 1

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

Shallow Design D

	le Interval MD Interval TVD Csg											
Hole	Interv	al MD	Interva	Interval TVD								
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC				
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC				
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS				
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS				

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

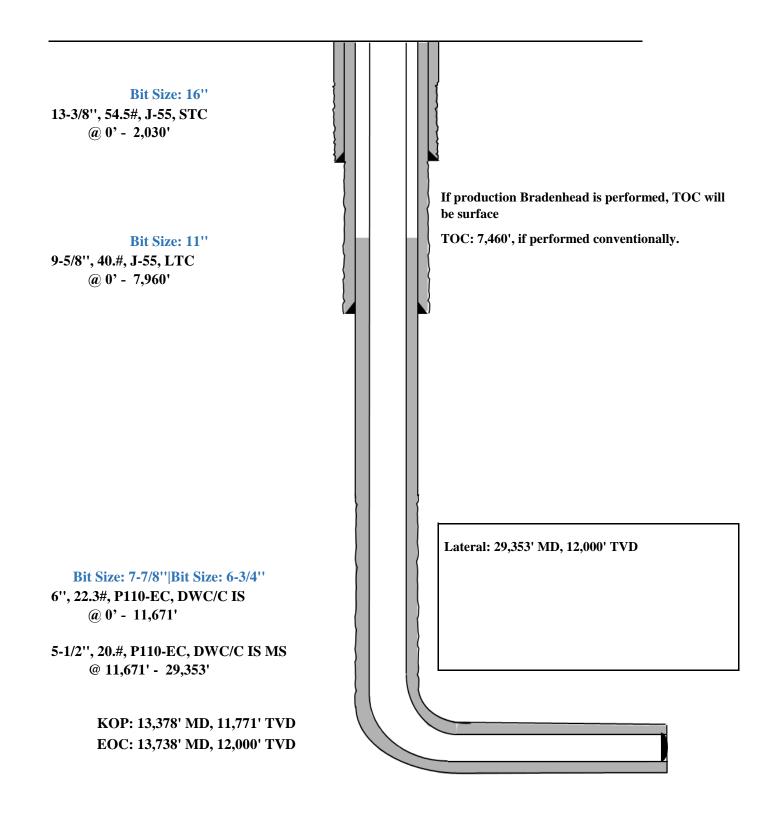
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description				
Depth	No. Sacks	ppg	Ft3/sk					
2,030'	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-				
13-3/8''				Flake (TOC @ Surface)				
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%				
				Sodium Metasilicate (TOC @ 1830')				
8,050'	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC				
9-5/8''				@ Surface)				
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')				
29,353'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%				
6''				Bentonite Gel (TOC @ surface)				
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%				
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of				
				Brushy)				


5. CEMENTING PROGRAM:

Seog resources

Shallow Design D

Proposed Wellbore

KB: 3558' GL: 3533'

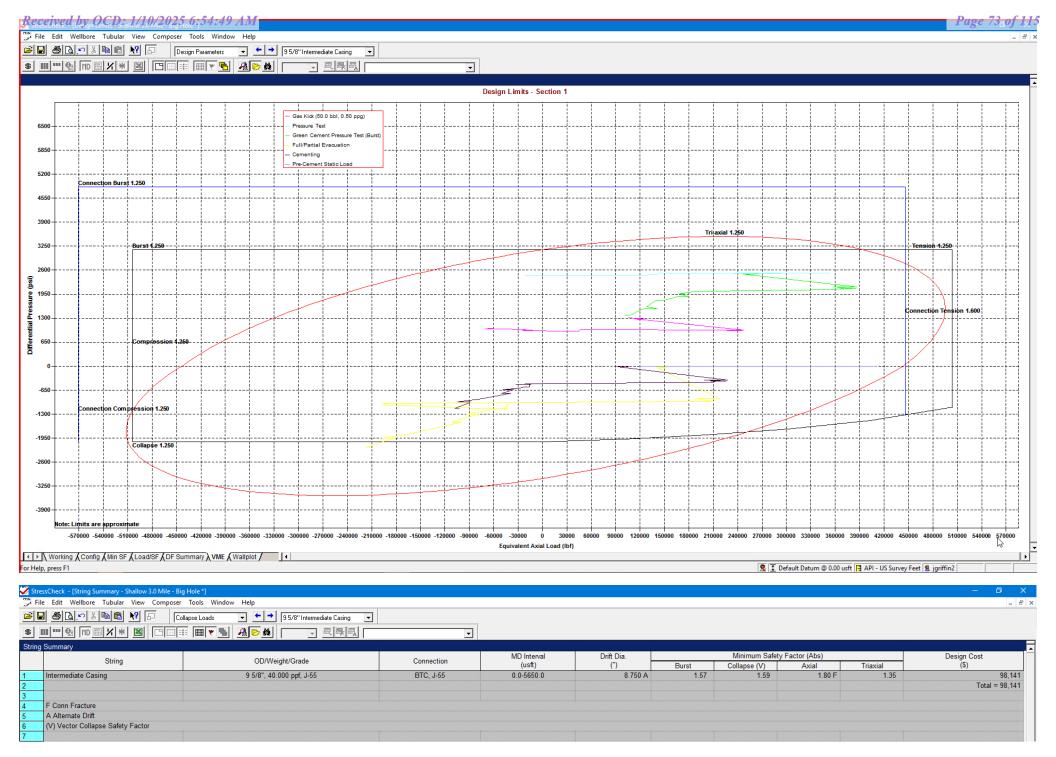
File Edit Wellbore Tubular View Composer Tools Window Help

🖻 🖬 🚳 🖪 💀 🗴 🛍 💼 🕺 🕞

▼ ← → 95/8" Intermediate Casing ▼

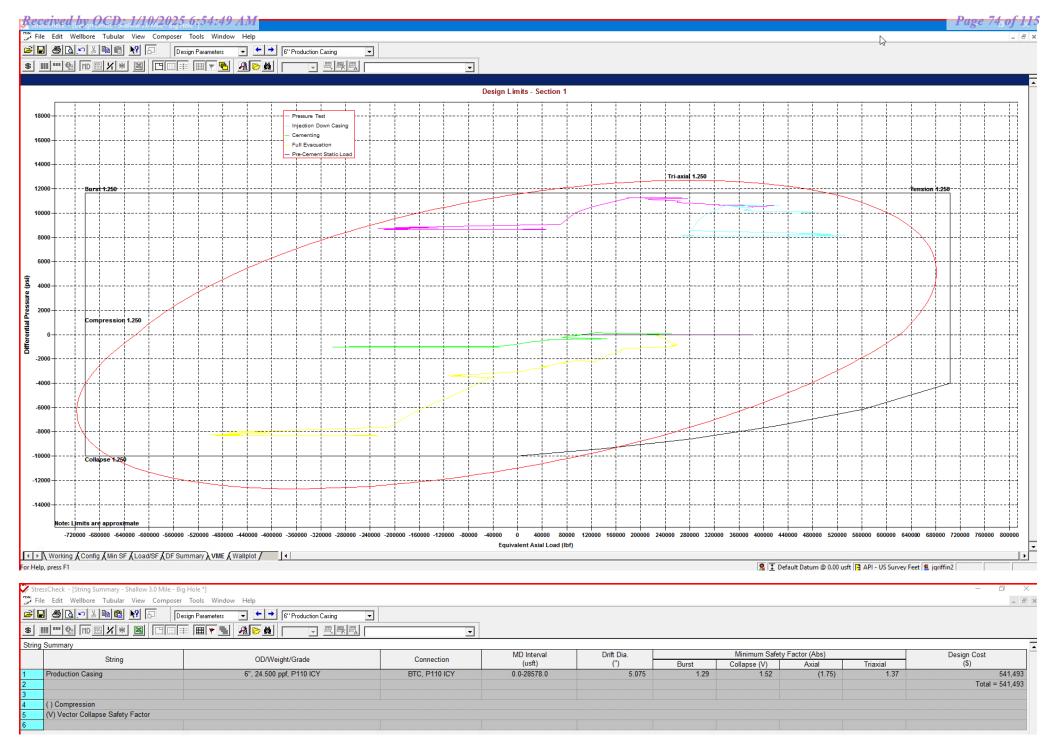
Depth (MD)		Envirolant	Destine Observe	Absolute Safety Factor				T	Pressure (psi)		Addt'l Pickup To	Buckled		
(usft)	,	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (Ibf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57 1.57	N/A N/A	2.35 F	92.23	3381.89	881.89		
	2300 2300	151294	112633 112633	163658 144956	3375.4 1755.6	1.71 1.72	1.57	N/A N/A	4.72 F 5.38 F	94.35 94.35	3466.13 3466.14	966.13 966.14		
	2300	132741 129966	109858	144956	1755.6	1.72	1.57	N/A N/A	5.30 F	94.95	3489.28	989.28		
	2370	129900	107800	142452	1755.6	1.72	1.57	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	140322	985.1	1.75	1.60	N/A N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	FC	Conn Fracture												
		Compression												
	(V) V	/ector Collapse Safety	Factor											

•

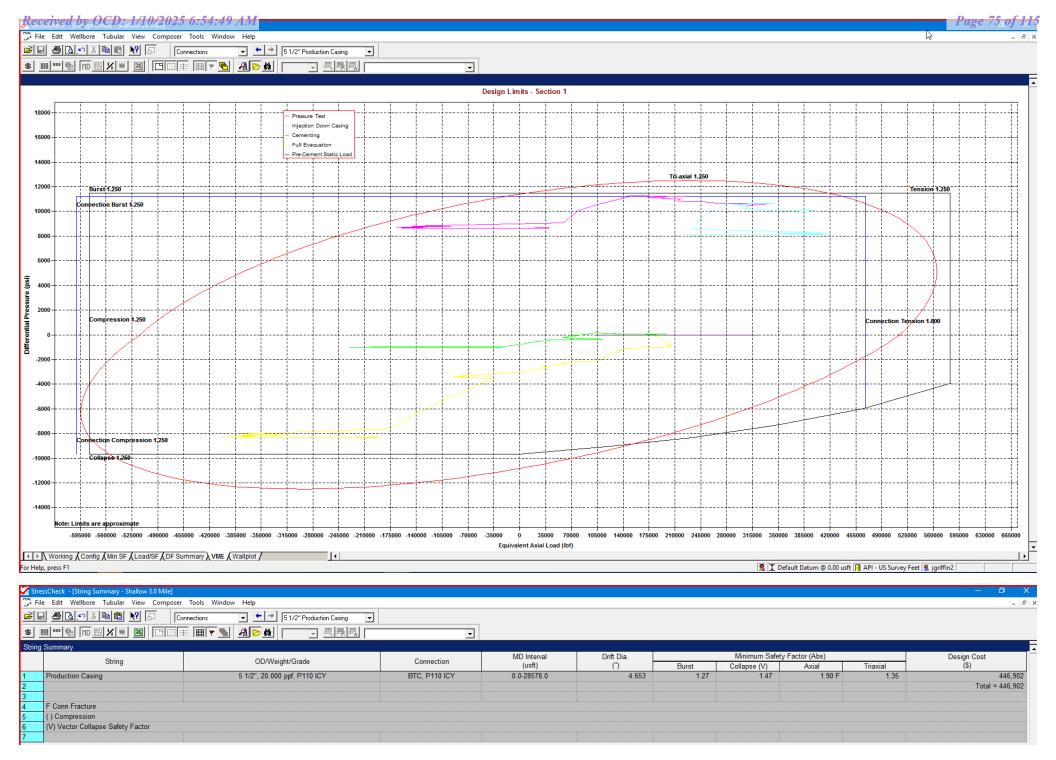

✓ Working & Config & Min SF Load/SF & DF Summary & VME & Wallplot / For Help, press F1

🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2

9-5/8" Intermediate Casing Pressure Test:


Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

Page 72 of 115


*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

Page 22 of 31

CASING PROGRAM

1

Seog resources

Shallow Casing Design E

Hole	Interval MD Interval TVD		Interval TVD		I MD Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn		
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC		
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC		
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC		
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF		

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

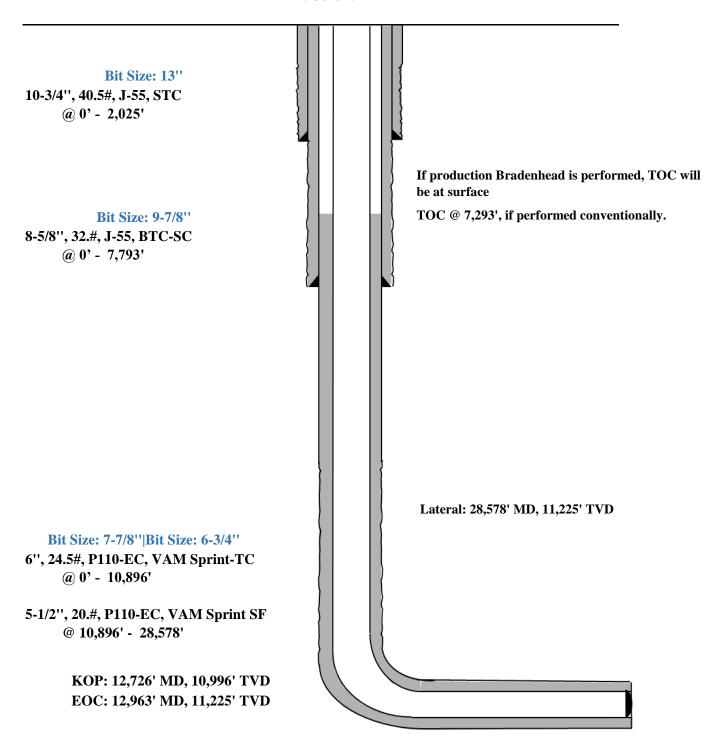
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

	No.	Wt.	Yld	Slurry Description
Depth	Sacks	ppg	Ft3/sk	Sidiry Description
2,030' 10-3/4"	450	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578' _{6"}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')


2. CEMENTING PROGRAM:

Shallow Casing Design E

Proposed Wellbore	KB: 3558'
-------------------	-----------

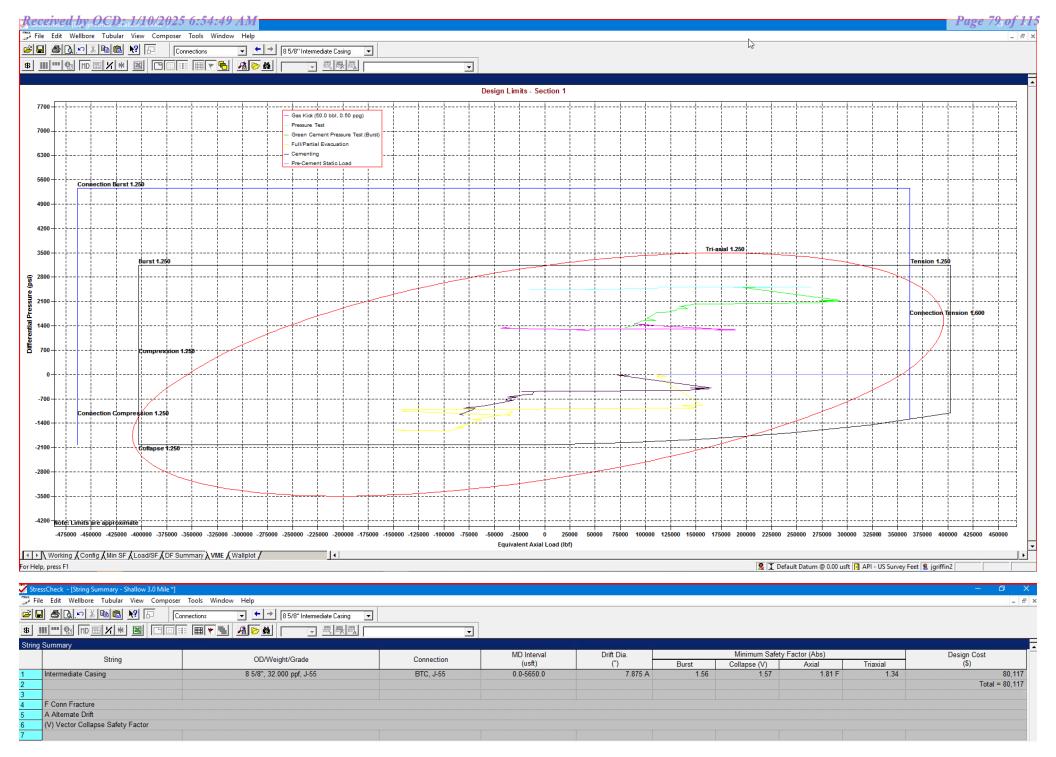
GL: 3533'

API: 30-025-****

_ = ;

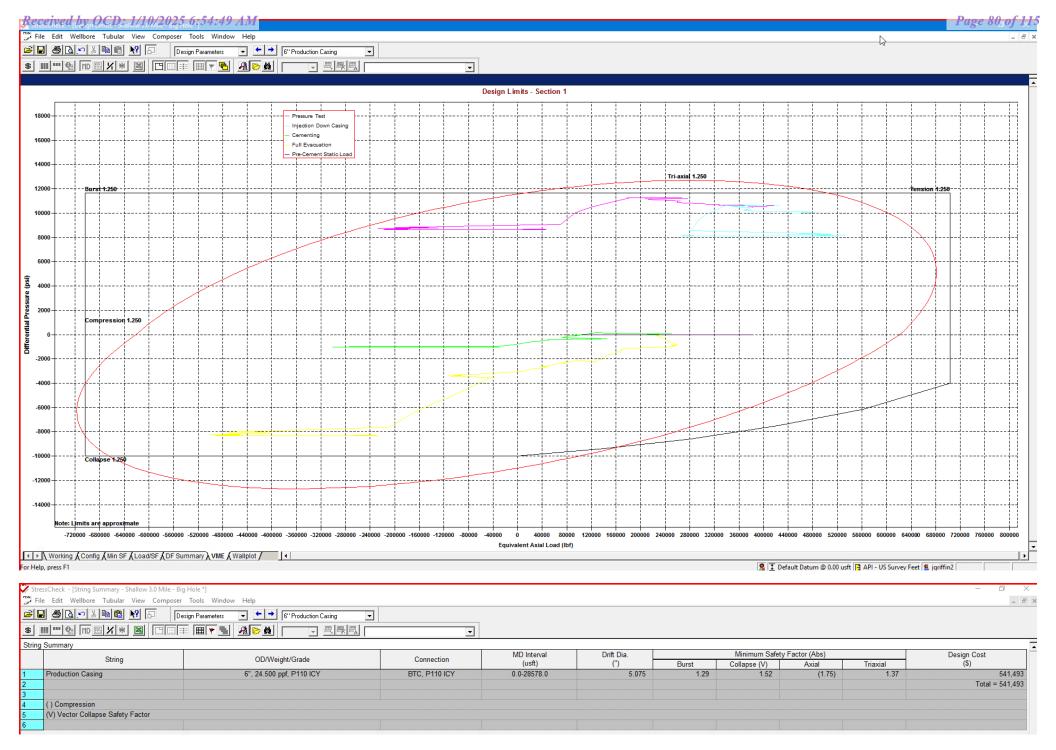
 Image: Image

Depth (MD)	Axial F	Force (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
	0 200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	0 196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	0 187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
17(111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
17(111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
18		105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
18		105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
19		101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
19		101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
20		98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
20		98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
23		90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
23		90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
23		88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
23		86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
27		75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
27		75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
310		62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
310		62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
37		42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
37		42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
40		33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
46		11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
490		4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
490		4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
503		26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
50		26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
56		-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
56	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
	F Conn Fracture												
	() Compression												
	 V) Vector Collapse Safet 	v Factor											
0	vector contapse curet	y i dotoi											

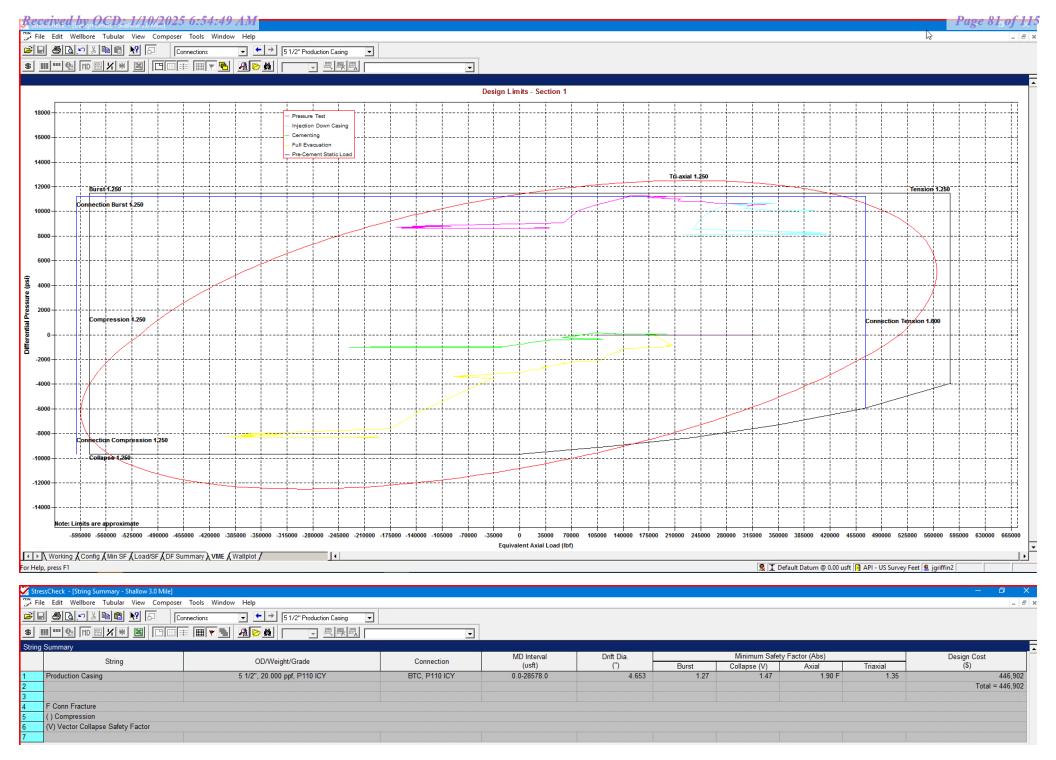

-

For Help, press F1

🕵 I Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 1/17/2025 1:21:49 PM

Page 28 of 31

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

•

Pipe Bodu and API Connections Performance Data Received by OCD: 1/10/2025 6:54:49 AM 13.375 54.50/0.380 J55

Page 85 of 115 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000		-		psi
Maximum Yield Strength	80,000			-	psi
Minimum Tensile Strength	75,000		_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-		in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	-		-	-	in.
Nominal Linear Weight, T&C	54.50	-			lbs/ft
Plain End Weight	52.79				lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00			-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-			3,860	ft-lbs
Released to Imaging: 1/17/2025 1:21:49 PM Maximum Make-Up Torque	-		_	6,430	ft-lbs

Pipe Body and API Connections Performance Data Received by OCD: 1/10/2025 6:54:49 AM 9.625 40.00/0.395 J55

Page 86 of 115 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM	12 C		e	s	
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	=	-	psi
Minimum Tensile Strength	75,000	J			psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	-	27°.)	.	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	=	.	lbs/ft
Plain End Weight	38.97	-	-	-	lbs/ft
Performance	Ріре	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-	÷ :		1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length		11,898	8,665	7,529	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque		-	3,900	3,390	ft-Ibs
Released to Imaging: 1/17/2025 1:21:49 PM Maximum Make-Up Torque	1- 	-	6,500	5,650	ft-lbs

USA	20		IG//G-/E		5
			Connectio	on Data S	hee
OD (in.) WEIGHT (lbs./ft.) WALL (in.) 5.500 Nominal: 20.00 0.361 Plain End: 19.83 19.83	-	RADE P110EC	API DRIFT (in.) RBW% 4.653 87.5	CONNECTIO DWC/C-IS M	
PIPE PROPERTIES			CONNECTION PRO	PERTIES	
Outside Diameter	5.500	in.	Connection Type	Semi-Pren	nium 1
Inside Diameter	4.778	in.	Connection O.D. (nom)	6.115	
Nominal Area	5.828	sq.in.	Connection I.D. (nom)	4.778	
Grade Type	API 5CT		Make-Up Loss	4.125	
Min. Yield Strength	125	ksi	Coupling Length	9.250	
Max. Yield Strength	140	ksi	Critical Cross Section	5.828	S
Min. Tensile Strength	135	ksi	Tension Efficiency	100.0%	of
Yield Strength	729	klb	Compression Efficiency	100.0%	of
Ultimate Strength	787	klb	Internal Pressure Efficiency	100.0%	of
Min. Internal Yield	14,360	psi	External Pressure Efficiency	100.0%	of
Collapse	12,090	psi			
CONNECTION PERFORMA	NCES		FIELD END TORQUE	VALUES	
Yield Strength	729	klb	Min. Make-up torque	16,100	
Parting Load	787	klb	Opti. Make-up torque	17,350	
Compression Rating	729	klb	Max. Make-up torque	18,600	i
Min. Internal Yield	14,360	psi	Min. Shoulder Torque	1,610	
External Pressure	12,090	psi	Max. Shoulder Torque	12,880	
Maximum Uniaxial Bend Rating	104.2	°/100 ft	Min. Delta Turn	-	Τι
Reference String Length w 1.4 Design Factor	26,040	ft	Max. Delta Turn	0.200	Τι
			Maximum Operational Torque	21,100	1
			Maximum Torsional Value (MTV)	23,210	1

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Date: 12/03/2019 Time: 06:19:27 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Pipe Body and API Gannactions Performance Data

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

USC 🔵 Metric

6/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-			in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Released to Imaging: 1/17/2025 1:21:49 PM Maximum Make-Up Torque	-	-	-	5,250	• ft-lbs

API 5CT. 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT (WALL	(in)	GR/	ADE	*API DR	FT (in)	RBW	/ %
8.625	Nominal: Plain End:	32.00 31.13	0.352		J5	55	7.79	96	87.	5
ľ	Material Proper	ties (PE)					Pipe Body	y Data (I	PE)	
	Pipe						Geo	metry		
Minimum Y	Yield Strength:	55	ksi		Nomin	al ID:			7.92 i	nch
Maximum	Yield Strength:	80	ksi		Nomin	al Area	1:		9.149 j	n ²
Minimum 7	Tensile Strength	: 75	ksi		*Speci	al/Alt. [Drift:		7.875 i	nch
	Couplin	g		1			Perfo	rmance		
Minimum Y	Yield Strength:	55	ksi		Pipe B	ody Yi	eld Streng	jth:	503 k	kips
Maximum	Yield Strength:	80	ksi		Collap	se Res	istance:		2,530 p	osi
					Internal	Yield Pr	essure:			_
Minimum 7	Tensile Strength	: 75	ksi			storical)			3,930 p	osi
Minimum 1	API Connectio	on Data	ksi			storical)		ction To		osi
Minimum 7		on Data 9.625"	ksi			storical) Al	PI Connee STC Torc		orque	osi
	API Connection	on Data 9.625"				storical) Al	PI Conne		orque	
STC Interr	API Connection Coupling OD: STC Perform	on Data 9.625" nance 3,930			(API His	storical) Af	PI Connee STC Torc	que (ft-ll	orque os)	
STC Interr	API Connection Coupling OD: S STC Perform nal Pressure:	on Data 9.625" nance 3,930 372	psi		(API His	storical) AF 2,793	PI Connee STC Torc	q ue (ft-II 3,724	orque os) Max:	
STC Interr STC Joint	API Connection Coupling OD: S STC Perform nal Pressure: Strength:	on Data 9.625" nance 3,930 372	psi kips		(API His	storical) AF 2,793	PI Conne STC Toro Opti:	q ue (ft-II 3,724	orque os) Max:	4,65 5,21
STC Interr STC Joint	API Connection Coupling OD: S STC Perform nal Pressure: Strength: LTC Perform nal Pressure:	on Data 9.625" nance 3,930 372 nance 3,930	psi kips		(API His	storical) AF 2,793	PI Conne STC Torc Opti: LTC Torc	que (ft-II 3,724 que (ft-II	orque os) Max: os)	4,65
STC Interr STC Joint LTC Intern LTC Joint	API Connection Coupling OD: S STC Perform nal Pressure: Strength: LTC Perform nal Pressure:	on Data 9.625" hance 3,930 372 hance 3,930 417	psi kips psi kips		(API His	storical) AF 2,793 3,130	PI Conne STC Torc Opti: LTC Torc	que (ft-ll 3,724 que (ft-ll 4,174	orque os) Max: os) Max:	4,6
STC Interr STC Joint LTC Intern LTC Joint SC-BTC F	API Connection Coupling OD: S STC Perform nal Pressure: Strength: LTC Perform nal Pressure: Strength:	on Data 9.625" hance 3,930 372 hance 3,930 417	psi kips psi kips 9.125"		(API His	storical) AF 2,793 3,130	PI Conne STC Torc Opti: LTC Torc Opti:	que (ft-II 3,724 que (ft-II 4,174 que (ft-II	orque DS) Max: DS) Max:	4,65 5,2

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

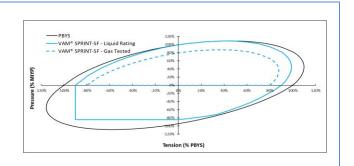
VALLOUREC STAR 8.625 32# J55

Issued on: 10 Feb. 2021 by Wesley Ott

LANG STPERINT-SSF
Connection Data Sheet

OD	Weight (Ib/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50 Plain End: 23.95	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANC		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70			•		-

PIPE PROPEI	RTIES	
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VA	LUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

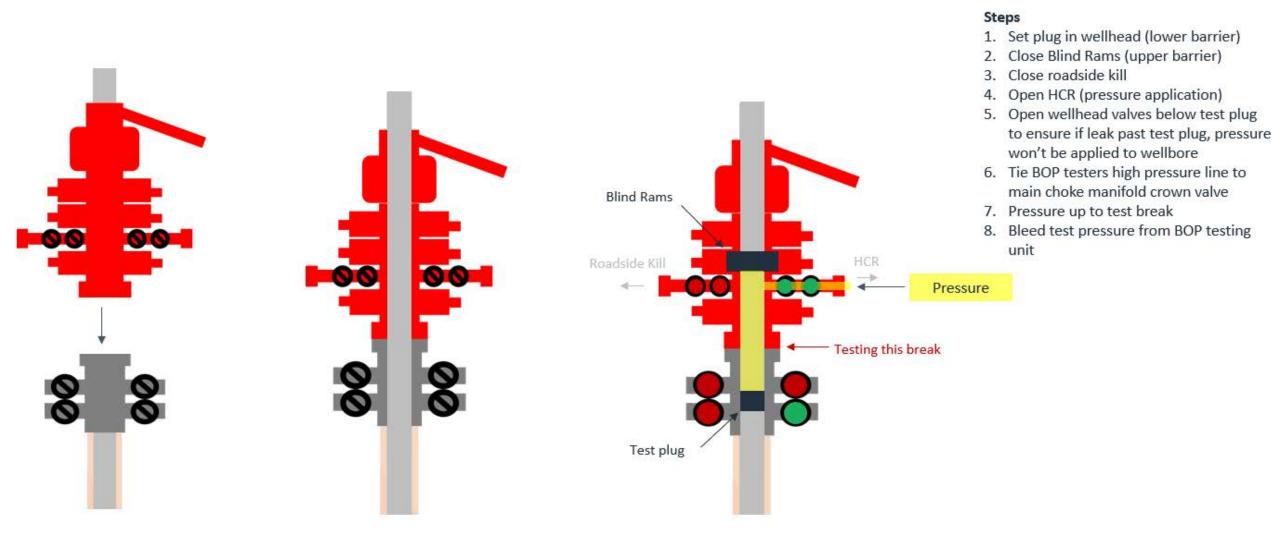
10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values

are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc. 11. DWC connections will accommodate API standard drift diameters.

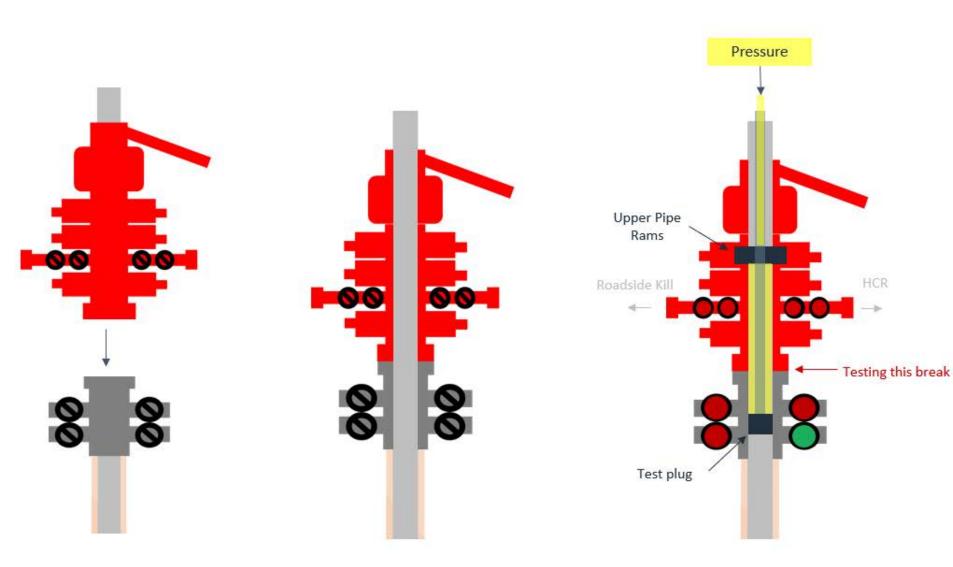
12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

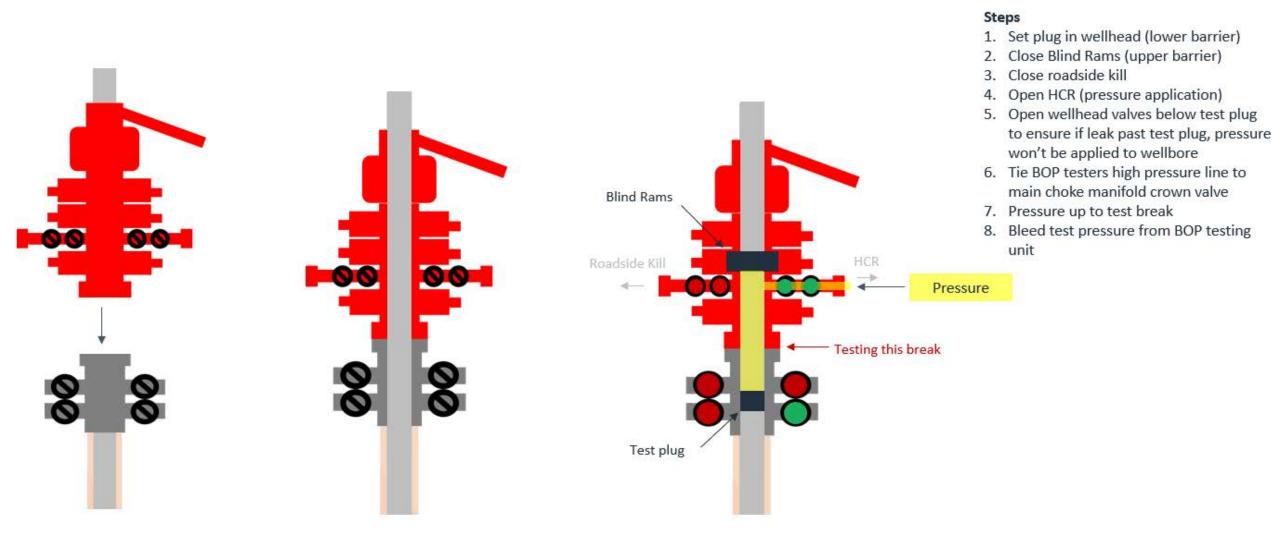
- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

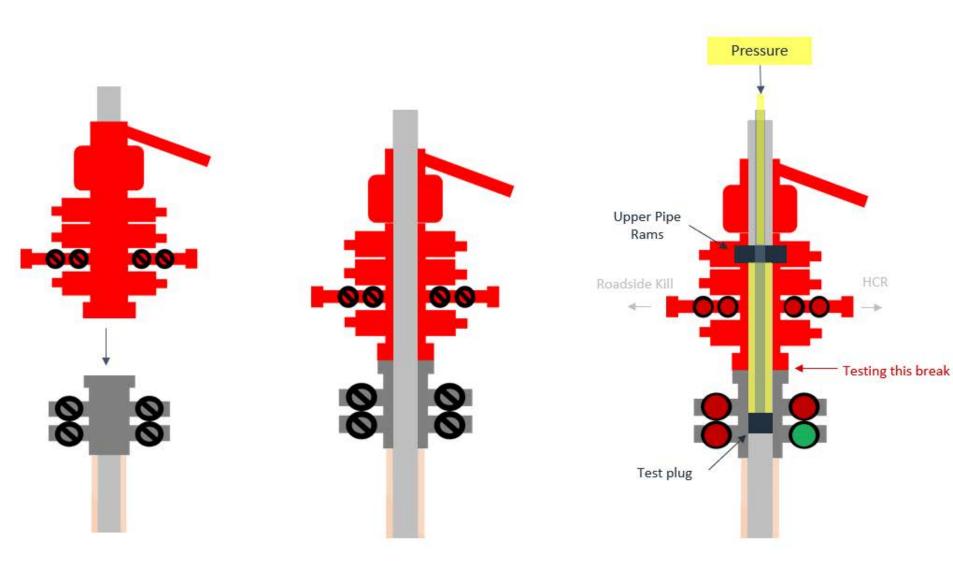
Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

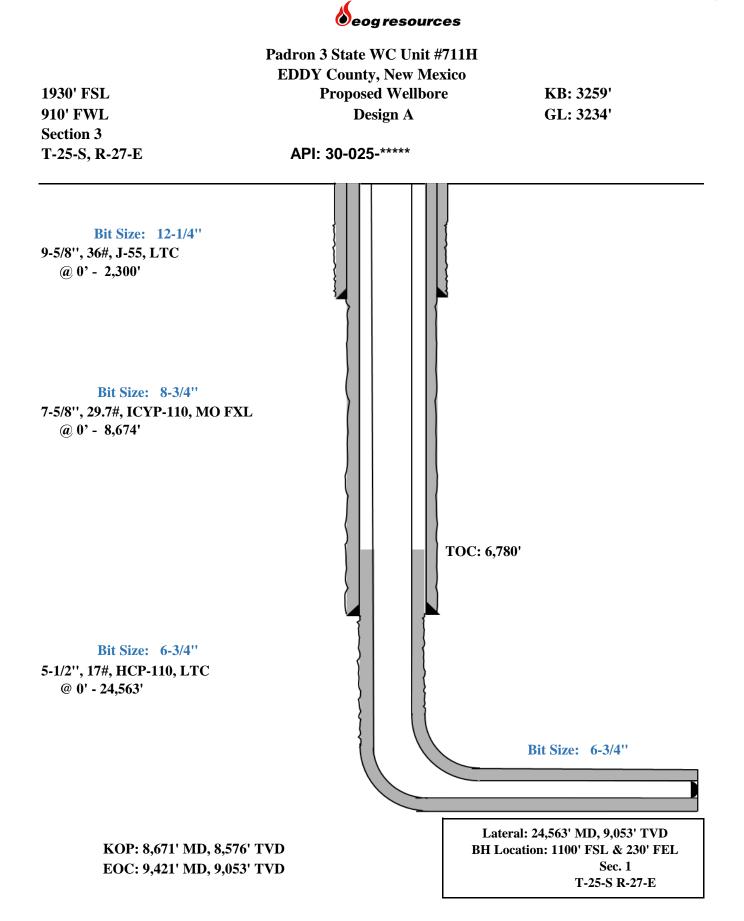


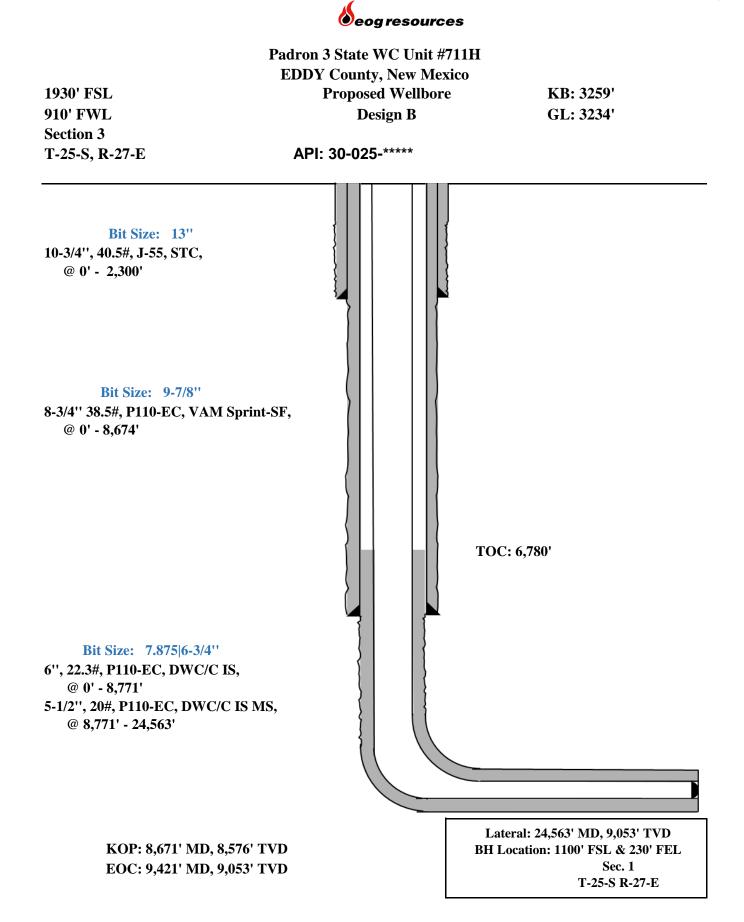
Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:


- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)




Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Padron 3 State WC Unit #711H

Permit Informati

Well Name: Padron 3 State WC Unit #711H

Location:

SHL: 1930' FSL & 910' FWL, Section 3, T-25-S, R-27-E, EDDY Co., N.M.
BHL: 1100' FSL & 230' FEL, Section 1, T-25-S, R-27-E, EDDY Co., N.M.

Design A

Casing Program:

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
12-1/4"	0	2,398	0	2,300	9-5/8"	36#	J-55	LTC
8-3/4"	0	8,674	0	8,576	7-5/8"	29.7#	ICYP-110	MO FXL
6-3/4"	0	24,563	0	9,053	5-1/2"	17#	HCP-110	LTC

Cement Program:

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sturry Description
2,300'	580	13.5	1.73	Class C/H + additives (TOC @ Surface)
2,300	80	14.8	1.34	Class C/H + additives
7,780'	450	14.2	1.11	1st Stage (Tail): Class C/H + additives (TOC @ 3,974')
7,780	1000	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C/H + additives + expansion additives (TOC @ surface)
24,563'	1440	13.2	1.31	Class C/H + additives (TOC @ 7,280')

Mud Program:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,300'	Fresh - Gel	8.6-8.8	28-34	N/c
2,300' - 7,780'	Brine	10.0-10.2	28-34	N/c
7,780' – 8,671'	Water - Gel	8.7-9.4	58-68	N/c - 6
8,671' – 24,563' Lateral	Oil Base	10.0-14.0	58-68	4 - 6

Padron 3 State WC Unit #711H

Design B

CASING PROGRAM

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,398	0	2,300	10-3/4"	40.5#	J-55	STC
9-7/8"	0	8,674	0	8,576	8-3/4"	38.5#	P110-EC	VAM Sprint-SF
7-7/8"	0	8,771	0	8,676	6"	22.3#	P110-EC	DWC/C IS
<u>6-3/4"</u>	0	24,563	0	9,053	5-1/2"	20#	P110-EC	DWC/C IS MS

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above.

Cementing Program:

Depth	No. Sacks	Wt. ppg	Yld Ft3/sk	Slurry Description
2,300' 10-3/4"	540	13.5	1.73	Lead: Class C/H + additives (TOC @ Surface)
	70	14.8	1.34	Tail: Class C/H + additives (TOC @ 2,100')
7,784' 8-3/4"	1020	14.2	1.11	1st Stage (Tail): Class C/H + additives (TOC @ 3,974')
	1000	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C/H + additives + expansion additives (TOC @ surface)
24,563' _{6"}	2390	13.2	1.31	Lead: Class C/H + additives (TOC @ 7,284')

EOG requests a variance to set the intermediate casing shoe in the Bone Spring formation OR the Wolfcamp formation, depending on depletion in the area and well conditions. EOG will monitor the well and ensure the well is static before casing operations begin.

EOG requests variance from minimum standards to pump a two stage cement job on the 8-3/4" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (4,174') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 100 sacks of Class C/H cement + additives + expansion additives (2.30 yld, 12.91 ppg) will be executed as a contingency.

Mud Program:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,300'	Fresh - Gel	8.6-8.8	28-34	N/c
2,300'-2,154'	Brine	10.0-10.2	28-34	N/c
2,154' - 7,780'	Water - Gel	8.7-9.4	58-68	N/c - 6
7,780' – 24,563' Lateral	Oil Base	10.0-14.0	58-68	4 - 6

Padron 3 State WC Unit 711H

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Seog resources

Padron 3 State WC Unit #711H

Hydrogen Sulfide Plan Summary

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.

- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator

■ Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

Communication:

Communication will be via cell phones and land lines where available.

Seog resources

.

Padron 3 State WC Unit #711H Emergency Assistance Telephone List

PUBLIC SAFETY:		911 o (575) 396-3611
Lea County Sheriff's Department Rod Coffman		(373) 390-3011
Fire Department: Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		(373) 740-3030
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		(575) 476-3440
NMOCD Inspection Group - South		(575) 626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		(373) 007-1174
EOG / Midland	Office	(432) 686-3600
	Onice	(432) 000-3000
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Stephen Davis	Cell	(432) 235-9789
Matt Day	Cell	(432) 296-4456
Drilling Manager		
Branden Keener	Office	(432) 686-3752
	Cell	(210) 294-3729
Drilling Superintendent		
Ryan Reynolds	Cell	(432) 215-5978
Steve Kelly	Cell	(210) 416-7894
H&P Drilling		
H&P Drilling	Office	(432) 563-5757
H&P 651 Drilling Rig	Rig	(903) 509-7131
Tool Pusher:		
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett		
Safety:		(122) (96 2605
Brian Chandler (HSE Manager)	Office	(432) 686-3695
	Cell	(817) 239-0251

State of New Mexico	
Energy, Minerals and Natural Resources Departn	nent

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: ____EOG Resources, Inc. ____OGRID: ____7377_____Date: 1/03/2025

Type: \boxtimes Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square П. Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
PADRON 3 STATE WC UNIT 711H		L-3-25S-27E	1930' FSL & 910' FWL	+/- 1000	+/- 3500	+/- 3000

IV. Central Delivery Point Name: PADRON 3 STATE WC UNIT CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
PADRON 3 STATE WC UNIT 711H		01/15/25	03/26/25	04/1/25	05/1/25	05/15/25

VI. Separation Equipment: 🖂 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🛛 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

I Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell Printed Name: KAYLA MCCONNELL Title: Regulatory Specialist E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM Date: 01/03/2025 Phone: (432) 265-6804 **OIL CONSERVATION DIVISION** (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Kayla McConnell

From: Sent: To: Cc: Subject: Marks, Allison <amarks@nmslo.gov> Tuesday, January 7, 2025 11:23 AM Jordan Kessler Riker Everett; Lamkin, Baylen L. RE: Padron Unit APDs

.....

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks, Jordan. Yes, for State Padron Unit, the SLO will forgo notice for APDs wholly within the unit.

Thank you again for reaching out to discuss.

. Mison Marks

Director Oil, Gas & Minerals Division 505.827.5745 New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, NM 87504-1148 amarks@nmslo.gov (note the new email address) nmstatelands.org Supervision of the second seco

CONFIDENTIALITY NOTICE - This e-mail transmission, including all documents, files, or previous e-mail messages attached hereto, may contain confidential and/or legally privileged information. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that you must not read this transmission and that any disclosure, copying, printing, distribution, or use of any of the information contained in and/or attached to this transmission is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately notify the sender and delete the original transmission and its attachments without reading or saving in any manner. Thank you.

From: Jordan Kessler <Jordan_Kessler@eogresources.com>
Sent: Tuesday, January 7, 2025 10:17 AM
To: Marks, Allison <amarks@nmslo.gov>
Cc: Riker Everett <Riker_Everett@eogresources.com>
Subject: [EXTERNAL] Padron Unit APDs

Hi Allison,

Pursuant to our discussion, EOG is requesting that the SLO allow EOG to forgo providing the SLO with notice of overlapping spacing units for wells wholly within the boundaries of the EOG's State Padron Unit. NMAC 19.15.15.12(B)(1) requires an operator to provide notice to interest owners and the SLO/BLM when a new spacing unit will overlap an existing spacing unit. There are a few existing spacing units operated by Mewbourne within the

boundaries of the EOG's Padron Unit. As part of the unit formation process, EOG and the SLO discussed the existing spacing units, the wells, the benches that would be developed, and the fact that Mewbourne had voluntarily committed the acreage to the Unit.

Accordingly, EOG asks that the SLO waive notice /objection to overlapping spacing units for APDs wholly within the boundaries of the EOG operated Padron Unit.

Thanks for the time! Jordan

Jordan Kessler

Senior Regulatory Advisor

&eog resources

125 Lincoln Avenue, Suite 213 Santa Fe, NM 87501 Mobile: (432) 488-6108 Office: (575) 748-4158 jordan_kessler@eogresources.com