Form 3160-3 (June 2015)				FORM A OMB No. Expires: Jan	. 1004-0	137
UNITED STATES DEPARTMENT OF THE INTERIOR				5. Lease Serial No.		
BUREAU OF LAND MANA		Г		NMNM82904		
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee of	or Tribe I	Name
1a. Type of work:	EENTER			7. If Unit or CA Agre	ement, l	Name and No.
1b. Type of Well:	ther			8. Lease Name and W	Vell No	
1c. Type of Completion: Hydraulic Fracturing Si	ngle Zone	✔ Multiple Zone				
				NUGGET 6 31 FEI	DERAL	СОМ
2. Name of Operator				24H 9. API Well No.		
OXY USA INCORPORATED					015-5	6048
3a. Address P.O. BOX 1002, TUPMAN, CA 93276-1002	3b. Phone N (661) 763-6	lo. <i>(include area cod</i> 6046	le)	10. Field and Pool, or COTTON DRAW/B	-	-
4. Location of Well (Report location clearly and in accordance w	with any State	requirements.*)		11. Sec., T. R. M. or I		Survey or Area
At surface SWSE / 1264 FSL / 1513 FEL / LAT 32.242	589 / LONG	-103.8132674		SEC 6/T24S/R31E/	NMP	
At proposed prod. zone NWNE / 20 FNL / 2290 FEL / LA	T 32.268123	32 / LONG -103.81	57651			
14. Distance in miles and direction from nearest town or post off	ice*			12. County or Parish EDDY		13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac	cres in lease	17. Spacin 640.0	acing Unit dedicated to this well		
18 Distance from proposed location*	19. Propose	d Depth	20. BLM/	BIA Bond No. in file		
to nearest well, drilling, completed, applied for, on this lease, ft. 30 feet	8688 feet /	19654 feet	FED: ES	SB000226		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3458 feet	22. Approxi 03/31/2025	mate date work will	start*	rt* 23. Estimated duration 45 days		
	24. Attac	hments				
The following, completed in accordance with the requirements of (as applicable)	f Onshore Oil	and Gas Order No.	l, and the H	Hydraulic Fracturing ru	le per 43	CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the Item 20 above).	ne operation	as unless covered by an	existing	bond on file (see
3. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office		5. Operator certific6. Such other site sp BLM.		mation and/or plans as r	may be re	equested by the
25. Signature (Electronic Submission)		Name (Printed/Typed) MELISSA GUIDRY / Ph: (713) 366-5716			Date 04/11/2	024
Title Advisor Regulatory Sr.	I					
Approved by (Signature) (Electronic Submission)		(Printed/Typed) (LAYTON / Ph: (5	75) 234-59		Date 12/20/2	024
Title Assistant Field Manager Lands & Minerals	Office Carlst	bad Field Office		I		
Application approval does not warrant or certify that the applicar applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal of	or equitable title to the	hose rights	in the subject lease wh	ich woul	d entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements of					ny depart	ment or agency

(Continued on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: SWSE / 1264 FSL / 1513 FEL / TWSP: 24S / RANGE: 31E / SECTION: 6 / LAT: 32.242589 / LONG: -103.8132674 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 0 FSL / 2298 FEL / TWSP: 24S / RANGE: 31E / SECTION: 31 / LAT: 32.2536552 / LONG: -103.8157778 (TVD: 8688 feet, MD: 14390 feet) PPP: SWSE / 100 FSL / 2290 FEL / TWSP: 24S / RANGE: 31E / SECTION: 6 / LAT: 32.2393906 / LONG: -103.8157907 (TVD: 8688 feet, MD: 9354 feet) BHL: NWNE / 20 FNL / 2290 FEL / TWSP: 24S / RANGE: 31E / SECTION: 31 / LAT: 32.2681232 / LONG: -103.8157651 (TVD: 8688 feet, MD: 19654 feet)

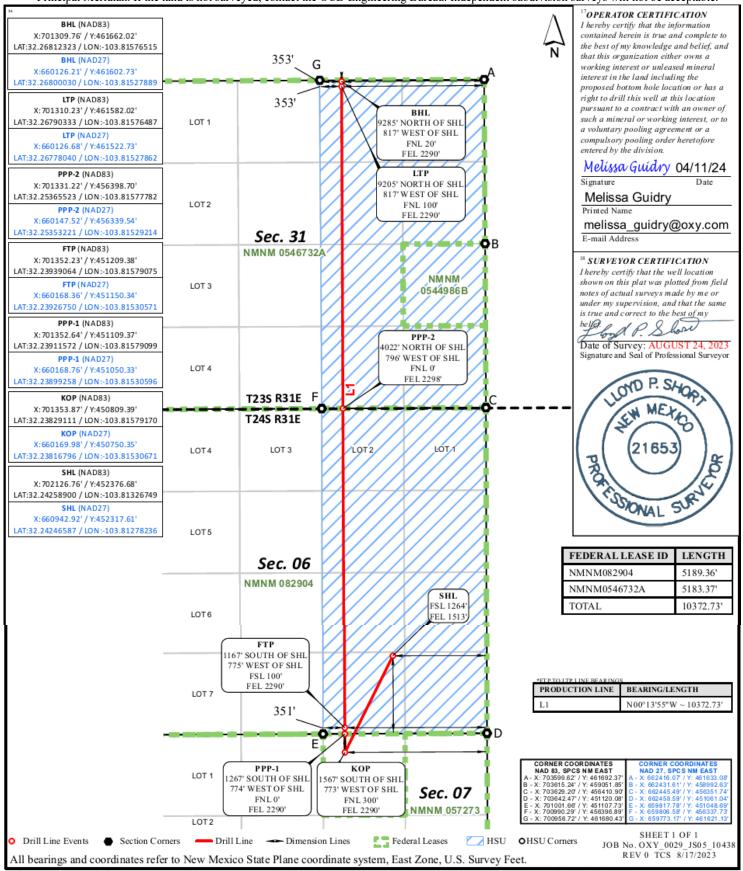
BLM Point of Contact

Name: TENILLE C MOLINA Title: Land Law Examiner Phone: (575) 234-2224 Email: TCMOLINA@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

<u>C-1</u>		<u>2/30/2024 1</u>			State of Nev		ment			Revised July 9, 2024
	t Electronica D Permitting			Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION				Submittal Type:	☑ Initial St	
							\Box As Drill	ed		
						ION INFORMATION				
API N 30-01	^{umber} 5- <mark>56048</mark>	3	Pool Code 13367	;		Pool Name COTT	ON D	RAW;	BONE	SPRING
Proper 32	rty Code 29887		Property N	^{Vame} NU	JGGET 6	6_31 FED	COM		Well Numb 24H	er
OGRI 16696	D No.		-		XY USA I				Ground Lev	el Elevation
	-	State 🗆 Fee 🛛				Mineral Owner:	State 🗆 Fee	🗆 Tribal 🗹	3458' Federal	
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude]	Longitude	County
0	6	24S	31E		1264' FS	L 1513' FEI	32.2425	58900 -1	103.81326749	EDDY
			_		Bottom	Hole Location				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
В	31	23S	31E		20' FNL	2290' FEI	_32.2681	12323 -1	103.81576515	EDDY
Dedic	ated Acres	Infill or Det	ining Well	Definin	ng Well API	Overlapping Spacin	g Unit (Y/N)	Consolida	tion Code	
640		INFILL	ining wen			YES		Consolida	tion code	
Order	Numbers.					Well setbacks are u	nder Common	Ownership:	□Yes □No	
					Kick O	ff Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude]	Longitude	County
В	7	24S	31E		300' FN	L 2290' FEI	32.2382	29111 -1	103.81579170	EDDY
	-				1	ke Point (FTP)				
	Section 6	Township		Lot	Ft. from N/S	Ft. from E/W	Latitude 32.2393		Longitude 103.81579075	
0	0	24S	31E			LZZOU FLI ke Point (LTP)	_ 32.239	59004 -	103.015/90/5	EDDT
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude]	Longitude	County
В	31	23S	31E			L 2290' FEI		90333 -1	103.81576487	EDDY
Unitiz	ed Area or A	rea of Uniform	Interest	Spacing	g Unit Type 🖬 Horiz	ontal 🗆 Vertical	Grou 3458	nd Floor Ele	evation:	
OPER	ATOR CER	TIFICATIONS				SURVEYOR CERTIF	ICATIONS			
my kno organiz includi locatio interes	wledge and be zation either ov ng the propose n pursuant to a	lief, and, if the we wns a working int ed bottom hole loc a contract with an tary pooling agre	ell is a vertical o erest or unleased ation or has a ru owner of a wor	r directional d mineral int ight to drill t king interest	terest in the land	I hereby certify that the surveys made by me or un my belief.			he same is true an ¹⁸ SURVEYOR I hereby certify shown on this p notes of actual under my super	
consen in each	t of at least one tract (in the to l will be locate	e lessee or owner arget pool or form ed or obtained a co	of a working int ation) in which	erest or unle any part of t ing order from	on has received the cased mineral interest the well's completed m the division.				belig Date of Surve Signature and S	P. Show ey: AUGUST 24, 2023 cal of Professional Surveyor
Sarra Signatu	<u>a Guthri</u> ^{ire}	IC	Date			Signature and Seal of Profe	essional Survevor		=/)	METE
0	a Guthri	e	2000				542,09,01			21653
Printed		<u> </u>				Certificate Number	Date of Surve	ey		AVAL SURVE
sara	authrie@	@oxy.com				01650	August		23 Tra	- RNY
	_gutime @ Address	2017.0011				21653				MAL SU


Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

•

Received by OCD: 12/30/2024 12:01:12 PM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

Distances/areas relative to NAD 83 grid measurements. Combined Scale Factor: 0.99977581 and a Convergence Angle: 0.27195833 Released to Imaging: 1/24/2025 3:31:50 PM

•

	E	nergy, Minerals a Oil Ce 1220 S	te of New Mez and Natural Res onservation Di South St. Fran hta Fe, NM 87	ources Departme vision cis Dr.	ent		Subn Via I	nit Electronically E-permitting
This Natural Gas Manag			ith each Applica	tion for Permit to I		PD) for a r	new or	recompleted well.
			<u>1 – Plan D</u> ffective May 25.					
I. Operator: <u>OXY US</u>	A INC.		OGRID: 16	696		Date: _	04/	1 1/2 4
II. Type: 🗹 Original 🗆] Amendment	due to □ 19.15.27	.9.D(6)(a) NMA	C 🗆 19.15.27.9.D((6)(b) N	IMAC 🗆 C	Other.	
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a si					wells pr	roposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		icipated MCF/D	P	Anticipated roduced Water BBL/D
SEE ATTACHED								
IV. Central Delivery Po V. Anticipated Schedul proposed to be recomple	e: Provide the	following informa	ution for each nev	v or recompleted w	vell or s			7.9(D)(1) NMAC] osed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date
SEE ATTACHED								
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Managemen	ices: ☑ Attac of 19.15.27.8]	h a complete desc NMAC.	ription of the ac	tions Operator wil	l take t	o comply	with t	he requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Melíssa Guídry
Printed Name: Melissa Guidry
Title: Regulatory Advisor Sr.
E-mail Address: melissa_guidry@oxy.com
Date: 04/11/2024

Phone: 713-497-2481

OIL CONSERVATION DIVISION

(Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

III. Well(s)

Well Name	API	WELL LOCATION (ULSTR)	Footages	ANTICIPATED OIL BBL/D	ANTICIPATED GAS MCF/D	ANTICIPATED PROD WATER BBL/D
NUGGET 6_31 FEDERAL COM 21H	Pending	C-7-24S-31E	294 FNL 1792 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 22H	Pending	C-7-24S-31E	294 FNL 1822 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 23H	Pending	C-7-24S-31E	294 FNL 1852 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 24H	Pending	O-6-24S-31E	1264 FSL 1513 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 25H	Pending	O-6-24S-31E	1264 FSL 1482 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 26H	Pending	O-6-24S-31E	1263 FSL 1453 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 41H	Pending	N-6-24S-31E	768 FSL 1445 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 42H	Pending	N-6-24S-31E	768 FSL 1505 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 43H	Pending	C-7-24S-31E	419 FNL 1702 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 44H	Pending	C-7-24S-31E	419 FNL 1762 FWL	786	5950	3835

Page 12 of 138

V. Anticipated Schedule

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
NUGGET 6_31 FEDERAL COM 21H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 22H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 23H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 24H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 25H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 26H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 41H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 42H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 43H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 44H	Pending	TBD	TBD	TBD	TBD	TBD

Central Delivery Point Name: Sand Dunes South Corridor 18 CTB

Part VI. Separation Equipment

Operator will size the flowback separator to handle 11,000 Bbls of fluid and 6-10MMscfd which is more than the expected peak rates for these wells. Each separator is rated to 1440psig, and pressure control valves and automated communication will cause the wells to shut in in the event of an upset at the facility, therefore no gas will be flared on pad during an upset. Current Oxy practices avoid use of flare or venting on pad, therefore if there is an upset or emergency condition at the facility, the wells will immediately shut down, and reassume production once the condition has cleared.

Page 14 of 138

VII. Operational Practices

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, where a gas transporter system is in place. The gas produced from production facility is dedicated to Enterprise Field Services, LLC ("Enterprise") and is connected to Enterprise low/high pressure gathering system located in Eddy County, New Mexico. OXY USA INC. ("OXY") provides (periodically) to Enterprise a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, OXY and Enterprise have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Enterprise's Processing Plant located in Sec. 36, Twn. 24S, Rng. 30E, Eddy County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Enterprise system at that time. Based on current information, it is OXY's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

VIII. Best Management Practices

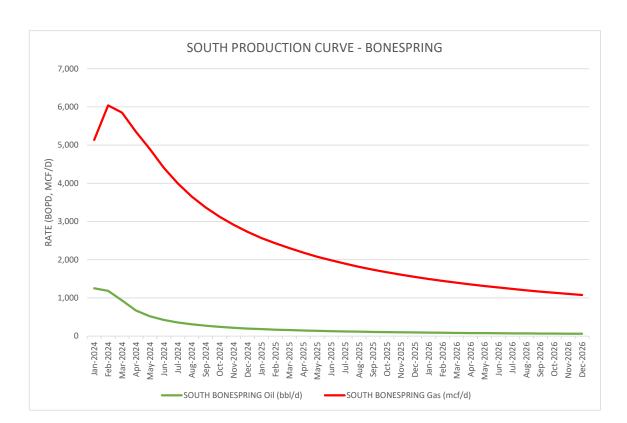
Alternatives to Reduce Flaring Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

Power Generation – On lease

Only a portion of gas is consumed operating the generator, remainder of gas will be flared

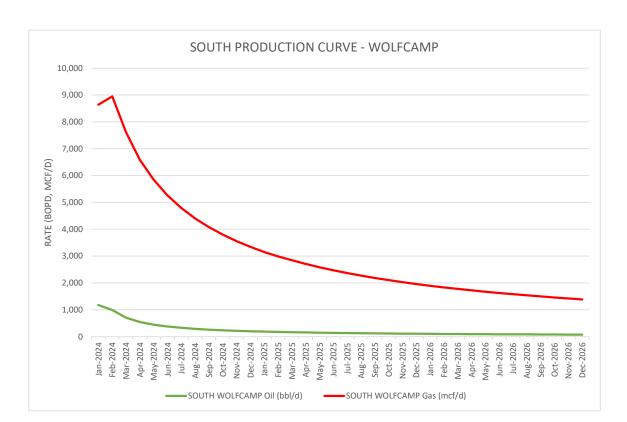
Compressed Natural Gas - On lease

Gas flared would be minimal, but might be uneconomical to operate when gas volume declines


NGL Removal – On lease

Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Daga	16	.4	120
Page	10	IJ	130


•

	SOUTH BONESPRING			
	Oil (bbl/d)	Gas (mcf/d)		
Jan-2024	1,250	5,135		
Feb-2024	1,184	6,041		
Mar-2024	933	5,849		
Apr-2024	670	5,349		
May-2024	517	4,893		
Jun-2024	421	4,401		
Jul-2024	355	3,994		
Aug-2024	306	3,652		
Sep-2024	270	3,368		
Oct-2024	240	3,125		
Nov-2024	217	2,915		
Dec-2024	197	2,731		
Jan-2025	181	2,566		
Feb-2025	167	2,426		
Mar-2025	155	2,301		
Apr-2025	145	2,184		
May-2025	136	2,078		
Jun-2025	127	1,982		
Jul-2025	120	1,894		
Aug-2025	114	1,812		
Sep-2025	108	1,739		
Oct-2025	102	1,670		
Nov-2025	98	1,607		
Dec-2025	93	1,549		
Jan-2026	89	1,493		
Feb-2026	85	1,444		
Mar-2026	82	1,398		
Apr-2026	79	1,353		
May-2026	76	1,311		
Jun-2026	73	1,271		
Jul-2026	71	1,234		
Aug-2026	68	1,198		
Sep-2026	66	1,165		
Oct-2026	64	1,133		
Nov-2026	62	1,104		
Dec-2026	60	1,075		

Page	17 0	f 138
------	------	-------

	SOUTH WOLFCAMP			
	Oil (bbl/d)	Gas (mcf/d)		
Jan-2024	1,178	8,636		
Feb-2024	995	8,951		
Mar-2024	706	7,614		
Apr-2024	544	6,588		
May-2024	445	5,841		
Jun-2024	377	5,261		
Jul-2024	328	4,794		
Aug-2024	291	4,402		
Sep-2024	261	4,076		
Oct-2024	238	3,797		
Nov-2024	218	3,555		
Dec-2024	201	3,343		
Jan-2025	187	3,152		
Feb-2025	175	2,990		
Mar-2025	165	2,844		
Apr-2025	156	2,708		
May-2025	148	2,584		
Jun-2025	140	2,471		
Jul-2025	133	2,368		
Aug-2025	127	2,272		
Sep-2025	122	2,184		
Oct-2025	117	2,104		
Nov-2025	112	2,029		
Dec-2025	108	1,959		
Jan-2026	104	1,893		
Feb-2026	101	1,834		
Mar-2026	97	1,778		
Apr-2026	94	1,725		
May-2026	91	1,674		
Jun-2026	89	1,626		
Jul-2026	86	1,581		
Aug-2026	84	1,538		
Sep-2026	81	1,498		
Oct-2026	79	1,460		
Nov-2026	77	1,423		
Dec-2026	75	1,389		

Oxy USA Inc. - NUGGET 6_31 FED COM 24H Drill Plan

1. Geologic Formations

TVD of Target (ft):	8688	Pilot Hole Depth (ft):	
Total Measured Depth (ft):	19654	Deepest Expected Fresh Water (ft):	555

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	555	555	
Salado	933	933	Salt
Castile	2807	2807	Salt
Delaware	4229	4186	Oil/Gas/Brine
Bell Canyon	4260	4216	Oil/Gas/Brine
Cherry Canyon	5215	5124	Oil/Gas/Brine
Brushy Canyon	6531	6376	Losses
Bone Spring	8287	8046	Oil/Gas
Bone Spring 1st			Oil/Gas
Bone Spring 2nd			Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		MD		TVD					
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	14.75	0	873	0	873	10.75	45.5	J-55	BTC
Intermediate	9.875	0	8150	0	7911	7.625	26.4	L-80 HC	BTC
Production	6.75	0	19654	0	8688	5.5	20	P-110	Wedge 461

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

Occidental - Permian New Mexico

All Casing	All Casing SF Values will meet or exceed								
	those below								
SF	SF	Body SF	Joint SF						
Collapse	Burst	Tension	Tension						
1.00	1.100	1.4	1.4						

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

	Y or N				
Is casing new? If used, attach certification as required in 43 CFR 3160	Y				
Does casing meet API specifications? If no, attach casing specification sheet.	Y				
Is premium or uncommon casing planned? If yes attach casing specification sheet.					
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).					
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?	N				
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.					
Is well located in SOPA but not in R-111-P?	Y				
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	Y				
Is well located in R-111-P and SOPA?	N				
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?					
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?					
Is well located in critical Cave/Karst?	N				
If yes, are there three strings cemented to surface?					

3. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (Ib/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	730	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	187	1.65	13.2	5%	6,781	Circulate	Class H+Accel., Disper., Salt
Int.	2	Intermediate 2S - Tail BH	1047	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	680	1.84	13.3	25%	7,650	Circulate	Class C+Ret.

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	~	Tested to:	Deepest TVD Depth (ft) per Section:				
		5M		Annular	\checkmark	70% of working pressure					
				Blind Ram	\checkmark						
9.875" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	7911				
				Double Ram	\checkmark						
			Other*								
		5M		Annular	✓	70% of working pressure					
									Blind Ram 🗸		
6.75" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	8688				
				Double Ram							
			Other*								

*Specify if additional ram is utilized

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke

Occidental - Permian New Mexico

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program

Section	Depth - MD Depth - TVD		TVD	Trime	Weight	Viceosite	Water	
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	873	0	873	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	873	8150	873	7911	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	8150	19654	7911	8688	Water-Based or Oil- Based Mud	8.0 - 9.6	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls,

What will be used to monitor the	DV/T/ND Tatas (Visual Manitaring
loss or gain of fluid?	PVT/MD Totco/Visual Monitoring

6. Logging and Testing Procedures

U								
Logg	Logging, Coring and Testing.							
Will run GR from TD to surface (horizontal well – vertical portion of hole).								
Yes	Stated logs run will be in the Completion Report and submitted to the BLM.							
No	Logs are planned based on well control or offset log information.							
No	Drill stem test? If yes, explain							
No	Coring? If yog overlain							

No |Coring? If yes, explain

Addit	tional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	4338 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	150°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is
detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43
CFR part 3170 Subpart 3172. If Hydrogen Sulfide is encountered, measured values and formations will
be provided to the BLM.

	H2S is present	
Υ	H2S Plan attached	

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	
We plan to drill the 3 well pad in batch by section: all surface sections, intermediate	Yes
sections and production sections. The wellhead will be secured with a night cap whenever	ies
the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	
Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for	
this well. If the timing between rigs is such that Oxy would not be able to preset surface,	Yes
the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the	
attached document for information on the spudder rig.	

<u>1 </u>		4
Total Estimated Cuttings Volume:	1384 bbls	

•

Oxy USA Inc. - Blanket Design Pad Document

OXY - Blanket Design A

Pad Name: SNDDNS_T24SR31E_6_5

SHL: 1264' FSL 1419' FEL, Sec 6, T24S-R31E

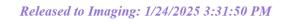
Oxy requests for the bellow wells to be approved for the two designs listed in the Blanket Design document (Blanket Design A –OXY –3S Slim v7.) The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions (directional plans attached separately for review.)

1. Blanket Design - Wells

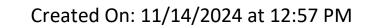
Well Name	APD #	Surface		Intermediate		Production	
weir Name		MD	TVD	MD	TVD	MD	TVD
NUGGET 6_31 FED COM 24H	N/A - New Permit	873	873	8150	7911	19654	8688
NUGGET 6_31 FED COM 25H	N/A - New Permit	880	880	8143	7906	19554	8688
NUGGET 6_31 FED COM 26H	N/A - New Permit	886	886	8163	7962	19193	8687

2. Review Criteria Table

	Y or N
Is casing new? If used, attach certification as required in 43 CFR 3160	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	1
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	Ĩ
Is well located within Capitan Reef?	Ν
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	Y
500' into previous casing?	1
Is well located in R-111-P and SOPA?	Ν
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	




3. Geologic Formations


Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	555	555	
Salado	933	933	Salt
Castile	2807	2807	Salt
Delaware	4229	4186	Oil/Gas/Brine
Bell Canyon	4260	4216	Oil/Gas/Brine
Cherry Canyon	5215	5124	Oil/Gas/Brine
Brushy Canyon	6531	6376	Losses
Bone Spring	8287	8046	Oil/Gas
Bone Spring 1st			Oil/Gas
Bone Spring 2nd			Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

4. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (Ib/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	730	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	184	1.68	13.2	5%	6,781	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1047	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	680	1.84	13.3	25%	7,650	Circulate	Class C+Ret.

-

1. Casing Program

The designs and associated details listed in this document are the "worst case scenario" boundaries for design safety factors.

Location and lithology have NOT been accounted for in these designs; however, the designs are NOT valid for wells within KPLA Boundaries or Capitan Reef areas. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program listed below will remain the same between each design variation.

Hole will be full during casing run for well control and tensile SF.

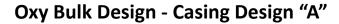
Casing will be kept at least half full during run for these designs to meet BLM collapse SF requirement.

Design Variation "A1"

			MD	Т	'VD				
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	14.75	0	1200	0	1200	10.75	45.5	J-55	BTC
Intermediate	9.875	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

*Curve could be in intermediate or production section

Design Variation "A2" - Option to Pivot to Design "B" for Contingency 4S


			MD		ΓVD				
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	17.5	0	1200	0	1200	13.375	54.5	J-55	BTC
Intermediate	12.25†	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

*Curve could be in intermediate or production section

⁺If 4S Contingency is not required, Oxy requests permission to transition from 12.25" to 9.875" Intermediate at some point during the hole section. Cement volumes will be updated on C103 submission.

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

All Casing SF Values will meet or										
exceed those below										
SF	SF	Body SF	Joint SF							
Collapse	Burst	Tension	Tension							
1.00	1.100	1.4	1.4							

§Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

§Annular Clearance Variance Request may not apply to all connections used or presented.

2. Trajectory / Boundary Conditions

	MD)	TV	D			
Section	Deepest KOP (ft)	End Build (ft)	Deepest KOP (ft)	End Build (ft)	Max. Angle	Max. Planned DLS	
Surface	0	1200	0	1200	5°	1°/100 ft	
Intermediate	5000 (inside Cherry Canyon)	6500	4980	6390	20°	2°/100 ft	
	12211	13111	12202	12775	92° ‡	12°/100 ft ‡	
Production	12211 (~100' MD past ICP)	13111	12202	12775	92° ‡	12°/100 ft ‡	

‡ Applies only when intermediate casing depth is deepened to landing point to match TVD of production in some areas where required to accommodate higher MWs in depleted areas.

Oxy has reviewed casing burst, collapse, and axial loadcases in Landmark StressCheck with the boundary conditions in the table above which satisfies Oxy and BLM minimum design criteria. Triaxial plots for each casing string is shown in Section 7 and intermediate load case inputs are shown in Section 8.

3. Cementing Program

NOTE: Blanket design is for technical review only. The cement volumes will be adjusted to ensure cement tops meet BLM requirements.

Design Variation "A1"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	819	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1111	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
							500' inside		
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	prev csg	Circulate	Class C+Ret.

*Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Design Variation "A2"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	1023	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1293	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	500' inside prev csg	Circulate	Class C+Ret.

*Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	~	Tested to:	Deepest TVD Depth (ft) per Section:
	13-5/8"	5M		Annular	✓	70% of working pressure	
				Blind Ram	✓		
9.875" Hole		5M	Pipe Ram			250 psi / 5000 psi	12775**
			Double Ram		✓	230 psi / 3000 psi	
			Other*				
	13-5/8"	5M		Annular	✓	100% of working pressure	
			Blind Ram		✓		
6.75" Hole		" 10M		Pipe Ram		250 poi / 10000 poi	12775
			Double Ram		✓	250 psi / 10000 psi	
			Other*				

*Specify if additional ram is utilized

**Curve could be in intermediate or production section

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

5M Annular BOP Request

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Coflex hoses are in compliance with API 16C and meets inspection and testing requirements. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached Schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Hammer Union Variance

Oxy requests permission for hammer unions behind the choke to be routed to the gas buster. The hammer unions will not be subject to wellbore pressure in compliance with API STD 53.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

S the sec	Depth - MD		Depth - TVD		Trans	Weight	X 7°	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	1200	0	1200	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	1200	13111*	1200	12775*	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	13111	23361	12775	12775	Water-Based or Oil- Based Mud	9.5 - 13.5	38-50	N/C

5. Mud Program & Drilling Conditions

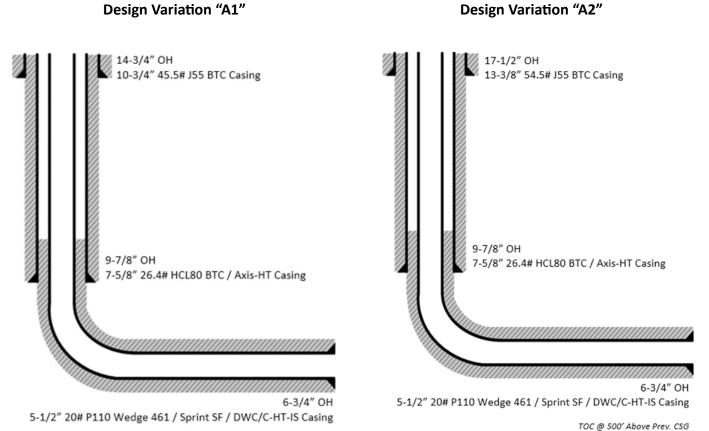
Curve could be in intermediate or production section

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Drilling Blind Request

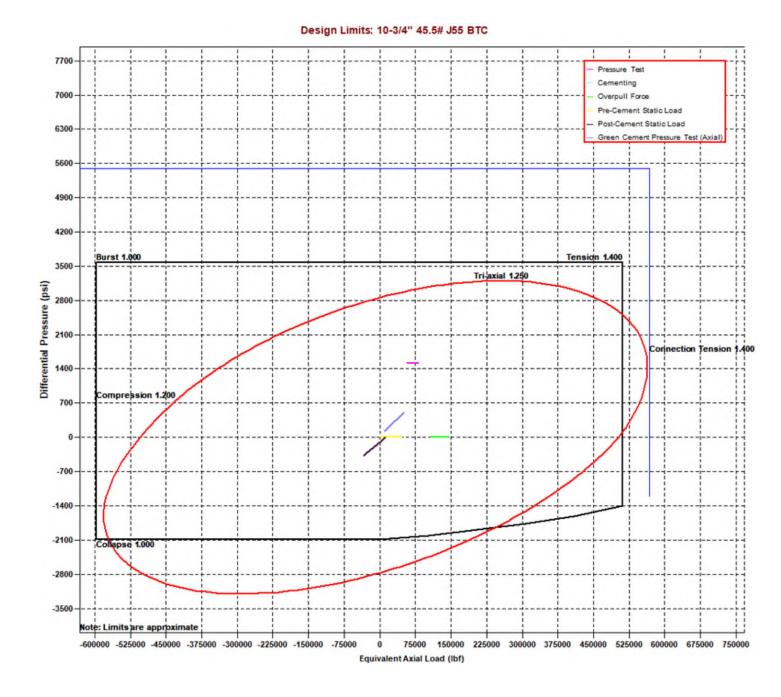
In the event total losses are encountered in the intermediate section, Oxy requests permission to drill blind due to depleted formations where risk of hydrocarbon kicks are unlikely.

- Oxy will first attempt to cure losses before proceeding with drilling blind
- Drilling blind will only be allowed in the Castille and formations below
- While drilling blind, will monitor backside by filling-up on connections and utilize gas monitors
- Depths at which losses occurred and attempt to cure losses with relevant details (LCM sweep info, etc.) will be documented in the drillers log and Subsequent Reports to the BLM.
- If a well control event (hydrocarbon kick) occurs while drilling blind, the BLM will be notified after the well is secured and returned to static.

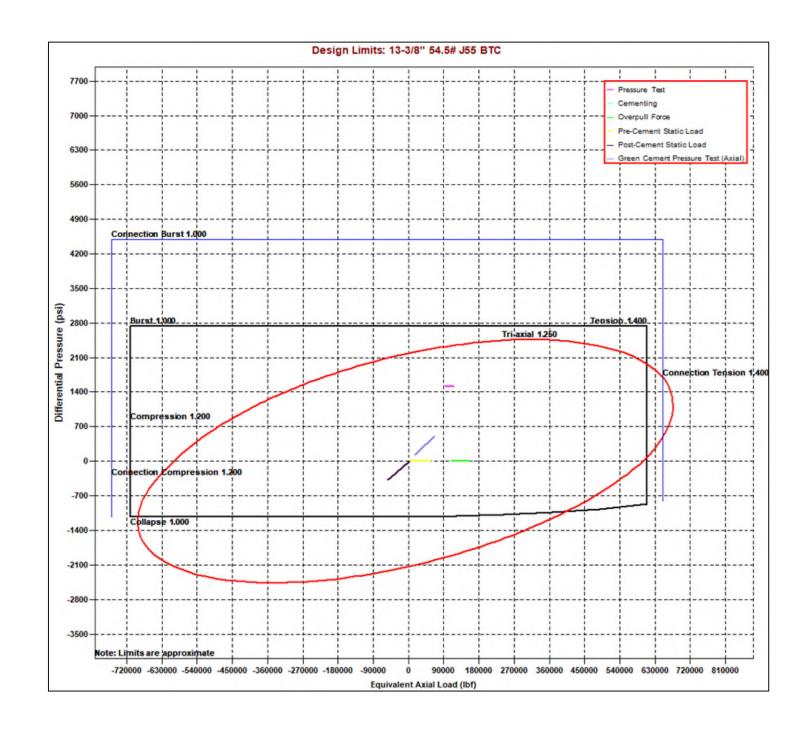

What will be used to monitor the loss or gain of fluid? PVT/MD Totco/Visual Monitoring

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

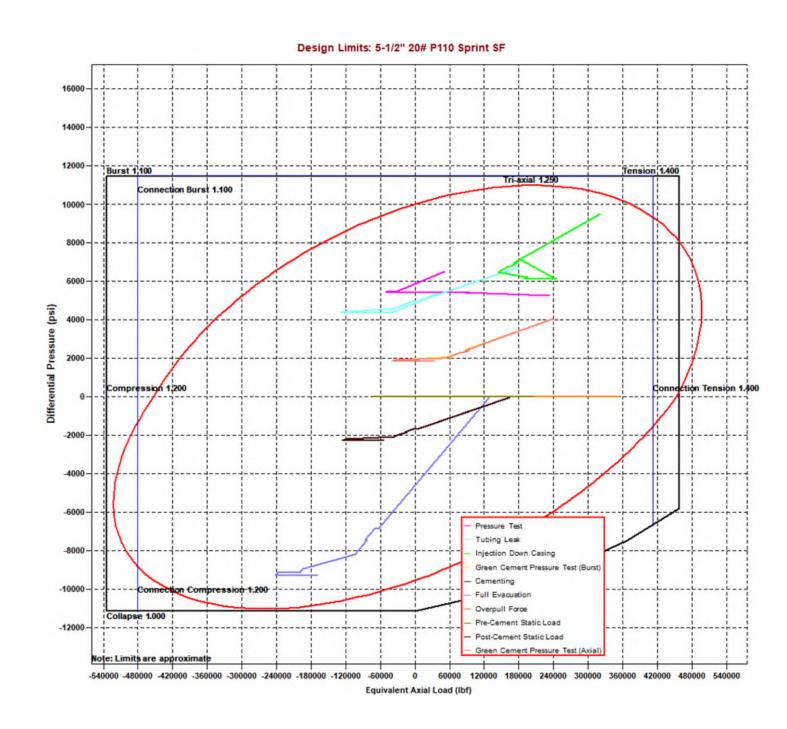
6. Wellbore Diagram(s)



TOC @ 500' Above Prev. CSG


7. Landmark StressCheck Screenshots – Triaxial Output

Design Limits: 7-5/8" 26.4# HC-L80 BTC



12000 Lost Returns with Water 10500 Gas Hidk (50.0 bbl, 0.50 ppg) Pressure Test Green Cement Pressure Test (Burst) Connection Burst 1.100. 9000 Lost Returns with Mud Drop Cementing Overpull Force 7500 Pre-Cement Static Load Post-Cement Static Load en Cement Press ire Test (Avial 6000 Burst 1.100 Tension 1.400 Differential Pressure (psi) 4500 3000 ection ension 1400 1500 ompression 1.200 0 -1500 -3000 on Compression 1.200 Co -4500 Collapse 1.000 -6000 Note: Limits are approximate -540000 -480000 -420000 -360000 -300000 -240000 -180000 -120000 -60000 120000 180000 240000 300000 360000 420000 480000 540000 600000 60000 0 Equivalent Axial Load (lbf)

8. Landmark StressCheck Screenshots – Inputs for Intermediate CSG Load Cases

Burst Load Cases

General	
	
Burst Loads Data	
Drilling Load:	Lost Returns with Water
Fracture at Shoe (MD= 13111.00 ft):	10591 psi
Mud/Water Interface, MD:	0.00 ft
Mud Weight	11.28 ppg
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Gas Kick Profile
Influx Depth, MD:	23361.00 ft
Kick Volume:	50.0 bbl
Kick Intensity	0.50 ppg
Maximum Mud Weight:	13.50 ppg
Kick Gas Gravity:	0.55 (0.1159 psi/ft @ 182 °F & 9291 psi)
Fracture at Shoe (MD= 13111.00 ft):	10591 psi
Drill Pipe OD:	5.000 in
Collar OD:	5.500 in
Collar Length:	200.00 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Pressure Test
Test Pressure:	3120 psi
Mud Weight:	10.00 ppg
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Green Cement Pressure Test
Test Pressure:	2000 psi
Mud Weight at Shoe:	10.00 ppg
TOC, MD:	25.00 ft
Lead Slurry Density:	13.30 ppg
Tail Slurry Density:	13.30 ppg
Tail Slurry Length:	5906.00 ft
Displacement Fluid Density:	10.00 ppg
Float Collar Depth, MD:	12800.00 ft
External Pressure:	Fluid Gradients (w/ Pore Pressure)
TOC, MD:	25.00 ft
Prior Shoe, MD:	1200.00 ft
Mud Weight Above TOC:	10.00 ppg
Fluid Gradient Below TOC:	8.33 ppg
Wellhead Pressure:	13 psi
Pore Pressure In Open Hole:	Yes

Collapse Load Cases

General	
	-
Collapse Loads Data	
Drilling Load:	Cementing
Mud Weight at Shoe:	10.00 ppg
TOC, MD:	25.00 ft
Lead Slurry Density:	13.30 ppg
Tail Slurry Density:	13.30 ppg
Tail Slurry Length:	5906.00 ft
Displacement Fluid Density:	10.00 ppg
Float Collar Depth, MD:	12800.00 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Lost Returns with Mud Drop
Lost Returns Depth, MD:	13110.89 ft
Pore Pressure at Lost Returns Depth:	8183 psi
Pore Pressure Gradient at Lost Returns Depth:	12.33 ppg
Mud Weight:	13.50 ppg
Mud Drop Level, MD:	1106.39 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
External Pressure:	Fluid Gradients (w/ Pore Pressure)
TOC, MD:	25.00 ft
Prior Shoe, MD:	1200.00 ft
Fluid Gradient Above TOC:	10.00 ppg
Fluid Gradient Below TOC:	10.00 ppg
Wellhead Pressure:	13 psi
Pore Pressure In Open Hole Below TOC:	No

Axial Load Cases

General	
	•
Axial Loads Data	
Overpull Force:	100000 lbf
Pre-Cement Static Load:	Yes
Pickup Force:	0 lbf
Post-Cement Static Load:	Yes
Green Cement Pressure Test:	2000 psi
Service Loads:	Yes

9. Landmark StressCheck Screenshot – Int. Casing Triaxial Results Table (Pressure Test)

			11	<u> </u>		Intermediate C								
1	1 •••• 🔁 MD 🕅	X * 🗵			b	- 🖳	🖳 🔜 Pre	ssure Test		•				
Tr	axial Results	Autial E	Force (lbf)	F () ()	0 1		Absolute C	afety Factor			Pressu	(
	Depth (MD)		Actual	Equivalent Axial Load	Bending Stress		Absolute S			Temperature	Pressu	re (psi)	Addt'l Pickup To	Buckle
	(ft)	Apparent (w/Bending)	(w/o Bending)	(lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length
28	12300	-142410	-17423	-94936	16622.5	1.79	2.10	N/A	(4.09)	178	9505	6732		
29	12400	-149639	-24652	-100590	16622.5	1.87	2.25	N/A	(3.89)	179	9555	6970		
30	12400	-149640	-24653	-100591	16622.5	1.87	2.25	N/A	(3.89)	179	9555	6970		
31	12500	-156448	-31461	-105919	16622.5	1.95	2.42	N/A	(3.72)	180	9603	7193		
32	12500	-156449	-31462	-105920	16622.5	1.95	2.42	N/A	(3.72)	180	9603	7193		
33	12550	-159630	-34643	-108410	16622.5	1.99	2.50	N/A	(3.64)	180	9625	7298		
34	12550	-159631	-34644	-108411	16622.5	1.99	2.50	N/A	(3.64)	180	9625	7298		
35		-162630	-37643	-110759	16622.5	2.03	2.59	N/A	(3.58)	180	9646	7396		
36	12600	-162631	-37644	-110760	16622.5	2.03	2.59	N/A	(3.58)	180	9646	7396		
37	12650	-165426	-40439	-112949	16622.5	2.07	2.67	N/A	(3.52)	181	9665	7488		
38	12650	-165427	-40440	-112950	16622.5	2.07	2.67	N/A	(3.52)	181	9665	7488		
39	12700	-167997	-43010	-114963	16622.5	2.10	2.76	N/A	(3.46)	181	9683	7573		
40	12700	-167998	-43011	-114963	16622.5	2.10	2.76	N/A	(3.46)	181	9683	7573		
41	12750	-170322	-45335	-116784	16622.5	2.13	2.84	N/A	(3.41)	181	9699	7649		
42	12750	-170323	-45336	-116785	16622.5	2.13	2.84	N/A	(3.41)	181	9699	7649		
43	12800	-172385	-47398	-118401	16622.5	2.16	2.91	N/A	(3.37)	181	9714	7717		
44		-172386	-47399	-118401	16622.5	2.16	2.91	N/A	(3.37)	181	9714	7717		
45		-174169	-49183	-119799	16622.5	2.19	2.98	N/A	(3.34)	182	9726	7775		
46	12850	-174170	-49183	-119800	16622.5	2.19	2.98	N/A	(3.34)	182	9726	7775		
47	12900	-175662	-50675	-120969	16622.5	2.21	3.04	N/A	(3.31)	182	9736	7824		
48		-176851	-51864	-121901	16622.5	2.23	3.09	N/A	(3.29)	182	9745	7863		
49		-177727	-52740	-122588	16622.5	2.24	3.13	N/A	(3.27)	182	9751	7892		
50	13000	-177728	-52741	-122588	16622.5	2.24	3.13	N/A	(3.27)	182	9751	7892		
51	13050	-178285	-53298	-123025	16622.5	2.25	3.15	N/A	(3.26)	182	9755	7910		
52	13111	-178527	-53540	-123214	16622.5	2.25	3.16	N/A	(3.26)	182	9756	7918		

Internal Pressure = Surface Pressure + Hydrostatic = 9756 psi External Pressure = Fluid Gradient w/ Pore Pressure = 7918 psi Burst SF = 3.16

NOTE: Specific load case inputs for the pressure test can be seen in **Section 8** above. The test pressure does not exceed 70% of the minimum internal yield.

10. Intermediate Non-API Casing Spec Sheet

Technical Data Sheet

7 5/8" 26.40 lbs/ft. L80HC - Axis HT

Meci	hanical	Properties	
Minimum Yield Strength	psi.	80,000	
Maximum Yield Strength	psi.	95,000	
Minimum Tensile Strength	psi.	95,000	
	Dimer	nsions	
		Pipe	AXIS HT
Outside Diameter	in.	7.625	8.500
Wall Thickness	in.	0.328	-
Inside Diameter	in.	6.969	-
Standard Drift	in.	6.844	6.844
Alternate Drift	in.	-	-
Plain End Weight	lbs/ft.	-	-
Nominal Linear Weight	lbs/ft.	26.40	-
	Perfor	mance	
		Pipe	AXIS HT
Minimum Collapse Pressure	psi.	4,320	-
Minimum Internal Yield Pressure	psi.	6,020	6,020
Minimum Pipe Body Yield Strength	lbs.	602 x 1,000	-
Joint Strength	lbs.	-	635 x 1,000
Ma	ake-Up	Torques	
		Pipe	AXIS HT
Optimum Make-Up Torque	ft/lbs.	-	8,000
Maximum Operational Torque	ft/lbs.	-	25,000

Disclaimer: The content of this Technical Data Sheet is for general information only and does not guarantee performance and/or accuracy, which can only be determined by a professional expert with the specific installation and operation parameters. Information printed or downloaded may not be current and no longer in control by Axis Pipe and Tube. Anyone using the information herein does so at his or her own risk. To verify that you have the latest technical information, please contact Axis Pipe and Tube Technical Sales +1 (979) 599-7600, www.axispipeandtube.com

Page 42 of 138

.

Oxy Bulk Design - Casing Design "A"

11. Production Non-API Casing Spec Sheets

TenarisHyc 461 [®] MS	lril Wedg		Body:	nd: Pale Green 2nd Band: and: - 3rd Band: F	₩hite Pale Green Pale Green
Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-IC
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casin
Connection OD Option	MS				
Pipe Body Data Geometry				Performance	
Nominal OD	5.500 in.	Wall Thickness	0.361 in.	Body Yield Strength	729 ×1000
Nominal Weight	20 lb/t	Plain End Weight	19.83 lb/ft	Min. Internal Yield Pressure	14,360 p
Drift	4.653 in.	OD Tolerance	API	SMYS	125,000 p
Nominal ID	4.778 in.			Collapse Pressure	12,300 p
Connection Data					
Geometry		Performance		Make-Up Torques	
Connection OD	6.050 in.	Tension Efficiency	100 %	Minimum	17,000 ft-
Coupling Length	7.714 in.	Joint Yield Strength	729 x1000 lb	Optimum	18,000 ft-
Connection ID	4.778 in.	Internal Pressure Capacity	14,360 psi	Maximum	21,600 ft-
Nake-up Loss	3.775 in.	Compression Efficiency	100 %	Operation Limit Torques	
Threads per inch	3.40	Compression Strength	729 x1000 lb	Operating Torque	43.000 ft-
Connection OD Option	Ms	Max. Allowable Bending	104 °/100 ft	Yield Torque	51,000 ft-
		External Pressure Capacity	12,300 psi		01,0001
		Coupling Face Load	273,000 lb	Buck-On	
				Minimum	21,600 ft-

Wedge 4410°-5.5 in. - 0.304 / 0.435 i n. Wedge 4410°-5.5 in. - 0.304 / 0.415 / 0.476 in. Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchargeable interchangeable

For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information —if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of anykind for anyloss, damage or injuryresulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021. All rights reserved.

Generated on May 21, 2024

5.500

4,778

0.361

12,640

11,100

psi

psi

in.

in.

in.

CONNECTION DATA SHEET

OD: 5.500 in.	Grade: P110
Weight: 20.00 lb/ft	Drift: 4.653 in. (API)
Wall Th.: 0.361 in.	

VAM[®] SPRINT-SF

Semi-Flush

Minimum Wall Thickness 87.5 % Nominal Weight (API) 20.00 lb/ft **Plain End Weight** 19.83 lb/ft Drift 4.653 in. Grade Type API 5CT **Minimum Yield Strength** 110 ksi Maximum Yield Strength 140 ksi **Minimum Ultimate Tensile Strength** 125 ksi **Pipe Body Yield Strength** 641 klb

CONNEC	ION PROPERTIES	
Connection	Туре	

PIPE BODY PROPERTIES

Nominal Wall Thickness

Internal Yield Pressure

Collapse Pressure

Nominal OD

Nominal ID

Connection Type	Semi-Pr	emium Integral S
Nominal Connection OD	5.783	in.
Nominal Connection ID	4.718	in.
Make-up Loss	5.965	in.
Tension Efficiency	90	% Pipe Body
Compression Efficiency	90	% Pipe Body
Internal Pressure Efficiency	100	% Pipe Body
External Pressure Efficiency	100	% Pipe Body

JOINT PERFORMANCES

Tension Strength	577	klb
Compression Strength	577	klb
Internal Pressure Resistance	12,640	psi
External Pressure Resistance	11,100	psi
Maximum Bending, Structural	78	°/100 ft
Maximum Bending, with Sealability(1)	30	°/100 ft

to contact us

(1) Sealability rating demonstrated as per API RP 5C5 / ISO 13679

	///		
	Par	1	
25	2	22/	Sec.
	Z		1

Make-up Torque (ft-lb) 20,000 MIN 22,500 OPTI 25,000 MAX

Torque with Sealability (ft-lb)

Locked Flank Torque (ft-lb)

4,500 MIN 15,750 MAX

(2) MTS: Maximum Torque with Sealability.

36,000 MTS

BOOST YOUR EFFICIENCY, REDUCE COSTS AND ENSURE 100% WELL INTEGRITY WITH VAM[®] FIELD SERVICE

The information available on this Site (Information) is offered for general information. It is supposed to be correct at the time of publishing on the Site but is not intended to constitute professional advice and is provided 'as is'. Valid does not guarantee the completeness and accuracy of this information. Under no circumstances will Valioure be liable for damage, liability of any loss or injury that may result from the credibility given to this information target. The information may be amended, corrected, at any time by Valioure without warning. Valioure's products and services are subject to Valioure's The Information may be amended, corrected, and/or supplemented at any time by Valioure without warning. Valioure's to the terms resulting from the respective contracts of sale or services. nted at any tin

Plain End: 19.83 PIPE PROPERTIES Nominal OD 5.500 in. Nominal D 4.778 in. Nominal Area 5.828 SadaT. Yeld Strength 5.500 in. Yeld Strength 5.500 in. Trensile Strength 5.500 in. Internal Yield Strength 649 ktb Parting Load 729 ktb CONNECTION PERFORMANCES FIELD TORQUE VALUES FIELD TORQUE VALUES Nin. Make-up torque 12.090 Pain FIELD TORQUE VALUES Nin. Make-up torque 19.300 Nin. Shoulder Torque 19.300 Nin. Shoulder Torque 19.300 Nax. Deta Turn 0.200	OD (in.) WEIGHT (lbs./ft.) W	ALL (in.)	GRADE	API DRIFT (in.) RBW%	CONNECTIO
Vominal D 5.500 in, Vominal D 4.778 in, Vaninal Area 5.828 s.q.n. Strade Type API SCT Connection DD (nom) 6.050 Vield Strength 125 kis 4.125 Max Yeld Strength 125 kis 4.125 Mar Tensils Strength 135 kis 5.280 0.011 Min Tensils Strength 729 kb 0.011 5.200 0.011 Min Tensils Strength 787 kb 0.001 0.011 0.011 Min Tensils Yiength 787 kb 0.001 0.011 0.011 OCNNECTION PERFORMANCES FIELD TORQUE VALUES 1.001 0.011 Commesion Rating 649 kb 0.011 Min. Make-up torque 16.600 Oprimession Rating 12.090 psi Min. Make-up torque 16.600 Oprimession Rating 12.090 psi Min. Make-up torque 16.600 Oprimession Rating 12.090 psi Min. Shoulder Torque 13.200 Max Makeup torque 12.090 psi<		0.361 :	‡VST P110M	IY 4.653 87.5	DWC/C-HT-IS
Connection OD (nom) 6.050 Vominal ID 4.778 in. Vominal Area 5.828 sq.in. Strade Type API SCT Connection ID (nom) 6.050 Vin Yeds Strength 125 ksi Kin. 4125 Make-Up Loss 4.125 Coupling Length 9.250 dax. Yeld Strength 125 ksi Coupling Length 9.250 din. Tensile Strength 135 ksi Cornection ID (nom) 6.050 Jilmate Strength 125 ksi Coupling Length 9.250 Jilmate Strength 729 kb Compression Efficiency 88.0% Jilmate Strength 787 kb Compression Efficiency 88.0% Jilmate Strength 729 kb Compression Efficiency 80.0% Jilmernal Yred Pressure 12,090 psi 07.01 86.1% External Pressure Efficiency 100.0% 07.01 86.1% Compression Rating 641 kb Max. Make-up torque 16.600 Oprit Make-up Iorque 12,280 Max. Shoulder Torque 12,280	PIPE PROPERTIES			CONNECTION PROPERTIES	
Nominal ID 4.778 in. Vominal Area 5.828 sg.in. Stode Type API SCT Connection ID (nom) 4.778 Make-Vel Joss 4125 Make-Up Joss 4125 Jam. Yield Strength 140 ksi Connection ID (nom) 4.778 Jim. Tensile Strength 140 ksi Connection ID (nom) 6.050 Jim. Tensile Strength 140 ksi Connection ID (nom) 6.050 Jim. Tensile Strength 140 ksi Competition ID (nom) 6.050 Jim. Iternal Yield Pressure 125 ksi Competition Efficiency 88.0% Jim. Iternal Yield Pressure 12,090 psi Competition IS External Pressure Efficiency 100.0% Connerssion Rating 641 kb Max. Make-up torque 16.600 071. Make-up torque 16.800 Cornerssion Rating 91.7 '/100 ft Max. Make-up torque 13.280 Maximum Uniaxial Bend Rating 91.7 '/100 ft Max. Shoulder Torque 13.280 Maximum Uniaxial Bend Rating 91.7 '/100 ft Max. Shoulder Torque	Nominal OD	5.500	in.	Connection Type	Semi-Pre
Birade Type API SCT Grade Type API SCT Min. Yield Strength 125 Min. Tensile Strength 140 Min. Tensile Strength 135 Min. Tensile Strength 135 Min. Tensile Strength 135 Min. Tensile Strength 729 Min. Internal Pressure Efficiency 88.0% Jiltmate Strength 787 Min. Internal Pressure Efficiency 88.0% Min. Internal Pressure Efficiency 86.1% External Pressure Efficiency 100.0% CONNECTION PERFORMANCES FIELD TORQUE VALUES Vield Strength 649 kb Aim. Internal Pressure Efficiency 100.0% Conversion Rating 641 kb Aim. Internal Yield Pressure 12,090 psi Akimum Uniaxial Bend Rating 91.7 '1/100 ft Akerup Ungue 13.280 Max. Shoulder Torque 13.280 Maximum Operational Torque and Maximum Torsional Value only valid with Vallource P110MY Material. 23.800 Maximum Operational Torque and Maximum Torsional Value only valid with Vallource P110MY Material. 21.900	Nominal ID			Connection OD (nom)	6.050
din. Yield Strength 125 ksi dax. Yield Strength 140 ksi din. Tensile Strength 135 ksi din. Tensile Strength 729 kb din. Internal Yield Pressure 12,090 psi CONNECTION PERFORMANCES FIELD TORQUE VALUES 88.0% Compression Efficiency 88.0% Compression Rating 649 kb Compression Rating 641 kb Compression Rating 641 kb Max. Nake-up torque 17.950 Max. Make-up torque 13.280 Min. Internal Yield Pressure 12.360 psi Compression Rating 91.7 '//100 Max. Make-up torque 13.280 Max. Makengo torque 13.280 Max. Shoulder Torque 13.280 Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. 14.81 14.92 P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. 12.15ksi. 11.15ksi.	Nominal Area	5.828		Connection ID (nom)	4.778
Max. Yield Strength 140 ksi Min. Tensik Strength 135 ksi Vield Strength 729 kb Uithate Strength 787 kb Jilmate Strength 787 kb Jilmate Strength 787 kb Jolapse Pressure 12,090 psi CONNECCTION PERFORMANCES FIELD TORQUE VALUES Vield Strength 649 kb Zordpression Rating 641 kb Opti, Make-up torque 16,600 Zordpression Rating 641 kb Maximum Unixali Bend Rating 91,7 '/100 ft Reference String Length w 1.4 Design Factor 22,890 rt. * Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. * * P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. *	Grade Type				
Alin. Tensile Strength 135 ksis Vield Strength 729 kbb Jihmate Strength 787 kbb Vield Strength 787 kbb CONNECTION PERFORMANCES 12,090 psi Conversestore 12,090 psi Conversion Rating 649 kbb Ain. Internal Yield Pressure 12,090 psi Conversion Rating 644 kbb Ain. Internal Yield Pressure 12,360 psi Compression Rating 641 kbb Min. Make-up torque 16,600 Opti. Make-up torque 16,600 Opti. Make-up torque 17,950 Maximum Uniaxial Bend Rating 91,7 */100 Maximum Uniaxial Bend Rating 91,7 */100 Maximum Operational Torque and Maximum Torsional Value only valid with Vallourer PHOMY Atterial. 26,180					
Yield Strength 729 kb Jilimate Strength 787 kb Jilimate Strength 787 kb Jilimate Strength 14,360 psi Collapse Pressure 12,090 psi CONNECTION PERFORMANCES FIELD TORQUE VALUES Vield Strength 649 kb Parting Load 729 kb Compression Rating 641 kb Parting Load 729 kb Compression Rating 641 kb Parting Load 729 kb Compression Rating 641 kb Vient Pressure Resistance 12,360 psi Max. Make-up torque 16,600 Max. Shoulder Torque 16,600 Maximum Uniaxial Bend Rating 9.1,7 '/100 ft Max. Shoulder Torque 13,280 Max. Shoulder Torque 13,280 Maximum Uniaxial Bend Rating 9.1,7 '/100 ft Reference String Length w 1.4 Design Factor 22,890 ft. * Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. 23,800					
Itimate Strength 787 kb Lin. Internal Yield Pressure 14,360 psi Scollapse Pressure 12,090 psi CONNECTION PERFORMANCES FIELD TORQUE VALUES Field Strength 649 kb Conspression Rating 641 kb Compression Rating 641 kb Connect Resistance 12,090 psi External Pressure Resistance 12,090 psi Raximum Unixxial Bend Rating 91,7 '100 ft Reference String Length w 1.4 Design Factor 22,890 ft Maximum Operational Torque and Maximum Torsional Value only valid with Valloure P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. Hot Material.	-				
din. Internal Yield Pressure 14,360 psi Collapse Pressure 12,090 psi CONNECTION PERFORMANCES FIELD TORQUE VALUES Vield Strength 649 kb Parting Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,090 psi Min. Internal Yield Pressure 12,090 psi Min. Shoulder Torque 16,600 Opti. Make-up torque 17,950 Max. Make-up torque 19,300 Min. Shoulder Torque 13,280 Maximum Uniaxial Bend Rating 91,7 '/100 ft Reference String Length w 1.4 Design Factor 22,890 ft Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.					
Field Strength 649 kb Parting Load 729 kb Opti. Make-up torque 16,600 Opti. Make-up torque 17,950 Opti. Make-up torque 19,300 Min. Internal Yield Pressure 12,360 Ketmeral Pressure Resistance 12,090 Maximum Uniaxial Bend Rating 91,7 V100 ft Max. Shoulder Torque Reference String Length w 1.4 Design Factor 22,890 Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. * P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.	Min. Internal Yield Pressure				
Yield Strength 649 kb Parting Load 729 kb Compression Rating 641 kb Min. Make-up torque 17,950 Compressure Resistance 12,360 psi Min. Shoulder Torque 13,280 Maximum Uniaxial Bend Rating 91,7 '/100 ft Reference String Length w 1.4 Design Factor 22,890 ft. * Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. Y Maximum Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.	Collapse Pressure	12,090	psi		
Yield Strength 649 kb Parting Load 729 kb Compression Rating 641 kb Min. Thermal Yield Pressure 12,360 psi Min. Shoulder Torque 19,300 Maximum Uniaxial Bend Rating 91,7 '1/100 ft Reference String Length w 1.4 Design Factor 22,890 ft.	CONNECTION PERFORMANCES			FIELD TORQUE VALUES	
Parting Load729kbOpti. Make-up torque17,950Compression Rating641kbMax. Make-up torque19,300Jin. Internal Yield Pressure12,360psiMax. Make-up torque19,300Jin. Internal Yield Pressure Resistance12,090psiMax. Shoulder Torque13,280Jaximum Uniaxial Bend Rating91.7*/100 ftMax. Shoulder Torque13,280Max English w 1.4 Design Factor22,890ft.*/*/Maximum Operational Torque and Maximum Torsional Value only valid with Vallourer*/*/23,800Maximum Operational Torque and Maximum Torsional Value only valid with Vallourer*/*/*/P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.*/*/*/*/					
Compression Rating 641 kb Max. Make-up torque 19,300 Jin. Internal Yield Pressure 12,360 psi Min. Shoulder Torque 1660 Ataximum Uniaxial Bend Rating 91.7 °/100 ft Max. Shoulder Torque 13,280 Reference String Length w 1.4 Design Factor 22,890 ft Max. Delta Turn 0.200 Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. Maximum Value (MTV) 26,180	-				
Iin. Internal Yield Pressure 12,360 psi Min. Shoulder Torque 1,660 ixternal Pressure Resistance 12,090 psi Max. Shoulder Torque 13,280 taximum Uniaxial Bend Rating 91.7 */100 ft Max. Delta Turn 0.200 reference String Length w 1.4 Design Factor 22,890 ft. Maximum Operational Torque 23,800 r Maximum Operational Torque and Maximum Torsional Value only valid with Vallourer P110MY + Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. P110MY Material.					
Xxternal Pressure Resistance 12,090 psi taximum Uniaxial Bend Rating 91.7 */100 ft Max. Delta Turn 0.200 teference String Length w 1.4 Design Factor 22,890 ft. Maximum Operational Torque and Maximum Torsional Value only valid with Vallourer P110MY Material. Material.					
Iaximum Uniaxial Bend Rating 91.7 *1/100 ft Max. Delta Turn 0.200 reference String Length w 1.4 Design Factor 22,890 ft. 1Maximum Operational Torque 23,800 *Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. 1Maximum Operational Strength is 110ksi and Coupling Max Yield is 125ksi. P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.					
†Maximum Torsional Value (MTV) 26,180 * Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.					
Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.	Maximum Uniaxial Bend Rating	91.7	°/100 ft	Max. Deita Turn	0.200
	-			†Maximum Operational Torque	23,800
	Reference String Length w 1.4 Design Factor Maximum Operational Torque and Maximum Torsi P110MY - Coupling Min Yield Strength is 110ksi and "VST = Vallourec Star as the mill source for the pipe, "P Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties Connection specifications within the control of VAM US, dependent on the mechanical properties of the pipe. Me	22,890 ional Value only valid w Coupling Max Yield is 12 Y110EC" is the grade name s, refer to DWC Connect A were correct as of the d schanical properties of mil	ft. ith Valloured Sksi. e" ion Data Not late printed. S Il proprietary p	†Maximum Operational Torque †Maximum Torsional Value (MTV) P110MY Material. Specifications are subject to change without notice. Specifications are subject to change without notice. Specifications are subject to change without notice.	23,800 26,180 Certain connection specific d are subject to change. Pr
All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "*AS IS" basis varranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This do and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether s osses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.	‡ P110MY - Coupling Min Yield Strength is 110ksi and "VST = Vallourec Star as the mill source for the pipe, "P Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties Connection specifications within the control of VAM US/ dependent on the mechanical properties of the pipe. Me of mil proprietary grades should be confirmed with the r All information is provided by VAM USA or its affiliates a warranty or representation of any kind, whether express and its contents are subject to change without notice. In consequential loss or damage (including without limitatii Network of the set	22,890 ional Value only valid w Coupling Max Yield is 12 P110EC" is the grade name s, refer to DWC Connect A were correct as of the d achanical properties of mil mill. Users are advised to at user's sole risk, without s or implied, including with no event shall VAM USA on, loss of use, loss of ba	ft. ith Valloured Sksi. e" ion Data Not late printed. S Il proprietary p obtain curren : liability for lo: iout limitation A or its affiliate rgain, loss of	tMaximum Operational Torque tMaximum Torsional Value (MTV) P110MY Material. Epecifications are subject to change without notice. bipe grades were obtained from mill publications are to connection specifications and verify pipe mechar ss, damage or injury resulting from the use thereof any warranty of merchantability, fitness for purposs is be responsible for any indirect, special, incidenta revenue, profit or anticipated profit however causa	23,800 26,180 Certain connection specific nd are subject to change. P nical properties for each app f; and on an "*AS IS"' basis e or completeness. This do al, punitive, exemplary or

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

03/04/2024 08:36:50 PM

OXY

PRD NM DIRECTIONAL PLANS (NAD 1983) Nugget 6_31 Nugget 6_31 Fed Com 24H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

02 April, 2024

OXY Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	HOPSPP ENGINEERING DESIGNS PRD NM DIRECTIONAL PLANS (NAD 1983) Nugget 6_31 Nugget 6_31 Fed Com 24H Wellbore #1 Permitting Plan			Local Co-ordinate Reference:Well Nugget 6_31 Fed Com 244TVD Reference:RKB=25' @ 3483.00ftMD Reference:RKB=25' @ 3483.00ftNorth Reference:GridSurvey Calculation Method:Minimum Curvature					I	
Project	PRD NM	1 DIRECTION	IAL PLANS (N	NAD 1983)						
Map System: Geo Datum: Map Zone:	North Ame	Plane 1983 erican Datum co Eastern Zo			System Da	tum:		ean Sea Level	ale factor	
Site	Nugget 6	3_31								
Site Position: From: Position Uncertair	Map nty:	0.89 ft	North Eastir Slot R	•	698,7		Latitude: Longitude:			32.23857 -103.82418
Well	Nugget 6	31 Fed Con	n 24H							
Well Position Position Uncertair Grid Convergence	-	0.0 0.0 2.0 0.2	0 ft Ea 0 ft Wo	orthing: sting: ellhead Elev	ation:	452,376.68 702,126.76	usf Lon	tude: gitude: und Level:		32.24258 -103.81326 3,458.00 ft
Wellbore	Wellbor	e #1								
Magnetics		el Name	Sample		Declina (°)		۵ Dip A (°)	Field Stre (nT)	•
		IDGM_FILE		4/2/2024		6.35		59.78	47,407.	1000000
Design	Permittir	ıg Plan								
Audit Notes: Version:			Phas	e:	PROTOTYPE	Tie	On Depth:	(0.00	
Vertical Section:		De	epth From (T (ft)	VD)	+N/-S (ft)	+E/- (ft	t)	(ction (°)	
			0.00		0.00	0.0	00	354	4.97	
Plan Survey Tool Depth From (ft)	Depth (ft)	То	4/2/2024 (Wellbore)	horo #1)	Tool Name B005Mc_MWI		Remarks			
1 0.00	13,000	.75 1 611111		5010 #1)	MWD+HRGM					
1 0.00										
Plan Sections Measured	lination /	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
Plan Sections Measured Depth Incl			Depth			Rate	Rate	Rate		Target
Plan Sections Measured Depth Incl (ft) 0.00 2,755.00	(°) 0.00 0.00	(°) 0.00 0.00	Depth (ft) 0.00 2,755.00	(ft) 0.00 0.00	(ft) 0.00 0.00	Rate (°/100ft) 0.00 0.00	Rate (°/100ft) 0.00 0.00	Rate (°/100ft) 0.00 0.00	(°) 0.00 0.00	Target
Plan Sections Measured Depth (ft) 0.00 2,755.00 3,654.93	(°) 0.00 0.00 18.00	(°) 0.00 0.00 194.04	Depth (ft) 0.00 2,755.00 3,640.21	(ft) 0.00 0.00 -136.01	(ft) 0.00 0.00 -34.00	Rate (°/100ft) 0.00 0.00 2.00	Rate (°/100ft) 0.00 0.00 2.00	Rate (°/100ft) 0.00 0.00 0.00	(°) 0.00 0.00 194.04	Target
Plan Sections Measured Depth (ft) Incl 0.00 2,755.00 3,654.93 8,250.35	(°) 0.00 0.00 18.00 18.00	(°) 0.00 0.00 194.04 194.04	Depth (ft) 0.00 2,755.00 3,640.21 8,010.74	(ft) 0.00 0.00 -136.01 -1,513.57	(ft) 0.00 0.00 -34.00 -378.42	Rate (°/100ft) 0.00 0.00 2.00 0.00	Rate (°/100ft) 0.00 2.00 0.00	Rate (°/100ft) 0.00 0.00 0.00 0.00	(°) 0.00 0.00 194.04 0.00	Target
Plan Sections Measured Depth (ft) Incl 0.00 2,755.00 3,654.93 8,250.35 8,725.22	(°) 0.00 0.00 18.00 18.00 45.00	(°) 0.00 0.00 194.04 194.04 300.00	Depth (ft) 0.00 2,755.00 3,640.21 8,010.74 8,434.19	(ft) 0.00 -136.01 -1,513.57 -1,499.83	(ft) 0.00 -34.00 -378.42 -553.94	Rate (°/100ft) 0.00 0.00 2.00 0.00 11.00	Rate (°/100ft) 0.00 2.00 0.00 5.69	Rate (°/100ft) 0.00 0.00 0.00 0.00 22.31	(°) 0.00 194.04 0.00 120.69	Target
Plan Sections Measured Depth (ft) Incl 0.00 2,755.00 3,654.93 8,250.35	(°) 0.00 0.00 18.00 18.00	(°) 0.00 0.00 194.04 194.04	Depth (ft) 0.00 2,755.00 3,640.21 8,010.74	(ft) 0.00 0.00 -136.01 -1,513.57	(ft) 0.00 0.00 -34.00 -378.42	Rate (°/100ft) 0.00 0.00 2.00 0.00	Rate (°/100ft) 0.00 2.00 0.00	Rate (°/100ft) 0.00 0.00 0.00 0.00	(°) 0.00 194.04 0.00 120.69 67.60	Target HL (Nugget 6 31

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 24H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3483.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3483.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 24H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
									0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,755.00	0.00	0.00	2,755.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.90	194.04	2,800.00	-0.34	-0.09	-0.33	2.00	2.00	0.00
2,900.00	2.90	194.04	2,899.94	-3.56	-0.89	-3.47	2.00	2.00	0.00
3,000.00	4.90	194.04	2,999.70	-10.16	-2.54	-9.90	2.00	2.00	0.00
3,100.00	6.90	194.04	3,099.17	-20.13	-5.03	-19.61	2.00	2.00	0.00
3,200.00	8.90	194.04	3,198.21	-33.46	-8.37	-32.60	2.00	2.00	0.00
3,300.00	10.90	194.04	3,296.72	-50.14	-12.54	-48.85	2.00	2.00	0.00
3,400.00	12.90	194.04	3,394.56	-70.14	-17.54	-68.34	2.00	2.00	0.00
3,500.00	14.90	194.04	3,491.63	-93.45	-23.36	-91.04	2.00	2.00	0.00
3,600.00	16.90	194.04	3,587.80	-120.03	-30.01	-116.93	2.00	2.00	0.00
3,654.93	18.00	194.04	3,640.21	-136.01	-34.00	-132.50	2.00	2.00	0.00
3,700.00	18.00	194.04	3,683.07	-149.52	-37.38	-145.66	0.00	0.00	0.00
3,800.00	18.00	194.04	3,778.17	-179.49	-44.88	-174.87	0.00	0.00	0.00
3,900.00	18.00	194.04	3,873.28	-209.47	-52.37	-204.07	0.00	0.00	0.00
4,000.00	18.00	194.04	3,968.39	-239.45	-59.87	-233.28	0.00	0.00	0.00
4,100.00	18.00	194.04	4,063.49	-269.42	-67.36	-262.48	0.00	0.00	0.00
4,200.00	18.00	194.04	4,158.60	-299.40	-74.85	-291.69	0.00	0.00	0.00
4,300.00	18.00	194.04	4,253.70	-329.38	-82.35	-320.89	0.00	0.00	0.00
4,400.00	18.00	194.04	4,348.81	-359.35	-89.84	-350.10	0.00	0.00	0.00
4,500.00	18.00	194.04	4,443.92	-389.33	-97.34	-379.30	0.00	0.00	0.00
4,600.00	18.00	194.04	4,539.02	-419.31	-104.83	-408.50	0.00	0.00	0.00
4,700.00	18.00	194.04	4,634.13	-449.28	-112.33	-437.71	0.00	0.00	0.00
4,800.00	18.00	194.04	4,729.24	-479.26	-119.82	-466.91	0.00	0.00	0.00
4,900.00	18.00	194.04	4,824.34	-509.24	-127.32	-496.12	0.00	0.00	0.00
5,000.00	18.00	194.04	4,919.45	-539.21	-134.81	-525.32	0.00	0.00	0.00
5,100.00	18.00	194.04	5,014.56	-569.19	-142.31	-554.53	0.00	0.00	0.00
5,200.00	18.00	194.04	5,109.66	-599.17	-149.80	-583.73	0.00	0.00	0.00

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 24H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3483.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3483.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 24H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

5,400.00 18.00 194.04 5,299.87 -659.12 -164.79 -642.14 0.00 0.00 00 <th>.00 .00 .00 .00 .00 .00 .00 .00 .00 .00</th>	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
5,400.00 18.00 194.04 5,299.87 -659.12 -164.79 -642.14 0.00 0.00 00 <th>.00 .00 .00 .00 .00 .00 .00 .00</th>	.00 .00 .00 .00 .00 .00 .00 .00
5,500.00 18.00 194.04 5,394.98 -689.10 -172.29 -671.35 0.00 0.00 00 5,600.00 18.00 194.04 5,490.09 -719.08 -179.78 -700.55 0.00 0.00 00	.00 .00 .00 .00 .00 .00 .00
5,600.00 18.00 194.04 5,490.09 -719.08 -179.78 -700.55 0.00 0.00 0	.00 .00 .00 .00 .00 .00
	.00 .00 .00 .00 .00
0,700.00 10.00 194.04 0,000.19 -749.00 -107.27 -729.70 0.00 0.00 U.UU U	.00 .00 .00 .00
	.00 .00 .00
	.00 .00
	.00
	.00
6,200.00 18.00 194.04 6,060.73 -898.94 -224.75 -875.78 0.00 0.00 0	
	.00
	.00
6,500.00 18.00 194.04 6,346.04 -988.87 -247.23 -963.39 0.00 0.00 00	.00
6,600.00 18.00 194.04 6,441.15 -1,018.84 -254.73 -992.60 0.00 0.00 0.00	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
8,300.00 15.90 211.42 8,058.26 -1,526.82 -383.82 -1,487.30 11.00 -4.23 35	.02
	.52
	.85
8,600.00 32.56 290.43 8,336.68 -1,533.89 -483.68 -1,485.60 11.00 9.00 13	.63
8,700.00 42.44 298.46 8,415.96 -1,508.35 -538.73 -1,455.32 11.00 9.88 8	.02
	.12
	.58
	.77
	.01
9,100.00 69.25 340.66 8,642.13 -1,257.69 -734.58 -1,188.47 11.00 7.63 8	.72
	.86
	.37
	.21
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
10,400.00 90.00 359.77 8,688.00 32.21 -779.45 100.41 0.00 0.00 000	.00

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 24H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3483.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3483.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 24H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,500.00	90.00	359.77	8,688.00	132.21	-779.86	200.06	0.00	0.00	0.00
10,600.00	90.00	359.77	8,688.00	232.21	-780.27	299.71	0.00	0.00	0.00
10,700.00	90.00	359.77	8,688.00	332.21	-780.67	399.36	0.00	0.00	0.00
10,800.00	90.00	359.77	8,688.00	432.21	-781.08	499.01	0.00	0.00	0.00
10,900.00	90.00	359.77	8,688.00	532.21	-781.48	598.66	0.00	0.00	0.00
11,000.00	90.00	359.77	8,688.00	632.21	-781.89	698.31	0.00	0.00	0.00
11,100.00	90.00	359.77	8,688.00	732.21	-782.30	797.96	0.00	0.00	0.00
11,200.00	90.00	359.77	8,688.00	832.21	-782.70	897.61	0.00	0.00	0.00
11,300.00	90.00	359.77	8,688.00	932.21	-783.11	997.26	0.00	0.00	0.00
11,400.00	90.00	359.77	8,688.00	1,032.20	-783.52	1,096.91	0.00	0.00	0.00
11,500.00	90.00	359.77	8,688.00	1,132.20	-783.92	1,196.56	0.00	0.00	0.00
11,600.00	90.00	359.77	8,688.00	1,232.20	-784.33	1,296.21	0.00	0.00	0.00
11,700.00	90.00	359.77	8,688.00	1,332.20	-784.74	1,395.86	0.00	0.00	0.00
11,800.00	90.00	359.77	8,688.00	1,432.20	-785.14	1,495.51	0.00	0.00	0.00
11,900.00	90.00	359.77	8,688.00	1,532.20	-785.55	1,595.16	0.00	0.00	0.00
12,000.00	90.00	359.77	8,688.00	1,632.20	-785.95	1,694.81	0.00	0.00	0.00
12,000.00	90.00	359.77	8,688.00	1,732.20	-786.36	1,794.46	0.00	0.00	0.00
12,100.00	90.00	359.77	8,688.00	1,832.20	-786.77	1,894.11	0.00	0.00	0.00
12,300.00	90.00	359.77	8,688.00	1,932.20	-787.17	1,993.76	0.00	0.00	0.00
12,400.00	90.00	359.77	8,688.00	2,032.20	-787.58	2,093.41	0.00	0.00	0.00
12,500.00	90.00	359.77	8,688.00	2,132.20	-787.99	2,193.06	0.00	0.00	0.00
12,600.00	90.00	359.77	8,688.00	2,232.20	-788.39	2,292.71	0.00	0.00	0.00
12,700.00	90.00	359.77	8,688.00	2,332.19	-788.80	2,392.36	0.00	0.00	0.00
12,800.00	90.00	359.77	8,688.00	2,432.19	-789.20	2,492.01	0.00	0.00	0.00
12,900.00	90.00	359.77	8,688.00	2,532.19	-789.61	2,591.66	0.00	0.00	0.00
13,000.00	90.00	359.77	8,688.00	2,632.19	-790.02	2,691.31	0.00	0.00	0.00
13,100.00	90.00	359.77	8,688.00	2,732.19	-790.42	2,790.96	0.00	0.00	0.00
13,200.00	90.00	359.77	8,688.00	2,832.19	-790.83	2,890.61	0.00	0.00	0.00
13,300.00	90.00	359.77	8,688.00	2,932.19	-791.24	2,990.26	0.00	0.00	0.00
13,400.00	90.00	359.77	8,688.00	3,032.19	-791.64	3,089.91	0.00	0.00	0.00
13,500.00	90.00	359.77	8,688.00	3,132.19	-792.05	3,189.56	0.00	0.00	0.00
13,600.00	90.00	359.77	8,688.00	3,232.19	-792.45	3,289.21	0.00	0.00	0.00
13,700.00	90.00	359.77	8,688.00	3,332.19	-792.86	3,388.86	0.00	0.00	0.00
13,800.00	90.00	359.77	8,688.00	3,432.19	-793.27	3,488.51	0.00	0.00	0.00
13,900.00	90.00	359.77	8,688.00	3,532.18	-793.67	3,588.16	0.00	0.00	0.00
14,000.00	90.00	359.77	8,688.00	3,632.18	-794.08	3,687.81	0.00	0.00	0.00
14,100.00	90.00	359.77	8,688.00	3,732.18	-794.49	3,787.46	0.00	0.00	0.00
14,200.00	90.00	359.77	8,688.00	3,832.18	-794.89	3,887.11	0.00	0.00	0.00
14,300.00	90.00	359.77	8,688.00	3,932.18	-795.30	3,986.76	0.00	0.00	0.00
14,400.00	90.00	359.77	8,688.00	4,032.18	-795.71	4,086.41	0.00	0.00	0.00
14,500.00	90.00	359.77	8,688.00	4,132.18	-796.11	4,186.06	0.00	0.00	0.00
14,600.00	90.00	359.77	8,688.00	4,232.18	-796.52	4,285.70	0.00	0.00	0.00
14,700.00	90.00	359.77	8,688.00	4,332.18	-796.92	4,385.35	0.00	0.00	0.00
14,800.00	90.00	359.77	8,688.00	4,432.18	-797.33	4,485.00	0.00	0.00	0.00
14,900.00	90.00	359.77	8,688.00	4,532.18	-797.74	4,584.65	0.00	0.00	0.00
15,000.00	90.00	359.77	8,688.00	4,632.18	-798.14	4,684.30	0.00	0.00	0.00
15,100.00	90.00	359.77	8,688.00	4,732.17	-798.55	4,783.95	0.00	0.00	0.00
15,200.00	90.00	359.77	8,688.00	4,832.17	-798.96	4,883.60	0.00	0.00	0.00
15,300.00	90.00	359.77	8,688.00	4,932.17	-799.36	4,983.25	0.00	0.00	0.00
15,400.00	90.00	359.77	8,688.00	5,032.17	-799.77	5,082.90	0.00	0.00	0.00
15,500.00	90.00	359.77	8,688.00	5,132.17	-800.17	5,182.55	0.00	0.00	0.00
15,600.00	90.00	359.77	8,688.00	5,232.17	-800.58	5,282.20	0.00	0.00	0.00
15,700.00	90.00	359.77	8,688.00	5,332.17	-800.99	5,381.85	0.00	0.00	0.00
15,800.00	90.00	359.77	8,688.00	5,432.17	-801.39	5,481.50	0.00	0.00	0.00
15,900.00	90.00	359.77	8,688.00	5,532.17	-801.80	5,581.15	0.00	0.00	0.00
•									

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 24H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3483.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3483.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 24H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
16,000.00 16,100.00 16,200.00 16,300.00 16,400.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	5,632.17 5,732.17 5,832.17 5,932.16 6,032.16	-802.21 -802.61 -803.02 -803.43 -803.83	5,680.80 5,780.45 5,880.10 5,979.75 6,079.40	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,500.00 16,600.00 16,700.00 16,800.00 16,900.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	6,132.16 6,232.16 6,332.16 6,432.16 6,532.16	-804.24 -804.64 -805.05 -805.46 -805.86	6,179.05 6,278.70 6,378.35 6,478.00 6,577.65	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,000.00 17,100.00 17,200.00 17,300.00 17,400.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	6,632.16 6,732.16 6,832.16 6,932.16 7,032.16	-806.27 -806.68 -807.08 -807.49 -807.89	6,677.30 6,776.95 6,876.60 6,976.25 7,075.90	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,500.00 17,600.00 17,700.00 17,800.00 17,900.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	7,132.15 7,232.15 7,332.15 7,432.15 7,532.15	-808.30 -808.71 -809.11 -809.52 -809.93	7,175.55 7,275.20 7,374.85 7,474.50 7,574.15	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,000.00 18,100.00 18,200.00 18,300.00 18,400.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	7,632.15 7,732.15 7,832.15 7,932.15 8,032.15	-810.33 -810.74 -811.14 -811.55 -811.96	7,673.80 7,773.45 7,873.10 7,972.75 8,072.40	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,500.00 18,600.00 18,700.00 18,800.00 18,900.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	8,132.15 8,232.15 8,332.14 8,432.14 8,532.14	-812.36 -812.77 -813.18 -813.58 -813.99	8,172.05 8,271.70 8,371.35 8,471.00 8,570.65	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,000.00 19,100.00 19,200.00 19,300.00 19,400.00	90.00 90.00 90.00 90.00 90.00	359.77 359.77 359.77 359.77 359.77	8,688.00 8,688.00 8,688.00 8,688.00 8,688.00 8,688.00	8,632.14 8,732.14 8,832.14 8,932.14 9,032.14	-814.40 -814.80 -815.21 -815.61 -816.02	8,670.30 8,769.95 8,869.60 8,969.25 9,068.90	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,500.00 19,600.00 19,653.79	90.00 90.00 90.00	359.77 359.77 359.77	8,688.00 8,688.00 8,688.00	9,132.14 9,232.14 9,285.93	-816.43 -816.83 -817.05	9,168.55 9,268.20 9,321.80	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

Design Targets

Target Name									
	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Nugget 6_31 - plan misses target o - Point	0.00 center by 17	0.00 47.61ft at 0	0.00 .00ft MD (0.	-1,567.39 .00 TVD, 0.00	-772.94 N, 0.00 E)	450,809.39	701,353.87	32.238291	-103.815792
FTP (Nugget 6_31 Fed - plan misses target o - Point	0.00 center by 22	0.00 .20ft at 920	8,688.00 2.68ft MD (8	-1,167.37 3671.53 TVD,	-774.58 -1162.93 N,	451,209.38 -760.37 E)	701,352.23	32.239391	-103.815791
PBHL (Nugget 6_31 - plan hits target cent - Point	0.00 er	0.00	8,688.00	9,285.93	-817.05	461,662.02	701,309.76	32.268123	-103.815765

4/2/2024 1:03:44PM

OXY Planning Report

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 24H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3483.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3483.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 24H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Formations

Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)	
555.00	555.00	RUSTLER				
933.00	933.00	SALADO				
2,807.00	2,807.00	CASTILE				
4,228.81	4,186.00	DELAWARE				
4,260.36	4,216.00	BELL CANYON				
5,215.08	5,124.00	CHERRY CANYON				
6,531.50	6,376.00	BRUSHY CANYON				
8,287.24	8,046.00	BONE SPRING				

Plan Annotations

Measured	Vertical Depth (ft)	Local Coordinates		
Depth (ft)		+N/-S (ft)	+E/-W (ft)	Comment
2,755.00	2,755.00	0.00	0.00	Build 2°/100'
3,654.93	3,640.21	-136.01	-34.00	Hold 18° Tangent
8,250.35	8,010.74	-1,513.57	-378.42	KOP, Build & Turn 11°/100'
8,725.22	8,434.19	-1,499.83	-553.94	Continue 11°/100'
9,353.79	8,688.00	-1,013.99	-775.20	Landing Point
19,653.79	8,688.00	9,285.93	-817.05	TD at 19653.79' MD

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA Inc.
LEASE NO.:	NMNM082904, NMNM0546732A, NMNM057273,
	NMNM089819, and NMNM0544986B
COUNTY:	Eddy County, New Mexico

Wells:

NUGGET 6_31 FED COM 41H
NUGGET 6_31 FED COM 47H
NUGGET 6_31 FED COM 42H
JEFF SMITH MDP1 7_18 FED COM 43H
JEFF SMITH MDP1 7_18 FED COM 48H
JEFF SMITH MDP1 7_18 FED COM 44H
JEFF SMITH MDP1 7_18 FED COM 31H
JEFF SMITH MDP1 7_18 FED COM 32H
JEFF SMITH MDP1 7_18 FED COM 35H
JEFF SMITH MDP1 7_18 FED COM 21H
JEFF SMITH MDP1 7_18 FED COM 22H
JEFF SMITH MDP1 7_18 FED COM 23H
JEFF SMITH MDP1 7_18 FED COM 11H
JEFF SMITH MDP1 7_18 FED COM 12H
JEFF SMITH MDP1 7_18 FED COM 46H
JEFF SMITH MDP1 7_18 FED COM 50H
NUGGET 6_31 FED COM 46H
NUGGET 6_31 FED COM 50H
JEFF SMITH MDP1 7_18 FED COM 1H
JEFF SMITH MDP1 7_18 FED COM 2H
JEFF SMITH MDP1 7_18 FED COM 3H
NUGGET 6_31 FED COM 24H
NUGGET 6_31 FED COM 25H
NUGGET 6_31 FED COM 26H
JEFF SMITH MDP1 7_18 FED COM 24H

Page 1 of 22

•

JEFF SMITH MDP1 7_18 FED COM 25H
JEFF SMITH MDP1 7_18 FED COM 26H
JEFF SMITH MDP1 7_18 FED COM 13H
JEFF SMITH MDP1 7_18 FED COM 14H
NUGGET 6_31 FED COM 6H
NUGGET 6_31 FED COM 7H
JEFF SMITH MDP1 7_18 FED COM 49H
JEFF SMITH MDP1 7_18 FED COM 45H
NUGGET 6_31 FED COM 49H
NUGGET 6_31 FED COM 45H
NUGGET 6_31 FED COM 34H
NUGGET 6_31 FED COM 35H
NUGGET 6_31 FED COM 36H
NUGGET 6_31 FED COM 13H
NUGGET 6_31 FED COM 14H
JEFF SMITH MDP1 7_18 FED COM 33H
JEFF SMITH MDP1 7_18 FED COM 34H
JEFF SMITH MDP1 7_18 FED COM 36H
NUGGET 6_31 FED COM 31H
NUGGET 6_31 FED COM 32H
NUGGET 6_31 FED COM 33H
NUGGET 6_31 FED COM 11H
NUGGET 6_31 FED COM 12H
NUGGET 6_31 FED COM 21H
NUGGET 6_31 FED COM 22H
NUGGET 6_31 FED COM 23H
JEFF SMITH MDP1 7_18 FED COM 41H
JEFF SMITH MDP1 7_18 FED COM 47H
JEFF SMITH MDP1 7_18 FED COM 42H
NUGGET 6_31 FED COM 43H
NUGGET 6_31 FED COM 48H
NUGGET 6_31 FED COM 44H
NUGGET 6_31 FED COM 4H
NUGGET 6_31 FED COM 5H

.

TABLE OF CONTENTS

1.	GEN	ERAL PROVISIONS
	1.1.	ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES
	1.2.	RANGELAND RESOURCES
	1.2.1	. Cattleguards
	1.2.2	. Fence Requirement
	1.2.3	. Livestock Watering Requirement
	1.3.	NOXIOUS WEEDS
	1.3.1	African Rue (Peganum harmala)
	1.4.	LIGHT POLLUTION
	1.4.1	. Downfacing
	1.4.2	. Shielding
	1.4.3	. Lighting Color
2.	SPEC	CIAL REQUIREMENTS
	2.1.	WATERSHED
	2.1.1	. Tank Battery7
	2.1.2	. Buried/Surface Line(s)
	2.1.3	. Electric Line(s)
	2.1.4	. Temporary Use Fresh Water Frac Line(s)
	2.2	WILDLIFE
	2.1.1	Lesser Prairie Chicken
	2.3	SPECIAL STATUS PLANT SPECIES
	2.4	VISUAL RESOURCE MANAGEMENT
	2.4.1	VRM IV
	2.5	POTASH RESOURCES
3.	CON	STRUCTION REQUIRENMENTS
	3.1	CONSTRUCTION NOTIFICATION
	3.2	TOPSOIL
	3.3	CLOSED LOOP SYSTEM9
	3.4	FEDERAL MINERAL PIT9
	3.5	WELL PAD & SURFACING9
	3.6	EXCLOSURE FENCING (CELLARS & PITS)
	3.7	ON LEASE ACESS ROAD
	3.7.1	Road Width9

Page 3 of 22

	3.7.2	Surfacing	10
	3.7.3	Crowning	10
	3.7.4	Ditching	10
	3.7.5	Turnouts	10
	3.7.6	Drainage	10
	3.7.7	Public Access	11
4.	PIPE	LINES	13
Z	1.1	BURIED PIPELINES	13
Z	.2	SURFACE PIPELINES	15
2	.3	OVERHEAD ELECTRIC LINES	17
2	1.4	RANGLAND MITIGATION FOR PIPELINES	18
	4.5.1	Fence Requirement	18
	4.5.2	Cattleguards	18
	4.5.3	Livestock Watering Requirement	18
5.	PRO	DUCTION (POST DRILLING)	19
5	5.1	WELL STRUCTURES & FACILITIES	19
	5.1.1	Placement of Production Facilities	19
	5.1.2	Exclosure Netting (Open-top Tanks)	19
	5.1.3	. Chemical and Fuel Secondary Containment and Exclosure Screening	19
	5.1.4	. Open-Vent Exhaust Stack Exclosures	19
	5.1.5	. Containment Structures	19
6.	REC	LAMATION	19
e	5.1 RO	AD AND SITE RECLAMATION	20
e	5.2 ERG	DSION CONTROL	20
e	5.3 INT	ERIM RECLAMATION	20
e	5.4 FIN	AL ABANDONMENT & RECLAMATION	20
e	5.5 SEE	DING TECHNIQUES	21
e	5.6 SOI	L SPECIFIC SEED MIXTURE	21

1. GENERAL PROVISIONS

The failure of the operator to comply with these requirements may result in the assessment of liquidated damages or penalties pursuant to 43 CFR 3163.1 or 3163.2. A copy of these conditions of approval shall be present on the location during construction, drilling and reclamation activity. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

1.1. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural resource (historic or prehistoric site or object) discovered by the operator, or any person working on the operator's behalf, on the public or federal land shall be immediately reported to the Authorized Officer. The operator shall suspend all operations in the immediate area (within 100ft) of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer, in conjunction with a BLM Cultural Resource Specialist, to determine appropriate actions to prevent the loss of significant scientific values. The operator shall be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer after consulting with the operator.

Traditional Cultural Properties (TCPs) are protected by NHPA as codified in 36 CFR 800 for possessing traditional, religious, and cultural significance tied to a certain group of individuals. Though there are currently no designated TCPs within the project area or within a mile of the project area, but it is possible for a TCP to be designated after the approval of this project. If a TCP is designated in the project area after the project's approval, the BLM Authorized Officer will notify the operator of the following conditions and the duration for which these conditions are required.

- 1. Temporary halting of all construction, drilling, and production activities to lower noise.
- 2. Temporary shut-off of all artificial lights at night.

The operator is hereby obligated to comply with procedures established in the Native American Graves Protection and Repatriation Act (NAGPRA), specifically NAGPRA Subpart B regarding discoveries, to protect human remains, associated funerary objects, sacred objects, and objects of cultural patrimony discovered during project work. If any human skeletal remains, funerary objects, sacred objects, or objects of cultural patrimony are discovered at any time during construction, all construction activities shall halt and a BLM-CFO Authorized Officer will be notified immediately. The BLM will then be required to be notified, in writing, within 24 hours of the discovery. The written notification should include the geographic location by county and state, the contents of the discovery, and the steps taken to protect said discovery. You must also include any potential threats to the discovery and a conformation that all activity within 100ft of the discovery has ceased and work will not resume until written certification is issued. All work on the entire project must halt for a minimum of 3 days and work cannot resume until an Authorized Officer grants permission to do so.

Any paleontological resource discovered by the operator, or any person working on the operator's behalf, on public or Federal land shall be immediately reported to the Authorized Officer. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. The operator will be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer after consulting with the operator.

1.2. RANGELAND RESOURCES

1.2.1. Cattleguards

Where a permanent cattleguard is approved, an appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at fence crossing(s). Any existing cattleguard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguard(s) that are in place and are utilized during lease operations. A gate shall be constructed on one side of the cattleguard and fastened securely to H-braces.

1.2.2. Fence Requirement

Where entry granted across a fence line, the fence must be braced and tied off on both sides of the passageway prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fence(s).

1.2.3. Livestock Watering Requirement

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

1.3. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA, New Mexico Department of Agriculture, and BLM requirements and policies.

1.3.1 African Rue (Peganum harmala)

Spraying: The spraying of African Rue must be completed by a licensed or certified applicator. In order to attempt to kill or remove African Rue the proper mix of chemical is needed. The mix consists of 2% Arsenal (Imazapyr) and 2% Roundup (Glyphosate) along with a nonionic surfactant. Any other chemicals or combinations shall be approved by the BLM Noxious Weeds Coordinator prior to treatment. African Rue shall be sprayed in connection to any dirt working activities or disturbances to the site being sprayed. Spraying of African Rue shall be done on immature plants at initial growth through flowering and mature plants between budding and flowering stages. Spraying shall not be conducted after flowering when plant is fruiting. This will ensure optimal intake of chemical and decrease chances of developing herbicide resistance. After spraying, the operator or necessary parties must contact the Carlsbad Field Office to inspect the effectiveness of the application treatment to the plant species. No ground disturbing activities can take place until the inspection by the authorized officer is complete. The operator may contact the Environmental Protection Department or the BLM Noxious Weed Coordinator at (575) 234-5972 or BLM_NM_CFO_NoxiousWeeds@blm.gov.

Management Practices: In addition to spraying for African Rue, good management practices should be followed. All equipment should be washed off using a power washer in a designated containment area. The containment area shall be bermed to allow for containment of the seed to prevent it from entering any open areas of the nearby landscape. The containment area shall be excavated near or adjacent to the well pad at a depth of three feet and just large enough to get equipment inside it to be washed off. This will allow all seeds to be in a centrally located area that can be treated at a later date if the need arises.

1.4. LIGHT POLLUTION

1.4.1. Downfacing

All permanent lighting will be pointed straight down at the ground in order to prevent light spill beyond the edge of approved surface disturbance.

1.4.2. Shielding

All permanent lighting will use full cutoff luminaires, which are fully shielded (i.e., not emitting direct or indirect light above an imaginary horizontal plane passing through the lowest part of the light source).

1.4.3. Lighting Color

Lighting shall be 3,500 Kelvin or less (Warm White) except during drilling, completion, and workover operations. No bluish-white lighting shall be used in permanent outdoor lighting.

2. SPECIAL REQUIREMENTS

2.1.WATERSHED

The entire well pad(s) will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The topsoil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

2.1.1. Tank Battery

Tank battery locations will be lined and bermed. A 20-mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Secondary containment holding capacity must be large enough to contain 1 ¹/₂ times the content of the largest tank or 24-hourproduction, whichever is greater (displaced volume from all tanks within the berms MUST be subtracted from total volume of containment in calculating holding capacity). Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

2.1.2. Buried/Surface Line(s)

When crossing ephemeral drainages, the pipeline(s) will be buried to a minimum depth of 48 inches from the top of pipe to ground level. Erosion control methods such as gabions and/or rock aprons must be placed on both up and downstream sides of the pipeline crossing. In addition, curled (weed free) wood/straw fiber wattles/logs and/or silt fences must be placed on the downstream side for sediment control during construction and maintained until soils and vegetation have stabilized. Water bars must be placed within the corridor to divert and dissipate surface runoff. A pipeline access road is not permitted to cross ephemeral drainages. Traffic must be diverted to a preexisting route. Additional seeding may be required in floodplains and drainages to restore energy dissipating vegetation.

Prior to pipeline installation/construction a leak detection plan will be developed. The method(s) could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

2.1.3. Electric Line(s)

Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be taken to prevent future erosion. A power pole must not be placed in drainages, playas, wetlands, riparian areas, or floodplains and must span across the features at a distance away that does not promote further erosion.

2.1.4. Temporary Use Fresh Water Frac Line(s)

Once the temporary use exceeds the timeline of 180 days and/or with a 90 day extension status; further analysis will be required if the applicant pursues to turn the temporary pipeline into a permanent pipeline.

Page 7 of 22

2.2 WILDLIFE

2.1.1 Lesser Prairie Chicken

2.1.1.1 Timing Limitation Stipulation/Condition of Approval for Lesser Prairie-Chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

2.1.1.2 Timing Limitation Exceptions:

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

2.1.1.3 Ground-level Abandoned Well Marker to avoid raptor perching:

Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at BLM_NM_CFO_Construction_Reclamation@blm.gov.

2.3 SPECIAL STATUS PLANT SPECIES

2.4 VISUAL RESOURCE MANAGEMENT

2.4.1 VRM IV

Above-ground structures including meter housing that are not subject to safety requirements are painted a flat non-reflective paint color, Shale Green from the BLM Standard Environmental Color Chart (CC-001: June 2008).

2.5 POTASH RESOURCES

Lessees must comply with the 2012Secretarial Potash Order. The Order is designed to manage the efficient development of oil, gas, and potash resources. Section 6 of the Order provides general provisions which must be followed to minimize conflict between the industries and ensure the safety of operations.

To minimize impacts to potash resources, the proposed well is confined within the boundaries of the established Jeff Smith Drill Island.

3. CONSTRUCTION REQUIRENMENTS

3.1 CONSTRUCTION NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at BLM_NM_CFO_Construction_Reclamation@blm.gov at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and COAs on the well site and they shall be made available upon request by the Authorized Officer.

3.2 TOPSOIL

The operator shall strip the topsoil (the A horizon) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. No more than the top 6 inches of topsoil shall be removed. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (the B horizon and below) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

3.3 CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No reserve pits will be used for drill cuttings. The operator shall properly dispose of drilling contents at an authorized disposal site.

3.4 FEDERAL MINERAL PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

3.5 WELL PAD & SURFACING

Any surfacing material used to surface the well pad will be removed at the time of interim and final reclamation.

3.6 EXCLOSURE FENCING (CELLARS & PITS)

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the well cellar is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

The operator will also install and maintain mesh netting for all open well cellars to prevent access to smaller wildlife before and after drilling operations until the well cellar is free of fluids and the operator. Use a maximum netting mesh size of $1\frac{1}{2}$ inches. The netting must not have holes or gaps.

3.7 ON LEASE ACESS ROAD

3.7.1 Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

3.7.2 Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements will be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

3.7.3 Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

3.7.4 **Ditching**

Ditching shall be required on both sides of the road.

3.7.5 Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

3.7.6 Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

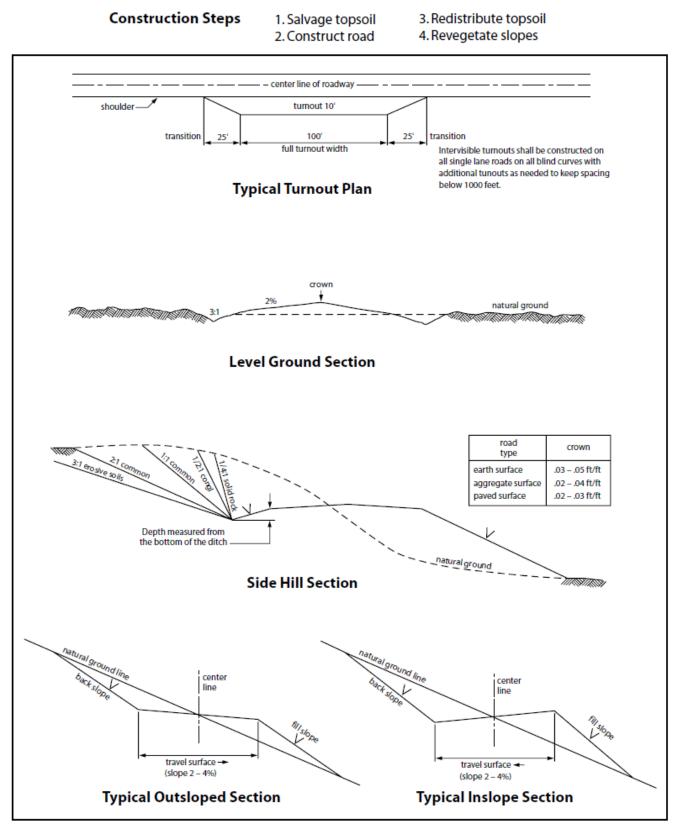
A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:


400 foot road with 4% road slope: <u>400'</u> + 100' = 200' lead-off ditch interval

4

3.7.7 **Public Access**

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 11 of 22

Page 12 of 22

•

4. PIPELINES

- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, passages, or voids are intersected by trenching, and no pipe will be laid in the trench at that point until clearance has been issued by the Authorized Officer.
- A leak detection plan <u>will be submitted to the BLM Carlsbad Field Office for approval</u> prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.
- Regular monitoring is required to quickly identify leaks for their immediate and proper treatment.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

4.1 BURIED PIPELINES

A copy of the application (APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request a copy of your permit during construction to ensure compliance with all stipulations.

Operator agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Operator shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this APD.
- 2. The Operator shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the operator shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the pipeline corridor or on facilities authorized under this APD. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The operator agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Pipeline corridor (unless the release or threatened release is wholly unrelated to the operator's activity on the pipeline corridor), or resulting from the activity of the Operator on the pipeline corridor. This agreement applies without regard to whether a release is caused by the operator, its agent, or unrelated third parties.
- 4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant is discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of operator, regardless of fault. Upon failure of operator to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the operator. Such action by the Authorized Officer shall not relieve operator of any responsibility as provided herein.

Page 13 of 22

- 5. All construction and maintenance activity will be confined to the authorized pipeline corridor.
- 6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.
- 7. The maximum allowable disturbance for construction in this pipeline corridor will be 30 feet:
 - Blading of vegetation within the pipeline corridor will be allowed: maximum width of blading operations will not exceed <u>20</u> feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation*.)
 - Clearing of brush species within the pipeline corridor will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (*Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.*)
 - The remaining area of the pipeline corridor (if any) shall only be disturbed by compressing the vegetation. (*Compressing can be caused by vehicle tires, placement of equipment, etc.*)
- 8. The operator shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately <u>6</u> inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.
- 9. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this pipeline corridor and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire pipeline corridor shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted, and a 6-inch berm will be left over the ditch line to allow for settling back to grade.
- 10. The pipeline will be identified by signs at the point of origin and completion of the pipeline corridor and at all road crossings. At a minimum, signs will state the operator's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.
- 11. The operator shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the operator before maintenance begins. The operator will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the operator to construct temporary deterrence structures.
- 12. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 13. <u>Escape Ramps</u> The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:
 - a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them alive at least 100 yards from the trench.

Page 14 of 22

b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30-degree slope and spaced no more than 500 feet apart) shall be placed in the trench. Before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them alive at least 100 yards from the trench.

4.2 SURFACE PIPELINES

A copy of the APD and attachments, including stipulations, survey plat(s) and/or map(s), shall be on location during construction. BLM personnel may request to review a copy of your permit during construction to ensure compliance with all stipulations.

Operator agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. Operator shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this APD.
- 2. Operator shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, Operator shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC § 2601 et seq. (1982) with regard to any toxic substances that are used, generated by or stored on the pipeline corridoror on facilities authorized under this APD (see 40 CFR, Part 702-799 and in particular, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193). Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the Authorized Officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. Operator agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. § 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Pipeline corridor (unless the release or threatened release is wholly unrelated to activity of the Operator's activity on the Pipeline corridor), or resulting from the activity of the Operator on the pipeline corridor. This provision applies without regard to whether a release is caused by Operator, its agent, or unrelated third parties.
- 4. Operator shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. Operator shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the pipeline corridor or permit area:
 - a. Activities of Operator including, but not limited to: construction, operation, maintenance, and termination of the facility;
 - b. Activities of other parties including, but not limited to:
 - (1) Land clearing
 - (2) Earth-disturbing and earth-moving work
 - (3) Blasting
 - (4) Vandalism and sabotage
 - c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

Page 15 of 22

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

- 5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant is discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of Operator, regardless of fault. Upon failure of Operator to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as they deem necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of Operator. Such action by the Authorized Officer shall not relieve Operator of any responsibility as provided herein.
- 6. All construction and maintenance activity shall be confined to the authorized pipeline corridor width of 30-feet. If the pipeline route follows an existing road or buried pipeline corridor, the surface pipeline shall be installed no farther than 10 feet from the edge of the road or buried pipeline corridor. If existing surface pipelines prevent this distance, the proposed surface pipeline shall be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity shall be confined to existing roads or pipeline corridors.
- 7. No blading or clearing of any vegetation shall be allowed unless approved in writing by the Authorized Officer.
- 8. Operator shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline shall be "snaked" around hummocks and dunes rather than suspended across these features.
- 9. The pipeline shall be buried with a minimum of 6 inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.
- 10. The operator shall minimize disturbance to existing fences and other improvements on public lands. The operator is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The operator will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
- 11. In those areas where erosion control structures are required to stabilize soil conditions, the operator will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.
- 12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the operator to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" Shale Green, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.
- 13. The pipeline will be identified by signs at the point of origin and completion of the pipeline corridor and at all road crossings. At a minimum, signs will state the operator's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.
- 14. The operator shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the operator. The operator will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

Page 16 of 22

- 15. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 16. Surface pipelines shall be less than or equal to 4 inches and a working pressure below 125 psi.

4.3 OVERHEAD ELECTRIC LINES

A copy of the APD and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Operator agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The operator shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this APD.
- 2. The operator shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the operator shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the powerline corridor or on facilities authorized under this powerline corridor. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The operator agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Powerline corridor(unless the release or threatened release is wholly unrelated to the operator's activity on the powerline corridor), or resulting from the activity of the Operator on the powerline corridor. This agreement applies without regard to whether a release is caused by the operator, its agent, or unrelated third parties.
- 4. There will be no clearing or blading of the powerline corridor unless otherwise agreed to in writing by the Authorized Officer.
- 5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The operator shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this powerline corridor, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the operator without liability or expense to the United States.
- 6. Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.
- 7. The operator shall minimize disturbance to existing fences and other improvements on public lands. The operator is required to promptly repair improvements to at least their former state. Functional use

Page 17 of 22

of these improvements will be maintained at all times. The operator will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

- 8. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.
- 9. Upon cancellation, relinquishment, or expiration of this APD, the operator shall comply with those abandonment procedures as prescribed by the Authorized Officer.
- 10. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this APD, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.
- 11. Special Stipulations:
 - For reclamation remove poles, lines, transformer, etc. and dispose of properly. Fill in any holes from the poles removed.

4.4 RANGLAND MITIGATION FOR PIPELINES

4.5.1 Fence Requirement

Where entry is granted across a fence line, the fence must be braced and tied off on both sides of the passageway with H-braces prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. The operator shall notify the private surface landowner or the grazing allotment operator prior to crossing any fence(s).

4.5.2 Cattleguards

An appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at road-fence crossing(s). Any existing cattleguard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguard(s) that are in place and are utilized during lease operations. A gate shall be constructed on one side of the cattleguard and fastened securely to H-braces.

4.5.3 Livestock Watering Requirement

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment operator if any damage occurs to structures that provide water to livestock.

- Livestock operators will be contacted, and adequate crossing facilities will be provided as needed to ensure livestock are not prevented from reaching water sources because of the open trench.
- Wildlife and livestock trails will remain open and passable by adding soft plugs (areas where the trench is excavated and replaced with minimal compaction) during the construction phase. Soft plugs with ramps on either side will be left at all well-defined livestock and wildlife trails along the open trench to allow passage across the trench and provide a means of escape for livestock and wildlife that may enter the trench.
- Trenches will be backfilled as soon as feasible to minimize the amount of open trench. The Operator will avoid leaving trenches open overnight to the extent possible and open trenches that

Page 18 of 22

cannot be backfilled immediately will have escape ramps (wooden) placed at no more than 2,500 feet intervals and sloped no more than 45 degrees.

5. PRODUCTION (POST DRILLING)

5.1 WELL STRUCTURES & FACILITIES

5.1.1 Placement of Production Facilities

Production facilities must be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

5.1.2 Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

5.1.3. Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

5.1.4. Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

5.1.5. Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

6. RECLAMATION

Stipulations required by the Authorized Officer on specific actions may differ from the following general guidelines

Page 19 of 22

6.1 ROAD AND SITE RECLAMATION

Any roads constructed during the life of the well will have the caliche removed or linear burial. If contaminants are indicated then testing will be required for chlorides and applicable contaminate anomalies for final disposal determination (disposed of in a manner approved by the Authorized Officer within Federal, State and Local statutes, regulations, and ordinances) and seeded to the specifications in sections 6.5 and 6.6.

6.2 EROSION CONTROL

Install erosion control berms, windrows, and hummocks. Windrows must be level and constructed perpendicular to down-slope drainage; steeper slopes will require greater windrow density. Topsoil between windrows must be ripped to a depth of at least 12", unless bedrock is encountered. Any large boulders pulled up during ripping must be deep-buried on location. Ripping must be perpendicular to down-slope. The surface must be left rough in order to catch and contain rainfall on-site. Any trenches resulting from erosion cause by run-off shall be addressed immediately.

6.3 INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations must undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators must work with BLM surface protection specialists (BLM_NM_CFO_Construction_Reclamation@blm.gov) to devise the best strategies to reduce the size of the location. Interim reclamation must allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche and any other surface material is required. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided in section 6.6.

Upon completion of interim reclamation, the operator shall submit a Sundry Notice, Subsequent Report of Reclamation (Form 3160-5).

6.4 FINAL ABANDONMENT & RECLAMATION

Prior to surface abandonment, the operator shall submit a Notice of Intent Sundry Notice and reclamation plan.

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 20 of 22

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding will be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM. After earthwork and seeding is completed, the operator is required to submit a Sundry Notice, Subsequent Report of Reclamation.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (BLM_NM_CFO_Construction_Reclamation@blm.gov).

6.5 SEEDING TECHNIQUES

Seeds shall be hydro-seeded, mechanically drilled, or broadcast, with the broadcast-seeded area raked, ripped or dragged to aid in covering the seed. The seed mixture shall be evenly and uniformly planted over the disturbed area.

6.6 SOIL SPECIFIC SEED MIXTURE

The lessee/permitee shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed land application will be accomplished by mechanical planting using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area. Smaller/heavier seeds tend to drop the bottom of the drill and are planted first; the operator shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory BLM or Soil Conservation

District stand is established as determined by the Authorized Officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding or until several months of precipitation have occurred, enabling a full four months of growth, with one or more seed generations being established.

Seed Mixture 2, for Sandy Site

Species to be planted in pounds of pure live seed* per acre:

Species

	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

Page 22 of 22

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA INCORPORATED
WELL NAME & NO.:	NUGGET 6 31 FED COM 24H
LOCATION:	Section 6, T.24 S., R.31 E.
COUNTY:	Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	○ None	Secretary	© R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	O Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	Capitan Reef	□ WIPP
Other	□ Fluid Filled	Pilot Hole	□ Open Annulus
Cementing	□ Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	🗆 Water Disposal	COM	🗆 Unit
Special Requirements	□ Batch Sundry		
Special Requirements	Break Testing	☑ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

WELL IS CLOSE TO THE R111Q BOUNDARY. PLEASE DIRECTIONALLY MAINTAIN THE WELL AS PROPOSED AND AWAY FROM R111Q POTASH AREA UNTIL THE SALT INTERVAL IS CLEARED.

- 1. The **10-3/4** inch surface casing shall be set at approximately **873** feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- The 7-5/8 inch intermediate casing shall be set at approximately 8150 feet. KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified
- In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 10-3/4" X 7-5/8" annulus. <u>Operator must top</u> <u>out cement after the bradenhead squeeze and verify cement to surface. Operator</u> <u>can also check TOC with Echo-meter. CBL must be run from TD of the 7-5/8"</u> <u>casing to surface if confidence is lacking on the quality of the bradenhead squeeze</u> <u>cement job. Submit results to BLM.</u>

If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified.

Bradenhead squeeze in the production interval is only as an edge case remediation measure and is NOT approved in this COA. If production cement job experiences losses and a bradenhead squeeze is needed for tie-back, BLM Engineering should be notified prior to job with volumes and planned wellbore schematic. CBL will be needed when this occurs.

3. The **5-1/2** inch production casing shall be set at approximately **19,654** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

Page 4 of 8

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; BLM_NM_CFO_DrillingNotifications@BLM.GOV; (575) 361-2822

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig i.Notify the BLM when moving in and removing the Spudder
 - Rig.
 - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii.BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.

2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator

Page 5 of 8

can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.

2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

Page 6 of 8

- i.Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- iii.Manufacturer representative shall install the test plug for the initial BOP test.
- iv.Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
- v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

- i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v.The results of the test shall be reported to the appropriate BLM office.
- vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

Page 7 of 8

viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

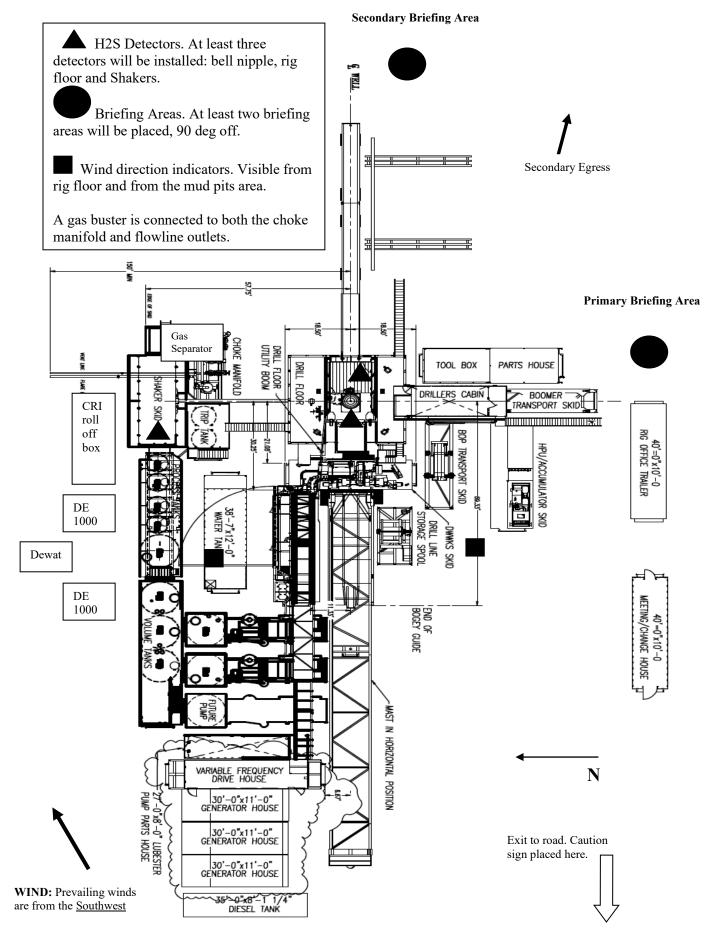
C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 12/16/2024



Permian Drilling Hydrogen Sulfide Drilling Operations Plan

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

•

Discussion

Implementation:	This plan with all details is to be fully implemented before drilling to <u>commence</u> .
Emergency response Procedure:	This section outlines the conditions and denotes steps to be taken in the event of an emergency.
Emergency equipment Procedure:	This section outlines the safety and emergency equipment that will be required for the drilling of this well.
Training provisions:	This section outlines the training provisions that must be adhered to prior to drilling.
Drilling emergency call lists:	Included are the telephone numbers of all persons to be contacted should an emergency exist.
Briefing:	This section deals with the briefing of all people involved in the drilling operation.
Public safety:	Public safety personnel will be made aware of any potential evacuation and any additional support needed.
Check lists:	Status check lists and procedural check lists have been included to insure adherence to the plan.
General information:	A general information section has been included to supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site

Emergency Equipment Requirements

1. <u>Well control equipment</u>

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as 43 CFR part 3170 Subpart 3172.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

Wind sock – *wind streamers*:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

- 9. <u>Designated area</u>
 - A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
 - B. There will be a designated smoking area.
 - C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:
 - 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:	1. 2. 3.	On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw Check status of personnel (buddy system). Secure breathing equipment.
	4.	Await orders from supervisor.
Drill site manager:	1.	Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
	3.	Determine H2S concentrations.
	4.	Assess situation and take control measures.
Tool pusher:	1.	Don escape unit Report to up nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
	3.	Determine H2S concentration.
	<i>4</i> .	Assess situation and take control measures.
Driller:	1.	Don escape unit, shut down pumps, continue

		rotating DP.
	2.	Check monitor for point of release.
	3.	Report to nearest upwind designated safe briefing / muster area.
	4.	Check status of personnel (in an attempt to rescue, use the buddy system).
	5.	Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
	6.	Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.
Derrick man Floor man #1 Floor man #2	1.	Will remain in briefing / muster area until instructed by supervisor.
Mud engineer:	1.	Report to nearest upwind designated safe briefing / muster area.
	2.	When instructed, begin check of mud for ph and H2S level. (Garett gas train.)
Safety personnel:	1.	Mask up and check status of all personnel and secure operations as instructed by drill site manager.

<u>Taking a kick</u>

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is ignited.</u>**

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1-100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by: _____ Date:

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

Important: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)	
Hydrogen Cyanide	Hcn	0.94	10 ppm	150 ppm/hr	300 ppm	
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm	
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm	
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm	
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm	
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%	
Methane	Ch4	0.55	90,000 ppm	Combustib	Combustible above 5% in air	

Table i Toxicity of various gases

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	Ppm	Grains	
	-	100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

•

0.002	10	01.30	Safe for 8 hours of exposure.	
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.	
0.020	200	12.96	Kills smell shortly; stings eyes and throat.	
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.	
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.	
0.100	1000	64.30	Unconscious at once; followed by death within minutes.	

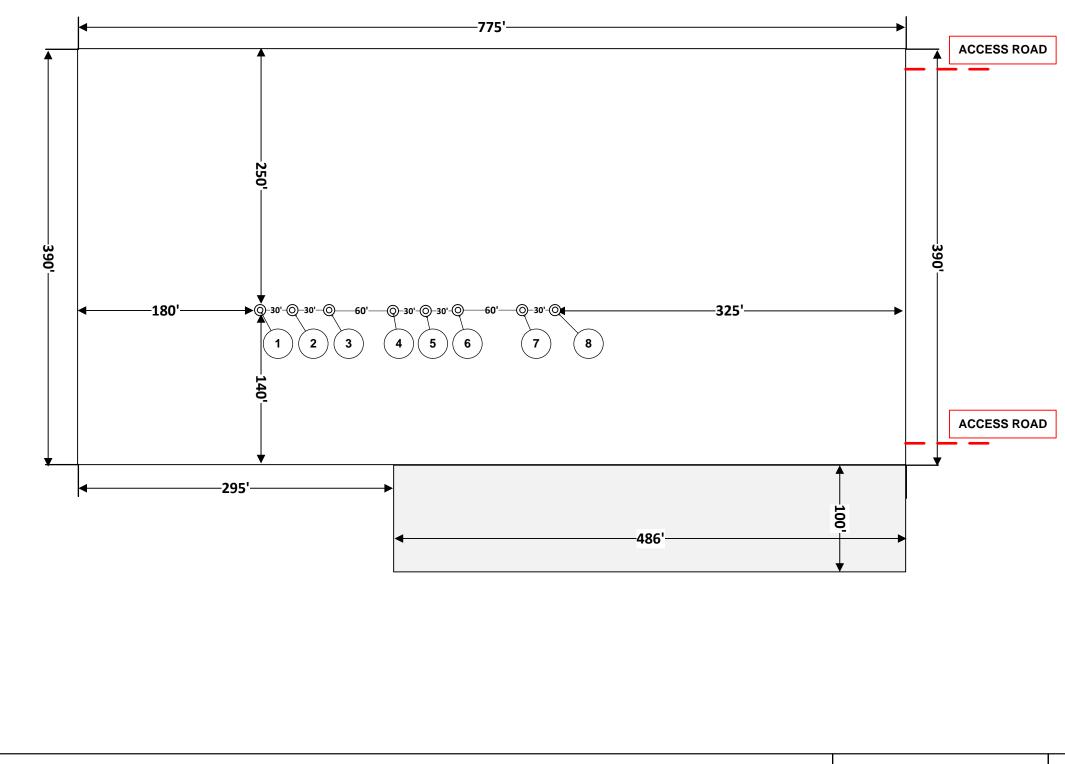
*at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

Rescue First aid for H2S poisoning

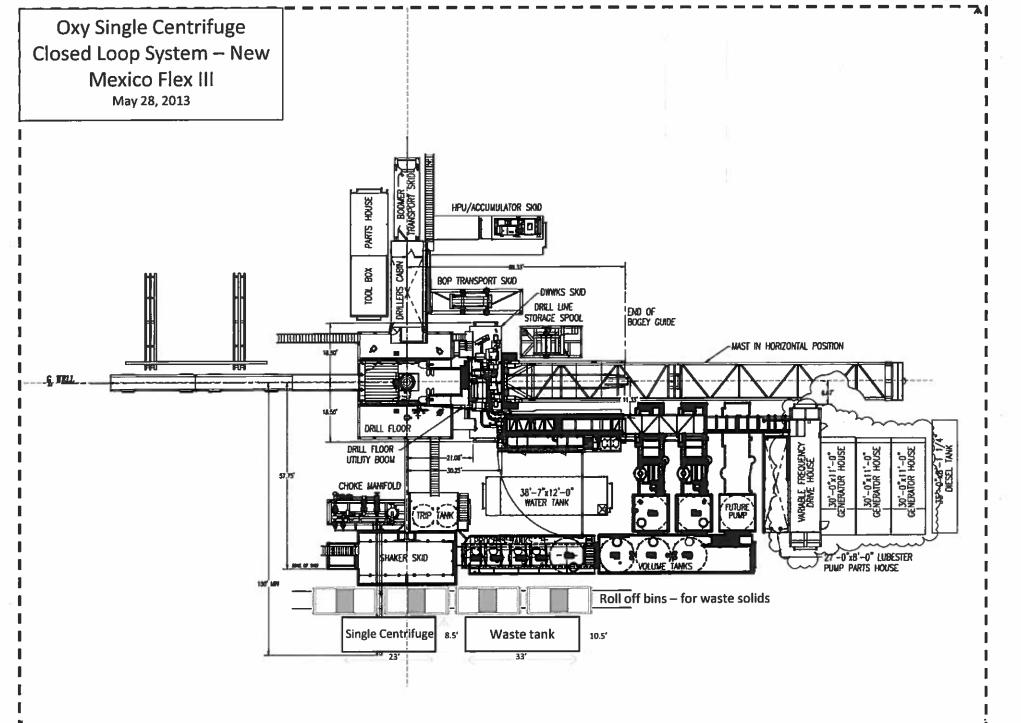

Do not panic!

Remain calm – think!

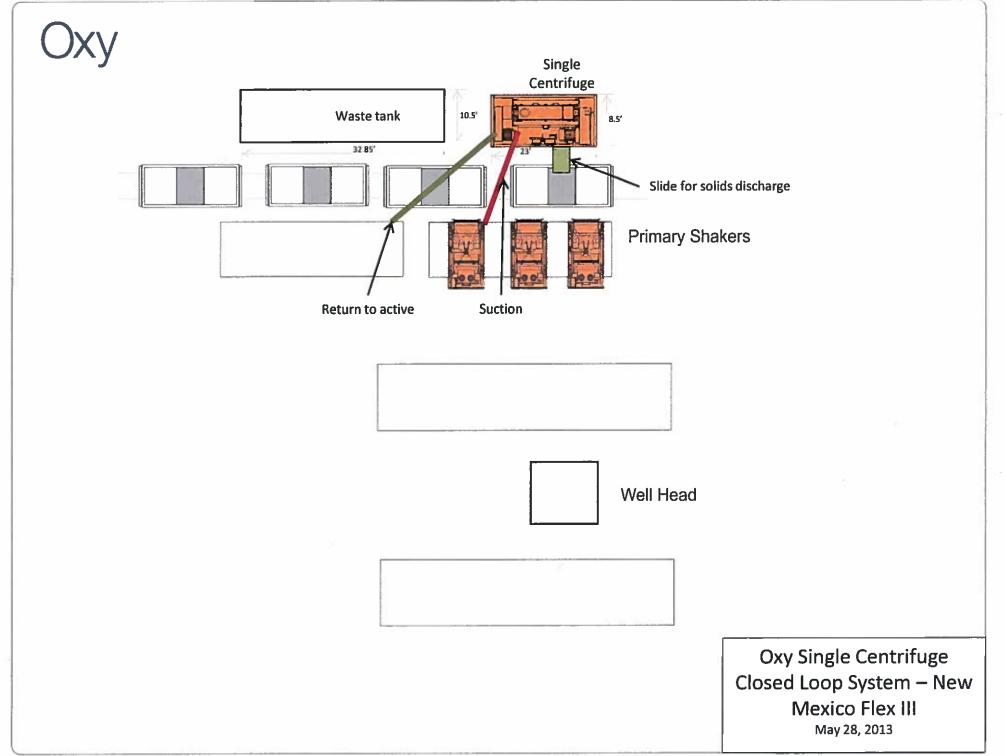
- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

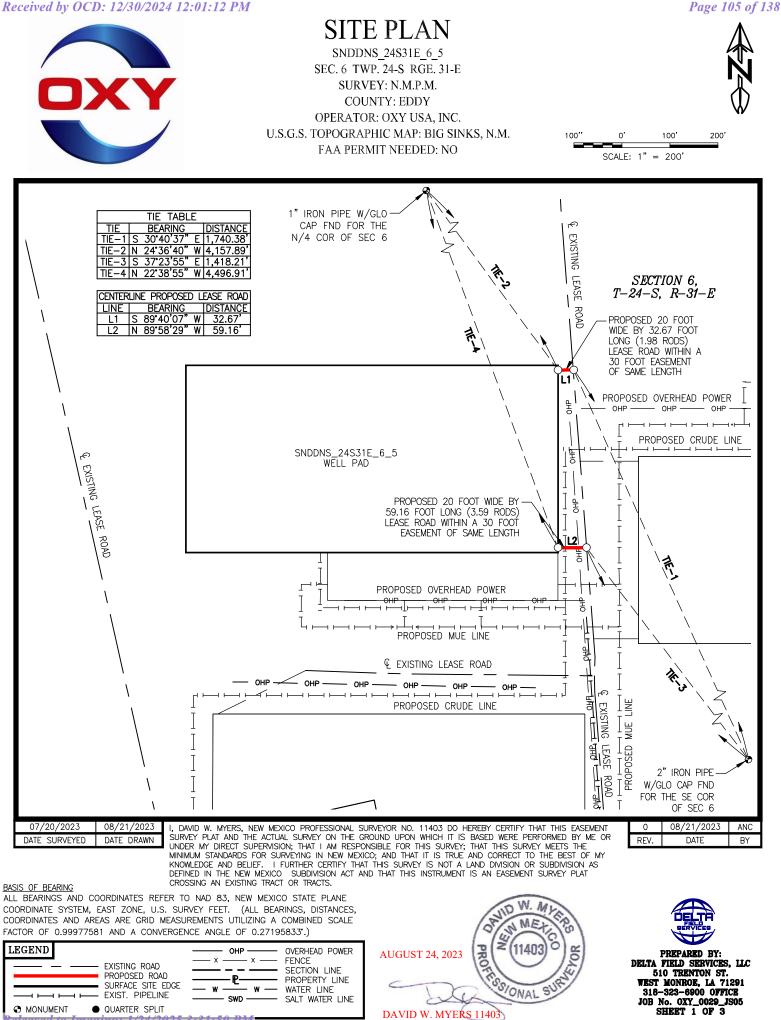
Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

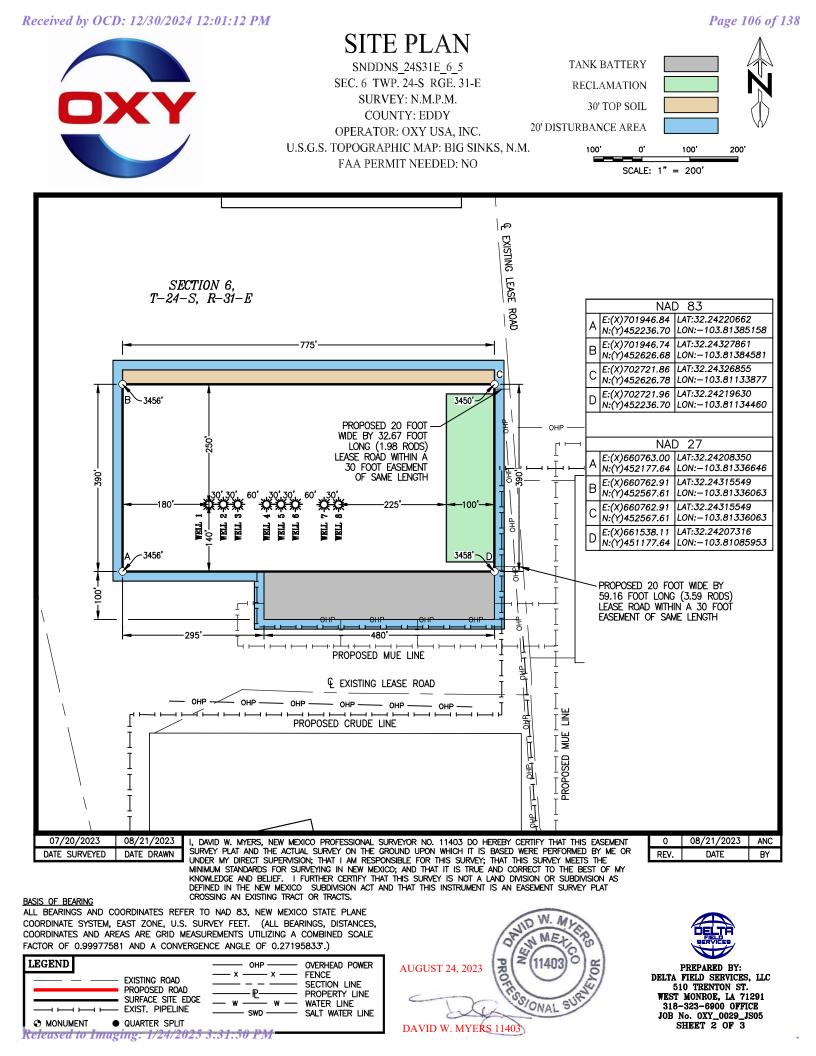
Revised CM 6/27/2012



	REVISION BLOCK			ENGINEERIN	G RECORD				
	NO.	DATE	DESCRIPTION	BY	СНК	АРР	BY	DATE	
		-					кля	8/23/2023	
R	eleased to	leased to Imaging: 1/24/2025 3:31:50 PM							


NUGGET 6_31 FED COM 24H
 NUGGET 6_31 FED COM 25H
 NUGGET 6_31 FED COM 26H
 JEFF SMITH MDP1 7_18 FED COM 24H
 JEFF SMITH MDP1 7_18 FED COM 25H
 JEFF SMITH MDP1 7_18 FED COM 26H
 JEFF SMITH MDP1 7_18 FED COM 13H
 JEFF SMITH MDP1 7_18 FED COM 14H


PAD 6_5 RIG DIAGRAM V-DOOR WEST JEFF SMITH MPD1 7-18 FED COM 24H, 25H, 26H, 13H, 14H NUGGET 6_31 FED COM 24H, 25H, 26H SECTION 6, TOWNSHIP 24S, RANGE 31E EDDY COUNTY, NEW MEXICO


Page 103 of 138

Received by OCD: 12/30/2024 12:01:12 PM

Released to Imaging: 1/24/2025 3:31:50 PM

Received by OCD: 12/30/2024 12:01:12 PM

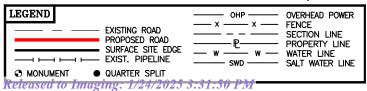
SITE PLAN

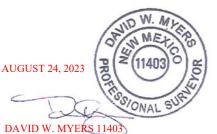
SNDDNS_24S31E_6_5 SEC. 6 TWP. 24-S RGE. 31-E SURVEY: N.M.P.M. COUNTY: EDDY OPERATOR: OXY USA, INC. U.S.G.S. TOPOGRAPHIC MAP: BIG SINKS, N.M. FAA PERMIT NEEDED: NO

WELL 1 NUGGET 6_31 FED COM 24H OXY USA, INC. 1,264' FSL 1,513' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702126.76' / Y:452376.68' LAT:32.24258900N / LON:103.81326749W NAD 27, SPCS NM EAST X:660942.92' / Y:452317.61' LAT:32.24246587N / LON:103.81278236W ELEVATION = 3458'

WELL 2 NUGGET 6_31 FED COM 25H OXY USA, INC. 1,264' FSL 1,482' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702156.89' / Y:452376.70' LAT:32.24258866N / LON:103.81317004W NAD 27, SPCS NM EAST X:660973.05' / Y:452317.63' LAT:32.24246554N / LON:103.81268491W ELEVATION = 3458' WELL 3 NUCGET 6_31 FED COM 26H OXY USA, INC. 1,263' FSL 1,453' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702186.81' / Y:452376.72' LAT:32.24258832N / LON:103.81307326W NAD 27, SPCS NM EAST X:661002.97' / Y:452317.65' LAT:32.24246520N / LON:103.81258814W ELEVATION = 3457' WELL 4 JEFF SMITH MDP1 7_18 FED COM 24H OXY USA, INC. 1,263' FSL 1,393' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702246.76' / Y:452376.70' LAT:32.24258747N / LON:103.81287936W NAD 27, SPCS NM EAST X:661062.92' / Y:452317.64' LAT:32.24246435N / LON:103.81239425W ELEVATION = 3457'

WELL 5 JEFF SMITH MDP1 7_18 FED COM 25H OXY USA, INC. 1,263' FSL 1,362' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702276.85' / Y:452376.82' LAT:32.24258741N / LON:103.81278202W NAD 27, SPCS NM EAST X:661093.01' / Y:452317.76' LAT:32.24246428N / LON:103.81229691W ELEVATION = 3457' WELL 6 JEFF SMITH MDP1 7_18 FED COM 26H OXY USA, INC. 1,263' FSL 1,332' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702306.82' / Y:452376.71' LAT:32.24258669N / LON:103.81268510W NAD 27, SPCS NM EAST X:661122.98' / Y:452317.64' LAT:32.24246356N / LON:103.8121999W ELEVATION = 3457' WELL 7 JEFF SMITH MDP1 7_18 FED COM 13H OXY USA, INC. 1,262' FSL 1,273' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702366.82' / Y:452376.59' LAT:32.24258557N / LON:103.81249105W NAD 27, SPCS NM EAST X:661182.98' / Y:452317.53' LAT:32.24246245N / LON:103.81200594W ELEVATION = 3458' WELL 8 JEFF SMITH MDP1 7_18 FED COM 14H OXY USA, INC. 1,262' FSL 1,243' FEL, SECTION 6 NAD 83, SPCS NM EAST X:702396.80' / Y:452376.73' LAT:32.24258555N / LON:103.81239408W NAD 27, SPCS NM EAST X:661212.96' / Y:452317.66' LAT:32.24246242N / LON:103.81190898W ELEVATION = 3457'


07/20/2023 08/21/2023 DATE SURVEYED DATE DRAWN


I, DAVID W. MYERS, NEW MEXICO PROFESSIONAL SURVEYOR NO. 11403 DO HEREBY CERTIFY THAT THIS EASEMENT SURVEY PLAT AND THE ACTUAL SURVEY ON THE GROUND UPON WHICH IT IS BASED WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION; THAT I AM RESPONSIBLE FOR THIS SURVEY; THAT THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO; AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDCE AND BELIEF. I FURTHER CERTIFY THAT THIS SURVEY IS NOT A LAND DIVISION OR SUBDIVISION AS DEFINED IN THE NEW MEXICO SUBDIVISION ACT AND THAT THIS INSTRUMENT IS AN EASEMENT SURVEY PLAT CROSSING AN EXISTING TRACT OR TRACTS.

0	08/21/2023	ANC
REV.	DATE	BY

BASIS OF BEARING

ALL BEARINGS AND COORDINATES REFER TO NAD 83, NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE, U.S. SURVEY FEET. (ALL BEARINGS, DISTANCES, COORDINATES AND AREAS ARE GRID MEASUREMENTS UTILIZING A COMBINED SCALE FACTOR OF 0.99977581 AND A CONVERGENCE ANGLE OF 0.27195833'.)

PREPARED BY: DELTA FIELD SERVICES, LLC 510 TRENTON ST. WEST MONROE, LA 71291 318-323-6900 OFFICE JOB No. OXY_0029_JS05 SHEET 3 OF 3

Received by OCD: 12/30/2024 12:01:12 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: MELISSA GUIDRY Signed on: 11/18/2024					
Title: Advisor Regulatory Sr.					
Street Address: 5 GREENWAY PL	AZA SUITE 110				
City: HOUSTON	State: TX	Zip: 77026			
Phone: (713)497-2481					
Email address: MELISSA_GUIDR	Y@OXY.COM				
Field					
Representative Name:					
Street Address:					
City: S	tate:	Zip:			
Phone:					
Email address:					

Operator Certification Data Report

Page 108 of 138

12/26/2024

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400098023

Submission Date: 04/11/2024

Well Number: 24H Well Work Type: Drill Highlighted data reflects the most recent changes Show Final Text

Application Data

Operator Name: OXY USA INCORPORATED Well Name: NUGGET 6_31 FEDERAL COM Well Type: OIL WELL

Section 1 - General

APD ID: 10400098023	Tie to previous NOS?	Submission Date: 04/11/2024
BLM Office: Carlsbad	User: MELISSA GUIDRY	Title: Advisor Regulatory Sr.
Federal/Indian APD: FED	Is the first lease penetrat	ted for production Federal or Indian? FED
Lease number: NMNM82904	Lease Acres:	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	nent:
Agreement number:		
Agreement name:		
Keep application confidential? N		
Permitting Agent? NO	APD Operator: OXY USA	INCORPORATED
Operator letter of		

Operator Info

Operator Organization Name: OXY USA INCORPORATED Operator Address: P.O. BOX 1002 **Operator PO Box: Operator City: TUPMAN** State: CA Operator Phone: (661)763-6046 **Operator Internet Address:**

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan nam	e:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: NUGGET 6_31 FEDERAL COM	Well Number: 24H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: COTTON DRAW	Pool Name: BONE SPRING

12/26/2024

Zip: 93276-1002

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the propos	ed well in a Helium produ	ction area? N	Use Existing Well Pad?	N	New surface disturbance?
Type of Well	Pad: MULTIPLE WELL		Multiple Well Pad Name SNDDNS 24S31E	: :	Number: 6_5
Well Class: ⊦	IORIZONTAL		Number of Legs: 1		
Well Work Ty	vpe: Drill				
Well Type: O	IL WELL				
Describe We	II Туре:				
Well sub-Typ	e: INFILL				
Describe sub	o-type:				
Distance to t	own:	Distance to nea	arest well: 30 FT	Distanc	e to lease line: 1264 FT
Reservoir we	Il spacing assigned acres	Measurement:	640 Acres		
Well plat:	NUGGET6_31FEDCOM24	H_C102_202404	411100138.pdf		
	NUGGET6_31FEDCOM24	H_SitePlan_202	40411100145.pdf		
Well work sta	art Date: 03/31/2025		Duration: 45 DAYS		

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	126 4	FSL	151 3	FEL	24S	31E	6	Aliquot SWSE	32.24258 9	- 103.8132 674	EDD Y	NEW MEXI CO			NMNM 82904	345 8	0	0	N
KOP Leg #1	300	FNL	229 0	FEL	24S	31E	7	Aliquot NWNE	32.23829 11	- 103.8157 917	EDD Y	NEW MEXI CO		F	FEE		825 0	801 1	N

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP	100	FSL	229	FEL	24S	31E	6	Aliquot	32.23939		EDD	NEW	NEW	F	NMNM	-	935	868	Y
Leg			0					SWSE	06	103.8157 907	Y	MEXI CO	MEXI CO		82904	523 0	4	8	
#1-1										007		<u> </u>	<u> </u>			Ŭ			
PPP	0	FSL	229	FEL	24S	31E	31	Aliquot	32.25365		EDD	1	NEW	F	NMNM	-	143	868	Y
Leg			8					SWSE	52	103.8157 778	Y	MEXI CO	MEXI CO		054673 2A	523 0	90	8	
#1-2										110		00	00		27	0			
EXIT	100	FNL	229	FEL	24S	31E	31	Aliquot	32.26790		EDD	1		F	NMNM	-	195	868	Y
Leg			0					NWNE	33	103.8157	Y	1	MEXI		054673	523	73	8	
#1										648		со	со		2A	0			
BHL	20	FNL	229	FEL	24S	31E	31	Aliquot	32.26812	-	EDD	NEW	NEW	F	NMNM	-	196	868	N
Leg			0					NWNE	32	103.8157	Y	MEXI	MEXI		054673	523	54	8	
#1										651		со	со		2A	0			

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Page 112 of 138

Drilling Plan Data Report 12/26/2024 APD ID: 10400098023 Submission Date: 04/11/2024 Highlighted data reflects the most **Operator Name: OXY USA INCORPORATED** recent changes Well Name: NUGGET 6_31 FEDERAL COM Well Number: 24H Show Final Text Well Type: OIL WELL Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14726658	RUSTLER	3458	555	555	ANHYDRITE, DOLOMITE, SHALE	USEABLE WATER	Ν
14726659	SALADO	2525	933	933	ANHYDRITE, DOLOMITE, HALITE, SHALE	OTHER : SALT	N
14726660	CASTILE	651	2807	2807	ANHYDRITE	OTHER : SALT	N
14726661	DELAWARE	-728	4186	4229	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : BRINE	Y
14726662	BELL CANYON	-758	4216	4260	SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : BRINE	Y
14726663	CHERRY CANYON	-1666	5124	5215	SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : BRINE	Y
14726664	BRUSHY CANYON	-2918	6376	6531	SANDSTONE, SILTSTONE	OTHER : LOSSES	Ν
14726665	BONE SPRING	-4588	8046	8287	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 8688

Equipment: 13-5/8" 5M Annular, 5M Blind Ram, 5M Double Ram

Requesting Variance? YES

Variance request: Request for the use of a flexible choke line from the BOP to Choke Manifold.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. OXY requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. See the attached BOP Break Testing variance.

Choke Diagram Attachment:

NUGGET6 31FEDCOM24H ChkManifolds 20240411114952.pdf

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

NUGGET6_31FEDCOM24H_ChkManifolds_20240411114952.pdf

BOP Diagram Attachment:

NUGGET6_31FEDCOM24H_BOP_20240411114958.pdf

 $NUGGET6_31FEDCOM24H_13 in ADAPT_10.75 in_7.625 in_10x10_20240411115003.pdf$

NUGGET6_31FEDCOM24H_FlexHoseCert_20240411115013.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	10.75	NEW	API	N	0	873	0	873	3458	2585	873	J-55	45.5	BUTT	1	1.1	BUOY	1.4	BUOY	1.4
2	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	8150	0	7911	3698	-4453	8150	HCL -80	26.4	BUTT	1	1.1	BUOY	1.4	BUOY	1.4
3	PRODUCTI ON	6.75	5.5	NEW	API	N	0	19654	0	8688	3698	-5230	19654	P- 110	-	OTHER - WEDGE 461	1	1.1	BUOY	1.4	BUOY	1.4

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NUGGET6_31FEDCOM24H_CsgCriteria_20240411115113.pdf

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Page 114 of 138

Casing Attachments

Casing ID: 2	String	INTERMEDIATE
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assumpt	tions and W	orksheet(s):
NUGGET6_31FED	COM24H_Cs	gCriteria_20240411115130.pdf
Casing ID: 3	String	PRODUCTION
Inspection Document:	_	
Spec Document:		
Tapered String Spec:		
Casing Design Assumpt	tions and W	orksheet(s):
NUGGET6_31FED	COM24H_Cs	gCriteria_20240411115149.pdf

NUGGET6_31FEDCOM24H_TNSWedge461_5.500in_20.00ppf_P110CY_20240411115156.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead	1	0	873	730	1.33	14.8	971	100	Class C	Accelerator

INTERMEDIATE	Lead	2	0	6781	1047	1.71	13.3	1790	25	Class C	Accelerator

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

	String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
I	INTERMEDIATE	Lead	1	6781	8150	187	1.65	13.2	309	5	Class H	Accelerator, Dispersant, Salt

PRODUCTION	Lead	1	7650	1965 4	680	1.84	13.3	1251	25	Class C	Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

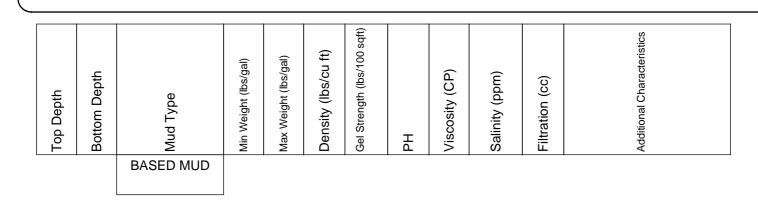
Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring


Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	873	WATER-BASED MUD	8.6	8.8							
873	8150	OTHER : SATURATED BRINE-BASED OR OIL-BASED MUD	8	10							
8150	1965 4	OTHER : WATER-BASED MUD OR OIL-	8	9.6							

Released to Imaging: 1/24/2025 3:31:50 PM

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR from TD to surface (horizontal well vertical portion of hole) Mud Log from Bone Spring - TD CBL (production string) - to be ran by completions.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, CEMENT BOND LOG, DIRECTIONAL SURVEY, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

No coring is planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4338

Anticipated Surface Pressure: 2426

Anticipated Bottom Hole Temperature(F): 150

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

NUGGET6_31FEDCOM24H_H2S1_20240411120028.pdf NUGGET6_31FEDCOM24H_H2S2_20240411120031.pdf

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

NUGGET6_31FEDCOM24H_DirectPlan_20240411120048.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

NUGGET6_31FEDCOM24H_DrillPlan_20240411120055.pdf NUGGET6_31FEDCOM24H_SpudRigData_20240411120111.pdf NUGGET6_31FEDCOM24H_Blanket_Design_A_Pad_Review_Document_SNDDNS_T24SR31E_6_5_20241118063258.pdf

NUGGET6_31FEDCOM24H_NGMP___WMP_20241118063510.pdf

Other Variance attachment:

NUGGET6_31FEDCOM24H_BOPBreakTestingVariance_20240411120116.pdf NUGGET6_31FEDCOM24H_BradenheadCBLVariance_20240411120119.pdf NUGGET6_31FEDCOM24H_OfflineCementVariance_20240411120125.pdf NUGGET6_31FEDCOM24H_ProdCsgAnnClearanceVariance_20240411120130.pdf

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400098023

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

NUGGET6_31FEDCOM24H_ExistRoads_20240411120153.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

recent changes

Show Final Text

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2	- New or Recon	structed Access Roads				
Will new roads be nee	Will new roads be needed? YES					
New Road Map:						
NUGGET6_31FEDCO	vl24H_NewRoads_202	241030134702.pdf				
New road type: LOCA	L					
Length: 3115	Feet	Width (ft.): 30				
Max slope (%): 0		Max grade (%): 0				
Army Corp of Engine	ers (ACOE) permit red	uired? N				
ACOE Permit Number	(s):					
New road travel width	: 20					
New road access eros	sion control: Watershe	ed diversion every 200', if needed.				
New road access plan or profile prepared? N						
New road access plar	i					

Well Number: 24H Well Work Type: Drill

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Access road engineering design? N

Access road engineering design

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: CALICHE

Access onsite topsoil source depth: 0

Offsite topsoil source description:

Onsite topsoil removal process: If available

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT

Drainage Control comments: Watershed diversion every 200', if needed.

Road Drainage Control Structures (DCS) description: Watershed diversion every 200', if needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

NUGGET6_31FEDCOM24H_ExistWells_20240411121132.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Production Facilities map:

 ${\tt NUGGET6_31FEDCOM24H_LeaseFacilityInfo_20241118063012.pdf}$

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Section 5 - Location ar	nd Types of Water Supply	y
Water Source Tab	le	
Water source type: GW WELL		
Water source use type:	SURFACE CASING	
	OTHER	Describe use type: DRILLING
	INTERMEDIATE/PRODUCTION CASING	I
Source latitude:		Source longitude:
Source datum:		
Water source permit type:	WATER WELL	
Water source transport method:	TRUCKING	
	PIPELINE	
Source land ownership: COMMER	CIAL	
Source transportation land owner	ship: COMMERCIAL	
Water source volume (barrels): 20	00	Source volume (acre-feet): 0.25778619
Source volume (gal): 84000		

Water source and transportation

NUGGET6_31FEDCOM24H_GRRWtrSrc_20240411130435.pdf

NUGGET6_31FEDCOM24H_MesqWtrSrc_20240411130441.pdf

Water source comments: This well will be drilled using a combination of water mud systems. It will be obtained from commercial water stations (Gregory Rockhouse, Mesquite) in the area and will be hauled to location by transport truck using existing and proposed roads. **New water well?** N

New Water Well I	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thic	kness of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casin	ig type:
Well casing outside diameter (in.):	Well casin	ng inside diameter (in.):

Operator Name: OXY USA INCORPORATEDWell Name: NUGGET 6_31 FEDERAL COMWell Number: 24HNew water well casing?Used casing source:Drilling method:Drill material:Grout material:Grout depth:Casing length (ft.):Casing top depth (ft.):Well Production type:Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Primary All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM/State/Fee approved pit or from prevailing deposits found on the location. Will use BLM recommended extra caliche from other locations close by for roads, if available. Secondary The secondary way of obtaining caliche to build locations and roads will be by turning over the location. This means, caliche will be obtained from the actual well site. A caliche permit will be obtained from BLM prior to pushing up any caliche. 2400 cubic yards is max amount of caliche needed for pad and roads. Amount will vary for each pad. The procedure below has been approved by BLM personnel: a. The top 6 of topsoil is pushed off and stockpiled along the side of the location. b. An approximate 120 X 120 area is used within the proposed well site to remove caliche. c. Subsoil is removed and piled alongside the 120 X 120 within the pad site. d. When caliche is found, material will be stockpiled within the pad site to build the location and road. e. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road. f. Once the well is drilled the stockpiled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced. Neither caliche nor subsoil will be stockpiled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the site plan included with this APD.

Construction Materials source location

NUGGET6_31FEDCOM24H_Water_Caliche_Map_20241031100757.pdf

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Water-Based Cuttings, Water-Based Mud, Oil-Based Cuttings, Oil-Based Mud, Produced Water

Amount of waste: 1384 barrels

Waste disposal frequency : Daily

Safe containment description: Haul-Off Bins

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: An approved facility that can process drill cuttings, drill fluids, flowback water, produced water, contaminated soils, and other non-hazardous wastes. Methods of Handling Waste Material: a. A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Solids-CRI, Liquids-Laguna b. All trash, junk and other waste material will be contained in trash cages or bins to prevent

Page 122 of 138

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

scattering. When the job is completed, all contents will be removed and disposed of in an approved sanitary landfill. c. The supplier, including broken sacks, will pickup slats remaining after completion of well. d. A Porto-john will be provided for the rig crews. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete. e. Disposal of fluids to be transported will be by the following companies. TFH Ltd, Laguna SWD Facility

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location A closed loop system will be utilized consisting of above ground steel tahttps://afmss.blm.gov/afmss-apdx-ui/#nks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Section 9 - Well Site

Well Site Layout Diagram:

NUGGET6_31FEDCOM24H_ClosedLoop_20241030133329.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: SNDDNS_24S31E

D	aaa	123	of	120
-	ure.	14.3	01	1.20

Multiple Well Pad Number: 6_5

Recontouring

NUGGET6_31FEDCOM24H_Cut_Fill_20240411121602.pdf

NUGGET6_31FEDCOM24H_SitePlan_20241030133731.pdf

Drainage/Erosion control construction: Reclamation to be wind rowed as needed to control erosion.

Drainage/Erosion control reclamation: Reclamation to be wind rowed as needed to control erosion.

Well pad proposed disturbance (acres): 9	Well pad interim reclamation (acres): 7	Well pad long term disturbance (acres): 8
Road proposed disturbance (acres): 2	Road interim reclamation (acres): 1	Road long term disturbance (acres): 1
Powerline proposed disturbance (acres): 5 Pipeline proposed disturbance (acres): 8	Powerline interim reclamation (acres): 5 Pipeline interim reclamation (acres): 5	(acres): 0
Other proposed disturbance (acres): (Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 24	Total interim reclamation: 12	Total long term disturbance: 12

Disturbance Comments:

Reconstruction method: If the well is deemed commercially productive, caliche from the areas of the pad site not required for operations will be reclaimed. The original topsoil will be returned to the area of the drill pad not necessary to operate the well. These unused areas of the drill pad will be contoured, as close as possible, to match the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche will be removed from the pad and transported to the original caliche pit or used for other drilling locations. The road will be reclaimed as directed by the BLM. the original topsoil will again be returned to the pad and contoured, as close as possible, to the original topography and the area will be seeded with an approved BLM mixture to re-establish, to the original topography and the area will be seeded with an approved BLM mixture to re-estable to the original topography and the area will be seeded with an approved BLM mixture to re-estable, to the original topography and the area will be seeded with an approved BLM mixture to re-establish vegetation.

Topsoil redistribution: The original topsoil will be returned to the area of the drill pad not necessary to operate the well.

Soil treatment: To be determined by BLM.

Existing Vegetation at the well pad: To be determined by BLM at onsite.

Existing Vegetation at the well pad

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Existing Vegetation Community at the road: To be determined by BLM at onsite.

Existing Vegetation Community at the road

Existing Vegetation Community at the pipeline: To be determined by BLM at onsite.

Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: To be determined by BLM at onsite. Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

	Seed S	ummary	Total pounds/Acre:
	Seed Type	Pounds/Acre	
Seed	reclamation		
	Operator Co	ontact/Responsible	e Official
Fire	st Name: Mike		Last Name: Wilson
Pho	one: (575)631-6618		Email: michael_wilson@oxy.com
Seed	bed prep:		
Seed	BMP:		
Seed	method:		
Exist	ing invasive species?	N	
Exist	ing invasive species tr	eatment description:	

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Existing invasive species treatment Weed treatment plan description: To be determined by BLM. Weed treatment plan Monitoring plan description: To be determined by BLM. Monitoring plan Success standards: To be determined by BLM. Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Disturbance type: OTHER
Describe: ELECTRIC LINES
Surface Owner: BUREAU OF LAND MANAGEMENT
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:
Military Local Office:
USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other

Right of Way needed? Y

Use APD as ROW? Y

ROW Type(s): 281001 ROW - ROADS, 285003 ROW - POWER TRANS, 288100 ROW - O&G Pipeline, 288101 ROW - O&G Facility Sites, 289001 ROW- O&G Well Pad

SUPO Additional Information: Permian Basin MOA : To be submitted after APD acceptance. GIS shapefiles available for BLM. Use a previously conducted onsite? N

Previous Onsite information:

Other SUPO

NUGGET6_31FEDCOM24H_StakingSheet_20240411121827.pdf NUGGET6_31FEDCOM24H_NGMP_20240411131242.pdf

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400098023

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Type: OIL WELL

Submission Date: 04/11/2024

Page 128 of 138

12/26/2024

PWD Data Report

Well Number: 24H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: **Pit liner manufacturers** Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system

PWD disturbance (acres):

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

PWD disturbance (acres):

Injection well name:

Injection well API number:

Page 130 of 138

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

PWD surface owner:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location: **PWD** surface owner: **PWD** disturbance (acres): Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Operator Name: OXY USA INCORPORATED

Well Name: NUGGET 6_31 FEDERAL COM

Well Number: 24H

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400098023 Operator Name: OXY USA INCORPORATED Well Name: NUGGET 6_31 FEDERAL COM

Well Type: OIL WELL

Submission Date: 04/11/2024

design and the

Well Number: 24H Well Work Type: Drill Highlighted data reflects the most recent changes <u>Show Final Text</u>

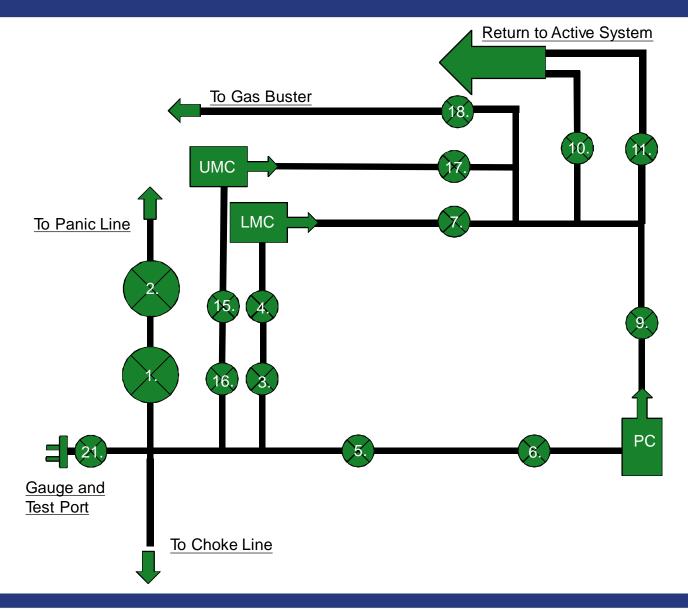
Bond Info Data

Bond

Federal/Indian APD: FED

BLM Bond number: ESB000226

BIA Bond number:

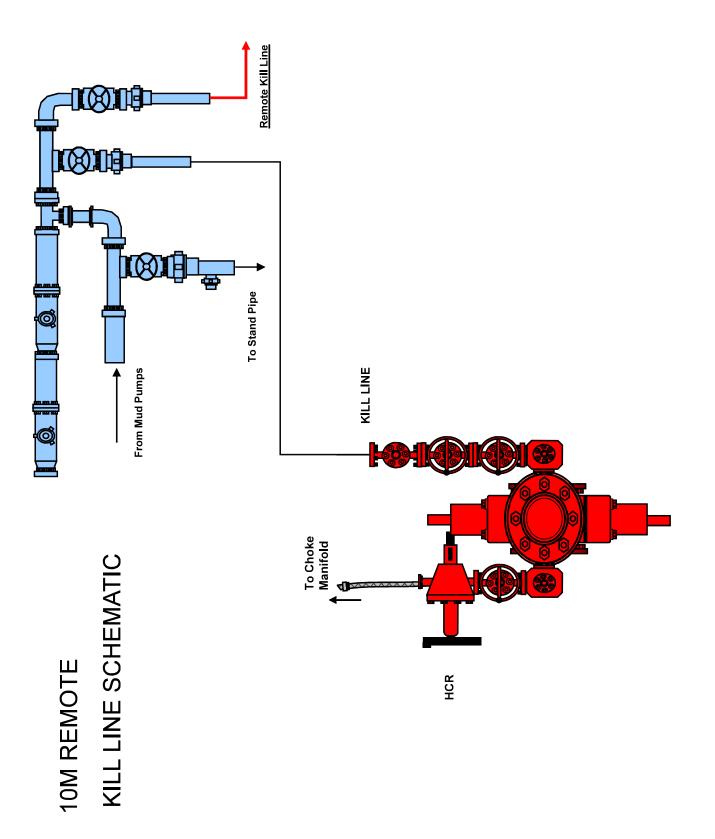

Do you have a reclamation bond? NO

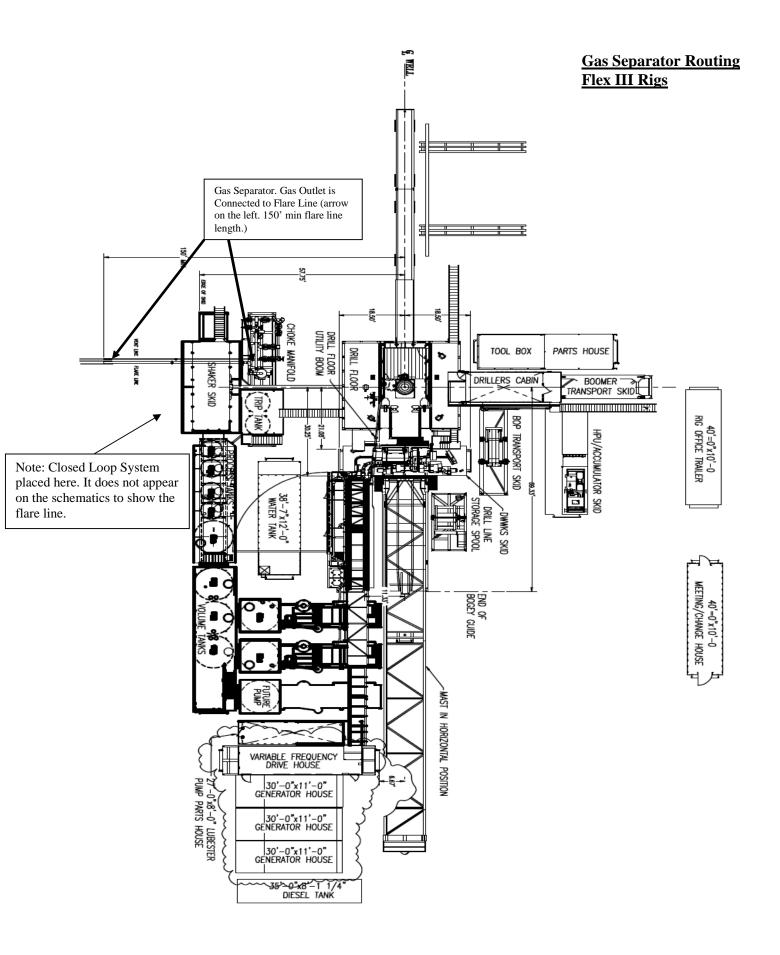
- Is the reclamation bond a rider under the BLM bond?
- Is the reclamation bond BLM or Forest Service?
- **BLM reclamation bond number:**
- Forest Service reclamation bond number:
- Forest Service reclamation bond
- **Reclamation bond number:**
- **Reclamation bond amount:**
- **Reclamation bond rider amount:**
- Additional reclamation bond information

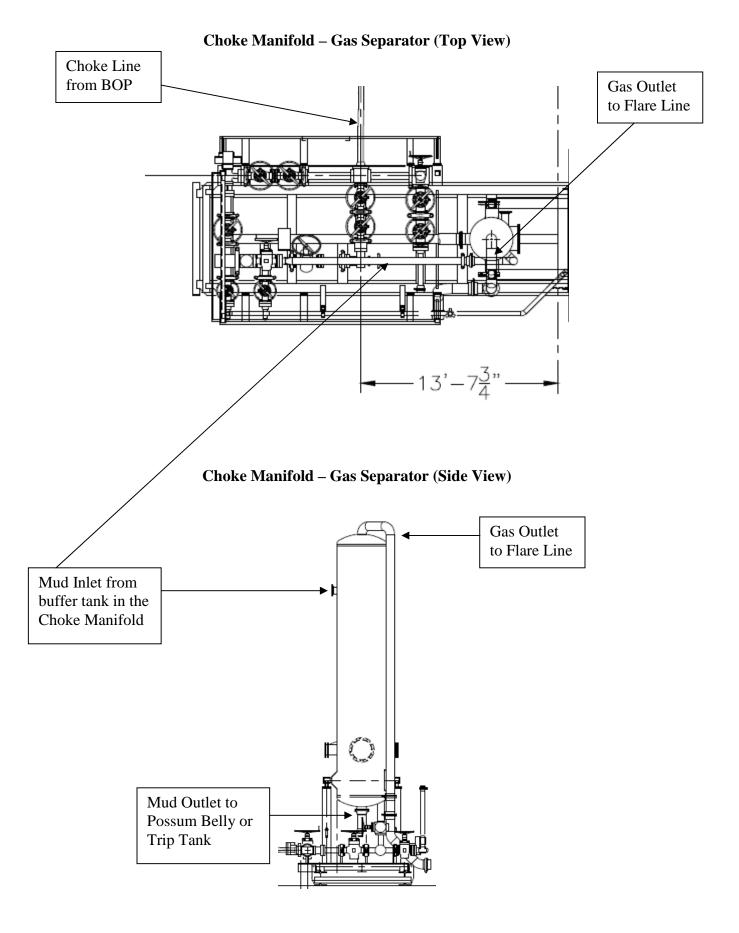
Page 132 of 138

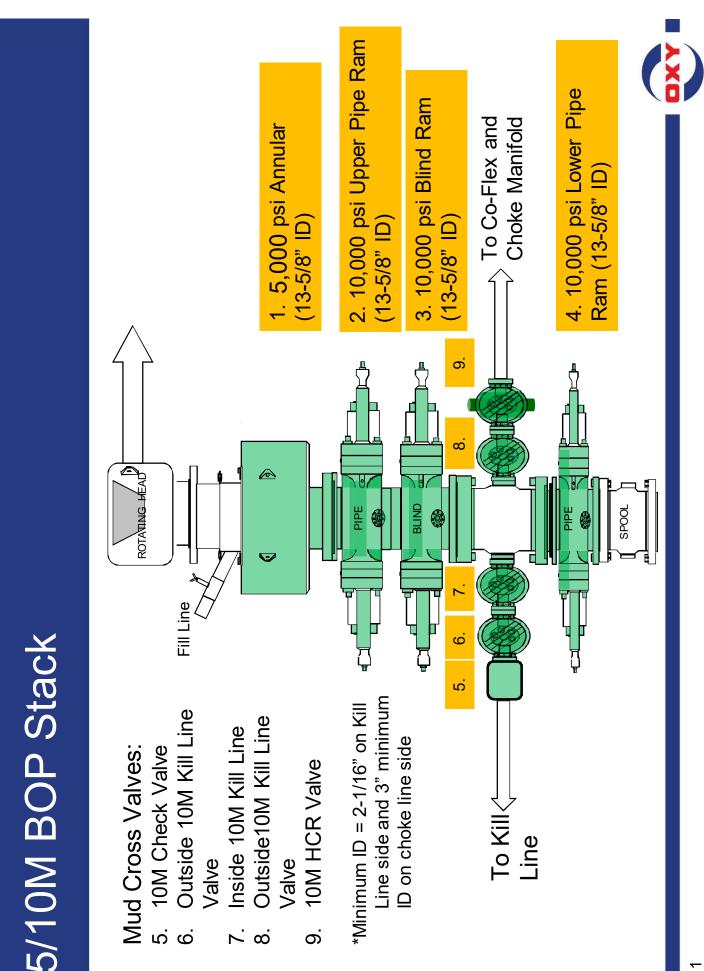
12/26/2024

10M Choke Panel


- 1. Choke Manifold Valve
- 2. Choke Manifold Valve
- 3. Choke Manifold Valve
- 4. Choke Manifold Valve
- 5. Choke Manifold Valve
- 6. Choke Manifold Valve
- 7. Choke Manifold Valve
- 8. PC Power Choke
- 9. Choke Manifold Valve
- 10. Choke Manifold Valve
- 11. Choke Manifold Valve
- 12. LMC Lower Manual Choke


13. UMC – Upper manual choke


- 15. Choke Manifold Valve
- 16. Choke Manifold Valve
- 17. Choke Manifold Valve
- 18. Choke Manifold Valve
- 21. Vertical Choke Manifold Valve


*All Valves 3" minimum

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
OXY USA INC	16696
P.O. Box 4294	Action Number:
Houston, TX 772104294	415810
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
guthries	Cement is required to circulate on both surface and intermediate1 strings of casing.	12/30/2024
guthries	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	12/30/2024
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	1/24/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	1/24/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	1/24/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	1/24/2025

CONDITIONS

Page 138 of 138

Action 415810