FAFMSS

U.S. Department of the Interior

Bureau of Land Management

Application for Permit to Drill

APD ID: APD Received Date: Operator:

APD Package Report Contents

- Form 3160-3

- Operator Certification Report
- Application Report
- Application Attachments
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 1 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 2 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 2 file(s)
 - -- Other Facets: 1 file(s)
 - -- Other Variances: 1 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 1 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 1 file(s)
 - -- Other SUPO Attachment: 1 file(s)
- PWD Report
- PWD Attachments
 - -- None

Date Printed:

Well Status: Well Name:

Well Number:

- Bond ReportBond Attachments
 - -- None

(June 2015)	OMB No. 1004-0137
UNITED STATES	Expires: January 31, 2018
DEPARTMENT OF THE INTERIOR	5. Lease Serial No.
BUREAU OF LAND MANAGEMENT	
APPLICATION FOR PERMIT TO DRILL OR REENTER	6. If Indian, Allotee or Tribe Name
1a. Type of work: DRILL REENTER	7. If Unit or CA Agreement, Name and No.
1b. Type of Well: Oil Well Gas Well Other	
1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone	8. Lease Name and Well No.
2. Name of Operator	9. API Well No. 30-015-56070
3a. Address 3b. Phone No. (include area code)	10, Field and Pool, or Exploratory
4. Location of Well (Report location clearly and in accordance with any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or Area
At surface	
At proposed prod. zone	
14. Distance in miles and direction from nearest town or post office*	12. County or Parish 13. State
	cing Unit dedicated to this well
location to nearest property or lease line, ft.	
(Also to nearest drig. unit line, if any)	
18. Distance from proposed location* 19. Proposed Depth 20. BLt to nearest well, drilling, completed, applied for, on this lease, ft. 19. Proposed Depth 20. BLt	M/BIA Bond No. in file
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start*	23. Estimated duration
24. Attachments	
The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the (as applicable)	e Hydraulic Fracturing rule per 43 CFR 3162.3-3
1. Well plat certified by a registered surveyor. 4. Bond to cover the operati	ons unless covered by an existing bond on file (see
2. A Drilling Plan. Item 20 above).	
 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 5. Operator certification. 6. Such other site specific inf BLM. 	formation and/or plans as may be requested by the
25. Signature Name (Printed/Typed)	Date
Title	·
Approved by (Signature) Name (Printed/Typed)	Date
Title Office	<u> </u>
Application approval does not warrant or certify that the applicant holds legal or equitable title to those righ applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ts in the subject lease which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly at of the United States any false, fictitious or fraudulent statements or representations as to any matter within it	
or the ornited blaces any false, neutrous of fraudulent statements of representations as to any filatter within h	

(Continued on page 2)

.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: NENE / 647 FNL / 311 FEL / TWSP: 18S / RANGE: 30E / SECTION: 36 / LAT: 32.7093605 / LONG: -103.9179148 (TVD: 0 feet, MD: 0 feet) PPP: SENE / 1750 FNL / 100 FEL / TWSP: 18S / RANGE: 30E / SECTION: 36 / LAT: 32.7063227 / LONG: -103.9172305 (TVD: 7818 feet, MD: 8206 feet) PPP: SWSE / 1752 FNL / 1320 FEL / TWSP: 18S / RANGE: 30E / SECTION: 36 / LAT: 32.7063268 / LONG: -103.9211969 (TVD: 7818 feet, MD: 9426 feet) PPP: SENW / 1754 FNL / 2637 FWL / TWSP: 18S / RANGE: 30E / SECTION: 36 / LAT: 32.706326 / LONG: -103.9254904 (TVD: 7818 feet, MD: 10746 feet) PPP: SWNW / 1752 FNL / 1319 FWL / TWSP: 18S / RANGE: 30E / SECTION: 36 / LAT: 32.706325 / LONG: -103.9297765 (TVD: 7818 feet, MD: 12064 feet) PPP: SENW / 1754 FNL / 2638 FEL / TWSP: 18S / RANGE: 30E / SECTION: 35 / LAT: 32.706325 / LONG: -103.9426394 (TVD: 7818 feet, MD: 16021 feet) PPP: SENK / 1750 FNL / 0 FEL / TWSP: 18S / RANGE: 30E / SECTION: 35 / LAT: 32.706328 / LONG: -103.9340646 (TVD: 7818 feet, MD: 13383 feet) BHL: SWNW / 1750 FNL / 10 FWL / TWSP: 18S / RANGE: 30E / SECTION: 35 / LAT: 32.706328 / LONG: -103.9340646 (TVD: 7818 feet, MD: 13383 feet)

BLM Point of Contact

Name: JANET D ESTES Title: ADJUDICATOR Phone: (575) 234-6233 Email: JESTES@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Centennial Resources							
LEASE NO.:	NMNM 093771, NMNM 025503, NMNM 56542							
COUNTY:	Eddy County, New Mexico							
Wells:								

wells:

Jakku 36 Fed State Com 112H

Jakku 36 Fed State Com 111H

Jakku 36 Fed State Com 131H

Jakku 36 Fed State Com 132H

Jakku 36 Fed State Com 113H

Jakku 36 Fed State Com 114H

Jakku 36 Fed State Com 133H

Jakku 36 Fed State Com 134H

•

TABLE OF CONTENTS

1.	GENERAL PROVISIONS	3
1.	SPECIAL REQUIREMENTS	3
]	1.1. CAVE/KARST	3
	1.1.1. Road Construction	3
2	2.3 WILDLIFE	3
	2.3.1 Lesser Prairie Chicken	3

1. GENERAL PROVISIONS

The failure of the operator to comply with these requirements may result in the assessment of liquidated damages or penalties pursuant to 43 CFR 3163.1 or 3163.2. A copy of these conditions of approval shall be present on the location during construction, drilling and reclamation activity. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

1. SPECIAL REQUIREMENTS

1.1. CAVE/KARST

1.1.1. Road Construction

- Turnout ditches and drainage leadoffs will not be constructed in such a manner as to alter the natural flow of water into or out of cave or karst features.
- Special restoration stipulations or realignment may be required if subsurface features are discovered during construction.

2.3 WILDLIFE

2.3.1 Lesser Prairie Chicken

2.3.1.1 Timing Limitation Stipulation/Condition of Approval for Lesser Prairie-Chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairiechicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

2.3.1.2 Timing Limitation Exceptions:

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

2.3.1.3 Ground-level Abandoned Well Marker to avoid raptor perching:

Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at BLM_NM_CFO_Construction_Reclamation@blm.gov.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:Centennial Resource Production LLCWELL NAME & NO.:Jakku 36 Fed Com 112HLOCATION:Sec 36-18S-30E-NMPCOUNTY:Eddy County, New Mexico

COA

O	No	0	Yes	
C None	• Secretary	C R-111-Q	Open Annulus WIPP	
C Low	Medium	C High	Critical	
C Conventional	Multibowl	C Both	C Diverter	
Primary Squeeze	🗆 Cont. Squeeze	EchoMeter	DV Tool	
🗆 Capitan Reef	Water Disposal	COM	🗖 Unit	
C Self-Certification	🕻 Waste Min. Plan	• APD Submitted p	prior to 06/10/2024	
Flex Hose	Casing Clearance	□ Pilot Hole	Break Testing	
	C None C Low C Conventional Primary Squeeze Capitan Reef Self-Certification Flex Hose	C Low Image: Medium C Conventional Image: Multibowl Primary Squeeze Image: Cont. Squeeze Capitan Reef Image: Water Disposal Self-Certification Image: Waste Min. Plan	C None Secretary C R-111-Q C Low Medium High C Conventional Multibowl Both Primary Squeeze Cont. Squeeze EchoMeter C Capitan Reef Water Disposal COM C Self-Certification Waste Min. Plan APD Submitted p ✓ Flex Hose Casing Clearance Pilot Hole	

Break testing is not approved on this well. BOP description and procedure request break testing, but the appropriate documents were not attached. Must sundry if operator wishes break testing to be approved.

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **690** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Set depth adjusted per BLM geologist.*
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping

Page 1 of 7

cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 pounds compressive strength</u>, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet minimum collapse requirements.

- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing (*set at 3740' per BLM geologist*) is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the</u> <u>Communitization Agreement number is known, it shall also be on the sign.</u>

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; BLM_NM_CFO_DrillingNotifications@BLM.GOV; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Page 4 of 7

- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

open. (only applies to single stage cement jobs, prior to the cement setting up.)

- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Received by OCD: 1/1/2025 6:32:29 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Page 17 of 194

12/20/2024

Operator Certification Data Report

NAME: ASHLEY BROWN		Signed on: 05/10/2023
Title: Sr. Regulatory Analyst		
Street Address: 300 N MARIENFE	LD STREET SUITE 1000	
City: MIDLAND	State: TX	Zip: 79701
Phone: (432)599-5624		
Email address: ASHLEY.BROWN	@PERMIANRES.COM	
Field		
Representative Name:		
Street Address:		
City: S	tate:	Zip:
Phone:		
Email address:		

Released to Imaging: 1/27/2025 10:53:36 AM

Received by OCD: 1/1/2025 6:32:29 PM

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 05/10/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: JAKKU 36 FED COM

Well Type: OIL WELL

APD ID: 10400092206

Well Number: 112H

Tie to previous NOS? N

Federal or Indian agreement: FEDERAL

User: ASHLEY BROWN

Lease Acres:

Allotted?

Highlighted data reflects the most recent changes Show Final Text

Application Data

Submission Date: 05/10/2023

Title: Sr. Regulatory Analyst

Section 1 - General

APD ID: 10400092206

BLM Office: Carlsbad

Federal/Indian APD: FED

Lease number: NMNM093771

Surface access agreement in place?

Agreement in place? YES

Agreement number: NMNM135890

Agreement name: IVORE 35 FED COM 3H

Keep application confidential? Y

Permitting Agent? NO

Operator letter of

APD Operator: CENTENNIAL RESOURCE PRODUCTION LLC

Is the first lease penetrated for production Federal or Indian? FED

Reservation:

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC Operator Address: 300 N MARIENFIELD STREET SUITE 1000 **Zip:** 79701 **Operator PO Box: Operator City: MIDLAND** State: TX

Operator Phone: (432)695-4222

Operator Internet Address: KANICIA.SCHLICHTING@PERMIANRES.COM

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name	2:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: JAKKU 36 FED COM	Well Number: 112H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: Benson	Pool Name: Bone Spring

12/20/2024

Well Name: JAKKU 36 FED COM

Well Number: 112H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

la 41			ا محمد الم	II :	1101			diam									4		
Is the proposed well in a Helium production area? N									-										
Type of Well Pad: MULTIPLE WELL								M 36	Multiple Well Pad Name: JAKKU _{Number:} 1 36 NENE										
									umber of L	.egs: 1	l								
Well	Wor	k Typ	e: Dr	ill															
Well	Туре	: OIL	WEL	.L															
Desc	ribe	Well	Туре	:															
Well	sub-	Туре	: INFI	ILL															
		sub-t																	
		to tov						Distanc	e to neare	st well: 30) FT		Distand	e t	o lease l	ine: 3	41 FT		
				ina a	eeian	od a			ement: 32				Jistan			inc . 0			
			•	-	-						220540	00400	ا ممال						
Well	-						D_C(JIVI_112		REV_1_202			1.pai						
Well	work	star	t Date	e: 05/	04/20	24			D	uration: 18	B DAYS	6							
	Co	-41				t ¹		Tabla											
	500	ctior	13-	vve	I LO	cati	on	Fable											
Surv	еу Ту	/pe: F	RECT	ANGL	JLAR														
Desc	ribe	Surve	әу Ту	pe:															
Datu	m: N	AD83							Ve	ertical Date	um: NA	VD88							
Surv	ey nı	umbe	r: 254	190					Re	eference D	atum:	GROU	IND LE	VE	L				
																			Φ
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	647	FNL	311	FEL	18S	30E	36	Aliquot NENE	32.70936 05	- 103.9179 148	EDD	NEW MEXI CO	FIRS T PRIN	S	STATE	355 8	0	0	N

100 FEL

18S

30E

36

647 FNL 311 FEL 18S 30E 36

Aliquot

NENE

Aliquot

SENE

32.70936 -

32.70632

05

27

KOP

Leg

#1 PPP

Leg

#1-1

175 FNL

0

743 733 N

1

781

8

Y

NEW FIRS S

PRIN

FIRS

PRIN

S

MEXI | T

CO

NEW

MEXI |Т

СО

STATE

STATE

377

426 6

0

3

5

820

EDD

EDD

103.9179 Y

103.9172 Y

148

305

Well Name: JAKKU 36 FED COM

Well Number: 112H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP Leg #1-2	175 2	FNL	132 0	FEL	18S	30E	36	Aliquot SWSE		- 103.9211 969	EDD Y	NEW MEXI CO	FIRS T PRIN	S	STATE	- 426 0	942 6	781 8	Y
	175 4	FNL	263 7	FW L	18S	30E	36	Aliquot SENW		- 103.9254 904	EDD Y	NEW MEXI CO	FIRS T PRIN	S	STATE	- 426 0	107 46	781 8	Y
	175 2	FNL	131 9	FW L	18S	30E	36	Aliquot SWN W	32.70632 5	- 103.9297 765	EDD Y	NEW MEXI CO	FIRS T PRIN	S	STATE	- 426 0	120 64	781 8	Y
	175 0	FNL	0	FEL	18S	30E	35	Aliquot SENE		- 103.9340 646	EDD Y	NEW MEXI CO	FIRS T PRIN		NMNM 093771	- 426 0	133 83	781 8	Y
	175 4	FNL	263 8	FEL	18S	30E	35	Aliquot SENW		- 103.9426 394	EDD Y	MEXI CO	FIRS T PRIN		NMNM 06245	- 426 0	160 21	781 8	Y
	175 0	FNL	100	FW L	18S	30E	35	Aliquot SWN W		- 103.9508 975	EDD Y	NEW MEXI CO	FIRS T PRIN		NMNM 06245	- 426 0	180 84	781 8	Y
	175 0	FNL	10	FW L	18S	30E	35	Aliquot SWN W		- 103.9511 901	EDD Y	NEW MEXI CO	FIRS T PRIN		NMNM 06245	- 426 0	181 74	781 8	N

Received by OCD: 1/1/2025 6:32:29 PM

<u>C-102</u>

Submit Electronically Via OCD Permitting

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

Page 21 of 194

Revised July 9, 2024

🗙 Initial Submittal Submittal

Type:

□ Amended Report \Box As Drilled

WELL LOCATION INFORMATION

API Number 30-015-56070	Pool Code 5200	Pool Name Benson; Bone Spring	
Property Code 336879	Property Name JAKKU 3	36 FED COM	Well Number 112H
OGRID No.	Operator Name		Ground Level Elevation
372165	PERMIAN RESOU	RCES OPERATING, LLC	3558'
Surface Owner: 🗶 State 🗆 Fee 🗆	Tribal 🗆 Federal	Mineral Owner: \square State \square Fee \square Tribal \square F	Federal

UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
А	36	18-S	30-Е		647' N	311' E	32.70936	-103.91791	EDDY
	Bottom Hole Location								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
Е	35	18-S	30-E		1750' N	10' W	32.70635	-103.95119	EDDY

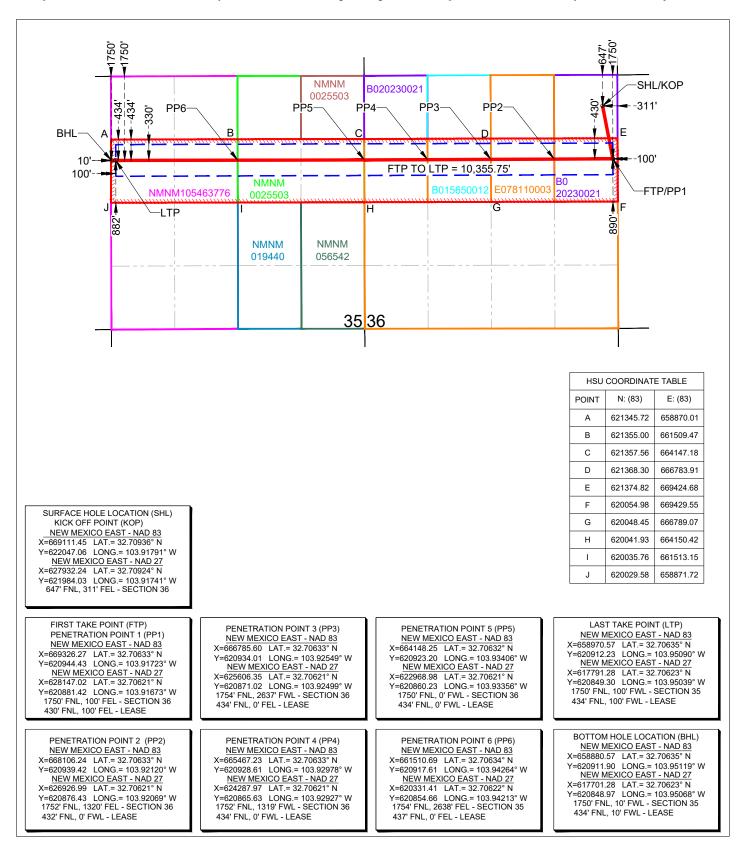
Dedicated Acres 320	Infill or Defining Well Defining	Defining Well API	Overlapping Spacing Unit (Y/N)	Consolidation Code
Order Numbers.			Well setbacks are under Common	Ownership: IXYes □No

					Kick Off	Point (KOP)			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
А	36	18-S	30-Е		647' N	311' E	32.70936	-103.91791	EDDY
		1			First Take	Point (FTP)			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
А	36	18-S	30-Е		1750' N	100' E	32.70633	-103.91723	EDDY
		1			Last Take	Point (LTP)			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
Е	35	18-S	30-Е		1750' S	100' W	32.70635	-103.95090	EDDY

Unitized Area or Area of Uniform Interest

Spacing Unit Type \mathbf{X} Horizontal \Box Vertical

Ground Floor Elevation:


OPERATOR CERTIFICATIONS	SURVEYOR CERTIFIC	CATIONS
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each trave (in the target pool or formation) in which any part of the well's completed interval will be becaued or obtained a dompulsory pooling order from the division. 1/1/2025		Il location shown on this plat was plotted from field notes of actual er my supervision and that the same is true and correct to the best of CHARLES UNCO 25490 12/B1/2024
Signature Date	Signature and Seal of Profess	ional Surveyor
Jennifer Elrod		(
Printed Name	Certificate Number	Date of Survey
jennifer.elrod@permianres.com		
Email Address		


Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14720093	RUSTLER	3052	535	535	SANDSTONE	USEABLE WATER	N
14720094	TOP SALT	2185	867	867	SALT	NONE	N
14720095	TANSILL	1067	1985	1985	ANHYDRITE, SHALE	NONE	N
14720096	YATES	927	2125	2125	ANHYDRITE, SHALE	NATURAL GAS, OIL	N
14720097	SEVEN RIVERS	562	2490	2490	OTHER : CARBONATE	NATURAL GAS, OIL	N
14720098	QUEEN	-63	3115	3115	OTHER : CARBONATE	NATURAL GAS, OIL	N
14720099	DELAWARE SAND	-913	3965	3965	SANDSTONE	NATURAL GAS, OIL	N
14720100	BONE SPRING LIME	-3043	6095	6095	OTHER, SHALE : CARBONATE	NATURAL GAS, OIL	N
14720101	FIRST BONE SPRING SAND	-4583	7635	7635	OTHER, SANDSTONE, SHALE : CARBONATE	NATURAL GAS, OIL	Y
14720102	2ND BONE SPRING LIME	-5503	8555	8555	OTHER, SANDSTONE, SHALE : CARBONATE	NATURAL GAS, OIL	N
14720103	BONE SPRING 3RD	-6303	9355	9355	OTHER, SANDSTONE, SHALE : CARBONATE	NATURAL GAS, OIL	N
14720104	WOLFCAMP	-6718	9770	9770	OTHER, SANDSTONE, SHALE : CARBONATE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 7918

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All

Well Name: JAKKU 36 FED COM

Well Number: 112H

gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing.

Requesting Variance? YES

Variance request: Permian Resources Operating, LLC hereby requests to use a flex hose on H&P choke manifold for this well. The Flex Hose specifications are listed attached on page 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

Choke_Diagram_Attachment_Jakku_36_Fed_Com_112H_20230510093849.pdf

BOP Diagram Attachment:

BOP_Diagram_Attachment_Jakku_36_Fed_Com_112H_20230510093854.pdf

Well Name: JAKKU 36 FED COM

Well Number: 112H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	560	0	560	3558	2998	560	J-55		OTHER - BTC	4.08	2.19	DRY	6.96	DRY	6.54
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3915	0	3915	3557	-357	3915	J-55		OTHER - BTC	2.92	1.66	DRY	2.65	DRY	2.34
3	PRODUCTI ON	8.75	5.5	NEW	API	N	0	8206	0	7818	3557	-4260	8206	P- 110		OTHER - GEOCONN	1.84	1.92	DRY	2.34	DRY	2.34
4	PRODUCTI ON	7.87 5	5.5	NEW	API	N	8206	18174	7818	7818	-4260	-4260	9968	P- 110		OTHER - GEOCONN	1.84	1.92	DRY	2.34	DRY	2.34

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Assumptions_Worksheet_Jakku_36_Fed_Com_112H_20230510094250.pdf

Received by OCD: 1/1/2025 6:32:29 PM

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: JAKKU 36 FED COM

Well Number: 112H

Casing Attachments

Casing ID: 2 String Inspection Document:	INTERMEDIATE
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Wor	rksheet(s):
Casing ID: 3 String	PRODUCTION
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Wor	rksheet(s):
Casing_Assumptions_Worksheet_	_Jakku_36_Fed_Com_112H_20230510094330.pdf
Casing ID: 4 String	PRODUCTION
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Wor	rksheet(s):

Section 4 - Cement

.

Well Name: JAKKU 36 FED COM

Well Number: 112H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	560	450	1.34	14.8	590	50	Class C	Accelerator

INTERMEDIATE	Lead	0	3130	690	2.08	12.7	1420	50	Class C	Salt, Extender, and LCM
INTERMEDIATE	Tail	3130	3915	280	1.34	14.8	370	50	Class C	Accelerator
PRODUCTION	Lead	3415	7435	580	2.41	11.5	1380	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail	7435	1817 4	1400	1.73	12.5	2410	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Lead	3415	7435	580	2.41	11.5	1380	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail	7435	1817 4	1400	1.73	12.5	2410	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Released to Imaging: 1/27/2025 10:53:36 AM

Well Name: JAKKU 36 FED COM

Well Number: 112H

Anticipated Surface Pressure: 2350

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	560	WATER-BASED MUD	8.6	9.5							
560	3915	SALT SATURATED	10	10							
3915	8206	OTHER : BRINE	9	10							
8206	1817 4	OIL-BASED MUD	9	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4070

Anticipated Bottom Hole Temperature(F): 136

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

 $H2S_Contingency_Plan_Jakku_36_Fed_Com_111H_112H_131H_132H_20230508111216.pdf$

Well Name: JAKKU 36 FED COM

Well Number: 112H

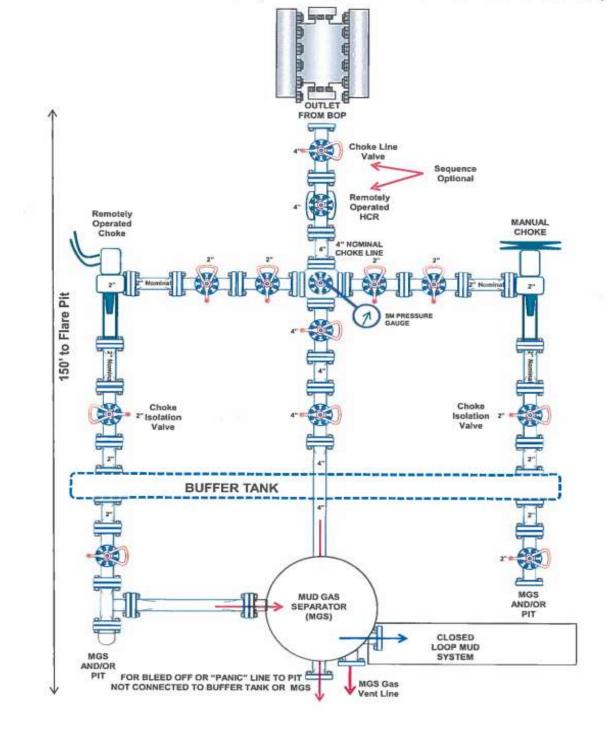
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Jakku_36_Fed_State_Com_112H_Plan_1_20230510095925.pdf

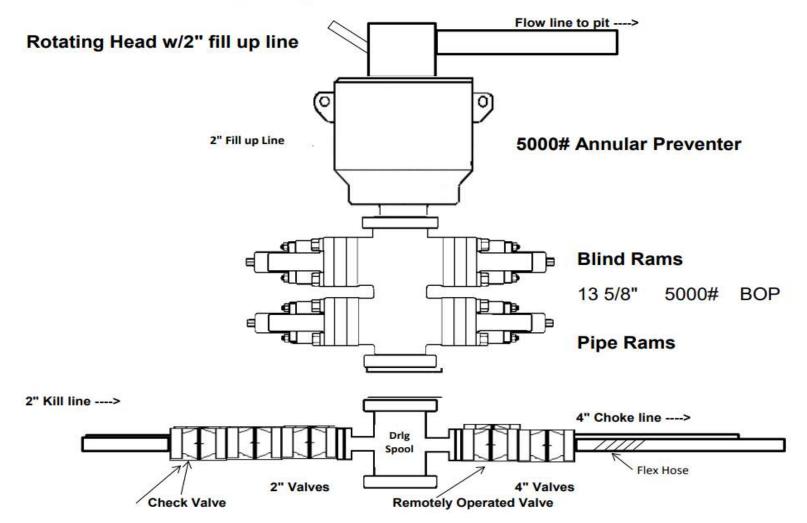
Jakku_36_Fed_State_Com_112H_Plan_1_AC_Report_20230510100042.pdf

Other proposed operations facets description:


Please see attached Drilling Plan, including multi-bowl diagram and procedure, proposed WBD, and casing connection data sheet. We also plan to batch drill this well along with offline cementing, see details under variance request below. Permian Resources Operating, LLC requests to use a flex hose on H&P choke manifold for this well. The Flex Hose specifications are attached below.

Other proposed operations facets attachment:

Jakku_36_Fed_Com_112H_Drilling_Packet_20230510100238.pdf


Other Variance attachment:

Other_Variance_Attachments_Jakku_36_Fed_Com_112H_20230510100246.pdf

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

5,000 psi BOP Schematic

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

	GEOCONN-	Contract of the second s	Page	COMPANY AND A REAL PROPERTY AND A REAL PROPERTY.	7 SeAH P110R
Metal One	Pipe: SeAH P110RY 95%PBW (0000125005223000 000 000 000 000 000		95%RBW+SC-	
vietui One	Coupling: P110RY (SMY		Date	3-1	Feb-21
	Connection Data	Sheet	Rev.	8	U
	Geometry	Impe	erial	<u>s.</u>	<u>L</u>
	Pipe Body			14	
	Grade *1	P110RY		P110RY	
	SMYS	110	ksi	110	ksi
CEOCONN CC	Pipe OD (D)	5.500	in	139.70	mm
GEOCONN-SC	Weight Wall Thickness (t)	17.00	lb/ft	25.33	kg/m
	Pipe ID (d)	4.892	in	7.72	mm
	Drift Dia.	4.692	in	124.26	mm
Wsc1	Dint Dia.	4.707	in	121.08	mm
- D	Connection				
	Coupling SMYS	110	ksi	110	ksi
1 d	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
3	Coupling Length (NL)	8.350	in	212.09	mm
3	Make up Loss	4.125	in	104.78	mm
3	Pipe Critical Area	4.96	in ²	3,202	mm ²
2	Box Critical Area	6.10	in ²	3,937	mm ²
5	Thread Taper		1/16(3/4" per ft)	2
5	Number of Threads		5	TPI	
	Performance	Imperial		<u>s.</u>	L
	Performance Performance Properties for Pi	and the second		<u>s.</u>	L
		and the second	kips	<u>S.</u> 2,428	L. KN
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1	pe Body 546 11,550	kips psi	2,428 79.66	kN MPa
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	pe Body 546 11,550 7,480	psi psi	2,428 79.66 51.59	kN
NL NL	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY3	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe bo	2,428 79.66 51.59 body	kN MPa
NL NL	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe bo	2,428 79.66 51.59 body	kN MPa
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe essure of Pipe bo psi	2,428 79.66 51.59 body xdy	kN MPa
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe essure of Pipe bo psi 100%	2,428 79.66 51.59 body bdy dy	kN MPa
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY? Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe essure of Pipe bo psi 100% 100%	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S.	kN MPa
ML MIL	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe essure of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S.	kN MPa
	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe essure of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength	kN MPa
+	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi psi Strength of Pipe bo psi 100% 100% of M.I. 100% of Colla	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength	KN MPa MPa
+	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY? Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	pe Body 546 11,550 7,480 ified Minimum YIELD mum Internal Yield Pre \$110ksi, MIYP11,550 onnection 10,800	psi psi Strength of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla ft-lb	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength >90	KN MPa MPa N-m
+	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection 10,800 12,000	psi psi Strength of Pipe bo psi 100% 100% of M.I. 100% of Colla	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength >90 14,600 16,200	KN MPa MPa
↓	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	pe Body 546 11,550 7,480 ified Minimum YIELD mum Internal Yield Pre \$110ksi, MIYP11,550 onnection 10,800	psi psi Strength of Pipe bo psi 100% 100% of M.I. 100% of Colla ft-lb	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength >90	KN MPa MPa N-m N-m
+	Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Presson 5110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi psi Strength of Pipe be psi 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb	2,428 79.66 51.59 body bdy of S.M.Y.S. of S.M.Y.S. (.P. pse Strength >90 14,600 16,200 17,800	kN MPa MPa MPa

Such statements in no uniting statements down are extracting or produce to a period of approach, the approach is the approach. The approach is the statement of the set of the statement of the s

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

One Corp.	GEOCONN-	Contract of the second s	Page	CALL COLD IN THE REAL PROPERTY OF THE REAL PROPERTY OF	7 SeAH P110R
Metal One Pipe: SeAH P110RY 95%PBW (Coupling: P110RY (SMY		OCD 250 AS2 200 CT 4 CT		95%RBW+SC-	
				3-1	eb-21
	Connection Data	Sheet	Rev.	8	U
	Geometry	Impe	erial	<u>s.</u>	<u>L</u>
	Pipe Body			14	
	Grade *1	P110RY		P110RY	
	SMYS	110	ksi	110	ksi
CEOCONN CC	Pipe OD (D)	5.500	in	139.70	mm
GEOCONN-SC	Weight Wall Thickness (t)	17.00	lb/ft	25.33	kg/m
	Pipe ID (d)	4.892	in	7.72	mm
	Drift Dia.	4.692	in	124.26	mm
Wsc1	Dinit Dia.	4.707	in	121.08	mm
•D	Connection				
	Coupling SMYS	110	ksi	110	ksi
1 3 d	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
ş - a	Coupling Length (NL)	8.350	in	212.09	mm
3	Make up Loss	4.125	in	104.78	mm
3	Pipe Critical Area	4.96	in ²	3,202	mm ²
3	Box Critical Area	6.10	in ²	3,937	mm ²
3	Thread Taper	A CONTRACTOR OF	1/16(3/4" per ft)	
3	Number of Threads			TPI	
4	Performance Properties for Pi	pe Body			
	S.M.Y.S. *1	546	kips	2,428	kN
	M.I.Y.P. *1	11,550	kips psi	79.66	MPa
·	M.I.Y.P. *1 Collapse Strength *1	11,550 7,480	psi psi	79.66 51.59	
N N	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe be	79.66 51.59 body	MPa
N N	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe be	79.66 51.59 body	MPa
N NI	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe be psi	79.66 51.59 body ody	MPa
NI NI	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe bo psi 100%	79.66 51.59 body of <u>S.M.Y.S.</u> of S.M.Y.S.	MPa
N	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe essure of Pipe br psi 100% 100%	79.66 51.59 body of S.M.Y.S. of S.M.Y.S. Y.P.	MPa
N N	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe be psi 100% 100% 100% of M.I. 100% of Colla	79.66 51.59 body of S.M.Y.S. of S.M.Y.S. Y.P.	MPa
	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi psi Strength of Pipe be psi 100% 100% 100% of M.I. 100% of Colla	79.66 51.59 body ody of S.M.Y.S. of S.M.Y.S. Y.P. upse Strength	MPa
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi psi Strength of Pipe bo psi 100% 100% of M.I. 100% of Colla	79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. Y.P. upse Strength >90	MPa MPa
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800	psi psi Strength of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla	79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90	MPa MPa N-m
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	11,550 7,480 iffed Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000	psi psi Strength of Pipe be psi 100% 100% 100% of M.I. 100% of Colla ft-lb	79.66 51.59 body of S.M.Y.S. of S.M.Y.S. Y.P. ppse Strength >90 14,600 16,200	MPa MPa MPa N-m N-m
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800	psi psi Strength of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla	79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90	MPa MPa N-m
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	11,550 7,480 iffed Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi psi Strength of Pipe bo psi 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb	79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90 14,600 16,200 17,800	MPa MPa MPa N-m N-m N-m
+	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	11,550 7,480 iffed Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi psi Strength of Pipe bo psi 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb	79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90 14,600 16,200 17,800	MPa MPa MPa N-m N-m N-m
t → ←	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. torque of	11,550 7,480 iffed Minimum YIELD mum Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 13,200 15,600 an be applied for high to	psi psi Strength of Pipe be psi 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb ft-lb ft-lb	79.66 51.59 body of S.M.Y.S. of S.M.Y.S. y.P. upse Strength >90 14,600 10,200 17,800 21,100	MPa MPa MPa N-m N-m N-m N-m
t	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. Note : Operational Max.	11,550 7,480 iffed Minimum YIELD num Internal Yield Pro S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600 an be applied for high to	psi psi Strength of Pipe bo psi 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb ft-lb srque application	79.66 51.59 sbody of S.M.Y.S. of S.M.Y.S. y.P. pse Strength >90 14,600 16,200 17,800 21,100	MPa MPa MPa N-m N-m N-m N-m
t	M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. torque of	11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600 an be applied for high to	psi psi Strength of Pipe bo psi 100% 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb ft-lb orque application	79.66 51.59 body of S.M.Y.S. of S.M.Y.S. y.P. upse Strength >90 14,600 16,200 17,800 21,100	MPa MPa MPa

Such statements in no uniting statements down are extracting or produce to a period of approach, the approach is the approach. The approach is the statement of the set of the statement of the s

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation Jakku 36 Fed State Com 111H, 112H, 131H, 132H Eddy County, New Mexico

03-27-2023 This plan is subject to updating

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Table of Contents

Sectio	on 1.0 – Introduction
I.	Purpose
П.	Scope & Applicability
	on 2.0 - Plan Implementation
I.	Activation Requirements
П.	Emergency Evacuation
111.	Emergency Response Activities
	on 3.0 - Potential Hazardous Conditions4
	on 4.0 - Notification of H2S Release Event6
I.	Local & State Law Enforcement
11.	General Public
III.	New Mexico Oil Conservation Division
IV.	New Mexico Environment Department
٧.	Bureau of Land Management
Sectio	on 5.0 - Emergency Contact List7
I.	Permian Resources Management Personnel
II.	Eddy County Sheriff
III.	New Mexico State Highway Patrol
IV.	Fire / EMS
٧.	Carlsbad Medical Center
VI.	Emergency Response Contractors
VII.	New Mexico Oil Conservation Division
VIII.	New Mexico Environment Department
IX.	Bureau of Land Management
Х.	Other Agencies
Sectio	on 6.0 – Drilling Location Information9-12
١.	Site Safety Information
11.	Directions to Location
111.	Plat of Location including GPS Coordinates
IV.	Routes of Ingress & Egress (MAP)
V.	ROE Map
VI.	Residences in ROE
VII.	Public Roads in ROE
	on 7.0 – Hazard Communication
I. 	Physical Characteristics of Hydrogen Sulfide Gas
II. 	Human Health Hazards / Toxicological Information
	Environmental Hazards
	on 8.0 - Regulatory Information15-17
I. 	OSHA Information
. Contin	New Mexico Oil Conservation Division & Bureau of Land Management
	on 9.0 - Training Requirements
	on 10.0 - Personal Protective Equipment18
Apper	Appendix A – H ₂ S SDS
Ι.	

I. Appendix $A = H_2 S S S S$ II. Appendix $B = SO_2 S D S$

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Section 1.0 – Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H₂S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H₂S gas, or SO², which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions are identified in the tables below.

\checkmark **H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER** H₂S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH -> WARNING SIGN **GREEN** H₂S concentration <10 ppm detected by location monitors **General Actions During Condition 1** Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H₂S concentrations All personnel check safety equipment is in adequate working order & store in accessible location Sensitize crews with safety meetings. Limit visitors and non-essential personnel on location Continuously monitor H₂S concentrations and check calibration of sensors Ensure H₂S scavenger is on location. H₂S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW H_2S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors: **General Actions During Condition 2** Sound H₂S alarm and/or display yellow flag. Account for on-site personnel Upon sounding of an area or personal H₂S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4, Figure 5-1). Don proper respiratory protection. Alert other affected personnel If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation. Account for on-site personnel at safe briefing area. Stay in safe briefing area if not working to correct the situation. Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11 Continuously monitor H₂S until readings below 10 ppm. Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

H_2S CONDITION 3: EXTREME DANGER TO LIFE AND HEALTH \rightarrow WARNING SIGN RED	
> 30 ppm H ₂ S concentration in air detected by location monitors: Extreme danger to life	
General Actions During Condition 3	
Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Move away from H ₂ S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1 .	
Notify management of the condition and action taken. If H ₂ S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H ₂ S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	
If uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H ₂ S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	
If the flow is ignited, burning H ₂ S will be converted to sulphur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
 Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) If off-site impact; notify any neighbours within the Radius of Exposure (ROE), see example in Figure 5-11. 	
Continuously monitor H ₂ S until readings fall below 10 ppm.	

•

Permian Resources Corporation	H ₂ S Contingency Plan Jakku 36 Fed State Com 111H, 112H,	Eddy County, New Mexico
	131H, 132H	
	enterned encount has trained and another sized as	1

Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
IF ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	
Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	
Make recommendations to public officials regarding evacuating the public and assist as appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

combustion.

Section 5.0 - Emergency Contact List

EMERGENCY CONTACT LIST				
PERMIAN RESOURCES CORPORATION.				
POSITION	NAME	OFFICE	CELL	ALT PHONE
	Oper	ations		
Operations Superintendent	Rick Lawson		432.530.3188	
TX Operations Superintendent	Josh Graham	432.940.3191	432.940.3191	
NM Operations Superintendent	Manual Mata	432.664.0278	575.408.0216	
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916	
Drilling Engineer	Ronny Hise	432.315.0144	432.770.4786	
Production Manager	Levi Harris	432.219.8568	720.261.4633	
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494	
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140	
	HSE & R	egulatory		
H&S Manager	Adam Hicks	720.499.2377	903.426.4556	
Regulatory Manager	Sarah Ferreyros	720.499.1454	720.854.9020	
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321	
Environmental Representative				
HSE Consultant	Blake Wisdom		918-323-2343	
l	ocal, State, & I	ederal Agen	cies	
Eddy County Sheriff		575-887-7551		911
New Mexico State Highway Patrol		505-757-2297		911
Eunice Fire / EMS		575-628-5450		911
Carlsbad Medical Center		575-887-4100		
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707	
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161		
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910		
New Mexico Oil Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161		
Bureau of Land Management – Carlsbad, NM		575-234-5972		
U.S. Fish & Wildlife		502-248-6911		

Section 6.0 – Drilling Location Information

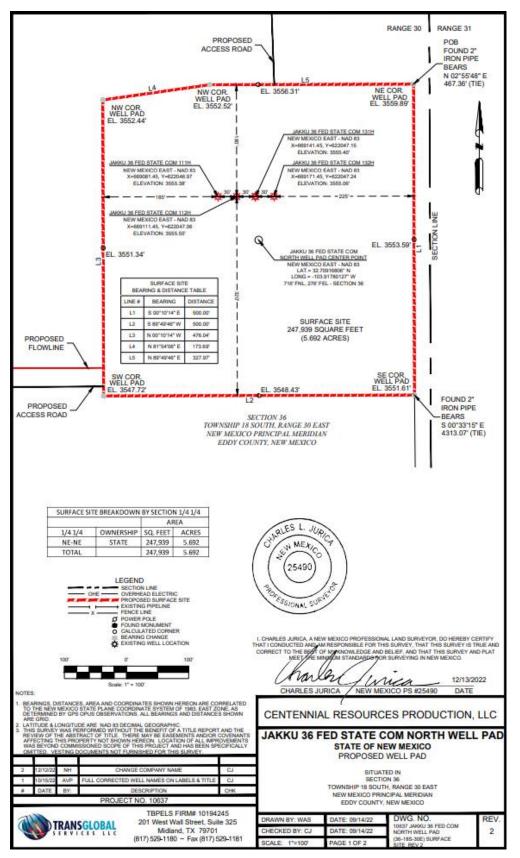
- I. Site Safety Information
 - 1. Safe Briefing Area

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

- a. There shall be two areas that will be designated as "SAFE BRIEFING AREAs". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.
- 2. <u>Wind Indicators</u>
 - a. 4 Windsocks will be installed at strategic points on the facility.
- 3. Danger Signs
 - a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

- 4. <u>H₂S Detectors and Alarms</u>
 - a. Continuous monitoring type H₂S detectors, capable of sensing a minimum of 5ppm H₂S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO₂ detector will also be located at the combustor. The automatic H₂S alarm/flashing light will be located at the site entrance and in front of tank battery.
- 5. Safety Trailer
 - a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.
- 6. Well Control Equipment
 - a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
 - b. The location shall be equipped with a remotely operated choke system and a mud gas separator.
- 7. Mud Program
 - a. Company shall have a mud program that contains sufficient weight and additives to control H_2S .
- 8. <u>Metallurgy</u>
 - a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.
- 9. Communication
 - a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.


Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico	l
	Jakku 36 Fed State Com 111H, 112H,		l
	131H, 132H		ł

II. Directions to Location

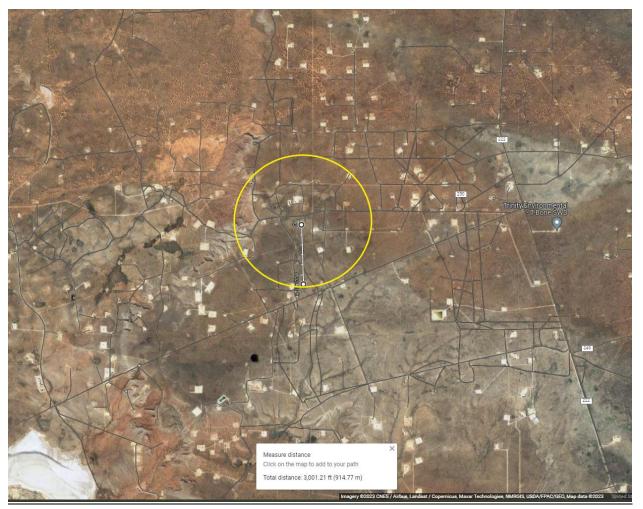
DIRECTIONS TO LOCATION FROM INTERSECTION OF NM 360 AND CR-251 GO NORTH ON CR-251 FOR 1.84 MILES, TURN RIGHT ON CR-250 AND GO EAST 4.2 MILES, TO THE NORTHEAST PAD CORNER FOR THIS LOCATION.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Plat of Location

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

1. Routes of Ingress & Egress (MAP)



2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H₂S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

Location GPS Coordinates *Lat: 32.70936064, Long: -103.91801238*

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico County Road 250, which is 500' from the location.

Section 7.0 – Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H₂S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0**.

With H₂S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1**.

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

|--|

Properties of H2S	Description
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production.
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air.

Although H₂S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Table 7.1. Hazards & Toxicity

Concentration	Symptoms/Effects
	Symptoms/Energy
(ppm)	
0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes
	more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly
	sweet.
	Sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of
	sleep. Airway problems (bronchial constriction) in some asthma patients.
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May
	cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered
	breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual
	increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema
	may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death
	after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths,
	breathing stops, death within minutes.
	breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

 H_2S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO₂ is produced as a constituent of flaring H_2S Gas and can present hazards associated, which are

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

similar to H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

	SULFUR DIOXIDE TOXICITY		
Conce	entration	Effects	
%SO2	PPM		
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.	
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.	
0.15	150	So irritating that it can only be endured for a few minutes.	
0.05	500	Causes a sense of suffocation, even with first breath.	

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description	
NIOSH PEL 10 PPM	 PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day. 	
OSHA General Industry Ceiling PEL – 20 PPM	 The maximum exposure limit, which cannot be exceeded for any length of time. 	
IDLH 100 PPM	 Immediately Dangerous to Life and Health 	
Permian Resources PEL 10 PPM	 Permian Resources Policy Regarding H2S for employee safety 	

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H₂S contingency plan for sites where the H₂S concentrations are as follows.

Table 8.1. Calculating H₂S Radius of Exposure

H₂S Radius of Exposure	Description	Control and Equipment Requirements
---------------------------	-------------	------------------------------------

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

100 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 100ppm	 ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated). ROE > 3,000-ft
500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

The ROE of an H₂S release is calculated to determine if a potentially hazardous volume of H₂S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H₂S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **100 ppm ROE**:

 $x = [(1.589) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

To determine the extent of the **<u>500 ppm ROE</u>**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description	
X =	ROE in feet	
Q =	Max volume of gas released determined to be released in cubic feet per day (ft ³ /d) normalized to standard temperature and pressure, 60°F and 14.65 psia	
Mole fraction H ₂ S =	Mole fraction of H ₂ S in the gaseous mixture released.	

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will
assemble in one of these areas for instructions from the Permian Resources Person-in-Charge.
Prevailing wind direction should be considered in locating the briefing areas 200' or more on either

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.

- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - CASE 1 -100 ppm ROE < 50'
 - **CASE 2** 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
 - **CASE 3**-100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS - DRILLING & PRODUCTION				
PROVISION	CASE 1	CASE 2	CASE 3	
H ₂ S Concentration Test	X	Х	X	
Н-9	X	X	X	
Training	X	Х	X	
District Office Notification	X	Х	X	
Drill Stem Tests Restricted	X*	X*	X	
BOP Test	X*	X*	X	
Materials		X	X	
Warning and Marker		Х	X	
Security		Х	X	
Contingency Plan			X	
Control and Equipment Safety			X	
Monitors		X**	X**	
Mud (ph Control or Scavenger)			X*	
Wind Indicators		X**	X	
Protective Breathing Equipment		X**	X	
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X	
Flare Stacks			X*	

Table 8.3. NMAC 19.15.11 Compliance Requirements Drilling & Production

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H_2S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 *CFR* Part 1910.134).
- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.
- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. <u>Personal H₂S Monitors</u>

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. <u>Fixed H₂S Detection and Alarms</u>
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes

III. Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. <u>Respiratory Protection</u>

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

- For specific tasks identified with significant exposure potential and outlined in local program guidelines.
- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.
- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Appendix A H₂S SDS

Permian Resources Corporation	H ₂ S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico
-------------------------------	---	-------------------------

SECTION 1: Identification	
1.1. Product identifier	
Product form	: Substance
Name	: Hydrogen sulfide
CAS No	: 7783-06-4
Formula	: H2S
Other means of identification	: Hydrogen sulfide
Product group	: Core Products
1.2. Recommended use an	
Recommended uses and restrictic	ons : Industrial use Use as directed
1.3. Supplier	
Praxair Canada inc. 1200 – 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-1 <u>www.praxair.ca</u>	1682
1.4. Emergency telephone	number
Emergency number	: 1-800-363-0042
	Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier or Praxair sales representative.
SECTION 2: Hazard ident 2.1. Classification of the s	
GHS-CA classification	1220
Flam. Gas 1 H Liquefied gas H Acute Tox. 2 (Inhalation: gas) H	1220 1280 1330
Flam. Gas 1 H Liquefied gas H Acute Tox, 2 (Inhalation: gas) H STOT SE 3 H	1280 1330 1335
Flam. Gas 1 H Liquefied gas H Acute Tox, 2 (Inhalation: gas) H STOT SE 3 H	1280 1330
Flam. Gas 1 H Liquefied gas H Acute Tox. 2 (Inhalation: gas) H STOT SE 3 H 2.2. GHS Label elements, i	1280 1330 1335
Flam. Gas 1 H Liquefied gas H Acute Tox. 2 (Inhalation: gas) H STOT SE 3 H 2.2. GHS Label elements, i GHS-CA labelling	1280 1330 1335
Flam. Gas 1 H Liquefied gas H Acute Tox. 2 (Inhalation: gas) H STOT SE 3 H 2.2. GHS Label elements, i GHS-CA labelling	1280 1330 1335 Including precautionary statements
Flam. Gas 1 H Liquefied gas H Acute Tox. 2 (Inhalation: gas) H STOT SE 3 H 2.2. GHS Label elements, I GHS-CA labelling Hazard pictograms	$\frac{1280}{1330}$ Including precautionary statements $: \qquad \qquad$

an Resources Corporation	Jakku 36 Fed St	tingency Plan	Eddy County, New	/ Mexic	
		-	.1211,		
	13.	.H, 132H			
	Hydrogen sulf				
PRAXAIR	according to the Hazardous Produc		2015) Supersedes: 10-15-2013		
	Do not breathe gas	; outdoors or in a well-ven	ilated area	-	
	Avoid release to th Wear protective glo protection	e environment oves, protective clothing, e	and or area aye protection, respiratory protection, and/or face aak can be stopped safely		
	In case of leakage, Store locked up Dispose of content Protect from sunlig Close valve after e Do not open valve	eliminate all ignition sour s/container in accordance ht when ambient tempera ach use and when empty until connected to equipm	ces with container Supplier/owner instructions ture exceeds 52°C (125°F) ent prepared for use		
		inder, install leak tight val odour to detect the preser			
2.3. Other hazards Other hazards not contributing to the classification	: Contact with liquid	may cause cold burns/fro	stbite.		
2.4. Unknown acute toxicity (G	iHS-CA)				
	ormation on ingrediente				
3.1. Substances	ormation on ingredients				
		۵ (Vol.) Comn	non Name (synonyms)		
3.1. Substances	CAS No.	00 Hydrog	10n Name (synonyms) en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide		
3.1. Substances Name Hydrogen sulfide (Main constituent)	CAS No.	00 Hydrog	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride /		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures	CAS No.	00 Hydrog	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride /		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable	CAS No. 9 (CAS No) 7783-06-4 1	00 Hydrog	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride /		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures	CAS No. 9 (CAS No) 7783-06-4 1	00 Hydrog	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride /		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure	CAS No. 9 (CAS No) 7783-06-4 1 res asures : Remove to fresh a	00 Hydrog Sulfure r and keep at rest in a po	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride /		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact	CAS No. 9 (CAS No) 7783-06-4 1 (CAS No) 7783-06-4 1 (CAS No) 7783-06-4 1 (CAS No) 7783-06-4 1 (CAS No) 7783-06-4 1 (CAS No) 7783-06-4 (CAS NO) 778-06-4 (CAS NO) 778-06-4 (CAS NO) 778-0	r and keep at rest in a por ation. If breathing is difficu- se frostbite. For exposure exceed 105°F (41°C). Wa warming for at least 15 m cted area. In case of mas eek medical evaluation at	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal iniutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible.		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact	CAS No. 9 (CAS No) 7783-06-4 1 (CAS NO) 7783-06-4 1	And the set of the set	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal inutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion	CAS No. 9 (CAS No) 7783-06-4 1 res 1 asures 1 : Remove to fresh a give artificial respir physician. 1 : The liquid may cau warm water not to skin. Maintain skir returned to the affe with warm water. S 1 : Immediately flush o away from the eyel ophthalmologist im 1 : Ingestion is not con 1	An example of the second secon	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal inutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion	CAS No. 9 (CAS No) 7783-06-4 1 (CAS NO) 7783-06-4 1	An example of the second secon	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal inutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available	CAS No. 9 (CAS No) 7783-06-4 1 res 1 asures : : Remove to fresh a give artificial respir physician. : The liquid may cau warm water not to skin. Maintain skir returned to the affe with warm water. : Immediately flush a away from the eye ophthalmologist im : : Ingestion is not cor : and effects (acute and delayed)	00 Hydrog Sulfure r and keep at rest in a por ation. If breathing is difficut se frostbite. For exposure exceed 105°F (41°C). Wa warming for at least 15 n cted area. In case of mas eek medical evaluation at eyes thoroughly with wate balls to ensure that all sur mediately. Isidered a potential route I)	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal inutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available	CAS No. 9 (CAS No) 7783-06-4 1 (CAS No) 700-7 1<	00 Hydrog Sulfure r and keep at rest in a por ation. If breathing is difficut se frostbite. For exposure exceed 105°F (41°C). Wa warming for at least 15 n cted area. In case of mas eek medical evaluation at eek medical evaluation at syses thoroughly with wate balls to ensure that all sur mediately. Isidered a potential route I)	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal inutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention	CAS No. 9 (CAS No) 7783-06-4 1 ICAS No No No. Inspection Image of the point of t	00 Hydrog Sulfure r and keep at rest in a por ation. If breathing is difficut se frostbite. For exposure exceed 105°F (41°C). Wa warming for at least 15 n cted area. In case of mas eek medical evaluation at eek medical evaluation at syses thoroughly with wate balls to ensure that all sur mediately. Isidered a potential route I)	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal ninutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an of exposure.		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention Other medical advice or treatment SECTION 5: Fire-fighting measures 5.1.	CAS No. 9 (CAS No) 7783-06-4 1 res 1 asures : : Remove to fresh a give artificial respir physician. : The liquid may cau warm water not to skin. Maintain skir returned to the affe with warm water. S : Immediately flush a away from the eyel ophthalmologist im : Ingestion is not cor : and effects (acute and delayed on and special treatment, if ned assets) : Obtain medical assets) asures : : Obtain medical assets)	00 Hydrog Sulfure r and keep at rest in a poration. If breathing is difficulation. If breathing is difficulation. If breathing is difficulation at least 15 m cted area. In case of mase eek medical evaluation at eyes thoroughly with wate balls to ensure that all surmediately. isidered a potential route i)	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal ninutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. r for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an of exposure.		
3.1. Substances Name Hydrogen sulfide (Main constituent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention Other medical advice or treatment	CAS No. 9 (CAS No) 7783-06-4 1 res 1 asures : : Remove to fresh a give artificial respir physician. : The liquid may cau warm water not to skin. Maintain skir returned to the affe with warm water. S : Immediately flush a away from the eyel ophthalmologist im : Ingestion is not cor : and effects (acute and delayed on and special treatment, if ned assets) : Obtain medical assets) asures : : Obtain medical assets)	00 Hydrog Sulfure r and keep at rest in a poration. If breathing is difficulation. If breathing is difficulation. If breathing is difficulation at least 15 m cted area. In case of mase eek medical evaluation at eyes thoroughly with wate balls to ensure that all surmediately. isidered a potential route i)	en sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / ted hydrogen / Dihydrogen sulphide / Hydrogensulfide sition comfortable for breathing. If not breathing, ult, trained personnel should give oxygen. Call a to liquid, immediately warm frostbite area with ater temperature should be tolerable to normal ninutes or until normal coloring and sensation have sive exposure, remove clothing while showering nd treatment as soon as possible. for at least 15 minutes. Hold the eyelids open and faces are flushed thoroughly. Contact an of exposure.		

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

2/9

•

Permian Resources Corporation	H ₂ S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico

		gen sulfide ata Sheet E-461	1
PRAXAIR	according to	e Hazardous Products Regul	lation (February 11, 2015)
	Date of issue		date: 08-10-2016 Supersedes: 10-15-2013
5.3. Specific hazards arising from	m the haza	lous product	
Fire hazard	:	lames. Flammable vapors /apors can be ignited by equipment, static discharg	LE GAS. If venting or leaking gas catches fire, do not extinguish s may spread from leak, creating an explosive reignition hazard. pilot lights, other flames, smoking, sparks, heaters, electrical ge, or other ignition sources at locations distant from product handling eres may linger. Before entering an area, especially a confined area, h an appropriate device.
Explosion hazard	:	EXTREMELY FLAMMAB	LE GAS. Forms explosive mixtures with air and oxidizing agents.
Reactivity	:	No reactivity hazard other	than the effects described in sub-sections below.
Reactivity in case of fire	:	No reactivity hazard other	than the effects described in sub-sections below.
5.4. Special protective equipmen	nt and pred	utions for fire-fighters	
Firefighting instructions	and the second second second	DANGER! Toxic, flamma	ible liquefied gas
		and protective clothing. In low of gas if safe to do so safe to do so. Remove co	om the danger area. Use self-contained breathing apparatus (SCBA) mediately cool containers with water from maximum distance. Stop o, while continuing cooling water spray. Remove ignition sources if ntainers from area of fire if safe to do so. On-site fire brigades must al and local fire code regulations.
Special protective equipment for fire figh	iters :	Standard protective clothin ighters.	ng and equipment (Self Contained Breathing Apparatus) for fire
Other information	:	Containers are equipped v by TC.).	with a pressure relief device. (Exceptions may exist where authorized
SECTION 6: Accidental release	e measu	es	
5.1. Personal precautions, protect			ocodures
General measures			able liquefied gas . Forms explosive mixtures with air and oxidizing
		ppparatus where needed. og or fine water spray, tal /entilate area or move co eak and could explode if Before entering area, esp	uate all personnel from danger area. Use self-contained breathing Remove all sources of ignition if safe to do so. Reduce vapors with king care not to spread liquid with water. Shut off flow if safe to do so ntainer to a well-ventilated area. Flammable vapors may spread from reignited by sparks or flames. Explosive atmospheres may linger. ecially confined areas, check atmosphere with an appropriate device
6.2. Methods and materials for co	ontainmen	and cleaning up	
Methods for cleaning up	:	contaminating the surroun	ce vapour with fog or fine water spray. Prevent waste from iding environment. Prevent soil and water pollution. Dispose of ordance with local/regional/national/international regulations. Contac quirements
			qui cincita.
6.3. Reference to other sections			quienens.
	n 8: Expos	re controls/personal pro	
For further information refer to section	1.00	re controls/personal pro	
For further information refer to sectio SECTION 7: Handling and stor	rage	re controls/personal pro	
For further information refer to section SECTION 7: Handling and stor 7.1. Precautions for safe handlin	rage		otection
For further information refer to section SECTION 7: Handling and stor 7.1. Precautions for safe handlin	rage		
For further information refer to section SECTION 7: Handling and stor 7.1. Precautions for safe handlin	rage	.eak-check system with s	otection
For further information refer to sectio SECTION 7: Handling and stor	rage	eak-check system with s All piped systems and ass Keep away from heat, hot	otection oapy water; never use a flame

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

3/9

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions

: Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g, NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing full containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

SECTION 8: Exposure of	controls/personal protection	
8.1. Control parameters		
Hydrogen sulfide (7783-06-4	1)	
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm
Canada (Quebec)	VECD (mg/m ³)	21 mg/m ³
Canada (Quebec)	VECD (ppm)	15 ppm
Canada (Quebec)	VEMP (mg/m ³)	14 mg/m ³
Canada (Quebec)	VEMP (ppm)	10 ppm
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ³
Alberta	OEL Ceiling (ppm)	15 ppm
Alberta	OEL TWA (mg/m ³)	14 mg/m ³
Alberta	OEL TWA (ppm)	10 ppm
British Columbia	OEL Ceiling (ppm)	10 ppm
Manitoba	OEL STEL (ppm)	5 ppm
Manitoba	OEL TWA (ppm)	1 ppm
New Brunswick	OEL STEL (mg/m³)	21 mg/m ³
New Brunswick	OEL STEL (ppm)	15 ppm
New Brunswick	OEL TWA (mg/m³)	14 mg/m ³
New Brunswick	OEL TWA (ppm)	10 ppm
New Foundland & Labrador	OEL STEL (ppm)	5 ppm
New Foundland & Labrador	OEL TWA (ppm)	1 ppm
Nova Scotia	OEL STEL (ppm)	5 ppm
Nova Scotia	OEL TWA (ppm)	1 ppm
Nunavut	OEL Ceiling (mg/m ³)	28 mg/m ³
Nunavut	OEL Ceiling (ppm)	20 ppm
Nunavut	OEL STEL (mg/m ³)	21 mg/m ³
Nunavut	OEL STEL (ppm)	15 ppm
Nunavut	OEL TWA (mg/m³)	14 mg/m ³
Nunavut	OEL TWA (ppm)	10 ppm
Northwest Territories	OEL STEL (ppm)	15 ppm

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H₂S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico
remian resources corporation	3 1	Eddy County, New Mexico
	131H, 132H	

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (7783-0	06-4)		
Northwest Territories	OEL TWA (ppm)	10 ppm	
Ontario	OEL STEL (ppm)	15 ppm	
Ontario	OEL TWA (ppm)	10 ppm	
Prince Edward Island	OEL STEL (ppm)	5 ppm	
Prince Edward Island	OEL TWA (ppm)	1 ppm	
Québec	VECD (mg/m ³)	21 mg/m ³	
Québec	VECD (ppm)	15 ppm	
Québec	VEMP (mg/m ³)	14 mg/m³	
Québec	VEMP (ppm)	10 ppm	
Saskatchewan	OEL STEL (ppm)	15 ppm	
Saskatchewan	OEL TWA (ppm)	10 ppm	
Yukon	OEL STEL (mg/m ³)	27 mg/m ³	
Yukon	OEL STEL (ppm)	15 ppm	
Yukon	OEL TWA (mg/m ³)	15 mg/m ³	
Yukon	OEL TWA (ppm)	10 ppm	

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and

	lighting.
8.3. Individual protection meas	ures/Personal protective equipment
Personal protective equipment	: Safety glasses. Face shield. Gloves.
Hand protection	: Wear work gloves when handling containers. Wear heavy rubber gloves where contact with product may occur.
Eye protection	: Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard Z94.3, "Industrial Eye and Face Protection", and any provincial regulations, local bylaws or guidelines.
Respiratory protection	: Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators." Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).
Thermal hazard protection	 Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN 511 - Cold insulating gloves.
Other information	: Other protection : Safety shoes for general handling at customer sites. Metatarsal shoes and cuffless trousers for cylinder handling at packaging and filing plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.
SECTION 9: Physical and che	omical properties

9.1. Information on basic	physical and chemical properties
Physical state	: Gas
Appearance	: Colorless gas. Colorless liquid at low temperature or under high pressure.
Molecular mass	: 34 g/mol
Colour	: Colourless.
Odour	: Odour can persist. Poor warning properties at low concentrations. Rotten eggs.
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

5/9

Permian Resources Corporation	H ₂ S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico
		•

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

pН	:	Not applicable.
pH solution	:	No data available
Relative evaporation rate (butylacetate=1)	:	No data available
Relative evaporation rate (ether=1)	:	Not applicable.
Melting point	:	-86 °C
Freezing point	:	-82.9 °C
Boiling point	:	-60.3 °C
Flash point	:	Not applicable.
Critical temperature	:	100.4 °C
Auto-ignition temperature	:	260 °C
Decomposition temperature	:	No data available
Vapour pressure	:	1880 kPa
Vapour pressure at 50 °C	:	No data available
Critical pressure	:	8940 kPa
Relative vapour density at 20 °C	:	>=
Relative density	:	No data available
Relative density of saturated gas/air mixture	:	No data available
Density	:	No data available
Relative gas density	:	1.2
Solubility	:	Water: 3980 mg/l
Log Pow	:	Not applicable.
Log Kow	:	Not applicable.
Viscosity, kinematic	:	Not applicable.
Viscosity, dynamic	:	Not applicable.
Viscosity, kinematic (calculated value) (40 °C)	:	No data available
Explosive properties	:	Not applicable.
Oxidizing properties	:	None.
Flammability (solid, gas)	:	
		4.3 - 46 vol %

9.2. Other information	
Gas group	: Liquefied gas
Additional information	: Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below ground level

SECTION 10: Stability and reactivit	у
10.1. Reactivity	
Reactivity	: No reactivity hazard other than the effects described in sub-sections below.
Chemical stability	: Stable under normal conditions.
Possibility of hazardous reactions	: May react violently with oxidants. Can form explosive mixture with air.
Conditions to avoid	: Avoid moisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. – No smoking.
Incompatible materials	: Ammonia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat). Copper. (powdered). Fluorine. Lead. Lead oxide. Mercury. Nitric acid. Nitrogen trifluoride. nitrogen sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. (and moisture). Water.
Hazardous decomposition products	: Thermal decomposition may produce : Sulfur. Hydrogen.
SECTION 11: Toxicological information on toxicological effect	
Acute toxicity (oral)	: Not classified
Acute toxicity (dermal)	: Not classified

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Acute toxicity (inhalation)	: Inhalation:gas: FATAL IF INHALED.
Hydrogen sulfide (\f)7783-06-4	
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)
LC50 inhalation rat (ppm)	356 ppm/4h
ATE CA (gases)	356.0000000 ppmv/4h
ATE CA (vapours)	0.9900000 mg/l/4h
ATE CA (dust,mist)	0.9900000 mg/l/4h
Skin corrosion/irritation	: Not classified
	pH: Not applicable.
Serious eye damage/irritation	: Not classified
	pH: Not applicable.
Respiratory or skin sensitization	: Not classified
Germ cell mutagenicity	: Not classified
Carcinogenicity	: Not classified
Reproductive toxicity	: Not classified
Specific target organ toxicity (single exposure)	: MAY CAUSE RESPIRATORY IRRITATION.
Specific target organ toxicity (repeated exposure)	: Not classified
Aspiration hazard	: Not classified

SECTION 12: Ecological inform	ation	
12.1. Toxicity		
Ecology - general	: VERY TOXIC TO AQUATIC LIFE.	
	. VERT TOXIC TO AQUATIC LIFE.	
Hydrogen sulfide (7783-06-4)		
LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])	
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])	
12.2. Persistence and degradability		
Hydrogen sulfide (7783-06-4)		
Persistence and degradability	Not applicable for inorganic gases.	
12.3. Bioaccumulative potential		
Hydrogen sulfide (7783-06-4)		
BCF fish 1	(no bioaccumulation expected)	
Log Pow	Not applicable.	
Log Kow	Not applicable.	
Bioaccumulative potential	No data available.	
12.4. Mobility in soil		
Hydrogen sulfide (7783-06-4)		
Mobility in soil	No data available.	
Log Pow	Not applicable.	
Log Kow	Not applicable.	
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution.	
12.5. Other adverse effects		
Other adverse effects	: May cause pH changes in aqueous ecological systems.	
Effect on the ozone layer	: None	
Effect on global warming	: No known effects from this product	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

7/9

ermian	Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexic
		Jakku 36 Fed State Com 111H, 112H,	
		131H, 132H	
	IPRAXAIR	Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes:	10-15-2013
	SECTION 13: Disposal consi	derations	
	13.1. Disposal methods		
	Waste disposal recommendations	: Do not attempt to dispose of residual or unused quantities.	Return container to supplier.
	SECTION 14: Transport info	mation	
	14.1. Basic shipping description	1	
	In accordance with TDG TDG		
		. 1014052	
	UN-No. (TDG) TDG Primary Hazard Classes	: UN1053 : 2.3 - Class 2.3 - Toxic Gas.	
	TDG Subsidiary Classes	: 2.1	
	Proper shipping name	: HYDROGEN SULPHIDE	
	ERAP Index	: 500	
	Explosive Limit and Limited Quantity I		
	Passenger Carrying Ship Index Passenger Carrying Road Vehicle or F Carrying Railway Vehicle Index	: Forbidden Passenger : Forbidden	
	14.3. Air and sea transport		
	IMDG		
	UN-No. (IMDG)	: 1053	
	Proper Shipping Name (IMDG) Class (IMDG)	: HYDROGEN SULPHIDE : 2 - Gases	
	MFAG-No	: 117	
	IATA		
	UN-No. (IATA) Broper Shipping Neme (IATA)	: 1053 Hydrogen cylphide	
	Proper Shipping Name (IATA) Class (IATA)	: Hydrogen sulphide : 2	
	SECTION 15: Regulatory info	prmation	
	15.1. National regulations		
	Hydrogen sulfide (7783-06-4) Listed on the Canadian DSL (Domes	tis Cultoteness List	
	15.2. International regulations Hydrogen sulfide (7783-06-4)		
	Listed on the AICS (Australian Inven		
		ng Chemical Substances Produced or Imported in China)	
	Listed on the Japanese ENCS (Exist Listed on the Korean ECL (Existing (ing & New Chemical Substances) inventory Chemicals List)	
	Listed on NZIoC (New Zealand Inver		
	Listed on the United States TSCA (T	oxic Substances Control Act) inventory	
	Listed on INSQ (Mexican national In	ventory of Chemical Substances)	
	SECTION 16: Other informat Date of issue	ion : 15/10/1979	
	Revision date	: 10/08/2016	
	Supersedes	: 15/10/2013	
	Indication of changes:		
	Training advice	: Users of breathing apparatus must be trained. Ensure oper Ensure operators understand the flammability hazard.	ators understand the toxicity hazard.
		n the Praxair Canada Inc. website and a copy of this controlled version is available for uracy of any version of this document after it has been downloaded or removed fron	
	integrity of acc	aracy or any version or this document after it has been downloaded or removed from	our website.

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
Perman Resources corporation	. .	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	
	Hydrogen sulfide	
DRAYAI	Safety Data Sheet E-4611	
	according to the Hazardous Products Regulation (February 11, 2015)	
	Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes:	10-15-2013
Other information	: When you mix two or more chemicals, you can create addii and evaluate the safety information for each component be Consult an industrial hygienist or other trained person wher Before using any plastics, confirm their compatibility with th	fore you produce the mixture. In you evaluate the end product.
	Praxair asks users of this product to study this SDS and be and safety information. To promote safe use of this product agents, and contractors of the information in this SDS and o and safety information, (2) furnish this information to each p each purchaser to notify its employees and customers of th information	, a user should (1) notify employees, of any other known product hazards purchaser of the product, and (3) ask
	The opinions expressed herein are those of qualified exper- believe that the information contained herein is current as or Since the use of this information and the conditions of use a Canada Inc, it is the user's obligation to determine the cond Praxair Canada Inc, SDSs are furnished on sale or delivery independent distributors and suppliers who package and se SDSs for these products, contact your Praxair sales repres supplier, or download from www.praxir.ca. If you have que would like the document number and date of the latest SDS Praxair suppliers in your area, phone or write Praxair Cana Address: Praxair Canada Inc, 1 City Centre Drive, Suite 12	of the date of this Safety Data Sheet. are not within the control of Praxair ditions of safe use of the product. by Praxair Canada Inc, or the ell our products. To obtain current entative, local distributor, or estions regarding Praxair SDSs, S, or would like the names of the da Inc, (Phone: 1-888-257-5149;
	PRAXAIR and the Flowing Airstream design are trademark Technology, Inc. in the United States and/or other countries	
NFPA health hazard	: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was given.	
NFPA fire hazard	: 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn readily.	
NFPA reactivity	: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water.	\checkmark
HMIS III Rating		
Health	: 2 Moderate Hazard - Temporary or minor injury may occur	
Flammability	 4 Severe Hazard - Flammable gases, or very volatile flamm 73 F, and boiling points below 100 F. Materials may ignite s 	
Physical	: 2 Moderate Hazard - Materials that are unstable and may normal temperature and pressure with low risk for explosio water or form peroxides upon exposure to air.	undergo violent chemical changes at

SDS Canada (GHS) - Praxair

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

9/9

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Appendix B SO₂ SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290

al Name: SOLFOR DIOXIDE	303 ID: MATA
Section 1 - PRODUCT AND COMPANY IDENTIFICATION	
Material Name	
SULFUR DIOXIDE	
Synonyms	
MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXII	
SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR O	DXIDE;
SULFUR OXIDE(SO2)	
Chemical Family	
inorganic, gas	
Product Description	
Classification determined in accordance with Compressed Gas Association standards.	
Product Use	
Industrial and Specialty Gas Applications.	
Restrictions on Use	
None known.	
Details of the supplier of the safety data sheet	
MATHESON TRI-GAS, INC.	
3 Mountainview Road	
Warren, NJ 07059	
General Information: 1-800-416-2505	
Emergency #: 1-800-424-9300 (CHEMTREC)	
Outside the US: 703-527-3887 (Call collect)	
Section 2 - HAZARDS IDENTIFICATION	
Classification in accordance with paragraph (d) of 29 CFR 1910.1200.	
Gases Under Pressure - Liquefied gas	
Acute Toxicity - Inhalation - Gas - Category 3	
Skin Corrosion/Irritation - Category 1B	
Serious Eye Damage/Eye Irritation - Category 1	
Simple Asphyxiant	
GHS Label Elements	
Symbol(s)	
\wedge \wedge \wedge	
\times / \times / \times /	
Signal Word	
Danger	
Hazard Statement(s)	
Contains gas under pressure; may explode if heated.	
Toxic if inhaled.	
Causes severe skin burns and eye damage.	
May displace oxygen and cause rapid suffocation.	
Precautionary Statement(s)	
Precautionary Statement(s)	

Page 1 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

	LL C. Constinues and Dise	Eddy County, Now Marian
Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	
MATHESO	N	
ask The Gas Professiona	ls"	
	Safety Data Sheet	
	•	
Material Name: SULFUR DIOX		SDS ID: MAT22290
Wash thoroughly after hand		
Do not breathe dusts or mist	s.	
Response IF INHALED: Remove per	on to fresh air and keep comfortable for breathing.	
	ly with water for several minutes. Remove contact lenses, if pr	resent and easy to do.
Continue rinsing.	,	
IF ON SKIN (or hair): Rem	ove/take off immediately all contaminated clothing. Rinse skin	with water/shower.
Wash contaminated clothing	before reuse.	
	outh. Do NOT induce vomiting.	
Immediately call a POISON		
Specific treatment (see labe).	
Storage	We shall a shall be a	
	ace. Keep container tightly closed.	
Store locked up. Protect from sunlight.		
Disposal		
	er in accordance with local/regional/national/international regu	lations.
Other Hazards		
	ay cause frostbite.	

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS		
CAS	Component Name	Percent
7446-09-5	Sulfur dioxide	100.0
Section 4 - FIRST AID MEASURES		

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention. Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

No information on significant adverse effects.

- Indication of any immediate medical attention and special treatment needed
- Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

ved by OCD: 1/1/20	25 6:32:29 PM		Pag
Permian Resources	s Corporation	H₂S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico
6	MATHESON askThe Gas Professionals		
		Safety Data Sheet	
Mater	al Name: SULFUR DIOXI		SDS ID: MAT22290
L	Extinguishing Media	Section 5 - FIRE FIGHTING MEASURES	
Γ	Unsuitable Extinguishing M None known. Special Hazards Arising fro Negligible fire hazard. Hazardous Combustion Pri- sulfur oxides Fire Fighting Measures Move container from fire are is out. Stay away from the en Special Protective Equipmed Wear full protective fire figh possible exposure.	hemical, Large fires: Use regular foam or flood with fine wate ledia om the Chemical oducts a if it can be done without risk. Cool containers with water spr ds of tanks. Keep unnecessary people away, isolate hazard are ent and Precautions for Firefighters ting gear including self contained breathing apparatus (SCBA)	ray until well after the fire a and deny entry.) for protection against
L		ction 6 - ACCIDENTAL RELEASE MEASURES ective Equipment and Emergency Procedures	
	Wear personal protective clo Methods and Materials for Keep unnecessary people aw Ventilate closed spaces before	thing and equipment and Emergency Procedures thing and equipment, see Section 8. Containment and Cleaning Up ay, isolate hazard area and deny entry. Stay upwind and keep of e entering. Evacuation radius: 150 feet. Stop leak if possible w ray. Do not get water directly on material.	
	Environmental Precautions Avoid release to the environmental		
Γ		Section 7 - HANDLING AND STORAGE	
L	handling. Use only outdoors protection/face protection. Co	ing or on clothing. Do not breathe gas, fumes, vapor, or spray. Was or in a well-ventilated area. Wear protective gloves/protective ontaminated work clothing should not be allowed out of the wo his product. Keep only in original container. Avoid release to t	clothing/eye orkplace. Do not eat,

Conditions for Safe Storage, Including any Incompatibilities Store in a well-ventilated place. Keep container tightly closed.

Store locked up. Protect from sunlight.

Store and handle in accordance with all current regulations and standards. Protect from physical damage. Store outside or in a detached building. Keep separated from incompatible substances.

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Component Exposure Limits

Sulfur dioxide	7446-09-5
ACGIH:	0.25 ppm STEL

Page 3 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico	
	Jakku 36 Fed State Com 111H, 112H,		
	131H, 132H		

Safety Data Sheet

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA ; 5 mg/m3 TWA	
	5 ppm STEL ; 13 mg/m3 STEL	
	100 ppm IDLH	
OSHA (US):	5 ppm TWA ; 13 mg/m3 TWA	
Mexico:	0.25 ppm STEL [PPT-CT]	

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)

There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits. Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact. Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES					
Appearance	colorless gas	Physical State	gas		
Odor	irritating odor	Color	colorless		
Odor Threshold	3 - 5 ppm	рН	(Acidic in solution)		
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)		
Boiling Point Range	Not available	Freezing point	Not available		
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available		
Autoignition Temperature	Not available	Flash Point	(Not flammable)		
Lower Explosive Limit	Not available	Decomposition temperature	Not available		
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 °C		
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C		

Page 4 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Released to Imaging: 1/27/2025 10:53:36 AM

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Jakku 36 Fed State Com 111H, 112H,	
	131H, 132H	

Safety Data Sheet

Mate

2290

rial Name: SULFUR DIOXIDE			SDS ID: MAT22		
Water Solubility	22.8 % (@ 0 °C)	Partition coefficient: n- octanol/water	Not available		
Viscosity	Not available	Kinematic viscosity	Not available		
Solubility (Other)	Not available	Density	Not available		
Physical Form	liquified gas	Molecular Formula	S-02		
Molecular Weight	64.06				
Solvent Solubility Soluble alcohol, acetic acid, sulfuric acid, ether, chloroform, Benzene, sulfuryl chloride, nitrobenzenes, Toluene, acetone Section 10 - STABILITY AND REACTIVITY					
Reactivity No reactivity hazard is expected. Chemical Stability Stable at normal temperatures and pressure. Possibility of Hazardous Reactions Will not polymerize. Conditions to Avoid Minimize contact with material. Containers may rupture or explode if exposed to heat. Incompatible Materials bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents Hazardous decomposition products oxides of sulfur Section 11 - TOXICOLOGICAL INFORMATION Information on Likely Routes of Exposure Inhalation Toxic if inhaled. Causes damage to respiratory system, burns, difficulty breathing Skin Contact skin burns Eye Contact cyc burns Ingestion burns, nausea, vomiting, diarrhea, stomach pain Acute and Chronic Toxicity Component Analysis - LD50/LC50 The components of this material have been reviewed in various sources and the following selected endpoints are published: Sulfur dioxide (7446-09-5) Inhalation LC50 Rat 965 - 1168 ppm 4 h Product Toxicity Data Acute Toxicity Data					

Page 5 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

ermian Resourc	es Cornorati	าท	H~C	Contingency	Plan	Eddy County, New Mexico
		511			111H, 112H,	Eddy County, New Mexico
			Jakku SO Fe			
				131H, 132H		
	MATH	ESON				
	askThe Gas	Professionals"				
			Safety I	Data Sheet		
Mater	ial Name: SULI		E			SDS ID: MAT22290
		frostbite, suf	ocation, respiratory t	ract burns, skin bu	irns, eye burns	
	Delayed Effects No information	n significant	adverse effects			
	Irritation/Corr		adverse effects.			
	respiratory tract	ourns, skin bu	rns, eye burns			
	Respiratory Ser No data availabl					
	Dermal Sensitiz	ation				
	No data availabl Component Ca					
[Sulfur dioxide	7446-09-5				
	ACGIH:	A4 - Not Cla	ssifiable as a Human	1 Carcinogen		
	IARC:	Monograph	54 [1992] (Group 3 (not classifiable))		
	Germ Cell Mut					
	No data availabl					
	Tumorigenic D No data availabl					
	Reproductive T	oxicity				
	No data availabl		ity - Single Exposur			
	No target organs		ity - Single Exposur	e		
			ity - Repeated Expo	sure		
	No target organs Aspiration haz:					
	Not applicable.					
			ted by Exposure			
ſ	respiratory disor			LOCICAL D	FORMATION]
l	Component An		ection 12 - ECO	LOGICAL IN	FORMATION	
			available for this pro-	duct's components		
	Persistence and		у			
	No data availabl Bioaccumulativ					
	No data availabl					
	Mobility					
I	No data availabl		and an 12 DICE	OF AL CONFL	DEDATIONS	
l	Disposal Mathe		ection 13 - DISP	USAL CONSI	IDERATIONS	
	Dispose of conte		in accordance with lo	cal/regional/natio	nal/international regulatio	ons.
	Component Wa	ste Numbers				
г	The U.S. EPA h		ed waste numbers for			
l	US DOT L		Section 14 - TRA	INSPORT INF	ORMATION	
	US DOT Inform Shipping Name		OXIDE			
	11.8					

-

Permian Resources Corporation	H₂S Contingency Plan Jakku 36 Fed State Com 111H, 112H, 131H, 132H	Eddy County, New Mexico
	4	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

ask. . . The Gas Professionals"

Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3

IMDG Information: Shipping Name: SULPHUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

TDG Information: Shipping Name: SULFUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

International Bulk Chemical Code

This material does not contain any chemicals required by the IBC Code to be identified as dangerous chemicals in bulk.

Section 15 - REGULATORY INFORMATION

U.S. Federal Regulations

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), CERCLA (40 CFR 302.4), TSCA 12(b), and/or require an OSHA process safety plan.

Sulfur dioxide	7446-09-5				
SARA 302:	500 lb TPQ				
OSHA (safety):	1000 lb TQ (Liquid)				
SARA 304:	500 lb EPCRA RQ				

SARA Section 311/312 (40 CFR 370 Subparts B and C) reporting categories

Gas Under Pressure; Acute toxicity; Skin Corrosion/Irritation; Serious Eye Damage/Eye Irritation; Simple Asphyxiant

U.S. State Regulations

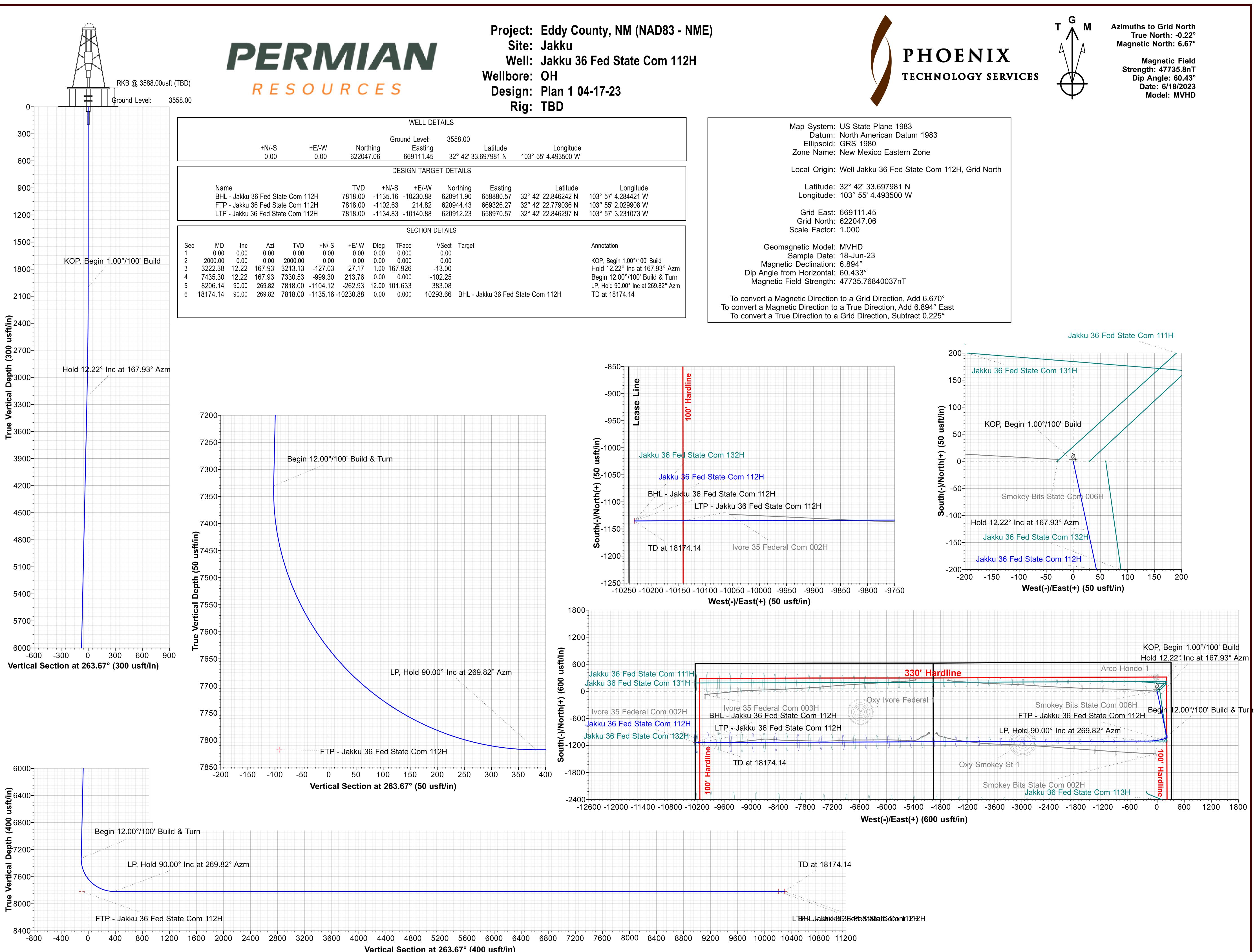
The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA
Sulfur dioxide	7446-09-5	Yes	Yes	Yes	Yes	Yes

California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)

This product can expose you to chemicals including Sulfur dioxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Page 7 of 9


Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

n Resources Corporation	H₂S Contingency Plan Jakku 36 Fed State Com 111H, 112H 131H, 132H	Eddy County, New Mexico,
MATHESON askThe Gas Professionals"		
	Safety Data Sheet	
Material Name: SULFUR DIOXID	•	SDS ID: MAT22290
Sulfur dioxide 7446-09-5		
Repro/Dev. Tox developme		
Component Analysis - Inven Sulfur dioxide (7446-09-5)		
US CA AU CN EU	JP - ENCS JP - ISHL KR KECI - Annex 1 K	R KECI - Annex 2
Yes DSL Yes Yes EI	N Yes Yes N	io
KR - REACH CCA MX	NZ PH TH-TECI TW, CN VN (Draft)	
No Yes Y	res Yes Yes Yes	
	Section 16 - OTHER INFORMATION	
Australia; BOD - Biochemical California/Massachusetts/Min Comprehensive Environmenta (US); CLP - Classification, La Deutsche Forschungsgemeins DSL - Domestic Substances L European Inventory of (Existi Commercial Chemical Substa Environmental Protection Age Exposure Indices); IARC - Int Association; ICAO - Internati Immediately Dangerous to Lif Industrial Safety and Health L Kow - Octanol/water partition Existing Chemicals List (KEC Existing Chemicals List (KEC - Korea Registration and Eval LLV - Level Limit Value; LO Concentration Value in the W - National Fire Protection Age Jersey Trade Secret Registry; National Toxicology Program Permissible Exposure Limit; F Registration, Evaluation, Autt	cc of Governmental Industrial Hygienists; ADR - Euro l Oxygen Demand; C - Celsius; CA - Canada; CA/MA/ nesota/New Jersey/Pennsylvania*; CAS - Chemical Al il Response, Compensation, and Liability Act; CFR - C ibelling, and Packaging; CN - China; CPR - Controlled chaft; DOT - Department of Transportation; DSD - Dar ist; EC – European Commission; EEC - European Eco ng Commercial Chemical Substances); EINECS - Euro nees; ENCS - Japan Existing and New Chemical Subst ency; EU - European Union; F - Fahrenheit; F - Backgr ternational Agency for Research on Cancer; IATA - Int onal Civil Aviation Organization; IDL - Ingredient Dis fe and Health; IMDG - International Maritime Dangero aw; IUCLID - International Uniform Chemical Inform Cu; KR KECI Annex 2 - Korea Existing Chemicals Im CL), KR KECI Annex 2 - Korea Existing Chemicals Im CL), KR + Korea; LD50/LC50 - Lethal Dose/ Lethal Cc uation of Chemical Substances Chemical Control Act; LI - List Of LIsts TM - ChemADVISOR's Regulatory D orkplace; MEL - Maximum Exposure Limits; MX – M mey; NIOSH - National Institute for Occupational Safet Nq - Non-quantitative; NSL – Non-Domestic Substance (NZ - New Zealand; OSHA - Occupational Safety and PH - Philippines; RCRA - Resource Conservation and F orisation, and restriction of Chemicals; RID - Europea Reauthorization Act; Se - Semi-quantitative; STEL - Sh	MN/NJ/PA - bstracts Service; CERCLA - Code of Federal Regulations il Products Regulations; DFG - ngerous Substance Directive; nomic Community; EIN - opean Inventory of Existing iance Inventory; EPA - roound (for Venezuela Biological ternational Air Transport icolosure List; IDLH - ous Goods; ISHL - Japan iation Database; JP - Japan; micals Inventory (KECI) / Korea ventory (KECI) / Korea ventory (KECI) / Korea oncentration; KR REACH CCA LEL - Lower Explosive Limit; batabase; MAK - Maximum lexico; Ne- Non-specific; NFPA sty and Health; NJTSR - New se List (Canada); NTP - I Health Administration; PEL- Recovery Act; REACH- in Rail Transport; SARA -
Page 8 of 9	Issue date: 2021-01-30 Revision 8.0	Print date: 2021-01-30

.

			WELL L	PETAILS				
+E/-W 0.00	Nor 62204	thing	ound Level: Easting 669111.4)	58.00 2° 42' 33	Latitude 3.697981 N	Longitude 103° 55' 4.493500 W	
		DE	ESIGN TAR	GET DE	TAILS			
2H 2H 2H	TVD 7818.00 7818.00 7818.00	-1102.63	-10230.88	6209 6209	orthing 011.90 044.43 012.23	Easting 658880.57 669326.27 658970.57	Latitude 32° 42' 22.846242 N 32° 42' 22.779036 N 32° 42' 22.846297 N	Longitude 103° 57' 4.284421 W 103° 55' 2.029908 W 103° 57' 3.231073 W
			SECTION	DETAILS	6			
+N/-S 0.00 0.00 -127.03 -999.30 -1104.12 -1135.16	+E/-W 0.00 0.00 27.17 213.76 -262.93 -10230.88	0.00 (0.00 (1.00 167 0.00 (12.00 101	0.000 .633	VSect 0.00 0.00 -13.00 102.25 383.08 293.66	Target	Jakku 36 Fed	State Com 112H	Annotation KOP, Begin 1.00°/100' B Hold 12.22° Inc at 167 Begin 12.00°/100' Buil LP, Hold 90.00° Inc at 26 TD at 18174.14

Vertical Section at 263.67° (400 usft/in)

Permian Resources

Eddy County, NM (NAD83 - NME) Jakku Jakku 36 Fed State Com 112H

OH

Plan: Plan 1 04-17-23

Standard Planning Report

17 April, 2023

Phoenix Technology Services

Planning Report

N L J U U	IRCES									•
Database: Company: Project: Site: Well: Wellbore: Design:	Eddy Cou Jakku	Resources inty, NM (N Fed State	NAD83 - NM Com 112H	E)	TVD Ref MD Refe North Re			Well Jakku 36 RKB @ 3588 RKB @ 3588 Grid Minimum Cur	.00usft (TBD)	m 112H
Project	Eddy Cour	nty, NM (N	AD83 - NME	E)						
Map System: Geo Datum: Map Zone:	US State Pl North Ameri New Mexico	can Datun			System D)atum:	Ν	lean Sea Leve	1	
Site	Jakku									
Site Position: From: Position Uncertair	Map nty:	0.00	North Easti usft Slot F	-	,	046.97 usft 081.46 usft 13-3/16 "	Latitude: Longitude Grid Conv			2° 42' 33.698253 I)3° 55' 4.844568 V 0.224
Well	Jakku 36 F	ed State C	Com 112H							
Well Position	+N/-S +E/-W	0.09 30.00		orthing: asting:		622,047.06 669,111.45		atitude: ongitude:		2° 42' 33.697981 1)3° 55' 4.493500 V
Position Uncertair	nty	1.00) usft W	ellhead Elev	vation:		G	round Level:		3,558.00 us
Wellbore	OH									
Magnetics	Model I	Name	Sampl	e Date	Declina (°)			Angle (°)	Field St (n	
		MVHD	6	6/18/2023		6.894		60.433	47,735	5.76840037
Design	Plan 1 04-	17-23								
Audit Notes: Version:			Phas	e:	PLAN	Т	ie On Depth:		0.00	
Vertical Section:		Dej	pth From (T (usft) 0.00	VD)	+N/-S (usft) 0.00	(1	E/-W Jsft)).00		rection (°) 63.67	
Dian Cumun Taal	D	Data	4/47/2022							
Plan Survey Tool Depth From (usft)	Depth To (usft)	I	4/17/2023 (Wellbore)		Tool Name		Remarks	i		
1 0.00	18,174.14	Plan 1 0)4-17-23 (OF	1)	MWD+HRG OWSG MWI					
Plan Sections										
		muth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	

4/17/2023 1:06:23PM

Phoenix Technology Services

Planning Report

Database:	USAEDMDB	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Company:	Permian Resources	TVD Reference:	RKB @ 3588.00usft (TBD)
Project:	Eddy County, NM (NAD83 - NME)	MD Reference:	RKB @ 3588.00usft (TBD)
Site:	Jakku	North Reference:	Grid
Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH	-	
Design:	Plan 1 04-17-23		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00 2,000.00	0.00 0.00 n 1.00°/100' B t	0.00 0.00	0.00 2,000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
2,100.00 2,200.00 2,300.00	1.00 2.00 3.00	167.93 167.93 167.93	2,099.99 2,199.96 2,299.86	-0.85 -3.41 -7.68	0.18 0.73 1.64	-0.09 -0.35 -0.79	1.00 1.00 1.00	1.00 1.00 1.00	0.00 0.00 0.00
2,400.00 2,500.00 2,600.00 2,700.00 2,800.00	4.00 5.00 6.00 7.00 8.00	167.93 167.93 167.93 167.93 167.93	2,399.68 2,499.37 2,598.90 2,698.26 2,797.40	-13.65 -21.32 -30.69 -41.76 -54.53	2.92 4.56 6.57 8.93 11.66	-1.40 -2.18 -3.14 -4.27 -5.58	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
2,900.00 3,000.00 3,100.00 3,200.00 3,222.38	9.00 10.00 11.00 12.00 12.22	167.93 167.93 167.93 167.93 167.93	2,896.30 2,994.93 3,093.26 3,191.25 3,213.13	-68.98 -85.12 -102.94 -122.44 -127.03	14.76 18.21 22.02 26.19 27.17	-7.06 -8.71 -10.53 -12.53 -13.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
Hold 12.22	° Inc at 167.93	° Azm							
3,300.00 3,400.00 3,500.00 3,600.00 3,700.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93 167.93	3,288.99 3,386.72 3,484.45 3,582.19 3,679.92	-143.10 -163.80 -184.51 -205.21 -225.92	30.61 35.04 39.47 43.90 48.33	-14.64 -16.76 -18.88 -21.00 -23.12	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
3,800.00 3,900.00 4,000.00 4,100.00 4,200.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93 167.93	3,777.65 3,875.39 3,973.12 4,070.85 4,168.58	-246.62 -267.33 -288.03 -308.74 -329.44	52.75 57.18 61.61 66.04 70.47	-25.24 -27.35 -29.47 -31.59 -33.71	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,300.00 4,400.00 4,500.00 4,600.00 4,700.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93	4,266.32 4,364.05 4,461.78 4,559.51 4,657.25	-350.14 -370.85 -391.55 -412.26 -432.96	74.90 79.33 83.76 88.19 92.61	-35.83 -37.95 -40.07 -42.18 -44.30	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
4,800.00 4,900.00 5,000.00 5,100.00 5,200.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93	4,754.98 4,852.71 4,950.45 5,048.18 5,145.91	-453.67 -474.37 -495.08 -515.78 -536.49	97.04 101.47 105.90 110.33 114.76	-46.42 -48.54 -50.66 -52.78 -54.90	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
5,300.00 5,400.00 5,500.00 5,600.00 5,700.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93 167.93	5,243.64 5,341.38 5,439.11 5,536.84 5,634.58	-557.19 -577.90 -598.60 -619.31 -640.01	119.19 123.62 128.05 132.47 136.90	-57.01 -59.13 -61.25 -63.37 -65.49	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
5,800.00 5,900.00 6,000.00 6,100.00 6,200.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93	5,732.31 5,830.04 5,927.77 6,025.51 6,123.24	-660.72 -681.42 -702.12 -722.83 -743.53	141.33 145.76 150.19 154.62 159.05	-67.61 -69.73 -71.85 -73.96 -76.08	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
6,300.00 6,400.00 6,500.00 6,600.00 6,700.00	12.22 12.22 12.22 12.22 12.22 12.22	167.93 167.93 167.93 167.93 167.93	6,220.97 6,318.71 6,416.44 6,514.17 6,611.90	-764.24 -784.94 -805.65 -826.35 -847.06	163.48 167.91 172.33 176.76 181.19	-78.20 -80.32 -82.44 -84.56 -86.68	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,800.00	12.22	167.93	6,709.64	-867.76	185.62	-88.79	0.00	0.00	0.00

Phoenix Technology Services

Planning Report

Database:	USAEDMDB	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Company:	Permian Resources	TVD Reference:	RKB @ 3588.00usft (TBD)
Project:	Eddy County, NM (NAD83 - NME)	MD Reference:	RKB @ 3588.00usft (TBD)
Site:	Jakku	North Reference:	Grid
Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH	-	
Design:	Plan 1 04-17-23		

Planned Survey

Measured Depth (usft)	d Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
6,900.0 7,000.0 7,100.0 7,200.0	0 12.22 0 12.22	167.93 167.93 167.93 167.93	6,807.37 6,905.10 7,002.84 7,100.57	-888.47 -909.17 -929.88 -950.58	190.05 194.48 198.91 203.34	-90.91 -93.03 -95.15 -97.27	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
7,300.0 7,400.0 7,435.3	0 12.22	167.93 167.93 167.93	7,198.30 7,296.03 7,330.53	-971.29 -991.99 -999.30	207.77 212.19 213.76	-99.39 -101.51 -102.25	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
7,500.0	0 13.06	203.77	7,393.76	-1,012.71	212.24	-99.27	12.00	1.29	55.40
7,600.0		236.10	7,489.53	-1,033.07	192.81	-77.71	12.00	7.84	32.33
7,700.0 7,800.0 7,900.0 8,000.0 8,100.0	0042.660054.190065.84	249.51 256.52 261.02 264.36 267.14	7,579.24 7,658.97 7,725.23 7,775.14 7,806.51	-1,052.21 -1,069.29 -1,083.57 -1,094.41 -1,101.36	153.45 95.87 22.60 -63.16 -157.67	-36.47 22.63 97.03 183.46 278.16	12.00 12.00 12.00 12.00 12.00	10.51 11.25 11.52 11.65 11.71	13.41 7.01 4.50 3.34 2.77
8,200.0		269.67	7,817.96	-1,104.09	-256.79	376.98	12.00	11.73	2.53
8,206.1 LP, Hold	4 90.00 i 90.00° inc at 26	269.82 9.82° Azm	7,818.00	-1,104.12	-262.93	383.08	12.00	11.74	2.49
8,300.0 8,400.0 8,500.0	0 90.00 0 90.00 0 90.00	269.82 269.82 269.82	7,818.00 7,818.00 7,818.00	-1,104.41 -1,104.73 -1,105.04	-356.79 -456.79 -556.79	476.40 575.83 675.25	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
8,600.0 8,700.0 8,800.0 8,900.0 9,000.0	0090.000090.000090.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,105.35 -1,105.66 -1,105.97 -1,106.28 -1,106.59	-656.78 -756.78 -856.78 -956.78 -1,056.78	774.67 874.10 973.52 1,072.95 1,172.37	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
9,100.0 9,200.0 9,300.0 9,400.0 9,500.0	090.00090.00090.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,106.90 -1,107.22 -1,107.53 -1,107.84 -1,108.15	-1,156.78 -1,256.78 -1,356.78 -1,456.78 -1,556.78	1,271.79 1,371.22 1,470.64 1,570.07 1,669.49	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
9,600.0 9,700.0 9,800.0 9,900.0 10,000.0	0090.000090.000090.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,108.46 -1,108.77 -1,109.08 -1,109.40 -1,109.71	-1,656.78 -1,756.78 -1,856.78 -1,956.78 -2,056.78	1,768.91 1,868.34 1,967.76 2,067.19 2,166.61	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,100.0 10,200.0 10,300.0 10,400.0 10,500.0	00 90.00 00 90.00 00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,110.02 -1,110.33 -1,110.64 -1,110.95 -1,111.26	-2,156.78 -2,256.78 -2,356.78 -2,456.78 -2,556.78	2,266.03 2,365.46 2,464.88 2,564.30 2,663.73	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,600.0 10,700.0 10,800.0 10,900.0 11,000.0	0090.000090.000090.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,111.58 -1,111.89 -1,112.20 -1,112.51 -1,112.82	-2,656.77 -2,756.77 -2,856.77 -2,956.77 -3,056.77	2,763.15 2,862.58 2,962.00 3,061.42 3,160.85	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,100.0 11,200.0 11,300.0 11,400.0 11,500.0	0090.000090.000090.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,113.13 -1,113.44 -1,113.76 -1,114.07 -1,114.38	-3,156.77 -3,256.77 -3,356.77 -3,456.77 -3,556.77	3,260.27 3,359.70 3,459.12 3,558.54 3,657.97	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,600.0 11,700.0 11,800.0	00 90.00 00 90.00	269.82 269.82 269.82	7,818.00 7,818.00 7,818.00	-1,114.69 -1,115.00 -1,115.31	-3,656.77 -3,756.77 -3,856.77	3,757.39 3,856.82 3,956.24	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

4/17/2023 1:06:23PM

Released to Imaging: 1/27/2025 10:53:36 AM

Phoenix Technology Services

Planning Report

Database:	USAEDMDB	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Company:	Permian Resources	TVD Reference:	RKB @ 3588.00usft (TBD)
Project:	Eddy County, NM (NAD83 - NME)	MD Reference:	RKB @ 3588.00usft (TBD)
Site:	Jakku	North Reference:	Grid
Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan 1 04-17-23		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
11,900.00 12,000.00	90.00 90.00	269.82 269.82	7,818.00 7,818.00	-1,115.62 -1,115.93	-3,956.77 -4,056.77	4,055.66 4,155.09	0.00 0.00	0.00 0.00	0.00 0.00
12,100.00 12,200.00 12,300.00 12,400.00 12,500.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,116.25 -1,116.56 -1,116.87 -1,117.18 -1,117.49	-4,156.77 -4,256.77 -4,356.77 -4,456.77 -4,556.77	4,254.51 4,353.94 4,453.36 4,552.78 4,652.21	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
12,600.00 12,700.00 12,800.00 12,900.00 13,000.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,117.80 -1,118.11 -1,118.43 -1,118.74 -1,119.05	-4,656.77 -4,756.76 -4,856.76 -4,956.76 -5,056.76	4,751.63 4,851.06 4,950.48 5,049.90 5,149.33	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
13,100.00 13,200.00 13,300.00 13,400.00 13,500.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,119.36 -1,119.67 -1,119.98 -1,120.29 -1,120.61	-5,156.76 -5,256.76 -5,356.76 -5,456.76 -5,556.76	5,248.75 5,348.18 5,447.60 5,547.02 5,646.45	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
13,600.00 13,700.00 13,800.00 13,900.00 14,000.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,120.92 -1,121.23 -1,121.54 -1,121.85 -1,122.16	-5,656.76 -5,756.76 -5,856.76 -5,956.76 -6,056.76	5,745.87 5,845.29 5,944.72 6,044.14 6,143.57	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
14,100.00 14,200.00 14,300.00 14,400.00 14,500.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,122.47 -1,122.79 -1,123.10 -1,123.41 -1,123.72	-6,156.76 -6,256.76 -6,356.76 -6,456.76 -6,556.76	6,242.99 6,342.41 6,441.84 6,541.26 6,640.69	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
14,600.00 14,700.00 14,800.00 14,900.00 15,000.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,124.03 -1,124.34 -1,124.65 -1,124.96 -1,125.28	-6,656.76 -6,756.76 -6,856.75 -6,956.75 -7,056.75	6,740.11 6,839.53 6,938.96 7,038.38 7,137.81	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
15,100.00 15,200.00 15,300.00 15,400.00 15,500.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,125.59 -1,125.90 -1,126.21 -1,126.52 -1,126.83	-7,156.75 -7,256.75 -7,356.75 -7,456.75 -7,556.75	7,237.23 7,336.65 7,436.08 7,535.50 7,634.93	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
15,600.00 15,700.00 15,800.00 15,900.00 16,000.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,127.14 -1,127.46 -1,127.77 -1,128.08 -1,128.39	-7,656.75 -7,756.75 -7,856.75 -7,956.75 -8,056.75	7,734.35 7,833.77 7,933.20 8,032.62 8,132.05	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,100.00 16,200.00 16,300.00 16,400.00 16,500.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,128.70 -1,129.01 -1,129.32 -1,129.64 -1,129.95	-8,156.75 -8,256.75 -8,356.75 -8,456.75 -8,556.75	8,231.47 8,330.89 8,430.32 8,529.74 8,629.17	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,600.00 16,700.00 16,800.00 16,900.00 17,000.00	90.00 90.00 90.00 90.00 90.00	269.82 269.82 269.82 269.82 269.82 269.82	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	-1,130.26 -1,130.57 -1,130.88 -1,131.19 -1,131.50	-8,656.75 -8,756.75 -8,856.75 -8,956.74 -9,056.74	8,728.59 8,828.01 8,927.44 9,026.86 9,126.28	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,100.00 17,200.00	90.00 90.00	269.82 269.82	7,818.00 7,818.00	-1,131.82 -1,132.13	-9,156.74 -9,256.74	9,225.71 9,325.13	0.00 0.00	0.00 0.00	0.00 0.00

4/17/2023 1:06:23PM

COMPASS 5000.17 Build 101

Phoenix Technology Services

Planning Report

Database: Company:	USAEDMDB Permian Resources	Local Co-ordinate Reference: TVD Reference:	Well Jakku 36 Fed State Com 112H RKB @ 3588.00usft (TBD)
Project:	Eddy County, NM (NAD83 - NME)	MD Reference:	RKB @ 3588.00usft (TBD)
Site:	Jakku	North Reference:	Grid
Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН	-	
Design:	Plan 1 04-17-23		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,300.00	90.00	269.82	7,818.00	-1,132.44	-9,356.74	9,424.56	0.00	0.00	0.00
17,400.00	90.00	269.82	7,818.00	-1,132.75	-9,456.74	9,523.98	0.00	0.00	0.00
17,500.00	90.00	269.82	7,818.00	-1,133.06	-9,556.74	9,623.40	0.00	0.00	0.00
17,600.00	90.00	269.82	7,818.00	-1,133.37	-9,656.74	9,722.83	0.00	0.00	0.00
17,700.00	90.00	269.82	7,818.00	-1,133.68	-9,756.74	9,822.25	0.00	0.00	0.00
17,800.00	90.00	269.82	7,818.00	-1,134.00	-9,856.74	9,921.68	0.00	0.00	0.00
17,900.00	90.00	269.82	7,818.00	-1,134.31	-9,956.74	10,021.10	0.00	0.00	0.00
18,000.00	90.00	269.82	7,818.00	-1,134.62	-10,056.74	10,120.52	0.00	0.00	0.00
18,100.00	90.00	269.82	7,818.00	-1,134.93	-10,156.74	10,219.95	0.00	0.00	0.00
18,174.14	90.00	269.82	7,818.00	-1,135.16	-10,230.88	10,293.66	0.00	0.00	0.00
TD at 1817	4.14								

Design Targets

Target Name - hit/miss target [- Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP - Jakku 36 Fed S - plan misses target - Point	0.00 center by		7,818.00 at 7823.08	-1,102.63 Susft MD (767	214.82 75.57 TVD, -1	620,944.43 1072.86 N, 80.25	,	2° 42' 22.779036 N	03° 55' 2.029908 W
BHL - Jakku 36 Fed S - plan hits target cer - Point	0.00 nter	0.00	7,818.00	-1,135.16	-10,230.88	620,911.90	658,880.57\$	2° 42' 22.846242 N	03° 57' 4.284421 W
LTP - Jakku 36 Fed S - plan misses target	0.00 center by		7,818.00 18084.14u	,	,	620,912.23 34.88 N, -10140	,	2° 42' 22.846297 N	03° 57' 3.231073 W

- Point

Plan Annotations

Measured	Vertical	Local Cool	rdinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
2,000.00	2,000.00	0.00	0.00	KOP, Begin 1.00°/100' Build
3,222.38	3,213.13	-127.03	27.17	Hold 12.22° Inc at 167.93° Azm
7,435.30	7,330.53	-999.30	213.76	Begin 12.00°/100' Build & Turn
8,206.14	7,818.00	-1,104.12	-262.93	LP, Hold 90.00° Inc at 269.82° Azm
18,174.14	7,818.00	-1,135.16	-10,230.88	TD at 18174.14

Permian Resources

Eddy County, NM (NAD83 - NME) Jakku Jakku 36 Fed State Com 112H

OH Plan 1 04-17-23

Anticollision Report

17 April, 2023

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum
Reference	Plan 1 04-17-23		
Filter type: Interpolation Method:	NO GLOBAL FILTER: Using user defined sel MD + Stations Interval 100.00usft	ection & filtering criteria Error Model:	ISCWSA

Warning Levels Evaluat	ed at:	2.00 Sigma	Casing Method:	Not applied	
Results Limited by:	Max. Cent	. Dist. of 1,000.00usft or Max. SF of 4	Error Surface:	Pedal Curve	
Depth Range:	Unlimited		Scan Method:	Closest Approach 3D	
interpolation wethou:	IVID + Stat		Error woder:	ISCWSA	

Survey Tool Program		Date 4/17/2023		
From	То			
(usft)	(usft)	Survey (Wellbore)	Tool Name	Description
0.00	18,174.14	4 Plan 1 04-17-23 (OH)	MWD+HRGM	OWSG MWD + HRGM

Summary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centers (usft)	nce Between Ellipses (usft)	Separation Factor	Warning
Jakku						
Jakku 36 Fed State Com 111H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 113H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 131H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 131H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 131H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 132H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 132H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 132H - OH - Plan 1 04-17-23 Jakku 36 Fed State Com 132H - OH - Plan 1 04-17-23	2,247.91 18,174.14 1,916.33 2,000.00 2,100.00 4,164.96 4,700.00 5,200.00	2,247.52 18,039.47 1,917.33 2,001.00 2,100.59 4,163.89 4,698.67 5,198.42	28.54 1,313.43 30.00 30.00 30.51 41.02 44.33 52.34	16.60 833.52 18.96 18.70 18.93 21.81 19.15 21.18	2.390 CC, ES 2.737 CC, ES 2.655 ES 2.636 SF 2.135 CC 1.761 ES 1.680 SF	
Jakku Offsets (NAD27)						
Ivore 35 Federal Com 002H - OH - Surveys Ivore 35 Federal Com 003H - OH - Surveys	13,027.96	7,673.23	174.25	37.94	1.278 Level 3 Out of r	ange
Misty 35 Federal Com 004H - OH - Surveys Smokey Bits State Com 002H - OH - Surveys Smokey Bits State Com 006H - OH - Surveys	12,824.62	7,697.14	181.27	51.42	Out of r 1.396 Level 3 Out of r	, CC, ES, SF
Jakku Offsets (NAD83)						-
Arco Hondo 1 - OH - Surveys Arco Hondo 1 - OH - Surveys Arco Hondo 1 - OH - Surveys Culwin 35 Federal 2 - OH - Surveys Oxy Ivore Federal 1 - OH - Surveys	1,941.13 2,100.00 2,700.00 14,515.96	2,008.42 2,168.32 2,766.71 7,654.92	317.46 318.52 359.96 670.12	269.08 266.52 294.24 328.22	6.562 CC 6.125 ES 5.477 SF Out of r 1.960 CC, ES	0
Oxy Smokey St 1 - OH - Surveys	10,926.47	7,775.65	28.64	-245.73	0.104 Level 1	, CC, ES, SF

Offset Des	U 0 1	Jakku 3	6 Fed Sta	te Com 111	H - OH - F	Plan 1 04-17-	23					Offset Site Error:	0.00 usft
Survey Progr	am:	Distance								Offset Well Error:	1.00 usft		
Refere Measured Depth (usft)	ence Vertical Depth (usft)	Offse Measured Depth (usft)	et Vertical Depth (usft)	Semi Major Reference (usft)	Axis Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft	ere Center +E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
0.00	0.00	0.00	0.00	1.00	1.00	-90.17	-0.09	-30.00	30.02				
100.00	100.00	99.00	99.00	1.28	1.27	-90.17	-0.09	-30.00	30.00	27.45	2.55	11.781	
200.00	200.00	199.00	199.00	1.76	1.76	-90.17	-0.09	-30.00	30.00	26.48	3.52	8.531	
300.00	300.00	299.00	299.00	2.14	2.14	-90.17	-0.09	-30.00	30.00	25.72	4.28	7.009	
400.00	400.00	399.00	399.00	2.47	2.46	-90.17	-0.09	-30.00	30.00	25.07	4.93	6.083	
500.00	500.00	499.00	499.00	2.76	2.75	-90.17	-0.09	-30.00	30.00	24.49	5.51	5.443	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De			6 Fed Sta	te Com 111	H - OH - F	Plan 1 04-17-	-23					Offset Site Error:	0.00 usft
Survey Progr Refer	ram:	IWD+HRGM Offse	ət	Semi Major	Axis		Offeret Wellbr	na Cantan	Dist	tance		Offset Well Error:	1.00 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
600.00	600.00	599.00	599.00	3.02	3.02	-90.17	-0.09	-30.00	30.00	23.96	6.04	4.966	
700.00	700.00	699.00	699.00	3.27	3.26	-90.17	-0.09	-30.00	30.00	23.47	6.53	4.594	
800.00	800.00	799.00	799.00	3.50	3.49	-90.17	-0.09	-30.00	30.00	23.01	6.99	4.292	
900.00	900.00	899.00	899.00	3.71	3.71	-90.17	-0.09	-30.00	30.00	22.57	7.43	4.040	
1,000.00	1,000.00	999.00	999.00	3.92	3.92	-90.17	-0.09	-30.00	30.00	22.16	7.84	3.827	
1,100.00	1,100.00	1,099.00	1,099.00	4.12	4.12	-90.17	-0.09	-30.00	30.00	21.76	8.24	3.642	
1,200.00	1,200.00	1,199.00	1,199.00	4.31	4.31	-90.17	-0.09	-30.00	30.00	21.38	8.62	3.481	
1,300.00	1,300.00	1,299.00	1,299.00	4.49	4.49	-90.17	-0.09	-30.00	30.00	21.01	8.99	3.339	
1,400.00	1,400.00	1,399.00	1,399.00	4.67	4.67	-90.17	-0.09	-30.00	30.00	20.66	9.34	3.211	
1,500.00	1,500.00	1,499.00	1,499.00	4.85	4.84	-90.17	-0.09	-30.00	30.00	20.31	9.69	3.096	
1,600.00	1,600.00	1,599.00	1,599.00	5.01	5.01	-90.17	-0.09	-30.00	30.00	19.97	10.03	2.992	
1,700.00	1,700.00	1,699.00	1,699.00	5.18	5.18	-90.17	-0.09	-30.00	30.00	19.65	10.35	2.897	
1,800.00	1,800.00	1,799.00	1,799.00	5.34	5.34	-90.17	-0.09	-30.00	30.00	19.33	10.67	2.810	
1,900.00	1,900.00	1,899.00	1,899.00	5.50	5.49	-90.17	-0.09	-30.00	30.00	19.01	10.99	2.730	
2,000.00	2,000.00	1,999.00	1,999.00	5.65	5.65	-90.17	-0.09	-30.00	30.00	18.70	11.30	2.656	
2,100.00	2,099.99	2,099.36	2,099.36	5.78	5.80	104.68	0.49	-29.36	29.58	18.01	11.57	2.556	
2,200.00	2,199.96	2,199.59	2,199.55	5.89	5.95	113.46	2.24	-27.42	28.72	16.90	11.82	2.430	
2,247.91	2,247.83	2,247.52	2,247.45	5.96	6.03	119.94	3.50	-26.04	28.54	16.60	11.94	2.390	CC, ES, SF
2,300.00	2,299.86	2,299.55	2,299.41	6.03	6.12	128.51	5.17	-24.20	28.86	16.79	12.08	2.390	
2,400.00	2,399.68	2,399.10	2,398.77	6.18	6.30	147.35	9.24	-19.70	32.18	19.82	12.36	2.603	
2,500.00	2,499.37	2,498.10	2,497.47	6.35	6.50	164.60	14.44	-13.97	40.29	27.58	12.70	3.172	
2,600.00	2,598.90	2,596.42	2,595.35	6.55	6.72	177.25	20.74	-7.02	53.25	40.17	13.08	4.071	
2,700.00	2,698.26	2,693.95	2,692.26	6.77	6.96	-174.23	28.10	1.10	70.47	56.98	13.49	5.224	
2,800.00	2,797.40	2,790.56	2,788.05	7.01	7.21	-168.50	36.48	10.35	91.39	77.47	13.93	6.562	
2,900.00	2,896.30	2,886.13	2,882.60	7.27	7.48	-164.53	45.83	20.67	115.67	101.28	14.39	8.038	
3,000.00	2,994.93	2,980.55	2,975.77	7.55	7.77	-161.68	56.12	32.02	143.07	128.19	14.88	9.617	
3,100.00	3,093.26	3,075.43	3,069.22	7.86	8.06	-159.64	67.16	44.20	173.08	157.68	15.40	11.236	
3,200.00	3,191.25	3,170.20	3,162.54	8.18	8.37	-158.33	78.21	56.40	204.79	188.83	15.96	12.831	
3,222.38	3,213.13	3,191.34	3,183.36	8.24	8.44	-158.11	80.67	59.12	212.10	196.03	16.08	13.194	
3,300.00	3,288.99	3,264.61	3,255.52	8.49	8.69	-157.55	89.22	68.55	237.62	221.11	16.51	14.389	
3,400.00	3,386.72	3,359.02	3,348.49	8.84	9.02	-156.99	100.23	80.69	270.52	253.41	17.11	15.809	
3,500.00	3,484.45	3,453.42	3,441.46	9.21	9.35	-156.54	111.24	92.84	303.44	285.71	17.73	17.117	
3,600.00	3,582.19	3,547.82	3,534.43	9.58	9.70	-156.19	122.24	104.99	336.37	318.01	18.36	18.321	
3,700.00	3,679.92	3,642.23	3,627.40	9.96	10.05	-155.89	133.25	117.13	369.31	350.30	19.01	19.430	
3,800.00	3,777.65	3,736.63	3,720.37	10.35	10.40	-155.65	144.26	129.28	402.26	382.59	19.67	20.453	
3,900.00	3,875.39	3,831.03	3,813.34	10.75	10.75	-155.44	155.27	141.43	435.21	414.88	20.33	21.409	
4,000.00	3,973.12	3,929.91	3,910.78	11.15	11.11	-155.29	166.53	153.86	467.87	446.85	21.02	22.260	
4,100.00	4,070.85	4,031.83	4,011.49	11.56	11.50	-155.27	177.02	165.43	499.24	477.48	21.76	22.943	
4,200.00	4,168.58	4,134.69	4,113.40	11.97	11.89	-155.37	186.38	175.76	529.24	506.74	22.50	23.519	
4,300.00	4,266.32	4,238.44	4,216.43	12.39	12.28	-155.59	194.58	184.80	557.85	534.60	23.24	24.001	
4,400.00	4,364.05	4,343.03	4,320.50	12.81	12.66	-155.89	201.57	192.52	585.06	561.08	23.98	24.402	
4,500.00	4,461.78	4,448.39	4,425.51	13.24	13.03	-156.28	207.33	198.87	610.86	586.16	24.70	24.731	
4,600.00	4,559.51	4,554.47	4,531.38	13.67	13.39	-156.75	211.81	203.82	635.27	609.86	25.41	25.001	
4,700.00	4,657.25	4,661.19	4,637.99	14.10	13.73	-157.29	214.99	207.33	658.28	632.18	26.10	25.221	
4,800.00	4,754.98	4,768.49	4,745.25	14.54	14.03	-157.90	216.84	209.37	679.91	653.15	26.76	25.407	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

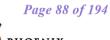
Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Barbon Control Control <th< th=""><th>Offset De</th><th>sign</th><th></th><th>6 Fed Sta</th><th>te Com 111</th><th>H - OH - I</th><th>Plan 1 04-17-</th><th>-23</th><th></th><th></th><th></th><th></th><th>Offset Site Error:</th><th>0.00 usft</th></th<>	Offset De	sign		6 Fed Sta	te Com 111	H - OH - I	Plan 1 04-17-	-23					Offset Site Error:	0.00 usft
Depuise (art) Version (art) Depuise (art) Version (art) Determent (art) Determent (art) <thdeterment (art) <thdeterment (art)</thdeterment </thdeterment 		fram:			Somi Major	Avia				Dist	ance		Offset Well Error:	1.00 usft
Intern Varth Varth (v) (v) </th <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>Highside</th> <th></th> <th></th> <th>Between</th> <th>Between</th> <th>Minimum</th> <th>Separation</th> <th>Warning</th>					-		Highside			Between	Between	Minimum	Separation	Warning
5.000 4.804 4.472 4.494.4 15.42 14.20 27.38 229.44 718.99 802.20 27.79 28.00 5.001 5.4449 5.6115 5.1449 16.30 14.39 110.22 27.73 229.44 778.85 771.15 22.72 28.405 5.0010 5.244.9 5.6815 5.1449 16.30 14.48 110.42 27.73 229.44 778.85 770.15 22.77 28.604 5.0010 5.568.4 5.568.5 5.558.5 5.558.4 16.40 14.67 14.22 27.73 229.44 80.04 5.007 27.72 28.604 5.0000 5.562.6 5.562.6 16.47 14.67 14.22 27.94 20.94 60.17 80.48 5.664.6 5.622.7 5.520.0 14.67 14.22 27.93 20.94 60.17 80.44 3.10 2.145 5.0000 5.862.7 5.820.0 14.64 14.83 14.83 14.14 14.84 2.175	Depth	Depth	Depth	Depth									Factor	
5.000 0.6418 6.077 1.08 4.13 -100.77 21738 200.8 710.88 710.58 21738 200.8 5.000 5.4464 5.4016 5.4424 16.78 14.49 -100.22 21738 200.94 770.82 770.72 22.77 26.669 5.000 5.4464 5.4016 5.445.11 17.76 14.43 -101.34 21.738 200.94 770.87 770.77 20.22 2.704 5.0000 5.6454 5.6401 5.435.11 17.05 14.40 -101.34 20.944 60.04 70.72 22.72 2.704 5.0000 5.6454 5.56354 15.035 16.15 14.74 -102.02 27.738 20.944 60.04 30.79 22.22 2.787 5.0000 5.6254 6.56261 5.022.7 15.05 -106.42 27.73 20.944 62.14 33.358 22.21 2.788 5.0000 6.5254 6.6452 15.021 7.011.15 14.48	4,900.00	4,852.71	4,874.95	4,851.71	14.97	14.20	-158.57	217.36	209.94	700.18	672.86	27.32	25.631	
S.2000 S.146.91 S.144.91 S.144.91 S.144.91 IGU0 14.24 IGU0 24.73 2014 778.83 771.05 20.78 24.405 5.0000 S.341.9 S.353.6 S.340.8 I.720 I.43 I.61.3 21.73 20.94 770.85 770.15 20.77 26.669 5.0000 S.341.1 S.441.3 S.333.6 1.61.0 1.64.7 1.62.2 21.73 20.94 80.04 80.06 70.77 30.07 27.202 5.0000 S.832.6 S.833.6 1.65.0 1.44.7 1.62.9 21.73 20.94 80.04 760.23 31.90 27.465 5.0000 S.820.4 S.822.4 1.84.8 1.64.9 21.73 20.94 80.17 80.17 31.92 27.465 6.0000 S.227.7 S.6001 S.820.4 1.84.8 1.64.8 21.73 20.94 80.12 30.84 33.82 22.01 6.0000 S.227.7 S.6001 S.801.7 1.9	5,000.00	4,950.45	4,972.68	4,949.45	15.42	14.26	-159.18	217.36	209.94	719.99	692.20	27.79	25.906	
5.0000 6.243.04 5.026.84 5.246.40 17.20 14.63 -106.14 2.17.36 2.09.44 779.65 70.75 29.77 20.640 5.0000 6.543.11 5.444.11 17.66 14.60 -101.14 217.36 20.944 700.65 20.707 20.640 5.0000 6.543.41 5.444.11 17.66 14.00 -101.34 217.36 20.944 400.24 400.24 30.70 27.045 5.0000 6.563.44 5.554.1 11.00 14.77 -102.20 217.36 20.944 400.24 30.74 22.22 27.045 5.0000 6.562.45 5.554.1 5.573.13 11.00 14.48 -100.10 217.36 20.944 401.47 408.44 33.88 22.22 27.045 6.00000 6.527.7 5.850.11 5.302.47 13.92 14.95 -102.22 21.738 20.944 91.42 408.44 33.88 22.237 6.00000 6.257.7 5.860.11 5.302.47 3.502.41 3.504 3.504 3.504 3.504 3.504 3.504				5,047.18				217.36						
5.400.0 6.34.38 5.340.38 17.20 14.53 -107.34 217.36 200.04 709.92 770.15 29.77 20.666 5.500.00 5.653.41 5.641.35 5.654.41 5.641.35 5.654.41 5.641.35 5.654.41 5.654.41 5.654.41 5.654.41 5.654.41 5.654.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.656.41 5.677.5 5.600.01 5.872.71 5.600.01 5.872.71 5.600.01 5.872.71 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.627.77 5.600.01 5.600.01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
5.000.0 5.000.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
55000 5508.04 5807.00 5507.00	5,400.00	5,341.38	5,363.61	5,340.38	17.20	14.53	-161.34	217.36	209.94	799.92	770.15	29.77	26.866	
5.700 5.843.8 5.863.8 18.05 1.474 -162.69 217.36 209.94 690.47 842.16 31.30 27.489 5.000.00 5.623.77 5.802.04 1.862.2 5.829.04 10.481 -163.49 217.36 209.94 690.17 686.74 32.32 27.879 6.000.00 5.627.77 5.802.01 5.825.77 19.22 14.85 -163.49 217.36 209.94 691.07 686.74 32.32 27.879 6.000.00 6.627.07 6.242.11 6.024.51 20.371 1501 -144.59 217.36 209.94 462.24 492.35 33.88 28.389 6.300.00 6.272.07 6.42.21 6.719.70 166.52 164.99 217.36 209.94 462.24 492.35 33.94 3.984 14.222.37 7.818.00 14.815.52 7.707.00 166.52 165.27 8-13 144.44 -7.004.03 1.320.15 984.25 33.1.90 3.378 15.0200 7.818.00 14.815.15.2 7.707.00 17.313 17.42 7.004.81 1.200.15 98	5,500.00		5,461.35	5,438.11	17.65	14.60	-161.81	217.36	209.94	820.06	789.78	30.28	27.084	
5.600.00 5.72.31 5.774.56 5.774.576 5.774.5774.576 5.774.5														
5,000.00 5,803.04 5,802.04 10.46 14.46 -163.49 217.36 208.84 901.07 868.74 32.32 27.878 6,000.00 527.77 5,800.01 520.877 19.22 14.45 -163.86 217.36 208.94 901.07 868.74 32.32 27.876 6,000.00 6,023.91 6,012.91 20.53 15.06 -164.62 217.36 209.84 982.49 92.83.6 33.86 22.394 6,000.00 6,232.97 6,84.01 6,277.97 21.59 15.15 -164.46 217.76 209.84 982.49 94.90 34.41 2.552 14.920.01 7,818.00 14.881.16 7,797.00 165.27 89.13 194.24 -6.80.02.3 1.320.15 988.25 33.19.0 3.997 15.000.00 7,818.00 14.881.16 7,797.00 177.15 189.02 1.320.15 984.44 3.805.1 3.322.15 15.000.07 7.818.00 14.886.15 7,797.00 177.15 189.13														
6.000.0 5.927.77 5.800.11 5.927.77 5.800.13 5.927.77 5.800.13 5.927.77 5.800.13 5.927.77 5.800.13 5.927.77 5.800.23 5.927.77 5.800.14 5.800.75 5.777.70 5.800.75 5.800.75 5.800.75 5.800.75 5.800.77 5.800.777 5.800.777 5.800.777 5.800.777 5.800.777 5.800.777 5.800.7777 5.800.7777700<														
6:10000 6:02351 6:04774 0:02451 0:02751 0:0204 941.81 0:0845 33.36 28.239 6:20000 6:22324 6:14546 6:12224 20.83 15.08 -144.69 217.36 200.04 982.24 923.35 33.86 28.399 14.0000 7.818.00 14.786.15 7.777.00 166.52 164.49 89.13 116.03 -6.600.66 1.320.15 898.21 33.95.16 33.96 15.0000 7.818.00 14.415.52 7.777.00 166.52 169.13 144.47 7.600.66 1.320.15 882.26 33.95.16 33.95 15.0000 7.818.00 14.015.52 7.797.00 160.21 167.59 89.13 144.47 7.190.23 1.320.15 963.93 33.97.7 3.885 15.0000 7.818.00 15.056.15 7.797.00 171.51 169.90 83.13 144.41 7.190.23 1.320.15 974.41 34.67.4 3.885 15.200.00 7.818.00 15.0156.2 <td< td=""><td>5,900.00</td><td>5,830.04</td><td>5,852.28</td><td>5,829.04</td><td>19.46</td><td>14.88</td><td>-163.49</td><td>217.36</td><td>209.94</td><td>901.07</td><td>868.74</td><td>32.32</td><td>27.876</td><td></td></td<>	5,900.00	5,830.04	5,852.28	5,829.04	19.46	14.88	-163.49	217.36	209.94	901.07	868.74	32.32	27.876	
6.2000 6.123.4 6.445.48 6.123.4 6.445.48 6.123.4 6.223.4 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 6.23.24 3.3.84 2.25.26 14.900.00 7.618.00 14.816.52 7.797.00 166.25 165.27 80.13 194.44 -6.900.23 1.3.20.15 964.59 33.54 3.394 15.000.00 7.818.00 14.868.15 7.797.00 106.24 167.90 89.13 194.44 -7.900.26 1.320.15 964.59 336.51 3.322 15.100.00 7.818.00 14.966.15 7.797.00 170.43 106.22 69.13 194.44 -7.900.26 1.320.15 964.33 336.77 38.85 15.220.37 7.818.00 15.056.2 7.797.00 177.84 197.34 197.16 490.43 7.190.23 1.320.15 974.43 3.833 15.220.37 7.818.00	6,000.00	5,927.77	5,950.01	5,926.77	19.92	14.95	-163.86	217.36	209.94	921.42	888.58	32.84	28.057	
14.300.00 6.220.97 6.220.97 6.220.97 6.220.97 6.220.97 6.220.97 7.816.00 14.786.15 7.777.00 166.25 164.59 69.13 1165.03 4.690.88 1.320.15 989.61 330.54 339.44 14.4029.37 7.816.00 14.4815.52 7.777.00 1166.24 166.97 89.13 1194.24 7.600.28 1.320.15 989.61 335.16 33.939 15.00.00 7.816.00 14.4815.52 7.777.00 1196.24 169.17 1194.43 -7.000.28 1.320.15 989.49 336.16 33.939 15.00.00 7.816.00 150.015.52 7.777.00 1170.31 169.22 89.13 194.41 -7.100.23 1.320.15 987.43 38.65 15.200.37 7.816.00 15.086.15 7.777.00 173.33 172.22 69.13 194.00 -7.200.68 1.320.15 974.41 346.74 3.818 15.200.37 7.816.00 15.365.27 7.777.00 173.80 172.22 69.13 119.40 -7.200.68 1.320.15 974.41 346.74 3.818 <														
14,000.0 7,816.00 14,786.15 7,797.00 166.25 194.59 80.13 195.03 -6,060.86 1,320.15 989.61 330.54 3.994 14,020.37 7,816.00 14,815.52 7,797.00 166.92 165.27 60.13 114.44 -7,600.86 1,320.15 988.25 331.90 3.978 15,000.00 7,816.00 14,886.15 7,797.00 170.81 164.22 37.000.23 1,320.15 989.54 333.61 3.3923 15,000.00 7,816.00 16,015.52 7,797.00 170.81 169.22 89.13 194.41 -7,602.81 1,320.15 970.03 341.12 3.870 15,200.00 7,816.00 15,015.52 7,797.00 173.13 171.52 89.13 194.00 -7,260.86 1,320.15 975.77 348.30 3.783 15,200.00 7,816.00 15,015.52 7,797.00 175.42 89.13 193.47 -7,460.88 1,320.15 975.77 348.30 3.783 15,203.07 7,8														
14293.7 7.818.00 14.815.52 7.797.00 166.92 165.27 89.13 194.44 -6.590.23 1.320.15 988.25 333.56 3.399 15.003.07 7.818.00 14.816.55 7.797.00 169.21 167.59 89.13 194.42 -7.602.86 1.320.15 983.44 336.51 3.293 15.003.07 7.818.00 14.915.52 7.797.00 177.81 169.92 89.13 194.44 -7.1062.86 1.320.15 983.44 336.51 3.293 15.129.37 7.818.00 15.015.52 7.797.00 177.11 169.90 89.13 194.41 -7.1062.86 1.320.15 975.77 344.38 3.833 15.200.00 7.818.00 15.061.55 7.797.00 177.81 175.42 173.88 80.13 193.66 1.320.15 971.41 345.74 3.818 15.300.00 7.818.00 15.265.2 7.797.00 177.42 178.48 80.13 193.66 1.320.15 965.18 354.97 3.719 15.200.00 7.818.00 15.365.2 7.797.00 177.72 176.18														
15.000.00 7.818.00 14.888.15 7.797.00 169.24 160.21 167.59 88.13 194.42 -7.060.86 1.320.15 683.64 336.51 336.51 336.51 15.000.00 7.818.00 14.915.52 7.797.00 170.33 169.22 88.13 194.43 -7.160.86 1.320.15 683.64 336.51 336.51 15.100.00 7.818.00 15.015.25 7.797.00 171.51 169.90 88.13 194.41 -7.190.23 1.320.15 670.03 341.12 3.836 15.200.00 7.818.00 15.015.52 7.797.00 173.40 177.42 88.13 194.00 -7.260.86 1.320.15 677.15 344.00 3.831 15.300.00 7.818.00 15.115.52 7.797.00 177.42 178.68 193.38 -7.360.28 1.320.15 697.15 34.00 3.733 15.402.03 7.818.00 15.285.15 7.797.00 177.10 177.44 88.13 193.38 -7.400.23 1.320.15 696.54 353.61 3.733 15.402.37 7.818.00 15.385.15 7.797.00<	14,900.00	7,818.00	14,786.15	7,797.00	166.25	164.59	89.13	195.03	-6,960.86	1,320.15	989.61	330.54	3.994	
15.029.37 7.818.00 14,915.52 7.797.00 170.31 169.21 167.59 89.13 194.43 -7.109.23 1.320.15 980.38 338.77 3.865 15.100.00 7.818.00 15.068.15 7.797.00 171.51 169.90 89.13 194.41 -7.109.23 1.320.15 980.38 338.77 3.865 15.229.37 7.818.00 15.068.15 7.797.00 173.80 172.22 89.13 194.00 -7.290.23 1.320.15 976.77 344.38 3.833 15.229.37 7.818.00 15.165.57 7.797.00 175.41 174.44 89.13 193.78 -7.300.23 1.320.15 976.10 37.84 15.329.37 7.818.00 15.265.15 7.797.00 177.14 480.13 193.78 -7.300.23 1.320.15 966.54 353.63 3.786 15.429.37 7.818.00 15.265.15 7.797.00 177.44 89.13 193.38 -7.400.23 1.320.15 965.16 354.97 3.719 15.429.37 7.818.00 15.365.2 7.797.00 180.61 17.977.00 180.61	14,929.37	7,818.00	14,815.52	7,797.00	166.92	165.27	89.13	194.94	-6,990.23	1,320.15	988.25	331.90	3.978	
15,100.00 7,818.00 14,986.15 7,797.00 170.83 169.22 89.13 194.31 -7,190.23 1,320.15 990.38 339.77 3,885 15,203.07 7,818.00 150.05.52 7,797.00 177.151 1695.00 89.13 194.31 -7,190.23 1,320.15 977.03 341.12 3,870 15,203.07 7,818.00 150.85.15 7,797.00 173.41 171.22 89.13 194.09 -7,260.26 1,320.15 977.44 345.74 3,818 15,203.07 7,818.00 152.15.2 7,797.00 177.10 174.44 89.13 193.76 -7,360.86 1,320.15 967.141 345.74 3,818 15,400.00 7,818.00 152.15.27 7,797.00 177.72 177.18 89.13 193.36 -7,400.23 1,320.15 966.14 354.67 3,719 15,400.00 7,818.00 15,356.2 7,797.00 177.72 177.18 89.13 193.36 -7,400.23 1,320.15 965.18 354.67 3,719 15,600.00 7,818.00 15,456.2 7,797.00 180.81 <td>15,000.00</td> <td>7,818.00</td> <td>14,886.15</td> <td>7,797.00</td> <td>168.54</td> <td>166.91</td> <td>89.13</td> <td>194.72</td> <td>-7,060.86</td> <td>1,320.15</td> <td>984.99</td> <td>335.16</td> <td>3.939</td> <td></td>	15,000.00	7,818.00	14,886.15	7,797.00	168.54	166.91	89.13	194.72	-7,060.86	1,320.15	984.99	335.16	3.939	
15,129.37 7,818.00 15,015.52 7,797.00 171.51 169.90 89.13 194.31 -7,190.23 1,320.15 979.03 341.12 3.870 15,200.00 7,818.00 15,015.52 7,797.00 173.13 171.54 89.13 194.09 -7,260.86 1,320.15 975.77 344.38 3.833 15,202.00 7,818.00 15,115.52 7,797.00 173.80 172.22 88.13 193.76 -7,390.23 1,320.15 976.41 345.74 3.818 15,202.07 7,818.00 15,215.52 7,797.00 177.24 174.86 88.13 193.69 -7,390.23 1,320.15 966.54 353.51 3.738 15,429.37 7,818.00 15,385.52 7,797.00 177.72 177.18 88.13 193.36 -7,400.23 1,320.15 966.54 353.61 3.733 15,529.37 7,818.00 15,385.52 7,797.00 180.11 178.49 89.13 193.16 -7,560.23 1,320.15 965.83 3.671 15,529.37 7,818.00 15,815.52 7,797.00 180.81 89.13 <td></td>														
15.2000 7,818.00 15,068.15 7,797.00 173.80 172.22 89.13 194.09 -7,280.23 1,320.15 975.77 344.38 3.833 15.202.97 7,818.00 15,115.52 7,797.00 175.42 173.86 89.13 193.76 -7,360.86 1,320.15 977.41 345.74 3.818 15.300.00 7,818.00 15,215.22 7,797.00 176.10 174.54 89.13 193.69 -7,360.86 1,320.15 966.54 353.61 3.733 15.429.37 7,818.00 15,286.15 7,797.00 177.70 178.18 89.13 193.46 -7,460.86 1,320.15 966.54 353.61 3.733 15.429.37 7,818.00 15,386.15 7,797.00 178.48 89.13 193.46 -7,460.23 1,320.15 965.18 354.97 3.719 15.529.37 7,818.00 15,455.2 7,797.00 180.69 179.18 89.13 192.45 -7,660.86 1,320.15 965.95 386.43 3625 15.629.37 7,818.00 15,455.2 7,797.00 182.91 180.45														
15.229.377,818.0015,115.527,797.00173.80172.2289.13194.00 $-7.290.23$ 1,320.15974.41345.743.81815.300.007,818.0015,115.527,797.00176.42173.8689.13193.78-7.390.261,320.15971.15349.003.78315.329.377,818.0015,215.277,797.00176.1689.13193.89 $-7.390.23$ 1,320.15965.18350.353.76815.400.007,818.0015,315.527,797.00177.72176.1689.13193.47 $-7.460.86$ 1,320.15965.18354.973.71915.500.007,818.0015,346.157,797.00180.01178.4989.13193.16 $-7.560.23$ 1,320.15965.18354.973.71915.500.007,818.0015,846.157,797.00180.91180.13193.07 $-7.560.23$ 1,320.15965.18354.973.71915.600.007,818.0015,866.157,797.00180.91180.4189.13192.76 $-7.690.23$ 1,320.15955.95364.203.62515.700.007,818.0015,866.157,797.00182.99181.4989.13192.24 $-7.760.23$ 1,320.15955.95364.203.62515.700.007,818.0015,866.157,797.00185.28183.8169.13192.24 $-7.60.23$ 1,320.15956.95364.203.62515.700.007,818.0015,786.157,797.00185.28183.8	15,129.37	7,818.00	15,015.52	7,797.00	171.51	169.90	89.13	194.31	-7,190.23	1,320.15	979.03	341.12	3.870	
15,300,00 7,818.00 15,186.15 7,797.00 175.42 173.86 89.13 193.78 -7,360.86 1,320.15 969.80 350.35 3,783 15,202.37 7,818.00 15,215.52 7,797.00 177.72 176.16 89.13 193.89 -7,360.23 1,320.15 966.54 353.61 3,733 15,429.37 7,818.00 15,315.52 7,797.00 177.72 176.18 89.13 193.47 -7,460.86 1,320.15 966.54 353.61 3,733 15,429.37 7,818.00 15,315.52 7,797.00 170.16 178.49 89.13 193.16 -7,760.23 1,320.15 966.57 359.58 3.671 15,529.37 7,818.00 15,515.52 7,797.00 182.39 181.49 89.13 192.76 -7,600.86 1,320.15 955.95 364.20 3.625 15,709.00 7,818.00 15,686.15 7,797.00 182.39 181.49 89.13 192.44 -7,600.86 1,320.15 955.95 364.20 3.625 15,709.00 7,818.00 15,686.15 7,797.00 184.61 <td>15,200.00</td> <td>7,818.00</td> <td>15,086.15</td> <td>7,797.00</td> <td>173.13</td> <td></td> <td>89.13</td> <td>194.09</td> <td>-7,260.86</td> <td>1,320.15</td> <td>975.77</td> <td>344.38</td> <td>3.833</td> <td></td>	15,200.00	7,818.00	15,086.15	7,797.00	173.13		89.13	194.09	-7,260.86	1,320.15	975.77	344.38	3.833	
15,329.37 7,818.00 15,215.52 7,797.00 176.10 174.54 89.13 193.69 -7,390.23 1,320.15 969.80 350.35 3,768 15,400.00 7,818.00 15,315.52 7,797.00 177.72 176.18 89.13 193.48 -7,460.36 1,320.15 966.18 354.97 3,719 15,620.07 7,818.00 15,386.15 7,797.00 180.01 178.49 89.13 193.16 -7,560.86 1,320.15 966.18 354.97 3,719 15,620.37 7,818.00 15,546.15 7,797.00 180.01 178.49 89.13 193.16 -7,560.23 1,320.15 960.57 359.58 3,665 15,620.37 7,818.00 15,556.2 7,797.00 182.29 181.49 89.13 192.76 -7,60.86 1,320.15 955.95 364.20 3.625 15,700.00 7,818.00 15,615.52 7,797.00 182.29 183.81 89.13 192.45 -7,760.86 1,320.15 951.33 368.82 3.579 15,700.00 7,818.00 15,615.52 7,797.00 185.28				7,797.00	173.80				-7,290.23		974.41			
15,400.00 7,818.00 15,286.15 7,797.00 177.72 176.18 89.13 193.47 -7,460.86 1,320.15 966.54 353.61 3.733 15,428.37 7,818.00 15,316.52 7,797.00 178.39 176.86 89.13 193.38 -7,490.23 1,320.15 966.54 354.97 3.719 15,529.37 7,818.00 15,346.15 7,797.00 180.01 178.49 89.13 193.16 -7,560.23 1,320.15 965.77 359.58 3.671 15,620.37 7,818.00 15,515.52 7,797.00 182.99 181.49 89.13 192.85 -7,660.86 1,320.15 95.55 364.20 3.625 15,700.00 7,818.00 15,515.52 7,797.00 182.31 180.81 89.13 192.45 -7,760.23 1,320.15 95.13 368.82 3.579 15,700.00 7,818.00 15,515.22 7,797.00 185.28 183.81 89.13 192.45 -7,760.28 1,320.15 946.07 372.08 3.548 15,800.00 7,818.00 15,615.22 7,797.00 185.28														
15,429,37 7,818.00 15,315.52 7,797.00 178.39 176.86 89.13 193.38 -7,490.23 1,320.15 965.18 354.97 3,719 15,500.00 7,818.00 15,415.52 7,797.00 180.01 178.49 89.13 193.16 -7,560.86 1,320.15 961.92 358.23 3.685 15,529.37 7,818.00 15,416.52 7,797.00 182.31 180.81 89.13 192.85 -7,660.86 1,320.15 961.92 352.84 3.638 15,629.37 7,818.00 15,515.52 7,797.00 182.99 181.49 88.13 192.76 -7,690.23 1,320.15 955.95 364.20 3.625 15,700.00 7,818.00 15,515.52 7,797.00 185.28 183.81 89.13 192.44 -7,760.23 1,320.15 951.33 368.2 3.579 15,800.00 7,818.00 15,686.15 7,797.00 185.28 183.81 89.13 192.45 -7,790.23 1,320.15 948.07 372.08 3.548 15,820.37 7,818.00 15,686.15 7,797.00 185.45 <td></td>														
15,500.00 7,818.00 15,386.15 7,797.00 180.01 178.49 89.13 193.16 -7,560.86 1,320.15 961.92 358.23 3,685 15,529.37 7,818.00 15,486.15 7,797.00 182.31 180.81 89.13 192.85 -7,600.23 1,320.15 961.92 358.23 3,685 15,629.37 7,818.00 15,515.52 7,797.00 182.31 180.81 89.13 192.85 -7,600.23 1,320.15 957.31 362.84 3,638 15,629.37 7,818.00 15,515.52 7,797.00 184.61 183.13 89.13 192.54 -7,760.23 1,320.15 952.69 367.46 3,593 15,729.37 7,818.00 15,615.72 7,977.00 185.45 89.13 192.45 -7,760.23 1,320.15 951.33 368.82 3,579 15,800.00 7,818.00 15,715.52 7,977.00 185.45 89.13 192.45 -7,760.23 1,320.15 946.71 373.44 3,535 15,809.00 7,818.00 15,715.52 7,797.00 189.81 186.13 89.13 <td>15,400.00</td> <td>7,818.00</td> <td>15,286.15</td> <td>7,797.00</td> <td>177.72</td> <td>176.18</td> <td>89.13</td> <td>193.47</td> <td>-7,460.86</td> <td>1,320.15</td> <td>966.54</td> <td>353.61</td> <td>3.733</td> <td></td>	15,400.00	7,818.00	15,286.15	7,797.00	177.72	176.18	89.13	193.47	-7,460.86	1,320.15	966.54	353.61	3.733	
15,529.37 7,818.00 15,415.52 7,797.00 180.69 179.18 89.13 193.07 -7,590.23 1,320.15 960.57 359.58 3.671 15,600.00 7,818.00 15,515.52 7,797.00 182.31 180.81 89.13 192.65 -7,600.86 1,320.15 955.31 362.84 3.638 15,629.37 7,818.00 15,515.52 7,797.00 184.61 183.13 89.13 192.76 -7,600.23 1,320.15 955.95 364.20 3.625 15,729.37 7,818.00 15,615.52 7,797.00 186.28 183.81 89.13 192.23 -7,60.86 1,320.15 955.33 368.82 3.579 15,800.00 7,818.00 15,715.52 7,797.00 186.91 185.45 89.13 192.23 -7,60.86 1,320.15 948.07 372.08 3.548 15,800.00 7,818.00 15,715.52 7,797.00 187.58 186.13 89.13 192.23 -7,60.86 1,320.15 943.05 376.70 3.505 15,900.00 7,818.00 15,766.15 7,797.00 189.21	15,429.37	7,818.00	15,315.52	7,797.00	178.39	176.86	89.13	193.38	-7,490.23	1,320.15	965.18	354.97	3.719	
15,600.00 7,818.00 15,486.15 7,797.00 182.31 180.81 89.13 192.85 -7,660.86 1,320.15 957.31 362.84 3,638 15,629.37 7,818.00 15,515.52 7,797.00 184.61 183.13 89.13 192.76 -7,60.86 1,320.15 955.95 364.20 3,623 15,729.37 7,818.00 15,615.52 7,797.00 184.61 183.13 89.13 192.45 -7,760.86 1,320.15 952.69 367.46 3,593 15,729.37 7,818.00 15,615.52 7,797.00 185.28 183.81 89.13 192.45 -7,760.23 1,320.15 948.07 372.08 3,548 15,829.37 7,818.00 15,715.52 7,797.00 187.58 186.13 89.13 192.13 -7,800.23 1,320.15 946.71 373.44 3,535 15,900.00 7,818.00 15,815.52 7,797.00 189.81 89.13 191.82 -7,900.23 1,320.15 943.45 376.70 3,505 16,000.00 7,818.00 15,86.15 7,797.00 189.81 89.13	15,500.00	7,818.00	15,386.15	7,797.00	180.01	178.49	89.13	193.16	-7,560.86	1,320.15	961.92	358.23	3.685	
15,629.37 7,818.00 15,515.2 7,797.00 182.99 181.49 89.13 192.76 -7,690.23 1,320.15 955.95 364.20 3.625 15,700.00 7,818.00 15,561.52 7,797.00 185.28 183.81 89.13 192.45 -7,760.86 1,320.15 955.95 364.20 3.625 15,709.07 7,818.00 15,615.52 7,797.00 185.28 183.81 89.13 192.45 -7,760.23 1,320.15 951.33 368.82 3.579 15,800.00 7,818.00 15,665.52 7,797.00 185.28 186.45 89.13 192.23 -7,860.86 1,320.15 946.07 372.48 3.548 15,899.37 7,818.00 15,766.15 7,797.00 189.21 187.77 89.13 191.91 -7,960.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,815.52 7,797.00 189.88 188.45 89.13 191.82 -7,990.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,815.52 7,797.00 191.51 <td>15,529.37</td> <td>7,818.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>193.07</td> <td>-7,590.23</td> <td>1,320.15</td> <td>960.57</td> <td></td> <td></td> <td></td>	15,529.37	7,818.00						193.07	-7,590.23	1,320.15	960.57			
15,700.00 7,818.00 15,586.15 7,797.00 184.61 183.13 89.13 192.54 -7,760.86 1,320.15 952.69 367.46 3.593 15,729.37 7,818.00 15,615.52 7,797.00 185.28 183.81 89.13 192.45 -7,790.23 1,320.15 951.33 368.82 3.579 15,800.00 7,818.00 15,715.52 7,797.00 186.91 185.45 89.13 192.23 -7,800.86 1,320.15 946.71 373.44 3.535 15,900.00 7,818.00 15,815.52 7,797.00 187.58 186.13 89.13 191.91 -7,960.86 1,320.15 946.71 373.44 3.535 15,929.37 7,818.00 15,815.52 7,797.00 189.88 188.45 89.13 191.82 -7,990.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,915.52 7,797.00 191.51 190.09 89.13 191.51 -8,060.86 1,320.15 938.83 381.32 3														
15,729.37 7,818.00 15,615.52 7,797.00 185.28 183.81 89.13 192.45 -7,790.23 1,320.15 951.33 368.82 3.579 15,800.00 7,818.00 15,686.15 7,797.00 186.91 185.45 89.13 192.23 -7,860.86 1,320.15 948.07 372.08 3.548 15,829.37 7,818.00 15,715.52 7,797.00 187.58 186.13 89.13 192.13 -7,890.23 1,320.15 946.71 373.44 3.535 15,900.00 7,818.00 15,815.52 7,797.00 189.88 188.45 89.13 191.82 -7,990.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,815.52 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 938.83 381.32 3.462 16,002.03 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,002.33 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 15,986.15 7,797.00 193.81 <td>15,629.37</td> <td>7,818.00</td> <td>15,515.52</td> <td>7,797.00</td> <td>182.99</td> <td>181.49</td> <td>89.13</td> <td>192.76</td> <td>-7,690.23</td> <td>1,320.15</td> <td>955.95</td> <td>364.20</td> <td>3.625</td> <td></td>	15,629.37	7,818.00	15,515.52	7,797.00	182.99	181.49	89.13	192.76	-7,690.23	1,320.15	955.95	364.20	3.625	
15,800.00 7,818.00 15,686.15 7,797.00 186.91 185.45 89.13 192.23 -7,800.86 1,320.15 948.07 372.08 3.548 15,829.37 7,818.00 15,715.52 7,797.00 187.58 186.13 89.13 192.13 -7,800.23 1,320.15 946.71 373.44 3.535 15,900.00 7,818.00 15,786.15 7,797.00 189.28 187.77 89.13 191.91 -7,900.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,815.52 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 15,986.15 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,100.00 7,818.00 16,086.15 7,797.00 196.11 <td>15,700.00</td> <td>7,818.00</td> <td>15,586.15</td> <td>7,797.00</td> <td>184.61</td> <td>183.13</td> <td>89.13</td> <td>192.54</td> <td>-7,760.86</td> <td>1,320.15</td> <td>952.69</td> <td>367.46</td> <td>3.593</td> <td></td>	15,700.00	7,818.00	15,586.15	7,797.00	184.61	183.13	89.13	192.54	-7,760.86	1,320.15	952.69	367.46	3.593	
15,829.37 7,818.00 15,715.52 7,797.00 187.58 186.13 89.13 192.13 -7,802.23 1,320.15 946.71 373.44 3.535 15,900.00 7,818.00 15,786.15 7,797.00 189.21 187.77 89.13 191.82 -7,902.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,815.52 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 938.83 381.32 3.462 16,002.07 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,010.00 7,818.00 15,986.15 7,797.00 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,129.37 7,818.00 16,015.52 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 <td>15,729.37</td> <td>7,818.00</td> <td>15,615.52</td> <td>7,797.00</td> <td>185.28</td> <td>183.81</td> <td>89.13</td> <td>192.45</td> <td>-7,790.23</td> <td>1,320.15</td> <td>951.33</td> <td>368.82</td> <td>3.579</td> <td></td>	15,729.37	7,818.00	15,615.52	7,797.00	185.28	183.81	89.13	192.45	-7,790.23	1,320.15	951.33	368.82	3.579	
15,900.00 7,818.00 15,786.15 7,797.00 189.21 187.77 89.13 191.91 -7,960.86 1,320.15 943.45 376.70 3.505 15,929.37 7,818.00 15,815.52 7,797.00 189.88 188.45 89.13 191.82 -7,990.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,866.15 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 938.83 381.32 3.462 16,029.37 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 16,015.52 7,797.00 193.81 192.41 89.13 191.20 -8,160.86 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,016.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 <td>15,800.00</td> <td>7,818.00</td> <td>15,686.15</td> <td>7,797.00</td> <td>186.91</td> <td>185.45</td> <td>89.13</td> <td>192.23</td> <td>-7,860.86</td> <td>1,320.15</td> <td>948.07</td> <td>372.08</td> <td>3.548</td> <td></td>	15,800.00	7,818.00	15,686.15	7,797.00	186.91	185.45	89.13	192.23	-7,860.86	1,320.15	948.07	372.08	3.548	
15,929.37 7,818.00 15,815.52 7,797.00 189.88 188.45 89.13 191.82 -7,990.23 1,320.15 942.09 378.06 3.492 16,000.00 7,818.00 15,886.15 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 938.83 381.32 3.462 16,029.37 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 15,986.15 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,129.37 7,818.00 16,015.52 7,797.00 194.48 193.09 89.13 191.20 -8,190.23 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 <td></td>														
16,000.00 7,818.00 15,886.15 7,797.00 191.51 190.09 89.13 191.60 -8,060.86 1,320.15 938.83 381.32 3.462 16,029.37 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 15,986.15 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,129.37 7,818.00 16,015.52 7,797.00 194.48 193.09 89.13 191.20 -8,190.23 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 932.85 387.30 3.409 16,229.37 7,818.00 16,115.52 7,797.00 196.78 195.41 89.13 190.89 -8,290.23 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 <td>15,900.00</td> <td>7,818.00</td> <td>15,786.15</td> <td>7,797.00</td> <td>189.21</td> <td>187.77</td> <td>89.13</td> <td>191.91</td> <td>-7,960.86</td> <td>1,320.15</td> <td>943.45</td> <td>376.70</td> <td>3.505</td> <td></td>	15,900.00	7,818.00	15,786.15	7,797.00	189.21	187.77	89.13	191.91	-7,960.86	1,320.15	943.45	376.70	3.505	
16,029.37 7,818.00 15,915.52 7,797.00 192.18 190.77 89.13 191.51 -8,090.23 1,320.15 937.47 382.68 3.450 16,100.00 7,818.00 15,986.15 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,129.37 7,818.00 16,015.52 7,797.00 194.48 193.09 89.13 191.20 -8,190.23 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 195.41 89.13 190.89 -8,290.23 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 <td>15,929.37</td> <td>7,818.00</td> <td>15,815.52</td> <td>7,797.00</td> <td>189.88</td> <td>188.45</td> <td>89.13</td> <td>191.82</td> <td>-7,990.23</td> <td>1,320.15</td> <td>942.09</td> <td>378.06</td> <td>3.492</td> <td></td>	15,929.37	7,818.00	15,815.52	7,797.00	189.88	188.45	89.13	191.82	-7,990.23	1,320.15	942.09	378.06	3.492	
16,100.00 7,818.00 15,986.15 7,797.00 193.81 192.41 89.13 191.29 -8,160.86 1,320.15 934.21 385.94 3.421 16,129.37 7,818.00 16,015.52 7,797.00 194.48 193.09 89.13 191.20 -8,190.23 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 195.41 89.13 190.89 -8,290.23 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 <td>16,000.00</td> <td>7,818.00</td> <td>15,886.15</td> <td>7,797.00</td> <td>191.51</td> <td>190.09</td> <td>89.13</td> <td>191.60</td> <td>-8,060.86</td> <td>1,320.15</td> <td>938.83</td> <td>381.32</td> <td>3.462</td> <td></td>	16,000.00	7,818.00	15,886.15	7,797.00	191.51	190.09	89.13	191.60	-8,060.86	1,320.15	938.83	381.32	3.462	
16,129.37 7,818.00 16,015.52 7,797.00 194.48 193.09 89.13 191.20 -8,190.23 1,320.15 932.85 387.30 3.409 16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 195.41 89.13 190.89 -8,290.23 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 923.61 396.54 3.329	16,029.37	7,818.00	15,915.52	7,797.00	192.18	190.77	89.13	191.51	-8,090.23	1,320.15	937.47	382.68	3.450	
16,200.00 7,818.00 16,086.15 7,797.00 196.11 194.73 89.13 190.98 -8,260.86 1,320.15 929.59 390.56 3.380 16,229.37 7,818.00 16,115.52 7,797.00 196.78 195.41 89.13 190.89 -8,290.23 1,320.15 928.23 391.92 3.368 16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 923.61 396.54 3.329	16,100.00	7,818.00	15,986.15	7,797.00	193.81	192.41	89.13	191.29	-8,160.86	1,320.15	934.21	385.94	3.421	
16,229.377,818.0016,115.527,797.00196.78195.4189.13190.89-8,290.231,320.15928.23391.923.36816,300.007,818.0016,186.157,797.00198.41197.0489.13190.67-8,360.861,320.15924.96395.193.34116,329.377,818.0016,215.527,797.00199.09197.7389.13190.58-8,390.231,320.15923.61396.543.329	16,129.37	7,818.00	16,015.52	7,797.00	194.48	193.09	89.13	191.20	-8,190.23	1,320.15	932.85	387.30	3.409	
16,300.00 7,818.00 16,186.15 7,797.00 198.41 197.04 89.13 190.67 -8,360.86 1,320.15 924.96 395.19 3.341 16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 924.96 395.19 3.341														
16,329.37 7,818.00 16,215.52 7,797.00 199.09 197.73 89.13 190.58 -8,390.23 1,320.15 923.61 396.54 3.329														
16,400.00 7,818.00 16,286.15 7,797.00 200.71 199.36 89.13 190.36 -8,460.86 1,320.15 920.34 399.81 3.302														
	16,400.00	7,818.00	16,286.15	7,797.00	200.71	199.36	89.13	190.36	-8,460.86	1,320.15	920.34	399.81	3.302	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report


Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset Des	sign		6 Fed Sta	te Com 111	H - OH - F	Plan 1 04-17-	-23					Offset Site Error:	0.00 usft
Survey Progr	ram:	IWD+HRGM							Dist	tance		Offset Well Error:	1.00 usft
Refere Measured	ence Vertical	Offse Measured	et Vertical	Semi Major Reference	Axis Offset	Highside	Offset Wellb	ore Center	Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
16,429.37	7,818.00	16,315.52	7,797.00	201.39	200.05	89.13	190.27	-8,490.22	1,320.15	918.98	401.17	3.291	
16,500.00	7,818.00	16,386.15	7,797.00	203.01	201.68	89.13	190.05	-8,560.86	1,320.15	915.72	404.43	3.264	
16,529.37	7,818.00	16,415.52	7,797.00	203.69	202.37	89.13	189.95	-8,590.22	1,320.15	914.36	405.79	3.253	
16,600.00	7,818.00	16,486.15	7,797.00	205.32	204.00	89.13	189.73	-8,660.86	1,320.15	911.09	409.06	3.227	
16,629.37	7,818.00	16,515.52	7,797.00	205.99	204.69	89.13	189.64	-8,690.22	1,320.15	909.73	410.42	3.217	
16,700.00	7,818.00	16,586.15	7,797.00	207.62	206.32	89.13	189.42	-8,760.86	1,320.15	906.47	413.68	3.191	
16,729.37	7,818.00	16,615.52	7,797.00	208.30	207.01	89.13	189.33	-8,790.22	1,320.15	905.11	415.04	3.181	
16,800.00	7,818.00	16,686.15	7,797.00	209.92	208.64	89.13	189.11	-8,860.86	1,320.15	901.84	418.31	3.156	
16,829.37	7,818.00	16,715.52	7,797.00	210.60	209.33	89.13	189.02	-8,890.22	1,320.15	900.48	419.67	3.146	
16,900.00	7,818.00	16,786.15	7,797.00	212.23	210.96	89.13	188.80	-8,960.85	1,320.15	897.22	422.93	3.121	
16,929.37	7,818.00	16,815.52	7,797.00	212.91	211.65	89.13	188.71	-8,990.22	1,320.15	895.86	424.29	3.111	
17,000.00	7,818.00	16,886.15	7,797.00	214.53	213.28	89.13	188.49	-9,060.85	1,320.15	892.59	427.56	3.088	
17,029.37	7,818.00	16,915.52	7,797.00	215.21	213.97	89.13	188.40	-9,090.22	1,320.15	891.23	428.92	3.078	
17,100.00	7,818.00	16,986.15	7,797.00	216.84	215.60	89.13	188.18	-9,160.85	1,320.15	887.96	432.19	3.055	
17,129.37	7,818.00	17,015.52	7,797.00	217.52	216.29	89.13	188.09	-9,190.22	1,320.15	886.60	433.55	3.045	
17,200.00	7,818.00	17,086.15	7,797.00	219.15	217.93	89.13	187.87	-9,260.85	1,320.15	883.33	436.82	3.022	
17,229.37	7,818.00	17,115.52	7,797.00	219.82	218.61	89.13	187.77	-9,290.22	1,320.15	881.98	438.18	3.013	
17,300.00	7,818.00	17,186.15	7,797.00	221.45	220.25	89.13	187.55	-9,360.85	1,320.15	878.71	441.44	2.991	
17,329.37	7,818.00	17,215.52	7,797.00	222.13	220.93	89.13	187.46	-9,390.22	1,320.15	877.35	442.80	2.981	
17,400.00	7,818.00	17,286.15	7,797.00	223.76	222.57	89.13	187.24	-9,460.85	1,320.15	874.08	446.07	2.959	
17,429.37	7,818.00	17,315.52	7,797.00	224.44	223.25	89.13	187.15	-9,490.22	1,320.15	872.72	447.43	2.951	
17,500.00	7,818.00	17,386.15	7,797.00	226.07	224.89	89.13	186.93	-9,560.85	1,320.15	869.45	450.70	2.929	
17,529.37	7,818.00	17,415.52	7,797.00	226.74	225.57	89.13	186.84	-9,590.22	1,320.15	868.09	452.06	2.920	
17,600.00	7,818.00	17,486.15	7,797.00	228.37	227.21	89.13	186.62	-9,660.85	1,320.15	864.82	455.33	2.899	
17,629.37	7,818.00	17,515.52	7,797.00	229.05	227.89	89.13	186.53	-9,690.22	1,320.15	863.46	456.69	2.891	
17,700.00	7,818.00	17,586.15	7,797.00	230.68	229.53	89.13	186.31	-9,760.85	1,320.15	860.19	459.96	2.870	
17,729.37	7,818.00	17,615.52	7,797.00	231.36	230.21	89.13	186.22	-9,790.22	1,320.15	858.83	461.32	2.862	
17,800.00	7,818.00	17,686.15	7,797.00	232.99	231.85	89.13	186.00	-9,860.85	1,320.15	855.56	464.59	2.842	
17,829.37	7,818.00	17,715.52	7,797.00	233.67	232.53	89.13	185.91	-9,890.22	1,320.15	854.20	465.95	2.833	
17,900.00	7,818.00	17,786.15	7,797.00	235.30	234.17	89.13	185.69	-9,960.85	1,320.15	850.93	469.22	2.813	
17,929.37	7,818.00	17,815.52	7,797.00	235.98	234.85	89.13	185.59	-9,990.22	1,320.15	849.57	470.58	2.805	
18,000.00	7,818.00	17,886.15	7,797.00	237.61	236.49	89.13	185.37	-10,060.85	1,320.15	846.30	473.85	2.786	
18,029.37	7,818.00	17,915.52	7,797.00	238.29	237.17	89.13	185.28	-10,090.22	1,320.15	844.94	475.21	2.778	
18,100.00	7,818.00	17,986.15	7,797.00	239.92	238.81	89.13	185.06	-10,160.85	1,320.15	841.67	478.49	2.759	
18,129.37	7,818.00	18,015.52	7,797.00	240.59	239.50	89.13	184.97	-10,190.22	1,320.15	840.31	479.85	2.751	
18,168.87	7,818.00	18,055.02	7,797.00	241.51	240.41	89.13	184.85	-10,229.72	1,320.15	838.48	481.67	2.741	
18,174.14	7,818.00	18,055.02	7,797.00	241.51	240.41	89.13	184.84	-10,229.72	1,320.15	838.30	481.85	2.741	
10,174.14	7,010.00	10,007.09	1,191.00	241.03	240.40	09.13	104.04	-10,232.39	1,320.13	030.30	401.00	2.140	

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De			6 Fed Sta	te Com 113	H - OH -	Plan 1 04-17	-23					Offset Site Error:	0.00 usft
Survey Prog	ram:	IWD+HRGM		O Malan	A				Dist	ance		Offset Well Error:	1.00 usft
Refer Measured	ence Vertical	Offse Measured	et Vertical	Semi Major Reference	Axis Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
14,922.70	7,818.00	14,788.03	7,826.00	166.77	163.13	-90.65	-2,440.34	-6,976.16	1,315.39	985.81	329.58	3.991	
15,000.00	7,818.00	14,865.33	7,826.00	168.54	164.92	-90.65	-2,440.53	-7,053.45	1,315.35	982.20	333.14	3.948	
15,022.70	7,818.00	14,888.03	7,826.00	169.06	165.44	-90.65	-2,440.59	-7,076.16	1,315.33	981.14	334.19	3.936	
15,100.00	7,818.00	14,965.33	7,826.00	170.83	167.24	-90.65	-2,440.78	-7,153.45	1,315.29	977.53	337.76	3.894	
15,122.70	7,818.00	14,988.03	7,826.00	171.35	167.76	-90.65	-2,440.84	-7,176.16	1,315.27	976.47	338.80	3.882	
15,200.00	7,818.00	15,065.33	7,826.00	173.13	169.55	-90.65	-2,441.03	-7,253.45	1,315.23	972.86	342.37	3.842	
15,222.70	7,818.00	15,088.03	7,826.00	173.65	170.08	-90.65	-2,441.09	-7,276.16	1,315.21	971.79	343.42	3.830	
15,300.00	7,818.00	15,165.33	7,826.00	175.42	171.87	-90.65	-2,441.29	-7,353.45	1,315.16	968.18	346.98	3.790	
15,322.70	7,818.00	15,188.03	7,826.00	175.94	172.40	-90.65	-2,441.34	-7,376.16	1,315.15	967.12	348.03	3.779	
15,400.00	7,818.00	15,265.33	7,826.00	177.72	174.19	-90.65	-2,441.54	-7,453.45	1,315.10	963.51	351.60	3.740	
15,422.70	7,818.00	15,288.03	7,826.00	178.24	174.71	-90.65	-2,441.59	-7,476.16	1,315.09	962.44	352.65	3.729	
15,500.00	7,818.00	15,365.33	7,826.00	180.01	176.51	-90.65	-2,441.79	-7,553.45	1,315.04	958.83	356.22	3.692	
15,522.70	7,818.00	15,388.03	7,826.00	180.54	177.03	-90.65	-2,441.84	-7,576.15	1,315.03	957.77	357.26	3.681	
15,600.00	7,818.00	15,465.33	7,826.00	182.31	178.82	-90.65	-2,442.04	-7,653.45	1,314.98	954.15	360.83	3.644	
15,622.70	7,818.00	15,488.03	7,826.00	182.83	179.35	-90.65	-2,442.10	-7,676.15	1,314.97	953.09	361.88	3.634	
15,700.00	7,818.00	15,565.33	7,826.00	184.61	181.14	-90.65	-2,442.29	-7,753.45	1,314.92	949.47	365.45	3.598	
15,722.70	7,818.00	15,588.03	7,826.00	185.13	181.67	-90.65	-2,442.35	-7,776.15	1,314.91	948.41	366.50	3.588	
15,800.00	7,818.00	15,665.33	7,826.00	186.91	183.46	-90.65	-2,442.54	-7,853.45	1,314.86	944.79	370.07	3.553	
15,822.70	7,818.00	15,688.03	7,826.00	187.43	183.99	-90.65	-2,442.60	-7,876.15	1,314.85	943.73	371.12	3.543	
15,900.00	7,818.00	15,765.33	7,826.00	189.21	185.78	-90.65	-2,442.79	-7,953.45	1,314.80	940.11	374.69	3.509	
15,922.70	7,818.00	15,788.03	7,826.00	189.73	186.30	-90.65	-2,442.85	-7,976.15	1,314.79	939.05	375.74	3.499	
16,000.00	7,818.00	15,865.33	7,826.00	191.51	188.10	-90.65	-2,443.04	-8,053.45	1,314.74	935.43	379.31	3.466	
16,022.70	7,818.00	15,888.03	7,826.00	192.03	188.62	-90.65	-2,443.10	-8,076.15	1,314.73	934.37	380.36	3.457	
16,100.00	7,818.00	15,965.33	7,826.00	193.81	190.42	-90.65	-2,443.29	-8,153.45	1,314.68	930.75	383.93	3.424	
16,122.70	7,818.00	15,988.03	7,826.00	194.33	190.94	-90.65	-2,443.35	-8,176.15	1,314.67	929.69	384.98	3.415	
16,200.00	7,818.00	16,065.33	7,826.00	196.11	192.73	-90.65	-2,443.54	-8,253.45	1,314.62	926.07	388.55	3.383	
16,222.70	7,818.00	16,088.03	7,826.00	196.63	193.26	-90.65	-2,443.60	-8,276.15	1,314.61	925.01	389.60	3.374	
16,300.00	7,818.00	16,165.33	7,826.00	198.41	195.05	-90.65	-2,443.80	-8,353.45	1,314.56	921.39	393.17	3.343	
16,322.70	7,818.00	16,188.03	7,826.00	198.93	195.58	-90.65	-2,443.85	-8,376.15	1,314.55	920.32	394.22	3.335	
16,400.00	7,818.00	16,265.33	7,826.00	200.71	197.37	-90.65	-2,444.05	-8,453.45	1,314.50	916.70	397.80	3.304	
16,422.70	7,818.00	16,288.03	7,826.00	201.23	197.90	-90.65	-2,444.10	-8,476.15	1,314.49	915.64	398.85	3.296	
16,500.00	7,818.00	16,365.33	7,826.00	203.01	199.69	-90.65	-2,444.30	-8,553.45	1,314.44	912.02	402.42	3.266	
16,522.70	7,818.00	16,388.03	7,826.00	203.54	200.22	-90.65	-2,444.35	-8,576.15	1,314.43	910.96	403.47	3.258	
16,600.00	7,818.00	16,465.33	7,826.00	205.32	202.01	-90.65	-2,444.55	-8,653.45	1,314.38	907.33	407.04	3.229	
16,622.70	7,818.00	16,488.03	7,826.00	205.84	202.54	-90.65	-2,444.60	-8,676.15	1,314.37	906.27	408.09	3.221	
16,700.00	7,818.00	16,565.33	7,826.00	207.62	204.33	-90.65	-2,444.80	-8,753.45	1,314.32	902.65	411.67	3.193	
16,722.70	7,818.00	16,588.03	7,826.00	208.14	204.86	-90.65	-2,444.86	-8,776.15	1,314.31	901.59	412.72	3.184	
16,800.00	7,818.00	16,665.33	7,826.00	209.92	206.65	-90.65	-2,445.05	-8,853.45	1,314.26	897.96	416.30	3.157	
16,822.70	7,818.00	16,688.03	7,826.00	210.45	207.18	-90.65	-2,445.11	-8,876.15	1,314.24	896.90	417.35	3.149	
16,900.00	7,818.00	16,765.33	7,826.00	212.23	208.97	-90.65	-2,445.30	-8,953.45	1,314.20	893.28	420.92	3.122	
16,922.70	7,818.00	16,788.03	7,826.00	212.75	209.50	-90.65	-2,445.36	-8,976.15	1,314.18	892.21	421.97	3.114	
17,000.00	7,818.00	16,865.33	7,826.00	214.53	211.29	-90.65	-2,445.55	-9,053.45	1,314.14	888.59	425.55	3.088	
17,022.70	7,818.00	16,888.03	7,826.00	215.06	211.82	-90.65	-2,445.61	-9,076.15	1,314.12	887.53	426.60	3.080	
17,100.00	7,818.00	16,965.33	7,826.00	216.84	213.61	-90.65	-2,445.80	-9,153.45	1,314.08	883.90	430.17	3.055	
17,122.70	7,818.00	16,988.03	7,826.00	217.36	214.14	-90.65	-2,445.86	-9,176.15	1,314.06	882.84	431.23	3.047	
17,200.00	7,818.00	17,065.33	7,826.00	219.15	215.93	-90.65	-2,446.05	-9,253.45	1,314.02	879.21	434.80	3.022	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Cor	npany:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Pro	ject:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Ref	erence Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site	Error:	0.00	North Reference:	Grid
Ref	erence Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Wel	ll Error:	1.00	Output errors are at	2.00 sigma
Ref	erence Wellbore	OH	Database:	USAEDMDB
Ref	erence Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De			6 Fed Sta	te Com 113	H - OH - I	Plan 1 04-17-	-23					Offset Site Error:	0.00 usft
Survey Prog Refer	ram:	IWD+HRGM Offse		Semi Major	Avia				Dist	ance		Offset Well Error:	1.00 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellb +N/-S (usft	ore Center +E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
17,222.70	7,818.00	17,088.03	7,826.00	219.67	216.46	-90.65	-2,446.11	-9,276.15	1,314.00	878.15	435.85	3.015	
17,300.00	7,818.00	17,165.33	7,826.00	221.45	218.25	-90.65	-2,446.30	-9,353.45	1,313.96	874.53	439.43	2.990	
17,322.70	7,818.00	17,188.03	7,826.00	221.98	218.78	-90.65	-2,446.36	-9,376.15	1,313.94	873.46	440.48	2.983	
17,400.00	7,818.00	17,265.33	7,826.00	223.76	220.57	-90.65	-2,446.56	-9,453.44	1,313.90	869.84	444.06	2.959	
17,422.70	7,818.00	17,288.03	7,826.00	224.28	221.10	-90.65	-2,446.61	-9,476.15	1,313.88	868.77	445.11	2.952	
17,500.00 17,522.70 17,600.00 17,622.70 17,700.00	7,818.00 7,818.00 7,818.00 7,818.00 7,818.00 7,818.00	17,365.33 17,388.03 17,465.33 17,488.03 17,565.33 17,588.03	7,826.00 7,826.00 7,826.00 7,826.00 7,826.00 7,826.00	226.07 226.59 228.37 228.90 230.68 231.21	222.89 223.42 225.21 225.74 227.53 228.06	-90.65 -90.65 -90.65 -90.65 -90.65	-2,446.81 -2,446.86 -2,447.06 -2,447.11 -2,447.31 -2,447.37	-9,553.44 -9,576.15 -9,653.44 -9,676.15 -9,753.44 -9,776.15	1,313.84 1,313.82 1,313.78 1,313.76 1,313.71 1,313.70	865.15 864.08 860.46 859.39 855.77 854.70	448.69 449.74 453.32 454.37 457.95 459.00	2.928 2.921 2.898 2.891 2.869 2.862	
17,800.00	7,818.00	17,665.33	7.826.00	232.99	229.86	-90.65	-2,447.56	-9,853.44	1,313.65	851.08	462.58	2.840	
17.822.70	7,818.00	17.688.03	7.826.00	233.51	230.38	-90.65	-2.447.62	-9.876.15	1,313.64	850.01	463.63	2.833	
17,900.00	7,818.00	17,765.33	7,826.00	235.30	232.18	-90.65	-2,447.81	-9,953.44	1,313.59	846.39	467.21	2.812	
17,922.70	7,818.00	17,788.03	7,826.00	235.82	232.70	-90.65	-2,447.87	-9,976.15	1,313.58	845.32	468.26	2.805	
18,000.00 18,022.70 18,100.00 18,116.83	7,818.00 7,818.00 7,818.00 7,818.00	17,865.33 17,888.03 17,965.33 17,982.16	7,826.00 7,826.00 7,826.00 7,826.00	237.61 238.13 239.92 240.31	234.50 235.02 236.82 237.21	-90.65 -90.65 -90.65 -90.65	-2,448.06 -2,448.12 -2,448.31 -2,448.35	-10,053.44 -10,076.14 -10,153.44 -10,170.27	1,313.53 1,313.52 1,313.47 1,313.46	841.69 840.63 837.00 836.21	471.84 472.89 476.47 477.25	2.784 2.778 2.757 2.752	
18,174.14	7,818.00	18,039.47	7,826.00	241.63	238.54	-90.65	-2,448.50	-10,227.58	1,313.43	833.52	479.90	2.737	CC, ES, SF

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

	m:	WD+HRGM Offse											
Depth	Vertical		t	Semi Major	Axis		Offset Wellbo	re Center	Dist	ance		Offset Well Error:	1.00 usft
	Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
0.00	0.00	1.00	1.00	1.00	1.00	89.83	0.09	30.00	30.00				
100.00	100.00	101.00	101.00	1.28	1.28	89.83	0.09	30.00	30.00	27.44	2.56	11.740	
200.00	200.00	201.00	201.00	1.76	1.76	89.83	0.09	30.00	30.00	26.47	3.53	8.509	
300.00	300.00	301.00	301.00	2.14	2.15	89.83	0.09	30.00	30.00	25.71	4.29	6.997	
400.00	400.00	401.00	401.00	2.47	2.47	89.83	0.09	30.00	30.00	25.06	4.94	6.075	
500.00	500.00	501.00	501.00	2.76	2.76	89.83	0.09	30.00	30.00	24.48	5.52	5.437	
600.00	600.00	601.00	601.00	3.02	3.02	89.83	0.09	30.00	30.00	23.95	6.05	4.962	
700.00	700.00	701.00	701.00	3.27	3.27	89.83	0.09	30.00	30.00	23.46	6.54	4.590	
800.00	800.00	801.00	801.00	3.50	3.50	89.83	0.09	30.00	30.00	23.01	7.00	4.289	
900.00	900.00	901.00	901.00	3.71	3.72	89.83	0.09	30.00	30.00	22.57	7.43	4.038	
1,000.00	1,000.00	1,001.00	1,001.00	3.92	3.92	89.83	0.09	30.00	30.00	22.16	7.84	3.825	
1,100.00	1,100.00	1,101.00	1,101.00	4.12	4.12	89.83	0.09	30.00	30.00	21.76	8.24	3.641	
1,200.00	1,200.00	1,201.00	1,201.00	4.31	4.31	89.83	0.09	30.00	30.00	21.38	8.62	3.480	
1,300.00	1,300.00	1,301.00	1,301.00	4.49	4.50	89.83	0.09	30.00	30.00	21.01	8.99	3.337	
1,400.00	1,400.00	1,401.00	1,401.00	4.67	4.67	89.83	0.09	30.00	30.00	20.65	9.35	3.210	
1,500.00	1,500.00	1,501.00	1,501.00	4.85	4.85	89.83	0.09	30.00	30.00	20.31	9.69	3.095	
1,600.00	1,600.00	1,601.00	1,601.00	5.01	5.02	89.83	0.09	30.00	30.00	19.97	10.03	2.991	
1,700.00	1,700.00	1,701.00	1,701.00	5.18	5.18	89.83	0.09	30.00	30.00	19.64	10.36	2.897	
1,800.00	1,800.00	1,801.00	1,801.00	5.34	5.34	89.83	0.09	30.00	30.00	19.32	10.68	2.810	
1,900.00	1,900.00	1,901.00	1,901.00	5.50	5.50	89.83	0.09	30.00	30.00	19.01	10.99	2.729	
1,916.33	1,916.33	1,917.33	1,917.33	5.52	5.52	89.83	0.09	30.00	30.00	18.96	11.04	2.717	CC
2,000.00	2,000.00	2,001.00	2,001.00	5.65	5.65	89.83	0.09	30.00	30.00	18.70	11.30	2.655	ES
2,100.00	2,099.99	2,100.59	2,100.58	5.78	5.80	-80.82	0.69	30.65	30.51	18.93	11.57	2.636	SF
2,200.00	2,199.96	2,200.00	2,199.96	5.89	5.95	-88.33	2.47	32.56	32.38	20.56	11.82	2.739	
2,300.00	2,299.86	2,299.23	2,299.09	6.03	6.12	-98.78	5.41	35.72	36.55	24.46	12.08	3.025	
2,400.00	2,399.68	2,398.00	2,397.68	6.18	6.30	-109.51	9.50	40.12	43.92	31.54	12.37	3.549	
2,500.00	2,499.37	2,496.24	2,495.62	6.35	6.50	-118.65	14.71	45.73	54.92	42.22	12.70	4.324	
2,600.00	2,598.90	2,593.80	2,592.74	6.55	6.72	-125.65	21.02	52.52	69.55	56.49	13.06	5.325	
2,700.00	2,698.26	2,690.58	2,688.91	6.77	6.95	-130.79	28.39	60.44	87.65	74.19	13.46	6.513	
2,800.00	2,797.40	2,786.44	2,783.97	7.01	7.20	-134.55	36.78	69.47	109.03	95.14	13.88	7.853	
2,900.00	2,896.30	2,881.27	2,877.80	7.27	7.47	-137.30	46.14	79.54	133.53	119.20	14.34	9.313	
3,000.00	2,994.93	2,974.96	2,970.26	7.55	7.75	-139.35	56.43	90.61	161.05	146.23	14.82	10.867	
3,100.00	3,093.26	3,069.50	3,063.38	7.86	8.05	-140.98	67.57	102.59	191.10	175.75	15.35	12.449	
3,200.00	3,191.25	3,164.23	3,156.67	8.18	8.35	-142.40	78.77	114.64	222.65	206.74	15.92	13.989	
3,222.38	3,213.13	3,185.36	3,177.48	8.24	8.42	-142.69	81.27	117.33	229.91	213.88	16.03	14.341	
3,300.00	3,288.99	3,258.61	3,249.61	8.49	8.67	-143.75	89.93	126.64	255.25	238.78	16.48	15.492	
3,400.00	3,386.72	3,352.97	3,342.54	8.84	9.00	-144.83	101.09	138.65	288.00	270.91	17.08	16.859	
3,500.00	3,484.45	3,449.19	3,437.32	9.21	9.34	-145.72	112.38	150.80	320.71	302.99	17.72	18.099	
3,600.00	3,582.19	3,549.22	3,536.07	9.58	9.70	-146.57	123.19	162.42	352.30	333.89	18.41	19.136	
3,700.00	3,679.92	3,650.18	3,636.03	9.96	10.06	-147.41	132.91	172.88	382.47	363.37	19.10	20.024	
3,800.00	3,777.65	3,752.04	3,737.10	10.35	10.43	-148.26	141.49	182.11	411.21	391.41	19.80	20.772	
3,900.00	3,875.39	3,854.74	3,839.22	10.75	10.78	-149.11	148.91	190.09	438.51	418.02	20.49	21.397	
4,000.00	3,973.12	3,958.22	3,942.30	11.15	11.14	-149.98	155.12	196.77	464.39	443.20	21.19	21.916	
4,100.00	4,070.85	4,062.43	4,046.24	11.56	11.48	-150.87	160.09	202.12	488.85	466.97	21.88	22.344	
4,200.00	4,168.58	4,167.29	4,150.97	11.97	11.81	-151.80	163.80	206.11	511.88	489.33	22.56	22.694	
4,300.00	4,266.32	4,272.76	4,256.37	12.39	12.12	-152.75	166.20	208.70	533.51	510.30	23.21	22.983	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset Design Jakku 36 Fed State Com 131H - OH - Plan 1 04-17-23										Offset Site Error:	0.00 usft		
Survey Prog	ram:	IWD+HRGM							Dist	ance		Offset Well Error:	1.00 usft
Refer Measured	ence Vertical	Offse Measured	et Vertical	Semi Major Reference	Axis Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
4,400.00	4,364.05	4,378.75	4,362.35	12.81	12.37	-153.75	167.29	209.87	553.76	529.92	23.83	23.236	
4,500.00	4,461.78	4,479.18	4,462.78	13.24	12.49	-154.70	167.36	209.94	572.98	548.64	24.34	23.536	
4,600.00	4,559.51	4,576.92	4,560.51	13.67	12.43	-155.57	167.36	209.94	592.27	567.44	24.83	23.854	
4,700.00	4,657.25	4,674.65	4,658.25	14.10	12.65	-156.39	167.36	209.94	611.68	586.36	25.32	24.162	
4,800.00	4,754.98	4,772.38	4,755.98	14.10	12.00	-157.16	167.36	209.94	631.21	605.40	25.81	24.457	
4,000.00	4,734.30	4,772.30	4,733.30	14.54	12.72	-137.10	107.50	203.34	031.21	003.40	23.01	24.431	
4,900.00	4,852.71	4,870.11	4,853.71	14.97	12.80	-157.88	167.36	209.94	650.84	624.53	26.31	24.741	
5,000.00	4,950.45	4,967.85	4,951.45	15.42	12.88	-158.56	167.36	209.94	670.56	643.75	26.81	25.014	
5,100.00	5,048.18	5,065.58	5,049.18	15.86	12.95	-159.20	167.36	209.94	690.37	663.05	27.31	25.277	
5,200.00	5,145.91	5,163.31	5,146.91	16.30	13.03	-159.80	167.36	209.94	710.25	682.43	27.82	25.529	
5,300.00	5,243.64	5,261.05	5,244.64	16.75	13.11	-160.37	167.36	209.94	730.21	701.88	28.33	25.772	
5,400.00	5,341.38	5,358.78	5,342.38	17.20	13.18	-160.92	167.36	209.94	750.24	721.39	28.85	26.005	
5,500.00	5,439.11	5,456.51	5,440.11	17.65	13.26	-161.43	167.36	209.94	770.33	740.96	29.37	26.230	
5,600.00	5,536.84	5,554.24	5,537.84	18.10	13.34	-161.92	167.36	209.94	790.47	760.58	29.89	26.447	
5,700.00	5,634.58	5,651.98	5,635.58	18.55	13.41	-162.38	167.36	209.94	810.67	780.25	30.41	26.656	
5,800.00	5,732.31	5,749.71	5,733.31	19.00	13.49	-162.82	167.36	209.94	830.91	799.97	30.94	26.857	
5,900.00	5,830.04	5,847.44	5,831.04	19.46	13.57	-163.24	167.36	209.94	851.20	819.74	31.47	27.052	
6,000.00	5,927.77	5,945.18	5,928.77	19.92	13.64	-163.64	167.36	209.94	871.54	839.54	32.00	27.239	
6,100.00	6,025.51	6,042.91	6,026.51	20.37	13.72	-164.03	167.36	209.94	891.91	859.38	32.53	27.421	
6,200.00	6,123.24	6,140.64	6,124.24	20.83	13.80	-164.39	167.36	209.94	912.31	879.25	33.06	27.596	
6,300.00	6,220.97	6,238.37	6,221.97	21.29	13.87	-164.74	167.36	209.94	932.76	899.16	33.59	27.765	
6,400.00	6,318.71	6,336.11	6,319.71	21.75	13.95	-165.07	167.36	209.94	953.23	919.10	34.13	27.929	
6,500.00	6,416.44	6,433.84	6,417.44	22.21	14.03	-165.40	167.36	209.94	973.73	939.07	34.67	28.087	
6,600.00	6,514.17	6,531.57	6,515.17	22.67	14.10	-165.70	167.36	209.94	994.27	959.06	35.21	28.240	

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De	sign		6 Fed Sta	te Com 132	H - OH - F	Plan 1 04-17	-23					Offset Site Error:	0.00 usft
Survey Prog Refer	ram:	IWD+HRGM Offse	et	Semi Major	Axis		Offectivity	Contra	Dist	tance		Offset Well Error:	1.00 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
0.00	0.00	1.00	1.00	1.00	1.00	89.83	0.18	60.00	60.00				
100.00	100.00	101.00	101.00	1.28	1.28	89.83	0.18	60.00	60.00	57.44	2.56	23.479	
200.00	200.00	201.00	201.00	1.76	1.76	89.83	0.18	60.00	60.00	56.47	3.53	17.017	
300.00	300.00	301.00	301.00	2.14	2.15	89.83	0.18	60.00	60.00	55.71	4.29	13.994	
400.00	400.00	401.00	401.00	2.47	2.47	89.83	0.18	60.00	60.00	55.06	4.94	12.150	
500.00	500.00	501.00	501.00	2.76	2.76	89.83	0.18	60.00	60.00	54.48	5.52	10.875	
600.00	600.00	601.00	601.00	3.02	3.02	89.83	0.18	60.00	60.00	53.95	6.05	9.924	
700.00	700.00	701.00	701.00	3.27	3.27	89.83	0.18	60.00	60.00	53.46	6.54	9.180	
800.00	800.00	801.00	801.00	3.50	3.50	89.83	0.18	60.00	60.00	53.01	7.00	8.578	
900.00	900.00	901.00	901.00	3.71	3.72	89.83	0.18	60.00	60.00	52.57	7.43	8.076	
1,000.00	1,000.00	1,001.00	1,001.00	3.92	3.92	89.83	0.18	60.00	60.00	52.16	7.84	7.650	
1,100.00	1,100.00	1,101.00	1,101.00	4.12	4.12	89.83	0.18	60.00	60.00	51.76	8.24	7.282	
1,200.00	1,200.00	1,201.00	1,201.00	4.31	4.31	89.83	0.18	60.00	60.00	51.38	8.62	6.960	
1,300.00	1,300.00	1,301.00	1,301.00	4.49	4.50	89.83	0.18	60.00	60.00	51.01	8.99	6.675	
1,400.00	1,400.00	1,401.00	1,401.00	4.67	4.67	89.83	0.18	60.00	60.00	50.65	9.35	6.420	
1,500.00	1,500.00	1,501.00	1,501.00	4.85	4.85	89.83	0.18	60.00	60.00	50.31	9.69	6.191	
1,600.00	1,600.00	1,601.00	1,601.00	5.01	5.02	89.83	0.18	60.00	60.00	49.97	10.03	5.983	
1,700.00	1,700.00	1,701.00	1,701.00	5.18	5.18	89.83	0.18	60.00	60.00	49.64	10.36	5.793	
1,800.00	1,800.00	1,801.00	1,801.00	5.34	5.34	89.83	0.18	60.00	60.00	49.32	10.68	5.619	
1,900.00	1,900.00	1,901.00	1,901.00	5.50	5.50	89.83	0.18	60.00	60.00	49.01	10.99	5.459	
2,000.00	2,000.00	2,001.00	2,001.00	5.65	5.65	89.83	0.18	60.00	60.00	48.70	11.30	5.310	
2,016.73	2,016.73	2,017.70	2,017.70	5.67	5.67	-78.09	0.15	60.00	60.00	48.66	11.34	5.290	
2,100.00	2,099.99	2,100.86	2,100.85	5.78	5.78	-78.07	-0.70	60.12	59.94	48.39	11.55	5.188	
2,200.00	2,199.96	2,200.71	2,200.67	5.89	5.90	-78.03	-3.30	60.49	59.76	48.00	11.76	5.082	
2,300.00	2,299.86	2,300.57	2,300.43	6.03	6.03	-77.97	-7.63	61.10	59.45	47.49	11.97	4.969	
2,400.00	2,399.68	2,400.43	2,400.10	6.18	6.18	-77.89	-13.67	61.94	59.03	46.85	12.17	4.849	
2,500.00	2,499.37	2,500.28	2,499.64	6.35	6.35	-77.80	-21.44	63.03	58.48	46.09	12.39	4.721	
2,600.00	2,598.90	2,600.13	2,599.04	6.55	6.55	-77.68	-30.92	64.37	57.81	45.20	12.60	4.586	
2,700.00	2,698.26	2,700.00	2,698.26	6.77	6.77	-77.54	-42.11	65.94	57.01	44.18	12.83	4.443	
2,800.00	2,797.40	2,799.83	2,797.24	7.01	7.01	-77.38	-55.02	67.75	56.10	43.02	13.08	4.290	
2,900.00	2,896.30	2,899.68	2,895.99	7.27	7.27	-77.20	-69.63	69.80	55.06	41.73	13.34	4.129	
3,000.00	2,994.93	2,999.53	2,994.47	7.55	7.55	-76.98	-85.94	72.09	53.91	40.29	13.62	3.959	
3,100.00	3,093.26	3,099.43	3,092.72	7.86	7.80	-76.87	-103.84	74.60	52.61	38.75	13.86	3.795	
3,200.00	3,191.25	3,199.41	3,190.99	8.18	8.12	-78.29	-122.07	77.16	50.99	36.82	14.17	3.598	
3,222.38	3,213.13	3,221.78	3,212.97	8.24	8.20	-78.89	-126.15	77.74	50.58	36.36	14.22	3.557	
3,300.00	3,288.99	3,299.36	3,289.23	8.49	8.45	-81.19	-140.31	79.72	49.20	34.75	14.45	3.405	
3,400.00	3,386.72	3,399.31	3,387.47	8.84	8.80	-84.35	-158.54	82.28	47.54	32.76	14.78	3.217	
3,500.00	3,484.45	3,499.26	3,485.71	9.21	9.15	-87.72	-176.77	84.84	46.03	30.89	15.13	3.041	
3,600.00	3,582.19	3,599.21	3,583.95	9.58	9.52	-91.31	-195.01	87.40	44.69	29.16	15.53	2.877	
3,700.00	3,679.92	3,699.16	3,682.19	9.96	9.89	-95.10	-213.24	89.96	43.54	27.56	15.99	2.724	
3,800.00	3,777.65	3,799.11	3,780.43	10.35	10.27	-99.08	-231.47	92.52	42.59	26.08	16.51	2.580	
3,900.00	3,875.39	3,899.06	3,878.67	10.75	10.65	-103.23	-249.71	95.08	41.86	24.74	17.12	2.445	
4,000.00	3,973.12	3,999.01	3,976.91	11.15	11.04	-107.49	-267.94	97.64	41.35	23.52	17.82	2.320	
4,100.00	4,070.85	4,098.96	4,075.15	11.56	11.44	-111.84	-286.17	100.20	41.07	22.44	18.63	2.204	
4,164.96	4,134.34	4,163.89	4,138.97	11.83	11.70	-114.69	-298.02	101.86	41.02	21.81	19.22	2.135	CC
4,200.00	4,168.58	4,198.92	4,173.39	11.97	11.84	-116.22	-304.40	102.76	41.04	21.49	19.54	2.100	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De	sign		6 Fed Sta	ite Com 132	H - OH -	Plan 1 04-17	-23					Offset Site Error:	0.00 usft
Survey Prog	ram:	/WD+HRGM Offse		Somi Major	Avia				Dist	tance		Offset Well Error:	1.00 usft
Refer Measured	Vertical	Measured	et Vertical	Semi Major Reference	Offset	Highside	Offset Wellbo		Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
4,203.22	4,171.73	4,202.13	4,176.55	11.99	11.86	-116.36	-304.99	102.84	41.04	21.46	19.58	2.096	
4,300.00	4,266.32	4,298.87	4,271.63	12.39	12.25	-120.59	-322.64	105.32	41.24	20.69	20.55	2.007	
4,400.00	4,364.05	4,398.82	4,369.87	12.81	12.66	-124.88	-340.87	107.88	41.68	20.05	21.63	1.927	
4,500.00	4,461.78	4,498.77	4,468.11	13.24	13.07	-129.06	-359.10	110.44	42.35	19.57	22.78	1.859	
4,600.00	4,559.51	4,598.72	4,566.35	13.67	13.49	-133.10	-377.34	113.00	43.24	19.27	23.96	1.804	
4,700.00	4,657.25	4,698.67	4,664.59	14.10	13.91	-136.95	-395.57	115.56	44.33	19.15	25.18	1.761	ES
4,800.00	4,754.98	4,798.62	4,762.83	14.54	14.33	-140.60	-413.80	118.12	45.61	19.22	26.40	1.728	
4,900.00	4,852.71	4,898.57	4,861.07	14.97	14.75	-144.04	-432.04	120.68	47.07	19.46	27.61	1.705	
5,000.00	4,950.45	4,998.52	4,959.31	15.42	15.18	-147.26	-450.27	123.24	48.69	19.87	28.81	1.690	
5,100.00	5,048.18	5,098.47	5,057.55	15.86	15.61	-150.27	-468.50	125.80	50.45	20.45	30.00	1.682	
5,200.00	5,145.91	5,198.42	5,155.79	16.30	16.04	-153.06	-486.73	128.36	52.34	21.18	31.16	1.680	SF
5,300.00	5,243.64	5,298.37	5,254.03	16.75	16.47	-155.66	-504.97	130.92	54.34	22.04	32.30	1.682	
5,400.00	5,341.38	5,398.32	5,352.27	17.20	16.91	-158.07	-523.20	133.48	56.45	23.04	33.41	1.690	
5,500.00	5,439.11	5,498.27	5,450.51	17.65	17.34	-160.30	-541.43	136.04	58.65	24.15	34.50	1.700	
5,600.00	5,536.84	5,598.22	5,548.75	18.10	17.78	-162.36	-559.67	138.60	60.94	25.36	35.57	1.713	
5,700.00	5,634.58	5,698.18	5,646.99	18.55	18.22	-164.27	-577.90	141.15	63.29	26.67	36.62	1.728	
5,800.00	5,732.31	5,798.13	5,745.23	19.00	18.66	-166.05	-596.13	143.71	65.72	28.07	37.65	1.745	
5,900.00	5,830.04	5,898.08	5,843.47	19.46	19.10	-167.70	-614.37	146.27	68.20	29.53	38.67	1.764	
6,000.00	5,927.77	5,998.03	5,941.71	19.92	19.54	-169.23	-632.60	148.83	70.73	31.07	39.67	1.783	
6,100.00	6,025.51	6,097.98	6,039.95	20.37	19.98	-170.65	-650.83	151.39	73.31	32.66	40.65	1.803	
6,200.00	6,123.24	6,197.93	6,138.19	20.83	20.43	-171.98	-669.06	153.95	75.94	34.31	41.63	1.824	
6,300.00	6,220.97	6,297.88	6,236.43	21.29	20.87	-173.21	-687.30	156.51	78.60	36.01	42.59	1.845	
6,400.00	6,318.71	6,397.83	6,334.67	21.75	21.32	-174.37	-705.53	159.07	81.29	37.75	43.55	1.867	
6,500.00	6,416.44	6,497.78	6,432.91	22.21	21.76	-175.45	-723.76	161.63	84.02	39.53	44.49	1.888	
6,600.00	6,514.17	6,597.73	6,531.15	22.67	22.21	-176.46	-742.00	164.19	86.77	41.34	45.43	1.910	
6,700.00	6,611.90	6,697.68	6,629.39	23.13	22.66	-177.41	-760.23	166.75	89.55	43.19	46.37	1.931	
6,800.00	6,709.64	6,797.63	6,727.64	23.60	23.11	-178.31	-778.46	169.31	92.35	45.06	47.30	1.953	
6,900.00	6,807.37	6,897.58	6,825.88	24.06	23.55	-179.15	-796.70	171.87	95.18	46.96	48.22	1.974	
7,000.00	6,905.10	6,997.53	6,924.12	24.52	24.00	-179.94	-814.93	174.43	98.02	48.88	49.14	1.995	
7,100.00	7,002.84	7,097.49	7,022.36	24.99	24.45	179.32	-833.16	176.99	100.88	50.83	50.05	2.015	
7,200.00	7,100.57	7,197.44	7,120.60	25.45	24.90	178.61	-851.39	179.55	103.76	52.79	50.97	2.036	
7,300.00	7,198.30	7,297.39	7,218.84	25.92	25.36	177.94	-869.63	182.11	106.65	54.77	51.88	2.056	
7,400.00	7,296.03	7,397.34	7,317.08	26.39	25.81	177.31	-887.86	184.67	109.56	56.77	52.78	2.076	
7,435.30	7,330.53	7,432.62	7,351.75	26.55	25.97	177.10	-894.30	185.57	110.58	57.49	53.10	2.083	
7,450.00	7,344.91	7,447.31	7,366.20	26.61	26.03	168.92	-896.98	185.95	110.96	57.73	53.23	2.084	
7,475.00	7,369.36	7,472.29	7,390.74	26.72	26.15	155.41	-901.53	186.59	111.33	57.86	53.48	2.082	
7,500.00	7,393.76	7,497.17	7,415.20	26.82	26.26	143.75	-906.07	187.23	111.42	57.69	53.73	2.074	
7,525.00	7,418.04	7,521.91	7,439.51	26.90	26.37	134.87	-910.58	187.86	111.30	57.33	53.97	2.062	
7,550.00	7,442.14	7,546.42	7,463.61	26.98	26.48	128.85	-915.06	188.49	111.10	56.93	54.17	2.051	
7,575.00	7,465.99	7,570.64	7,487.42	27.04	26.59	125.31	-919.47	189.11	110.98	56.70	54.28	2.045	
7,575.63	7,466.58	7,571.25	7,488.01	27.04	26.59	125.25	-919.58	189.12	110.98	56.70	54.28	2.045	
7,600.00	7,489.53	7,594.52	7,510.88	27.10	26.70	123.77	-923.83	189.72	111.16	56.92	54.24	2.049	
7,625.00	7,512.68	7,617.97	7,533.93	27.14	26.80	123.77	-928.11	190.32	111.88	57.88	54.00	2.072	
7,650.00	7,535.39	7,640.94	7,556.51	27.18	26.91	124.91	-932.30	190.91	113.41	59.91	53.50	2.120	
7,675.00	7,557.60	7,663.36	7,578.55	27.21	27.01	126.84	-936.39	191.48	116.02	63.31	52.71	2.201	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De	- ON	Jakku 3	6 Fed Sta	te Com 132	H - OH - F	Plan 1 04-17	-23					Offset Site Error:	0.00 u
Survey Prog	ram:								Dist	ance		Offset Well Error:	1.00 u
Refer	ence Vertical	Offse	Vertical	Semi Major	Axis Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
Measured Depth (usft)	Depth (usft)	Measured Depth (usft)	Depth (usft)	Reference (usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	wanning
7,700.00	7,579.24	7,685.17	7,599.99	27.24	27.11	129.25	-940.37	192.04	119.95	68.32	51.63	2.323	
7,725.00	7,600.25	7,706.32	7,620.77	27.27	27.20	131.88	-944.22	192.58	125.41	75.10	50.31	2.493	
7,750.00	7,620.58	7,726.74	7,640.84	27.29	27.30	134.51	-947.95	193.10	132.52	83.69	48.83	2.714	
7,775.00	7,640.17	7,746.38	7,660.14	27.31	27.39	137.01	-951.53	193.61	141.34	94.05	47.29	2.989	
7,800.00	7,658.97	7,765.18	7,678.63	27.34	27.47	139.25	-954.96	194.09	151.88	106.09	45.79	3.317	
7,825.00	7,676.92	7,783.10	7,696.23	27.37	27.55	141.18	-958.23	194.55	164.05	119.67	44.39	3.696	
7,850.00	7,693.98	7,800.08	7,712.92	27.40	27.63	142.75	-961.33	194.98	177.79	134.65	43.14	4.121	
7,875.00	7,710.10	7,816.07	7,728.65	27.43	27.70	143.94	-964.25	195.39	192.97	150.91	42.06	4.588	
7,900.00	7,725.23	7,831.04	7,743.36	27.47	27.77	144.73	-966.98	195.78	209.47	168.32	41.15	5.091	
7,925.00	7,739.34	7,844.94	7,757.02	27.52	27.83	145.11	-969.51	196.13	227.17	186.78	40.39	5.625	
7,950.00	7,752.39	7,857.74	7,769.60	27.57	27.89	145.05	-971.85	196.46	245.95	206.19	39.76	6.185	
7,975.00	7,764.33	7,869.39	7,781.06	27.64	27.94	144.52	-973.97	196.76	265.70	226.45	39.25	6.769	
8,000.00	7,775.14	7,879.88	7,791.36	27.72	27.99	143.45	-975.89	197.03	286.32	247.48	38.84	7.373	
8,025.00	7,784.79	7,889.16	7,800.48	27.80	28.03	141.77	-977.58	197.26	307.69	269.20	38.50	7.993	
8,050.00	7,793.25	7,897.21	7,808.40	27.90	28.07	139.35	-979.05	197.47	329.73	291.51	38.22	8.628	
8,075.00	7,800.49	7,904.02	7,815.09	28.02	28.10	136.02	-980.29	197.64	352.33	314.34	37.99	9.275	
8,100.00	7,806.51	7,909.55	7,820.53	28.14	28.13	131.56	-981.30	197.79	375.41	337.61	37.80	9.933	
8,125.00	7,811.27	7,913.81	7,824.71	28.28	28.15	125.70	-982.07	197.90	398.88	361.24	37.63	10.599	
8,150.00	7,814.77	7,916.77	7,827.62	28.43	28.16	118.17	-982.61	197.97	422.65	385.15	37.50	11.271	
8,175.00	7,817.01	7,918.42	7,829.25	28.60	28.17	108.81	-982.92	198.01	446.64	409.27	37.38	11.949	
8,200.00	7,817.96	7,918.77	7,829.59	28.78	28.17	97.86	-982.98	198.02	470.78	433.51	37.27	12.631	
8,206.14	7,818.00	7,918.66	7,829.48	28.82	28.17	95.00	-982.96	198.02	476.72	439.47	37.25	12.798	
8,300.00	7,818.00	7,916.31	7,827.17	29.60	28.16	93.89	-982.53	197.96	568.04	531.05	36.98	15.359	
8,400.00	7,818.00	7,913.80	7,824.71	30.57	28.15	92.71	-982.07	197.90	666.10	629.26	36.84	18.082	
8,500.00	7,818.00	7,911.30	7,822.24	31.67	28.13	91.54	-981.62	197.83	764.65	727.89	36.76	20.800	
8,600.00	7,818.00	7,908.80	7,819.78	32.89	28.12	90.37	-981.16	197.77	863.53	826.80	36.72	23.514	
8,700.00	7,818.00	7,906.29	7,817.32	34.22	28.11	89.21	-980.70	197.70	962.63	925.92	36.71	26.223	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De Survey Prog	- 10	MWD+HRGM		Com 002H -								Offered Mail En	1.00 u
Refer	jiani.	Offs	et	Semi Major	Axis			ana Comton	Dist	ance		Offset Well Error:	1.00 u
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbo		Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
	(usft)												
12,100.00	7,818.00	7,663.08	7,661.34	102.68	13.95	86.56	-944.90	-5,085.13	944.10	897.95	46.15	20.457	
12,200.00	7,818.00	7,663.91	7,662.17	104.92	13.95	86.84	-944.90	-5,085.14	846.03	797.73	48.30	17.518	
12,300.00	7,818.00	7,664.80	7,663.06	107.16	13.95	87.13	-944.90	-5,085.15	748.46	697.41	51.06	14.660	
12,400.00	7,818.00	7,665.74	7,664.00	109.41	13.95	87.44	-944.90	-5,085.16	651.63	596.93	54.70	11.912	
12,500.00	7,818.00	7,666.74	7,665.00	111.65	13.95	87.76	-944.89	-5,085.17	555.92	496.24	59.68	9.315	
12,600.00	7,818.00	7,667.80	7,666.06	113.91	13.95	88.11	-944.89	-5,085.19	462.04	395.31	66.72	6.925	
12,700.00	7,818.00	7,668.93	7,667.19	116.16	13.96	88.48	-944.89	-5,085.20	371.35	294.25	77.10	4.817	
12,800.00	7,818.00	7,670.14	7,668.40	118.42	13.96	88.88	-944.89	-5,085.22	286.91	194.06	92.85	3.090	
12,900.00	7,818.00	7,671.43	7,669.69	120.68	13.96	89.31	-944.89	-5,085.24	216.18	100.66	115.52	1.871	
13,000.00	7,818.00	7,672.82	7,671.08	122.94	13.96	89.76	-944.88	-5,085.26	176.48	41.09	135.39	1.303	Level 3
13,027.96	7,818.00	7,673.23	7,671.49	123.57	13.96	89.90	-944.88	-5,085.26	174.25	37.94	136.31	1.278	Level 3, 0
13,100.00	7,818.00	7,674.32	7,672.58	125.20	13.96	90.26	-944.88	-5,085.28	188.56	62.58	125.98	1.497	Level 3
13,200.00	7,818.00	7,675.94	7,674.19	127.47	13.96	90.79	-944.88	-5,085.30	244.86	144.99	99.87	2.452	
13,300.00	7,818.00	7,677.68	7,675.94	129.74	13.97	91.36	-944.88	-5,085.33	323.04	243.62	79.42	4.067	
13,400.00	7,818.00	7,679.58	7,677.84	132.01	13.97	91.99	-944.87	-5,085.36	410.79	344.61	66.17	6.208	
13,500.00	7,818.00	7,681.65	7,679.91	134.28	13.97	92.66	-944.87	-5,085.40	503.12	445.56	57.56	8.740	
13,600.00	7,818.00	7,724.87	7,723.00	136.55	14.13	106.43	-945.49	-5,088.01	597.38	545.10	52.29	11.425	
13,700.00	7,818.00	7,832.77	7,829.12	138.83	14.62	133.84	-955.34	-5,102.84	692.73	643.63	49.10	14.108	
13,800.00	7,818.00	7,866.27	7,861.31	141.11	14.69	140.33	-962.06	-5,109.24	787.49	741.49	46.00	17.120	
13,900.00	7,818.00	9,111.88	8,519.97	143.39	23.65	176.93	-1,076.40	-5,956.97	849.39	775.74	73.65	11.533	
13,921.15	7,818.00	9,133.15	8,519.96	143.87	24.02	176.92	-1,076.27	-5,978.24	849.38	775.50	73.89	11.496	
14,000.00	7,818.00	9,211.80	8,519.93	145.67	25.44	176.91	-1,076.34	-6,056.89	849.37	774.59	74.78	11.358	
14,021.04	7,818.00	9,232.76	8,519.94	146.15	25.82	176.91	-1,076.43	-6,077.85	849.37	774.35	75.02	11.322	
14,100.00	7,818.00	9,312.44	8,519.95	147.95	27.31	176.93	-1,076.99	-6,157.53	849.37	773.45	75.92	11.188	
14,200.00	7,818.00	9,414.70	8,519.77	150.23	29.28	176.96	-1,077.82	-6,259.78	849.17	772.10	77.07	11.018	
14,300.00	7,818.00	9,514.27	8,519.38	152.52	31.26	176.96	-1,078.15	-6,359.35	848.77	770.51	78.27	10.844	
	7 0 1 0 0 0	0.045.04	0.510.10	154.00		170.07	1 070 57	0.400.00	0.40 57	700.00	70.40	40.070	
14,400.00	7,818.00	9,615.84	8,519.18	154.80	33.31	176.97	-1,078.57	-6,460.92	848.57	769.08	79.49	10.676	
14,500.00	7,818.00	9,719.35	8,518.33	157.09	35.46	176.95	-1,078.67	-6,564.43	847.77	767.00	80.76	10.497	
14,600.00	7,818.00	9,817.15	8,517.49	159.38	37.50	176.92	-1,078.57	-6,662.22	846.92	764.90	82.03	10.325	
14,700.00 14,800.00	7,818.00 7,818.00	9,918.90 10,014.35	8,516.80 8,516.39	161.67 163.96	39.65 41.69	177.02 177.24	-1,080.32 -1,084.01	-6,763.96 -6,859.33	846.18 845.57	762.94 761.25	83.24 84.32	10.166 10.028	
14,000.00	7,010.00	10,014.35	0,510.59	103.90	41.09	177.24	-1,004.01	-0,059.55	045.57	701.23	04.52	10.020	
14,900.00	7,818.00	10,117.08	8,516.05	166.25	43.90	177.51	-1,088.32	-6,961.96	845.06	759.62	85.44	9.890	
15,000.00	7,818.00	10,214.44	8,515.76	168.54	46.01	177.76	-1,092.26	-7,059.25	844.60	758.03	86.57	9.756	
15,100.00	7,818.00	10,314.09	8,515.65	170.83	48.21	178.05	-1,096.83	-7,158.79	844.35	756.60	87.75	9.622	
15,200.00	7,818.00	10,413.23	8,515.60	173.13	50.40	178.35	-1,101.55	-7,257.82	844.15	755.23	88.92	9.493	
15,300.00	7,818.00	10,516.39	8,515.56	175.42	52.68	178.61	-1,105.71	-7,360.89	844.02	753.89	90.12	9.365	
15,400.00	7,818.00	10,610.41	8,515.33	177.72	54.77	178.55	-1,105.15	-7,454.90	843.80	752.31	91.49	9.223	
15,400.33	7,818.00	10,610.71	8,515.33	177.73	54.77	178.55	-1,105.15	-7,455.20	843.80	752.31	91.49	9.223	
15,500.00	7,818.00	10,712.03	8,515.64	180.01	57.03	178.35	-1,102.45	-7,556.49	844.19	751.19	93.01	9.077	
15,600.00	7,818.00	10,823.66	8,514.89	182.31	59.53	178.10	-1,099.27	-7,668.06	843.63	749.00	94.63	8.915	
15,700.00	7,818.00	10,935.21	8,512.44	184.61	62.03	177.89	-1,096.55	-7,779.55	841.52	745.28	96.24	8.744	
15,800.00	7,818.00	11,042.40	8,508.99	186.91	64.45	177.71	-1,094.41	-7,886.67	838.39	740.58	97.81	8.571	
15,900.00 16,000.00	7,818.00	11,143.79	8,505.07 8 501 94	189.21	66.73	177.54	-1,092.31	-7,987.95	834.62 831.36	735.25	99.37 100.94	8.399 8.236	
	7,818.00	11,235.92	8,501.94	191.51	68.81	177.34	-1,089.86	-8,080.00	831.36	730.42			
16,100.00	7,818.00	11,324.92	8,499.84	193.81	70.82	177.12	-1,087.10	-8,168.93	829.17	726.65	102.53	8.087	
16,200.00	7,818.00	11,412.38	8,499.09	196.11	72.81	176.91	-1,084.38	-8,256.35	828.49	724.40	104.10	7.959	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Page 13

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De	- 40 I	Ivore 35	Federal (Com 002H -	OH - Sur	veys						Offset Site Error:	0.00 u
Survey Prog Refer	ram:	Offs		Semi Major	Avia				Dist	ance		Offset Well Error:	1.00 u
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	Offset Wellb +N/-S	+E/-W	Between Centers	Between Ellipses	Minimum Separation	Separation Factor	Warning
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft	(usft)	(usft)	(usft)	(usft)		
16,200.09	7,818.00	11,412.46	8,499.09	196.11	72.81	176.91	-1,084.38	-8,256.42	828.49	724.40	104.10	7.959	
16,300.00	7,818.00	11,501.04	8,499.54	198.41	74.83	176.65	-1,080.80	-8,344.93	829.25	723.52	105.73	7.843	
16,300.01	7,818.00	11,501.05	8,499.54	198.41	74.83	176.65	-1,080.80	-8,344.94	829.25	723.52	105.73	7.843	
16,400.00	7,818.00	11,584.00	8,501.21	200.71	76.71	176.31	-1,076.13	-8,427.74	831.64	724.28	107.37	7.746	
16,500.00	7,818.00	11,728.29	8,503.39	203.01	79.98	175.44	-1,063.68	-8,571.45	834.35	724.12	110.23	7.569	
16,600.00	7,818.00	11,882.00	8,493.26	205.32	83.50	175.17	-1,061.10	-8,724.60	827.15	714.96	112.19	7.373	
16,700.00	7,818.00	11,948.00	8,490.80	207.62	84.98	175.62	-1,067.99	-8,790.17	822.07	708.95	113.12	7.267	
16,800.00	7,818.00	12,028.98	8,490.56	209.92	86.79	176.27	-1,077.56	-8,870.58	820.61	706.86	113.75	7.214	
16,900.00	7,818.00	12,108.15	8,489.98	212.23	88.57	176.88	-1,086.59	-8,949.23	819.43	705.00	114.43	7.161	
17,000.00	7,818.00	12,240.34	8,491.52	214.53	91.56	177.73	-1,099.05	-9,080.80	820.72	705.41	115.31	7.118	
17,100.00	7,818.00	12,321.88	8,489.53	216.84	93.40	178.17	-1,105.78	-9,162.03	818.16	701.77	116.39	7.029	
17,200.00	7,818.00	12,391.91	8,490.71	219.15	94.99	178.63	-1,112.42	-9,231.73	819.53	702.17	117.36	6.983	
17,300.00	7,818.00	12,558.50	8,489.16	221.45	98.76	179.69	-1,128.11	-9,397.49	818.39	699.83	118.56	6.903	
17,400.00	7,818.00	12,665.23	8,480.55	223.76	101.18	-179.81	-1,135.65	-9,503.59	810.11	690.27	119.84	6.760	
17,500.00	7,818.00	12,714.44	8,479.50	226.07	102.30	-179.63	-1,138.25	-9,552.70	807.73	686.56	121.17	6.666	
17,500.09	7,818.00	12,714.50	8,479.50	226.07	102.30	-179.63	-1,138.25	-9,552.76	807.73	686.56	121.17	6.666	
17,600.00	7,818.00	12,790.53	8,481.26	228.37	104.04	-179.59	-1,139.07	-9,628.76	809.97	687.51	122.45	6.615	
17,600.01	7,818.00	12,790.54	8,481.26	228.37	104.04	-179.59	-1,139.07	-9,628.77	809.97	687.51	122.45	6.615	
17,700.00	7,818.00	12,897.33	8,484.69	230.68	106.49	-179.75	-1,137.14	-9,735.48	813.18	689.12	124.06	6.555	
17,700.41	7,818.00	12,897.63	8,484.70	230.69	106.50	-179.75	-1,137.14	-9,735.78	813.19	689.13	124.06	6.555	
17,800.00	7,818.00	12,970.82	8,487.82	232.99	108.18	-179.95	-1,134.55	-9,808.86	817.42	692.11	125.31	6.523	
17,803.64	7,818.00	12,973.51	8,487.98	233.07	108.24	-179.96	-1,134.44	-9,811.53	817.64	692.28	125.36	6.522	
17,900.00	7,818.00	13,094.55	8,494.97	235.30	111.02	179.61	-1,128.66	-9,932.23	823.55	696.27	127.28	6.470	
17,920.00	7,818.00	13,133.16	8,495.66	235.76	111.90	179.48	-1,126.82	-9,970.79	823.92	696.10	127.82	6.446	
18,000.00	7,818.00	13,218.00	8,495.22	237.61	113.85	179.19	-1,123.03	-10,055.54	823.51	694.29	129.21	6.373	
18,000.01	7,818.00	13,218.00	8,495.22	237.61	113.85	179.19	-1,123.03	-10,055.54	823.51	694.29	129.21	6.373	
18,100.00	7,818.00	13,218.00	8,495.22	239.92	113.85	179.19	-1,123.03	-10,055.54	829.70	700.48	129.22	6.421	
18,102.20	7,818.00	13,218.00	8,495.22	239.97	113.85	179.19	-1,123.03	-10,055.54	829.98	700.77	129.21	6.424	
18,174.14	7,818.00	13,218.00	8,495.22	241.63	113.85	179.19	-1,123.03	-10,055.54	841.97	713.78	128.20	6.568	

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

ffset De	100	B-GYRO-NS, 4	95-MWD	e Com 002H		arveye						Offset Site Error:	4.00
urvey Prog Refer	rain.	Offs		Semi Major	Axis		Offect Molle	oro Contor	Dist	ance		Offset Well Error:	1.00
leasured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
Depth	Depth	Depth	Depth			Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)								
8,075.00	7,800.49	12,940.25	8,623.55	28.02	115.12	-163.06	-1,379.85	-157.86	997.72	934.53	63.19	15.789	
8,100.00	7,806.51	12,916.87	8,623.25	28.14	114.55	-163.31	-1,378.87	-181.22	990.98	928.02	62.96	15.740	
8,125.00	7,811.27	12,893.18	8,622.97	28.28	113.97	-163.52	-1,377.85	-204.89	985.53	922.81	62.72	15.712	
8,150.00	7,814.77	12,869.24	8,622.70	28.43	113.38	-163.69	-1,376.81	-228.80	981.38	918.89	62.48	15.706	
8,155.96	7,815.42	12,863.50	8,622.64	28.47	113.24	-163.73	-1,376.56	-234.54	980.58	918.16	62.42	15.708	
8,175.00	7,817.01	12,843.89	8,622.45	28.60	112.76	-163.83	-1,375.69	-254.13	978.53	916.30	62.23	15.725	
8,180.62	7,817.33	12,837.31	8,622.37	28.64	112.60	-163.86	-1,375.39	-260.70	978.06	915.90	62.16	15.734	
8,200.00	7,817.96	12,814.59	8,622.08	28.78	112.04	-163.94	-1,374.32	-283.39	976.91	914.97	61.94	15.773	
8,206.14	7,818.00	12,807.38	8,621.97	28.82	111.86	-163.96	-1,373.98	-290.59	976.70	914.83	61.86	15.788	
8,206.34	7,818.00	12,807.15	8,621.97	28.82	111.86	-163.96	-1,373.96	-290.82	976.69	914.83	61.86	15.788	
8,300.00	7,818.00	12,703.08	8,619.77	29.60	109.30	-164.26	-1,368.42	-394.72	973.33	912.51	60.82	16.004	
8,400.00	7 848 00	12,601.61	8,617.11	30.57	106.91	-164.56	1 262 66	-496.00	969.19	909.33	59.86	16 101	
	7,818.00	12,501.61	8,614.59		106.81		-1,362.66		969.19 965.11	909.33 906.11	59.66	16.191	
8,500.00	7,818.00			31.67	104.38	-164.87	-1,356.86	-595.12				16.360	
8,600.00	7,818.00	12,401.27	8,612.08	32.89	101.90	-165.21	-1,350.61	-695.91	961.03	902.85	58.17	16.520	
8,700.00	7,818.00	12,299.61	8,609.39	34.22	99.41	-165.56	-1,344.21	-797.33	956.79	899.38	57.42	16.663	
8,800.00	7,818.00	12,200.13	8,606.60	35.64	96.97	-165.89	-1,338.17	-896.58	952.49	895.73	56.76	16.781	
8,900.00	7,818.00	12,098.28	8,603.68	37.15	94.48	-166.23	-1,331.93	-998.20	948.16	892.02	56.14	16.889	
9,000.00	7,818.00	12,003.05	8,601.12	38.73	92.15	-166.57	-1,325.84	-1,093.20	943.95	888.34	55.62	16.972	
9,100.00	7,818.00	11,890.34	8,597.50	40.38	89.39	-166.99	-1,318.20	-1,205.59	939.18	884.19	54.99	17.078	
9,200.00	7,818.00	11,794.83	8,594.20	42.10	87.05	-167.36	-1,311.46	-1,300.81	934.17	879.62	54.55	17.126	
9,300.00	7,818.00	11,697.62	8,591.24	43.86	84.67	-167.76	-1,304.46	-1,397.72	929.56	875.44	54.13	17.174	
9,400.00	7,818.00	11,598.15	8,588.32	45.68	82.24	-168.17	-1,297.44	-1,496.90	925.15	871.41	53.73	17.218	
9,500.00	7,818.00	11,499.19	8,585.35	47.54	79.82	-168.57	-1,290.60	-1,595.58	920.75	867.36	53.39	17.246	
9,600.00	7,818.00	11,402.07	8,582.75	49.43	77.45	-168.97	-1,283.88	-1,692.43	916.70	863.60	53.09	17.266	
9,700.00	7,818.00	11,301.14	8,580.05	51.36	74.99	-169.38	-1,276.95	-1,793.08	912.71	859.91	52.81	17.284	
9,800.00	7,818.00	11,201.28	8,577.28	53.32	72.56	-169.80	-1,269.96	-1,892.66	908.65	856.09	52.56	17.287	
9,900.00	7,818.00	11,109.26	8,574.99	55.31	70.32	-170.20	-1,263.47	-1,984.42	904.93	852.52	52.40	17.268	
0,000.00	7,818.00	11,016.77	8,574.02	57.33	68.06	-170.68	-1,255.95	-2,076.60	902.47	850.22	52.25	17.273	
0,100.00	7,818.00	10,915.86	8,573.07	59.36	65.61	-171.22	-1,247.43	-2,177.15	900.15	848.08	52.07	17.287	
0,200.00	7,818.00	10,814.94	8,572.02	61.42	63.16	-171.76	-1,239.05	-2,277.71	897.84	845.90	51.94	17.286	
0,300.00	7,818.00	10,713.28	8,570.63	63.49	60.69	-172.26	-1,231.28	-2,379.07	895.38	843.52	51.86	17.267	
	-	10 000 0-		·				0.405.55	000 000	0.45	_	17.000	
0,400.00	7,818.00	10,609.22	8,568.83	65.59	58.17	-172.74	-1,223.86	-2,482.85	892.68	840.88	51.80	17.232	
0,500.00	7,818.00	10,510.64	8,566.75	67.69	55.79	-173.16	-1,217.33	-2,581.18	889.73	837.91	51.82	17.171	
0,600.00	7,818.00	10,414.66	8,564.99	69.81	53.48	-173.53	-1,211.62	-2,676.98	887.18	835.30	51.88	17.101	
0,700.00	7,818.00	10,313.73	8,563.29	71.95	51.06	-173.89	-1,206.13	-2,777.75	884.87	832.92	51.95	17.033	
0,800.00	7,818.00	10,211.48	8,561.30	74.09	48.61	-174.25	-1,200.61	-2,879.82	882.35	830.30	52.04	16.954	
0,900.00	7,818.00	10,107.22	8,558.87	76.24	46.12	-174.62	-1,195.06	-2,983.91	879.47	827.31	52.16	16.861	
11,000.00	7,818.00	10,003.95	8,555.91	78.41	43.66	-174.97	-1,189.71	-3,087.00	876.12	823.80	52.31	16.748	
11,100.00	7,818.00	9,906.71	8,553.11	80.58	41.36	-175.28	-1,184.98	-3,184.08	872.80	820.28	52.51	16.620	
1,200.00	7,818.00	9,808.35	8,550.50	82.76	39.05	-175.56	-1,180.84	-3,282.32	869.80	817.06	52.74	16.493	
11,300.00	7,818.00	9,707.99	8,547.77	84.95	36.70	-175.84	-1,176.74	-3,382.56	866.74	813.76	52.98	16.359	
11 400 00	7 040 00	9,611.56	0 5/5 25	07 45	24 47	170.00	1 173 00	2 479 00	060.06	910 70	E0.00	16 221	
1,400.00	7,818.00		8,545.35	87.15	34.47	-176.08	-1,173.22	-3,478.90	863.96	810.70	53.26	16.221	
11,500.00	7,818.00	9,516.68	8,543.35	89.35	32.29	-176.32	-1,169.77	-3,573.70	861.60	808.03	53.57	16.083	
11,600.00	7,818.00	9,409.46	8,541.65	91.56	29.85	-176.59	-1,165.93	-3,680.83	859.82	805.94	53.88	15.957	
11,700.00	7,818.00	9,294.41	8,537.33	93.78	27.26	-177.06	-1,159.00	-3,795.58	855.64	801.40	54.24	15.774	
11,800.00	7,818.00	9,190.36	8,532.78	96.00	24.96	-177.59	-1,151.12	-3,899.23	850.89	796.19	54.70	15.555	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset Des	U 400	Smokey		e Com 002⊦	I - OH - S	urveys						Offset Site Error:	0.00 usft
Survey Progr Refere	ram:	-GYRO-NS, 48 Offse		Semi Major	Axio				Dist	ance		Offset Well Error:	1.00 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
11,900.00	7,818.00	9,089.24	8,528.09	98.22	22.76	-178.39	-1,139.53	-3,999.57	845.81	790.52	55.29	15.298	
12,000.00	7,818.00	8,033.83	8,018.13	100.45	11.11	159.63	-994.11	-4,816.23	838.73	791.99	46.75	17.942	
12,100.00	7,818.00	7,717.52	7,716.19	102.68	11.16	100.26	-939.06	-4,881.40	746.69	698.14	48.55	15.381	
12,200.00	7,818.00	7,714.64	7,713.33	104.92	11.16	99.36	-938.86	-4,881.48	650.17	597.95	52.22	12.451	
12,300.00	7,818.00	7,711.79	7,710.49	107.16	11.16	98.47	-938.66	-4,881.56	554.87	497.65	57.22	9.697	
12,400.00	7,818.00	7,708.97	7,707.67	109.41	11.16	97.58	-938.46	-4,881.63	461.55	397.27	64.27	7.181	
12,500.00	7,818.00	7,706.17	7,704.88	111.65	11.17	96.70	-938.26	-4,881.71	371.70	297.09	74.61	4.982	
12,600.00	7,818.00	7,703.40	7,702.12	113.91	11.17	95.83	-938.07	-4,881.78	288.57	198.49	90.09	3.203	
12,700.00	7,818.00	7,700.69	7,699.42	116.16	11.17	94.97	-937.89	-4,881.85	219.95	108.25	111.69	1.969	
12,800.00	7,818.00	7,697.84	7,696.57	118.42	11.17	94.07	-937.69	-4,881.93	182.93	53.65	129.29	1.415	Level 3
12,824.62	7,818.00	7,697.14	7,695.88	118.97	11.17	93.85	-937.64	-4,881.95	181.27	51.42	129.85	1.396	Level 3, CC, E
12,900.00	7,818.00	7,695.04	7,693.78	120.68	11.17	93.19	-937.50	-4,882.00	196.31	76.64	119.67	1.640	
13,000.00	7,818.00	7,692.29	7,691.04	122.94	11.17	92.32	-937.32	-4,882.07	252.18	156.96	95.22	2.648	
13,100.00	7,818.00	7,689.61	7,688.36	125.20	11.17	91.47	-937.15	-4,882.14	329.61	253.84	75.76	4.350	
13,200.00	7,818.00	7,686.97	7,685.73	127.47	11.17	90.64	-936.98	-4,882.21	416.74	353.78	62.96	6.619	
13,300.00	7,818.00	7,684.39	7,683.16	129.74	11.17	89.83	-936.82	-4,882.27	508.62	454.05	54.56	9.321	
13,400.00	7,818.00	7,681.86	7,680.63	132.01	11.17	89.03	-936.67	-4,882.33	603.07	554.19	48.89	12.336	
13,500.00	7,818.00	7,679.37	7,678.15	134.28	11.17	88.25	-936.52	-4,882.39	699.06	654.14	44.92	15.561	
13,600.00	7,818.00	7,676.94	7,675.72	136.55	11.17	87.49	-936.38	-4,882.45	796.03	753.95	42.08	18.916	
13,700.00	7,818.00	7,674.55	7,673.33	138.83	11.17	86.74	-936.24	-4,882.51	893.67	853.66	40.00	22.340	
13,800.00	7,818.00	7,672.20	7,670.99	141.11	11.17	86.01	-936.11	-4,882.57	991.77	953.31	38.45	25.792	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

iset De	100	Arco Ho	ondo 1 - O	H - Surveys								Offset Site Error:	0.00 u
vey Prog	ann.	-INC-ONLY	-	Com 1	Avia				Dist	ance		Offset Well Error:	1.00 u
Refer asured	ence Vertical	Offs Measured	et Vertical	Semi Major Reference	Axis Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
epth usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
0.00	0.00	67.00	67.00	1.00	1.77	-3.69	316.81	-20.42	317.46				
100.00	100.00	168.00	168.00	1.28	3.77	-3.69	317.00	-20.42	317.65	312.61	5.05	62.936	
141.13	141.13	208.15	208.13	1.46	4.60	-3.69	316.81	-20.42	317.46	311.40	6.06	52.380	
200.00	200.00	268.02	268.00	1.76	5.85	-3.69	317.00	-20.42	317.65	310.04	7.61	41.722	
241.13	241.13	308.16	308.13	1.91	6.70	-3.69	316.81	-20.42	317.46	308.85	8.61	36.869	
300.00	300.00	368.04	368.00	2.14	7.96	-3.69	317.00	-20.42	317.65	307.55	10.10	31.449	
341.13	341.13	408.18	408.13	2.27	8.81	-3.69	316.81	-20.42	317.46	306.38	11.08	28.648	
400.00	400.00	468.05	468.00	2.47	10.07	-3.69	317.00	-20.42	317.65	305.11	12.54	25.328	
441.13	441.13	508.20	508.13	2.59	10.92	-3.69	316.81	-20.42	317.46	303.95	13.51	23.497	
500.00	500.00	568.07	568.00	2.76	12.19	-3.69	317.00	-20.42	317.65	302.70	14.95	21.245	
541.13	541.13	608.21	608.13	2.87	13.05	-3.69	316.81	-20.42	317.46	301.55	15.91	19.952	
600.00	600.00	668.09	668.00	3.02	14.32	-3.69	317.00	-20.42	317.65	300.32	17.34	18.321	
641.13	641.13	708.23	708.13	3.12	15.17	-3.69	316.81	-20.42	317.46	299.17	18.29	17.356	
700.00	700.00	768.10	768.00	3.27	16.44	-3.69	317.00	-20.42	317.65	297.95	19.71	16.118	
741.13	741.13	808.24	808.13	3.36	17.29	-3.69	316.81	-20.42	317.46	296.81	20.66	15.370	
800.00	800.00	868.12	868.00	3.50	18.57	-3.69	317.00	-20.42	317.65	295.59	22.06	14.398	
841.13	841.13	908.26	908.13	3.59	19.42	-3.69	316.81	-20.42	317.46	294.46	23.01	13.800	
900.00	900.00	968.13	968.00	3.71	20.69	-3.69	317.00	-20.42	317.40	293.25	24.41	13.015	
941.13	941.13	1,008.27	1,008.13	3.80	21.55	-3.69	316.81	-20.42	317.46	292.12	25.34	12.526	
,000.00	1,000.00	1,068.15	1,068.00	3.92	22.82	-3.69	317.00	-20.42	317.65	290.91	26.74	11.880	
,041.13	1,041.13	1,108.29	1,108.13	4.00	23.67	-3.69	316.81	-20.42	317.46	289.79	27.67	11.471	
,100.00	1,100.00	1,168.17	1,168.01	4.12	24.95	-3.69	317.00	-20.42	317.65	288.59	29.06	10.929	
,141.13	1,141.13	1,208.30	1,208.13	4.20	25.80	-3.69	316.81	-20.42	317.46	287.47	30.00	10.583	
,200.00	1,200.00	1,268.18	1,268.01	4.31	27.07	-3.69	317.00	-20.42	317.65	286.27	31.38	10.122	
1,241.13	1,241.13	1,308.32	1,308.13	4.39	27.93	-3.69	316.81	-20.42	317.46	285.15	32.31	9.825	
,300.00	1,300.00	1,368.20	1,368.01	4.49	29.20	-3.69	317.00	-20.42	317.65	283.96	33.69	9.428	
,341.13	1,341.13	1,408.33	1,408.13	4.57	30.05	-3.69	316.81	-20.42	317.46	282.84	34.62	9.170	
,400.00	1,400.00	1,468.21	1,468.01	4.67	31.33	-3.69	317.00	-20.42	317.65	281.65	36.00	8.824	
,441.13	1,441.13	1,508.35	1,508.13	4.74	32.18	-3.69	316.81	-20.42	317.46	280.54	36.92	8.598	
,500.00	1,500.00	1,568.23	1,568.01	4.85	33.46	-3.69	317.00	-20.42	317.65	279.35	38.30	8.294	
,541.13	1,541.13	1,608.36	1,608.13	4.91	34.31	-3.69	316.81	-20.42	317.46	278.24	39.22	8.094	
,600.00	1,600.00	1,668.25	1,668.01	5.01	35.58	-3.69	317.00	-20.42	317.65	277.06	40.60	7.825	
,641.13	1,641.13	1,708.38	1,708.13	5.08	36.44	-3.69	316.81	-20.42	317.46	275.95	41.52	7.646	
,700.00	1,700.00	1,768.26	1,768.01	5.18	37.71	-3.69	317.00	-20.42	317.65	274.77	42.89	7.406	
,741.13	1,741.13	1,808.39	1,808.13	5.24	38.56	-3.69	316.81	-20.42	317.46	273.66	43.81	7.247	
,800.00	1,800.00	1,868.28	1,868.01	5.34	39.84	-3.69	317.00	-20.42	317.65	272.48	45.18	7.031	
,841.13	1,841.13	1,908.41	1,908.13	5.40	40.69	-3.69	316.81	-20.42	317.46	271.37	46.10	6.887	
,900.00	1,900.00	1,968.29	1,968.01	5.50	41.97	-3.69	316.99	-20.42	317.65	270.19	47.46	6.693	
,941.13	1,941.13	2,008.42	2,008.13	5.56	42.82	-3.69	316.81	-20.42	317.46	269.08	48.38	6.562	CC
,000.00	2,000.00	2,068.31	2,068.01	5.65	44.10	-3.69	316.99	-20.42	317.65	267.91	49.74	6.386	
2,032.61	2,032.61	2,102.84	2,102.54	5.69	44.83	-171.62	316.78	-20.42	317.54	267.02	50.52	6.286	
2,100.00	2,099.99	2,168.32	2,168.01	5.78	46.22	-171.63	316.99	-20.42	318.52	266.52	52.00	6.125	ES
2,200.00	2,199.96	2,268.31	2,267.98	5.89	48.35	-171.70	316.99	-20.42	321.11	266.86	54.24	5.920	
,300.00	2,299.86	2,368.24	2,367.90	6.03	50.48	-171.80	317.00	-20.42	325.42	268.92	56.50	5.759	
,400.00	2,399.68	2,468.08	2,467.72	6.18	52.60	-171.95	317.00	-20.42	331.47	272.69	58.78	5.639	
2,500.00	2,499.37	2,567.79	2,567.42	6.35	54.72	-172.12	317.00	-20.42	339.24	278.17	61.07	5.555	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Page 17

Phoenix Technology Services

Anticollision Report

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Offset De	sign		ndo 1 - O	H - Surveys								Offset Site Error:	0.00 usf
Survey Progr Refere	ram:	-INC-ONLY Offse	et	Semi Major	Axis		Offset Wellbo	re Center	Distance			Offset Well Error:	1.00 usf
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
2,600.00	2,598.90	2,667.35	2,666.96	6.55	56.84	-172.33	317.00	-20.42	348.74	285.35	63.39	5.502	
2,700.00	2,698.26	2,766.71	2,766.31	6.77	58.96	-172.55	317.00	-20.42	359.96	294.24	65.72	5.477	SF
2,800.00	2,797.40	2,865.85	2,865.43	7.01	61.07	-172.80	317.00	-20.42	372.91	304.85	68.07	5.479	
2,900.00	2,896.30	2,964.73	2,964.30	7.27	63.17	-173.05	317.01	-20.42	387.59	317.15	70.43	5.503	
3,000.00	2,994.93	3,063.31	3,062.87	7.55	65.27	-173.32	317.01	-20.42	403.98	331.17	72.81	5.548	
3,100.00	3,093.26	3,161.57	3,161.10	7.86	67.36	-173.58	317.01	-20.42	422.09	346.88	75.21	5.612	
3,200.00	3,191.25	3,259.45	3,258.97	8.18	69.44	-173.85	317.02	-20.42	441.92	364.30	77.61	5.694	
3,222.38	3,213.13	3,283.18	3,282.70	8.24	69.95	-173.92	316.93	-20.42	446.51	368.33	78.18	5.711	
3,300.00	3,288.99	3,357.05	3,356.55	8.49	71.52	-174.12	317.02	-20.42	462.94	382.94	80.00	5.787	
3,400.00	3,386.72	3,424.00	3,423.49	8.84	72.94	-174.31	316.81	-20.42	484.74	403.15	81.60	5.941	
3,500.00	3,484.45	3,424.00	3,423.49	9.21	72.94	-174.31	316.81	-20.42	520.84	441.23	79.62	6.542	
3,600.00	3,582.19	3,424.00	3,423.49	9.58	72.94	-174.31	316.81	-20.42	572.35	496.42	75.93	7.538	
3,700.00	3,679.92	3,424.00	3,423.49	9.96	72.94	-174.31	316.81	-20.42	635.52	563.89	71.63	8.873	
3,800.00	3,777.65	3,424.00	3,423.49	10.35	72.94	-174.31	316.81	-20.42	707.24	639.87	67.37	10.498	
3,900.00	3,875.39	3,424.00	3,423.49	10.75	72.94	-174.31	316.81	-20.42	785.17	721.70	63.47	12.371	
4,000.00	3,973.12	3,424.00	3,423.49	11.15	72.94	-174.31	316.81	-20.42	867.63	807.61	60.02	14.455	
4,100.00	4,070.85	3,424.00	3,423.49	11.56	72.94	-174.31	316.81	-20.42	953.46	896.43	57.03	16.719	

Phoenix Technology Services

Anticollision Report

0.00 usft

Offset Site Error:

Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

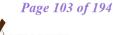
Offset Design	Oxy Ivore Federal 1 - OH - Surveys

Survey Prog	ram:	-INC-ONLY							Dist	ance		Offset Well Error:	1.00 usft
Refer Measured	ence Vertical	Offse Measured	et Vertical	Semi Major Reference	Axis Offset	Highside	Offset Wellbo	ore Center	Between	Between	Minimum	Separation	Warning
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft	+E/-W (usft)	Centers (usft)	Ellipses (usft)	Separation (usft)	Factor	
13,700.00	7,818.00	7,654.87	7,652.75	138.83	184.55	90.66	-453.70	-6,574.86	1,055.91	776.23	279.67	3.775	
13,800.00	7,818.00	7,654.88	7,652.76	141.11	184.55	90.66	-453.70	-6,574.86	980.68	693.24	287.44	3.412	
13,900.00	7,818.00	7,654.88	7,652.77	143.39	184.55	90.66	-453.70	-6,574.86	910.24	614.28	295.96	3.076	
14,000.00	7,818.00	7,654.89	7,652.77	145.67	184.55	90.66	-453.70	-6,574.86	845.77	540.67	305.10	2.772	
14,100.00	7,818.00	7,654.90	7,652.78	147.95	184.55	90.67	-453.70	-6,574.86	788.75	474.19	314.56	2.507	
14,200.00	7,818.00	7,654.90	7,652.78	150.23	184.55	90.67	-453.70	-6,574.86	740.90	417.09	323.81	2.288	
14,300.00	7,818.00	7,654.91	7,652.79	152.52	184.55	90.67	-453.70	-6,574.86	704.08	372.03	332.05	2.120	
14,400.00	7,818.00	7,654.91	7,652.80	154.80	184.55	90.67	-453.70	-6,574.86	680.09	341.79	338.30	2.010	
14,500.00	7,818.00	7,654.92	7,652.80	157.09	184.55	90.67	-453.70	-6,574.86	670.31	328.64	341.67	1.962	
14,515.96	7,818.00	7,654.92	7,652.80	157.46	184.55	90.67	-453.70	-6,574.86	670.12	328.22	341.90	1.960	CC, ES, SF
14,600.00	7,818.00	7,654.93	7,652.81	159.38	184.55	90.67	-453.70	-6,574.86	675.36	333.68	341.68	1.977	
14,700.00	7,818.00	7,654.93	7,652.81	161.67	184.55	90.67	-453.70	-6,574.86	694.92	356.45	338.47	2.053	
14,800.00	7,818.00	7,654.94	7,652.82	163.96	184.55	90.67	-453.70	-6,574.86	727.81	395.08	332.73	2.187	
14,900.00	7,818.00	7,654.94	7,652.83	166.25	184.55	90.67	-453.70	-6,574.86	772.34	446.95	325.39	2.374	
15,000.00	7,818.00	7,654.95	7,652.83	168.54	184.55	90.67	-453.70	-6,574.86	826.62	509.31	317.31	2.605	
15,100.00	7,818.00	7,654.95	7,652.84	170.83	184.55	90.67	-453.70	-6,574.86	888.88	579.72	309.15	2.875	
15,200.00	7,818.00	7,654.96	7,652.84	173.13	184.55	90.67	-453.70	-6,574.86	957.55	656.23	301.32	3.178	
15,300.00	7,818.00	7,654.97	7,652.85	175.42	184.55	90.67	-453.70	-6,574.86	1,031.36	737.33	294.03	3.508	
15,400.00	7,818.00	7,654.97	7,652.86	177.72	184.55	90.67	-453.70	-6,574.86	1,109.28	821.91	287.36	3.860	

Phoenix Technology Services

Anticollision Report

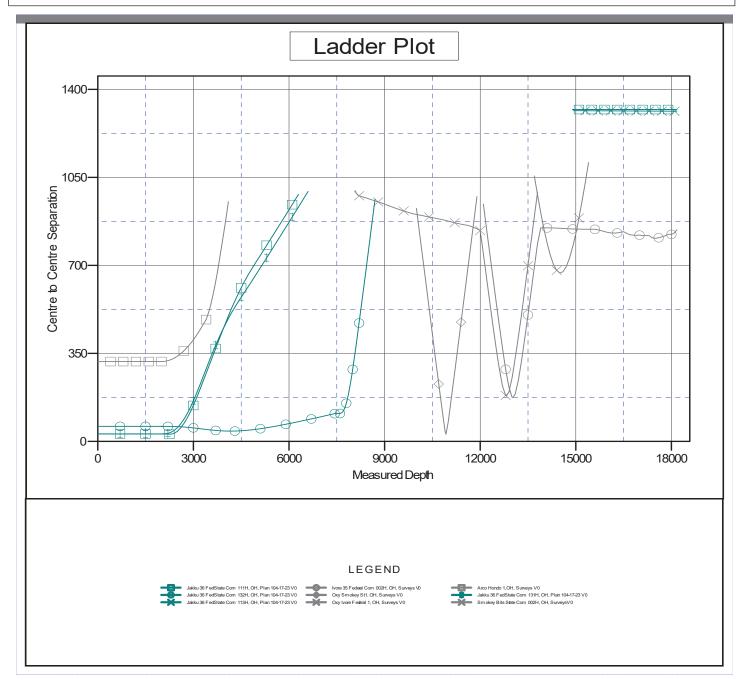
Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	ОН	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum


Offset Des	•	Oxy Sm	okey St 1	- OH - Surv	veys							Offset Site Error:	0.00 usft
Survey Progr Refere	ram:	Offse	at	Semi Major	Avis		0.66		Dist	ance		Offset Well Error:	1.00 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft	+E/-W (usft)	Between Centers (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
10,000.00	7,818.00	7,775.65	7,772.98	57.33	197.92	-89.96	-1,141.23	-2,983.15	926.91	709.84	217.06	4.270	
10,100.00	7,818.00	7,775.65	7,772.98	59.36	197.92	-89.96	-1,141.23	-2,983.15	826.96	609.95	217.01	3.811	
10,200.00	7,818.00	7,775.65	7,772.98	61.42	197.92	-89.96	-1,141.23	-2,983.15	727.03	510.09	216.94	3.351	
10,300.00	7,818.00	7,775.65	7,772.98	63.49	197.92	-89.96	-1,141.23	-2,983.15	627.12	410.27	216.85	2.892	
10,400.00	7,818.00	7,775.65	7,772.98	65.59	197.92	-89.96	-1,141.23	-2,983.15	527.24	310.51	216.73	2.433	
10,500.00	7,818.00	7,775.65	7,772.98	67.69	197.92	-89.96	-1,141.23	-2,983.15	427.42	210.85	216.58	1.974	
10,600.00	7,818.00	7,775.65	7,772.98	69.81	197.92	-89.96	-1,141.23	-2,983.15	327.72	111.31	216.41	1.514	
10,700.00	7,818.00	7,775.65	7,772.98	71.95	197.92	-89.96	-1,141.23	-2,983.15	228.27	11.86	216.41	1.055	Level 2
10,800.00	7,818.00	7,775.65	7,772.98	74.09	197.92	-89.96	-1,141.23	-2,983.15	129.67	-88.54	218.21	0.594	Level 1
10,900.00	7,818.00	7,775.65	7,772.98	76.24	197.92	-89.96	-1,141.23	-2,983.15	38.99	-211.20	250.19	0.156	Level 1
10,926.47	7,818.00	7,775.65	7,772.98	76.82	197.92	-89.96	-1,141.23	-2,983.15	28.64	-245.73	274.37	0.104	Level 1 , CC, E
11,000.00	7,818.00	7,775.65	7,772.98	78.41	197.92	-89.96	-1,141.23	-2,983.15	78.92	-158.27	237.19	0.333	Level 1
11,100.00	7,818.00	7,775.65	7,772.98	80.58	197.92	-89.96	-1,141.23	-2,983.15	175.88	-49.52	225.40	0.780	Level 1
11,200.00	7,818.00	7,775.65	7,772.98	82.76	197.92	-89.96	-1,141.23	-2,983.15	275.03	52.57	222.46	1.236	Level 2
11,300.00	7,818.00	7,775.65	7,772.98	84.95	197.92	-89.96	-1,141.23	-2,983.15	374.63	153.40	221.23	1.693	
11,400.00	7,818.00	7,775.65	7,772.98	87.15	197.92	-89.96	-1,141.23	-2,983.15	474.40	253.81	220.59	2.151	
11,500.00	7,818.00	7,775.65	7,772.98	89.35	197.92	-89.96	-1,141.23	-2,983.15	574.25	354.04	220.21	2.608	
11,600.00	7,818.00	7,775.65	7,772.98	91.56	197.92	-89.96	-1,141.23	-2,983.15	674.14	454.18	219.97	3.065	
11,700.00	7,818.00	7,775.65	7,772.98	93.78	197.92	-89.96	-1,141.23	-2,983.15	774.07	554.26	219.81	3.522	
11,800.00	7,818.00	7,775.65	7,772.98	96.00	197.92	-89.96	-1,141.23	-2,983.15	874.01	654.31	219.70	3.978	
11,900.00	7,818.00	7,775.65	7,772.98	98.22	197.92	-89.96	-1,141.23	-2,983.15	973.96	754.33	219.63	4.435	

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report



Company:	Permian Resources	Local Co-ordinate Reference:	Well Jakku 36 Fed State Com 112H
Project:	Eddy County, NM (NAD83 - NME)	TVD Reference:	RKB @ 3588.00usft (TBD)
Reference Site:	Jakku	MD Reference:	RKB @ 3588.00usft (TBD)
Site Error:	0.00	North Reference:	Grid
Reference Well:	Jakku 36 Fed State Com 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	1.00	Output errors are at	2.00 sigma
Reference Wellbore	OH	Database:	USAEDMDB
Reference Design:	Plan 1 04-17-23	Offset TVD Reference:	Offset Datum

Reference Depths are relative to RKB @ 3588.00usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is 104° 19' 60.000000 W °

Coordinates are relative to: Jakku 36 Fed State Com 112H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.225°

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Phoenix Technology Services

Anticollision Report

Permian Resources
Eddy County, NM (NAD83 - NME)
Jakku
0.00
Jakku 36 Fed State Com 112H
1.00
OH
Plan 1 04-17-23

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Jakku 36 Fed State Com 112H RKB @ 3588.00usft (TBD) RKB @ 3588.00usft (TBD) Grid Minimum Curvature 2.00 sigma USAEDMDB Offset Datum

Reference Depths are relative to RKB @ 3588.00usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is 104° 19' 60.000000 W ° Coordinates are relative to: Jakku 36 Fed State Com 112H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.225°

CC - Min center to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

4/17/2023 1:07:08PM

Page 22

.

Permian Resources - Jakku 36 Fed Com 112H

1. Geologic Formations

Formation	Elevation	TVD	Target
Rustler	3053	535	No
Top of Salt	2721	867	No
Capitan	NP	NP	No
Tansill	1603	1985	No
Yates	1463	2125	No
Seven Rivers	1098	2490	No
Queen	473	3115	No
Grayburg	NP	NP	No
San Andres	NP	NP	No
Delaware Sands	-377	3965	No
Bone Spring Lime	-2507	6095	No
1st Bone Spring Sand	-4047	7635	Yes
2nd Bone Spring Sand	-4967	8555	No
3rd Bone Spring Sand	-5767	9355	No
Wolfcamp	-6182	9770	No

2. Blowout Prevention

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		x	Tested to:										
			Annular		х	2500 psi										
			Blind	Ram	х											
12.25	13-5/8"	13-5/8"	5M	5M	3-5/8" 5M Pipe Ram	Ram	х	5000 nai								
				Double Ra		e Ram		5000 psi								
			Other*													
			Annular		Х	2500 psi										
	13-5/8"		Blind	Ram	х											
8.75		13-5/8" 5M	13-5/8" 5M		13-5/8"	13-5/8"	13-5/8"	13-5/8"	13-5/8"	5M	5M	3-5/8" 5M		Ram	х	5000 mai
					Doubl	e Ram		5000 psi								
			Other*													

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachemnt: 5 M Choe Manifold BOP Diagram Attachment: BOP Schematic

3. Casing

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	560	0	560	560	J55	54.5	BTC	4.08	2.19	Dry	6.96	Dry	6.54
Intermediate	12.25	9.625	0	3915	0	3915	3915	J55	36	BTC	2.92	1.66	Dry	2.65	Dry	2.34
Production	8.75	5.5	0	8206	0	7818	8206	P110RY	17	GeoConn	1.84	1.92	Dry	2.34	Dry	2.34
Production	7.875	5.5	8206	18174	7818	7818	9968	P110RY	17	GeoConn	1.84	1.92	Dry	2.34	Dry	2.34
							BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6	

Non API casing spec sheets and casing design assumptions attached.

4. Cement

String	Lead/Tail	Top MD	Bottom MD	Quanity (sx)	Yield	Density	Cu Ft	Excess %	Cement Type	Additives
Surface	Tail	0	560	450	1.34	14.8	590	50%	Class C	Accelerator
Intermediate	Lead	0	3130	690	2.08	12.7	1420	50%	Class C	Salt, Extender, and LCM
Intermediate	Tail	3130	3915	280	1.34	14.8	370	50%	Class C	Accelerator
Production	Lead	3415	7435	580	2.41	11.5	1380	40%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
Production	Tail	7435	18174	1400	1.73	12.5	2410	25%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate oter conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

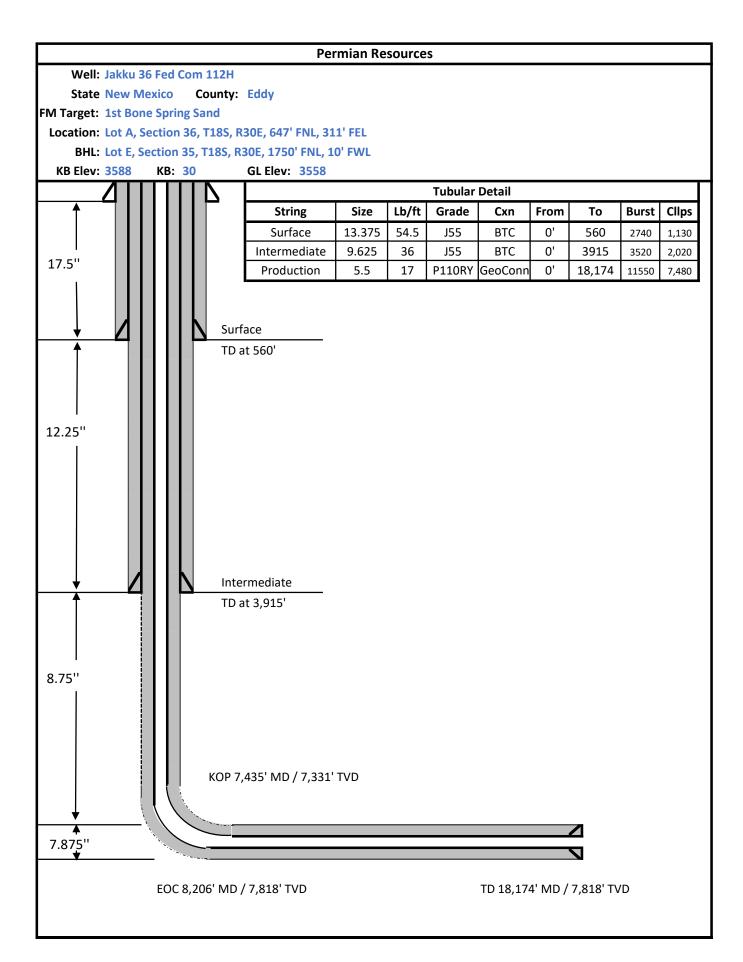
Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Cuttings Volume: 8850 Cu Ft

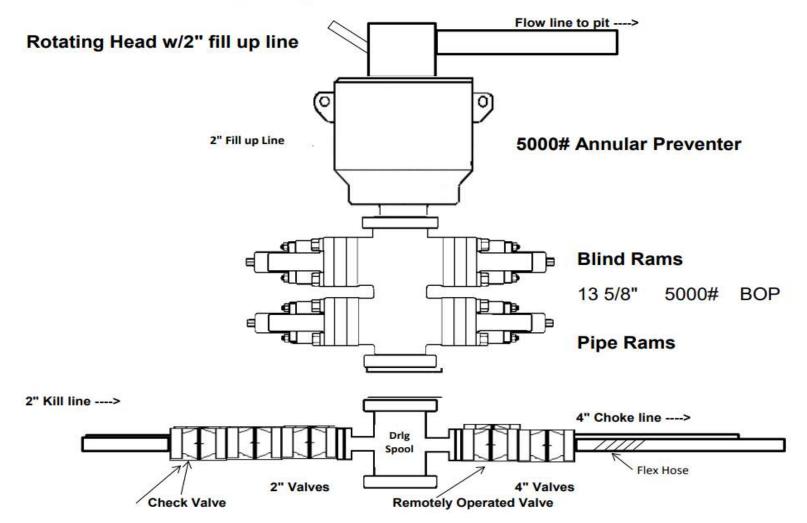
Circulating Medium Table

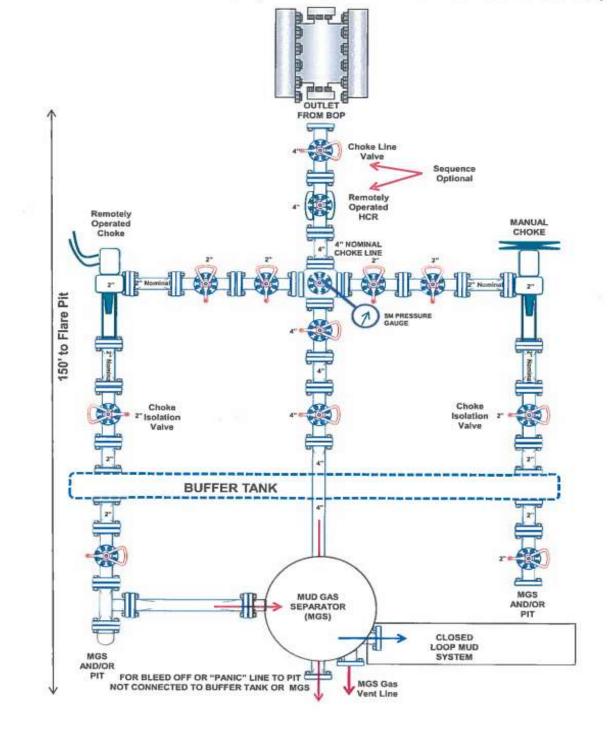
Top Depth	Bottom Depth	Mud Type	Min Weight	Max Weight
0	560	Water Based Mud	8.6	9.5
560	3915	Salt Saturated	10	10
3915	8206	Brine	9	10
8206	18174	OBM	9	10

6. Test, Logging, Coring


List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well. List of open and cased hole logs run in the well: DIRECTIONAL SURVEY, GAMMA RAY LOG, Coring operation description for the well: N/A

7. Pressure

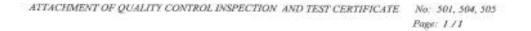

Anticipated Bottom Hole Pressure	4070	psi
Anticipated Surface Pressure	2345.4	psi
Anticipated Bottom Hole Temperature	136	°F
Anticipated Abnormal pressure, temp, or geo hazards	No	


8. Other Information

Well Plan and AC Report: attached Batching Drilling Procedure: attached WBD: attached Flex Hose Specs: attached Offline Cementing Procedure Attached:

5,000 psi BOP Schematic

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



CONTITECH RUBBER Industrial Kft.	No:QC-DB- 210/ 2014		
	Page:	9/113	

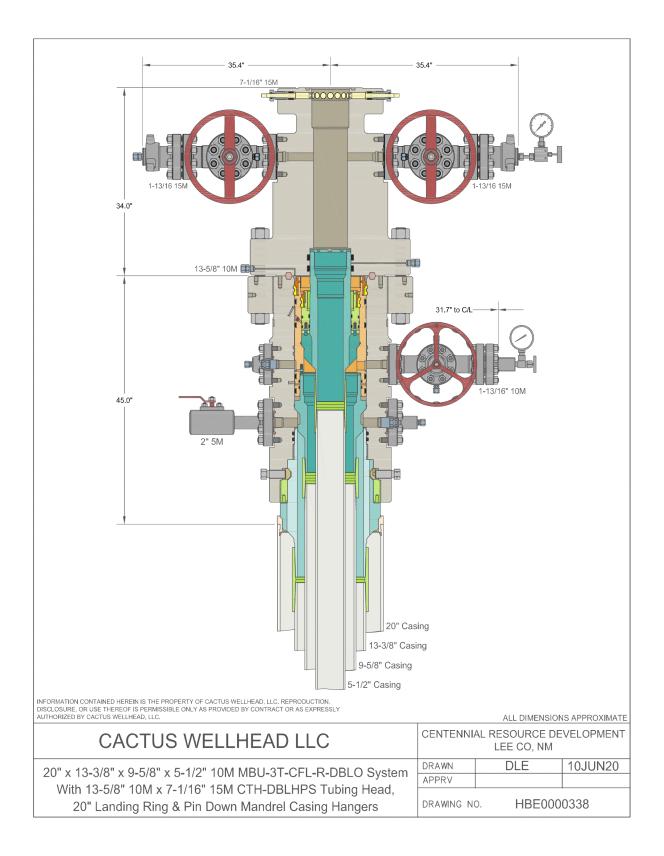
QUALITY CONTROL INSPECTION AND TEST CERTIFICATE			CERT.	N*:	504		
PURCHASER:	ContiTech	Oil & Marine (Corp.	P.O. N	÷.	4500409659	
CONTITECH RUBBER order	Nº: 538236	HOSE TYPE:	3° 10		Choke and	Kill Hose	
HOSE SERIAL Nº:	67255	NOMINAL / AC	TUAL LENG	TH:	10,67 m	/ 10,77 m	
W.P. 68,9 MPa -	10000 sei	T.P. 103,4	MPa 1	5000 pei	Duration	60	min
↑ 10 mm = 10 мі		See attachm	ent. (1 pa	age)			
100	Pa						
		Serie	e 14-	1	Quelity	Heat N	_
→ 10 mm = 20 Mi COUPLINGS T) 3° coupling wi	уре	Serie 9251	€ N° 9254		Duelity SI 4130	Heat N A05798	_
COUPLINGS T	ype ith	- 117.07		Al			
COUPLINGS TY 3" coupling wi	ype ith Flange end	9251		Al	SI 4130 SI 4130 AJ	A05798	:
COUPLINGS TY 3° coupling wi 4 1/16° 10K API b.w. F Not Designed All metal parts are flowless WE CERTIFY THAT THE ABOV	ype Elange end For Well To WE HOSE HAS BE	9251 Peting	9254 RED IN ACCO	AI AI	SI 4130 SI 4130 AJ Temp	A05786 035606 PI Spec 16 (erature rate	:
COUPLINGS TY 3° coupling wi 4 1/16° 10K API b.w. F Not Designed All metal parts are flawless	ype Ith Flange end For Well To WE HOSE HAS BE TESTED AS ABO The above Purc standards, codes	9251 esting EEN MANUFACTU OVE WITH SATIBL	9254 RED IN ACCO ACTORY RES ve tens/equi hat these ten and meet the	RIDANCE WIT	SI 4130 SI 4130 AJ Temp In THE TERMS d by us are in o were fabricated	A0579N 035608 PI Spec 16 (erature rate of THE ORDER inspected and to	i s;"B"

Contribute Modern Robert Mitter (K. 1. Busingent) at 10: 11 8728 Earlyst (H. 4701 P.D. Bas 162 Earlyst (H. 4709 P.D. Bas 162 Earlyst (H. 4700 P.D. Bas 162 E

.

GH +21-22 -0	Charles Problem
RD +21-35 *C	01100
CH #21,15 PC	01+10 01+10
RC +21,01 MC	OST THE
N +21,18 %	01:00
Tele-Br. 220017	101100 I I I I I I I I I I I I I I I I I
RD (************************************	eetst Tame-1921 ales
8. +1857. bod 34 +21.38 PC	leeise
0 +21v84 =c	100100
8L +1859- 60/	08168
0 +1261, bde	100+00
N 421-35 Sc	108+28
L +1664- bar	00120
of the second second second	
THEFT	
70 20 30 40	50 60 70 ED 60 100
9+85+8814+ 29+50 7252+67255+67256 25	
PUP-S-CIVITIE	

.



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No:QC-DB- 210/ 2014		
	Page:	15/113	
	ContiTe	ch	

Hose Data Sheet

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409859
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX156 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16* 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature ["C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage (m)	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2/CsontosG - 2014.03.10 15:22:17

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is

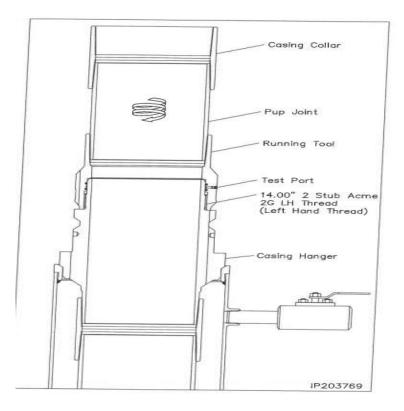
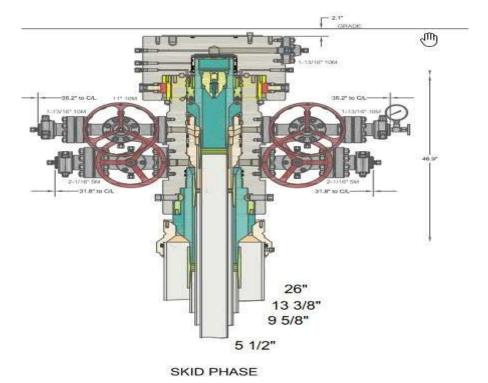
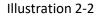
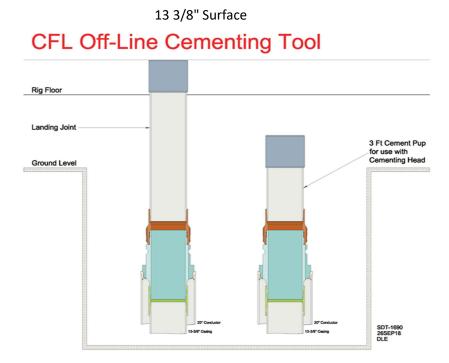
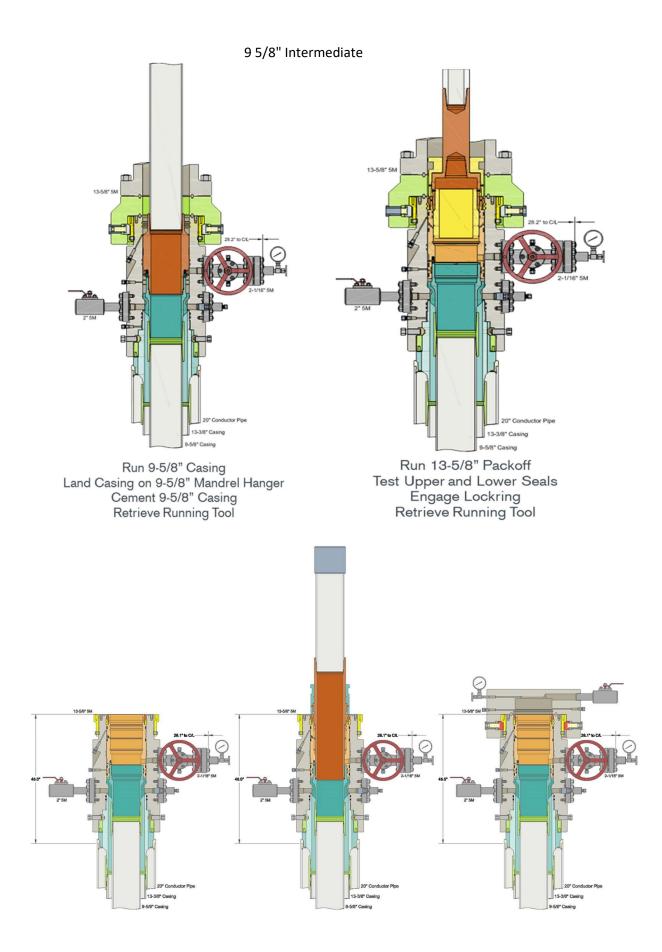




Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set into Lamar. 12-1/4" Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.




<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 51/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

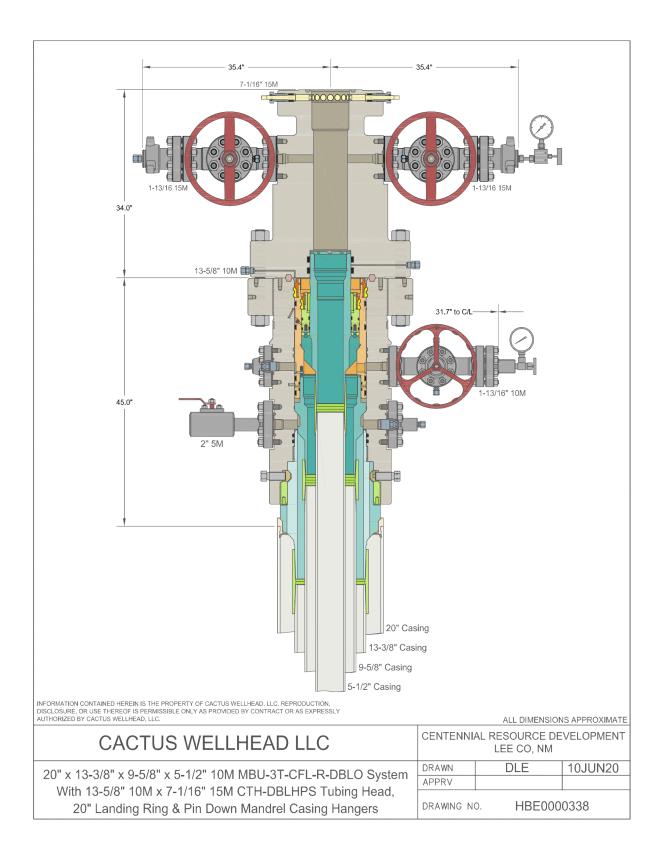
Permian Resources Offline Cementing Procedure 13-3/8" & 9-5/8" Casing

- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.

One Corp.	GEOCONN-S	Construction of the second	Page	MAI GC 5.5 17 SeAH P110R 95%RBW+SC-Cplg6.050 P110	
Metal One	Pipe: SeAH P110RY 95%PBW (CONTRACTOR OF A DECISION OF A DECISIONO OF A DECI			
vietai One	Coupling: P110RY (SMY		Date	3-1	eb-21
	Connection Data	Sheet	Rev.	8	0
	Geometry	Impe	erial	<u>S.</u>	<u>L</u>
	Pipe Body	-		4	
	Grade *1	P110RY		P110RY	
	SMYS	110	ksi	110	ksi
05000000000	Pipe OD (D)	5.500	in	139.70	mm
GEOCONN-SC	Weight	17.00	lb/ft	25.33	kg/m
	Wall Thickness (t)	0.304	in	7.72	mm
61 8012219 (88	Pipe ID (d)	4.892	in	124.26	mm
Wsc1	Drift Dia.	4.767	in	121.08	mm
D	Connection				
	Coupling SMYS	110	ksi	110	ksi
↑ 1 €	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
d	Coupling Length (NL)	8.350	in	212.09	mm
8	Make up Loss	4.125	in	104.78	mm
1	Pipe Critical Area	4.96	in ²	3,202	mm ²
E S	Box Critical Area	6,10	in ²	3,937	mm ²
ξ	Thread Taper	0.10		3/4" per ft)	11011
E S	Number of Threads			TPI	
	Performance Properties for Pi		kips	2 428	kN
	S.M.Y.S. *1	546	kips	2,428	kN
3	M.I.Y.P. *1	11,550	psi	79.66	MPa
z S	Collapse Strength *1	7,480	psi	51.59	MPa
ī 3		ified Minimum YIELD num Internal Yield Pre		SUB-01 11 170	
-	*1: SeAH P110RY 95%RBW: SMYS Performance Properties for C		psi		
N		onnection	100%	of S.M.Y.S.	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Performance Properties for C	onnection	All and All Carl	of S.M.Y.S. of S.M.Y.S.	
-	Performance Properties for C Min. Connection Joint Strength	onnection	100% 100% 100% of M.I.	of S.M.Y.S. (.P.	
-	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	onnection	100% 100%	of S.M.Y.S. (.P.	
*	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	onnection	100% 100% 100% of M.I. 100% of Colla	of S.M.Y.S. (.P.	
t →	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft)	onnection	100% 100% 100% of M.I. 100% of Colla	of S.M.Y.S. <u>7.P.</u> pse Strength	
t →	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque	connection	100% 100% 100% of M.I. 100% of Colla	of S.M.Y.S. 7.P. pse Strength >90	N-m
t 📥	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque Min.	onnection	100% 100% 100% of M.I. 100% of Colla	of S.M.Y.S. <u>7.P.</u> pse Strength	N-m N-m
t →	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque	10,800 12,000	100% 100% 100% of M.I. 100% of Colla ft-lb	of S.M.Y.S. /.P. pse Strength >90 14,600 16,200	
t A	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque Min. Opti.	10,800	100% 100% 100% of M.I. 100% of Colla ft-lb	of S.M.Y.S. /.P. pse Strength >90 14,600	N-m
t →	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque Min. Opti. Max.	10,800 12,000 13,200 15,600	100% 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb ft-lb	of S.M.Y.S. /.P. pse Strength >90 14,600 16,200 17,800	N-m N-m
t	Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS ( deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	10,800 12,000 13,200 15,600 an be applied for high to	100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb ft-lb rque application	of S.M.Y.S. /P. pse Strength >90 14,600 16,200 17,800 21,100 (herein collectively referred to a	N-m N-m ss "Wetai One") with resp

Such Statements are not binding statements about the statements of provides in a particular application application is suitable for use in a particular application. For more information, please refer to <u>http://www.mto.co.jp/mo-con/_images/to/WebsteTerms_Active_20333287_f.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

.




ONTITECH RUBBER	No:QC-DB- 210/ 2014		
Industrial Kft.	Page:	15/113	
	ContiTe	ch	

#### **Hose Data Sheet**

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409659
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16* 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature ["C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2/CsontosG - 2014.03.10 15:22:17



## Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is

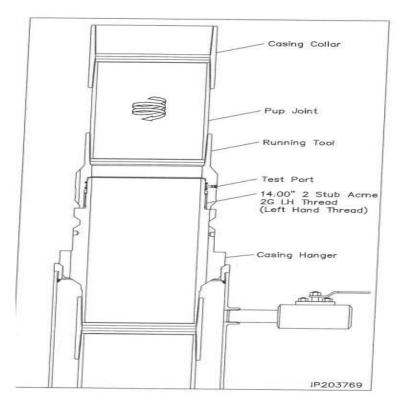
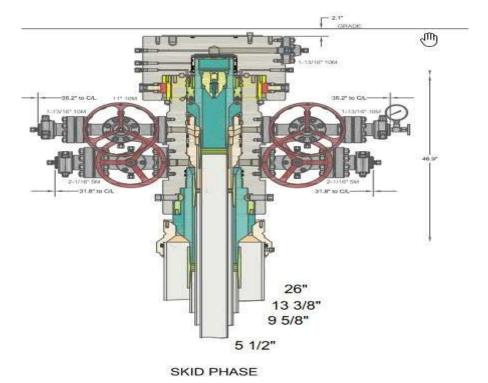
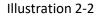
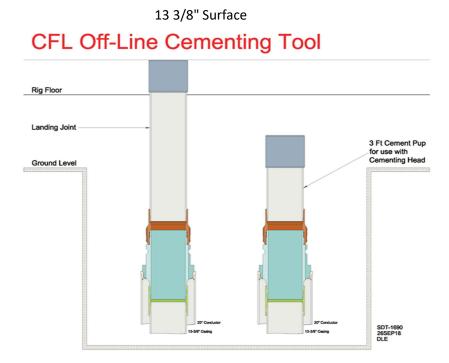




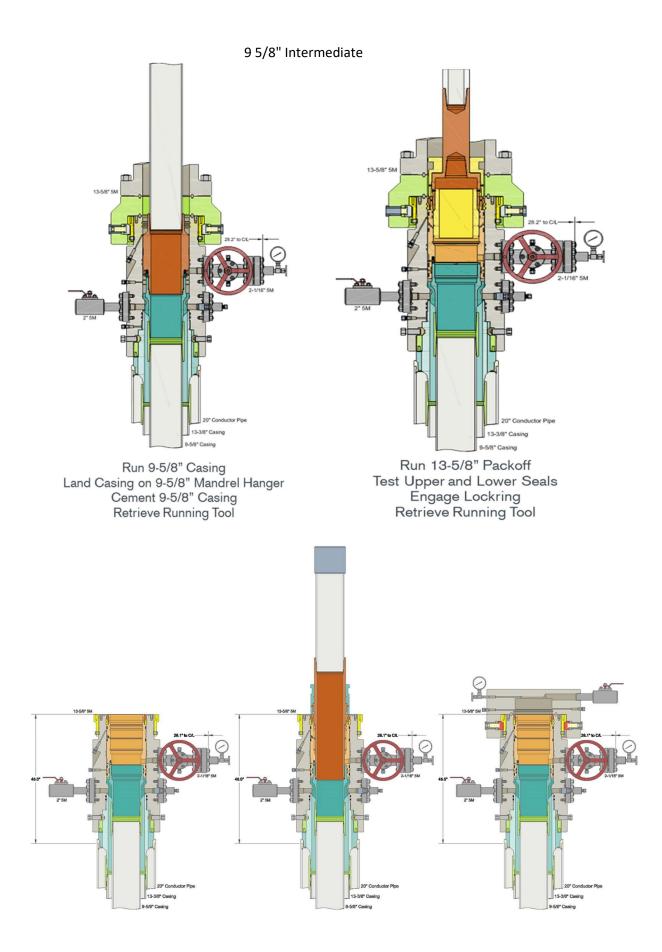

Illustration 1-1

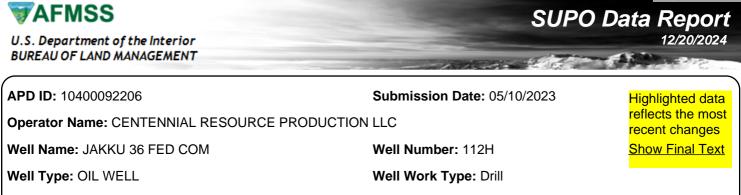
Intermediate Casing – PR intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set into Lamar. 12-1/4" Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.







<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.


- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 51/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

#### Permian Resources Offline Cementing Procedure 13-3/8" & 9-5/8" Casing

- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
  - a) If well is not static use the casing outlet valves to kill well
    - b) Drillers method will be used in well control event
    - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
    - d) Kill mud will be circulated once influx is circulated out of hole
    - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.







## **Section 1 - Existing Roads**

Will existing roads be used? YES

#### Existing Road Map:

1_Jakku_Existing_Roads_Map_20230508111750.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

#### Do the existing roads need to be improved? YES

**Existing Road Improvement Description:** Numerous existing two-track roads that have been used informally for pipeline and power line maintenance will be decommissioned and NOT A ROAD sign will be placed at various entry/exit points along these roads to discourage further use of these roads. All traffic will be diverted to use the new road to be built by Permian Resources. See attached new road map for details on where signage will be placed.

**Existing Road Improvement Attachment:** 

Will new roads be needed? YES

New Road Map:

2_Jakku_Proposed_Roads_Map_Plats_20230508122917.pdf

Feet

New road type: COLLECTOR

Length: 1059

Width (ft.): 30

Max slope (%): 2

Max grade (%): 3

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 24

**New road access erosion control:** Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography. **New road access plan or profile prepared?** N

Well Name: JAKKU 36 FED COM

Well Number: 112H

Page 133 of 194

New road access plan

Access road engineering design? N

Access road engineering design

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

**Onsite topsoil removal process:** Top ~"6 of soil and brush will be stockpiled south of the well pads and south of the CTB. CTB topsoil pile will be no higher than 36 and will be seeded in place. **Access other construction information:** 

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT

Drainage Control comments: Will be monitored and repaired as necessary.

**Road Drainage Control Structures (DCS) description:** Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

Road Drainage Control Structures (DCS) attachment:

**Access Additional Attachments** 

**Section 3 - Location of Existing Wells** 

Existing Wells Map? YES

Attach Well map:

3_Jakku_Existing_Wells_Map_20230508113154.pdf

## Section 4 - Location of Existing and/or Proposed Production Facilities

## Submit or defer a Proposed Production Facilities plan? SUBMIT

**Production Facilities description:** The previously proposed 390' x 390' Arrakis-Jakku CTB will also service the North and South Jakku pads. Flare and/or CBU will be in the northeast corner of the CTB. Process equipment (e. g., separators, heater-treaters, meters, compressor) will be on the south side of the CTB. Tanks will be on the other sides of the CTB. Eight ~4" O. D. flowlines (one per well) will run for 5,243.22' between

Received by	OCD:	1/1/2025	6:32:29 PM

Well Name: JAKKU 36 FED COM

Well Number: 112H

the CTB and the two Jakku well pads. Pipes will run parallel to roads. Pipelines will be buried.

#### **Production Facilities map:**

4_Jakku_Production_Facilities_20230508114552.pdf

## Section 5 - Location and Types of Water Supply

Water Source Tab	le	
Water source type: OTHER		
Describe type: FRESH WATER SC	DURCE	
Water source use type:	STIMULATION	
Source latitude:		Source longitude:
Source datum:		
Water source permit type:	PRIVATE CONTRACT	
Water source transport method:	TRUCKING	
Source land ownership: PRIVATE	:	
Source transportation land owner	rship: PRIVATE	
Water source volume (barrels): 45	50000	Source volume (acre-feet): 58.001893
Source volume (gal): 18900000		

#### Water source and transportation

5_Jakku_Water_Source_Map_20230508114929.pdf

Water source comments: Water will be trucked 3 miles from an existing water station (NMNM-0560433) in NENE 29-18s-31e on County Road 222. New water well? N

### New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of aquifer:	
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside diameter	(in.):
New water well casing?	Used casing source:	

Well Name: JAKKU 36 FED COM

Well Number: 112H

Drilling method:	Drill material:		
Grout material:	Grout depth:		
Casing length (ft.):	Casing top depth (ft.):		
Well Production type:	Completion Method:		
Water well additional information:			
State appropriation permit:			
Additional information attachment:			

## Section 6 - Construction Materials

#### Using any construction materials: YES

**Construction Materials description:** NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the well pads and south of the CTB. CTB topsoil pile will be no higher than 36" and will be seeded in place. V-doors will face east. Closed loop mud system will be used. Caliche will be hauled from the existing Caviness caliche pit on State land (C0-0408-0002) in SENE 16-18S-31E.

#### **Construction Materials source location**

6_Jakku_Caliche_Source_Map_20230508115257.pdf

### **Section 7 - Methods for Handling**

Waste type: DRILLING

Waste content description: Fresh water-based drilling fluid.

Amount of waste: 1500 barrels

Waste disposal frequency : Weekly

Safe containment description: Steel tanks with plastic-lined containment berms.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

**Disposal location description:** All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

Waste type: DRILLING

Waste content description: Brine water based drilling fluid.

Amount of waste: 1500 barrels

Waste disposal frequency : Monthly

Safe containment description: Steel tanks with plastic-lined containment berms.

Safe containmant attachment:

Well Name: JAKKU 36 FED COM

Well Number: 112H

### Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

#### FACILITY Disposal type description:

**Disposal location description:** All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

Waste type: SEWAGE

Waste content description: Grey Water/Human waste.

Amount of waste: 5000 gallons

Waste disposal frequency : Weekly

Safe containment description: Approved waste storage tanks with containment.

#### Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

#### Disposal type description:

**Disposal location description:** All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

Waste type: GARBAGE

Waste content description: General trash and garbage.

Amount of waste: 5000 pounds

Waste disposal frequency : Weekly

Safe containment description: Enclosed trash trailer.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

**Disposal location description:** All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

**Reserve Pit** 

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Well Name: JAKKU 36 FED COM

Well Number: 112H

#### **Reserve pit liner**

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

**Description of cuttings location** 8850 cu ft of waste, stored in steel tanks. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

**Section 8 - Ancillary** 

Are you requesting any Ancillary Facilities?: N

**Ancillary Facilities** 

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

9_Jakku_NORTH_Well_Site_Layout_20230508121155.pdf

**Comments:** Also see Rig Layout diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

## Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: JAKKU 36 NENE

Multiple Well Pad Number: 1

## Recontouring

10a_Jakku_NORTH_Interim_Reclamation_20230508121303.pdf

**Drainage/Erosion control construction:** Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

**Drainage/Erosion control reclamation:** Drainage and erosion will be constantly monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

Received by OCD: 1/1/2025 6:32:29 PM						
Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC						
Well Name: JAKKU 36 FED COM	Well Number: 112H	1				
Well pad proposed disturbance (acres): 6.04	Well pad interim reclamation (acres): 1.54	Well pad long term disturbance (acres): 4.5				
Road proposed disturbance (acres): 0.73	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0.73				
Powerline proposed disturbance (acres): 0	<b>Powerline interim reclamation (acres):</b>	Powerline long term disturbance (acres): 0				
Pipeline proposed disturbance (acres): 3.6	<b>Pipeline interim reclamation (acres):</b> 3.6	Pipeline long term disturbance (acres): 0				
Other proposed disturbance (acres):	O Other interim reclamation (acres): 0	Other long term disturbance (acres): 0				
Total proposed disturbance: 10.37	Total interim reclamation: 5.140000000000001	Total long term disturbance: 5.23				

#### **Disturbance Comments:**

**Reconstruction method:** Will come back in with heavy equipment, remove caliche in the reclamation area, replace with native topsoil.

**Topsoil redistribution:** Surface disturbance will be limited to well site surveyed dimensions. Topsoil will be stored along the South side of the pad.

**Soil treatment:** Native soils will be used in the initial construction of the well pad. Pad will be compacted using fresh water, dust control measures will be implemented as needed.

**Existing Vegetation at the well pad:** Surface disturbance will be limited to well site surveyed and extending south to borrow deficit quantities. Topsoil will be stored along the south edge of borrow area.

#### Existing Vegetation at the well pad

Existing Vegetation Community at the road: Will be windrowed to the edge of the disturbance and be utilized as a barrier from water run-off.

Existing Vegetation Community at the road

Existing Vegetation Community at the pipeline: Will be windrowed to the edge of the disturbance and be utilized as a barrier from water run-off.

Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: Will be windrowed to the edge of the disturbance and be utilized as a barrier from water run-off.

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Received by OCD: 1/1/2025 6:32:29 PM

Ope	rator Name: CENTENNIA	L RESOURCE PRODUC	CTION LLC
Well Name: JAKKU 36 FED COM     Well Number: 112H			
$\subseteq$			
	Seed		
	Seed Table		
	Seed Su		Total pounds/Acre:
-	Seed Type	Pounds/Acre	
Seed	reclamation		
	Operator Co	ntact/Responsible	e Official
Fir	st Name:		Last Name:
Ph	one:		Email:
Seed	bed prep: Prepare a 3-5-i	inch-deep seedbed, with	the top 3-4 inches consisting of topsoil.
Seed	BMP: Seeding will be dor	ne in the proper season a	and monitored for the re-establishment of native vegetation.
Seed	method: Broadcast.		
Exist	ing invasive species? N		
	ing invasive species trea		
Exist	ing invasive species trea	atment	
Weed	I treatment plan descript	t <b>ion:</b> Spray for noxious w	weeds and bare ground as needed.
Weed	l treatment plan		
Moni	toring plan description:	All disturbed areas will be	e closely monitored for any primary or secondary noxious weeds.
Moni	toring plan		
<b>Success standards:</b> No primary or secondary noxious weed will be allowed. Vegetation will be returned to its native standard. <b>Pit closure description:</b> No open pits will be constructed.			
	osure attachment:		
	Section 11 - S	Surface Ownershi	p
Distu	rbance type: NEW ACCE	ESS ROAD	
Desc	ribe:		
Surface Owner: BUREAU OF LAND MANAGEMENT, STATE GOVERNMENT			
Other surface owner description:			
	ocal Office:		
BOR	Local Office:		

•

Well Name: JAKKU 36 FED COM

Л	Well Number: 112H	

NPS Local Office: State Local Office: NEW MEXICO STATE LAND OFFICE Military Local Office: USFWS Local Office: Other Local Office:

USFS Region:

**COE Local Office:** 

**DOD Local Office:** 

**USFS Forest/Grassland:** 

**USFS** Ranger District:

Disturbance type: EXISTING ACCESS ROAD
Describe:
Surface Owner: BUREAU OF LAND MANAGEMENT, STATE GOVERNMENT
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office: NEW MEXICO STATE LAND OFFICE
Military Local Office:
USFWS Local Office:
Other Local Office:
USFS Region:

USFS Forest/Grassland: USFS Ranger District:

•

Well Name: JAKKU 36 FED COM

Well Number: 112H

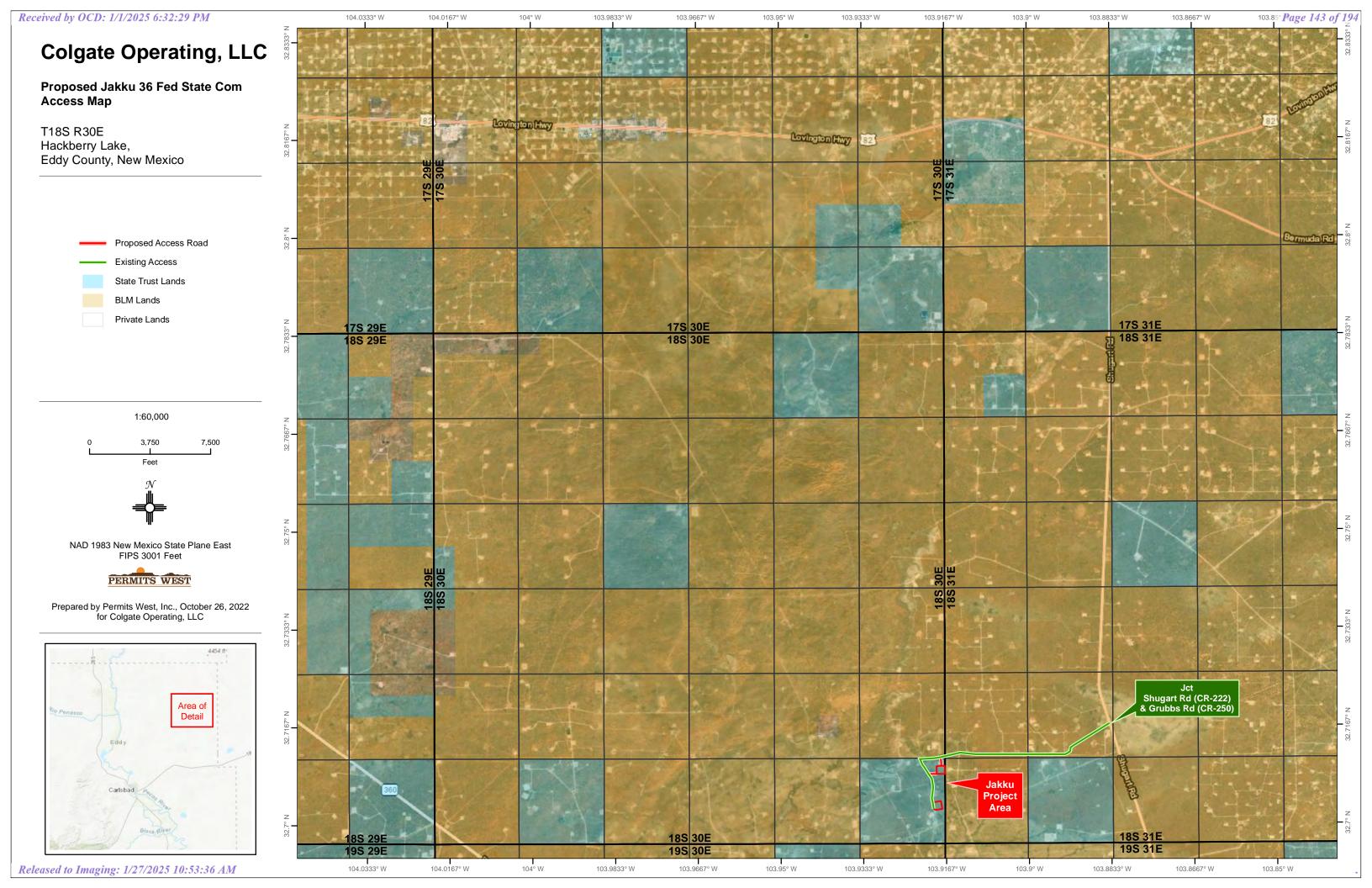
Disturbance type: WELL PAD	
Describe:	
Surface Owner: STATE GOVERNMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office: NEW MEXICO STATE LAND OFFICE	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

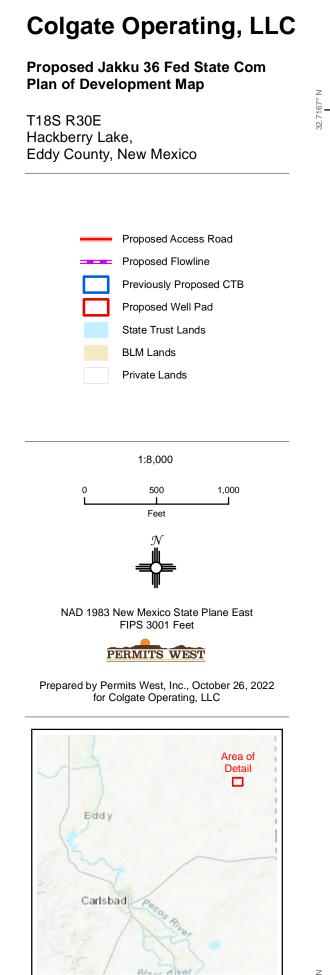


SUPO Additional Information:

Use a previously conducted onsite? Y

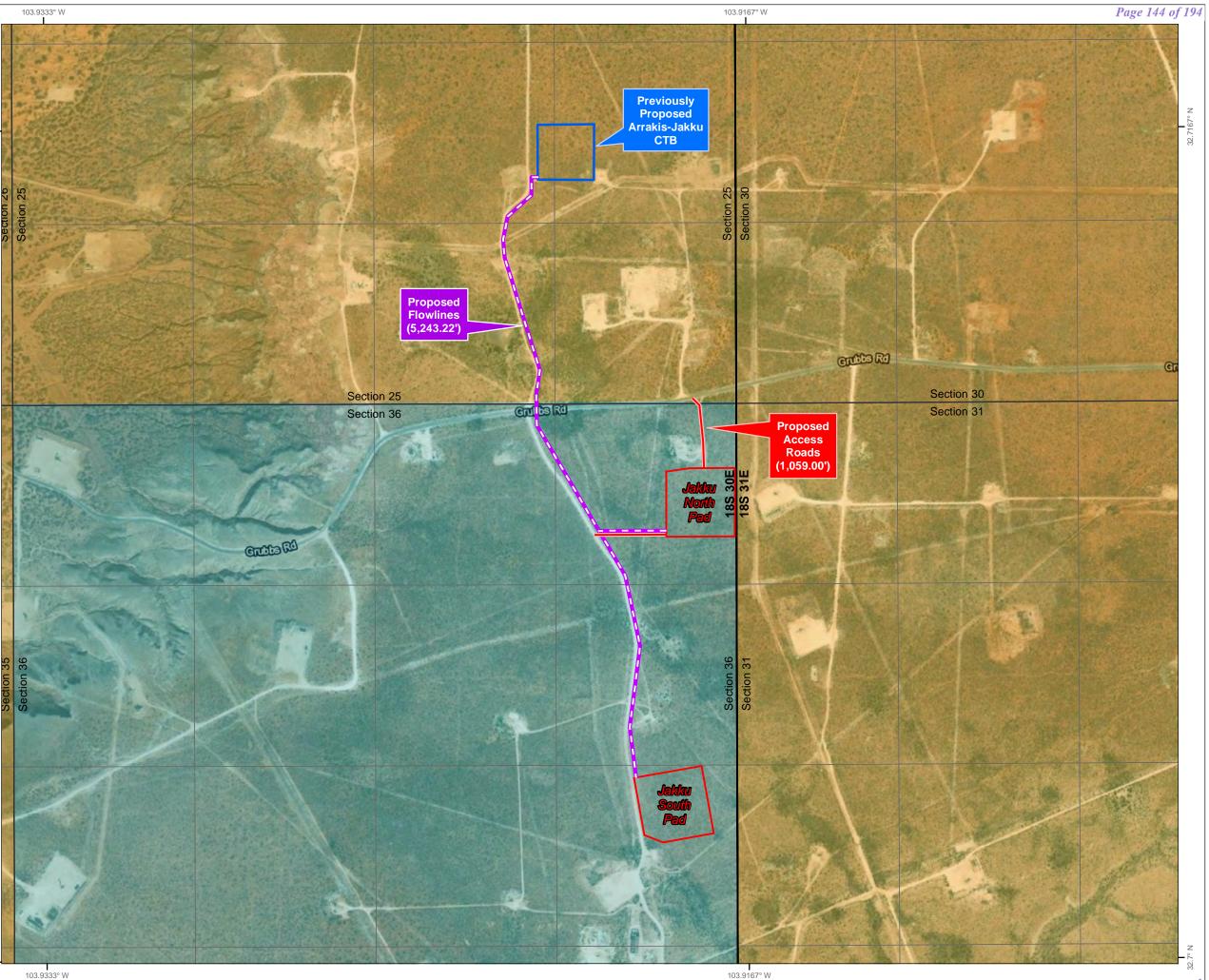
**Previous Onsite information:** Lone Mountain Archaeological conducted a block inspection and filed report NMCRIS-150188 on May 31, 2022. Due to these wells being state/state/fed, no BLM onsite inspection was performed.

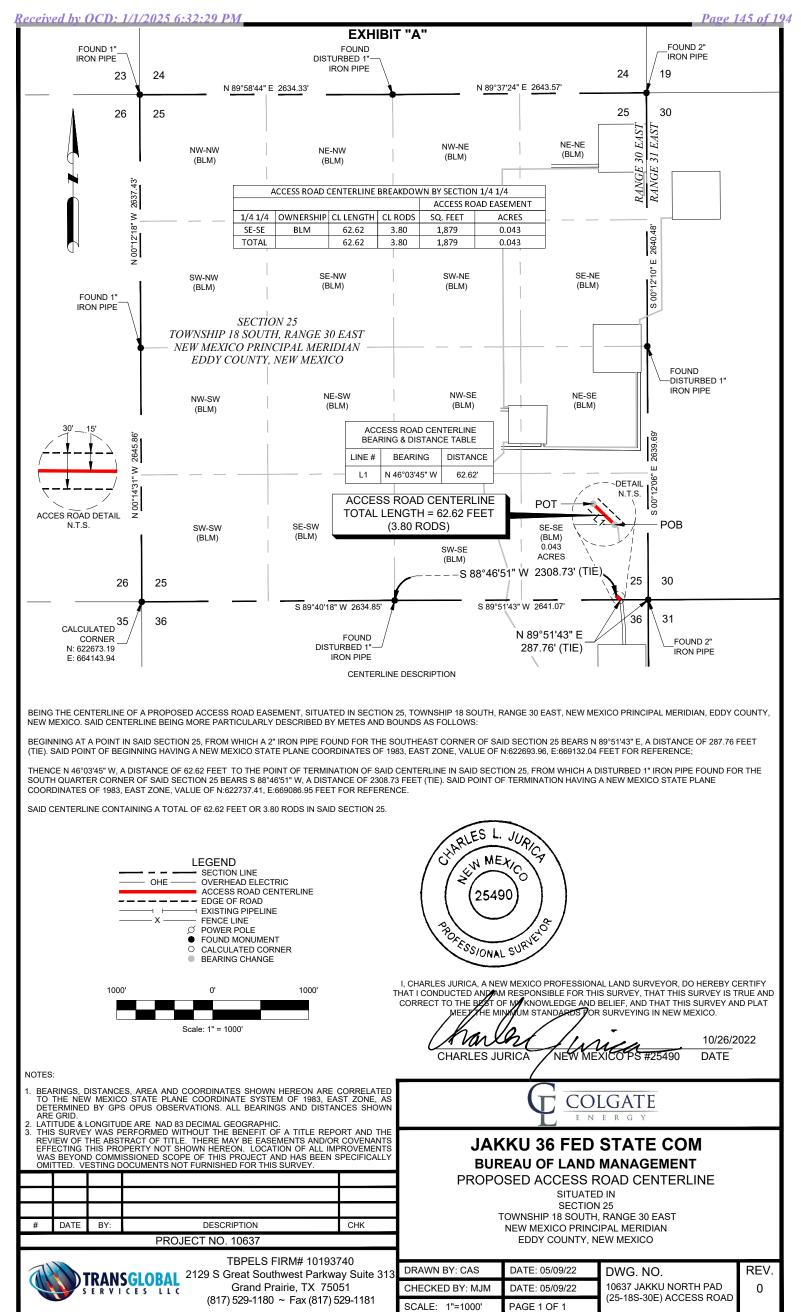

Other SUPO

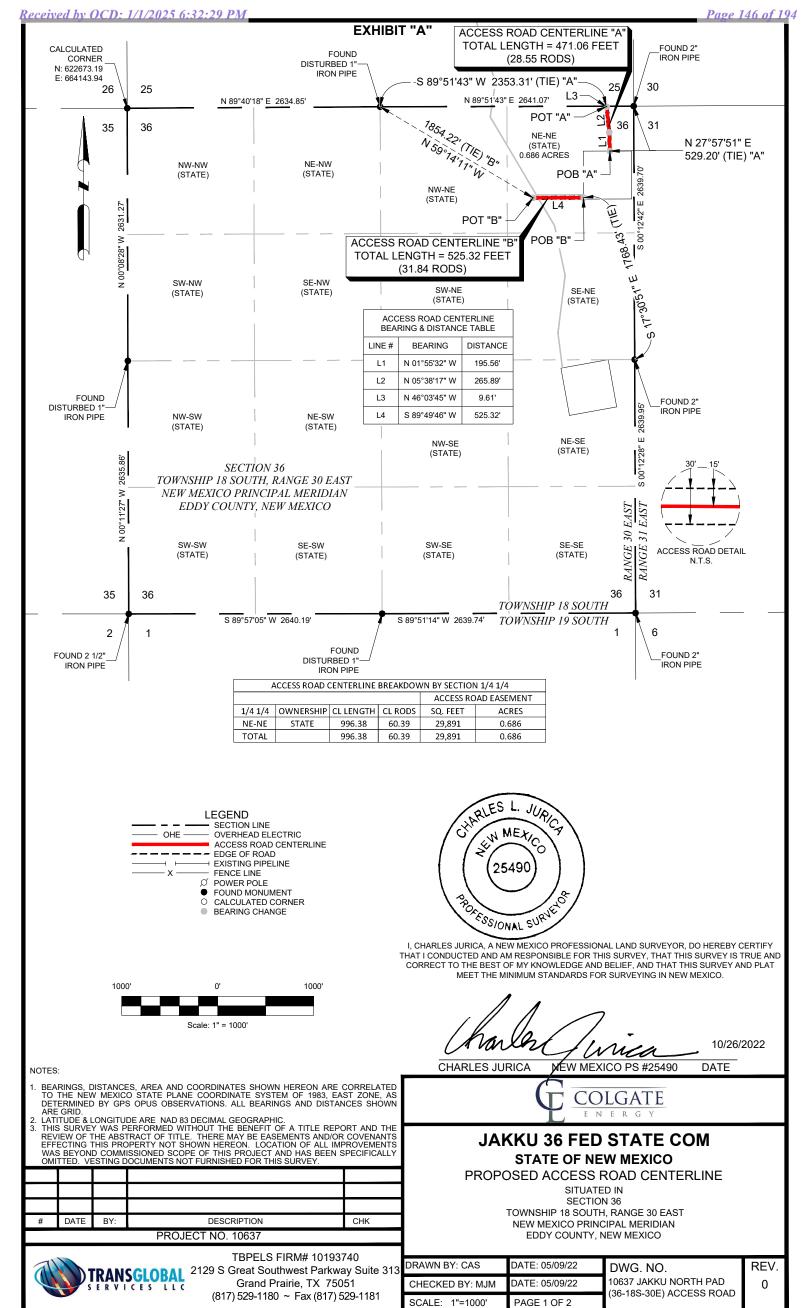

Well Name: JAKKU 36 FED COM

Well Number: 112H

12_Jakku_North_SUPO_20230508122638.pdf


•






32.







Released to Imaging: 1/27/2025 10:53:36 AM

#### ACCESS ROAD "A"

BEING THE CENTERLINE OF A PROPOSED ACCESS ROAD EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:

BEGINNING AT A POINT, IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE NORTHEAST CORNER OF SAID SECTION 36 BEARS N 27°57'51" E, A DISTANCE OF 529.20 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622227.24, E:669171.65 FEET FOR REFERENCE;

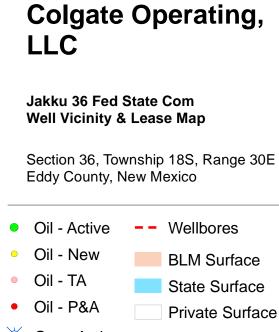
THENCE N 01°55'32" W, A DISTANCE OF 195.56 FEET TO A POINT; THENCE N 05°38'17" W, A DISTANCE OF 265.89 FEET TO A POINT;

THENCE N 46°03'45" W, A DISTANCE OF 9.61 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS S 89°51'43" W, A DISTANCE OF 2353.31 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622693.96, E:669132.04 FEET FOR REFERENCE.

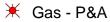
SAID CENTERLINE CONTAINING A TOTAL OF 471.06 FEET OR 28.55 RODS IN SAID SECTION 36.

ACCESS ROAD "B"

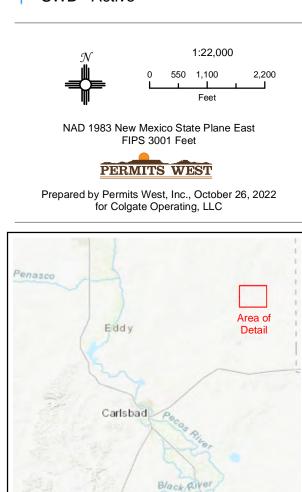
BEING THE CENTERLINE OF A PROPOSED ACCESS ROAD EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:


BEGINNING AT A POINT, IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 36 BEARS S 17°30'51" E, A DISTANCE OF 1768.43 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:621741.42, E:668897.36 FEET FOR REFERENCE;

THENCE S 89°49'46" W, A DISTANCE OF 525.32 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS N 59°14'11" W, A DISTANCE OF 1854.22 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:621739.86, E:668372.05 FEET FOR REFERENCE.

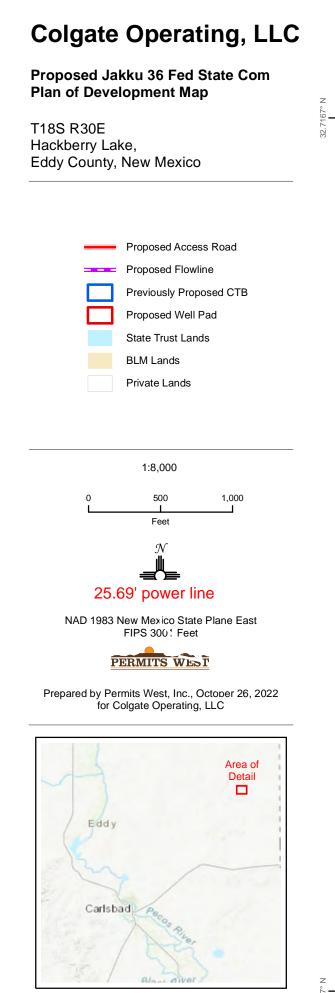

SAID CENTERLINE CONTAINING A TOTAL OF 525.32 FEET OR 31.84 RODS IN SAID SECTION 36.

NOTES:					L. JURIC NEXICO 490	n Ju	uca_			
TO THE M DETERMIN ARE GRID 2. LATITUDE 3. THIS SUR REVIEW C EFFECTIN	New Mexic Ned By GP & Longitu Vey Was F OF The Abs G This Pro	O STATE PLAN S OPUS OBSEF DE ARE NAD 83 PERFORMED WI TRACT OF TITLI OPERTY NOT SI	COORDINATES SHOWN HEREON ARE IE COORDINATE SYSTEM OF 1983, E RVATIONS. ALL BEARINGS AND DIST/ 3 DECIMAL GEOGRAPHIC. ITHOUT THE BENEFIT OF A TITLE REF E. THERE MAY BE EASEMENTS AND/C HOWN HEREON. LOCATION OF ALL M	AST ZONE, AS ANCES SHOWN PORT AND THE DR COVENANTS MPROVEMENTS	JA	ENI	D STATE COM			
WAS BEY OMITTED.	OND COMM VESTING [	ISSIONED SCO DOCUMENTS NO	PE OF THIS PROJECT AND HAS BEEN DT FURNISHED FOR THIS SURVEY.	SPECIFICALLY		STATE OF N	IEW MEXICO			
					PROPOSED ACCESS ROAD CENTERLINE					
							TED IN ION 36			
# DAT	E BY:		DESCRIPTION	СНК			TH, RANGE 30 EAST NCIPAL MERIDIAN			
		PROJ	ECT NO. 10637				, NEW MEXICO			
T	) TRAN	SGLOBAL	TBPELS FIRM# 1019 2129 S Great Southwest Parkv	vay Suite 313	DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.		
		CES LLC	Grand Prairie, TX 75 (817) 529-1180 ~ Fax (817)		CHECKED BY: MJM	DATE: 05/09/22	10637 JAKKU NORTH PAD (36-18S-30E) ACCESS ROAD	0		
Polousod	Turne	1/37/30	25 10:53:36 AM	020-1101	SCALE: 1"=1000'	PAGE 2 OF 2				

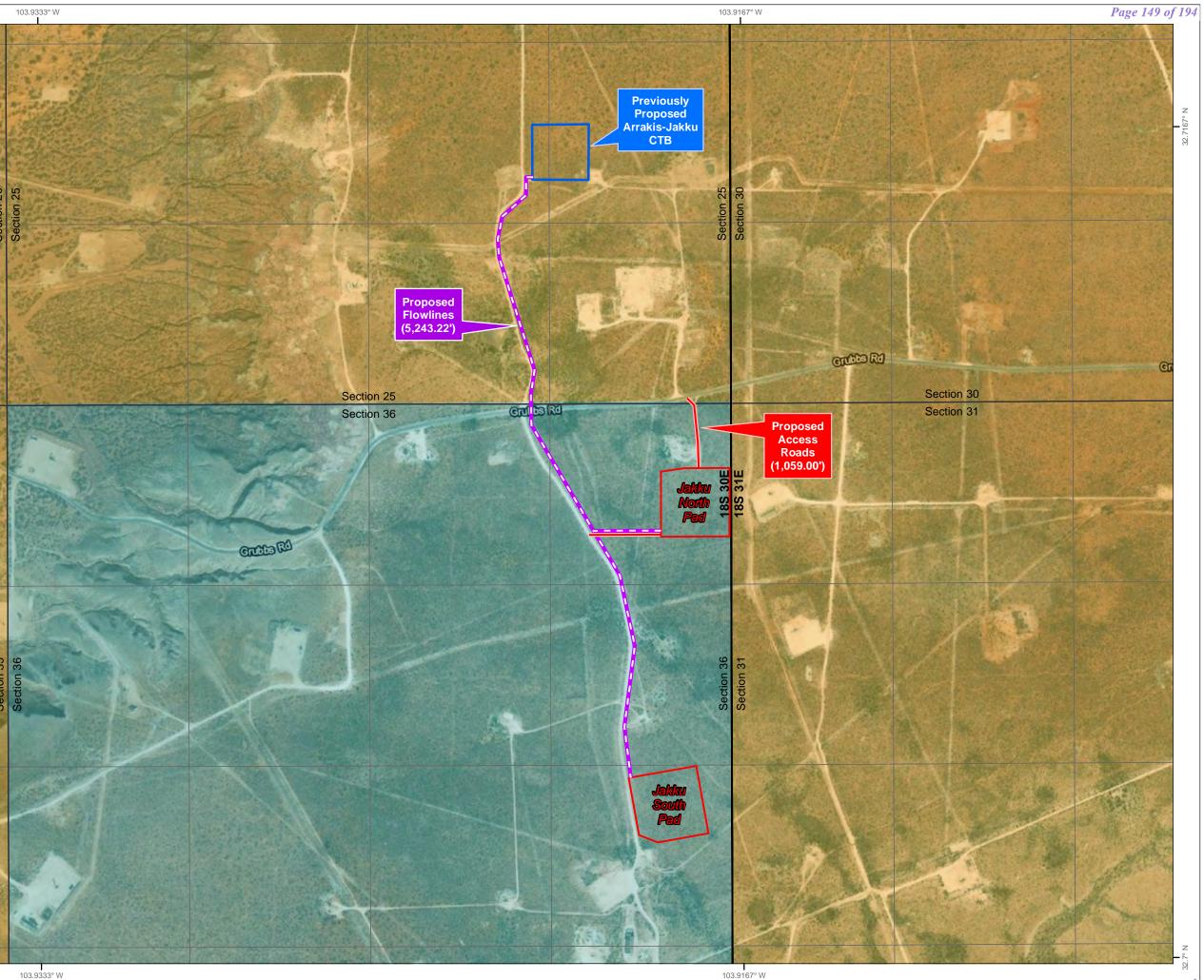

Received by OCD: 1/1/2025 6:32:29 PM

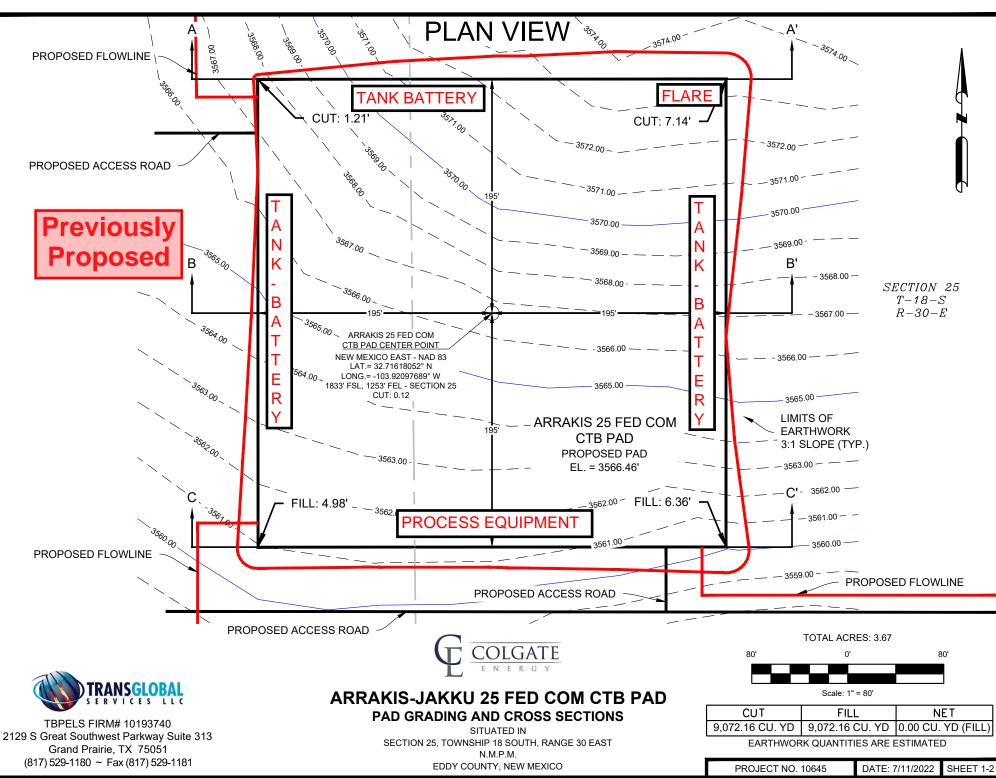


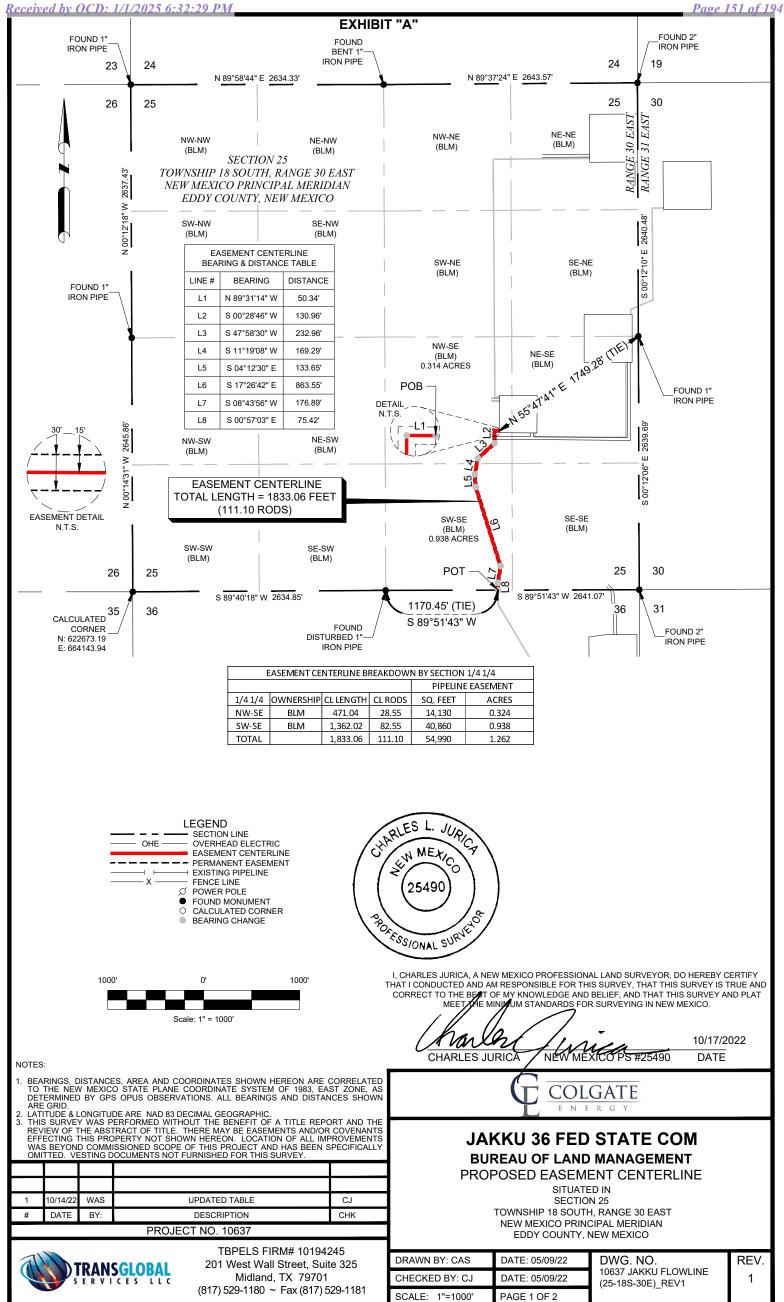





+ SWD - Active





NMNM 0937771 NMNM 027/27/7 Section Section Section Section 021 022 1 mile 024 023 NMNM 0016808 Radius NMLC 00 2897/8A NMNM 0016809 NMLC 0028990 NIMLG 005818 NMNM 027/27/8 NMLC 006422 NMNM 027278 0245503 Section NIMINIM Section Section Section NIMINIM 0025503 025 028 026 027 NMNM 028527 NMN 00337/7/5  $\odot$ NMNM 027277 NIMINI  $\bigotimes$ NMLG 0064220  $\bigcirc$ 1. NIMINIM 056541 020230018 NMLC 005865 IMNM 33774  $\otimes$ NMNM 027/27/7 Section NMLG 0028 Section Section 036 035 033 Section 034 E07811000 NMNM NMNM 0006245 056541 NMNM 019440 NMNM 056549 NIMNIM 124209 NMNM 027/27/3 NMNM 027277 MNM 113408 NMNM 029228 NMLC 0063613 ¥  $\bigcirc$ NMNM 0560353 12516 Section Section Section Section 001 004 003 002 NMNM 129044 NMNM 067985 0 • . . NMNM 113962 NMNM 129043 Section Section Section 010 **MNM 0002** 012 011 NIMNIM 05608





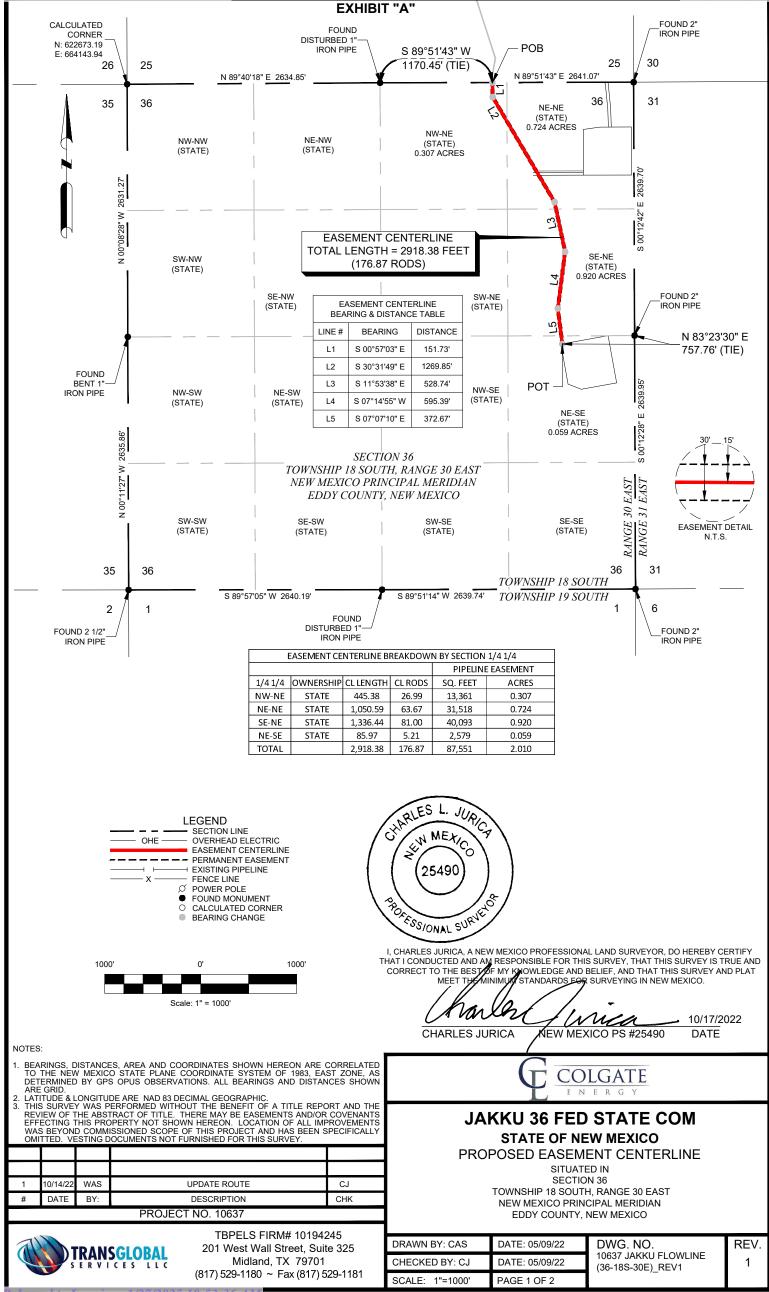

32.







BEING THE CENTERLINE OF A PROPOSED PIPELINE EASEMENT, SITUATED IN SECTION 25, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:


BEGINNING AT A POINT, IN SAID SECTION 25, FROM WHICH A 1" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 25 BEARS N 55°47'41" E, A DISTANCE OF 1749.28 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:624350.96, E:667963.82 FEET FOR REFERENCE;

THENCE N 89°31'14" W, A DISTANCE OF 50.34 FEET TO A POINT; THENCE S 00°28'46" W, A DISTANCE OF 130.96 FEET TO A POINT; THENCE S 47°58'30" W, A DISTANCE OF 232.96 FEET TO A POINT; THENCE S 11°19'08" W, A DISTANCE OF 169.29 FEET TO A POINT; THENCE S 04°12'30" E, A DISTANCE OF 133.65 FEET TO A POINT; THENCE S 17°26'42" E, A DISTANCE OF 863.55 FEET TO A POINT; THENCE S 08°43'56" W, A DISTANCE OF 176.89 FEET TO A POINT;

THENCE S 00°57'03" E, A DISTANCE OF 75.42 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN THE SOUTH BOUNDARY LINE OF SAID SECTION 25, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE SOUTH QUARTER CORNER OF SAID SECTION 25 BEARS S 89°51'43" W, A DISTANCE OF 1170.45 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622691.11, E:667949.20 FEET FOR REFERENCE.

SAID CENTERLINE CONTAINING A TOTAL OF 1833.06 FEET OR 111.10 RODS IN SAID SECTION 25.

NOTES	6:									
<ol> <li>BEARINGS, DISTANCES, AREA AND COORDINATES SHOWN HEREON ARE CORRELATED TO THE NEW MEXICO STATE PLANE COORDINATE SYSTEM OF 1983, EAST ZONE, AS DETERMINED BY GPS OPUS OBSERVATIONS. ALL BEARINGS AND DISTANCES SHOWN ARE GRID.</li> <li>LATITUDE &amp; LONGITUDE ARE NAD 83 DECIMAL GEOGRAPHIC.</li> </ol>								GATE R G Y		
2. ENTITOE & LONGTIDE ATE WAS DEFORMED WITHOUT THE BENEFITO. 3. THIS SURVEY WAS PERFORMED WITHOUT THE BENEFITO OF A TITLE REPORT AND THE REVIEW OF THE ABSTRACT OF TITLE. THERE MAY BE EASEMENTS AND/OR COVENANTS EFFECTING THIS PROPERTY NOT SHOWN HEREON. LOCATION OF ALL IMPROVEMENTS WAS BEYOND COMMISSIONED SCOPE OF THIS PROJECT AND HAS BEEN SPECIFICALLY OMITTED. VESTING DOCUMENTS NOT FURNISHED FOR THIS SURVEY.										
						PRO	POSED FASEM	ENT CENTERLINE		
							SITUATE	-		
1	10/14/22	WAS		UPDATED TABLE	CJ		SECTIO			
#	DATE	BY:		DESCRIPTION	СНК		TOWNSHIP 18 SOUTH			
			PROJE	CT NO. 10637	-	NEW MEXICO PRINCIPAL MERIDIAN EDDY COUNTY. NEW MEXICO				
				TBPELS FIRM# 10194	245		EDDT COONTI,I			
A	T		CLODAL	201 West Wall Street, Su		DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.	
	Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181					CHECKED BY: CJ	DATE: 05/09/22	10637 JAKKU FLOWLINE (25-18S-30E) REV1	1	
					529-1181	SCALE: 1"=1000'	PAGE 2 OF 2			



BEING THE CENTERLINE OF A PROPOSED PIPELINE EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:

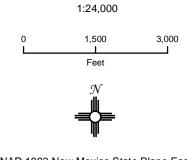
BEGINNING AT A POINT, IN THE NORTH BOUNDARY LINE OF SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS S 89°51'43" W, A DISTANCE OF 1170.45 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622688.29, E:666778.74 FEET FOR REFERENCE;

THENCE S 00°57'03" W, A DISTANCE OF 151.73 FEET TO A POINT; THENCE S 30°31'49" E, A DISTANCE OF 1269.85 FEET TO A POINT; THENCE S 11°53'38" E, A DISTANCE OF 528.74 FEET TO A POINT; THENCE S 07°14'55" W, A DISTANCE OF 595.39 FEET TO A POINT;

THENCE S 07°07'10" E, A DISTANCE OF 372.67 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 36 BEARS N 83°23'30" E, A DISTANCE OF 757.76 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:619967.77, E:668676.83 FEET FOR REFERENCE.

SAID CENTERLINE CONTAINING A TOTAL OF 2918.38 FEET OR 176.87 RODS IN SAID SECTION 36.

NOTES	:										
DET ARE 2. LAT	ERMINED GRID. ITUDE & L	) by gp: .ongitu	S OPUS OBSERV DE ARE NAD 83 D	DORDINATES SHOWN HEREON ARI COORDINATE SYSTEM OF 1983, E ATIONS. ALL BEARINGS AND DIST ECIMAL GEOGRAPHIC.	ANCES SHOWN	E N E R G Y					
REV EFF WA	ECTING T	THE ABS THIS PRO	TRACT OF TITLE. DPERTY NOT SHO ISSIONED SCOPE	IOUT THE BENEFIT OF A TITLE RE THERE MAY BE EASEMENTS AND/C WN HEREON. LOCATION OF ALL I OF THIS PROJECT AND HAS BEEN FURNISHED FOR THIS SURVEY.	OR COVENANTS	JA	KKU 36 FED STATE OF NE	STATE COM			
						PROPOSED EASEMENT CENTERLINE					
						SITUATED IN					
1	10/14/22	WAS		UPDATE ROUTE	CJ	SECTION 36					
#	DATE	BY:		DESCRIPTION	СНК	TOWNSHIP 18 SOUTH, RANGE 30 EAST NEW MEXICO PRINCIPAL MERIDIAN					
			PROJE	CT NO. 10637		EDDY COUNTY, NEW MEXICO					
				TBPELS FIRM# 1019	1215						
						DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.		
TRANSGLOBAL SERVICES LLC 201 West Wall Street, Suite 325 Midland, TX 79701				CHECKED BY: CJ	DATE: 05/09/22	10637 JAKKU FLOWLINE (36-18S-30E) REV1	1				
	(817) 529-1180 ~ Fax (817) 529-1181				SCALE: 1"=1000'	PAGE 2 OF 2	(00 .00 002)_1(201				

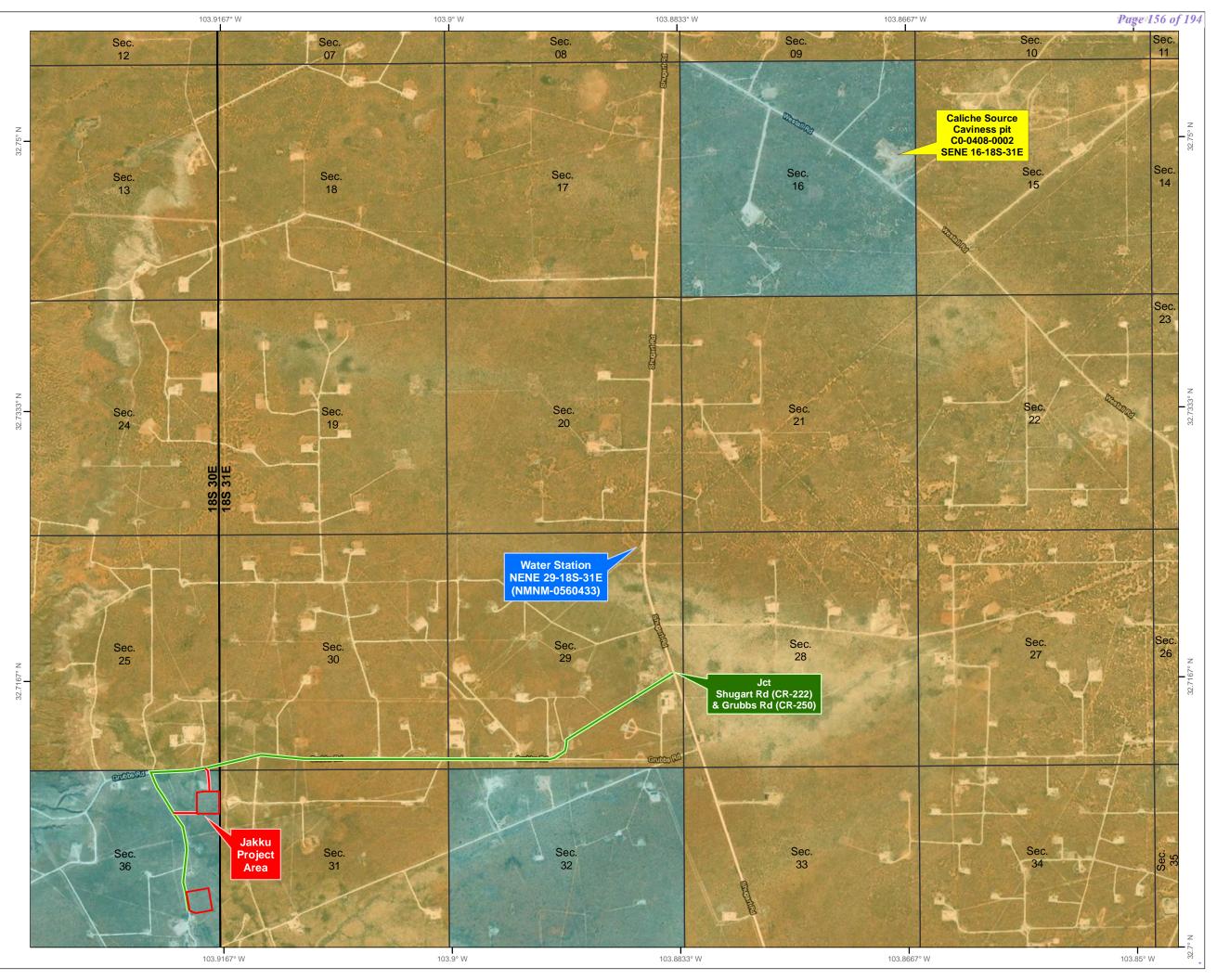



# Colgate Operating, LLC

Proposed Jakku 36 Fed State Com Water Source Map

T18S R30E Hackberry Lake, Eddy County, New Mexico



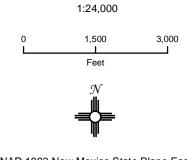



NAD 1983 New Mexico State Plane East FIPS 3001 Feet



Prepared by Permits West, Inc., October 26, 2022 for Colgate Operating, LLC



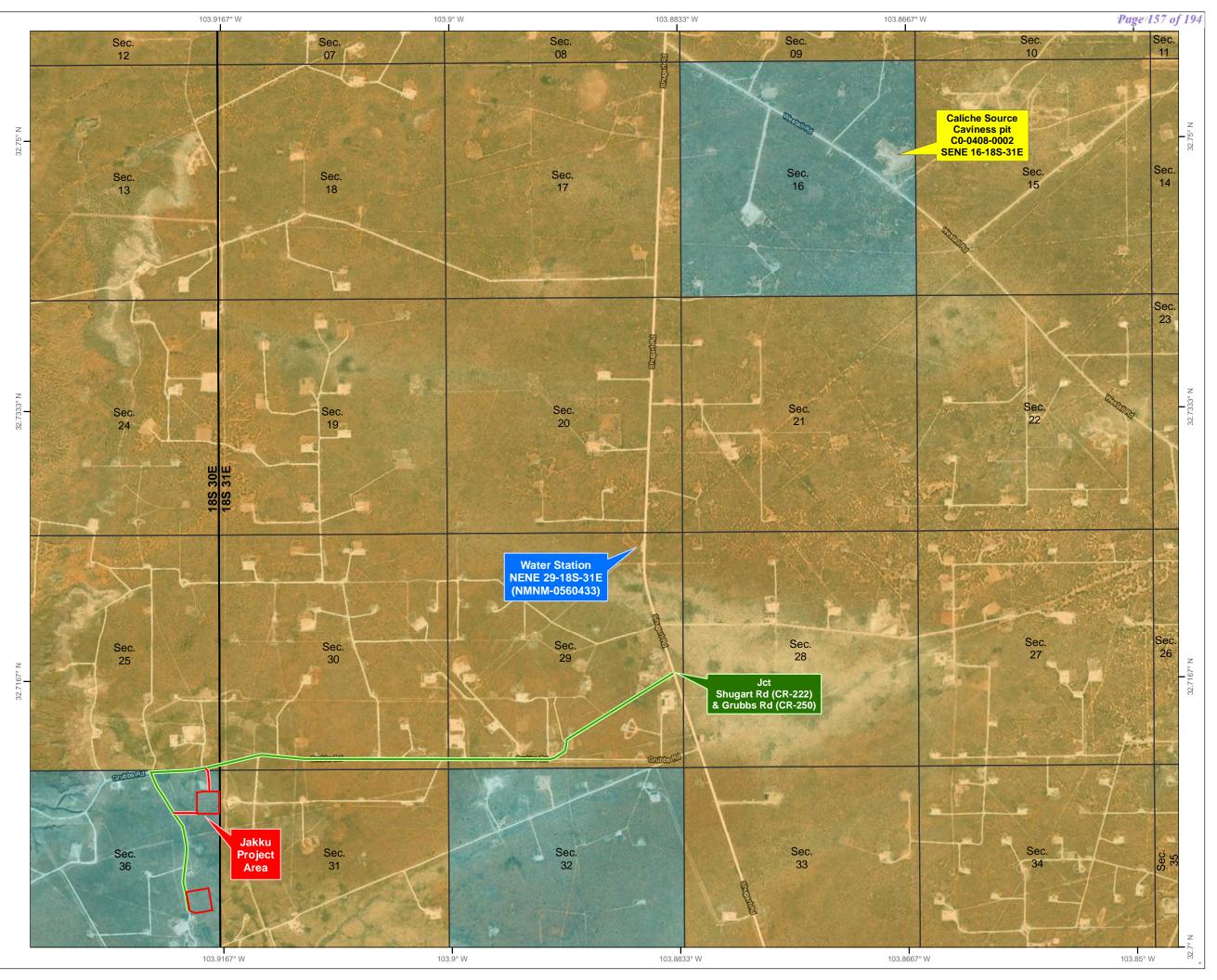


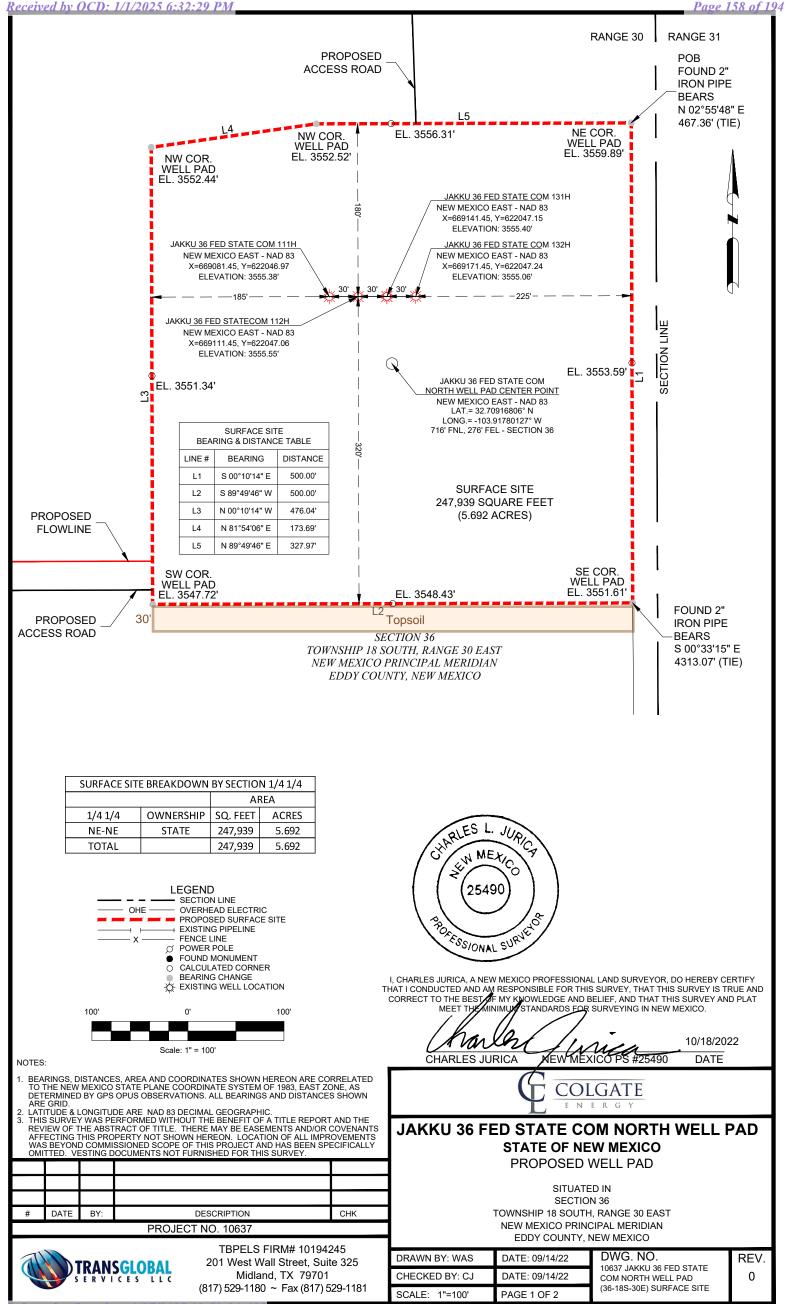

# Colgate Operating, LLC

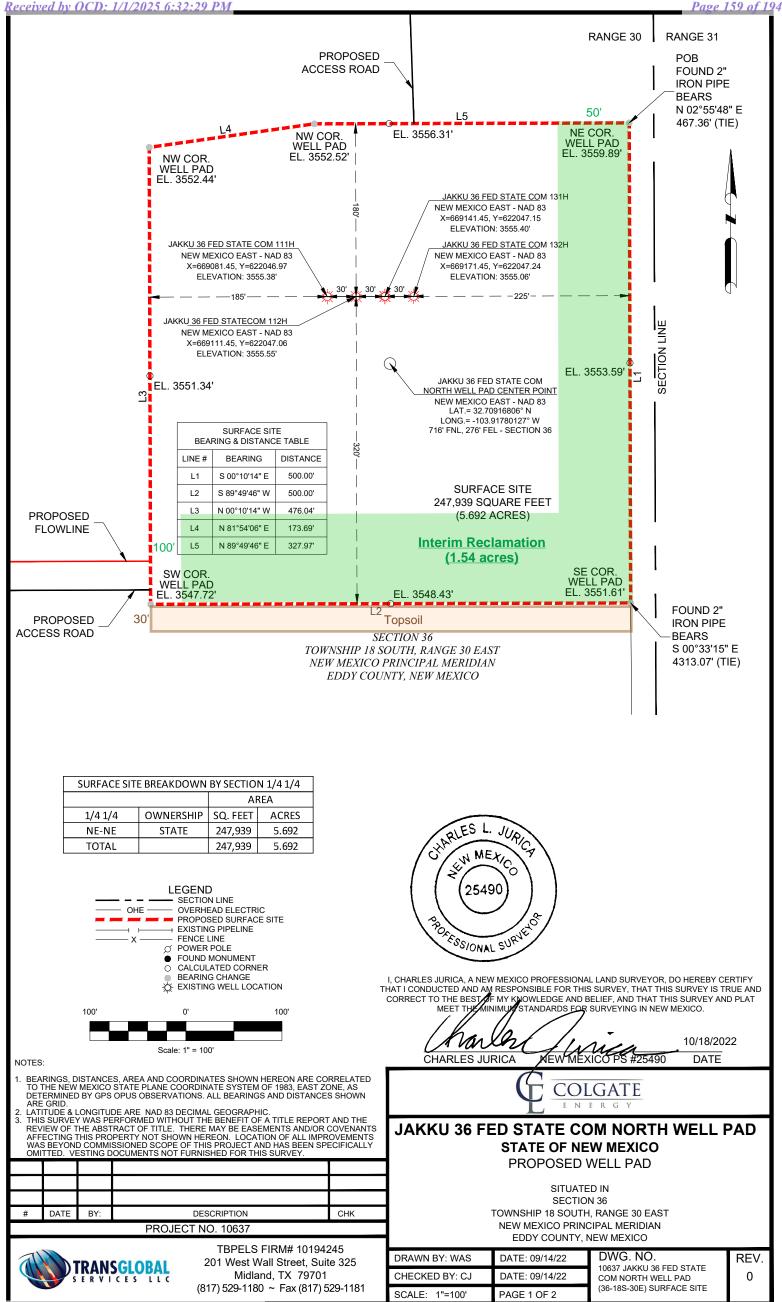
Proposed Jakku 36 Fed State Com Water Source Map

T18S R30E Hackberry Lake, Eddy County, New Mexico







NAD 1983 New Mexico State Plane East FIPS 3001 Feet




Prepared by Permits West, Inc., October 26, 2022 for Colgate Operating, LLC









Colgate Operating, LLC Jakku 36 Fed State Com Section 36-18S-30E Eddy County, NM

#### Surface Use Plan of Operations

North Pad Jakku 36 Fed State Com 111H Jakku 36 Fed State Com 112H Jakku 36 Fed State Com 131H Jakku 36 Fed State Com 132H South Pad Jakku 36 Fed State Com 113H Jakku 36 Fed State Com 114H Jakku 36 Fed State Com 133H Jakku 36 Fed State Com 134H

### 1. ROAD DIRECTIONS & DESCRIPTIONS

From the Loco Hill, NM Post Office... Go East 5-1/2 miles on paved US 82 Then turn right and go South 6-3/4 miles on paved County Road 222 Then turn right and go SW and W 2.1 miles on curvy paved County Road 250 Then turn left and go South about 500' on the proposed road to the North well pad.

Non-state and non-county roads will be maintained as needed to Gold Book standards. This includes pulling ditches, preserving the crown, and cleaning culverts. This will be done at least once a year, and more often as needed.

## 2. ROAD TO BE BUILT OR UPGRADED

The **1,059.00'** of new resource roads will be crowned, ditched, have a  $\leq 24'$  wide driving surface, and be surfaced with caliche. Pipelines that are crossed will be padded. Maximum disturbed width = 30'. Maximum grade = 3%. Maximum cut or fill = 3'. A cattleguard will be installed on the SW access road to the north well pad. No culvert or vehicle turn out is needed.

### 3. EXISTING WELLS

Existing oil, gas, injection, water, disposal and P & A wells are within a mile radius.

### 4. PROPOSED PRODUCTION FACILITIES

The previously proposed 390' x 390' Arrakis-Jakku CTB will also service the North and South Jakku pads. Flare and/or CBU will be in the northeast corner of the CTB. Process

Colgate Operating, LLC Jakku 36 Fed State Com Section 36-18S-30E Eddy County, NM

equipment (e. g., separators, heater-treaters, meters, compressor) will be on the south side of the CTB. Tanks will be on the other sides of the CTB.

Eight ≈4" O. D. flowlines (one per well) will run for 5,243.22' between the CTB and the two Jakku well pads. Pipes will run parallel to roads. Pipelines will be buried.

## 5. WATER SUPPLY

Water will be trucked 3 miles from an existing water station (NMNM-0560433) in NENE 29-18s-31e on County Road 222.

## 6. CONSTRUCTION MATERIALS & METHODS

NM One Call (811) will be notified before construction starts. Top  $\approx$ 6" of soil and brush will be stockpiled south of the well pads and south of the CTB. CTB topsoil pile will be no higher than 36" and will be seeded in place. V-doors will face east. Closed loop mud system will be used. Caliche will be hauled from the existing Caviness caliche pit on State land (C0-0408-0002) in SENE 16-18s-31e.

### 7. WASTE DISPOSAL

All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360's state approved (NM-01-0006) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

### 8. ANCILLARY FACILITIES

There will be no airstrip or camp. Camper trailers will be on location for the company man, tool pusher, and mud logger.

### 9. WELL SITE LAYOUT

Also see Rig Layout diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

Colgate Operating, LLC Jakku 36 Fed State Com Section 36-18S-30E Eddy County, NM

### 10. <u>RECLAMATION</u>

A 100' wide swath on the south and 50' wide swath on the west sides of the well pads will be interim reclaimed. Once the last well is plugged on each pad, then the remainder of the pad and new road to the pads will be reclaimed within 6 months of plugging. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with BLM requirements. Roads will be blocked. Noxious weeds will be controlled. CTB will be similarly reclaimed once its last well is plugged. (It will serve Colgate's Arrakis wells too.)

See table below for a breakdown of short-term and long-term disturbance acreages by facility type. Note that the CTB is not included in this table because it was previously proposed in the Arrakis APD submissions.

New Disturbance (acres)								
Facility	Short-term	Interim Reclamation	Long-term					
Jakku North Well Pad (5.692 ac) + Topsoil (500'x30')	6.04	1.54	4.50					
Jakku South Well Pad (5.627 ac) + Topsoil (373'x30')	5.88	1.49	4.39					
Access Roads (1,059.00'x30')	0.73	0.00	0.73					
Flowlines (5,243.22'x30')	3.60	3.60	0.00					
Total	16.25	6.63	9.62					

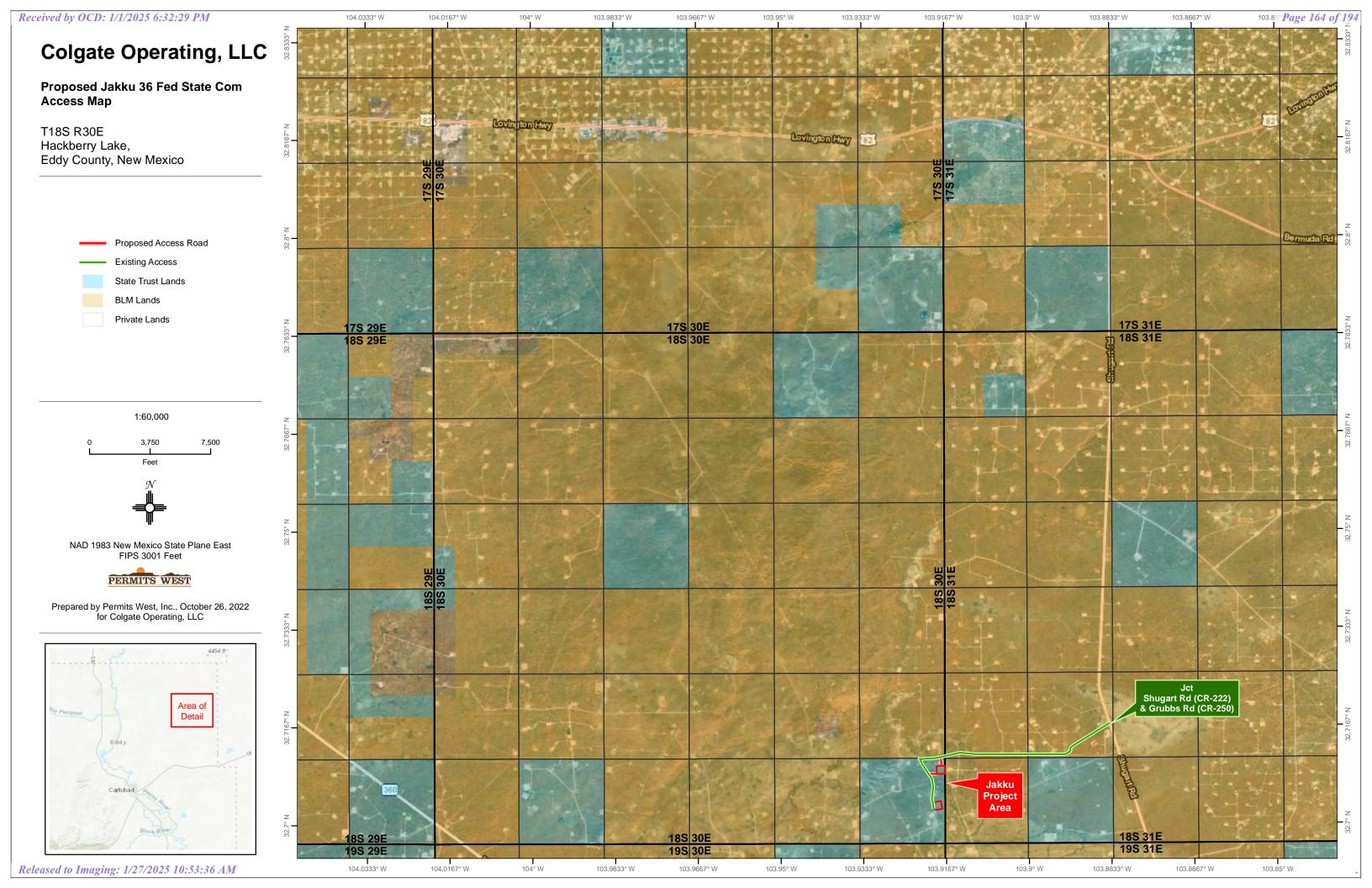
## 11. SURFACE OWNER

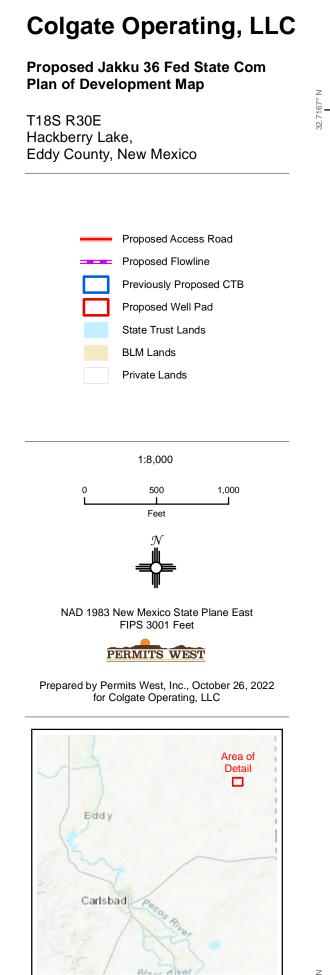
Flowlines, existing access, and new access roads will be on BLM and State Trust Lands. All well pads will be constructed on State Trust Lands. BLM office is the Carlsbad Field Office, 620 E. Greene, Carlsbad NM 88220. Phone is 575 234-5972. State Land Office, 310 Old Santa Fe Trail, Santa Fe, NM 87501. Phone is 505-827-5760.

### 12. OTHER INFORMATION

Lone Mountain Archaeological conducted a block inspection and filed report NMCRIS-150188 on May 31, 2022. Due to these wells being state/state/fed, no BLM onsite inspection was performed.

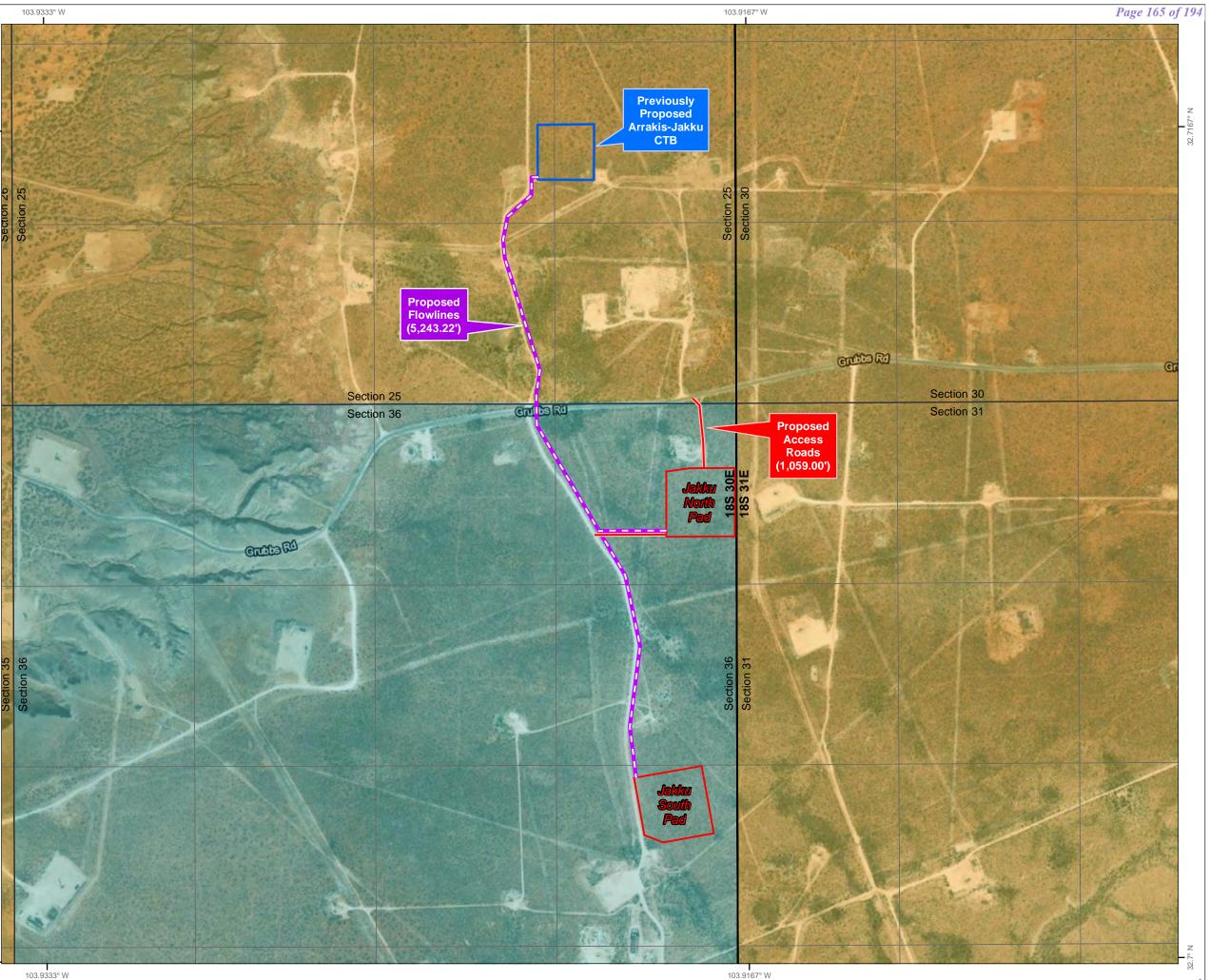
Colgate Operating, LLC Jakku 36 Fed State Com Section 36-18S-30E Eddy County, NM

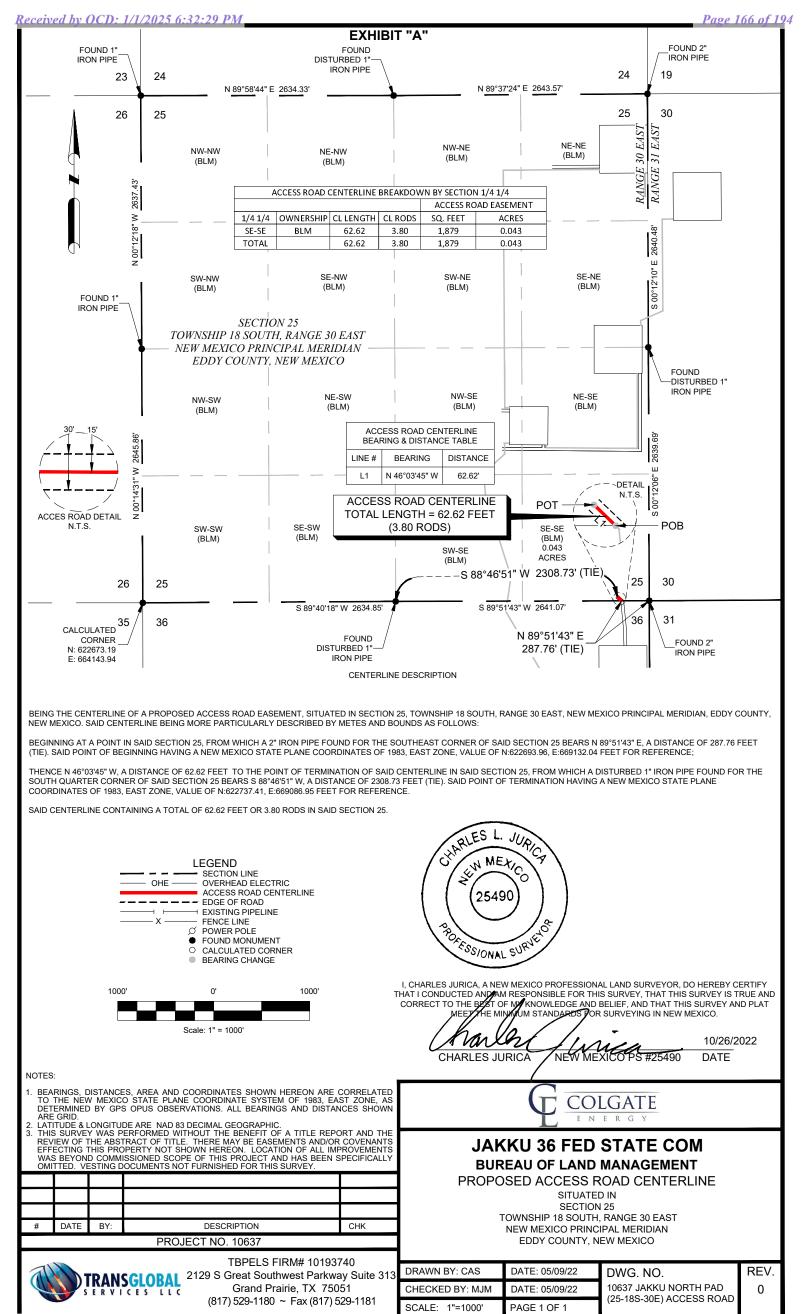

#### **CERTIFICATION**

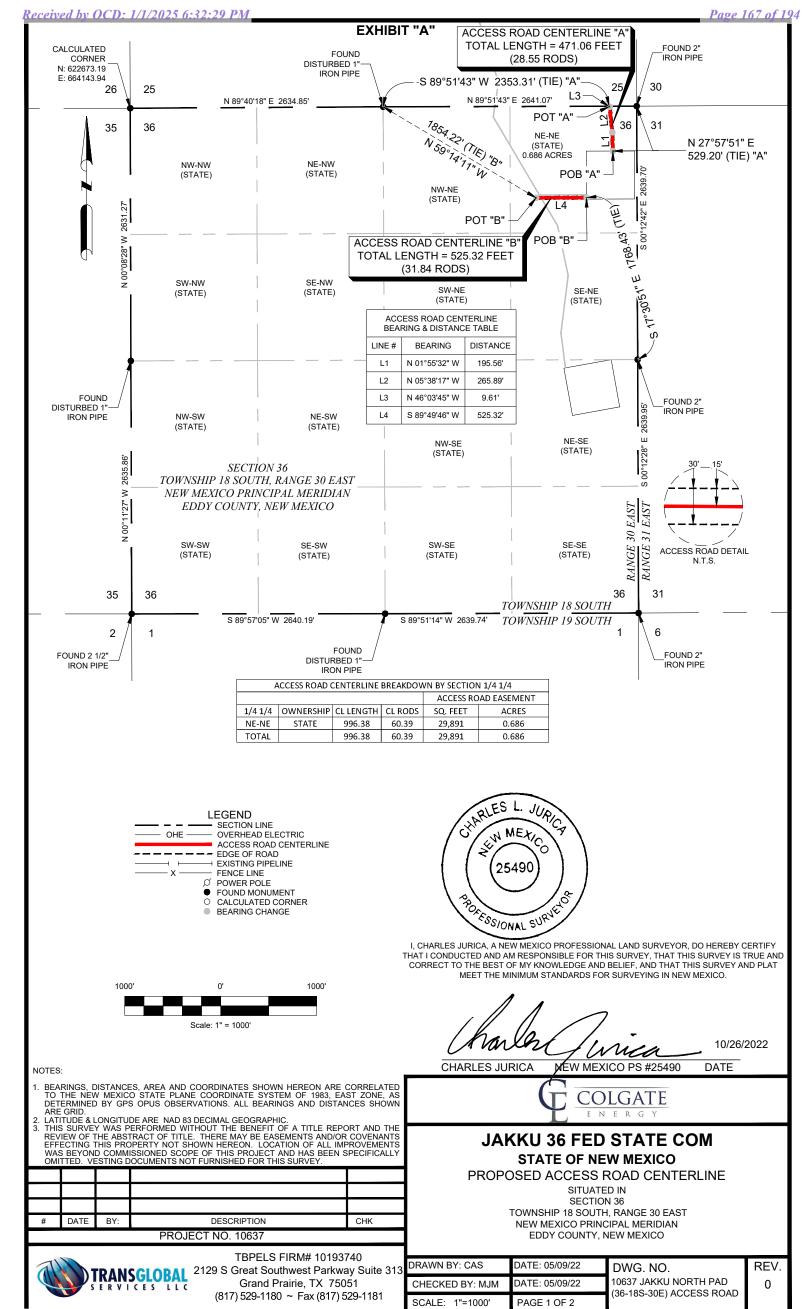

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U. S. C. 1001 for the filing of false statements. Executed this <u>3rd</u> day of <u>November 2022</u>.

Cory Walk

Cory Walk, Consultant Permits West, Inc. 37 Verano Loop, Santa Fe, NM 87508 (505) 466-8120


Field representative will be: Matt Jordan, Surface Land Lead Colgate Operating, LLC 300 N. Marienfeld St., Suite 1000, Midland TX 79701 Office: (432) 400-3111






32.







- 55	a 8 5	1 A 12		5	950.8	7 450	0.0	 and a	<u> </u>	0 0	12	1 7
- 7	<u>eleasea</u>	to I	maging:		$\mathcal{T}$	777	173	П	• • •	(• <b>-</b> 3	h A	4 7
	LULUSUU	IV I	musms.	11	<b>M</b> 1	1 44		 •	• • •	•••	U X.	<b>.</b>

#### ACCESS ROAD "A"

BEING THE CENTERLINE OF A PROPOSED ACCESS ROAD EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:

BEGINNING AT A POINT, IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE NORTHEAST CORNER OF SAID SECTION 36 BEARS N 27°57'51" E, A DISTANCE OF 529.20 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622227.24, E:669171.65 FEET FOR REFERENCE;

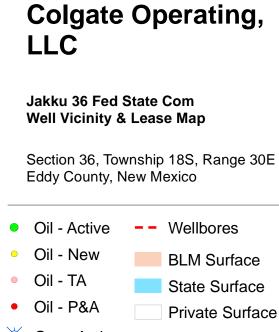
THENCE N 01°55'32" W, A DISTANCE OF 195.56 FEET TO A POINT; THENCE N 05°38'17" W, A DISTANCE OF 265.89 FEET TO A POINT;

THENCE N 46°03'45" W, A DISTANCE OF 9.61 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS S 89°51'43" W, A DISTANCE OF 2353.31 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622693.96, E:669132.04 FEET FOR REFERENCE.

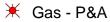
SAID CENTERLINE CONTAINING A TOTAL OF 471.06 FEET OR 28.55 RODS IN SAID SECTION 36.

ACCESS ROAD "B"

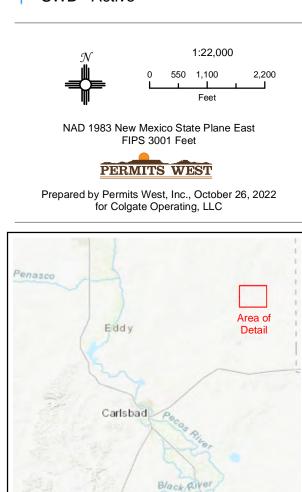
BEING THE CENTERLINE OF A PROPOSED ACCESS ROAD EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:


BEGINNING AT A POINT, IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 36 BEARS S 17°30'51" E, A DISTANCE OF 1768.43 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:621741.42, E:668897.36 FEET FOR REFERENCE;

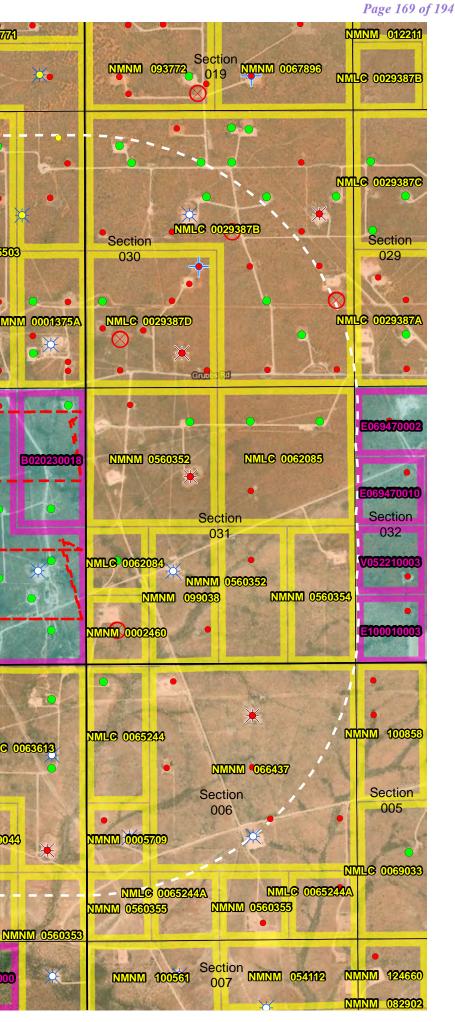
THENCE S 89°49'46" W, A DISTANCE OF 525.32 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS N 59°14'11" W, A DISTANCE OF 1854.22 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:621739.86, E:668372.05 FEET FOR REFERENCE.

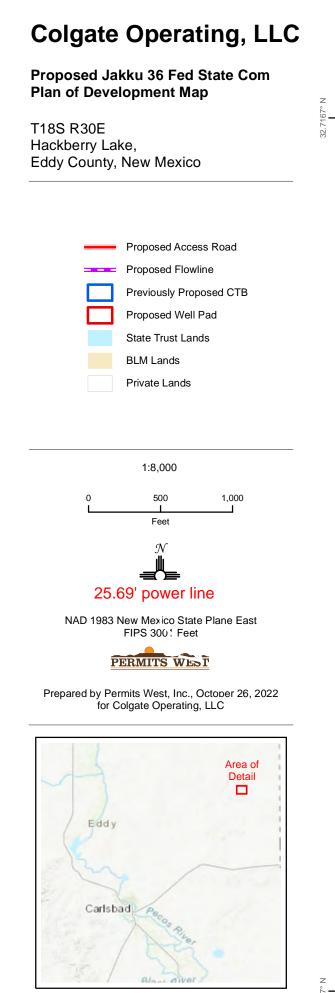

SAID CENTERLINE CONTAINING A TOTAL OF 525.32 FEET OR 31.84 RODS IN SAID SECTION 36.

NOTES:					L. JURIC NEXICO 490	n Ju	uca_			
TO THE M DETERMIN ARE GRID 2. LATITUDE 3. THIS SUR REVIEW C EFFECTIN	New Mexic Ned by GP & Longitu Vey Was F OF The Abs G This Pro	O STATE PLAN S OPUS OBSEF DE ARE NAD 83 PERFORMED WI TRACT OF TITLI OPERTY NOT SI	COORDINATES SHOWN HEREON ARE IE COORDINATE SYSTEM OF 1983, E RVATIONS. ALL BEARINGS AND DIST/ 3 DECIMAL GEOGRAPHIC. ITHOUT THE BENEFIT OF A TITLE REF E. THERE MAY BE EASEMENTS AND/C HOWN HEREON. LOCATION OF ALL M	AST ZONE, AS ANCES SHOWN PORT AND THE DR COVENANTS MPROVEMENTS	JA	ENI	D STATE COM			
WAS BEY OMITTED.	OND COMM VESTING [	ISSIONED SCO DOCUMENTS NO	PE OF THIS PROJECT AND HAS BEEN DT FURNISHED FOR THIS SURVEY.	SPECIFICALLY		STATE OF N	IEW MEXICO			
					PROPOSED ACCESS ROAD CENTERLINE					
							TED IN ION 36			
# DAT	E BY:		DESCRIPTION	СНК			TH, RANGE 30 EAST NCIPAL MERIDIAN			
		PROJ	ECT NO. 10637				, NEW MEXICO			
T	) TRAN	SGLOBAL	TBPELS FIRM# 1019 2129 S Great Southwest Parkv	vay Suite 313	DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.		
		CES LLC	Grand Prairie, TX 75 (817) 529-1180 ~ Fax (817)		CHECKED BY: MJM	DATE: 05/09/22	10637 JAKKU NORTH PAD (36-18S-30E) ACCESS ROAD	0		
Polousod	Turne	1/37/30	25 10:53:36 AM	020-1101	SCALE: 1"=1000'	PAGE 2 OF 2				

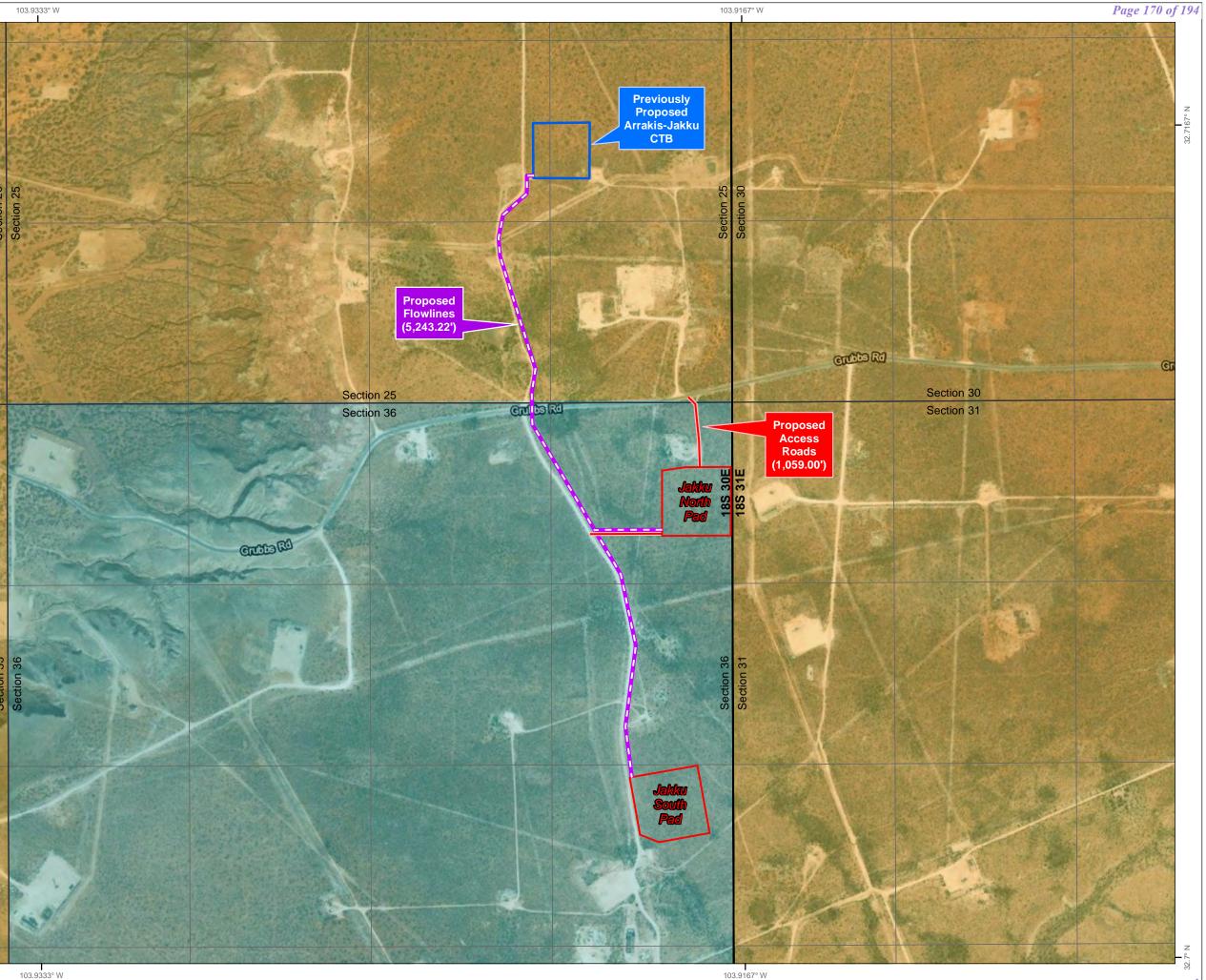

Received by OCD: 1/1/2025 6:32:29 PM

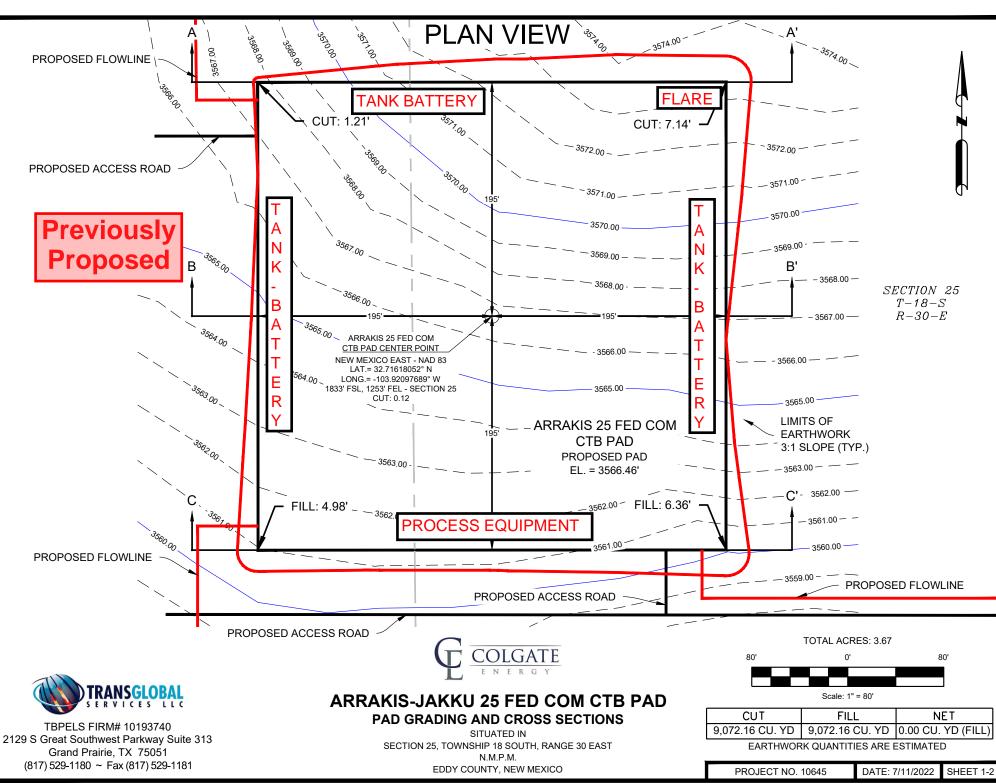





+ SWD - Active





NMNM 0937771 NMNM 027/27/7 Section Section Section Section 021 022 1 mile 024 023 NMNM 0016808 Radius NMLC 00 2897/8A NMNM 0016809 NMLC 0028990 NIMLG 005818 NMNM 027/27/8 NMLC 006422 NMNM 027278 0245503 Section NIMINIM Section Section Section NIMINIM 0025503 025 028 026 027 NMNM 028527 NMN 00337/7/5  $\odot$ NMNM 027277 NIMINI  $\bigotimes$ NMLG 0064220  $\bigcirc$ 1. NIMINIM 056541 020230018 NMLC 005865 IMNM 33774  $\otimes$ NMNM 027/27/7 Section NMLG 0028 Section Section 036 035 033 Section 034 E07811000 NMNM NMNM 0006245 056541 NMNM 019440 NMNM 056549 NIMNIM 124209 NMNM 027/27/3 NMNM 027277 MNM 113408 NMNM 029228 NMLC 0063613 ¥  $\bigcirc$ NMNM 0560353 12516 Section Section Section Section 001 004 003 002 NMNM 129044 NMNM 067985 0 • . . NMNM 113962 NMNM 129043 Section Section Section 010 **MNM 0002** 012 011 NIMNIM 05608





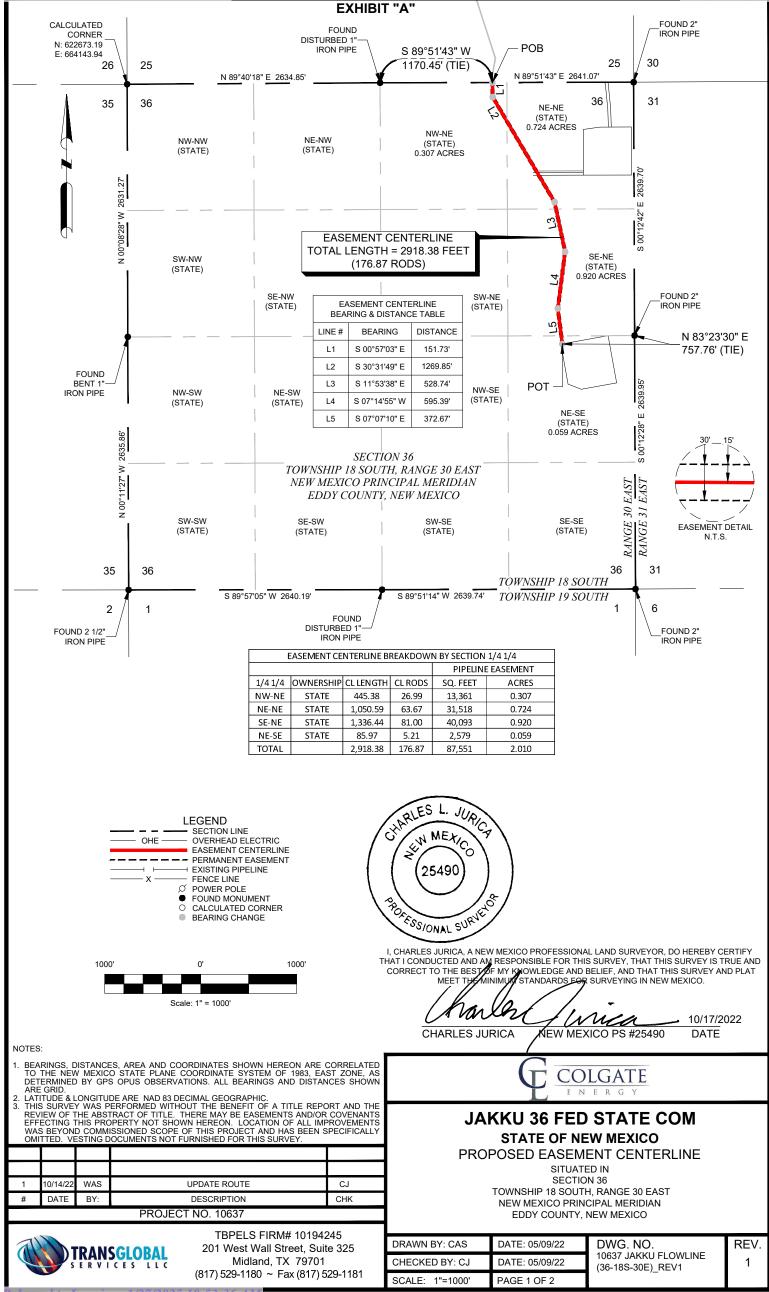
32.







BEING THE CENTERLINE OF A PROPOSED PIPELINE EASEMENT, SITUATED IN SECTION 25, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:


BEGINNING AT A POINT, IN SAID SECTION 25, FROM WHICH A 1" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 25 BEARS N 55°47'41" E, A DISTANCE OF 1749.28 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:624350.96, E:667963.82 FEET FOR REFERENCE;

THENCE N 89°31'14" W, A DISTANCE OF 50.34 FEET TO A POINT; THENCE S 00°28'46" W, A DISTANCE OF 130.96 FEET TO A POINT; THENCE S 47°58'30" W, A DISTANCE OF 232.96 FEET TO A POINT; THENCE S 11°19'08" W, A DISTANCE OF 169.29 FEET TO A POINT; THENCE S 04°12'30" E, A DISTANCE OF 133.65 FEET TO A POINT; THENCE S 17°26'42" E, A DISTANCE OF 863.55 FEET TO A POINT; THENCE S 08°43'56" W, A DISTANCE OF 176.89 FEET TO A POINT;

THENCE S 00°57'03" E, A DISTANCE OF 75.42 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN THE SOUTH BOUNDARY LINE OF SAID SECTION 25, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE SOUTH QUARTER CORNER OF SAID SECTION 25 BEARS S 89°51'43" W, A DISTANCE OF 1170.45 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622691.11, E:667949.20 FEET FOR REFERENCE.

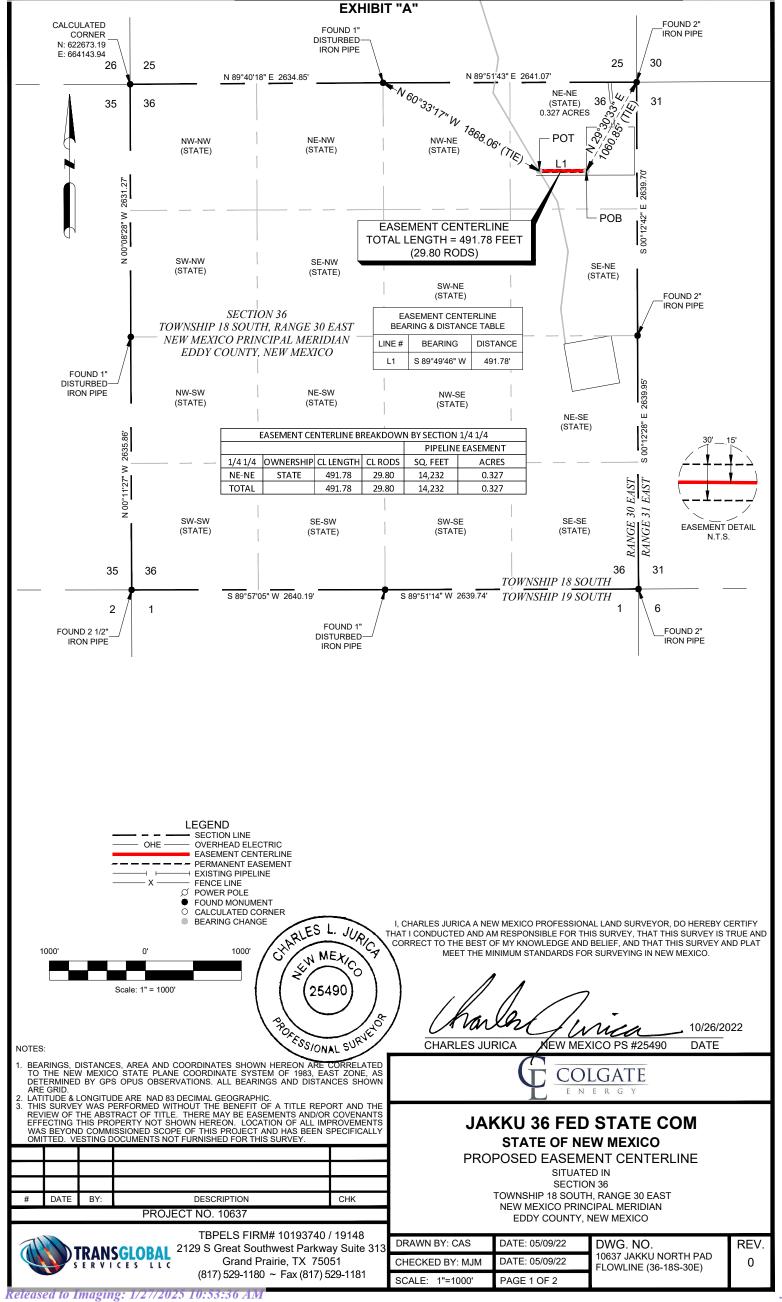
SAID CENTERLINE CONTAINING A TOTAL OF 1833.06 FEET OR 111.10 RODS IN SAID SECTION 25.

NOTES	6:									
<ol> <li>BEARINGS, DISTANCES, AREA AND COORDINATES SHOWN HEREON ARE CORRELATED TO THE NEW MEXICO STATE PLANE COORDINATE SYSTEM OF 1983, EAST ZONE, AS DETERMINED BY GPS OPUS OBSERVATIONS. ALL BEARINGS AND DISTANCES SHOWN ARE GRID.</li> <li>LATITUDE &amp; LONGITUDE ARE NAD 83 DECIMAL GEOGRAPHIC.</li> </ol>								GATE R G Y		
2. ENTITOE & LONGTIDE ATE WAS DEFORMED WITHOUT THE BENEFITO. 3. THIS SURVEY WAS PERFORMED WITHOUT THE BENEFITO OF A TITLE REPORT AND THE REVIEW OF THE ABSTRACT OF TITLE. THERE MAY BE EASEMENTS AND/OR COVENANTS EFFECTING THIS PROPERTY NOT SHOWN HEREON. LOCATION OF ALL IMPROVEMENTS WAS BEYOND COMMISSIONED SCOPE OF THIS PROJECT AND HAS BEEN SPECIFICALLY OMITTED. VESTING DOCUMENTS NOT FURNISHED FOR THIS SURVEY.										
						PRO	POSED FASEM	ENT CENTERLINE		
							SITUATE	-		
1	10/14/22	WAS		UPDATED TABLE	CJ		SECTIO			
#	DATE	BY:		DESCRIPTION	СНК		TOWNSHIP 18 SOUTH			
			PROJE	CT NO. 10637	-	NEW MEXICO PRINCIPAL MERIDIAN EDDY COUNTY. NEW MEXICO				
				TBPELS FIRM# 10194	245		EDDT COONTI,I			
A	T		CLODAL	201 West Wall Street, Su		DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.	
	Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181					CHECKED BY: CJ	DATE: 05/09/22	10637 JAKKU FLOWLINE (25-18S-30E) REV1	1	
					529-1181	SCALE: 1"=1000'	PAGE 2 OF 2			



BEING THE CENTERLINE OF A PROPOSED PIPELINE EASEMENT, SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST, NEW MEXICO PRINCIPAL MERIDIAN, EDDY COUNTY, NEW MEXICO. SAID CENTERLINE BEING MORE PARTICULARLY DESCRIBED BY METES AND BOUNDS AS FOLLOWS:

BEGINNING AT A POINT, IN THE NORTH BOUNDARY LINE OF SAID SECTION 36, FROM WHICH A DISTURBED 1" IRON PIPE FOUND FOR THE NORTH QUARTER CORNER OF SAID SECTION 36 BEARS S 89°51'43" W, A DISTANCE OF 1170.45 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:622688.29, E:666778.74 FEET FOR REFERENCE;

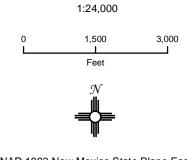

THENCE S 00°57'03" W, A DISTANCE OF 151.73 FEET TO A POINT; THENCE S 30°31'49" E, A DISTANCE OF 1269.85 FEET TO A POINT; THENCE S 11°53'38" E, A DISTANCE OF 528.74 FEET TO A POINT; THENCE S 07°14'55" W, A DISTANCE OF 595.39 FEET TO A POINT;

Released to Imaging: 1/27/2025 10:53:36 AM

THENCE S 07°07'10" E, A DISTANCE OF 372.67 FEET TO THE POINT OF TERMINATION OF SAID CENTERLINE IN SAID SECTION 36, FROM WHICH A 2" IRON PIPE FOUND FOR THE EAST QUARTER CORNER OF SAID SECTION 36 BEARS N 83°23'30" E, A DISTANCE OF 757.76 FEET (TIE). SAID POINT OF TERMINATION HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:619967.77, E:668676.83 FEET FOR REFERENCE.

SAID CENTERLINE CONTAINING A TOTAL OF 2918.38 FEET OR 176.87 RODS IN SAID SECTION 36.

NOTES	:										
DET ARE 2. LAT	T. BEARINGS, DISTANCES, AREA AND COORDINATES SHOWN HEREON ARE CORRELATED TO THE NEW MEXICO STATE PLANE COORDINATE SYSTEM OF 1983, EAST ZONE, AS DETERMINED BY GPS OPUS OBSERVATIONS. ALL BEARINGS AND DISTANCES SHOWN ARE GRID. 2. LATITUDE & LONGITUDE ARE NAD 83 DECIMAL GEOGRAPHIC.					COLGATE ENERGY					
RE\ EFF WA	IEW OF T ECTING T S BEYONI	THE ABS THIS PRO	TRACT OF TITLE. DPERTY NOT SHO ISSIONED SCOPE	IOUT THE BENEFIT OF A TITLE THERE MAY BE EASEMENTS AN WIN HEREON. LOCATION OF AL OF THIS PROJECT AND HAS BE FURNISHED FOR THIS SURVEY.	D/OR COVENANTS	JA	KKU 36 FEC STATE OF N	O STATE COM EW MEXICO			
						PROPOSED EASEMENT CENTERLINE					
						SITUATED IN					
1	10/14/22	WAS		UPDATE ROUTE	CJ						
#	DATE	BY:		DESCRIPTION	СНК	TOWNSHIP 18 SOUTH, RANGE 30 EAST NEW MEXICO PRINCIPAL MERIDIAN					
			PROJE	CT NO. 10637		EDDY COUNTY, NEW MEXICO					
				TBPELS FIRM# 10	194245		-				
TRANSGLOBAL 201 West Wall Street, Suite 325						DRAWN BY: CAS	DATE: 05/09/22	DWG. NO.	REV.		
SERVICES LLC Midland, TX 79701				CHECKED BY: CJ	DATE: 05/09/22	10637 JAKKU FLOWLINE (36-18S-30E) REV1	1				
	(817) 529-1180 ~ Fax (817) 529-1181				SCALE: 1"=1000'	PAGE 2 OF 2	( ·,,				




# Colgate Operating, LLC

Proposed Jakku 36 Fed State Com Water Source Map

T18S R30E Hackberry Lake, Eddy County, New Mexico



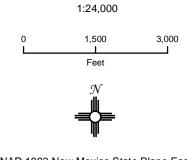



NAD 1983 New Mexico State Plane East FIPS 3001 Feet



Prepared by Permits West, Inc., October 26, 2022 for Colgate Operating, LLC





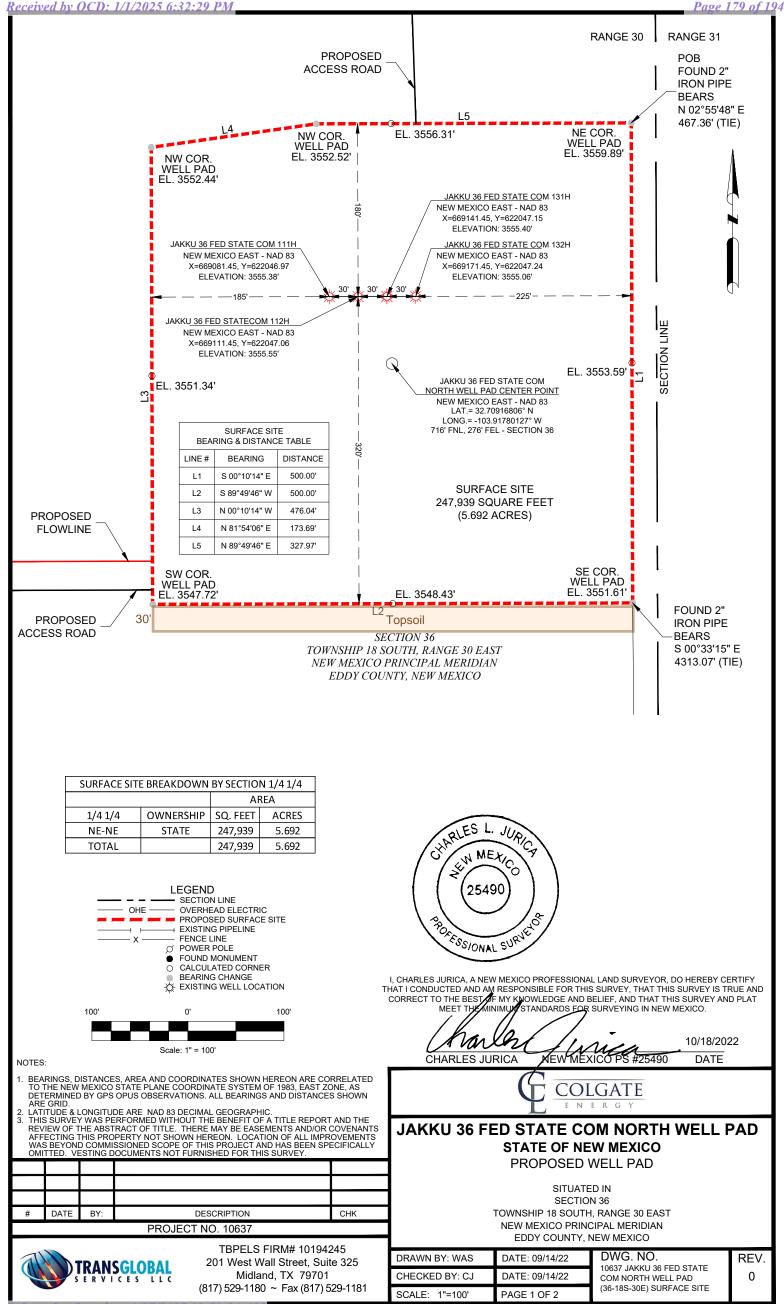

# Colgate Operating, LLC

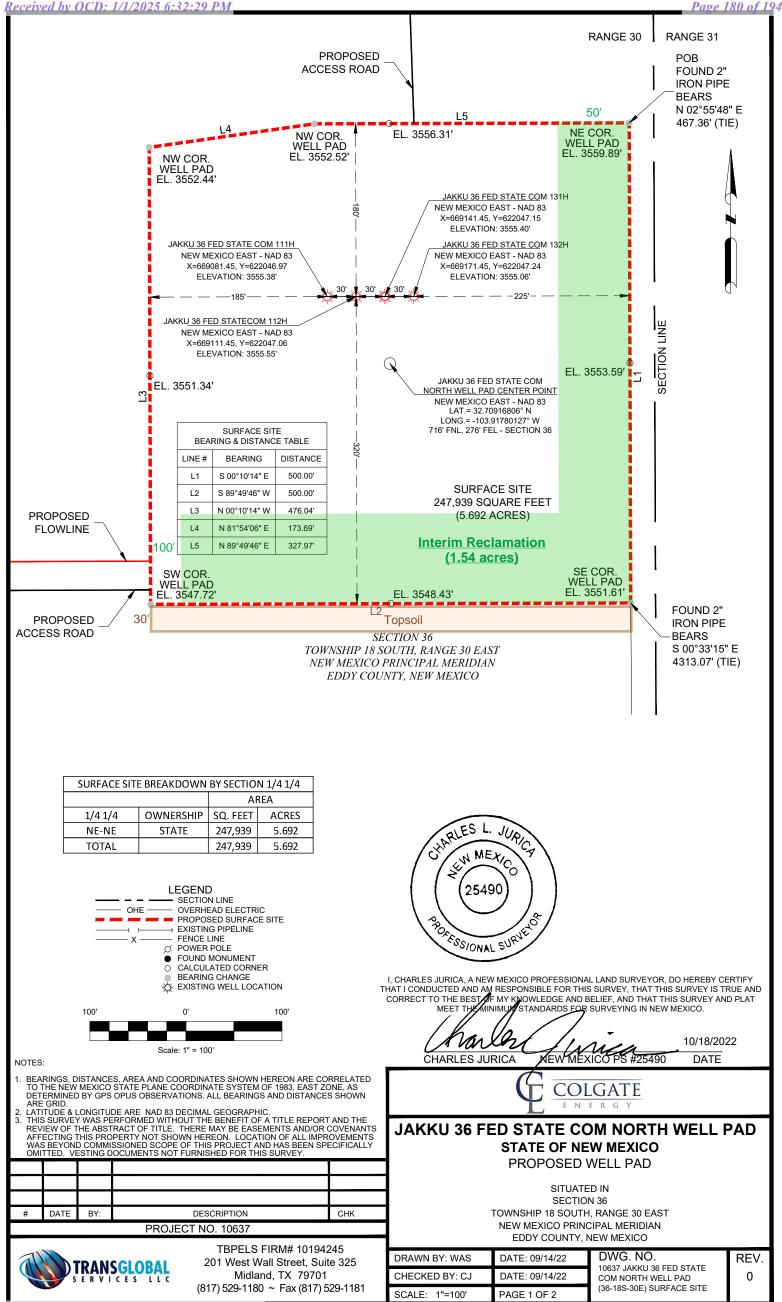
Proposed Jakku 36 Fed State Com Water Source Map

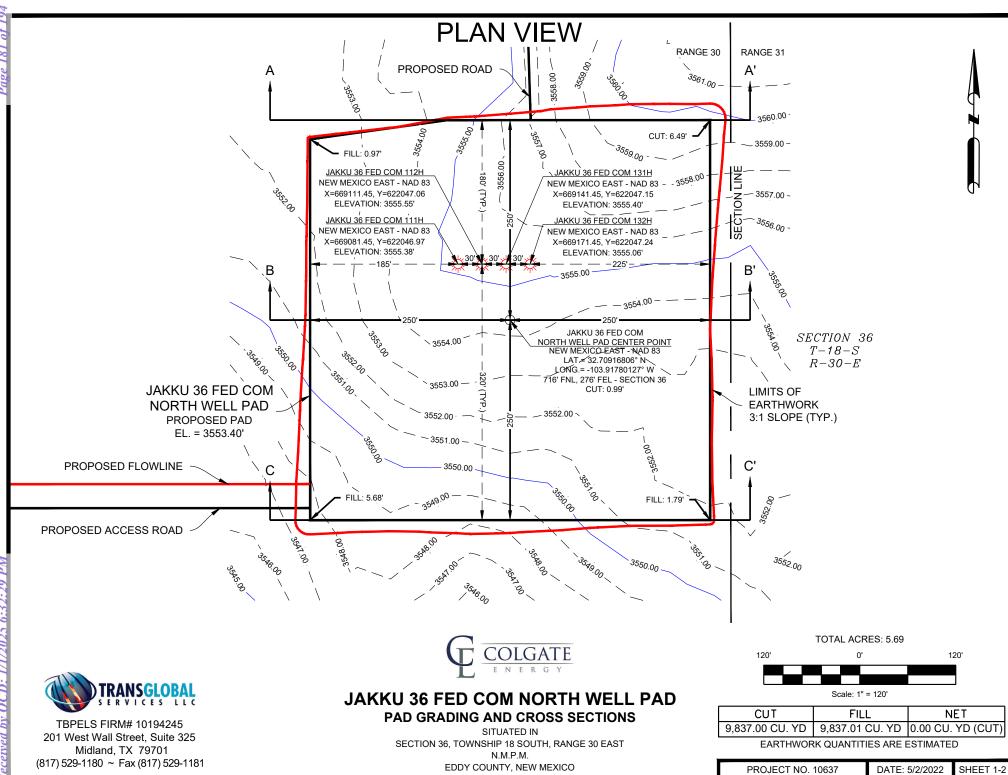
T18S R30E Hackberry Lake, Eddy County, New Mexico





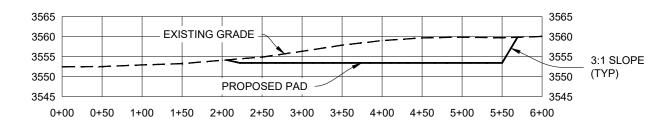

NAD 1983 New Mexico State Plane East FIPS 3001 Feet

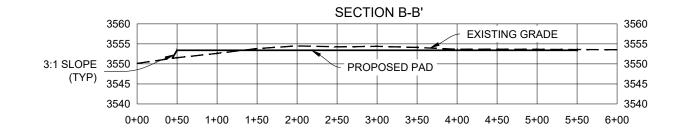




Prepared by Permits West, Inc., October 26, 2022 for Colgate Operating, LLC

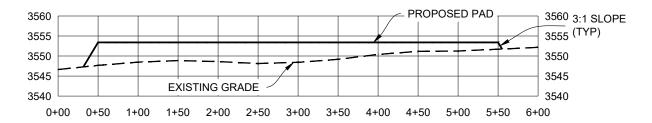










# **CROSS-SECTIONS**

SECTION A-A'





SECTION C-C'





TBPELS FIRM# 10194245 201 West Wall Street, Suite 325 Midland, TX 79701 (817) 529-1180 ~ Fax (817) 529-1181  $\overline{COLGATE}_{E \ N \ E \ R \ G \ Y}$ 

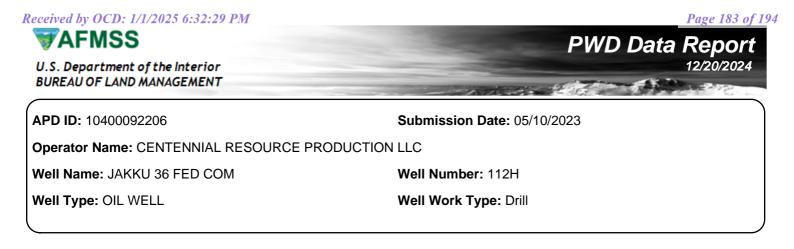
JAKKU 36 FED COM NORTH WELL PAD PAD GRADING AND CROSS SECTIONS

SITUATED IN SECTION 36, TOWNSHIP 18 SOUTH, RANGE 30 EAST N.M.P.M. EDDY COUNTY, NEW MEXICO 

 TOTAL ACRES: 5.69

 120'
 0'
 120'

 Horiz. Scale: 1" = 120'
 Vert. Scale: 1" = 20'


 CUT
 FILL
 NET

 9,837.00 CU. YD
 9,837.01 CU. YD
 0.00 CU. YD (CUT))

 EARTHWORK QUANTITIES ARE ESTIMATED
 PROJECT NO. 10637
 DATE: 5/2/2022
 SHEET 2-2

Imaging:

0



**Section 1 - General** 

Would you like to address long-term produced water disposal? NO

## Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: **Pit liner manufacturers** Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system

**PWD disturbance (acres):** 

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: JAKKU 36 FED COM

Well Number: 112H

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information

## **Section 3 - Unlined**

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

**Unlined pit** 

Precipitated solids disposal:

Decribe precipitated solids disposal:

#### Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

**Unlined pit reclamation** 

Unlined pit Monitor description:

**Unlined pit Monitor** 

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

**Unlined Produced Water Pit Estimated** 

Unlined pit: do you have a reclamation bond for the pit?

**Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC** 

Well Name: JAKKU 36 FED COM

Well Number: 112H

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

## Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

**PWD surface owner:** 

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

**Minerals protection information:** 

**Mineral protection** 

**Underground Injection Control (UIC) Permit?** 

**UIC Permit** 

## Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location: **PWD** surface owner: **PWD** disturbance (acres): Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

**PWD** surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

PWD disturbance (acres):

Injection well name:

Injection well API number:

## Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: JAKKU 36 FED COM

Well Number: 112H

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

**WAEMSS** 

	BO	na into Data
U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		12/20/2024
	- manager the	and the second second
APD ID: 10400092206	Submission Date: 05/10/2023	Highlighted data
Operator Name: CENTENNIAL RESOURCE PROD	DUCTION LLC	reflects the most recent changes
Well Name: JAKKU 36 FED COM	Well Number: 112H	Show Final Text
Well Type: OIL WELL	Well Work Type: Drill	

## Bond

Federal/Indian APD: FED

**BLM Bond number:** 

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

**BLM reclamation bond number:** 

Forest Service reclamation bond number:

Forest Service reclamation bond

**Reclamation bond number:** 

**Reclamation bond amount:** 

**Reclamation bond rider amount:** 

Additional reclamation bond information

State of New Mexico Energy, Minerals and Natural Resources Department						Submit Electronically Via E-permitting	
		1220 Sout	ervation Divisio th St. Francis D Fe, NM 87505				
	NATU	URAL GAS	MANAGEN	IENT I	PLAN		
This Natural Gas Management Pla	an must be	submitted with e	ach Application fo	or Permit to	o Drill (AF	PD) for a new or	recompleted well.
			- <b>Plan Descr</b> ive May 25, 2021	<u>iption</u>			
<b>Operator:</b> <u>Permian Resource</u>	es Operati	ng, LLC	OGRID: _	37216	5	Date:	06/25/ <u>2024</u>
I. Type: 🛛 Original 🗆 Amendr	nent due t	o 🗆 19.15.27.9.D	(6)(a) NMAC 🗆 1	9.15.27.9.	D(6)(b) N	MAC 🗆 Other.	
f Other, please describe:							
<b>II. Well(s):</b> Provide the followin be recompleted from a single well				ell or set o	of wells pro	pposed to be dri	lled or proposed to
Well Name	API	ULSTR	Footages		Anticipat ed Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
AKKU 36 FED COM 111H	TBD	A-36-18S-30E	647' FNL, 341'	FEL	1100	2200	2800
AKKU 36 FED COM 112H	TBD	<u>A-36-18S-30E</u>	<u>647' FNL, 311'</u>	FEL 1	1100	2200	2800
AKKU 36 FED COM 113H	TBD	I-36-18S-30E	2408' FSL, 555'		1100	2200	2800
AKKU 36 FED COM 114H	TBD	<u>I-36-18S-30E</u>	2413' FSL, 525'		1100	2200	2800
AKKU 36 FED COM 131H	TBD	<u>A-36-18S-30E</u>	<u>647' FNL, 281'</u>		1100	2200	2800
AKKU 36 FED COM 132H	TBD	<u>A-36-18S-30E</u>	<u>647' FNL, 251'</u>		100	2200	2800
AKKU 36 FED COM 133H	<u>TBD</u>	<u>I-36-18S-30E</u>	2418' FSL, 495'		1100	2200	2800
AKKU 36 FED COM 134H	<u>TBD</u>	<u>I-36-18S-30E</u>	2424' FSL, 466'	FEL 1	1100	2200	2800
V. Central Delivery Point Name 7. Anticipated Schedule: Provide proposed to be recompleted from a	e the follo	wing information	for each new or re				7.9(D)(1) NMAC
Well Name	API	Spud Date	TD Reached Date	Comp Comme		Initial Flow Back Date	First Production Date
				Da			
	TBD		TBD	TBD		TBD	TBD
AKKU 36 FED COM 111H	100						
	TBD		TBD	TBD		TBD	TBD
AKKU 36 FED COM 112H			TBD TBD	TBD TBD		TBD TBD	TBD TBD
AKKU 36 FED COM 112H AKKU 36 FED COM 113H	TBD						
AKKU 36 FED COM 112H AKKU 36 FED COM 113H AKKU 36 FED COM 114H	TBD TBD		TBD	TBD		TBD	TBD
AKKU 36 FED COM 112H AKKU 36 FED COM 113H AKKU 36 FED COM 114H AKKU 36 FED COM 131H	TBD TBD TBD		TBD TBD TBD	TBD TBD TBD		TBD TBD TBD	TBD TBD TBD
AKKU 36 FED COM 111H           AKKU 36 FED COM 112H           AKKU 36 FED COM 113H           AKKU 36 FED COM 114H           AKKU 36 FED COM 131H           AKKU 36 FED COM 132H           AKKU 36 FED COM 132H	TBD TBD TBD TBD		TBD TBD	TBD TBD		TBD TBD	TBD TBD

VI. Separation Equipment: 🖂 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

**VII. Operational Practices:**  $\boxtimes$  Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

## Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 $\boxtimes$  Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

#### IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

#### X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
			Start Date	or system segment re-m

**XI. Map.**  $\Box$  Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

**XII.** Line Capacity. The natural gas gathering system  $\Box$  will  $\Box$  will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

**XIII.** Line Pressure. Operator  $\Box$  does  $\Box$  does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 $\Box$  Attach Operator's plan to manage production in response to the increased line pressure.

**XIV. Confidentiality:**  $\Box$  Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

## Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 $\square$  Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 $\Box$  Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:* 

**Well Shut-In.**  $\Box$  Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

**Venting and Flaring Plan.**  $\Box$  Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (**b**) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

## Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:

Printed Name: Jennifer Elrod

Title: Sr. Regulatory Analyst

E-mail Address: jennifer.elrod@permianres.com

Date: 6/25/24

Phone: 940-452-6214

### **OIL CONSERVATION DIVISION**

#### (Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

.



## NATURAL GAS MANAGEMENT PLAN DESCRIPTIONS

#### VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

#### VII. Operational Practices:

#### Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

#### Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

#### Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

#### Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed loop systems
- Enclosed and properly sized tanks.

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions.
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable.

#### Measurement or Estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing, and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the NMOCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance, and repair operations.

#### VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors.
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable.
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions.
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	416226
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

#### CONDITIONS

Created By	Condition	Condition Date
jelrod32	Cement is required to circulate on both surface and intermediate1 strings of casing.	1/1/2025
jelrod32	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	1/1/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	1/27/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	1/27/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	1/27/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	1/27/2025

CONDITIONS

Page 194 of 194

Action 416226