Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

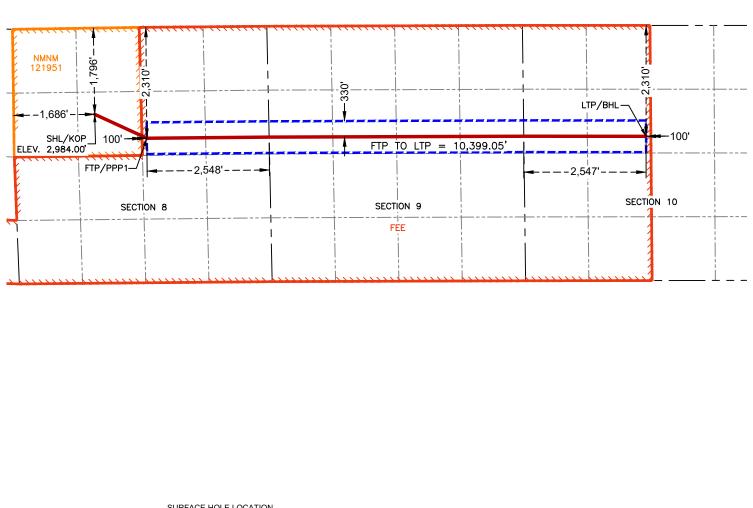
Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 85

Form C-101 August 1, 2011 Permit 381936

		APPLICATIO	ON FOR PEF	RMIT TO DRILL, RE	E-ENTER, DEE	PEN	N, PLUGBAC	K, OR A	DD A ZO	NE		
	ame and Address								2. OG	RID Number		
	rmian Resources (372165		
) N. Marienfeld St S Iland, TX 79701	ste 1000							3. API	I Number 30-015-5608	13	
4. Property Co		5 0	roperty Name						6. We		5	
	5880	5.1	Astrodog	0810					0. 110	112H		
		·	×	7 6	rface Location							
UL - Lot	Section	Township	Range		Feet From		N/S Line	Feet From		E/W Line	County	
F	8	23S	291		1796		N		1686	W	Eddy	
	•		•	8. Proposed	Bottom Hole Loc	atio	n	-				
UL - Lot	Section	Township	Range	Lot Idn	Feet From	Janoi	N/S Line	Feet From	n	E/W Line	County	
F	10	23S	29	E F	2310		N		2547	W	Eddy	
				9. Pc	ol Information							
CULEBRA B	LUFF;BONE SPRI	NG, SOUTH								150)11	
	- , -	-,		A								
11. Work Type		12. Well Type		Addition 13. Cable/Rotary	al Well Informatio		Lease Type		15 Ground	Level Elevation		
	w Well	OIL		13. Cable/Rotary		Private			2984			
16. Multiple		17. Proposed Dept		18. Formation		19. Contractor		20. Spud Date				
N		17880		Bone Spring						2/25/2025		
Depth to Grour	nd water			Distance from nearest fre	esh water well				Distance to	nearest surface wat	er	
We will be i	using a closed-log	op system in lieu of	lined pits									
			intea pito	21 Drangood Co	aing and Coman	4 Dro	a					
Туре	Hole Size	Casing Size	<u> </u>	21. Proposed Ca Casing Weight/ft	Sing and Cemen Settir		<u> </u>	Sacks	of Cement		Estimated TOC	
Surf	17.5	13.375	·	54.5		355		ouoli	270		0	
Int1	12.25	9.625		36	3	3085		850			0	
Prod	8.75	5.5		20	17	17880		2510 2585				
				Casing/Cement Pro	oram: Additiona		nments					
R-111Q proc	edure			outing/outinent int	gram Additiona							
·				00 Days and Di	(D							
	Туре			22. Proposed Bio Working Pressure	wout Prevention	1 Pro	gram Test Press			Man	ufacturer	
	Double Ram			5000		5000		Manufacturer				
	Double Rain			5000			5000					
23. I hereby o	certify that the infor	mation given above	is true and co	mplete to the best of n	ιγ			OIL CONSI	RVATION	DIVISION		
knowledge a		5			,							
		d with 19.15.14.9 (#	A) NMAC 🛛 ar	nd/or 19.15.14.9 (B) NM	AC							
X, if applical	ble.											
Signature:												
Printed Name:	Electronica	lly filed by Stephan	ie Rabadue		Approved By		Matthew G	omez				
Title:	Regulatory				Title:		matter O	002				
Email Address:	ξ,	0	res.com		Approved Da	ate:	1/29/2025		F	Expiration Date: 1/2	9/2027	
						Conditions of Approval Attached						


					ral Resources Department			Revised July 9, 2024		
	Electronically D Permitting	/		OIL	CONSERVA	HON DIVISION			🗹 Initial Su	ıbmittal
						Submitta			Amende	d Report
								Туре:	☐ As Drille	
						ION INFORMATION				
	mbor		Deal Code			Pool Name				
)15-56083				CULEBRA	A BLUFF; H	BONE SPR	ING, SOUT	TH
Property Code 336880 Property Name AST					AST	RODOG 0810			Well Numb	er 112H
OGRID No. Operator Name 372165 PERMIAN RESOL				RMIAN RESOL	JRCES OPERATING	. LLC		-	vel Elevation ,984.00'	
Surface Owner: 🗆 State 🖾 Fee 🗀 Tribal 🗆 Federal					vner: 🗵 State	e 🗆 Fee 🗆		-		
					Surfa	ce Location				
JL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		ongitude	County
F	8	23S	29E	201	1,796' FNL		32.322		04.010152°	EDDY
•	U	230	250				52.522		4.010132	
JL	Section	Township	Range	Lot	Ft. from N/S	Hole Location	Latitude		ongitude	County
	10	23S	29E	LOI	2,310' FNL				U U	
F	10	235	296		2,510 1142	2,347 1 442	32.320	-10)3.972976°	EDDY
Dedica 320	ted Acres	Infill or Defir	ning Well	Definir	ig Well API	Overlapping Spacir	ig Unit (Y/N)	Consolidat	ion Code	
Order I	Numbers.					Well setbacks are under Common Ownership: ⊠Yes ⊟No				
					Kick O	ff Daint (KOD)				
JL	Section	Township	Range	Lot	Ft. from N/S	ff Point (KOP)	Latitude		ongitude	County
F	8	23S	29E	LOI	1,796' FNL				U U	
<u>г</u>	0	235	29E		-		32.322	-10	04.010152°	EDDY
	1	–		1		ake Point (FTP)	1	<u> </u>		
JL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		ongitude	County
G	8	23S	29E		2,310' FNL	2,548' FEL	32.320	692° -10	04.006640°	EDDY
	•				Last Ta	ake Point (LTP)		i		
JL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Lc	ongitude	County
F	10	23S	29E		2,310' FNL	2,547' FWL	32.3207	710° -10)3.972976°	EDDY
Jnitize	d Area or A	rea of Uniform	n Interest	Spacin	ig Unit Type ⊠ Ho	orizontal 🗆 Vertical	Grou	nd Floor Ele	vation:	
		TIFICATIONS				SURVEYOR CERTIF				
best of i that this n the la well at t unlease booling f this w the cons mineral the well	my knowledge organization ind including this location p id mineral into order heretofield is a horizon sent of at lease interest in ease	e and belief, and either owns a v the proposed bo ursuant to a cor erest, or to a vo ore entered by t ntal well, I furthe st one lessee or ch tract (in the t interval will be le	d, if the well is vorking intere ottom hole loc ntract with an luntary poolin the division. er certify that t owner of a we arget pool or	a vertical of st or unleas ation or has owner of a g agreeme his organiz orking inter formation) i	nd complete to the or directional well, sed mineral interest s a right to drill this working interest or nt or a compulsory ation has received est or unleased n which any part of npulsory pooling	I hereby certify that the actual surveys made by correct to the best of my	vall.lotation.shu me or under po perint E / Co 12177	A A A A A A A A A A A A A A A A A A A		from field notes of ame is true and
Signatu	~	0	[Date		Signature and Seal of P	rofessional Sur	veyor		
	Casoi	Evano-		1/20/2	25		-			
	Name					Certificate Number	Date of Sur	/ey		
Printed	lunic									
	ASSIE EV	7ANS				12177		1/	/15/2025	

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. **Released to Imaging: 1/29/2025 7:49:54 AM**

Received by OCD: 1/20/2025 5:11:19 PM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

& KICK-OFF POINT 1,796' FNL & 1,686' FWL ELEV. = 2,984.00'
NAD 83 X = 641,168.28' NAD 83 Y = 481,052.34' NAD 83 LAT = 32.322071° NAD 83 LONG = -104.010152° NAD 27 X = 599,985.44' NAD 27 Y = 480,992.63' NAD 27 LAT = 32.321950° NAD 27 LONG = -104.009659°

FIRST TAKE POINT & PENETRATION POINT 1 2,310' FNL & 2,548' FEL	I
NAD 83 X = 642,254.85' NAD 83 Y = 480,553.71'	
NAD 83 LAT = 32.320692° NAD 83 LONG = -104.006640°	N
NAD 83 LONG = -104.008840 NAD 27 X = 601.071.99'	IN
NAD 27 Y = 480,494.00'	
NAD 27 LAT = 32.320570°	
NAD 27 LONG = -104.006146°	N

LAST TAKE POINT & BOTTOM HOLE LOCATION 2,310' FNL & 2,547' FWL NAD 83 X = 652,653.76' NAD 83 Y = 480,593.53' NAD 83 LAT = 32.320710° NAD 23 LONG = -103.972976° NAD 27 X = 611,470.86' NAD 27 Y = 480,533.78' NAD 27 LAT = 32.320588° NAD 27 LONG = -103.972484° Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Name and	d Address:	API Number:			
Permia	n Resources Operating, LLC [372165]	30-015-56083			
300 N.	Marienfeld St Ste 1000	Well:			
Midland	J, TX 79701	Astrodog 0810 #112H			
OCD Reviewer	Condition				
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.				
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.				
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.				
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.				
matthew.gomez	z Cement is required to circulate on both surface and intermediate1 strings of casing.				
matthew.gomez	gomez If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.				
matthew.gomez	w.gomez File As Drilled C-102 and a directional Survey with C-104 completion packet.				
matthew.gomez Must comply with all R-111-Q requirements.					

Permit 381936

Page 4 of 85

Received by OCD: 1/20/2025 5	:1	1:19	PM
-------------------------------------	----	------	----

State of New MexicoSubmit ElectronicallyEnergy, Minerals and Natural Resources DepartmentVia E-permittingOil Conservation Division1220 South St. Francis Dr. Santa Fe, NM 87505Submit Electronically							nit Electronically E-permitting
	N	ATURAL G	AS MANA	GEMI	ENT PLAN		
This Natural Gas Managem	ent Plan m	1st be submitted w	ith each Applica	tion for F	Permit to Drill (A	PD) for a new o	r recompleted well.
			<u>1 – Plan D</u> ffective May 25,		<u>tion</u>		
I. Operator: <u>Permian R</u>	esources O	perating, LLC	OGI	RID:	<u>372165</u>	Date	: <u>01/10/2025</u>
II. Type: 🛛 Original 🗆 A	amendment	due to 🗌 19.15.27	7.9.D(6)(a) NMA	.C □ 19.1	15.27.9.D(6)(b) 1	NMAC 🗆 Other.	
If Other, please describe:							
III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.							
Well Name	API	ULSTR	Footages		Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
	┼═┛┼╸						
IV. Central Delivery Poin	t Name:	Astrodog CTB				[See 19.15.27.9	(D)(1) NMAC]
V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.							
Well Name	API	Spud Date	TD Reached Date		ompletion encement Date	Initial Flow Back Date	First Production Date

.

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average	Anticipated Volume of Natural
		Natural Gas Rate MCF/D	Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \boxtimes Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \boxtimes will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

Attach Operator's plan to manage production in response to the increased line pressure.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \Box Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \boxtimes Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. 🛛 Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

<u>Section 4 - Notices</u>

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Casoi Evans				
Printed Name: Cassie Evans				
Title: Regulatory Supervisor				
E-mail Address: Cassie.Evans@permianres.com				
Date: 1/17/25				
Phone: 432-313-1732				
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)				
Approved By:				
Title:				
Approval Date:				
Conditions of Approval:				

Permian Resources Operating, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed-loop systems
- Enclosed and properly sized tanks

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable

Measurement or estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.

VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

NEW MEXICO

(SP) EDDY ASTRODOG ASTRODOG 0810 112H

OWB PWP0

Anticollision Report

17 January, 2025

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H			
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft			
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft			
Site Error:	0.0 usft	North Reference:	Grid			
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature			
Well Error:	0.0 usft	Output errors are at	2.00 sigma			
Reference Wellbore	OWB	Database:	Compass_17			
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum			
Reference PWP0						
Filter type:	Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria					

Warning Levels Evaluate	d at: 2.00 Sigma	Casing Method:	Not applied
Results Limited by:	Maximum centre distance of 1,000.0usft	Error Surface:	Pedal Curve
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Interpolation Method:	Stations	Error Model:	ISCWSA
Filler type.	NO GLOBALTILITI. Using user defined selection & intering child	cila	

Survey Tool Program		Date 1/17/2025		
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.0	17,880.0	PWP0 (OWB)	MWD	OWSG_Rev2_MWD - Standard

Summary

	Reference	Offset	Dista	nce		
Site Name Offset Well - Wellbore - Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning
ASTRODOG						
ASTRODOG 0809 113H - OWB - PWP0						Out of range
ASTRODOG 0809 123H - OWB - PWP0						Out of range
ASTRODOG 0809 163H - OWB - PWP0						Out of range
ASTRODOG 0810 111H - OWB - PWP0	1,000.0	1,000.0	90.0	83.0	12.942	CC, ES
ASTRODOG 0810 111H - OWB - PWP0	1,300.0	1,291.1	103.2	94.2	11.472	SF
ASTRODOG 0810 121H - OWB - PWP0	1,000.0	1,000.0	150.0	143.0	21.569	CC, ES
ASTRODOG 0810 121H - OWB - PWP0	1,400.0	1,377.6	176.6	166.9	18.316	SF
ASTRODOG 0810 122H - OWB - PWP0	1,000.0	1,000.0	60.0	53.1	8.629	CC, ES
ASTRODOG 0810 122H - OWB - PWP0	1,300.0	1,296.5	67.7	58.7	7.506	SF
ASTRODOG 0810 161H - OWB - PWP0	1,000.0	1,000.0	120.0	113.0	17.256	CC, ES
ASTRODOG 0810 161H - OWB - PWP0	1,300.0	1,288.5	133.1	124.1	14.807	SF
ASTRODOG 0810 172H - OWB - PWP0	1,625.0	1,624.9	28.5	17.0	2.488	CC
ASTRODOG 0810 172H - OWB - PWP0	1,700.0	1,699.8	28.7	16.7	2.385	ES
ASTRODOG 0810 172H - OWB - PWP0	1,800.0	1,799.7	29.7	16.9	2.322	SF

Offset Des	sign: AS	TRODOG -	ASTRO	DOG 0810 ′	111H - OV	VB - PWP0							Offset Site Error:	0.0 usft
urvey Progr Refer Measured Depth (usft)		/WD Offs Measured Depth (usft)	set Vertical Depth (usft)	Semi M Reference (usft)	laior Axis Offset (usft)	Highside Toolface (°)	Offset Wellb +N/-S (usft)	ore Centre +E/-W (usft)	Dist Between Centres (usft)	Rule Assi ance Between Ellipses (usft)	gned: Minimum Separation (usft)	Separation Factor	Offset Well Error: Warning	0.0 usft
0.0	0.0	0.0	0.0	0.0	0.0	26.82	80.3	40.6	90.0					
100.0	100.0	100.0	100.0	0.3	0.3	26.82	80.3	40.6	90.0	89.5	0.50	179.338		
200.0	200.0	200.0	200.0	0.6	0.6	26.82	80.3	40.6	90.0	88.8	1.22	73.845		
300.0	300.0	300.0	300.0	1.0	1.0	26.82	80.3	40.6	90.0	88.1	1.94	46.495		
400.0	400.0	400.0	400.0	1.3	1.3	26.82	80.3	40.6	90.0	87.3	2.65	33.929		
500.0	500.0	500.0	500.0	1.7	1.7	26.82	80.3	40.6	90.0	86.6	3.37	26.710		
600.0	600.0	600.0	600.0	2.0	2.0	26.82	80.3	40.6	90.0	85.9	4.09	22.024		
700.0	700.0	700.0	700.0	2.4	2.4	26.82	80.3	40.6	90.0	85.2	4.80	18.737		
800.0	800.0	800.0	800.0	2.8	2.8	26.82	80.3	40.6	90.0	84.5	5.52	16.303		
900.0	900.0	900.0	900.0	3.1	3.1	26.82	80.3	40.6	90.0	83.8	6.24	14.429		
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	26.82	80.3	40.6	90.0	83.0	6.95	12.942 CC, ES		
1,100.0	1,100.0	1,097.3	1,097.3	3.8	3.8	-88.38	81.3	42.0	91.4	83.8	7.64	11.963		
1,200.0	1,199.8	1,194.4	1,194.2	4.2	4.2	-89.92	84.1	46.0	95.8	87.5	8.32	11.517		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

1/17/2025 10:08:13AM

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Anticollision Report

Offset Design: ASTRODOG - ASTRODOG 0810 111H - OWB - PWP0

													Offset Site Error:	
urvey Prog	ram: 0-	MWD Off	sot	Semi I	Major Axis		Offset Wellb	ore Centre	Die	Rule Assi tance	gned:		Offset Well Error:	0.0 usf
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
1,300.0	1,299.5	1,291.1	1,290.6	4.5	4.5	-92.18	88.8	52.7	103.2	94.2	9.00	11.472 SF		
1,400.0	1,398.7	1,387.4	1,386.2	4.9	4.9	-94.81	95.4	62.0	113.8	104.1	9.68	11.754		
1,500.0	1,497.5	1,483.0	1,480.8	5.2	5.2	-97.51	103.7	73.8	127.7	117.3	10.38	12.300		
1,600.0	1,595.6	1,577.8	1,573.9	5.6	5.6	-100.04	113.8	88.1	144.9	133.8	11.10	13.058		
1,625.0	1,620.1	1,600.0	1,595.6	5.7	5.7	-100.59	116.4	91.8	149.8	138.5	11.27	13.296		
1,700.0	1,693.3	1,671.8	1,665.7	6.0	6.0	-102.28	125.5	104.7	165.3	153.5	11.84	13.966		
1,800.0	1,790.9	1,769.0	1,760.2	6.5	6.4	-103.81	138.6	123.3	187.2	174.6	12.64	14.812		
1,900.0	1,888.5	1,866.5	1,854.9	6.9	6.8	-105.03	151.7	142.0	209.3	195.8	13.46	15.542		
2,000.0	1,986.2	1,964.0	1,949.7	7.3	7.2	-106.01	164.9	160.7	231.3	217.0	14.30	16.176		
2,100.0	2,083.8	2,061.4	2,044.5	7.8	7.7	-106.82	178.0	179.3	253.5	238.3	15.15	16.730		
2,200.0	2,181.4	2,158.9	2,139.2	8.2	8.1	-107.50	191.2	198.0	275.6	259.6	16.01	17.216		
2,300.0	2,279.1	2,256.4	2,234.0	8.7	8.6	-108.07	204.3	216.7	297.8	281.0	16.88	17.646		
2,300.0	2,275.1	2,250.4	2,234.0	9.2	9.1	-108.57	217.5	235.4	320.1	302.3	17.75	18.027		
2,500.0	2,474.3	2,451.3	2,423.5	9.6	9.5	-109.01	230.6	254.0	342.3	323.7	18.64	18.367		
2,600.0	2,571.9	2,548.7	2,423.3	10.1	10.0	-109.39	243.7	272.7	364.6	345.1	19.53	18.671		
2,700.0	2,669.6	2,646.2	2,613.0	10.1	10.5	-109.73	256.9	291.4	386.9	366.4	20.42	18.945		
				10.0										
2,800.0	2,767.2	2,743.7	2,707.7	11.1	10.9	-110.03	270.0	310.0	409.1	387.8	21.32	19.193		
2,900.0	2,864.8	2,841.1	2,802.5	11.6	11.4	-110.29	283.2	328.7	431.4	409.2	22.22	19.418		
3,000.0	2,962.5	2,938.6	2,897.2	12.0	11.9	-110.54	296.3	347.4	453.8	430.6	23.12	19.622		
3,100.0	3,060.1	3,036.1	2,992.0	12.5	12.4	-110.76	309.5	366.0	476.1	452.0	24.03	19.809		
3,200.0	3,157.7	3,133.5	3,086.7	13.0	12.9	-110.96	322.6	384.7	498.4	473.4	24.94	19.981		
3,300.0	3,255.3	3,231.0	3,181.5	13.5	13.4	-111.14	335.8	403.4	520.7	494.9	25.86	20.139		
3,400.0	3,353.0	3,328.5	3,276.2	14.0	13.8	-111.31	348.9	422.0	543.0	516.3	26.77	20.284		
3,500.0	3,450.6	3,425.9	3,371.0	14.5	14.3	-111.46	362.1	440.7	565.4	537.7	27.69	20.419		
3,600.0	3,548.2	3,523.4	3,465.7	15.0	14.8	-111.61	375.2	459.4	587.7	559.1	28.61	20.543		
3,700.0	3,645.9	3,620.8	3,560.5	15.5	15.3	-111.74	388.4	478.0	610.1	580.5	29.53	20.659		
3,800.0	3,743.5	3,718.3	3,655.2	15.9	15.8	-111.86	401.5	496.7	632.4	601.9	30.45	20.767		
3,900.0	3,841.1	3,815.8	3,750.0	16.4	16.3	-111.98	414.6	515.4	654.7	623.4	31.38	20.868		
4,000.0	3,938.8	3,913.2	3,844.7	16.9	16.8	-112.09	427.8	534.0	677.1	644.8	32.30	20.963		
4,100.0	4,036.4	4,010.7	3,939.5	17.4	17.3	-112.19	440.9	552.7	699.4	666.2	33.23	21.051		
4,200.0	4,134.0	4,108.2	4,034.2	17.9	17.8	-112.28	454.1	571.4	721.8	687.6	34.15	21.134		
4,300.0	4,231.6	4,205.6	4,129.0	18.4	18.3	-112.37	467.2	590.1	744.2	709.1	35.08	21.212		
4,400.0	4,329.3	4,303.1	4,223.7	18.9	18.8	-112.45	480.4	608.7	766.5	730.5	36.01	21.286		
4,500.0	4,426.9	4,400.5	4,318.5	19.4	19.2	-112.53	493.5	627.4	788.9	751.9	36.94	21.355		
4,600.0	4,524.5	4,498.0	4,413.2	19.9	19.7	-112.60	506.7	646.1	811.2	773.4	37.87	21.421		
4,700.0	4,622.2	4,595.5	4,508.0	20.4	20.2	-112.67	519.8	664.7	833.6	794.8	38.80	21.483		
4,800.0	4,719.8	4,692.9	4,602.7	20.9	20.7	-112.74	533.0	683.4	856.0	816.2	39.73	21.542		
4,900.0	4,817.4	4,790.4	4,697.5	20.0	21.2	-112.80	546.1	702.1	878.3	837.6	40.67	21.598		
5,000.0	4,915.0	4,887.9	4,792.2	21.9	21.2	-112.86	559.2	720.7	900.7	859.1	41.60	21.651		
5,100.0	5,012.7	4,985.3	4,887.0	22.4	22.2	-112.92	572.4	739.4	923.0	880.5	42.53	21.702		
5,200.0	5,110.3	5,082.8	4,981.7	22.9	22.2	-112.98	585.5	758.1	945.4	901.9	43.47	21.750		
5,300.0	5,207.9	5,180.3	5,076.5	23.4	23.2	-113.03	598.7	776.7	967.8	923.4	44.40	21.795		
5,400.0	5,305.6	5,277.7	5,171.2	23.9	23.7	-113.08	611.8	795.4	990.1	944.8	45.34	21.839		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Anticollision Report

Offset Design: ASTRODOG - ASTRODOG 0810 121H - OWB - PWP0

Offset De	orgin.					WB - PWP0							Offset Site Error:	0.0 usft
Survey Prog		MWD		0			0#	ana Cantas		Rule Assi	gned:		Offset Well Error:	0.0 usft
Refe Measured	rence Vertical	Off Measured	set Vertical	Reference	Aajor Axis Offset	Highside	Offset Wellb	ore Centre	Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0	0.0	0.0	0.0	0.0	26.82	133.9	67.7	150.0	(uort)	(uon)			
100.0	100.0	100.0	100.0	0.3	0.3	26.82	133.9	67.7	150.0	149.5	0.50	298.891		
200.0	200.0	200.0	200.0	0.6	0.6	26.82	133.9	67.7	150.0	148.8	1.22	123.073		
300.0	300.0	300.0	300.0	1.0	1.0	26.82	133.9	67.7	150.0	148.1	1.94	77.490		
400.0	400.0	400.0	400.0	1.3	1.3	26.82	133.9	67.7	150.0	147.3	2.65	56.547		
500.0	500.0	500.0	500.0	1.7	1.7	26.82	133.9	67.7	150.0	146.6	3.37	44.516		
600.0	600.0	600.0	600.0	2.0	2.0	26.82	133.9	67.7	150.0	145.9	4.09	36.706		
700.0	700.0	700.0	700.0	2.4	2.4	26.82	133.9	67.7	150.0	145.2	4.80	31.227		
800.0	800.0	800.0	800.0	2.8	2.8	26.82	133.9	67.7	150.0	144.5	5.52	27.172		
900.0	900.0	900.0	900.0	3.1	3.1	26.82	133.9	67.7	150.0	143.8	6.24	24.049		
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	26.82	133.9	67.7	150.0	143.0	6.95	21.569 CC, I	ES	
1,100.0	1,100.0	1,095.0	1,095.0	3.8	3.8	-88.33	135.1	68.6	151.6	143.9	7.64	19.847		
1,200.0	1,199.8	1,189.8	1,189.7	4.2	4.2	-89.77	139.0	71.4	156.4	148.1	8.30	18.832		
1,300.0	1,299.5	1,284.1	1,283.6	4.5	4.5	-91.96	145.3	75.9	164.6	155.7	8.97	18.352		
1,400.0	1,398.7	1,377.6	1,376.5	4.9	4.8	-94.65	154.0	82.2	176.6	166.9	9.64	18.316 SF		
1,500.0	1,497.5	1,470.0	1,467.9	5.2	5.2	-97.55	165.1	90.1	192.4	182.1	10.31	18.657		
1,600.0	1,595.6	1,561.3	1,557.7	5.6	5.5	-100.43	178.4	99.7	212.3	201.3	10.99	19.314		
1,625.0	1,620.1	1,583.9	1,579.9	5.7	5.6	-101.13	182.0	102.3	218.0	206.8	11.17	19.519		
1,700.0	1,693.3	1,651.3	1,645.7	6.0	5.9	-103.29	193.7	110.7	236.2	224.5	11.69	20.212		
1,800.0	1,790.9	1,741.6	1,733.4	6.5	6.3	-105.47	211.4	123.4	263.3	250.9	12.40	21.238		
1,900.0	1,888.5	1,835.5	1,824.1	6.9	6.7	-107.17	230.9	137.4	292.1	278.9	13.17	22.180		
2,000.0	1,986.2	1,930.9	1,916.4	7.3	7.1	-108.59	250.7	151.7	321.0	307.0	13.97	22.982		
2,100.0	2,083.8	2,026.4	2,008.6	7.8	7.6	-109.78	270.6	165.9	350.1	335.3	14.78	23.688		
2,200.0	2,181.4	2,121.8	2,100.9	8.2	8.0	-110.79	290.4	180.2	379.3	363.7	15.60	24.314		
2,300.0	2,279.1	2,217.2	2,193.1	8.7	8.5	-111.65	310.3	194.4	408.6	392.2	16.43	24.869		
2,400.0	2,376.7	2,312.7	2,285.4	9.2	8.9	-112.40	330.1	208.7	438.0	420.8	17.27	25.365		
2,500.0	2,474.3	2,408.1	2,377.7	9.6	9.4	-113.05	349.9	223.0	467.5	449.4	18.11	25.809		
2,600.0	2,571.9	2,503.6	2,469.9	10.1	9.9	-113.63	369.8	237.2	497.0	478.0	18.96	26.208		
2,700.0	2,669.6	2,599.0	2,562.2	10.6	10.3	-114.14	389.6	251.5	526.5	506.7	19.82	26.568		
2,800.0	2,767.2	2,694.4	2,654.4	11.1	10.8	-114.60	409.5	265.7	556.1	535.4	20.68	26.895		
2,900.0	2,864.8	2,789.9	2,746.7	11.6	11.3	-115.01	429.3	280.0	585.7	564.1	21.54	27.192		
3,000.0	2,962.5	2,885.3	2,839.0	12.0	11.8	-115.38	449.1	294.2	615.3	592.9	22.40	27.463		
3,100.0	3,060.1	2,980.8	2,931.2	12.5	12.3	-115.72	469.0	308.5	645.0	621.7	23.27	27.712		
3,200.0	3,157.7	3,076.2	3,023.5	13.0	12.8	-116.03	488.8	322.8	674.6	650.5	24.15	27.940		
3,300.0	3,255.3	3,171.6	3,115.7	13.5	13.3	-116.31	508.7	337.0	704.3	679.3	25.02	28.150		
3,400.0	3,353.0	3,267.1	3,208.0	14.0	13.8	-116.57	528.5	351.3	734.0	708.1	25.90	28.344		
3,500.0	3,450.6	3,362.5	3,300.2	14.5	14.2	-116.81	548.3	365.5	763.7	736.9	26.77	28.524		
3,600.0	3,548.2	3,457.9	3,392.5	15.0	14.7	-117.03	568.2	379.8	793.4	765.8	27.65	28.690		
3,700.0	3,645.9	3,553.4	3,484.8	15.5	15.2	-117.24	588.0	394.0	823.2	794.6	28.54	28.845		
3,800.0	3,743.5	3,648.8	3,577.0	15.9	15.7	-117.43	607.9	408.3	852.9	823.5	29.42	28.990		
3,900.0	3,841.1	3,744.3	3,669.3	16.4	16.2	-117.61	627.7	422.5	882.6	852.3	30.31	29.125		
4,000.0	3,938.8	3,839.7	3,761.5	16.9	16.7	-117.77	647.5	436.8	912.4	881.2	31.19	29.252		
4,100.0	4,036.4	3,935.1	3,853.8	17.4	17.2	-117.93	667.4	451.1	942.2	910.1	32.08	29.370		
4,200.0	4,134.0	4,030.6	3,946.1	17.9	17.7	-118.08	687.2	465.3	971.9	939.0	32.97	29.482		
4,200.0	4,134.0	4,030.0	5,340.1	17.9	17.7	-110.00	007.2	+00.0	5/1.9	339.0	32.31	20.402		

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
-	ASTRODOG		0
Reference Site:		MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 122H - OWB - PWP0

ssured epth Vertical Depth (usft) 0.0 0.0 100.0 100.0 200.0 200.0 300.0 300.0 300.0 300.0 300.0 400.0 500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 1,00.0 1,100.0 ,200.0 1,398.7 ,500.0 1,595.6 ,625.0 1,620.1 ,700.0 1,693.3 ,800.0 1,790.8 ,200.0 2,888.5 2,000.0 2,864.8 ,200.0 2,864.8 3,000.0 3,255.3 3,000.0 3,542.2 ,000.0 3,645.9 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2			Vention	Semi Major Axis Reference Offset		Offset Highside	Comercet's a	1						
100.0 100.0 200.0 200.0 300.0 300.0 400.0 400.0 500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 1,000.0 ,200.0 1,299.5 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,693.3 ,800.0 1,790.9 ,900.0 2,083.8 ,200.0 2,181.4 ,300.0 2,279.1 ,200.0 2,571.9 ,700.0 2,669.6 ,800.0 2,767.2 ,900.0 3,053.0 ,400.0 3,553.3 ,300.0 3,255.3 ,300.0 3,255.3 ,400.0 3,548.2 ,700.0 3,642.8 ,800.0 3,743.5 ,800.0 3,743.5 ,900.0 3,938.8 ,100.0	Depth	Measured Depth (usft)	Vertical Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
200.0 200.0 300.0 300.0 400.0 400.0 500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 900.0 1,000.0 ,100.0 1,109.8 ,300.0 1,299.5 ,400.0 1,398.7 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,888.5 ,200.0 1,986.2 ,100.0 2,083.8 ,200.0 2,181.4 ,300.0 2,79.1 ,400.0 2,376.7 2,500.0 2,474.3 ,600.0 2,571.9 ,700.0 2,669.6 ,800.0 2,767.2 ,900.0 3,953.0 ,400.0 3,353.0 ,600.0 3,548.2 ,700.0 3,654.2 ,700.0 3,645.9 ,800.0			0.0	0.0	0.0	26.83	53.5	27.1	60.0					
300.0 300.0 400.0 400.0 500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 1,000.0 1,100.0 ,200.0 1,199.8 ,300.0 1,299.5 ,400.0 1,595.6 ,602.0 1,693.3 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,693.3 ,800.0 1,790.9 ,900.0 1,888.5 ,200.0 2,181.4 ,300.0 2,279.1 ,400.0 2,376.7 ,200.0 2,669.6 ,800.0 2,767.2 ,900.0 2,864.8 ,000.0 3,953.0 ,500.0 3,450.6 ,600.0 3,548.2 ,700.0 3,645.9 ,800.0 3,743.5 ,800.0 3,548.2 ,700.0			100.0	0.3	0.3	26.83	53.5	27.1	60.0	59.5	0.50	119.570		
400.0 400.0 500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 900.0 1,000.0 1,000.0 1,100.0 ,200.0 1,299.5 ,400.0 1,595.6 ,625.0 1,620.1 ,700.0 1,698.2 ,800.0 1,790.9 ,900.0 1,986.2 ,200.0 2,181.4 ,200.0 2,181.4 ,200.0 2,669.6 ,800.0 2,571.9 ,700.0 2,669.6 ,800.0 2,767.2 ,900.0 3,953.0 ,900.0 3,955.3 ,900.0 3,955.3 ,900.0 3,553.0 ,900.0 3,553.0 ,900.0 3,548.2 ,700.0 3,645.9 ,800.0 3,743.5 ,900.0 3,938.8 ,100			200.0	0.6	0.6	26.83	53.5	27.1	60.0	58.8	1.22	49.235		
500.0 500.0 600.0 600.0 700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 1,000.0 1,00.0 1,199.8 ,300.0 1,299.5 ,400.0 1,398.7 ,500.0 1,497.5 ,600.0 1,595.6 ,622.0 1,620.1 ,700.0 1,893.3 ,800.0 1,790.9 ,900.0 1,888.5 2,000.0 2,181.4 ,200.0 2,181.4 ,200.0 2,669.6 ,800.0 2,767.7 ,200.0 2,864.8 3,000.0 2,962.5 3,100.0 3,053.0 ,500.0 3,455.3 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 <			300.0	1.0	1.0	26.83	53.5	27.1	60.0	58.1	1.94	31.000		
700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 1,000.0 1,000.0 1,100.0 ,200.0 1,199.8 ,300.0 1,299.5 ,400.0 1,595.6 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,698.2 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,700.0 2,669.6 ,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,454.2 3,900.0 3,454.2 3,900.0 3,548.2			400.0 500.0	1.3 1.7	1.3 1.7	26.83 26.83	53.5 53.5	27.1 27.1	60.0 60.0	57.4 56.6	2.65 3.37	22.621 17.808		
700.0 700.0 800.0 800.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 900.0 1,000.0 1,000.0 1,100.0 ,200.0 1,199.8 ,300.0 1,299.5 ,400.0 1,595.6 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,698.2 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,700.0 2,669.6 ,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,454.2 3,900.0 3,454.2 3,900.0 3,548.2	600.0	600.0	600.0	2.0	2.0	26.83	53.5	27.1	60.0	55.9	4.09	14.684		
900.0 900.0 ,000.0 1,000.0 ,000.0 1,000.0 ,100.0 1,100.0 ,200.0 1,199.8 ,300.0 1,299.5 ,400.0 1,398.7 ,500.0 1,497.5 ,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,693.3 ,800.0 1,790.9 ,900.0 1,888.5 ,200.0 2,181.4 ,200.0 2,279.1 ,2400.0 2,376.7 2,500.0 2,474.3 ,600.0 2,571.9 ,700.0 2,669.6 ,800.0 2,767.2 ,900.0 3,060.1 ,200.0 2,864.8 3,000.0 3,255.3 3,400.0 3,353.0 ,500.0 3,450.6 ,600.0 3,548.2 ,700.0 3,645.9 ,800.0 3,548.2 ,700.0 3,645.9 ,800.0 3,548.2			700.0	2.4	2.4	26.83	53.5	27.1	60.0	55.2	4.80	12.492		
1,000.0 1,000.0 1,100.0 1,100.0 1,200.0 1,199.8 1,200.0 1,299.5 1,400.0 1,299.5 1,400.0 1,398.7 1,500.0 1,497.5 1,600.0 1,595.6 1,620.1 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,157.7 3,300.0 3,255.3 3,000.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,000.0 3,450.6 3,600.0 3,743.5 3,000.0 3,938.8 4,100.0 3,938.8 4,100.0 4,036.4 4,000.0 <	800.0	800.0	800.0	2.8	2.8	26.83	53.5	27.1	60.0	54.5	5.52	10.870		
1,100.0 1,100.0 1,200.0 1,199.8 1,300.0 1,299.5 1,400.0 1,398.7 1,500.0 1,497.5 1,600.0 1,595.6 1,620.1 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,955.3 3,400.0 3,553.3 3,400.0 3,553.3 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,458.4 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 <	900.0	900.0	900.0	3.1	3.1	26.83	53.5	27.1	60.0	53.8	6.24	9.621		
1,199.8 1,200.0 1,299.5 1,400.0 1,398.7 1,500.0 1,497.5 1,600.0 1,595.6 1,622.0 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,965.3 3,000.0 3,955.3 3,000.0 3,553.0 3,000.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,000.0 3,938.8 4,000.0 3,938.8 4,000.0 3,938.8 4,000.0 4,934.6	1,000.0	1,000.0	1,000.0	3.5	3.5	26.83	53.5	27.1	60.0	53.1	6.95	8.629 CC, E	S	
1,299.5 1,400.0 1,398.7 1,500.0 1,497.5 1,600.0 1,595.6 1,625.0 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,600.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,953.0 3,000.0 3,255.3 3,000.0 3,450.6 3,600.0 3,548.2 3,000.0 3,450.6 3,600.0 3,548.2 3,000.0 3,450.6 3,600.0 3,743.5 3,000.0 3,938.8 4,100.0 4,036.4 4,000.0 4,938.4	1,100.0	1,098.9	1,098.9	3.8	3.8	-88.07	53.7	28.8	60.9	53.2	7.65	7.958		
1,400.0 1,398.7 1,500.0 1,497.5 1,600.0 1,595.6 1,620.1 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,955.3 3,000.0 3,255.3 3,000.0 3,548.2 3,700.0 3,645.9 3,000.0 3,548.2 3,700.0 3,645.9 3,000.0 3,938.8 1,100.0 4,036.4 1,200.0 3,938.8 1,100.0 4,036.4	1,199.8	1,197.7	1,197.6	4.2	4.2	-88.76	54.2	33.9	63.4	55.1	8.33	7.616		
1,500.0 1,497.5 1,600.0 1,595.6 1,620.1 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,79.1 2,400.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,952.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,645.9 3,000.0 3,645.9 3,000.0 <t< td=""><td></td><td></td><td>1,296.0</td><td>4.5</td><td>4.5</td><td>-89.79</td><td>54.9</td><td>42.3</td><td>67.7</td><td>58.7</td><td>9.01</td><td>7.506 SF</td><td></td><td></td></t<>			1,296.0	4.5	4.5	-89.79	54.9	42.3	67.7	58.7	9.01	7.506 SF		
,600.0 1,595.6 ,625.0 1,620.1 ,700.0 1,693.3 ,800.0 1,790.9 ,900.0 1,888.5 2,000.0 1,986.2 ,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,962.5 3,100.0 3,053.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,548.2 3,000.0 3,645.9 3,000.0 3,645.9 3,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,200.0 4,2			1,393.9	4.9	4.9	-91.01	56.0	54.2	73.7	63.9	9.72	7.578		
1,625.0 1,620.1 1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,955.3 3,400.0 3,157.7 3,300.0 3,450.6 3,600.0 3,450.6 3,600.0 3,450.6 3,600.0 3,450.6 3,600.0 3,450.6 3,600.0 3,450.6 3,600.0 3,454.2 3,000.0 3,454.2 3,000.0 3,454.2 3,000.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 3,200.0 3,441.4	1,497.5	1,494.1	1,491.7	5.2	5.2	-92.50	57.3	69.1	81.3	70.8	10.45	7.774		
1,700.0 1,693.3 1,800.0 1,790.9 1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,255.3 3,000.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,450.6 3,600.0 3,743.5 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 2,200.0 4,134.0	1,595.6	1,593.6	1,590.0	5.6	5.6	-95.57	58.7	84.8	89.5	78.3	11.23	7.970		
1,790.9 1,790.9 1,888.5 1,888.5 2,000.0 1,888.5 2,000.0 2,083.8 2,200.0 2,181.4 2,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 3,962.5 3,100.0 3,055.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0	1,620.1	1,618.5	1,614.5	5.7	5.7	-96.59	59.1	88.7	91.6	80.2	11.43	8.020		
1,900.0 1,888.5 2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,279.1 2,400.0 2,376.7 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0	1,693.3	1,693.0	1,688.1	6.0	6.0	-99.67	60.1	100.4	98.3	86.3	12.03	8.175		
2,000.0 1,986.2 2,100.0 2,083.8 2,200.0 2,181.4 2,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,455.3 3,400.0 3,553.0 3,600.0 3,548.2 3,700.0 3,645.9 3,600.0 3,743.5 3,800.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0			1,786.2	6.5	6.4	-103.17	61.5	116.0	107.6	94.8	12.84	8.380		
2,100.0 2,083.8 2,200.0 2,181.4 3,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,255.3 3,400.0 3,553.0 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0	1,888.5	1,891.7	1,884.4	6.9	6.8	-106.10	62.9	131.6	117.2	103.6	13.66	8.579		
2200.0 2,181.4 ,300.0 2,279.1 ,400.0 2,376.7 ,500.0 2,474.3 ,600.0 2,571.9 ,700.0 2,669.6 ,800.0 2,767.2 ,900.0 2,864.8 ,000.0 2,962.5 ,100.0 3,060.1 ,200.0 3,455.3 ,400.0 3,553.0 ,500.0 3,548.2 ,700.0 3,645.9 ,800.0 3,743.5 ,900.0 3,938.8 ,100.0 4,036.4 ,200.0 4,134.0			1,982.5	7.3	7.2	-108.59	64.3	147.2	127.1	112.6	14.50	8.768		
2,300.0 2,279.1 2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,255.3 3,400.0 3,543.0 3,600.0 3,548.2 3,700.0 3,645.9 3,600.0 3,743.5 3,800.0 3,938.8 1,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			2,080.6	7.8	7.6	-110.71	65.7	162.8	137.2	121.9	15.34	8.946		
2,400.0 2,376.7 2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,548.2 3,700.0 3,645.9 3,600.0 3,548.2 3,000.0 3,743.5 3,900.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0			2,178.7	8.2	8.0	-112.55	67.1	178.4	147.4	131.3	16.18	9.114		
2,500.0 2,474.3 2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,400.0 3,255.3 3,400.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			2,276.9	8.7	8.4	-114.14	68.5	194.0	157.8	140.8	17.03	9.270		
2,600.0 2,571.9 2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,743.5 3,900.0 3,944.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0	2,376.7	2,388.6	2,375.0	9.2	8.9	-115.54	69.9	209.7	168.3	150.4	17.87	9.416		
2,700.0 2,669.6 2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,600.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0			2,473.1	9.6	9.3	-116.77	71.4	225.3	178.9	160.1	18.73	9.552		
2,800.0 2,767.2 2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,550.0 3,450.6 3,600.1 3,645.9 3,600.0 3,645.9 3,000.0 3,743.5 3,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			2,571.2	10.1	9.7	-117.86	72.8	240.9	189.5	169.9	19.58	9.679		
2,900.0 2,864.8 3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 4,938.8 1,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			2,669.4	10.6	10.1	-118.84	74.2	256.5	200.2	179.8	20.44	9.797		
3,000.0 2,962.5 3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			2,767.5 2,865.6	11.1 11.6	10.5 11.0	-119.72 -120.51	75.6 77.0	272.1 287.7	211.0 221.8	189.7 199.6	21.29 22.15	9.907 10.011		
3,100.0 3,060.1 3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			2,005.0		11.0	-120.51						10.011		
3,200.0 3,157.7 3,300.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			2,963.8	12.0	11.4	-121.23	78.4	303.3	232.6	209.6	23.01	10.108		
3,300.0 3,255.3 3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			3,061.9	12.5	11.8	-121.89	79.8	318.9	243.5	219.6	23.87	10.199		
3,400.0 3,353.0 3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			3,160.0	13.0	12.2	-122.49	81.2	334.5	254.4	229.7	24.74	10.284		
3,500.0 3,450.6 3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 1,000.0 3,938.8 1,100.0 4,036.4 1,200.0 4,134.0 1,300.0 4,231.6			3,258.1 3,356.3	13.5 14.0	12.6 13.1	-123.03 -123.54	82.6 84.0	350.2 365.8	265.3 276.3	239.7 249.8	25.60 26.46	10.364 10.440		
3,600.0 3,548.2 3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6														
3,700.0 3,645.9 3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			3,454.4	14.5	13.5	-124.01	85.4	381.4	287.2	259.9	27.33	10.511		
3,800.0 3,743.5 3,900.0 3,841.1 4,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			3,552.5	15.0	13.9	-124.44	86.8	397.0	298.2	270.0	28.19	10.579		
3,900.0 3,841.1 4,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			3,650.6	15.5	14.4	-124.85	88.2	412.6	309.2	280.2	29.06	10.642		
4,000.0 3,938.8 4,100.0 4,036.4 4,200.0 4,134.0 4,300.0 4,231.6			3,748.8 3,846.9	15.9 16.4	14.8 15.2	-125.22 -125.57	89.6 91.0	428.2 443.8	320.2 331.3	290.3 300.5	29.92 30.79	10.703 10.760		
4,036.4 4,200.0 4,134.0 4,300.0 4,231.6														
4,200.0 4,134.0 4,300.0 4,231.6			3,945.0	16.9	15.6	-125.90	92.4	459.4	342.3	310.6	31.65	10.814		
4,300.0 4,231.6			4,043.1	17.4	16.1	-126.20	93.8	475.0	353.3	320.8	32.52	10.866		
			4,141.3 4,239.4	17.9 18.4	16.5 16.9	-126.49 -126.76	95.2 96.6	490.7 506.3	364.4 375.5	331.0 341.2	33.39 34.25	10.915 10.962		
4,400.0 4,329.3	4,231.0		4,239.4 4,337.5	18.9	16.9	-126.76	98.0	506.3	375.5 386.5	341.2 351.4	34.25 35.12	11.006		
4,500.0 4,426.9	4 426 9	4,475.4	4,435.7	19.4	17.8	-127.26	99.4	537.5	397.6	361.6	35.99	11.049		
4,600.0 4,524.5			4,533.8	19.4	18.2	-127.49	100.8	553.1	408.7	371.9	36.86	11.089		
4,524.5			4,533.8	20.4	18.2	-127.49	100.8	568.7	408.7	382.1	37.73	11.128		
4,800.0 4,719.8			4,730.0	20.4	10.0	-127.91	103.6	584.3	430.9	392.3	38.59	11.165		
4,900.0 4,817.4			4,828.2	21.4	19.5	-128.11	105.0	599.9	442.0	402.6	39.46	11.201		
5,000.0 4,915.0														

1/17/2025 10:08:13AM

0.0 usft

Offset Site Error:

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 122H - OWB - PWP0

													Offset Site Error:	0.0 usπ
Survey Prog	ram: 0- rence	MWD	set	Som! B	Aajor Axis		Offset Wellb	oro Contro	Die	Rule Assi	gned:		Offset Well Error:	0.0 usft
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside			Between	Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
(usit) 5,100.0	(usit) 5,012.7	(usit) 5,071.6	(usit) 5,024.4	(usit) 22.4	(usit) 20.4	-128.47	107.8	631.2	464.2	423.0	41.20	11.268		
5,200.0	5,110.3	5,171.0	5,122.5	22.9	20.8	-128.64	109.2	646.8	475.4	433.3	42.07	11.299		
5,300.0	5,207.9	5,270.3	5,220.7	23.4	21.2	-128.80	110.6	662.4	486.5	443.5	42.94	11.330		
5,400.0	5,305.6	5,369.7	5,318.8	23.9	21.7	-128.95	112.0	678.0	497.6	453.8	43.81	11.359		
5,500.0	5,403.2	5,469.1	5,416.9	24.4	22.1	-129.10	113.4	693.6	508.7	464.1	44.68	11.387		
5,600.0	5,500.8	5,568.4	5,515.0	24.9	22.5	-129.24	114.8	709.2	519.9	474.3	45.55	11.414		
5,700.0	5,598.5	5,667.8	5,613.2	25.4	23.0	-129.37	116.2	724.8	531.0	484.6	46.42	11.440		
5,800.0	5,696.1	5,767.2	5,711.3	25.9	23.4	-129.50	117.6	740.4	542.2	494.9	47.29	11.465		
5,900.0	5,793.7	5,866.6	5,809.4	26.4	23.8	-129.63	119.0	756.0	553.3	505.1	48.16	11.489		
6,000.0	5,891.3	5,965.9	5,907.6	26.9	24.3	-129.74	120.4	771.7	564.4	515.4	49.03	11.512		
6,100.0	5,989.0	6,065.3	6,005.7	27.4	24.7	-129.86	121.8	787.3	575.6	525.7	49.90	11.535		
6,200.0	6,086.6	6,164.7	6,103.8	27.9	25.1	-129.97	123.2	802.9	586.7	536.0	50.77	11.557		
6,300.0	6,184.2	6,264.0	6,201.9	28.4	25.6	-130.07	124.6	818.5	597.9	546.2	51.64	11.578		
6,400.0	6,281.9	6,363.4	6,300.1	28.9	26.0	-130.18	126.0	834.1	609.0	556.5	52.51	11.598		
6,500.0	6,379.5	6,462.8	6,398.2	29.4	26.4	-130.27	127.4	849.7	620.2	566.8	53.38	11.618		
6,520.9	6,399.9	6,483.6	6,418.7	29.5	26.5	-130.29	127.7	853.0	622.5	569.0	53.56	11.622		
6,600.0	6,477.3	6,562.2	6,496.4	29.9	26.9	-130.42	128.8	865.3	630.6	576.4	54.25	11.624		
6,700.0	6,575.8	6,661.9	6,594.8	30.3	27.3	-130.33	130.2	881.0	638.9	583.8	55.13	11.589		
6,800.0	6,674.9	6,761.5	6,693.2	30.7	27.7	-129.97	131.7	896.6	644.9	588.9	56.01	11.515		
6,900.0	6,774.3	6,861.2	6,791.6	31.1	28.2	-129.36	133.1	912.3	648.8	591.9	56.88	11.405		
7,000.0	6,874.1	6,960.6	6,889.8	31.5	28.6	-128.48	134.5	927.9	650.5	592.8	57.76	11.262		
7,100.0	6,974.0	7,059.8	6,987.7	31.8	29.0	-127.34	135.9	943.5	650.3	591.7	58.64	11.091		
7,146.0	7,020.0	7,105.2	7,032.6	31.9	29.2	-12.08	136.5	950.6	649.6	590.6	59.03	11.004		
7,208.5	7,082.5	7,166.9	7,093.5	32.1	29.5	-11.23	137.4	960.3	648.5	588.9	59.57	10.886		
7,225.0	7,099.0	7,183.3	7,109.7	32.1	29.6	-100.83	137.6	962.9	648.3	588.6	59.71	10.857		
7,249.4	7,123.4	7,207.6	7,133.7	32.2	29.7	-100.63	137.9	966.7	648.2	588.2	59.92	10.816		
7,250.0	7,124.0	7,208.2	7,134.2	32.2	29.7	-100.63	138.0	966.8	648.2	588.2	59.93	10.815		
7,275.0	7,148.8	7,233.1	7,158.9	32.3	29.8	-100.51	138.3	970.7	648.3	588.1	60.15	10.779		
7,300.0	7,173.5	7,258.1	7,183.6	32.4	29.9	-100.48	138.7	974.7	648.7	588.3	60.36	10.746		
7,325.0	7,197.9	7,283.1	7,208.2	32.5	30.0	-100.53	139.0	978.6	649.3	588.7	60.58	10.718		
7,350.0	7,222.0	7,307.9	7,232.7	32.7	30.1	-100.67	139.4	982.5	650.1	589.3	60.79	10.694		
7,375.0	7,245.7	7,332.6	7,257.1	32.8	30.2	-100.88	139.7	986.4	651.2	590.2	61.00	10.675		
7,400.0	7,269.0	7,357.0	7,281.2	33.0	30.3	-101.17	140.1	990.2	652.6	591.4	61.21	10.661		
7,425.0	7,291.7	7,381.1	7,305.0	33.1	30.4	-101.51	140.4	994.0	654.3	592.9	61.42	10.653		
7,450.0	7,313.9	7,404.8	7,328.4	33.3	30.5	-101.91	140.7	997.7	656.4	594.7	61.62	10.651		
7,475.0	7,335.4	7,428.1	7,351.4	33.5	30.6	-102.35	141.1	1,001.4	658.8	596.9	61.82	10.657		
7,500.0	7,356.3	7,450.8	7,373.8	33.7	30.7	-102.81	141.4	1,004.9	661.6	599.6	62.01	10.670		
7,525.0	7,376.4	7,473.0	7,395.7	33.9	30.8	-103.29	141.7	1,008.4	664.9	602.7	62.19	10.691		
7,550.0	7,395.7	7,494.5	7,417.0	34.1	30.9	-103.76	142.0	1,011.8	668.6	606.3	62.36	10.723		
7,575.0	7,414.1	7,515.4	7,437.6	34.3	31.0	-104.21	142.3	1,015.1	673.0	610.4	62.52	10.764		
7,600.0	7,431.6	7,535.5	7,457.5	34.6	31.1	-104.62	142.6	1,018.2	677.9	615.2	62.67	10.817		
7,625.0	7,448.2	7,554.8	7,476.5	34.8	31.2	-104.98	142.8	1,021.3	683.4	620.6	62.80	10.882		
7,650.0	7,463.7	7,573.2	7,494.7	35.1	31.3	-105.27	143.1	1,024.2	689.6	626.7	62.92	10.959		
7,675.0	7,478.3	7,590.8	7,512.1	35.4	31.3	-105.47	143.4	1,026.9	696.5	633.5	63.03	11.051		
7,700.0	7,491.7	7,607.4	7,528.4	35.7	31.4	-105.56	143.6	1,029.5	704.2	641.1	63.12	11.156		
7,725.0	7,504.0	7,622.9	7,543.8	36.0	31.5	-105.53	143.8	1,032.0	712.6	649.4	63.20	11.275		
7,750.0	7,515.2	7,637.4	7,558.1	36.3	31.5	-105.36	144.0	1,034.3	721.8	658.5	63.26	11.410		
7,775.0	7,525.2	7,649.7	7,570.2	36.6	31.6	-104.95	144.2	1,036.1	731.8	668.5	63.29	11.562		
7,800.0	7,533.9	7,660.7	7,581.1	36.9	31.6	-104.35	144.3	1,037.8	742.6	679.3	63.31	11.730		
7,825.0	7,541.4	7,670.5	7,590.8 7,599.4	37.2	31.7	-103.57	144.5	1,039.3 1,040.5	754.2 766.6	690.9 703.3	63.30 63.29	11.914 12.113		
7,850.0	7,547.7	7,679.2	1,099.4	37.6	31.7	-102.57	144.6	1,040.5	100.0	103.3	03.29	12.113		
7,875.0	7,552.7	7,686.6	7,606.8	37.9	31.8	-101.36	144.7	1,041.6	779.7	716.4	63.25	12.327		
			CC - Min	centre to ce	nter dista	nce or cove	rgent point, SF	- min sepa	ration facto	or, ES - mii	n ellipse se	paration		
117/2025 1	0.00.404						Den el							

1/17/2025 10:08:13AM

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 122H - OWB - PWP0

													Unset Site Error:	0.0 usit
Survey Progr Refer		MWD Off	set	Semi M	lajor Axis		Offset Wellb	ore Centre	Dis	Rule Assi tance	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
7,900.0	7,556.4	7,692.9	7,612.9	38.3	31.8	-99.91	144.7	1,042.4	793.5	730.3	63.20	12.555		
7,925.0	7,558.8	7,700.0	7,620.0	38.6	31.8	-98.40	144.8	1,043.4	808.1	744.9	63.16	12.794		
7,950.0	7,559.9	7,700.0	7,620.0	39.0	31.8	-96.13	144.8	1,043.4	823.2	760.2	63.05	13.056		
7,958.5	7,560.0	7,700.0	7,620.0	39.1	31.8	-95.33	144.8	1,043.4	828.5	765.4	63.02	13.146		
8,000.0	7,560.0	7,707.6	7,627.5	39.7	31.8	-95.99	144.9	1,044.4	855.0	792.1	62.90	13.593		
8,100.0	7,560.0	7,718.6	7,638.4	41.2	31.9	-96.95	145.1	1,045.9	923.4	860.8	62.58	14.755		
8,200.0	7,560.0	7,728.9	7,648.7	42.8	31.9	-97.85	145.2	1,047.2	997.0	934.7	62.30	16.004		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
• •			
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 161H - OWB - PWP0

	rence	/WD Off			lajor Axis	111-11-1-1	Offset Wellb	ore Centre		Rule Assi ance		0	Offset Well Error:	0.0
easured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	26.82	107.1	54.1	120.0					
100.0	100.0	100.0	100.0	0.3	0.3	26.82	107.1	54.1	120.0	119.5	0.50	239.114		
200.0	200.0	200.0	200.0	0.6	0.6	26.82	107.1	54.1	120.0	118.8	1.22	98.459		
300.0	300.0	300.0	300.0	1.0	1.0	26.82	107.1	54.1	120.0	118.1	1.94	61.993		
400.0	400.0	400.0	400.0	1.3	1.3	26.82	107.1	54.1	120.0	117.3	2.65	45.238		
500.0	500.0	500.0	500.0	1.7	1.7	26.82	107.1	54.1	120.0	116.6	3.37	35.613		
600.0	600.0	600.0	600.0	2.0	2.0	26.82	107.1	54.1	120.0	115.9	4.09	29.365		
700.0	700.0	700.0	700.0	2.4	2.4	26.82	107.1	54.1	120.0	115.2	4.80	24.982		
800.0	800.0	800.0	800.0	2.8	2.8	26.82	107.1	54.1	120.0	114.5	5.52	21.738		
900.0	900.0	900.0	900.0	3.1	3.1	26.82	107.1	54.1	120.0	113.8	6.24	19.239		
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	26.82	107.1	54.1	120.0	113.0	6.95	17.256 CC, E	S	
1,100.0	1,100.0	1,096.4	1,096.4	3.8	3.8	-88.24	108.0	55.5	121.4	113.8	7.64	15.892		
1,200.0	1,199.8	1,192.6	1,192.5	4.2	4.2	-89.41	110.9	59.4	125.8	117.4	8.31	15.129		
1,300.0	1,299.5	1,288.5	1,288.0	4.5	4.5	-91.18	115.5	66.0	133.1	124.1	8.99	14.807 SF		
1,400.0	1,398.7	1,383.9	1,382.8	4.9	4.8	-93.32	122.0	75.0	143.5	133.8	9.67	14.842		
1,500.0	1,497.5	1,478.7	1,476.4	5.2	5.2	-95.62	130.3	86.6	157.1	146.8	10.36	15.166		
1,600.0	1,595.6	1,576.8	1,573.2	5.6	5.6	-98.33	139.9	100.0	173.0	161.9	11.11	15.564		
1,625.0	1,620.1	1,601.3	1,597.4	5.7	5.7	-99.09	142.3	103.4	177.1	165.8	11.31	15.660		
1,700.0	1,693.3	1,674.8	1,669.8	6.0	6.0	-101.51	149.5	113.4	189.7	177.8	11.90	15.947		
1,800.0	1,790.9	1,772.9	1,766.5	6.5	6.4	-104.26	159.1	126.8	207.0	194.3	12.69	16.307		
1,900.0	1,888.5	1,870.9	1,863.1	6.9	6.8	-106.60	168.7	140.3	224.6	211.1	13.50	16.640		
2,000.0	1,986.2	1,969.0	1,959.8	7.3	7.2	-108.59	178.3	153.7	242.6	228.2	14.31	16.946		
2,100.0	2,083.8	2,067.0	2,056.4	7.8	7.6	-110.31	187.9	167.1	260.8	245.6	15.14	17.226		
2,200.0	2,181.4	2,165.1	2,153.1	8.2	8.0	-111.80	197.4	180.5	279.2	263.2	15.97	17.483		
2,300.0	2,279.1	2,263.1	2,249.7	8.7	8.4	-113.11	207.0	193.9	297.7	280.9	16.80	17.719		
2,400.0	2,376.7	2,361.2	2,346.4	9.2	8.8	-114.27	216.6	207.3	316.4	298.8	17.64	17.935		
2,500.0	2,474.3	2,459.2	2,443.0	9.6	9.2	-115.29	226.2	220.7	335.3	316.8	18.49	18.134		
2,600.0	2,571.9	2,557.3	2,539.7	10.1	9.6	-116.21	235.8	234.2	354.2	334.8	19.33	18.318		
2,700.0	2,669.6	2,655.3	2,636.3	10.6	10.0	-117.04	245.4	247.6	373.1	353.0	20.18	18.488		
2,800.0	2,767.2	2,753.4	2,733.0	11.1	10.5	-117.78	255.0	261.0	392.2	371.2	21.04	18.645		
2,900.0	2,864.8	2,851.4	2,829.6	11.6	10.9	-118.46	264.6	274.4	411.3	389.4	21.89	18.790		
2 000 0	2 062 F	2 040 5	2,026,2	12.0	11.0	110.07	074.0	207.0	420 E	407.7	22.74	19.006		
3,000.0	2,962.5	2,949.5	2,926.3	12.0	11.3	-119.07	274.2	287.8	430.5	407.7	22.74	18.926		
3,100.0	3,060.1	3,047.5	3,022.9	12.5	11.7	-119.64	283.8	301.2	449.7	426.1	23.60	19.052		
3,200.0 3,300.0	3,157.7 3,255.3	3,145.5 3,243.6	3,119.6 3,216.2	13.0 13.5	12.2 12.6	-120.15 -120.63	293.4 303.0	314.6 328.0	468.9 488.2	444.4 462.9	24.46 25.32	19.170 19.280		
3,400.0	3,255.5	3,341.6	3,312.9	13.5	12.0	-120.03	312.5	328.0	400.2 507.5	402.9	26.18	19.280		
3,500.0	3,450.6	3,439.7	3,409.5	14.5	13.4	-121.48	322.1	354.9	526.8	499.8	27.04	19.480		
3,600.0	3,548.2	3,537.7	3,506.2	15.0	13.9	-121.86	331.7	368.3	546.2	518.3	27.91	19.571		
3,700.0	3,645.9	3,635.8	3,602.8	15.5	14.3	-122.21	341.3	381.7	565.5	536.8	28.77	19.657		
3,800.0 3,900.0	3,743.5 3,841.1	3,733.8 3,831.9	3,699.5 3,796.1	15.9 16.4	14.7 15.2	-122.54 -122.85	350.9 360.5	395.1 408.5	584.9 604.4	555.3 573.9	29.64 30.50	19.738 19.815		
4,000.0	3,938.8	3,929.9	3,892.8	16.9	15.6	-123.14	370.1	421.9	623.8	592.4	31.37	19.887		
4,100.0	4,036.4	4,028.0	3,989.4	17.4	16.0	-123.41	379.7	435.4	643.2	611.0	32.23	19.955		
4,200.0	4,134.0	4,126.0	4,086.1	17.9	16.4	-123.67	389.3	448.8	662.7	629.6	33.10	20.020		
4,300.0	4,231.6	4,224.1	4,182.7	18.4	16.9	-123.91	398.9	462.2	682.2	648.2	33.97	20.082		
4,400.0	4,329.3	4,322.1	4,279.4	18.9	17.3	-124.14	408.5	475.6	701.6	666.8	34.84	20.141		
4,500.0	4,426.9	4,420.2	4,376.0	19.4	17.7	-124.35	418.1	489.0	721.1	685.4	35.71	20.197		
4,600.0	4,524.5	4,518.2	4,472.7	19.9	18.2	-124.56	427.7	502.4	740.6	704.1	36.57	20.250		
4,700.0	4,622.2	4,616.3	4,569.3	20.4	18.6	-124.75	437.2	515.8	760.1	722.7	37.44	20.301		
4,800.0	4,719.8	4,714.3	4,666.0	20.9	19.0	-124.94	446.8	529.2	779.7	741.3	38.31	20.349		
4,900.0	4,817.4	4,812.3	4,762.6	21.4	19.5	-125.11	456.4	542.7	799.2	760.0	39.18	20.396		
5,000.0	4,915.0	4,910.4	4,859.3											

1/17/2025 10:08:13AM

Page 8

0 0 usft

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 161H - OWB - PWP0

													Offset Site Error:	0.0 usit
Survey Prog Refe Measured	ram: 0- erence Vertical	MWD Off Measured	set Vertical	Semi M Reference	lajor Axis Offset	Highside	Offset Wellbo		Dist Between	Rule Assi ance Between	gned: Minimum	Separation	Offset Well Error: Warning	0.0 usft
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
5,100.0	5,012.7	5,008.4	4,955.9	22.4	20.3	-125.44	475.6	569.5	838.3	797.3	40.93	20.482		
5,200.0	5,110.3	5,106.5	5,052.6	22.9	20.7	-125.59	485.2	582.9	857.8	816.0	41.80	20.523		
5,300.0	5,207.9	5,204.5	5,149.2	23.4	21.2	-125.74	494.8	596.3	877.3	834.7	42.67	20.562		
5,400.0	5,305.6	5,302.6	5,245.9	23.9	21.6	-125.87	504.4	609.7	896.9	853.4	43.54	20.600		
5,500.0	5,403.2	5,400.6	5,342.5	24.4	22.0	-126.01	514.0	623.1	916.5	872.1	44.41	20.636		
5,600.0	5,500.8	5,498.7	5,439.2	24.9	22.5	-126.13	523.6	636.6	936.0	890.7	45.28	20.670		
5,700.0	5,598.5	5,596.7	5,535.8	25.4	22.9	-126.26	533.2	650.0	955.6	909.4	46.16	20.704		
5,800.0	5,696.1	5,694.8	5,632.5	25.9	23.3	-126.37	542.8	663.4	975.2	928.1	47.03	20.736		
5,900.0	5,793.7	5,792.8	5,729.1	26.4	23.8	-126.49	552.3	676.8	994.7	946.8	47.90	20.767		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

0.0 usft

Offset Site Error:

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 172H - OWB - PWP0

													Offset Site Error:	0.0 us
Survey Progr		MWD		0	-1		0//		Die	Rule Assi	gned:		Offset Well Error:	0.0 us
Refer Measured	rence Vertical	Off: Measured	set Vertical	Reference	ajor Axis Offset	Highside	Offset Wellb	ore Centre	Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth			Toolface	+N/-S (usft)	+E/-W (usft)	Centres	Ellipses	Separation	Factor		
(usft) 0.0	(usft) 0.0	(usft) 0.0	(usft) 0.0	(usft) 0.0	(usft) 0.0	(°) 26.83	26.8	13.5	(usft) 30.0	(usft)	(usft)			
100.0	100.0	100.0	100.0	0.0	0.0	26.83	26.8	13.5	30.0	29.5	0.50	59.776		
200.0	200.0	200.0	200.0	0.6	0.6	26.83	26.8	13.5	30.0	28.8	1.22	24.614		
300.0	300.0	300.0	300.0	1.0	1.0	26.83	26.8	13.5	30.0	28.1	1.94	15.498		
400.0	400.0	400.0	400.0	1.3	1.3	26.83	26.8	13.5	30.0	27.3	2.65	11.309		
500.0	500.0	500.0	500.0	1.7	1.7	26.83	26.8	13.5	30.0	26.6	3.37	8.903		
600.0	600.0	600.0	600.0	2.0	2.0	26.83	26.8	13.5	30.0	25.9	4.09	7.341		
700.0	700.0	700.0	700.0	2.4	2.4	26.83	26.8	13.5	30.0	25.2	4.80	6.245		
800.0	800.0	800.0	800.0	2.8	2.8	26.83	26.8	13.5	30.0	24.5	5.52	5.434		
900.0	900.0	900.0	900.0	3.1	3.1	26.83	26.8	13.5	30.0	23.8	6.24	4.810		
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	26.83	26.8	13.5	30.0	23.0	6.95	4.314		
1,100.0	1,100.0	1,100.0	1,100.0	3.8	3.8	-87.82	26.0	15.1	30.0	22.3	7.65	3.917		
1,200.0	1,199.8	1,200.0	1,199.8	4.2	4.2	-87.82	23.7	19.8	29.8	21.5	8.32	3.583		
1,300.0	1,299.5	1,300.0	1,299.4	4.5	4.5	-87.81	19.9	27.6	29.6	20.6	9.02	3.284		
1,400.0	1,398.7	1,399.9	1,398.6	4.9	4.9	-87.81	14.5	38.6	29.3	19.6	9.73	3.012		
1,500.0	1,497.5	1,499.9	1,497.4	5.2	5.2	-87.89	7.7	52.6	28.9	18.4	10.47	2.761		
1,600.0	1,595.6	1,599.9	1,596.0	5.6	5.6	-92.51	0.3	67.7	28.5	17.2	11.24	2.534		
1,625.0	1,620.1	1,624.9	1,620.6	5.7	5.7	-94.78	-1.6	71.4	28.5	17.0	11.44	2.488 CC		
1,628.4	1,623.4	1,628.3	1,623.9	5.7	5.7	-95.11	-1.8	72.0	28.5	17.0	11.47	2.482		
1,700.0	1,693.3	1,699.8	1,694.4	6.0	6.0	-102.19	-7.1	82.8	28.7	16.7	12.03	2.385 ES		
1,800.0	1,790.9	1,799.7	1,792.9	6.5	6.4	-111.68	-14.5	97.8	29.7	16.9	12.80	2.322 SF		
1,900.0	1,888.5	1,899.5	1,891.3	6.9	6.8	-120.31	-21.9	112.9	31.5	18.0	13.55	2.325		
2,000.0	1,986.2	1,999.4	1,989.8	7.3	7.2	-127.87	-29.3	128.0	33.9	19.7	14.28	2.376		
2,100.0	2,083.8	2,099.3	2,088.2	7.8	7.6	-134.32	-36.7	143.1	36.9	21.9	15.00	2.457		
2,200.0	2,181.4	2,199.2	2,186.7	8.2	8.1	-139.77	-44.0	158.2	40.2	24.5	15.71	2.558		
2,300.0	2,279.1	2,299.0	2,285.1	8.7	8.5	-144.36	-51.4	173.2	43.8	27.4	16.42	2.669		
2,400.0	2,376.7	2,398.9	2,383.6	9.2	8.9	-148.22	-58.8	188.3	47.7	30.6	17.13	2.785		
2,500.0	2,474.3	2,498.8	2,482.1	9.6	9.3	-151.49	-66.2	203.4	51.7	33.9	17.84	2.901		
2,600.0	2,571.9	2,598.7	2,580.5	10.1	9.8	-154.28	-73.6	218.5	55.9	37.4	18.55	3.015		
2,700.0	2,669.6	2,698.6	2,679.0	10.6	10.2	-156.68	-81.0	233.6	60.2	41.0	19.27	3.126		
2,800.0	2,767.2	2,798.4	2,777.4	11.1	10.6	-158.75	-88.4	248.7	64.6	44.7	19.99	3.234		
2,900.0	2,864.8	2,898.3	2,875.9	11.6	11.1	-160.55	-95.7	263.7	69.1	48.4	20.72	3.336		
3,000.0	2,962.5	2,998.2	2,974.3	12.0	11.5	-162.14	-103.1	278.8	73.7	52.2	21.45	3.434		
3,100.0	3,060.1	3,098.1	3,072.8	12.5	11.9	-163.54	-110.5	293.9	78.2	56.1	22.18	3.527		
3,200.0	3,157.7	3,197.9	3,171.2	13.0	12.4	-164.78	-117.9	309.0	82.9	59.9	22.92	3.616		
3,300.0	3,255.3	3,297.8	3,269.7	13.5	12.8	-165.90	-125.3	324.1	87.5	63.9	23.65	3.700		
3,400.0	3,353.0	3,397.7	3,368.2	14.0	13.2	-166.90	-132.7	339.1	92.2	67.8	24.39	3.780		
3,500.0	3,450.6	3,497.6	3,466.6	14.5	13.7	-167.80	-140.0	354.2	96.9	71.8	25.14	3.856		
3,600.0	3,548.2	3,597.5	3,565.1	15.0	14.1	-168.62	-147.4	369.3	101.7	75.8	25.88	3.928		
3,700.0	3,645.9	3,697.3	3,663.5	15.5	14.6	-169.37	-154.8	384.4	106.4	79.8	26.63	3.997		
3,800.0	3,743.5	3,797.2	3,762.0	15.9	15.0	-170.05	-162.2	399.5	111.2	83.8	27.37	4.062		
3,900.0	3,841.1	3,897.1	3,860.4	16.4	15.5	-170.67	-169.6	414.6	116.0	87.9	28.12	4.124		
3,900.0 4,000.0	3,938.8	3,997.0	3,860.4 3,958.9	16.4	15.5	-170.67	-169.6	414.6	120.8	87.9 91.9	28.87	4.124		
4,100.0	4,036.4	4,096.8	4,057.4	17.4	16.3	-171.78	-184.4	444.7	125.6	96.0	29.63	4.239		
4,200.0	4,134.0	4,196.7	4,155.8	17.9	16.8	-172.27	-191.7	459.8	130.4	100.0	30.38	4.293		
4,300.0	4,231.6	4,296.6	4,254.3	18.4	17.2	-172.73	-199.1	474.9	135.2	104.1	31.13	4.344		
						-		-		-	-			
4,400.0	4,329.3	4,396.5	4,352.7	18.9	17.7	-173.16	-206.5	490.0	140.1	108.2	31.89	4.393		
4,500.0	4,426.9	4,496.4	4,451.2	19.4	18.1	-173.56	-213.9	505.0	144.9	112.3	32.64	4.440		
4,600.0	4,524.5	4,596.2	4,549.6	19.9	18.6	-173.93	-221.3	520.1	149.8	116.4	33.40	4.485		
4,700.0	4,622.2	4,696.1	4,648.1	20.4	19.0	-174.28	-228.7	535.2	154.6	120.5	34.15	4.528		
4,800.0	4,719.8	4,796.0	4,746.5	20.9	19.4	-174.60	-236.0	550.3	159.5	124.6	34.91	4.569		
4,900.0	4,817.4	4,895.9	4,845.0	21.4	19.9	-174.91	-243.4	565.4	164.4	128.7	35.67	4.608		
4,900.0	4,017.4	4,090.9	4,045.0	∠1.4	19.9	-174.91	-243.4	303.4	104.4	120.1	33.07	4.000		

1/17/2025 10:08:13AM

COMPASS 5000.17 Build 03

0.0 usft

Offset Site Error:

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 172H - OWB - PWP0

urvey Prog	ram: 0-l	MWD Off	ent	Som: B	lajor Axis		Offset Wellb	oro Contro	Die	Rule Assig	gned:		Offset Well Error:	0.0 us
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside			Between	Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth	((Toolface	+N/-S (usft)	+E/-W (usft)	Centres	Ellipses	Separation	Factor		
(usft) 5,000.0	(usft) 4,915.0	(usft) 4,995.7	(usft) 4,943.5	(usft) 21.9	(usft) 20.3	(°) -175.20	-250.8	580.5	(usft) 169.2	(usft) 132.8	(usft) 36.43	4.646		
5,100.0	5,012.7	5,095.6	5,041.9	21.3	20.3	-175.48	-258.2	595.5	174.1	132.0	37.19	4.682		
5,200.0	5,110.3	5,195.5	5,140.4	22.9	20.0	-175.73	-265.6	610.6	179.0	141.1	37.95	4.717		
5,300.0	5,207.9	5,295.4	5,238.8	23.4	21.7	-175.98	-273.0	625.7	183.9	145.2	38.71	4.751		
5,400.0	5,305.6	5,395.3	5,337.3	23.9	22.1	-176.21	-280.4	640.8	188.8	149.3	39.47	4.783		
5,500.0	5,403.2	5,495.1	5,435.7	24.4	22.6	-176.43	-287.7	655.9	193.7	153.4	40.23	4.814		
5,600.0	5,500.8	5,595.0	5,534.2	24.9	23.0	-176.64	-295.1	670.9	198.6	157.6	40.99	4.844		
5,700.0	5,598.5	5,694.9	5,632.6	25.4	23.5	-176.84	-302.5	686.0	203.4	161.7	41.75	4.873		
5,800.0	5,696.1	5,794.8	5,731.1	25.9	23.9	-177.03	-309.9	701.1	208.3	165.8	42.51	4.901		
5,900.0	5,793.7	5,894.6	5,829.6	26.4	24.3	-177.22	-317.3	716.2	213.2	170.0	43.27	4.928		
6,000.0	5,891.3	5,994.5	5,928.0	26.9	24.8	-177.39	-324.7	731.3	218.1	174.1	44.04	4.954		
6,100.0	5,989.0	6,094.4	6,026.5	27.4	25.2	-177.55	-332.0	746.4	223.1	178.3	44.80	4.979		
6,200.0	6,086.6	6,194.3	6,124.9	27.9	25.7	-177.71	-339.4	761.4	228.0	182.4	45.56	5.003		
6,300.0	6,184.2	6,294.2	6,223.4	28.4	26.1	-177.87	-346.8	776.5	232.9	186.5	46.33	5.027		
6,400.0	6,281.9	6,394.0	6,321.8	28.9	26.6	-178.01	-354.2	791.6	237.8	190.7	47.09	5.049		
6,500.0	6,379.5	6,493.9	6,420.3	29.4	27.0	-178.15	-361.6	806.7	242.7	194.8	47.85	5.071		
6,520.9	6,399.9	6,514.8	6,440.9	29.5	27.1	-178.18	-363.1	809.8	243.7	195.7	48.01	5.076		
6,600.0	6,477.3	6,593.8	6,518.8	29.9	27.5	-178.28	-369.0	821.8	246.5	197.9	48.61	5.071		
6,700.0	6,575.8	6,693.8	6,617.4	30.3	27.9	-178.38	-376.4	836.9	246.9	197.5	49.37	5.001		
6,800.0	6,674.9	6,793.8	6,715.9	30.7	28.4	-178.46	-383.8	852.0	243.8	193.7	50.12	4.866		
6,900.0	6,774.3	6,893.6	6,814.2	31.1	28.8	-178.51	-391.1	867.0	237.3	186.4	50.85	4.666		
7,000.0	6,874.1	6,993.0	6,912.3	31.5	29.3	-178.55	-398.5	882.1	227.2	175.7	51.58	4.406		
7,100.0	6,974.0	7,092.1	7,010.0	31.8	29.7	-178.56	-405.8	897.0	213.7	161.4	52.29	4.087		
7,146.0	7,020.0	7,137.5	7,054.7	31.9	29.9	-63.91	-409.2	903.9	206.4	153.8	52.61	3.923		
7,208.5	7,082.5	7,199.1	7,115.4	32.1	30.2	-63.91	-413.7	913.2	195.9	142.8	53.04	3.693		
7,225.0	7,099.0	7,215.4	7,131.6	32.1	30.3	-153.87	-414.9	915.6	193.3	140.2	53.15	3.637		
7,250.0	7,124.0	7,240.3	7,156.0	32.2	30.4	-154.22	-416.8	919.4	190.5	137.2	53.33	3.572		
7,275.0	7,148.8	7,265.2	7,180.6	32.3	30.5	-154.69	-418.6	923.1	188.8	135.3	53.52	3.528		
7,297.4	7,170.9	7,287.5	7,202.6	32.4	30.6	-155.20	-420.3	926.5	188.3	134.6	53.69	3.508		
7,300.0	7,173.5	7,290.1	7,205.1	32.4	30.6	-155.27	-420.5	926.9	188.3	134.6	53.71	3.506		
7,325.0	7,197.9	7,315.0	7,229.7	32.5	30.7	-155.95	-422.3	930.7	189.1	135.2	53.91	3.507		
7,350.0	7,222.0	7,339.7	7,254.1	32.7	30.8	-156.72	-424.1	934.4	191.0	136.9	54.12	3.530		
7,375.0	7,245.7	7,364.3	7,278.3	32.8	30.9	-157.56	-425.9	938.1	194.3	139.9	54.33	3.575		
7,400.0	7,269.0	7,388.6	7,302.2	33.0	31.0	-158.45	-427.7	941.8	198.7	144.2	54.55	3.643		
7,425.0	7,291.7	7,412.6	7,325.9	33.1	31.1	-159.37	-429.5	945.4	204.5	149.7	54.78	3.732		
7,450.0	7,313.9	7,436.2	7,349.2	33.3	31.3	-160.29	-431.3	949.0	211.5	156.5	55.02	3.843		
7,475.0	7,335.4	7,459.3	7,372.0	33.5	31.4	-161.20	-433.0	952.5	219.8	164.5	55.27	3.976		
7,500.0	7,356.3	7,482.0	7,394.3	33.7	31.5	-162.07	-434.6	955.9	229.3	173.8	55.52	4.130		
7,525.0	7,376.4	7,504.0	7,416.0	33.9	31.6	-162.90	-436.3	959.2	240.1	184.3	55.77	4.305		
7,550.0	7,395.7	7,525.4	7,437.1	34.1	31.7	-163.67	-437.9	962.4	252.0	196.0	56.01	4.499		
7,575.0	7,414.1	7,546.1	7,457.5	34.3	31.7	-164.37	-439.4	965.6	265.2	208.9	56.26	4.713		
7,600.0	7,431.6	7,566.1	7,477.2	34.6	31.8	-164.99	-440.9	968.6	279.5	223.0	56.50	4.946		
7,625.0	7,448.2	7,585.3	7,496.1	34.8	31.9	-165.54	-442.3	971.5	294.9	238.1	56.73	5.197		
7,650.0	7,463.7	7,603.5	7,514.1	35.1	32.0	-165.99	-443.6	974.2	311.3	254.3	56.96	5.465		
7,675.0	7,478.3	7,620.9	7,531.3	35.4	32.1	-166.35	-444.9	976.9	328.7	271.5	57.17	5.750		
7,700.0	7,491.7	7,637.4	7,547.5	35.7	32.2	-166.60	-446.1	979.3	347.1	289.7	57.37	6.050		
7,725.0	7,504.0	7,652.8	7,562.7	36.0	32.2	-166.75	-447.3	981.7	366.4	308.8	57.56	6.365		
7,750.0	7,515.2	7,667.1	7,576.8	36.3	32.3	-166.78	-448.3	983.8	386.4	328.7	57.74	6.693		
7,775.0	7,525.2	7,680.4	7,589.9	36.6	32.3	-166.66	-449.3	985.8	407.3	349.4	57.90	7.035		
7,800.0	7,533.9	7,692.6	7,601.9	36.9	32.4	-166.38	-450.2	987.7	428.8	370.8	58.05	7.388		
7,825.0	7,541.4	7,703.6	7,612.8	37.2	32.4	-165.88	-451.0	989.3	451.0	392.9	58.18	7.753		
7,850.0	7,547.7	7,713.4	7,622.4	37.6	32.5	-165.11	-451.8	990.8	473.8	415.5	58.30	8.128		

1/17/2025 10:08:13AM

Page 11

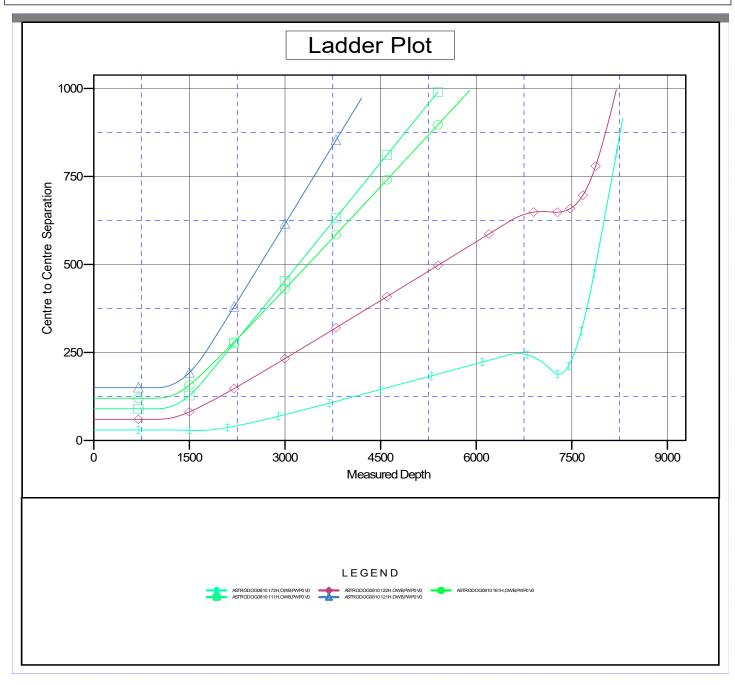
0.0 usft

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Project:	(SP) EDDY	TVD Reference:	KB @ 3014.0usft
Reference Site:	ASTRODOG	MD Reference:	KB @ 3014.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ASTRODOG - ASTRODOG 0810 172H - OWB - PWP0

													Oliset Site Ellor.	0.0 นอก
Survey Prog Refe Measured Depth	ram: 0- erence Vertical Depth	MWD Off Measured Depth	set Vertical Depth	Semi M Reference	Major Axis Offset	Highside Toolface	Offset Wellbo +N/-S	ore Centre +E/-W	Dist Between Centres	Rule Assi ance Between Ellipses	gned: Minimum Separation	Separation Factor	Offset Well Error: Warning	0.0 usft
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
7,875.0	7,552.7	7,722.0	7,630.9	37.9	32.5	-163.95	-452.4	992.1	497.1	438.7	58.40	8.512		
7,900.0	7,556.4	7,729.4	7,638.2	38.3	32.6	-162.24	-452.9	993.2	520.8	462.3	58.49	8.904		
7,925.0	7,558.8	7,735.5	7,644.2	38.6	32.6	-159.63	-453.4	994.2	544.9	486.4	58.57	9.304		
7,950.0	7,559.9	7,740.4	7,649.0	39.0	32.6	-155.45	-453.7	994.9	569.4	510.7	58.63	9.710		
7,958.5	7,560.0	7,741.7	7,650.3	39.1	32.6	-153.46	-453.8	995.1	577.7	519.0	58.65	9.849		
8,000.0	7,560.0	7,748.0	7,656.5	39.7	32.6	-155.17	-454.3	996.0	618.6	559.8	58.74	10.532		
		/				150.05	455.4			050.0	50.00	10.171		
8,100.0	7,560.0	7,763.1	7,671.4	41.2	32.7	-158.65	-455.4	998.3	717.1	658.2	58.92	12.171		
8,200.0	7,560.0	7,778.1	7,686.2	42.8	32.8	-161.43	-456.5	1,000.6	815.8	756.7	59.09	13.806		
8,300.0	7,560.0	7,793.2	7,701.1	44.4	32.9	-163.69	-457.7	1,002.9	914.4	855.2	59.25	15.434		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation



Page 23 of 85

NEW MEXICO Well ASTRODOG 0810 112H Company: Local Co-ordinate Reference: KB @ 3014.0usft Project: (SP) EDDY **TVD Reference:** MD Reference: ASTRODOG KB @ 3014.0usft **Reference Site:** Site Error: 0.0 usft North Reference: Grid ASTRODOG 0810 112H Minimum Curvature **Reference Well:** Survey Calculation Method: Well Error: 0.0 usft Output errors are at 2.00 sigma **Reference Wellbore** OWB Database: Compass_17 PWP0 Offset TVD Reference: Offset Datum Reference Design:

Anticollision Report

Reference Depths are relative to KB @ 3014.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: ASTRODOG 0810 112H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.17°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Company:

Reference Site: Site Error:

Reference Well:

Reference Wellbore

Reference Design:

Well Error:

Project:

Anticollision	Report	

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well ASTRODOG 0810 112H KB @ 3014.0usft KB @ 3014.0usft Grid Minimum Curvature 2.00 sigma Compass_17 Offset Datum

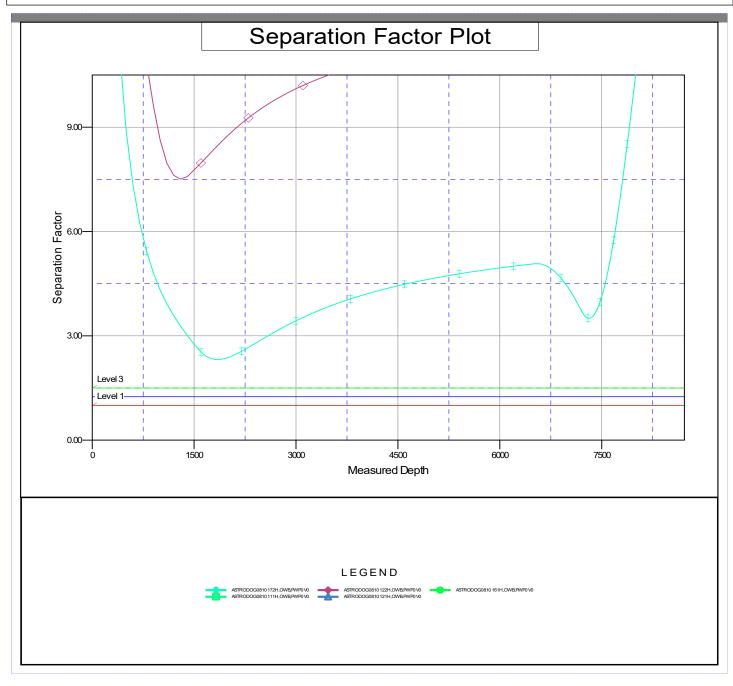
Reference Depths are relative to KB @ 3014.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

NEW MEXICO

(SP) EDDY

0.0 usft

0.0 usft


OWB

PWP0

ASTRODOG

ASTRODOG 0810 112H

Coordinates are relative to: ASTRODOG 0810 112H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.17°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

1/17/2025 10:08:13AM

Page 14

NEW MEXICO

(SP) EDDY ASTRODOG ASTRODOG 0810 112H

OWB

Plan: PWP0

Standard Planning Report - Geographic

17 January, 2025

Planning Report - Geographic

RESOL	IRCE	: 5								
Database: Company: Project: Site: Well: Wellbore: Design:	NEW (SP) E ASTR	ODOG ODOG 0810 11	2H		TVD Refer MD Refer North Ref	ence:		Well ASTRODO KB @ 3014.0us KB @ 3014.0us Grid Minimum Curva	sft sft	
Project	(SP) EI	DDY								
Map System: Geo Datum: Map Zone:	North An	e Plane 1983 nerican Datum 1 xico Eastern Zo			System Da	tum:	١	lean Sea Level		
Site	ASTRO	DOG								
Site Position: From: Position Uncertaint	Мар у :	0.0 u	North Eastin Isft Slot F	-	638,	178.09 usft 403.69 usft 3-3/16 "	Latitude: Longitude:			32° 19' 10.887 N 104° 1' 8.796 W
Well	ASTRO	DOG 0810 112	Н							
Well Position Position Uncertaint Grid Convergence:	+N/-S +E/-W y	0.	0 usft Ea 0 usft W	orthing: asting: ′ellhead Elevat	lion:	481,052.34 641,168.28	3 usft Lo	atitude: ongitude: round Level:		32° 19' 19.457 N 104° 0' 36.548 W 2,984.0 usf
Wellbore	OWB									
Magnetics	Ма	del Name	Samp	le Date	Declina (°)		Dip	Angle (°)		Strength ıT)
		IGRF200510		12/31/2009		7.96		60.25	48,8	06.52497178
Design	PWP0									
Audit Notes: Version:			Phas	e: f	PROTOTYPE	Ti	e On Depth:		0.0	
Vertical Section:		D	epth From (T	VD)	+N/-S		E/-W	Dir	rection	
			(usft) 0.0		(usft) 0.0		usft) 0.0	ç	(°) 92.29	
Plan Survey Tool P Depth From	rogram Deptl	n To	1/17/2025							
(usft)	(us		(Wellbore)		Tool Name		Remarks			
1 0.) 17	,880.0 PWP0 (0	OWB)		MWD OWSG_Rev2	_ MWD - Star	nda			
Plan Sections										
Measured Depth Inc (usft)	lination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00			0.00	
1,000.0 1,625.0	0.00	0.00 114 65	1,000.0 1,620.1	0.0	0.0 61.7	0.00			0.00	
1,625.0 6,520.9	12.50 12.50	114.65 114.65	1,620.1 6,399.9	-28.3 -470.3	61.7 1,024.8	2.00 0.00			114.65 0.00	
7,146.0	0.00	0.00	7,020.0	-498.6	1,086.6	2.00			180.00	
7,208.5	0.00	0.00	7,082.5	-498.6	1,086.6	0.00	0.0	0.00	0.00	
7,958.5 17,880.0	90.00 90.00	89.78 89.78	7,560.0 7,560.0	-496.8 -458.8	1,564.0 11,485.5	12.00 0.00			89.78 0.00	LTP/BHL A0810 112H
,500.0		56.75	.,	100.0	,100.0	0.00	5.0	- 0.00	0.00	

1/17/2025 10:07:59AM

Planning Report - Geographic

Database:	Compass_17	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Company:	NEW MEXICO	TVD Reference:	KB @ 3014.0usft
Project:	(SP) EDDY	MD Reference:	KB @ 3014.0usft
Site:	ASTRODOG	North Reference:	Grid
Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

0.0 0.00 0.00 1.00 0.00 441.052.34 641.188.28 32" 17 19.457 N 1.04" 07 8.548 W 0.00 0.00 0.00 0.00 0.00 441.052.34 641.188.28 32" 17 19.457 N 1.04" 07 8.548 W 0.00 0.00 0.00 441.052.34 641.188.28 32" 10" 19.457 N 1.04" 07 8.548 W 0.00 0.00 440.052.34 641.188.28 32" 10" 19.457 N 1.04" 07 8.548 W 0.00 0.00 0.00 440.052.34 641.188.28 32" 10" 19.457 N 1.04" 07 85.48 W 0.00 0.00 0.00 0.00 0.00 441.052.34 641.188.28 32" 19" 19.457 N 1.04" 07 85.48 W 0.00 0.00 0.00 0.00 0.00 0.00 441.052.34 641.188.28 32" 19" 19.457 N 1.04" 07 85.48 W 0.000 0.00 0.00 0.00 0.00 0.00 641.052.34 641.188.28 32" 19" 19.457 N 1.04" 07 85.48 W 0.000 0.00 0.00 0.00 0.00	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
100.0 0.00 0.00 200 0.00 441,052,34 641,168,28 27 '91 '94,457 N 104' 07 36,548 W 300.0 0.00 0.00 300.0 0.00 441,052,34 641,168,28 32' '91 '94,457 N 104' 07 36,548 W 500.0 0.00 400.0 0.00 441,052,34 641,168,28 32' '91 '94,457 N 104' 07 36,548 W 600.0 0.00 600.0 0.00 441,052,34 641,168,28 32' '91 '94,457 N 104' 07 36,548 W 600.0 0.00 600.0 0.00 441,052,34 641,168,28 32' '91 '94,457 N 104' 07 36,548 W 600.0 0.00 0.00 0.00 441,052,34 641,168,28 32' '19' 194,457 N 104' 07 36,528 W 1,000.0 0.00 0.00 0.00 0.00 441,052,34 641,168,28 32' '19' 194,457 N 104' 07 36,528 W 1,000.0 0.00 0.00 0.00 0.00 0.00 441,052,34 641,168,28 32' '19' 194,57 N 104' 07 36,528 W 1,000.0 1.000										-
200.0 0.00 0.00 421.05.34 641.165.23 221.191.94.57 N 104.47 07.85.48 W 300.0 0.00 400.0 0.00 441.05.23 H 641.165.23 221.191.94.57 N 104.47 07.85.48 W 600.0 0.00 0.00 650.0 0.00 441.05.23 H 641.165.23 221.191.94.57 N 104.47 07.85.48 W 700.0 0.00 0.00 650.0 0.00 441.05.23 H 641.165.23 221.191.94.57 N 104.47 07.85.48 W 800.0 0.00 0.00 0.00 0.00 441.05.23 H 641.165.23 221.191.94.57 N 104.47 07.85.48 W 900.0 0.00 0.00 0.00 441.05.23 H 641.165.23 321.191.94.57 N 104.47 07.85.54 W 1.000.0 0.00 0.00 0.00 441.05.23 H 641.165.23 321.191.94.57 N 104.47 07.85.54 W 1.000.0 0.00 0.00 0.00 441.05.23 H 641.165.23 321.191.94.57 N 104.47 07.85.54 W 1.000.0 1.000.0 1.000.0 0.00 441.052.34 <td></td>										
300.0 0.00 0.00 441 052.34 641 1662.8 32' 19' 19.45' N 104' 0' 35.648 W 500.0 0.00 0.00 500.0 0.00 441 052.34 641 1662.8 32' 19' 19.45' N 104' 0' 35.648 W 600.0 0.00 0.00 600.0 0.00 441 052.34 641 1662.8 32' 19' 19.45' N 104' 0' 35.648 W 700.0 0.00 0.00 441 052.34 641 1662.8 32' 19' 19.45' N 104' 0' 35.648 W 900.0 0.00 0.00 441 052.34 641 1662.8 32' 19' 19.45' N 104' 0' 35.648 W 1.000.0 0.00 0.00 441 052.34 641 166.87 32' 19' 19.45' N 104' 0' 35.648 W 1.000.0 0.00 114.65 1.100.0 -0.7 16 441 052.34 641 166.87 32' 19' 19.45' N 104' 0' 35.648 W 1.200.0 114.65 1.308.7 -116 25.3 441 00.425 32' 19' 19.45' N 104' 0' 35.65' W 1.200.0 114.65 1.308.7 -116 25.3 441 00.425 32' 19' 19.										
400.0 0.00 400.0 0.00 441 (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.648 W 600.0 0.00 0.00 641, (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.648 W 700.0 0.00 0.00 0.00 441, (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.648 W 800.0 0.00 0.00 0.00 441, (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.548 W 900.0 0.00 0.00 0.00 441, (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.548 W 900.0 0.00 0.00 0.00 441, (56.23) 641, (56.28) 32' 19' 19.457 N 104' 0' 35.548 W 900.0 0.00 0.00 0.00 441, (56.23) 641, (56.23) 52' 19' 19.457 N 104' 0' 35.548 W 900.0 0.00 0.00 1.00.0 1.00.0 1.00' 10.0' 11.465 1.00' 10.0' 11.465 1.00' 10.0' 11.465 1.00' 10.0' 11.465 1.00' 10.0' 11.465 1.00' 10.0' 11.46' 10.0' 10.0' 11.46' 10.0' 10.0' 10.0' 11.46' 10.0' 10.0' 10.0' 11.46' 10.0' 10.0										
500.0 0.00 0.00 491 052.34 641 168.28 32' 19' 19.457 N 104' 0' 36.548 W 700.0 0.00 0.00 700.0 0.00 431 052.34 641 168.28 32' 19' 19.457 N 104' 0' 36.548 W 800.0 0.00 0.00 900.0 0.00 431 052.34 641 168.28 32' 19' 19.457 N 104' 0' 36.548 W 900.0 0.00 900.0 0.00 431 052.34 641 168.28 32' 19' 19.457 N 104' 0' 36.548 W 1.000.0 0.00 0.00 431 052.34 641 168.28 32' 19' 19.457 N 104' 0' 36.548 W 1.100.0 0.01 14.65 1.100.8 -2.9 6.3 431 051.61 641 168.5 32' 19' 19.457 N 104' 0' 36.52W 1.200.0 14.65 1.388.7 -116 25.3 431 044 0' 164 1182.55 32' 19' 19.32 N 104' 0' 36.52W 1.400.0 8.00 11.465 1.398.7 -116 25.3 431 042 10' 641 1205.61 32' 19' 19.32 N 104' 0' 36.52W 1.400.0 10.00 11.465 1.										
600.0 0.00 0.00 441,052.34 641,168.28 32*19*19457N 104*0*936.548 900.0 0.00 0.00 800.0 0.00 411,052.34 641,168.28 32*19*194.57N 104*0*936.548 900.0 0.00 0.00 0.00 411,052.34 641,168.28 32*19*194.57N 104*0*936.548 900.0 0.00 0.00 411,052.34 641,168.28 32*19*194.57N 104*0*936.548 900.0 0.00 0.00 411,052.34 641,168.28 32*19*194.57N 104*0*936.548 1,000.0 4.00 114.65 1,100.0 -0.7 1.6 481,051.61 641,168.27 32*19*194.54N 100*0*36.52W 1,000.0 4.00 114.65 1,398.7 -11.6 26.3 481,045.80 641,128.25 32*19*193.2N 100*0*36.52W 1,500.0 110.00 114.65 1,497.5 -18.2 36.6 481,027.60 441.225.16 32*19*19.107N 100*0*36.58W 1,500.0 12.50 114.65 1,56.3 481,026.20<										
700.0 0.00 0.00 481,052.34 641,182,83 32' 19' 19.457 N 104'' 07 36.58 W 900.0 0.00 0.00 900.0 0.00 900.0 0.00 481,052.34 641,182,83 32'' 19' 19.457 N 104'' 07 36.58 W Start Build 2:00 1.000 0.00 0.00 0.00 481,052.34 641,182,83 32'' 19' 19.457 N 104'' 07 36.58 W Start Build 2:00 4.00 114,65 1.100.0 0.7 1.6 481,051.64 641,174,63 32'' 19' 19.457 N 104'' 07 36.54 W 1.200.0 4.00 114,65 1.298.5 2.5 6.3 481,051.64 641,174,63 32'' 19' 19.57 N 104'' 07 36.54 W 1.300.0 1.00 114,85 1.497.5 1.82.2 38.6 481,024.10 641,174.63 32'' 19' 19.57 N 104'' 07 36.58 W Start 498.5 Poild at 1625.2 MO MO 2.30.6 481,024.20 641,224.18 32'' 19' 19.19 N 104'' 07 36.58 W Start 498.5 Poild at 1625.2 MO 2.30.6 143,65 2.6.1										
800.0 0.00 0.00 400.0 401.052.34 641.168.28 32*19*19457 N 104*0*36.548 W 1.000.0 0.00 0.00 0.00 0.00 481.052.34 641.168.28 32*19*194.57 N 104*0*36.548 W 1.000.0 2.00 11.465 1.100.0 -0.7 1.6 481.051.61 641.168.28 32*19*194.57 N 104*0*36.529 W 1.200.0 4.00 11.465 1.199.8 -2.9 6.3 481.0464.3 641.162.55 32*19*194.328 N 104*0*36.529 W 1.300.0 0.00 11.465 1.399.7 -11.6 22.3 481.044.16 641.162.55 32*19*194.328 N 104*0*0*36.328 W 1.400.0 8.00 11.465 1.399.7 -11.6 22.3 481.034.169 641.225 N 32*19*194.37 N 104*0*0*36.82 W 1.600.0 12.00 11.465 1.596.6 -26.1 65.9 481.032.10 32*19*191.7 N 104*0*0*36.82 W 1.600.0 12.80 11.466 1.596.3 -35.1 76.5 481.072.01 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
1.000 0.00 0.00 0.00 481,052.34 641,168.28 32* 19* 19.457 N 104* 0* 36.58 W Start 488 0.00 1.000.0 2.00 114.65 1.199.8 -2.9 6.3 481,049.43 641,174.63 32* 19* 19.425 N 104* 0* 36.52 W 1.200.0 6.00 114.65 1.299.5 -6.5 14.3 481,049.43 641,174.65 32* 19* 19.32 N 104* 0* 36.82 W 1.400.0 8.00 114.65 1.299.5 -6.5 14.3 481,040.71 641,193.62 32* 19* 19.32 N 104* 0* 36.82 W 1.600.0 12.00 114.65 1.692.0 -28.3 61.7 481,024.23 641,225.18 32* 19* 19.19* N 104* 0* 36.82 W 1.000.0 12.50 114.65 1.690.3 -35.1 76.5 481,017.25 641,244.76 32* 19* 19.07 N 104* 0* 35.65 W 1.000.0 12.50 114.65 1.693.3 -35.1 76.5 481,017.25 641,244.70 32* 19* 18.85 N 104* 0* 35.65 W 1.000.0 12.50 11				800.0			481,052.34		32° 19' 19.457 N	
Start Build 2:00 114.65 1,100.0 -0.7 1.6 441,051.61 641,169.87 22*19*19.450 N 104*0*36.529 W 1,200.0 4.00 114.65 1,299.5 -6.5 14.3 481,049.43 641,174.63 32*19*19.328 N 104*0*36.529 W 1,300.0 6.00 114.65 1,299.5 -6.5 14.3 481,049.43 641,174.63 32*19*19.328 N 104*0*36.828 W 1,500.0 10.00 114.65 1,695.6 -2.6.1 56.9 481,024.02 641,225.1 32*19*19.377 N 104*0*36.865 W 1,625.0 114.65 1,620.1 -2.8.3 61.7 481,024.02 641,225.18 32*19*19.107 N 104*0*36.865 W 1,700.0 12.50 114.65 1,683.3 -35.1 76.5 481,072.25 641,224.17 32*19*19.107 N 104*0*36.428 W 1,900.0 12.50 114.65 1,986.2 -62.1 155.9 480,990.16 641,303.77 32*19*19.107 N 104*0*36.428 W 2,000.0 12.50 114.65 1,986.2	900.0	0.00	0.00	900.0	0.0	0.0	481,052.34	641,168.28	32° 19' 19.457 N	104° 0' 36.548 W
1,100.0 2.00 114.65 1,100.0 -0.7 1.6 481,043.3 641,176.87 32'19'19.450 N 104'0'0'36.279 M 1,200.0 6.00 114.65 1,299.5 -6.5 14.3 481,046.80 641,176.25 32'19'19.392.N 104'0'0'36.274 M 1,500.0 10.00 114.65 1,398.7 -11.6 25.3 481,046.30 641,182.25 32'19'19.327 N 104'0'0'36.287 M 1,600.0 12.00 114.65 1,599.6 -26.1 56.9 481,026.23 641,228.18 32'19'19.107 N 104'0'0'35.688 W 1,600.0 12.00 114.65 1,599.6 -26.1 76.5 481,077.25 641,228.10 32'19'19.107 N 104'0'0'35.689 W 1,600.0 12.00 114.65 1,593.3 -35.1 76.5 481,017.25 641,284.43 32'19'19.107 N 104'0'0'35.698 W 1,800.0 12.50 114.65 1,588.5 -53.1 115.8 480,999.16 641,284.43 32'19'18.688 N 104'0'0'35.269 W 2,000.0 12.50 <td< td=""><td>1,000.0</td><td>0.00</td><td>0.00</td><td>1,000.0</td><td>0.0</td><td>0.0</td><td>481,052.34</td><td>641,168.28</td><td>32° 19' 19.457 N</td><td>104° 0' 36.548 W</td></td<>	1,000.0	0.00	0.00	1,000.0	0.0	0.0	481,052.34	641,168.28	32° 19' 19.457 N	104° 0' 36.548 W
1,200.0 4.00 114.65 1,998.8 -2.9 6.3 481,049.43 641,174.63 32' 19' 19.428 N 104'' 0' 36.247 W 1,400.0 8.00 114.65 1.398.7 -16.6 25.3 481,045.80 641,185.62 32' 19' 19.341 N 104'' 0' 36.253 W 1,500.0 10.00 114.65 1.497.5 -18.2 39.6 481,026.23 641,227.18 32'' 19' 19.276 N 104'' 0' 36.282 W 1,625.0 114.65 1.620.1 -28.3 61.7 481,024.02 641,224.16 32'' 19' 19.107 N 104'' 0' 36.282 W 1,700.0 12.50 114.65 1.620.1 -28.3 61.7 481,024.02 641,224.43 32'' 19' 19.107 N 104'' 0' 36.282 W 1,700.0 12.50 114.65 1.688.5 -53.1 115.8 480,999.16 641,323.44 32'' 19' 19.28 N 104'' 0' 36.292 W 2,000.0 12.50 114.65 2.083.8 -71.2 155.2 480,990.16 641,323.44 32'' 19' 18.28 N 104'' 0' 34.292 W 2,000.0 12.50	Start Bui	ild 2.00								
1,300.0 6.00 114,65 1,299.5 -6.5 14.3 481,045.80 641,182.55 32' 19' 19.392 N 104' 0' 38.382 W 1,500.0 10.00 114,65 1,497.5 -116 25.3 481,040 71 641,192.55 32'' 19' 19.341 N 104'' 0' 38.382 W 1,600.0 12.00 114,65 1,595.6 -26.1 56.9 481,020.2 641,225.18 32'' 19' 19.107 N 104'' 0' 38.584 W 1,600.0 12.50 114,65 1,693.3 -35.1 75.5 481,000.2 641,244.76 32'' 19' 19.107 N 104'' 0' 35.684 W 1,800.0 12.50 114,65 1,790.9 -44.1 96.1 481,008.22 641,284.41 32'' 19' 19.107 N 104'' 0' 35.684 W 1,800.0 12.50 114,65 1,986.2 -62.2 135.5 480,991.16 641,284.76 32'' 19' 19.107 N 104'' 0' 34.542 W 2,000.0 12.50 114,65 2,983.8 -71.2 155.2 480,991.16 641,303.77 32'' 19' 18.838 104''' 0' 34.574 W 2,000.0 12.50	1,100.0	2.00	114.65	1,100.0			481,051.61	641,169.87	32° 19' 19.450 N	104° 0' 36.529 W
1,000 8.00 114.65 1,398.7 -11.6 25.3 481,040.71 641,103.24 32* 19* 19.276 10.4* 0* 36.253 1,500.0 12.00 114.65 1,595.6 -26.1 55.9 481,026.23 641,225.18 32* 19* 19.276 10.4* 0* 36.858 W 1,525.0 12.50 114.65 1,595.6 -26.1 55.9 481,026.42 641,225.18 32* 19* 19.175 N 10.4* 0* 35.858 W 1,700.0 12.50 114.65 1,683.3 -35.1 76.5 481,004.22 641,244.76 32* 19* 19.107 N 10.4* 0* 35.429 W 1,900.0 12.50 114.65 1,886.2 -62.1 135.5 480,999.19 641,234.40 32* 19* 18.288 N 10.4* 0* 34.671 W 2,000.0 12.50 114.65 1,986.2 -62.2 135.5 480,999.19 641,323.4# 32* 19* 18.288 N 10.4* 0* 34.671 W 2,000.0 12.50 114.65 2,181.4 -60.2 174.8 480,972.1* 641,343.42 32* 19* 18.268 N 10.4* 0* 34.72 W 2,000.0 12.50 114.65 2,474.3 -107.3 23.8 480,984.03 641										
1,500.0 11.00 11.465 1.497.5 -18.2 38.6 481.034.19 641.207.24 32° 19' 19.276 N 104' 0' 38.85 W 1,525.0 12.50 114.65 1.595.6 -28.3 61.7 481.024.02 641.230.01 32° 19' 19.175 N 104' 0' 35.885 W 1,700.0 12.50 114.65 1.693.3 -35.1 76.5 481.017.25 641.244.76 32° 19' 19.107 N 104' 0' 35.628 W 1,800.0 12.50 114.65 1.790.9 -44.1 96.1 481.017.25 641.244.76 32° 19' 19.107 N 104' 0' 35.200 W 2,000.0 12.50 114.65 1.986.2 -62.2 135.5 480.999.16 641.324.10 32° 19' 18.388 N 104' 0' 34.520 W 2,000.0 12.50 114.65 2.083.8 -71.2 155.2 480.998.114 641.303.77 32' 19' 18.788 N 104' 0' 34.72 W 2,000.0 12.50 114.65 2.181.4 -80.2 174.8 480.972.11 641.362.79 32' 19' 18.588 N 104' 0' 33.50'Y 2,000.0 12										
1 1										
1,625.0 12.50 114.65 1,620.1 -28.3 61.7 481,024.02 641,230.01 32° 19' 19.175 N 104° 0' 35.829 W 1,700.0 12.50 114.65 1.693.3 -35.1 76.5 481,017.25 641,244.76 32° 19' 19.107 N 104° 0' 35.628 W 1,800.0 12.50 114.65 1.709.9 -44.1 96.1 481,008.22 641,264.43 32° 19' 19.018 N 104° 0' 35.209 W 2,000.0 12.50 114.65 1.898.5 -53.1 115.8 480.999.16 641,284.10 32° 19' 18.838 N 104° 0' 34.971 W 2,000.0 12.50 114.65 2.093.8 -71.2 155.2 480.981.14 641,323.44 32° 19' 18.868 N 104° 0' 34.513 W 2,000.0 12.50 114.65 2.779.1 -99.3 194.5 480.985.05 641,322.44 32° 19' 18.868 N 104° 0' 34.651 W 2,000.0 12.50 114.65 2.767.7 -98.3 214.2 480.954.05 641,421.81 32° 19' 18.368 N 104° 0' 33.388 W 2,600.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Start 4895.9 hold at 1625.0 MD 1,700.0 12.50 114.65 1,790.3 -35.1 76.5 481,017.25 641,264.476 32° 19' 19.07 N 104° 0' 35.658 W 1,900.0 12.50 114.65 1,886.5 -53.1 115.8 480,099.19 641,264.40 32° 19' 19.07 N 104° 0' 35.629 W 2,000.0 12.50 114.65 1,886.5 -62.2 135.5 480,990.16 641,303.77 32° 19' 18.38 N 104° 0' 34.712 W 2,000.0 12.50 114.65 2,083.8 -71.2 155.2 480,981.14 641,323.41 32° 19' 18.58 N 104° 0' 34.712 W 2,000.0 12.50 114.65 2,2767.1 89.3 214.2 480,953.08 641,362.79 32' 19' 18.58 N 104° 0' 34.655 W 2,600.0 12.50 114.65 2,767.7 98.3 214.2 480,954.03 641,402.13 32' 19' 18.28 N 104° 0' 33.587 W 2,600.0 12.50 114.65 2,767.7 98.3 214.2 480,954.03 641,402.13 32' 19' 18.288 N 104' 0' 33.587										
1,700.0 12.50 114.65 1,693.3 -35.1 76.5 481,017.25 641,244.76 32° 19' 19.107 N 104° 0' 35.668 W 1,800.0 12.50 114.65 1,886.5 -53.1 115.8 480,999.19 641,284.43 32° 19' 19.018 N 104° 0' 35.429 W 2,000.0 12.50 114.65 1,886.5 -53.1 115.8 480,999.16 641,23.37,7 32° 19' 18.928 N 104° 0' 34.724 W 2,000.0 12.50 114.65 2,088.3 -71.2 155.2 480,997.16 641,33.37,7 32° 19' 18.658 N 104° 0' 34.654 W 2,200.0 12.50 114.65 2,787.7 -98.3 214.2 480,965.03 641,421.31 32° 19' 18.568 N 104° 0' 34.826 W 2,500.0 12.50 114.65 2,767.7 -98.3 214.2 480,965.03 641,421.31 32° 19' 18.208 N 104° 0' 33.826 W 2,600.0 12.50 114.65 2,676.2 -134.4 322.9 480,917.94 641,421.81 32° 19' 18.208 N 104° 0' 33.308 W 2,800.0 12.50 114.65 2,686.6 -125.4 273.2 480,909.89				1,620.1	-28.3	61.7	481,024.02	641,230.01	32° 19' 19.175 N	104° 0' 35.829 W
1,800.0 12.50 114.65 1,790.9 -44.1 96.1 480.090.22 641.284.43 32° 19° 18.018 N 104° 0° 35.200 W 1,900.0 12.50 114.65 1.886.5 -53.1 115.8 480.990.16 641.284.10 32° 19° 18.028 N 104° 0° 34.720 W 2,000.0 12.50 114.65 2.983.8 -71.2 155.2 480.990.16 641.303.77 32° 19° 18.788 N 104° 0° 34.724 W 2,200.0 12.50 114.65 2.2176.1 -89.3 194.5 480.963.08 641.322.79 32° 19° 18.678 N 104° 0° 34.284 W 2,400.0 12.50 114.65 2.376.7 -98.3 194.5 480.963.08 641.322.79 32° 19° 18.788 N 104° 0° 33.826 W 2,600.0 12.50 114.65 2.676.2 -134.4 292.9 480.917.9 641.441.48 32° 19° 18.288 N 104° 0° 33.368 W 2,700.0 12.50 114.65 2.669.6 -152.4 273.2 480.926.07 641.441.48 32° 19° 18.288 N 104° 0° 32.861 W 3.300 W 2.900.0				1 000 0	05.4	70 5	101 017 05	044 044 70	00° 401 40 407 N	40.48 01.05 050 144
1,900.0 12,50 114,65 1,986.2 -63.1 115.8 460,999.19 641,284.10 32° 19° 18,928 N 104° 0° 34,971 W 2,000.0 12,50 114,65 2,083.8 -71.2 155.5 480,990.16 641,303.77 32° 19° 18,928 N 104° 0° 34,971 W 2,200.0 12,50 114,65 2,083.8 -71.2 155.2 480,981.16 641,323.44 32° 19° 18,628 N 104° 0° 34,571 W 2,300.0 12,50 114,65 2,279.1 -89.3 194.5 480,954.05 641,343.12 32° 19° 18,568 N 104° 0° 34,284 W 2,400.0 12,50 114,65 2,376.7 -98.3 214.2 480,954.05 641,362.46 32° 19° 18,368 N 104° 0° 33,597 W 2,500.0 12,50 114.65 2,767.2 -134.4 292.9 480,917.94 641,402.13 32° 19° 18,128 N 104° 0° 33,3597 W 2,600.0 12,50 114,65 2,767.2 -134.4 292.9 480,917.94 641,402.13 32° 19° 17.898 N 104° 0° 32,451 W 3,000.0 12,50										
2,000.0 12.50 114.65 1,986.2 -62.2 135.5 480,990.16 641,303.77 32" 19" 18.38 N 104" 0" 34.971 W 2,100.0 12.50 114.65 2,083.8 -71.2 155.2 480,991.16 641,323.44 32" 19" 18.78 N 104" 0" 34.713 W 2,200.0 12.50 114.65 2,279.1 -89.3 194.5 480,963.08 641,362.79 32" 19" 18.568 N 104" 0" 34.254 W 2,400.0 12.50 114.65 2,376.7 -98.3 214.2 480,964.05 641,362.46 32" 19" 18.368 N 104" 0" 33.650 W 2,600.0 12.50 114.65 2,571.9 -116.3 255.5 480,946.03 641,402.13 32" 19" 18.208 N 104" 0" 33.368 W 2,600.0 12.50 114.65 2,676.2 -134.4 292.9 480,917.94 641,461.15 32" 19" 18.208 N 104" 0" 33.368 W 2,600.0 12.50 114.65 2,962.5 -152.5 332.2 480,890.86 641,50.49 32" 19" 17.59 N 104" 0" 32.452 W 3,000.0 <										
2,100.0 12.50 114.65 2,083.8 -71.2 155.2 480,981.14 641,323.44 32° 19' 18.748 N 104° 0' 34.742 W 2,200.0 12.50 114.65 2,279.1 -89.3 194.5 480,952.05 641,362.79 32° 19' 18.568 N 104° 0' 34.284 W 2,400.0 12.50 114.65 2,279.1 -89.3 194.5 480,954.05 641,362.79 32° 19' 18.568 N 104° 0' 34.284 W 2,600.0 12.50 114.65 2,474.3 -107.3 233.8 480,954.05 641,402.13 32° 19' 18.298 N 104° 0' 33.368 W 2,600.0 12.50 114.65 2,669.6 -125.4 273.2 480,926.97 641,461.15 32° 19' 18.208 N 104° 0' 33.369 W 2,800.0 12.50 114.65 2,669.6 -125.4 232.2 480,919.94 641,461.8 32° 19' 18.288 N 104° 0' 33.369 W 2,800.0 12.50 114.65 2,962.5 -152.5 332.2 480,898.98 641,50.49 32° 19' 17.75 N 104° 0' 32.261 W 3,000.1 12.50										
2,200.0 12.50 114.65 2,181.4 -80.2 174.8 480.972.11 641,343.12 32" 19" 18.658 N 104" 0" 34.513 W 2,300.0 12.50 114.65 2,279.1 -89.3 194.5 480.963.08 641,362.79 32" 19" 18.568 N 104" 0" 34.513 W 2,400.0 12.50 114.65 2,474.3 -107.3 233.8 480.945.03 641,402.13 32" 19" 18.298 N 104" 0" 33.862 W 2,600.0 12.50 114.65 2,677.2 -134.4 292.9 480.936.00 641,421.81 32" 19" 18.298 N 104" 0" 33.368 W 2,800.0 12.50 114.65 2,666. -125.4 273.2 480.926.97 641,441.48 32" 19" 18.298 N 104" 0" 33.368 W 2,800.0 12.50 114.65 2,666.5 -152.5 332.2 480.898.8 641,500.49 32" 19" 17.89 N 104" 0" 32.681 W 3,000.0 12.50 114.65 3,65.3 -177.5 371.6 480.893.8 641,500.49 32" 19" 17.59 N 104" 0" 32.252 W 3,000.0 <								,		
2,300.0 12.50 114.65 2,279.1 -89.3 194.5 480,963.08 641,362.79 32° 19' 18.668 N 104' 0' 34.264 W 2,400.0 12.50 114.65 2,376.7 -98.3 214.2 480,954.05 641,362.79 32° 19' 18.478 N 104' 0' 34.055 W 2,500.0 12.50 114.65 2,571.9 -116.3 253.5 480,936.00 641,421.81 32° 19' 18.388 N 104' 0' 33.369 W 2,600.0 12.50 114.65 2,672.2 -134.4 292.9 480,917.94 641,461.15 32° 19' 18.208 N 104' 0' 33.369 W 2,900.0 12.50 114.65 2,662.5 -152.5 332.2 480,908.92 641,480.21 32° 19' 18.028 N 104' 0' 32.61 W 3,000.0 12.50 114.65 3,060.1 -161.5 319 480,890.86 641,500.49 32° 19' 17.59 N 104' 0' 32.61 W 3,000.0 12.50 114.65 3,050.1 -161.5 319 480,891.83 641,502.17 32° 19' 17.59 N 104' 0' 32.23 W 3,000.0								,		
2,400.0 12.50 114.65 2,376.7 -98.3 214.2 480,954.05 641,382.46 32° 19' 18.478 N 104° 0' 34.055 W 2,500.0 12.50 114.65 2,474.3 -107.3 233.8 480,945.03 641,421.81 32° 19' 18.388 N 104° 0' 33.859 W 2,600.0 12.50 114.65 2,671.9 -116.3 253.5 480,936.00 641,421.81 32° 19' 18.208 N 104° 0' 33.369 W 2,700.0 12.50 114.65 2,669.6 -125.4 273.2 480,926.97 641,441.48 32° 19' 18.208 N 104° 0' 33.3189 W 2,900.0 12.50 114.65 2,864.8 -143.4 212.5 480,989.29 641,460.82 22° 19' 18.208 N 104° 0' 32.261 W 3,000.0 12.50 114.65 3,060.1 -161.5 351.9 480,890.86 641,520.17 32° 19' 17.59 N 104° 0' 32.262 W 3,200.0 12.50 114.65 3,255.3 -179.5 371.6 480,881.73 641,539.84 32° 19' 17.59 N 104° 0' 31.57 W 3,500.0										
2,500.0 12.50 114.65 2,474.3 -107.3 233.8 480,945.03 641,402.13 32° 19' 18.388 N 104° 0' 33.326 W 2,600.0 12.50 114.65 2,671.9 -116.3 253.5 480,936.00 641,421.81 32° 19' 18.298 N 104° 0' 33.597 W 2,700.0 12.50 114.65 2,767.2 -134.4 292.9 480,926.97 641,461.15 32° 19' 18.298 N 104° 0' 33.139 W 2,800.0 12.50 114.65 2,767.2 -134.4 312.5 480,908.92 641,461.15 32° 19' 17.398 N 104° 0' 32.681 W 3,000.0 12.50 114.65 3,060.1 -161.5 351.9 480,890.86 641,500.49 32° 19' 17.388 N 104° 0' 32.2681 W 3,000.0 12.50 114.65 3,057.7 -170.5 371.6 480,881.83 641,559.51 32° 19' 17.59 N 104° 0' 32.223 W 3,000.0 12.50 114.65 3,450.6 -197.6 430.64 641,579.81 32° 19' 17.59 N 104° 0' 31.537 W 3,600.0 12.50										
2,600.0 12.50 114.65 2,571.9 -116.3 253.5 480,936.00 641,421.81 32° 19' 18.298 N 104° 0' 33.3597 W 2,700.0 12.50 114.65 2,669.6 -125.4 273.2 480,926.97 641,441.48 32° 19' 18.208 N 104° 0' 33.3597 W 2,800.0 12.50 114.65 2,669.6 -125.4 273.2 480,926.97 641,440.82 32° 19' 18.18 N 104° 0' 33.1397 W 2,800.0 12.50 114.65 2,864.8 -143.4 312.5 480,908.92 641,460.82 32° 19' 17.388 N 104° 0' 32.910 W 3,000.0 12.50 114.65 2,962.5 -152.5 332.2 480,890.86 641,520.17 32° 19' 17.398 N 104° 0' 32.2452 W 3,000.0 12.50 114.65 3,157.7 -170.5 391.2 480,872.81 641,599.51 32° 19' 17.59 N 104° 0' 31.597 W 3,000.0 12.50 114.65 3,549.2 -206.6 450.2 480,854.72 641,618.53 32° 19' 17.399 N 104° 0' 31.308 W 3,600.0										
2,700.0 12.50 114.65 2,669.6 -125.4 273.2 480,926.97 641,441.48 32° 19' 18.208 N 104° 0' 33.368 W 2,800.0 12.50 114.65 2,767.2 -134.4 292.9 480,917.94 641,461.15 32° 19' 18.028 N 104° 0' 33.139 W 2,900.0 12.50 114.65 2,864.8 -143.4 312.5 480,990.89 641,461.15 32° 19' 18.028 N 104° 0' 32.210 W 3,000.0 12.50 114.65 2,962.5 -152.5 332.2 480,890.86 641,520.17 32° 19' 17.938 N 104° 0' 32.452 W 3,000.0 12.50 114.65 3,157.7 -170.5 371.6 480,881.83 641,520.17 32° 19' 17.59 N 104° 0' 32.223 W 3,400.0 12.50 114.65 3,255.3 -179.5 391.2 480,87.75 641,579.18 32° 19' 17.579 N 104° 0' 31.766 W 3,400.0 12.50 114.65 3,450.6 -197.6 430.6 480,854.75 641,579.18 32° 19' 17.399 N 104° 0' 31.078 W 3,600.0										
2,800.0 12.50 114.65 2,767.2 -134.4 292.9 480,917.94 641,461.15 32° 19' 18.118 N 104° 0' 33.139 W 2,900.0 12.50 114.65 2,864.8 -143.4 312.5 480,899.89 641,480.82 32° 19' 18.118 N 104° 0' 32.910 W 3,000.0 12.50 114.65 2,962.5 -152.5 332.2 480,899.89 641,500.49 32° 19' 17.381 N 104° 0' 32.2681 W 3,000.0 12.50 114.65 3,060.1 -161.5 351.9 480,881.83 641,520.17 32° 19' 17.384 N 104° 0' 32.223 W 3,200.0 12.50 114.65 3,255.3 -179.5 391.2 480,872.81 641,599.51 32° 19' 17.759 N 104° 0' 31.994 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,863.78 641,599.51 32° 19' 17.399 N 104° 0' 31.308 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.079 W 3,600.0										
3,000.0 12.50 114.65 2,962.5 -152.5 332.2 480,899.89 641,500.49 32° 19' 17.938 N 104° 0' 32.681 W 3,100.0 12.50 114.65 3,060.1 -161.5 351.9 480,890.86 641,520.17 32° 19' 17.849 N 104° 0' 32.2452 W 3,200.0 12.50 114.65 3,157.7 -170.5 371.6 480,881.83 641,559.51 32° 19' 17.59 N 104° 0' 32.223 W 3,400.0 12.50 114.65 3,553.0 -179.5 391.2 480,872.81 641,559.18 32° 19' 17.59 N 104° 0' 31.766 W 3,600.0 12.50 114.65 3,545.6 -197.6 430.6 480,854.75 641,598.85 32° 19' 17.399 N 104° 0' 31.308 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.308 W 3,700.0 12.50 114.65 3,641.1 -233.7 509.3 480,816.6 641,677.54 32° 19' 17.219 N 104° 0' 30.621 W 4,000.0										
3,100.0 12.50 114.65 3,060.1 -161.5 351.9 480,890.86 641,520.17 32° 19' 17.849 N 104° 0' 32.452 W 3,200.0 12.50 114.65 3,157.7 -170.5 371.6 480,881.83 641,539.84 32° 19' 17.759 N 104° 0' 32.223 W 3,300.0 12.50 114.65 3,255.3 -179.5 391.2 480,872.81 641,559.51 32° 19' 17.579 N 104° 0' 31.994 W 3,400.0 12.50 114.65 3,353.0 -188.6 410.9 480,863.78 641,579.18 32° 19' 17.579 N 104° 0' 31.766 W 3,600.0 12.50 114.65 3,545.2 -206.6 450.2 480,845.75 641,618.53 32° 19' 17.399 N 104° 0' 31.079 W 3,600.0 12.50 114.65 3,645.9 -215.6 469.9 480,827.67 641,618.53 32° 19' 17.399 N 104° 0' 30.621 W 3,900.0 12.50 114.65 3,938.8 -224.7 489.6 480,805.9 641,677.54 32° 19' 17.399 N 104° 0' 30.621 W 4,000.0	2,900.0	12.50	114.65	2,864.8	-143.4	312.5	480,908.92	641,480.82	32° 19' 18.028 N	104° 0' 32.910 W
3,200.0 12.50 114.65 3,157.7 -170.5 371.6 480,881.83 641,539.84 32° 19' 17.759 N 104° 0' 32.223 W 3,300.0 12.50 114.65 3,255.3 -179.5 391.2 480,872.81 641,559.51 32° 19' 17.59 N 104° 0' 31.994 W 3,400.0 12.50 114.65 3,353.0 -188.6 410.9 480,863.78 641,579.18 32° 19' 17.59 N 104° 0' 31.576 W 3,500.0 12.50 114.65 3,450.6 -197.6 430.6 480,854.75 641,598.85 32° 19' 17.399 N 104° 0' 31.578 W 3,600.0 12.50 114.65 3,645.9 -215.6 469.9 480,857.6 641,618.53 32° 19' 17.399 N 104° 0' 31.079 W 3,800.0 12.50 114.65 3,645.9 -215.6 469.9 480,827.67 641,618.53 32° 19' 17.399 N 104° 0' 30.621 W 3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.399 N 104° 0' 30.621 W 4,000.0 12.50 114.65 4,384.1 -233.7 509.3 480,80.59	3,000.0	12.50	114.65	2,962.5	-152.5	332.2	480,899.89	641,500.49	32° 19' 17.938 N	104° 0' 32.681 W
3,300.0 12.50 114.65 3,255.3 -179.5 391.2 480,872.81 641,559.51 32° 19' 17.669 N 104° 0' 31.994 W 3,400.0 12.50 114.65 3,353.0 -188.6 410.9 480,863.78 641,579.18 32° 19' 17.579 N 104° 0' 31.766 W 3,500.0 12.50 114.65 3,450.6 -197.6 430.6 480,854.75 641,598.85 32° 19' 17.399 N 104° 0' 31.537 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.038 W 3,700.0 12.50 114.65 3,645.9 -215.6 469.9 480,827.67 641,618.53 32° 19' 17.399 N 104° 0' 30.850 W 3,800.0 12.50 114.65 3,641.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.399 N 104° 0' 30.621 W 4,000.0 12.50 114.65 3,938.8 -242.7 528.9 480,800.59 641,767.54 32° 19' 17.399 N 104° 0' 30.392 W 4,000.0 12.50 114.65 4,320.4 -251.8 548.6 480,800.59 641,716	3,100.0	12.50	114.65	3,060.1	-161.5	351.9	480,890.86	641,520.17	32° 19' 17.849 N	104° 0' 32.452 W
3,400.0 12.50 114.65 3,353.0 -188.6 410.9 480,863.78 641,579.18 32° 19' 17.579 N 104° 0' 31.766 W 3,500.0 12.50 114.65 3,450.6 -197.6 430.6 480,854.75 641,598.85 32° 19' 17.489 N 104° 0' 31.537 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.08 W 3,700.0 12.50 114.65 3,645.9 -215.6 469.9 480,836.70 641,638.20 32° 19' 17.399 N 104° 0' 30.850 W 3,800.0 12.50 114.65 3,743.5 -224.7 489.6 480,827.67 641,677.54 32° 19' 17.219 N 104° 0' 30.850 W 3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,806.59 641,677.54 32° 19' 17.219 N 104° 0' 30.322 W 4,000.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.322 W 4,100.0 12.50 114.65 4,321.6 -269.8 568.3 480,791.56	3,200.0	12.50	114.65	3,157.7	-170.5	371.6	480,881.83	641,539.84	32° 19' 17.759 N	104° 0' 32.223 W
3,500.0 12.50 114.65 3,450.6 -197.6 430.6 480,854.75 641,598.85 32° 19' 17.489 N 104° 0' 31.537 W 3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.537 W 3,700.0 12.50 114.65 3,645.9 -215.6 469.9 480,836.70 641,638.20 32° 19' 17.309 N 104° 0' 31.079 W 3,800.0 12.50 114.65 3,743.5 -224.7 489.6 480,827.67 641,657.87 32° 19' 17.129 N 104° 0' 30.850 W 3,900.0 12.50 114.65 3,938.8 -242.7 528.9 480,809.61 641,697.21 32° 19' 17.039 N 104° 0' 30.820 W 4,000.0 12.50 114.65 4,036.4 -251.8 548.6 480,809.61 641,697.21 32° 19' 16.499 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.679 N 104° 0' 29.034 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 <td>3,300.0</td> <td>12.50</td> <td>114.65</td> <td>3,255.3</td> <td>-179.5</td> <td>391.2</td> <td>480,872.81</td> <td>641,559.51</td> <td>32° 19' 17.669 N</td> <td>104° 0' 31.994 W</td>	3,300.0	12.50	114.65	3,255.3	-179.5	391.2	480,872.81	641,559.51	32° 19' 17.669 N	104° 0' 31.994 W
3,600.0 12.50 114.65 3,548.2 -206.6 450.2 480,845.72 641,618.53 32° 19' 17.399 N 104° 0' 31.308 W 3,700.0 12.50 114.65 3,645.9 -215.6 469.9 480,836.70 641,638.20 32° 19' 17.309 N 104° 0' 31.079 W 3,800.0 12.50 114.65 3,743.5 -224.7 489.6 480,827.67 641,657.87 32° 19' 17.219 N 104° 0' 30.850 W 3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.039 N 104° 0' 30.820 W 4,000.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,756.23 32° 19' 16.679 N 104° 0' 29.476 W 4,600.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 <td></td>										
3,700.0 12.50 114.65 3,645.9 -215.6 469.9 480,836.70 641,638.20 32° 19' 17.309 N 104° 0' 31.079 W 3,800.0 12.50 114.65 3,743.5 -224.7 489.6 480,827.67 641,657.87 32° 19' 17.219 N 104° 0' 30.850 W 3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.219 N 104° 0' 30.621 W 4,000.0 12.50 114.65 3,938.8 -242.7 528.9 480,80.59 641,716.89 32° 19' 17.039 N 104° 0' 30.322 W 4,100.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.769 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,221.6 -269.8 587.9 480,782.53								,		
3,800.0 12.50 114.65 3,743.5 -224.7 489.6 480,827.67 641,657.87 32° 19' 17.219 N 104° 0' 30.850 W 3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.219 N 104° 0' 30.621 W 4,000.0 12.50 114.65 3,938.8 -242.7 528.9 480,80.61 641,697.21 32° 19' 17.039 N 104° 0' 30.322 W 4,100.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.769 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.679 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48										
3,900.0 12.50 114.65 3,841.1 -233.7 509.3 480,818.64 641,677.54 32° 19' 17.129 N 104° 0' 30.621 W 4,000.0 12.50 114.65 3,938.8 -242.7 528.9 480,80.61 641,697.21 32° 19' 17.129 N 104° 0' 30.322 W 4,100.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.769 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,755.23 32° 19' 16.679 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.500 N 104° 0' 29.247 W 4,600.0										
4,000.0 12.50 114.65 3,938.8 -242.7 528.9 480,809.61 641,697.21 32° 19' 17.039 N 104° 0' 30.392 W 4,100.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.859 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.679 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.590 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0										
4,100.0 12.50 114.65 4,036.4 -251.8 548.6 480,800.59 641,716.89 32° 19' 16.949 N 104° 0' 30.163 W 4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.949 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,736.56 32° 19' 16.769 N 104° 0' 29.934 W 4,400.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.769 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.500 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0										
4,200.0 12.50 114.65 4,134.0 -260.8 568.3 480,791.56 641,736.56 32° 19' 16.859 N 104° 0' 29.934 W 4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.934 W 4,400.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.769 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.590 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.410 N 104° 0' 28.789 W 4,800.0										
4,300.0 12.50 114.65 4,231.6 -269.8 587.9 480,782.53 641,756.23 32° 19' 16.769 N 104° 0' 29.705 W 4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.769 N 104° 0' 29.705 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.590 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.410 N 104° 0' 28.789 W 4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.560 W 4,900.0										
4,400.0 12.50 114.65 4,329.3 -278.8 607.6 480,773.50 641,775.90 32° 19' 16.679 N 104° 0' 29.476 W 4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.679 N 104° 0' 29.476 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.410 N 104° 0' 28.789 W 4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.560 W 4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W										
4,500.0 12.50 114.65 4,426.9 -287.9 627.3 480,764.48 641,795.57 32° 19' 16.590 N 104° 0' 29.247 W 4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.247 W 4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.500 N 104° 0' 28.789 W 4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.560 W 4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W										
4,600.0 12.50 114.65 4,524.5 -296.9 647.0 480,755.45 641,815.25 32° 19' 16.500 N 104° 0' 29.018 W 4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.410 N 104° 0' 28.789 W 4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.560 W 4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W										
4,700.0 12.50 114.65 4,622.2 -305.9 666.6 480,746.42 641,834.92 32° 19' 16.410 N 104° 0' 28.789 W 4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.789 W 4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W							,			
4,800.0 12.50 114.65 4,719.8 -314.9 686.3 480,737.39 641,854.59 32° 19' 16.320 N 104° 0' 28.560 W 4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W										
4,900.0 12.50 114.65 4,817.4 -324.0 706.0 480,728.37 641,874.26 32° 19' 16.230 N 104° 0' 28.331 W								,		
							,			
	5,000.0	12.50	114.65	4,915.0	-333.0	725.6	480,719.34		32° 19' 16.140 N	104° 0' 28.103 W

1/17/2025 10:07:59AM

COMPASS 5000.17 Build 03

RESOURCES

Planning Report - Geographic

Database:	Compass_17	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Company:	NEW MEXICO	TVD Reference:	KB @ 3014.0usft
Project:	(SP) EDDY	MD Reference:	KB @ 3014.0usft
Site:	ASTRODOG	North Reference:	Grid
Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,100.0	12.50	114.65	5,012.7	-342.0	745.3	480,710.31	641,913.61	32° 19' 16.050 N	104° 0' 27.874 W
5,200.0	12.50	114.65	5,110.3	-351.1	765.0	480,701.28	641,933.28	32° 19' 15.960 N	104° 0' 27.645 W
5,300.0		114.65	5,207.9	-360.1	784.7	480,692.26	641,952.95	32° 19' 15.870 N	104° 0' 27.416 W
5,400.0		114.65	5,305.6	-369.1	804.3	480,683.23	641,972.62	32° 19' 15.780 N	104° 0' 27.187 W
5,500.0		114.65	5,403.2	-378.1	824.0	480,674.20	641,992.29	32° 19' 15.690 N	104° 0' 26.958 W
5,600.0	12.50	114.65	5,500.8	-387.2	843.7	480,665.17	642,011.97	32° 19' 15.600 N	104° 0' 26.729 W
5,700.0	12.50	114.65	5,598.5	-396.2	863.4	480,656.15	642,031.64	32° 19' 15.510 N	104° 0' 26.500 W
5,800.0	12.50	114.65	5,696.1	-405.2	883.0	480,647.12	642,051.31	32° 19' 15.421 N	104° 0' 26.271 W
5,900.0	12.50	114.65	5,793.7	-414.3	902.7	480,638.09	642,070.98	32° 19' 15.331 N	104° 0' 26.042 W
6,000.0	12.50	114.65	5,891.3	-423.3	922.4	480,629.06	642,090.65	32° 19' 15.241 N	104° 0' 25.813 W
6,100.0		114.65	5,989.0	-432.3	942.0	480,620.04	642,110.33	32° 19' 15.151 N	104° 0' 25.584 W
6,200.0		114.65	6,086.6	-441.3	961.7	480,611.01	642,130.00	32° 19' 15.061 N	104° 0' 25.355 W
6,300.0		114.65	6,184.2	-450.4	981.4	480,601.98	642,149.67	32° 19' 14.971 N	104° 0' 25.126 W
6,400.0		114.65	6,281.9	-459.4	1,001.1	480,592.95	642,169.34	32° 19' 14.881 N	104° 0' 24.897 W
6,500.0	12.50	114.65	6,379.5	-468.4	1,020.7	480,583.92	642,189.01	32° 19' 14.791 N	104° 0' 24.668 W
6,520.9		114.65	6,399.9	-470.3	1,024.8	480,582.04	642,193.13	32° 19' 14.772 N	104° 0' 24.621 W
Start Dro	•	444.05	0 477 0	477.0	4 020 4	400 575 04	640 007 70	20% 401 44 70C N	4048 01 04 454 144
6,600.0 6,700.0	10.92	114.65 114.65	6,477.3 6,575.8	-477.0 -484.2	1,039.4 1,055.1	480,575.34	642,207.72	32° 19' 14.706 N	104° 0' 24.451 W 104° 0' 24.269 W
6,800.0		114.65	6,575.8 6,674.9	-484.2 -489.9	1,055.1	480,568.16 480,562.41	642,223.37 642,235.89	32° 19' 14.634 N 32° 19' 14.577 N	104 ° 0' 24.269 W
6,900.0		114.05	6,774.3	-489.9 -494.2	1,007.0	480,558.11	642,245.26	32° 19' 14.577 N 32° 19' 14.534 N	104° 0' 24.014 W
7,000.0		114.65	6,874.1	-494.2	1,083.2	480,555.26	642,251.48	32° 19' 14.506 N	104° 0' 23.942 W
7,100.0		114.65	6,974.0	-498.5	1,086.2	480,553.86	642,254.52	32° 19' 14.492 N	104° 0' 23.906 W
7,146.0	0.02	0.00	7,020.0	-498.6	1,086.6	480,553.71	642,254.85	32° 19' 14.490 N	104° 0' 23.902 W
	5 hold at 7146		1,020.0	100.0	1,000.0	100,000.11	012,201.00	02 10 11.10011	101 0 20.002 11
7,208.5		0.00	7,082.5	-498.6	1,086.6	480,553.71	642,254.85	32° 19' 14.490 N	104° 0' 23.902 W
	S 12.00 TFO 8		.,		.,	,			
7,225.0	1.99	89.78	7,099.0	-498.6	1,086.9	480,553.71	642,255.14	32° 19' 14.490 N	104° 0' 23.899 W
7,250.0		89.78	7,124.0	-498.6	1,088.4	480,553.72	642,256.66	32° 19' 14.490 N	104° 0' 23.881 W
7,275.0		89.78	7,148.8	-498.6	1,091.2	480,553.73	642,259.48	32° 19' 14.490 N	104° 0' 23.848 W
7,300.0	10.99	89.78	7,173.5	-498.6	1,095.3	480,553.74	642,263.60	32° 19' 14.490 N	104° 0' 23.800 W
7,325.0	13.99	89.78	7,197.9	-498.6	1,100.7	480,553.76	642,269.01	32° 19' 14.490 N	104° 0' 23.737 W
7,350.0	16.99	89.78	7,222.0	-498.6	1,107.4	480,553.79	642,275.68	32° 19' 14.490 N	104° 0' 23.660 W
7,375.0		89.78	7,245.7	-498.5	1,115.3	480,553.82	642,283.61	32° 19' 14.490 N	104° 0' 23.567 W
7,400.0	22.99	89.78	7,269.0	-498.5	1,124.5	480,553.86	642,292.76	32° 19' 14.490 N	104° 0' 23.460 W
7,425.0		89.78	7,291.7	-498.4	1,134.8	480,553.90	642,303.12	32° 19' 14.490 N	104° 0' 23.340 W
7,450.0		89.78	7,313.9	-498.4	1,146.4	480,553.94	642,314.66	32° 19' 14.491 N	104° 0' 23.205 W
7,475.0		89.78	7,335.4	-498.4	1,159.1	480,553.99	642,327.34	32° 19' 14.491 N	104° 0' 23.057 W
7,500.0		89.78	7,356.3	-498.3	1,172.8	480,554.04	642,341.13	32° 19' 14.491 N	104° 0' 22.897 W
7,525.0	37.99	89.78	7,376.4	-498.2	1,187.7	480,554.10	642,356.00	32° 19' 14.491 N	104° 0' 22.724 W
7,550.0	40.99	89.78	7,395.7	-498.2	1,203.6	480,554.16	642,371.89	32° 19' 14.491 N	104° 0' 22.538 W
7,575.0 7,600.0	43.99 46.99	89.78 89.78	7,414.1 7,431.6	-498.1 -498.0	1,220.5 1,238.3	480,554.22 480,554.29	642,388.78 642,406.60	32° 19' 14.491 N 32° 19' 14.491 N	104° 0' 22.342 W 104° 0' 22.134 W
7,600.0		89.78	7,431.0	-498.0 -498.0	1,257.0	480,554.29	642,425.32	32° 19' 14.491 N	104° 0' 22.134 W
7,650.0		89.78	7,463.7	-497.9	1,276.6	480,554.44	642,444.88	32° 19' 14.492 N	104° 0' 21.688 W
7,675.0		89.78	7,478.3	-497.8	1,296.9	480,554.52	642,465.22	32° 19' 14.492 N	104° 0' 21.451 W
7,700.0		89.78	7,491.7	-497.7	1,318.0	480,554.60	642,486.30	32° 19' 14.492 N	104° 0' 21.205 W
7,725.0		89.78	7,504.0	-497.7	1,339.8	480,554.68	642,508.06	32° 19' 14.492 N	104° 0' 20.951 W
7,750.0		89.78	7,515.2	-497.6	1,362.1	480,554.77	642,530.42	32° 19' 14.492 N	104° 0' 20.691 W
7,775.0		89.78	7,525.2	-497.5	1,385.1	480,554.85	642,553.35	32° 19' 14.492 N	104° 0' 20.424 W
7,800.0		89.78	7,533.9	-497.4	1,408.5	480,554.94	642,576.76	32° 19' 14.493 N	104° 0' 20.151 W
7,825.0	73.99	89.78	7,541.4	-497.3	1,432.3	480,555.03	642,600.60	32° 19' 14.493 N	104° 0' 19.873 W
7,850.0		89.78	7,547.7	-497.2	1,456.5	480,555.13	642,624.79	32° 19' 14.493 N	104° 0' 19.591 W
7,875.0	79.99	89.78	7,552.7	-497.1	1,481.0	480,555.22	642,649.29	32° 19' 14.493 N	104° 0' 19.306 W

1/17/2025 10:07:59AM

Planning Report - Geographic

Database:	Compass_17	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Company:	NEW MEXICO	TVD Reference:	KB @ 3014.0usft
Project:	(SP) EDDY	MD Reference:	KB @ 3014.0usft
Site:	ASTRODOG	North Reference:	Grid
Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		
-			

Planned Survey	
----------------	--

Ueith () (Ueith) (Ueith) (Ueith) Linitude Longitude 7,800.0 82.98 83.78 7,556.4 497.0 1,505.7 480.555.32 642.674.01 32*19*14.443 N 104*0*19.077 W 7,850.0 85.58 68.78 7,556.4 446.355.41 642.674.01 32*19*14.444 N 104*0*19.277 W 7,850.0 86.78 7,559.4 446.3 1,556.6 440.555.41 642.773.91 32*19*14.444 N 104*0*118.38 81.800.0 90.00 89.78 7,550.0 -466.5 1,056.6 440.556.40 642.773.86 32*19*14.449 N 104*0*17*16.583 81.800.0 90.00 89.78 7,560.0 -466.5 1,056.6 440.556.46 642.973.86 32*19*14.449 N 104*0*17*16.583 8.500.0 90.00 89.78 7,560.0 -466.5 440.556.46 642.973.86 32*19*14.449 N 104*0*17*16.583 8.500.0 90.00 89.78 7,560.0 -464.5 2,056.6 440.558.36 643.73.88 32*19*14.449 N	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
7.255.0 85.99 89.78 7.558.5 -496.8 1.555.6 490.555.51 62.723.86 32° 19° 14.498.N 104° 10° 12.72 7.558.5 90.00 89.78 7.560.0 -496.8 1.556.6 490.555.51 62.723.86 32° 19° 14.494.N 104° 10° 18.336 818t 6921.5 50.01 7.560.0 -496.8 1.056.6 490.555.50 642.773.88 32° 19° 14.494.N 104° 10° 15.838 8,100.0 90.00 89.78 7.560.0 -496.5 1.056.6 490.556.46 642.873.86 32° 19° 14.496.N 104° 10° 15.538 8,300.0 90.00 89.78 7.560.0 -494.51 2.0056 490.557.3 643.173.86 32° 19° 14.496.N 104° 10° 12.07 8,500.0 90.00 89.78 7.560.0 -494.3 2.2056 490.558.36 643.73.86 32° 19° 14.496.N 104° 0° 10.027 8,500.0 90.00 87.7 7.560.0 -494.3 2.2056 490.558.36 643.73.86 32° 19° 14.490.N 104° 0° 2.07 8,500.0 90.00 <th< th=""><th>-</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>-</th><th>Latitude</th><th>Longitude</th></th<>	-			•				-	Latitude	Longitude
7 950.0 88.78 7 7.555.9 9 92.71 91.4444 10.07.07 10.436 W 8 900.0 90.00 88.78 7.560.0 -406.3 1.056.6 440.555.51 642.732.31 22.119 14.444 N 10.07.07 17.850.0 8,000.0 90.00 88.78 7.560.0 -406.3 1.076.6 440.555.61 642.873.88 22.119 14.444 N 10.07.07 11.836 W 8,000.0 90.00 88.78 7.560.0 -495.5 1.005.6 440.557.86 643.073.88 22.119 14.449 N 10.04° 07 13.38 W 8,400.0 90.00 88.78 7.560.0 -494.7 2.205.6 440.555.81 643.073.88 22.191 14.498 N 10.04° 07 10.38 W 8,400.0 90.00 88.78 7.560.0 -494.3 2.205.6 440.555.87 643.273.88 22.191 14.498 N 10.04° 07 10.38 W 8,400.0 90.00 88.78 7.560.0 -492.4 2.205.6 440.	7,900.0	82.99	89.78	7,556.4	-497.0	1,505.7	480,555.32	642,674.01	32° 19' 14.493 N	104° 0' 19.017 W
7.980.5 90.00 90.76 7.960.0 -96.6 1.964.0 480.555.5 642.72.38 32" 19" 14.494 N 104" 0" 13.38 W 8.000.0 90.00 80.76 7.560.0 -406.6 1.005.6 480.555.70 642.773.86 32" 19" 14.494 N 104" 0" 17.854 W 8.000.0 90.00 80.78 7.560.0 -405.5 1.005.6 480.556.46 642.873.86 32" 19" 14.496 N 104" 0" 16.532 W 8.000.0 90.00 80.78 7.560.0 -405.5 1.005.6 480.557.23 643.073.86 32" 19" 14.496 N 104" 0" 10.202 W 8.000.0 90.00 80.78 7.560.0 -404.3 2.205.6 480.557.23 643.073.86 32" 19" 14.499 N 104" 0" 10.602 W 8.000.0 90.00 80.78 7.560.0 -404.3 2.205.6 480.558.76 643.873.88 2" 19" 14.499 N 104" 0" 10.65W 8.000.0 90.00 80.78 7.560.0 -402.4 2.205.6 480.558.16 643.873.88 2" 19" 14.50N N 104" 0" 3.53W 9.000.0 80.00 90.00 <td></td> <td></td> <td></td> <td></td> <td>-496.9</td> <td>1,530.6</td> <td>480,555.41</td> <td>642,698.89</td> <td>32° 19' 14.493 N</td> <td></td>					-496.9	1,530.6	480,555.41	642,698.89	32° 19' 14.493 N	
Burr 982.5 Noid 3786.5 MO Constraint							,			
8,000.0 90.00 80.78 7.650.0 -496.6 1,005.6 442,055.70 642,273.88 32' 19' 14.496 N 104'' 0' 16.684 N 8,200.0 90.00 80.78 7.650.0 -495.9 1,005.6 440,556.44 642,273.88 32' 19' 14.496 N 104'' 0' 16.532 W 8,300.0 90.00 80.78 7.650.0 -495.1 2,005.6 440,573.28 32' 19' 14.497 N 104'' 0' 16.26W 8,000.0 90.00 80.78 7.650.0 -494.1 2,005.6 440,575.81 643,373.88 32' 19' 14.499 N 104'' 0' 10.20''' 8,000.0 90.00 80.78 7.650.0 -494.3 2,205.6 440,583.80 643,373.88 32' 19' 14.490 N 104'' 0' 10.60''' 8,000.0 90.00 80.78 7.650.0 -493.2 2,405.6 440,583.8'' 643,373.88 32' 19' 14.50'' N''''''''''''''''''''''''''''''''''''	7,958.5	90.00	89.78	7,560.0	-496.8	1,564.0	480,555.54	642,732.31	32° 19' 14.494 N	104° 0' 18.338 W
B, 100.0 90.00 80.78 7,560.0 -496.3 1,105.6 440.556.46 642.973.86 32" 19 '1.4496 N 104" 0' 16.533 W 8,200.0 90.00 80.78 7,560.0 -495.5 1,005.6 440.556.46 643.073.86 32" 19 '1.4496 N 104" 0' 11.5523 W 8,400.0 90.00 80.78 7,560.0 -495.1 2,005.6 440.557.61 643.073.86 32" 19 '1.4496 N 104" 0' 10.851 W 8,600.0 90.00 80.78 7,560.0 -494.3 2,205.6 440.553.16 643.373.86 32" 19' 1.4496 N 104" 0' 10.851 W 8,000.0 90.00 80.78 7,560.0 -493.3 2,205.6 440.555.1 643.573.86 32" 19' 1.490.N 104" 0' 1.569 W 9,000.0 90.00 80.78 7,560.0 -492.2 2,205.6 440.555.91 643.073.86 32" 19' 1.490.N 104" 0' 1.590 W 9,000.0 90.00 80.78 7,560.0 -492.2 2,205.6 440.550.91 643.073.86 32" 19' 1.490.N 104" 0' 3.590 S 9,000.0										
8.200.0 90.00 8.77 7.560.0 -495.5 1.905.6 440.558.46 643.073.86 32" 19 14 446 N 1.04" 07 14.358 W 8.400.0 90.00 89.78 7.560.0 -495.1 2.005.6 440.577.23 643.173.86 32" 19 14 449 N 1.04" 07 14.358 W 8.500.0 90.00 89.78 7.560.0 -494.7 2.205.6 440.557.23 643.173.86 32" 19 14 499 N 1.04" 07 10.851 W 8.700.0 90.00 89.78 7.560.0 -491.2 2.205.6 440.553 76 643.773.86 32" 19 14 450 N 1.04" 07 12.851 W 8.700.0 90.00 89.78 7.560.0 -492.2 2.605.6 440.555 1.5 643.673.86 32" 19 14.501 N 1.04" 07 3.250 W 9.000.0 89.78 7.560.0 -492.2 2.605.6 440.555 9.1 643.073.86 32" 19 14.501 N 1.04" 07 3.260 W 9.000.0 89.78 7.560.0 -492.4 2.705.6 440.550.91 643.073.86 32" 19 14.500 N 1.04" 07 3.260 W 9.000.0 90.00 89.78 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>							,			
8.200.0 90.00 8.77 7.560.0 -495.5 1.006.6 440.557.2 643.173.86 32" 19 14.496 N 1.04" 0T 13.32 W 8.500.0 90.00 89.78 7.560.0 -495.1 2.005.6 440.557.61 643.373.86 32" 19 14.496 N 1.04" 0T 12.02" W 8.500.0 90.00 89.78 7.560.0 -494.2 2.205.6 440.553.38 643.473.86 32" 19 14.496 N 1.04" 0T 10.861 W 8.500.0 90.00 89.78 7.560.0 -495.2 2.205.6 440.559.15 643.373.86 32" 19 14.500 N 1.04" 0T 3.65 W 9.000.0 90.00 89.78 7.560.0 -492.2 2.405.6 440.569.15 643.373.86 32" 19 14.500 N 1.04" 0T 5.03 W 9.000.0 90.00 89.78 7.560.0 -492.2 2.405.6 440.569.15 643.473.86 32" 19 14.500 N 1.04" 0T 5.03 W 9.000.0 90.00 89.78 7.560.0 -491.3 3.005.6 440.569.14 644.473.85 32" 19 14.500 N 1.04" 0T 3.30 W 9.000.0							,			
8,400.0 90.00 89.78 7,500.0 -495.1 2,005.6 440,577.23 643,273.86 32*19*14.497 104*0*13.122 8,600.0 90.00 89.78 7,500.0 -494.3 2,205.6 440,558.00 643,273.86 32*19*14.499 104*0*0*10.87 8,700.0 90.00 89.78 7,560.0 -494.0 2,305.6 440,558.36 643,473.86 32*19*14.490 104*0*0*10.87 8,800.0 90.00 89.78 7,560.0 -492.8 2,205.6 440,558.53 643,773.86 32*19*14.401 N 104*0*7*3.85 9,000.0 90.00 89.78 7,560.0 -492.8 2,205.6 440,559.53 643,973.85 32*19*14.401 N 104*0*5*3.54 9,000.0 90.00 89.78 7,560.0 -492.8 2,205.6 440,559.53 643,973.85 32*19*14.401 N 104*0*5*3.54 9,000.0 90.00 89.78 7,560.0 -490.2 2,965.6 440,559.51 643,973.85 32*19*14.401 N 104*0*5*5.54 9,000.0 90.00 89.78										
8.600.0 90.00 88.78 7.560.0 -49.7 2.105.6 449.657.61 643.373.88 32*19*14.498 11.04*0*12.027 8.600.0 90.00 89.78 7.560.0 -49.4.0 2.205.6 480.553.83 643.473.88 32*19*14.490 11.04*0*19.650 8.600.0 90.00 89.78 7.560.0 -493.2 2.565.6 480.553.67 643.573.88 32*19*14.501 11.04*0*7.355 9.000.0 90.00 89.78 7.560.0 -492.8 2.605.6 480.559.14 643.673.86 32*19*14.501 11.04*0*7.535 9.000.0 90.00 89.78 7.560.0 -492.2 2.205.5 480.569.29 643.973.85 32*19*14.504 10.0*0*0*7.389 32*19*14.504 10.0*0*0*7.389 32*19*14.504 10.0*0*0*7.389 32*19*14.505 10.0*0*0*7.389 32*19*14.505 10.0*0*0*7.389 32*19*14.505 10.0*0*0*7.389 32*19*14.506 10.3*5*5*8.0*2 19*4.506 10.3*5*5*8.0*2 19*1.4506 10.3*5*5*8.0*2 19*1.4506 10.3*5*5*8.0*2 19*1.4506 10.3*5*5*8.0*2 19*1.4506										
8,600. 90.00 89.78 7,560.0 -494.3 2,205.6 440,558.00 643,473.88 32" 19" 4,490 N 104" 0" 10.861 W 8,800.0 90.00 89.78 7,560.0 -493.6 2,405.6 480,558.76 643,573.86 32" 19" 14,501 N 104" 0" 6.501 W 8,900.0 90.00 89.78 7,560.0 -492.2 2,505.6 480,559.14 643,673.86 32" 19" 14,501 N 104" 0" 7.500 W 9,000.0 90.00 89.78 7,560.0 -492.4 2,705.6 480,559.91 643,873.86 32" 19" 14,501 N 104" 0" 7.508 W 9,200.0 90.00 89.78 7,560.0 -491.7 2,905.6 480,561.66 644,173.85 32" 19" 14,505 N 104" 0" 0.378 W 9,500.0 90.00 89.78 7,560.0 -491.7 3,205.6 440,561.44 644,373.85 32" 19" 14,505 N 104" 0" 0.378 W 9,500.0 90.00 89.78 7,560.0 -490.7 3,405.6 440,562.21 644,373.85 32" 19" 14,505 N </td <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>	,							,		
8,700.0 90,00 87.8 7,560.0 -494.0 2,205.6 480,558.76 643,473.86 32° 19° 14.499 N 104° 0° 9.651 W 8,900.0 90.00 87.78 7,560.0 -493.2 2,505.6 480,559.14 643,673.86 32° 19° 14.501 N 104° 0° 8.51 W 9,000.0 90.00 89.78 7,560.0 -492.4 2,705.6 480,559.91 643,873.86 32° 19° 14.501 N 104° 0° 8.50 W 9,200.0 90.00 89.78 7,560.0 -492.4 2,705.6 480,550.85 32° 19° 14.504 N 104° 0° 2.704 W 9,200.0 90.00 89.78 7,560.0 -491.7 2,005.6 480,561.86 644,073.85 32° 19° 14.504 N 104° 0° 1.330 W 9,600.0 90.00 89.78 7,560.0 -490.5 3,205.6 480,561.82 644,473.85 32° 19° 14.506 N 103° 59° 56.27 W 9,600.0 90.00 89.78 7,560.0 -489.4 3,405.6 480,561.32 644,473.85 32° 19° 14.506 N 103° 59° 56.877 W 9,00.0 90.00										
8.800.0 90.00 87.8 7.860.0 -493.6 2.405.6 480,558.76 483,573.86 32° 19° 14.501 N 104° 0° 8351 W 9.000.0 90.00 89.78 7.860.0 -492.8 2.805.6 480,559.53 643,873.86 32° 19° 14.501 N 104° 0° 7.363 W 9.200.0 90.00 89.78 7.560.0 -492.8 2.805.6 480,559.31 643,873.86 32° 19° 14.501 N 104° 0° 2.034 W 9.200.0 90.00 89.78 7.560.0 -491.7 2.905.6 480,561.8 644,973.85 32° 19° 14.504 N 104° 0° 2.370 W 9.400.0 90.00 89.78 7.560.0 -490.5 3.205.6 480,561.82 644,973.85 32° 19° 14.506 N 103° 59° 59.207 W 9.600.0 90.00 89.78 7.560.0 -490.5 3.205.6 480,561.82 644,973.85 32° 19° 14.506 N 103° 59° 59.277 W 9.600.0 89.78 7.560.0 -488.7 3.405.6 480,562.59 644,773.85 32° 19° 14.507 N 103° 59° 56.577 H 9.800.0 90.00 <td></td>										
8,900.0 90.00 87.8 7,560.0 -493.2 2,505.6 480,559.31 643,773.86 32" 19" 14.501 N 104" 0" 7 365 W 9,100.0 90.00 89.78 7,560.0 -492.4 2,705.6 480,559.31 643,773.86 32" 19" 14.501 N 104" 0" 6 2.00W 9,200.0 90.00 89.78 7,560.0 -492.0 2,805.6 480,560.29 643,873.86 32" 19" 14.503 N 104" 0" 2,704 W 9,300.0 90.00 89.78 7,560.0 -491.7 2,905.6 480,561.68 644,473.85 32" 19" 14.504 N 104" 0" 2,704 W 9,400.0 90.00 89.78 7,560.0 -490.5 3,205.6 480,561.44 644,273.85 32" 19" 14.506 N 103" 59" 58,207 W 9,600.0 90.00 89.78 7,560.0 -489.5 3,605.6 480,562.29 644,673.85 32" 19" 14.506 N 103" 59" 55.711 W 9,000.0 89.78 7,560.0 -488.4 3,605.6 480,563.36 644,773.85 32" 19" 14.509 N 103" 59" 55.711 W 10,000.0 59" 55.71 W										
9,000 90,00 89.78 7,560.0 -492.4 2,705.6 480,559.31 643,773.86 32" 19" 14,501 N 104" 0" 6,200 N 9,000 90,00 89.78 7,560.0 -492.4 2,705.6 480,559.31 643,873.86 32" 19" 14,501 N 104" 0" 5,034 W 9,000 90,00 89.78 7,560.0 -491.3 2,005.6 480,560.29 643,873.86 32" 19" 14,501 N 104" 0" 2,704 W 9,000 90.00 89.78 7,560.0 -490.5 3,005.6 480,561.42 644,373.85 32" 19" 14,505 N 104" 0" 0.359" 58,027 W 9,000 90.00 89.78 7,560.0 -490.5 3,205.6 480,562.29 644,573.85 32" 19" 14,506 N 103" 59" 56.07 W 9,000 90.00 89.78 7,560.0 -499.4 3,056 480,562.29 644,573.85 32" 19" 14,506 N 103" 59" 56.71 W 9,000 90.00 89.78 7,560.0 -488.6 3,705.6 480,563.37.6 644,673.85 32" 19" 14,506 N 103" 59" 55.71 W 103" 59" 55.21 SW 1										
9,200 90,00 89.78 7,560.0 -492.0 2,805.6 480,560.68 644,073.85 32° 19° 14,504 N 104° 0° 2,704 W 9,400.0 90.00 89.78 7,560.0 -491.3 3,005.6 480,561.06 644,173.85 32° 19° 14,504 N 104° 0° 2,704 W 9,600.0 90.00 89.78 7,560.0 -490.9 3,205.6 480,561.28 644,473.85 32° 19° 14,505 N 104° 0° 2,704 W 9,600.0 90.00 89.78 7,560.0 -490.1 3,305.6 480,562.59 644,473.85 32° 19° 14,505 N 103° 59° 58,042 W 9,000 90.00 89.78 7,560.0 -489.7 3,405.6 480,562.59 644,773.85 32° 19° 14,507 N 103° 59° 56,472 W 9,000 90.00 89.78 7,560.0 -489.4 3,505.6 480,563.36 644,773.85 32° 19° 14,509 N 103° 59° 54,546 W 10,000 90.00 89.78 7,560.0 -488.2 3,805.6 480,564.37 644,673.85 32° 19° 14,510 N 103° 59° 44,564 W 10,000.0										
9,300 90,00 89.78 7,560.0 -491.3 3,005.6 480,561.06 644,073.85 32° 19° 14.504 N 104° 0° 2,704 W 9,500.0 90.00 89.78 7,560.0 -490.9 3,105.6 480,561.46 644,273.85 32° 19° 14.506 N 104° 0° 1,373 W 9,600.0 90.00 89.78 7,560.0 -490.1 3,305.6 480,561.22 644,473.85 32° 19° 14.506 N 103° 59' 58.042 W 9,600.0 90.00 89.78 7,560.0 -499.1 3,305.6 480,562.297 644,573.85 32° 19° 14.506 N 103° 59' 56.877 W 9,800.0 90.00 89.78 7,560.0 -489.0 3,605.6 480,563.36 644,773.85 32° 19° 14.509 N 103° 59' 53.454 W 10,000.0 90.00 89.78 7,560.0 -488.4 3,705.6 480,564.37 644,873.85 32° 19° 14.509 N 103° 59' 52.15 W 10,300.0 90.00 89.78 7,560.0 -487.1 4,005.6 480,564.273 85 32° 19° 14.51 N 103° 59' 52.15 W 10,300.0 90.00	9,100.0	90.00	89.78	7,560.0	-492.4	2,705.6	480,559.91	643,873.86	32° 19' 14.502 N	104° 0' 5.034 W
9,400.0 90.00 89.78 7,560.0 -491.3 3,005.6 480,561.44 644,273.85 32* 19* 14.504 N 104* 0* 0.373 W 9,600.0 90.00 89.78 7,560.0 -490.5 3,205.6 480,561.82 644,273.85 32* 19* 14.506 N 103* 59* 59.20* W 9,700.0 90.00 89.78 7,560.0 -490.1 3,305.6 480,562.21 644,473.85 32* 19* 14.506 N 103* 59* 58.87* W 9,000.0 90.00 89.78 7,560.0 -489.4 3,505.6 480,562.97 644,673.85 32* 19* 14.508 N 103* 59* 55.711 W 10,000.0 90.00 89.78 7,560.0 -488.0 3,705.6 480,563.38 644,773.85 32* 19* 14.508 N 103* 59* 55.711 W 10,000.0 90.00 89.78 7,560.0 -488.2 3,805.6 480,564.12 644,873.85 32* 19* 14.508 N 103* 59* 52.157 W 10,200.0 90.00 89.78 7,560.0 -487.4 3,905.6 480,564.12 644,873.85 32* 19* 14.511 N 103* 59* 43.877 W 10,500.0	9,200.0	90.00	89.78	7,560.0	-492.0	2,805.6	480,560.29	643,973.85	32° 19' 14.503 N	104° 0' 3.869 W
9,500.0 90.00 89.78 7,560.0 490.5 3,205.6 480,561.82 644,373.85 32*19*14.506 N 104*0*0.373 W 9,600.0 90.00 89.78 7,560.0 490.1 3,305.6 480,561.82 644,373.85 32*19*14.506 N 103*59*58.042 W 9,800.0 90.00 89.78 7,560.0 489.7 3,405.6 480,562.21 644,473.85 32*19*14.508 N 103*59*58.042 W 9,000.0 90.00 89.78 7,560.0 489.7 3,405.6 480,562.99 644,673.85 32*19*14.508 N 103*59*58.712 W 10,000.0 90.00 89.78 7,560.0 489.0 3,605.6 480,563.74 644,673.85 32*19*14.508 N 103*59*54.364 W 10,100.0 90.00 89.78 7,560.0 488.6 3,705.6 480,563.74 644,673.85 32*19*14.508 N 103*59*54.364 W 10,200.0 90.00 89.78 7,560.0 488.6 3,705.6 480,564.12 644,973.85 32*19*14.501 N 103*59*54.364 W 10,300.0 90.00 89.78 7,560.0 487.8 3,905.6 480,564.12 644,973.85 32*19*14.511 N 103*59*53.80 W 10,200.0 90.00 89.78 7,560.0 487.8 3,905.6 480,564.12 644,973.85 32*19*14.511 N 103*59*514.98 W 10,500.0 90.00 89.78 7,560.0 487.1 4,105.6 480,564.89 645,173.85 32*19*14.511 N 103*59*43.84 W 10,500.0 90.00 89.78 7,560.0 487.1 4,105.6 480,565.27 645,273.85 32*19*14.511 N 103*59*43.84 W 10,500.0 90.00 89.78 7,560.0 487.1 4,105.6 480,565.65 645,373.84 32*19*14.513 N 103*59*47.553 W 10,700.0 90.00 89.78 7,560.0 485.9 4,405.6 480,566.42 645,573.84 32*19*14.513 N 103*59*47.553 W 10,900.0 90.00 89.78 7,560.0 485.9 4,405.6 480,566.42 645,673.84 32*19*14.513 N 103*59*47.553 W 10,900.0 90.00 89.78 7,560.0 485.2 4,605.6 480,567.57 645,673.84 32*19*14.513 N 103*59*42.823 W 11,000.0 90.00 89.78 7,560.0 485.2 4,605.6 480,567.57 645,673.84 32*19*14.513 N 103*59*42.823 W 11,000.0 90.00 89.78 7,560.0 485.2 4,605.6 480,567.57 645,673.84 32*19*14.515 N 103*59*42.823 W 11,000.0 90.00 89.78 7,560.0 485.2 5,005.6 480,567.57 645,673.84 32*19*14.517 N 103*59*32.830 W 11,000.0 90.00 89.78 7,560.0 485.2 5,005.6 480,567.59 645,673.84 32*19*14.518 N 103*59*33.269 W 11,000.0 90.00 89.78 7,560.0 485.2 5,005.6 480,567.59 645,673.84 32*19*14.518 N 103*59*33.569 W 11,000.0 90.00 89.78 7,560.0 482.9 5,005.6 480,567.93 646,673.84 32*19*14.518 N 103*59*33.569 W 11,000.0 90.00 89.78 7,560.0 482.9 5,00	9,300.0	90.00	89.78	7,560.0	-491.7	2,905.6	480,560.68	644,073.85	32° 19' 14.504 N	104° 0' 2.704 W
9,600.0 90.00 89.78 7,560.0 490.5 3,205.6 480,562.21 644,473.85 32° 19° 14,506 N 103° 59° 58.027 W 9,000.0 90.00 89.78 7,560.0 489.4 3,305.6 480,562.21 644,673.85 32° 19° 14,507 N 103° 59° 56.027 W 9,000.0 90.00 89.78 7,560.0 489.4 3,505.6 480,562.97 644,673.85 32° 19° 14,507 N 103° 59° 55.711 W 10,000.0 90.00 89.78 7,560.0 488.6 3,705.6 480,563.74 644,773.85 32° 19° 14,509 N 103° 59° 53.360 W 10,000.0 90.00 89.78 7,560.0 488.2 3,805.6 480,564.12 644,973.85 32° 19° 14,501 N 103° 59° 51.360 W 10,200.0 90.00 89.78 7,560.0 487.5 4,005.6 480,564.27 644,873.85 32° 19° 14,511 N 103° 59° 45.36W W 10,400.0 90.00 89.78 7,560.0 487.5 4,005.6 480,565.27 645,373.44 32° 19° 14,513 N 103° 59° 47.55W W 10,	9,400.0	90.00	89.78	7,560.0	-491.3	3,005.6	480,561.06	644,173.85	32° 19' 14.504 N	104° 0' 1.538 W
9,700.0 90.00 89.78 7,560.0 -490.1 3,305.6 480,562.21 644,473.85 32' 19' 14.506 N 103' 59' 58.042 W 9,800.0 90.00 89.78 7,560.0 -489.7 3,405.6 480,562.97 644,673.85 32' 19' 14.506 N 103' 59' 55.71' W 10,000.0 90.00 89.78 7,560.0 -489.0 3,605.6 480,563.74 644,673.85 32'' 19' 14.501 N 103'' 59' 55.370 W 10,000.0 90.00 89.78 7,560.0 -488.2 3,805.6 480,563.74 644,873.85 32'' 19' 14.501 N 103'' 59' 55.360 W 10,200.0 90.00 89.78 7,560.0 -487.8 3,905.6 480,564.10 645,673.85 32'' 19' 14.511 N 103'' 59' 51.050 W 10,400.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,564.57 645,173.85 32'' 19' 14.511 N 103'' 59' 45.22 W 10,600.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,566.2 645,173.84 32'' 19' 14.511 N 103'' 59' 45.23 W 10,600.0 90.00 89.78 7,560.0 -486.7 420.56 <td>9,500.0</td> <td>90.00</td> <td>89.78</td> <td>7,560.0</td> <td>-490.9</td> <td>3,105.6</td> <td>480,561.44</td> <td></td> <td></td> <td>104° 0' 0.373 W</td>	9,500.0	90.00	89.78	7,560.0	-490.9	3,105.6	480,561.44			104° 0' 0.373 W
9.800.0 90.00 89.78 7.560.0 -489.7 3.405.6 480.562.99 644,573.85 32° 19° 14.507 N 103° 59° 56.877 W 9.900.0 90.00 89.78 7.560.0 -489.4 3.505.6 480.563.76 644,673.85 32° 19° 14.508 N 103° 59° 55.380 W 10.00.0 90.00 89.78 7.560.0 -488.6 3.705.6 480.563.74 644,873.85 32° 19° 14.508 N 103° 59° 53.380 W 10.200.0 90.00 89.78 7.560.0 -488.2 3.805.6 480.564.12 644,973.85 32° 19° 14.511 N 103° 59° 52.150 W 10.400.0 90.00 89.78 7.560.0 -487.8 3.905.6 480.564.12 644,573.85 32° 19° 14.511 N 103° 59° 45.28 W 10.600.0 90.00 89.78 7.560.0 -487.4 4,056.6 480.566.25 645,173.84 32° 19° 14.513 N 103° 59° 45.28 W 10.700.0 90.00 89.78 7,560.0 -486.7 4,205.6 480.566.25 645,373.84 32° 19° 14.513 N 103° 59° 42.89 W 10,000.0			89.78	7,560.0			480,561.82	644,373.85		103° 59' 59.207 W
9.900.0 90.00 89.78 7,560.0 -489.4 3,505.6 480,562.97 644,673.85 32* 19' 14.508 N 103* 59' 55.711 W 10,000.0 90.00 89.78 7,560.0 -488.6 3,705.6 480,563.36 644,773.85 32* 19' 14.509 N 103* 59' 53.380 W 10,200.0 90.00 89.78 7,560.0 -488.2 3,805.6 480,564.12 644,973.85 32* 19' 14.510 N 103* 59' 52.215 W 10,300.0 90.00 89.78 7,560.0 -487.8 3,905.6 480,564.51 645,073.85 32* 19' 14.511 N 103* 59' 54.98 W 10,500.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,566.27 645,273.85 32* 19' 14.511 N 103* 59' 45.733 W 10,600.0 90.00 89.78 7,560.0 -486.3 4,305.6 480,566.42 645,273.84 32* 19' 14.511 N 103* 59' 45.23 W 10,600.0 90.00 89.78 7,560.0 -485.3 4,305.6 480,566.42 645,573.84 32* 19' 14.51N N 103* 59' 45.23 W 10,300.0										
10,000.0 90.00 89.78 7,560.0 -489.0 3,605.6 480,563.36 644,773.85 32° 19' 14.509 N 103° 59' 54.546 W 10,100.0 90.00 89.78 7,560.0 -488.2 3,805.6 480,563.74 644,873.85 32° 19' 14.509 N 103° 59' 52.215 W 10,200.0 90.00 89.78 7,560.0 -487.8 3,905.6 480,564.51 645,073.85 32° 19' 14.511 N 103° 59' 52.215 W 10,300.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,565.5 645,173.85 32° 19' 14.511 N 103° 59' 48.718 W 10,600.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,565.5 645,373.84 32° 19' 14.513 N 103° 59' 47.583 W 10,700.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,567.57 645,673.84 32° 19' 14.515 N 103° 59' 42.523 W 10,700.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,567.57 645,673.84 32° 19' 14.515 N 103° 59' 42.529 W 11,000.0										
10,100.0 90.00 89.78 7,560.0 -488.6 3,705.6 480,563.74 644,873.85 32° 19' 14,509 N 103° 59' 53.380 W 10,200.0 90.00 89.78 7,560.0 -487.8 3,805.6 480,564.12 644,973.85 32° 19' 14,511 N 103° 59' 51.050 W 10,400.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,564.51 645,073.85 32° 19' 14,511 N 103° 59' 45.050 W 10,600.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,565.56 645,273.85 32° 19' 14,513 N 103° 59' 45.53 W 10,600.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,566.64 645,473.84 32° 19' 14,513 N 103° 59' 45.23 W 10,700.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.42 645,573.84 32° 19' 14,515 N 103° 59' 42.82 W 11,000.0 90.00 89.78 7,560.0 -485.2 4,605.6 480,567.57 645,873.84 32° 19' 14,515 N 103° 59' 42.82 W 11,000.0								,		
10,200.0 90.00 89.78 7,560.0 -482.2 3,805.6 480,564.12 644,973.85 32° 19 14.510 N 103° 59 52.215 W 10,300.0 90.00 89.78 7,560.0 -487.8 3,905.6 480,564.51 645,073.85 32° 19 14.511 N 103° 59 15.05 W 10,400.0 90.00 89.78 7,560.0 -487.1 4,105.6 480,565.27 645,273.85 32° 19 14.513 N 103° 59 48.719 W 10,600.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,566.64 645,73.84 32° 19 14.513 N 103° 59' 45.23 W 10,700.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.42 645,673.84 32° 19 14.515 N 103° 59' 44.057 W 10,900.0 90.00 89.78 7,560.0 -485.5 4,605.6 480,567.19 645,673.84 32° 19 14.515 N 103° 59' 44.057 W 11,000.0 90.00 89.78 7,560.0 -484.8 4,705.6 480,567.57 645,873.84 32° 19 14.515 N 103° 59'40.561 W 11,000.										
10,300.0 90.00 89.78 7,560.0 -487.8 3,905.6 480,564.51 645,073.85 32° 19' 14.511 N 103° 59' 51.050 W 10,400.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,565.27 645,273.85 32° 19' 14.511 N 103° 59' 48.719 W 10,500.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,566.27 645,273.85 32° 19' 14.513 N 103° 59' 47.553 W 10,700.0 90.00 89.78 7,560.0 -486.3 4,305.6 480,566.42 645,573.84 32° 19' 14.513 N 103° 59' 47.553 W 10,800.0 90.00 89.78 7,560.0 -485.5 4,405.6 480,566.20 645,573.84 32° 19' 14.515 N 103° 59' 42.822 W 11,000.0 90.00 89.78 7,560.0 -485.2 4,605.6 480,567.95 645,873.84 32° 19' 14.515 N 103° 59' 42.892 W 11,100.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,873.84 32° 19' 14.517 N 103° 59' 359' 38.290 W										
10,400.0 90.00 89.78 7,560.0 -487.5 4,005.6 480,564.89 645,173.85 32° 19' 14.511 N 103° 59' 49.884 W 10,600.0 90.00 89.78 7,560.0 -487.1 4,105.6 480,565.27 645,273.85 32° 19' 14.512 N 103° 59' 48.719 W 10,600.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,566.55 645,373.84 32° 19' 14.513 N 103° 59' 46.383 W 10,800.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.42 645,573.84 32° 19' 14.515 N 103° 59' 46.232 W 10,900.0 90.00 89.78 7,560.0 -485.2 4,605.6 480,567.57 645,873.84 32° 19' 14.516 N 103° 59' 42.892 W 11,000.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.57 645,873.84 32° 19' 14.517 N 103° 59' 40.561 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,568.72 646,173.84 32° 19' 14.517 N 103° 59' 30.86 W 11,600.90.00<										
10,500.0 90.00 89.78 7,560.0 -487.1 4,105.6 480,565.27 645,273.85 32° 19' 14.512 N 103° 59' 48.719 W 10,600.0 90.00 89.78 7,560.0 -486.7 4,205.6 480,565.55 645,373.84 32° 19' 14.513 N 103° 59' 47.553 W 10,700.0 90.00 89.78 7,560.0 -486.3 4,305.6 480,566.24 645,573.84 32° 19' 14.513 N 103° 59' 45.223 W 10,900.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.27 645,673.84 32° 19' 14.515 N 103° 59' 42.892 W 11,000.0 90.00 89.78 7,560.0 -485.2 4,605.6 480,567.57 645,873.84 32° 19' 14.517 N 103° 59' 42.892 W 11,100.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.57 645,873.84 32° 19' 14.517 N 103° 59' 39.36 W 11,200.0 90.00 89.78 7,560.0 -484.4 480,566.4 480,568.33 646,073.84 32° 19' 14.517 N 103° 59' 39.36 W 11,600.0 <td></td>										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
10,700.0 90.00 89.78 7,560.0 -486.3 4,305.6 480,566.04 645,473.84 32° 19' 14.513 N 103° 59' 46.388 W 10,800.0 90.00 89.78 7,560.0 -485.9 4,405.6 480,566.42 645,573.84 32° 19' 14.513 N 103° 59' 46.232 W 10,900.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,567.19 645,673.84 32° 19' 14.515 N 103° 59' 42.892 W 11,000.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.57 645,873.84 32° 19' 14.516 N 103° 59' 42.892 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.57 645,873.84 32° 19' 14.517 N 103° 59' 39.396 W 11,400.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,568.72 646,173.84 32° 19' 14.517 N 103° 59' 37.065 W 11,400.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.40 646,673.84 32° 19' 14.519 N 103° 59' 37.065 W										
10,800.0 90.00 89.78 7,560.0 -485.9 4,405.6 480,566.42 645,573.84 32° 19' 14.514 N 103° 59' 45.223 W 10,900.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.80 645,673.84 32° 19' 14.515 N 103° 59' 42.892 W 11,000.0 90.00 89.78 7,560.0 -484.8 4,705.6 480,567.19 645,773.84 32° 19' 14.516 N 103° 59' 42.892 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,973.84 32° 19' 14.516 N 103° 59' 42.892 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,973.84 32° 19' 14.517 N 103° 59' 42.892 W 11,400.0 90.00 89.78 7,560.0 -483.6 5,005.6 480,568.72 646,173.84 32° 19' 14.518 N 103° 59' 37.65 W 11,600.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 37.65 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6										
10,900.0 90.00 89.78 7,560.0 -485.5 4,505.6 480,566.80 645,673.84 32° 19' 14.515 N 103° 59' 44.057 W 11,000.0 90.00 89.78 7,560.0 -485.2 4,605.6 480,567.19 645,773.84 32° 19' 14.515 N 103° 59' 42.892 W 11,100.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.57 645,873.84 32° 19' 14.517 N 103° 59' 40.561 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,973.84 32° 19' 14.517 N 103° 59' 30.396 W 11,400.0 90.00 89.78 7,560.0 -483.6 5,005.6 480,568.32 646,073.84 32° 19' 14.518 N 103° 59' 30.396 W 11,400.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.10 646,273.84 32° 19' 14.518 N 103° 59' 32.30 W 11,600.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6										
11,100.0 90.00 89.78 7,560.0 -484.8 4,705.6 480,567.57 645,873.84 32° 19' 14.516 N 103° 59' 41.726 W 11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,973.84 32° 19' 14.517 N 103° 59' 40.561 W 11,300.0 90.00 89.78 7,560.0 -484.0 4,905.6 480,568.33 646,073.84 32° 19' 14.518 N 103° 59' 39.396 W 11,400.0 90.00 89.78 7,560.0 -483.2 5,005.6 480,569.10 646,273.84 32° 19' 14.519 N 103° 59' 38.206 W 11,600.0 90.00 89.78 7,560.0 -482.2 5,105.6 480,569.48 646,273.84 32° 19' 14.519 N 103° 59' 35.896 W 11,600.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.519 N 103° 59' 33.569 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.7 5,505.6										
11,200.0 90.00 89.78 7,560.0 -484.4 4,805.6 480,567.95 645,973.84 32° 19' 14.517 N 103° 59' 40.561 W 11,300.0 90.00 89.78 7,560.0 -484.0 4,905.6 480,568.33 646,073.84 32° 19' 14.517 N 103° 59' 39.396 W 11,400.0 90.00 89.78 7,560.0 -483.6 5,005.6 480,568.72 646,173.84 32° 19' 14.519 N 103° 59' 38.230 W 11,500.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.10 646,273.84 32° 19' 14.519 N 103° 59' 37.065 W 11,600.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,673.84 32° 19' 14.521 N 103° 59' 32.403 W 11,800.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5	11,000.0	90.00	89.78	7,560.0	-485.2	4,605.6	480,567.19	645,773.84	32° 19' 14.515 N	103° 59' 42.892 W
11,300.0 90.00 89.78 7,560.0 -484.0 4,905.6 480,568.33 646,073.84 32° 19' 14.517 N 103° 59' 39.396 W 11,400.0 90.00 89.78 7,560.0 -483.6 5,005.6 480,568.72 646,173.84 32° 19' 14.518 N 103° 59' 38.230 W 11,500.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.10 646,273.84 32° 19' 14.519 N 103° 59' 37.065 W 11,600.0 90.00 89.78 7,560.0 -482.9 5,205.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.521 N 103° 59' 33.569 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,573.84 32° 19' 14.521 N 103° 59' 33.569 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,571.02 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5	11,100.0	90.00	89.78	7,560.0	-484.8	4,705.6	480,567.57	645,873.84	32° 19' 14.516 N	103° 59' 41.726 W
11,400.0 90.00 89.78 7,560.0 -483.6 5,005.6 480,568.72 646,173.84 32° 19' 14.518 N 103° 59' 38.230 W 11,500.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.10 646,273.84 32° 19' 14.518 N 103° 59' 37.065 W 11,600.0 90.00 89.78 7,560.0 -482.9 5,205.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.521 N 103° 59' 33.569 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.5 480,571.02 646,773.83 32° 19' 14.521 N 103° 59' 30.073 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,000.0 90.00 89.78 7,560.0 -480.2 5,905.5	11,200.0	90.00	89.78	7,560.0	-484.4	4,805.6	480,567.95	645,973.84	32° 19' 14.517 N	103° 59' 40.561 W
11,500.0 90.00 89.78 7,560.0 -483.2 5,105.6 480,569.10 646,273.84 32° 19' 14.519 N 103° 59' 37.065 W 11,600.0 90.00 89.78 7,560.0 -482.9 5,205.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.520 N 103° 59' 34.734 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,673.83 32° 19' 14.521 N 103° 59' 33.569 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.522 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5	11,300.0	90.00	89.78	7,560.0	-484.0	4,905.6	480,568.33	646,073.84	32° 19' 14.517 N	103° 59' 39.396 W
11,600.0 90.00 89.78 7,560.0 -482.9 5,205.6 480,569.48 646,373.84 32° 19' 14.519 N 103° 59' 35.899 W 11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.520 N 103° 59' 34.734 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,573.84 32° 19' 14.521 N 103° 59' 33.569 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.522 N 103° 59' 30.073 W 12,100.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 28.907 W 12,200.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 27.742 W	11,400.0	90.00		7,560.0		5,005.6	480,568.72	646,173.84	32° 19' 14.518 N	103° 59' 38.230 W
11,700.0 90.00 89.78 7,560.0 -482.5 5,305.6 480,569.87 646,473.84 32° 19' 14.520 N 103° 59' 34.734 W 11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,573.84 32° 19' 14.521 N 103° 59' 33.569 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,673.83 32° 19' 14.522 N 103° 59' 30.073 W 12,100.0 90.00 89.78 7,560.0 -480.9 5,705.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 27.742 W							480,569.10			
11,800.0 90.00 89.78 7,560.0 -482.1 5,405.6 480,570.25 646,573.84 32° 19' 14.521 N 103° 59' 33.569 W 11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.522 N 103° 59' 31.238 W 12,100.0 90.00 89.78 7,560.0 -480.9 5,705.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W										
11,900.0 90.00 89.78 7,560.0 -481.7 5,505.6 480,570.63 646,673.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.521 N 103° 59' 32.403 W 12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.522 N 103° 59' 31.238 W 12,100.0 90.00 89.78 7,560.0 -480.9 5,705.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 26.576 W 12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.471 W										
12,000.0 90.00 89.78 7,560.0 -481.3 5,605.5 480,571.02 646,773.83 32° 19' 14.522 N 103° 59' 31.238 W 12,100.0 90.00 89.78 7,560.0 -480.9 5,705.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 27.742 W 12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W										
12,100.0 90.00 89.78 7,560.0 -480.9 5,705.5 480,571.40 646,873.83 32° 19' 14.523 N 103° 59' 30.073 W 12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 27.742 W 12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W										
12,200.0 90.00 89.78 7,560.0 -480.6 5,805.5 480,571.78 646,973.83 32° 19' 14.523 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 28.907 W 12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 27.742 W 12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W 12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 23.080 W 103° 59' 23.	,						,			
12,300.0 90.00 89.78 7,560.0 -480.2 5,905.5 480,572.16 647,073.83 32° 19' 14.524 N 103° 59' 27.742 W 12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W 12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 23.080 W								,		
12,400.0 90.00 89.78 7,560.0 -479.8 6,005.5 480,572.55 647,173.83 32° 19' 14.524 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 26.576 W 12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W 12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 23.080 W										
12,500.0 90.00 89.78 7,560.0 -479.4 6,105.5 480,572.93 647,273.83 32° 19' 14.525 N 103° 59' 25.411 W 12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W 12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 23.080 W							,			
12,600.0 90.00 89.78 7,560.0 -479.0 6,205.5 480,573.31 647,373.83 32° 19' 14.526 N 103° 59' 24.246 W 12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 24.246 W										
12,700.0 90.00 89.78 7,560.0 -478.6 6,305.5 480,573.70 647,473.83 32° 19' 14.526 N 103° 59' 23.080 W										
12,000.0 90.00 09.10 1,000.0 -410.0 0,400.0 480,014.08 047,013.83 32 19 14.027 N 103° 59° 21.915 W	12,800.0		89.78	7,560.0	-478.3	6,405.5	480,574.08	647,573.83	32° 19' 14.527 N	103° 59' 21.915 W

RESOURCES

Planning Report - Geographic

Database:	Compass_17	Local Co-ordinate Reference:	Well ASTRODOG 0810 112H
Company:	NEW MEXICO	TVD Reference:	KB @ 3014.0usft
Project:	(SP) EDDY	MD Reference:	KB @ 3014.0usft
Site:	ASTRODOG	North Reference:	Grid
Well:	ASTRODOG 0810 112H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
12,900.0	90.00	89.78	7,560.0	-477.9	6,505.5	480,574.46	647,673.83	32° 19' 14.528 N	103° 59' 20.749 W
13,000.0	90.00	89.78	7,560.0	-477.5	6,605.5	480,574.84	647,773.83	32° 19' 14.528 N	103° 59' 19.584 W
13,100.0	90.00	89.78	7,560.0	-477.1	6,705.5	480,575.23	647,873.83	32° 19' 14.529 N	103° 59' 18.419 W
13,200.0	90.00	89.78	7,560.0	-476.7	6,805.5	480,575.61	647,973.83	32° 19' 14.529 N	103° 59' 17.253 W
13,300.0	90.00	89.78	7,560.0	-476.3	6,905.5	480,575.99	648,073.82	32° 19' 14.530 N	103° 59' 16.088 W
13,400.0	90.00	89.78	7,560.0	-476.0	7,005.5	480,576.38	648,173.82	32° 19' 14.531 N	103° 59' 14.922 W
13,500.0	90.00	89.78	7,560.0	-475.6	7,105.5	480,576.76	648,273.82	32° 19' 14.531 N	103° 59' 13.757 W
13,600.0	90.00	89.78	7,560.0	-475.2	7,205.5	480,577.14	648,373.82	32° 19' 14.532 N	103° 59' 12.592 W
13,700.0	90.00	89.78	7,560.0	-474.8	7,305.5	480,577.52	648,473.82	32° 19' 14.532 N	103° 59' 11.426 W
13,800.0	90.00	89.78	7,560.0	-474.4	7,405.5	480,577.91	648,573.82	32° 19' 14.533 N	103° 59' 10.261 W
13,900.0	90.00	89.78	7,560.0	-474.1	7,505.5	480,578.29	648,673.82	32° 19' 14.533 N	103° 59' 9.095 W
14,000.0	90.00	89.78	7,560.0	-473.7	7,605.5	480,578.67	648,773.82	32° 19' 14.534 N	103° 59' 7.930 W
14,100.0	90.00	89.78	7,560.0	-473.3	7,705.5	480,579.06	648,873.82	32° 19' 14.535 N	103° 59' 6.765 W
14,200.0	90.00	89.78	7,560.0	-472.9	7,805.5	480,579.44	648,973.82	32° 19' 14.535 N	103° 59' 5.599 W
14,300.0	90.00	89.78	7,560.0	-472.5	7,905.5	480,579.82	649,073.82	32° 19' 14.536 N	103° 59' 4.434 W
14,400.0	90.00	89.78	7,560.0	-472.1	8,005.5	480,580.21	649,173.82	32° 19' 14.536 N	103° 59' 3.268 W
14,500.0	90.00	89.78	7,560.0	-471.8	8,105.5	480,580.59	649,273.82	32° 19' 14.537 N	103° 59' 2.103 W
14,600.0	90.00	89.78	7,560.0	-471.4	8,205.5	480,580.97	649,373.82	32° 19' 14.537 N	103° 59' 0.938 W
14,700.0	90.00	89.78	7,560.0	-471.0	8,305.5	480,581.35	649,473.81	32° 19' 14.538 N	103° 58' 59.772 W
14,800.0	90.00	89.78	7,560.0	-470.6	8,405.5	480,581.74	649,573.81	32° 19' 14.539 N	103° 58' 58.607 W
14,900.0	90.00	89.78	7,560.0	-470.2	8,505.5	480,582.12	649,673.81	32° 19' 14.539 N	103° 58' 57.441 W
15,000.0	90.00	89.78	7,560.0	-469.8	8,605.5	480,582.50	649,773.81	32° 19' 14.540 N	103° 58' 56.276 W
15,100.0	90.00	89.78	7,560.0	-469.5	8,705.5	480,582.89	649,873.81	32° 19' 14.540 N	103° 58' 55.111 W
15,200.0	90.00	89.78	7,560.0	-469.1	8,805.5	480,583.27	649,973.81	32° 19' 14.541 N	103° 58' 53.945 W
15,300.0	90.00	89.78	7,560.0	-468.7	8,905.5	480,583.65	650,073.81	32° 19' 14.541 N	103° 58' 52.780 W
15,400.0	90.00	89.78	7,560.0	-468.3	9,005.5	480,584.03	650,173.81	32° 19' 14.542 N	103° 58' 51.614 W
15,500.0	90.00	89.78	7,560.0	-467.9	9,105.5	480,584.42	650,273.81	32° 19' 14.542 N	103° 58' 50.449 W
15,600.0	90.00	89.78	7,560.0	-467.5	9,205.5	480,584.80	650,373.81	32° 19' 14.543 N	103° 58' 49.284 W
15,700.0	90.00	89.78	7,560.0	-467.2	9,305.5	480,585.18	650,473.81	32° 19' 14.543 N	103° 58' 48.118 W
15,800.0	90.00	89.78	7,560.0	-466.8	9,405.5	480,585.57	650,573.81	32° 19' 14.544 N	103° 58' 46.953 W
15,900.0	90.00	89.78	7,560.0	-466.4	9,505.5	480,585.95	650,673.81	32° 19' 14.545 N	103° 58' 45.788 W
16,000.0	90.00	89.78	7,560.0	-466.0	9,605.5	480,586.33	650,773.80	32° 19' 14.545 N	103° 58' 44.622 W
16,100.0	90.00	89.78	7,560.0	-465.6	9,705.5	480,586.71	650,873.80	32° 19' 14.546 N	103° 58' 43.457 W
16,200.0	90.00	89.78	7,560.0	-465.2	9,805.5	480,587.10	650,973.80	32° 19' 14.546 N	103° 58' 42.291 W
16,300.0	90.00	89.78	7,560.0	-464.9	9,905.5	480,587.48	651,073.80	32° 19' 14.547 N	103° 58' 41.126 W
16,400.0	90.00	89.78	7,560.0	-464.5	10,005.5	480,587.86	651,173.80	32° 19' 14.547 N	103° 58' 39.961 W
16,500.0	90.00	89.78	7,560.0	-464.1	10,105.5	480,588.25	651,273.80	32° 19' 14.548 N	103° 58' 38.795 W 103° 58' 37.630 W
16,600.0	90.00	89.78	7,560.0	-463.7	10,205.5	480,588.63	651,373.80	32° 19' 14.548 N	
16,700.0	90.00	89.78	7,560.0	-463.3 -462.9	10,305.5	480,589.01	651,473.80	32° 19' 14.549 N	103° 58' 36.464 W 103° 58' 35.299 W
16,800.0	90.00	89.78	7,560.0		10,405.5	480,589.40	651,573.80	32° 19' 14.549 N	
16,900.0	90.00 90.00	89.78 89.78	7,560.0	-462.6 -462.2	10,505.5	480,589.78	651,673.80	32° 19' 14.550 N 32° 19' 14.550 N	103° 58' 34.134 W 103° 58' 32.968 W
17,000.0			7,560.0		10,605.5	480,590.16	651,773.80		103° 58' 31.803 W
17,100.0 17,200.0	90.00 90.00	89.78 89.78	7,560.0 7,560.0	-461.8 -461.4	10,705.5 10,805.5	480,590.54 480,590.93	651,873.80 651,973.80	32° 19' 14.551 N 32° 19' 14.551 N	103° 58' 30.637 W
17,200.0	90.00	89.78	7,560.0	-461.0	10,805.5	480,590.93	652,073.80	32° 19' 14.552 N	103° 58' 29.472 W
17,300.0	90.00	89.78	7,560.0	-460.6	11,005.5	480,591.69	652,173.79	32° 19' 14.552 N 32° 19' 14.552 N	103° 58' 28.307 W
17,400.0	90.00	89.78	7,560.0	-460.3	11,105.5	480,591.09	652,273.79	32° 19' 14.552 N 32° 19' 14.552 N	103° 58' 27.141 W
17,600.0	90.00	89.78	7,560.0	-400.3	11,205.5	480,592.08	652,373.79	32° 19' 14.553 N	103° 58' 25.976 W
17,000.0	90.00	89.78	7,560.0	-459.9 -459.5	11,205.5	480,592.84	652,473.79	32° 19' 14.553 N 32° 19' 14.553 N	103° 58' 24.810 W
17,800.0	90.00	89.78	7,560.0	-459.5 -459.1	11,405.5	480,592.84	652,573.79	32° 19' 14.554 N	103° 58' 23.645 W
17,880.0	90.00	89.78	7,560.0	-458.8	11,485.5	480,593.53	652,653.76	32° 19' 14.554 N	103° 58' 22.713 W
TD at 178		50.15	.,000.0	100.0	, 100.0	,			

1/17/2025 10:07:59AM

Page 6

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) EDDY ASTRODOG ASTRODOG 0810 112H OWB PWP0				TVD Refere MD Referen North Refer	ice:	KB @ 301 KB @ 301 Grid	Well ASTRODOG 0810 112H KB @ 3014.0usft KB @ 3014.0usft Grid Minimum Curvature		
Design Targets Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
LTP/BHL A0810 112H - plan hits target ce - Point	0.00 enter	0.01	7,560.0	-458.8	11,485.5	480,593.53	652,653.76	32° 19' 14.554 N	103° 58' 22.713 W	
FTP A0810 112H - plan misses targe	0.00 t center by 197		7,560.0 1.8usft MD (-498.6 7418.9 TVD, -	1,086.6 498.1 N, 1225	480,553.71 5.2 E)	642,254.85	32° 19' 14.490 N	104° 0' 23.902 W	

- Point

Plan Annotations					
Measured	Vertical	Local Co	ordinates		
Depth	Depth	+N/-S	+E/-W		
(usft)	(usft)	(usft)	(usft)	Comment	
1,000	.0 1,000.0	0.0	0.0	Start Build 2.00	
1,625	.0 1,620.1	-28.3	61.7	Start 4895.9 hold at 1625.0 MD	
6,520	.9 6,399.9	-470.3	1,024.8	Start Drop -2.00	
7,146	.0 7,020.0	-498.6	1,086.6	Start 62.5 hold at 7146.0 MD	
7,208	.5 7,082.5	-498.6	1,086.6	Start DLS 12.00 TFO 89.78	
7,958	.5 7,560.0	-496.8	1,564.0	Start 9921.5 hold at 7958.5 MD	
17,880	.0 7,560.0	-458.8	11,485.5	TD at 17880.0	

Permian Resources - Astrodog 0810 112H

1. Geologic Formations

Formation	Lithology	Elevation	TVD	Target
Rustler	Sandstone	2709	305	No
Top of Salt	Salt	2250	764	No
Delaware	Anhydrite/Shale	79	2935	No
Capitan	Limestone	NP	NP	No
Cherry Canyon	Sandstone	-759	3773	No
Brushy Canyon	Sandstone	NP	NP	No
Bone Spring Lime	Limestone	-3497	6511	No
1st Bone Spring Sand	Sandstone/Limestone/Shale	-4592	7606	Yes
2nd Bone Spring Sand	Sandstone/Limestone/Shale	-5321	8335	No
3rd Bone Spring Sand	Sandstone/Limestone/Shale	-6536	9550	No
Wolfcamp A/XY	Sandstone/Limestone/Shale	-6826	9840	No
	0 Sandstone/Limestone/Shale	0	0	No

2. Blowout Prevention

BOP installed and tested before drilling	Size?	Min. Required WP	Туре		x	Tested to:
			Anr	nular	Х	2500 psi
			Blind	Ram	Х	
12.25	13-5/8"	5M	Pipe Ram		х	5000 psi
			Double Ram			5000 psi
			Other*			
	13-5/8"	5M	Anr	nular	x	50% testing pressure
8.75			Blind Ram		Х	5000 psi
			Pipe Ram		Х	
			Doubl	e Ram		3000 psi
			Other*			

Equipment: BOPE will meet all requirements for above listed system per 43 CFR 3172. BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional, tested, and will meet all requirements per 43 CFR 3172. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing of the surface x intermedicate annulus without breaking the connection between the BOP & wellhead. A variance is requested to utilize a flexible choke line (flexhose) from the BOP to choke manifold.

Requesting Variance? YES

Variance request: Multibowl Wellhead, Flexhose, Breaktesting, Offline Cementing Variances. Attachments in Section 8.

Testing Procedure: Operator requests to ONLY test broken pressure seals per API Standard 53 and the attachments in Section 8. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed, b. whenever any seal subject to test pressure is broken, c. following related repairs, d. at 21-day intervals. Testing of the ram type preventer(s) and annual type preventer(s) shall be tested per 43 CFR 3172. The BOPE configuration, choke manifold layout, and accumulator system will be in compliance with 43 CFR 3172. Bleed lines will discharge 100' from wellhead in non-H2S scenarios and 150' from wellhead in H2S scenarios.

Choke Diagram Attachemnt: 5 M Choe Manifold BOP Diagram Attachment: BOP Schematic

3. Casing

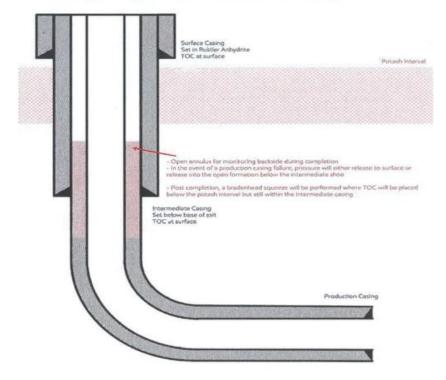
String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	355	0	355	355	J55	54.5	BTC	6.44	10.39	Dry	7.62	Dry	7.15
Intermediate	12.25	9.625	0	3085	0	3085	3085	J55	36	BTC	1.33	3.96	Dry	3.97	Dry	3.96
Production	8.75	5.5	0	2585	0	7560	2585	P110RY	20	Rattler	2.09	2.67	Dry	3.19	Dry	3.19
Production	8.75	5.5	2585	17880	7560	7560	15295	P110RY	20	Rattler	2.09	2.67	Dry	3.19	Dry	3.19
								BLM Min Safety Factor			1.125	1		1.6		1.6

Non API casing spec sheets and casing design assumptions attached.

4. Cement

String	Lead/Tail	Top MD	Bottom MD	Quanity (sx)	Yield	Density	Cu Ft	Excess %	Cement Type	Additives
										EconoCem-HLC + 5% Salt +
Surface	lead	0	280	210	1.88	12.9	390	100%	Class C	5% Kol-Seal
Surface	Tail	280	355	60	1.34	14.8	80	50%	Class C	Accelerator
Intermediate	Lead	0	2460	620	1.88	12.9	1160	50%	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
Intermediate	Tail	2460	3085	230	1.34	14.8	300	50%	Class C	Retarder
Production	Lead	2585	7146	550	3.29	10.7	1790	40%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
Production	Tail	7146	17880	1960	1.73	12.5	3390	25%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

R-111-Q Requirements


3-String Design, Open Production Casing Annulus Procedure Description

The annulus between the production and intermediate casing strings shall be actively monitored for pressure during hydraulic fracturing operations. If pressure communication is observed, indicating a possible production casing failure, hydraulic fracturing operations must immediately cease, and source of the pressure increase shall be investigated. During hydraulic fracturing operations, a pressure relief valve or appropriate venting system shall be installed to relieve pressure in the event of a production casing failure. The opening pressure of any pressure relief valves must be set below 50% of the intermediate casing burst rating. If the well design features an uncemented intermediate casing shoe (for example as shown in Exhibit B, Figure B) and the well approaches to within ¼ mile of an offset well drilling, completing or producing from the Delaware Mountain Group, then the pressure relief valve opening pressure shall be set no more than 1000 psi and at no time shall the pressure on the annulus be allowed to exceed 1000 psi. This requirement can be waived by the offset well operator.

Production cement will be 500' below the intermediate shoe with 0% excess leaving the DMG uncemented as a pressure relief zone.

Bradenhead operations will be performed within 180 days of completing hydraulic fracturing operations, tying back cement at least 500' inside the intermediate shoe but below Marker Bed 126.

[Figure B] 3 String - Uncemented production casing annulus

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate oter conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Cuttings Volume: 9010 Cu Ft

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight	Max Weight
0	355	Spud Mud	8.6	9.5
355	3085	Water Based Mud	10	10
3085	22716	OBM	9	13.5

6. Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD from intermediate hole to TD of the well. List of open and cased hole logs run in the well: DIRECTIONAL SURVEY Coring operation description for the well: N/A

7. Pressure

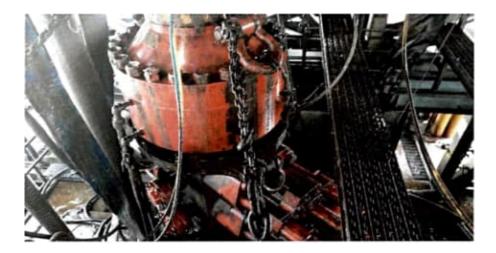
Anticipated Bottom Hole Pressure	5310	psi
Anticipated Surface Pressure	3644	psi
Anticipated Bottom Hole Temperature	134	°F
Anticipated Abnormal pressure, temp, or geo hazards	No	

8. Other Information

Well Plan and AC Report: attached Batching Drilling Procedure: attached WBD: attached Flex Hose Specs: attached Offline Cementing Procedure Attached:

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.


Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in <u>§§ 3172.6</u> through <u>3172.12</u>. All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s).". Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

Supporting Documentation

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

API STANDARD	53	
ble C.4—Initial Pressure Te		
Pressure Test—Low Pressure** psig (MPa)	Change Out of Component, Elastomer. or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP
250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	пр
250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP
250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	ASP for the well program,
250 to 350 (1.72 to 2.41)	MASP for the well program	
ssure tested on the largest and sm from one wellhead to another within when the integray of a pressure se ie ram BOPs shall be pressure test	allest OD drill pipe to be used in well in the 21 days, pressure testing is req al is broken. led with the ram locks engaged and	program. uired for pressure-containing an the closing and locking pressur
	ble C.4—Initial Pressure Te Pressure Test—Low Pressure** psig (MPa) 250 to 350 (1 72 to 2.41) 250 to 350 (1 72 to 2.41) all be a minimum of five minutes. during the evaluation period. The p assure tested on the largest and sm from one wellhead to another within when the integraty of a pressure test hand operations, the ram BOPs shall issioning and annually.	Pressure** psig (MPa) Change Out of Component, Elastomer, or Ring Gasket 250 to 350 (1.72 to 2.41) RWP of annular preventer 250 to 350 (1.72 to 2.41) RWP of ram preventer or wellhead system, whichever is lower 250 to 350 (1.72 to 2.41) RWP of ram preventer or wellhead system, whichever is lower 250 to 350 (1.72 to 2.41) RWP of ram preventer or wellhead system, whichever is lower 250 to 350 (1.72 to 2.41) RWP of ram preventers or wellhead system, whichever is lower 250 to 350 (1.72 to 2.41) RWP of ram preventers or wellhead system, whichever is lower 250 to 350 (1.72 to 2.41) RWP of valve(s), line(s), or N whichever is lower 250 to 350 (1.72 to 2.41) MASP for the well program hall be a minimum of five minutes. duning the evaluation period. The pressure shall not decrease below the assure tested on the largest and smallest OD drill pipe to be used in well from one wellhead to another within the 21 days, pressure testing is reg when the integray of a pressure seal is broken. e ram BOPs shall be pressure tested with the ram locks engaged and land operations, the ram BOPs shall be pressure tested with the ram locks engaged and land operations, the ram BOPs shall be pressure tested with the ram locks

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

Procedures

1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.

2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.

a)A full BOP test will be conducted on the first well on the pad.

b)The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.

c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

d) A full BOP test will be required prior to drilling any production hole.

3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.

a) Between the HCV valve and choke line connection

b)Between the BOP quick connect and the wellhead

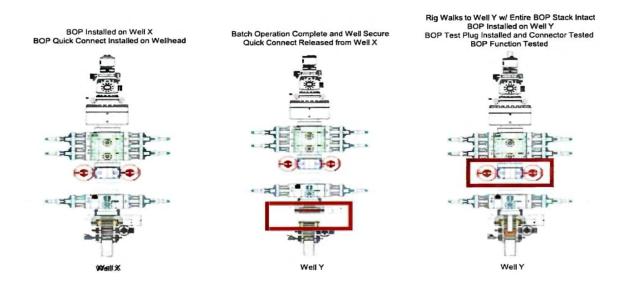
4) The BOP is then lifted and removed from the wellhead by a hydraulic system.

5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.

6) The connections mentioned in 3a and 3b will then be reconnected.

7) Install test plug into the wellhead using test joint or drill pipe.

8) A shell test is performed against the upper pipe rams testing the two breaks.


9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).

10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.

11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.

12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

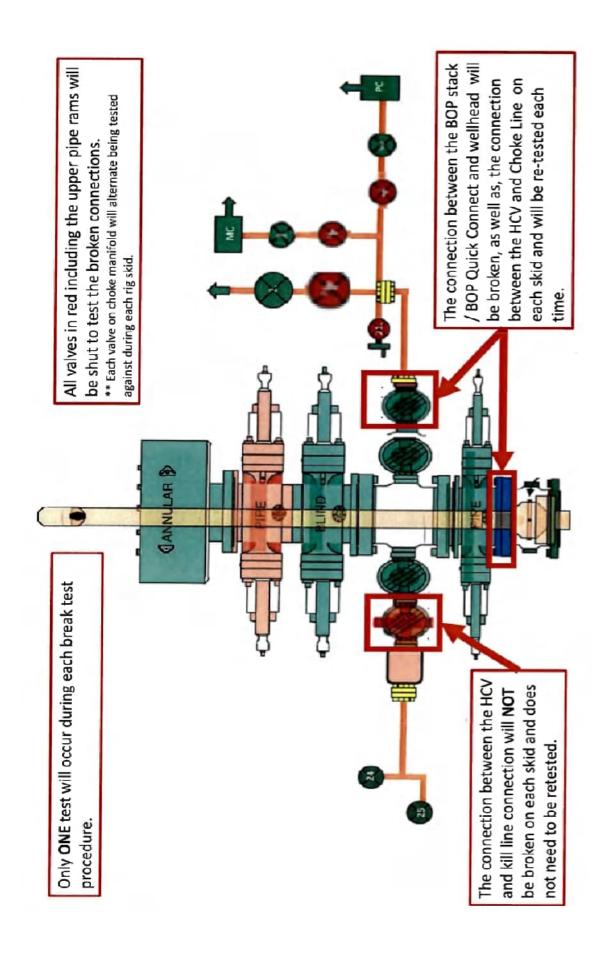
Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control

event occurs prior to the commencement of a BOPE Break Testing operation.


Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

1) After a full BOP test is conducted on the first well on the pad.

2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.

3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

4) A full BOP test will be required prior to drilling the production hole.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land planned surface casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

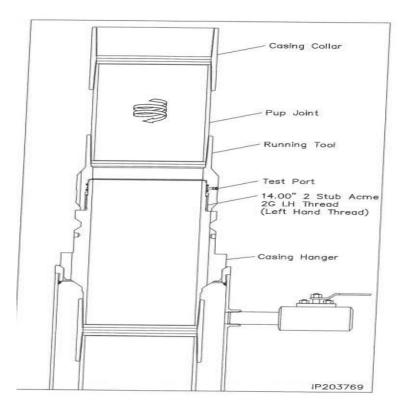
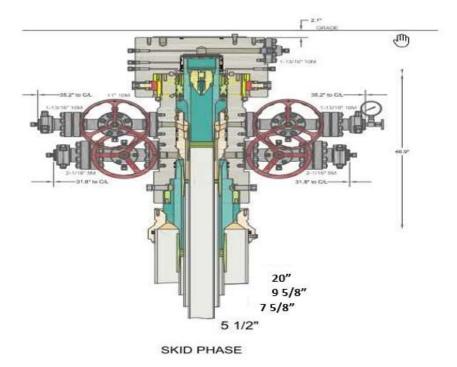
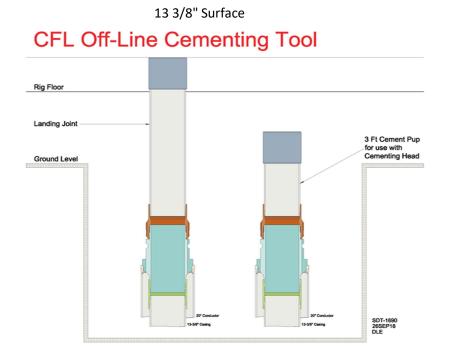


Illustration 1-1

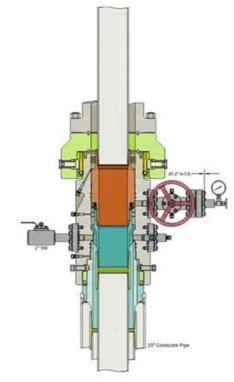
<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD. Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior to testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out surface casing shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

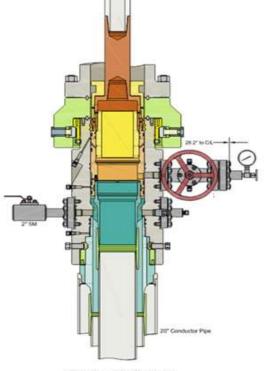


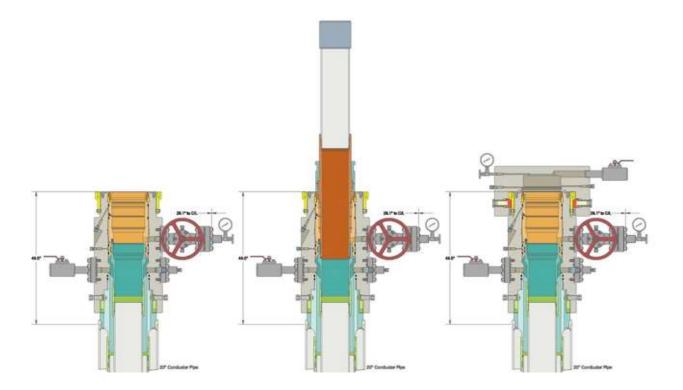

Illustration 2-2

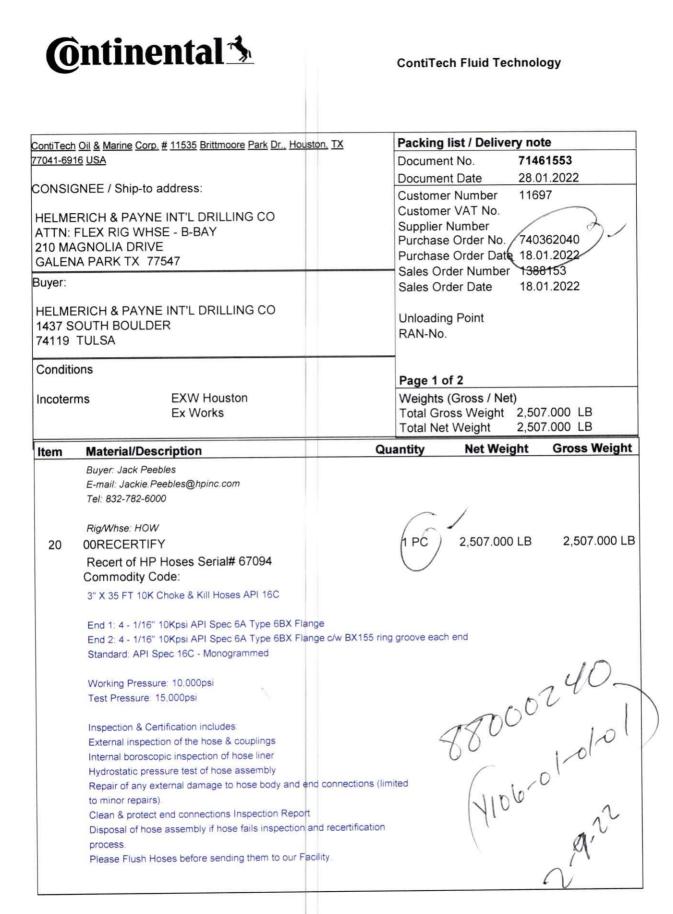
<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.


- 1. Drilling Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
- 6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
- 7. Cement Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in Production mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000 psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

Permian Resources Offline Cementing Procedure Surface & Intermediate Casing


- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.


Intermediate


Run 7 5/8" Casing Land Casing on 7 5/8" Mandrel Hanger Cement 7 5/8" Casing Retrieve Running Tool

Run 9 5/8" Packoff Test Upper and Lower Seals Engage Lockring Retrieve Running Tool

ContiTech Rubber Industrial Kft. H-6728 Szeged Budapesti út 10. P. O. Box 152 Szeged H-6701 Phone: (62)566-700, Fax (62)566-713 Tax Number: 11087209-2-06 EU Community VAT: HU11087209 Registration No. Cg. 0609-002502 Registry Court: Csongrád Megyei Cégbiróság

H-1245 Budapest P.O. Box 1070 Account No: 14220108-26830003 IBAN: HUB3 1422 0108 2683 0003 0000 0000 SWIFT: COBA HU HXXXX

COMMERZBANK ZRT. (HUF)

H-1054 Budapest, Széchenyi rakpart 8.

COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No: 3 066 156 00 Sort Code: 250 400 66. BIC: COBADEFF250 IBAN: DE41250400660306615600

Hydrostatic Test Certificate

-		ContiTech
Certificate Number H100122	COM Order Reference 1388153	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740362040	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed: O2/09/22	

We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.		Description	Qnty	Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)
20	RECERTIFICATION	3"	ID 10K Choke and Kill Hose x 35ft OAL	1	67094	10,000	15,000	60
	Record In	formation		Pressure	e Chart			
	Start Time	1/27/2022 13:21:21	· 5. 16000	-				
	End Time	1/27/2022 14:38:28	a (Pressure	
	Interval	00:01:00	14000-					
	Number	78	12000		01			
	MaxValue	15849		net	ch Oll &			
	MinValue	-3	10000	181	181			
	AvgValue	14240	1	131	12	1		
	RecordName	67094-sh	- 0008	17		61		
	RecordNumber	199	6000	G	10	1		
	Gauge Int	formation	4000	11		/	-	
	Model	ADT680		1	-/			
	SN	21817380014	2000-		QC			
	Range	(0-40000)psi					L	
	Unit	psi						

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H Eddy County, New Mexico

> 01-14-2025 This plan is subject to updating

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	
	Table of Contents	
	Table of Contents	
Continue 1.0 Instruction		2
I. Purpose		
II. Scope & Applicabil		2
	ntation	3
I. Activation Require		
II. Emergency Evacua		
III. Emergency Respor	se Activities Irdous Conditions	<i>,</i>
-	H2S Release Event	0
	norcement	
II. General Public		
III. New Mexico Oil Co		
	nment Department	
V. Bureau of Land Ma	-	7
	ntact List	/
	Management Personnel	
II. Eddy County Sheri		
III. New Mexico State	lignway Patrol	
IV. Fire / EMS		
V. Carlsbad Memoria		
VI. Emergency Respor		
VII. New Mexico Oil Co		
	nment Department	
IX. Bureau of Land Ma	lagement	
X. Other Agencies		0.12
_	on Information	9-12
I. Site Safety Informa		
II. Directions to Locat		
	uding GPS Coordinates	
IV. Routes of Ingress &	Egress (MAP)	
V. ROE Map		
VI. Residences in ROE		
VII. Public Roads in RO	unication	12.15
	tics of Hydrogen Sulfide Gas	
-		
III. Environmental Haz	rds / Toxicological Information	
	ormation	15 17
I. OSHA Information	ormation	
	sonuction Division & Ruroou of Land Manage	mont
	nservation Division & Bureau of Land Manage	
	rements tective Equipment	
		18
Appendices	20	
I. Appendix $A - H_2SS$		
II. Appendix B – SO ₂ S	J.	

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Section 1.0 – Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H₂S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, or SO^2 , which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented

Received by OCD: 1/20/2025 5:11:19 PM

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

both to employees, the general public, and emergency responders. These specific hazardous conditions are identified in the tables below.

H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER	✓
H ₂ S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH -> WARNING SI GREEN	IGN
H ₂ S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H₂S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H ₂ S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H ₂ S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4 , Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

H_2S condition 3: extreme danger to life and health \rightarrow warning sign red

 $> 30 \text{ ppm H}_2S$ concentration in air detected by location monitors: Extreme danger to life

Permian Resources Corporation

H₂S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H

Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Nove away from H ₂ S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
f trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
 Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1. 	
Notify management of the condition and action taken. If H_2S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H_2S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	
f uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H ₂ S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	
f the flow is ignited, burning H ₂ S will be converted to sulfur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) f off-site impact; notify any neighbors within the Radius of Exposure (ROE), see example in Figure 5-11.	
Continuously monitor H_2S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
F ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	
Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the	

.

Permian Resources Corporation	H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H,	Eddy County, New Mexico
	122H, 161H, 172H	
Make recommendations to pul	blic officials regarding evacuating the public	and assist as

appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

Permian Resources Corporation	H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H,	Eddy County, New Mexico
	122H, 161H, 172H	

Section 5.0 - Emergency Contact List

	EMERGENCY	CONTACT LIS	Т			
PERMIAN RESOURCES CORPORATION.						
POSITION	NAME	OFFICE	CELL	ALT PHONE		
	Opera	ations				
Operations Superintendent	Rick Lawson		432.530.3188			
TX Operations Superintendent	Josh Graham	432.940.3191	432.940.3191			
NM Operations Superintendent	Manual Mata	432.664.0278	575.408.0216			
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916			
Drilling Engineer	Parker Simmons	432.400.1038	281.536.9813			
Production Manager	Levi Harris	432.219.8568	720.261.4633			
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494			
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140			
	HSE & Re	gulatory				
H&S Manager	Adam Hicks	720.499.2377	903.426.4556			
Regulatory Manager	Stephanie Rabadue		432.260.4388			
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321			
HSE Consultant	Blake Wisdom		918-323-2343			
	.ocal, State, & F	ederal Agen	cies			
Eddy County Sheriff		575-887-7551		911		
New Mexico State Highway Patrol		505-757-2297		911		
Carlsbad Fire / EMS		575-885-3125		911		
Carlsbad Memorial Hospital		575-887-4100				
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707			
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161				
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910				
New Mexico Oil Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161				
Bureau of Land Management – Carlsbad, NM		575-706-2779				
Eddy County PET Inspector		575-361-2822				
U.S. Fish & Wildlife		502-248-6911				

Section 6.0 – Drilling Location Information

I. Site Safety Information

1. Safe Briefing Area

a. There shall be two areas that will be designated as "SAFE BRIEFING AREAS". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico	
	Astrodog 0810 111H, 112H, 121H,		
	122H, 161H, 172H		

2. Wind Indicators

- a. 4 Windsocks will be installed at strategic points on the facility.
- 3. Danger Signs
 - a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

- 4. <u>H₂S Detectors and Alarms</u>
 - a. Continuous monitoring type H₂S detectors, capable of sensing a minimum of 5ppm H₂S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO₂ detector will also be located at the combustor. The automatic H₂S alarm/flashing light will be located at the site entrance and in front of tank battery.

5. Safety Trailer

a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.

6. Well Control Equipment

- a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
- b. The location shall be equipped with a remotely operated choke system and a mud gas separator.

7. Mud Program

a. Company shall have a mud program that contains sufficient weight and additives to control H_2S .

8. <u>Metallurgy</u>

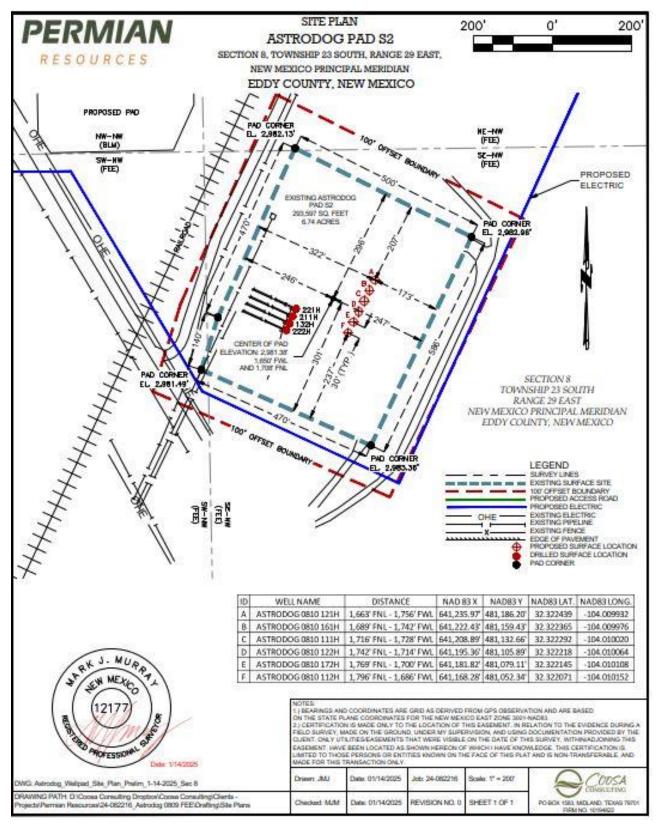
a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.

9. Communication

a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.

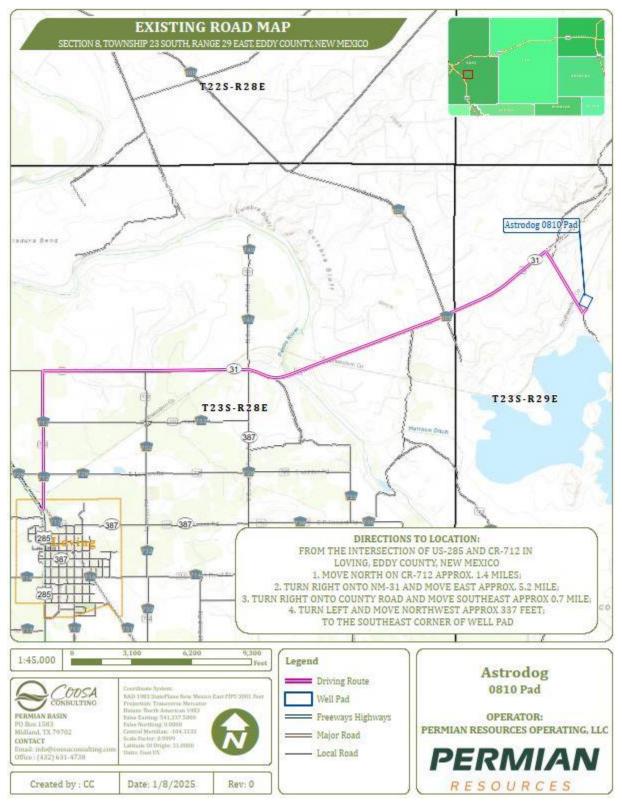
Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

II. Directions to Location


FROM THE INTERSECTION OF US-285 AND CR-712 IN

LOVING, EDDY COUNTY, NEW MEXICO

- 1. MOVE NORTH ON CR-712 APPROX. 1.4 MILES;
- 2. TURN RIGHT ONTO NM-31 AND MOVE EAST APPROX. 5.2 MILE;
- 3. TURN RIGHT ONTO COUNTY ROAD AND MOVE SOUTHEAST APPROX 0.7 MILE;
- 4. TURN LEFT AND MOVE NORTHWEST APPROX 337 FEET;
- TO THE SOUTHEAST CORNER OF WELL PAD


Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Plat of Location

1. Routes of Ingress & Egress (MAP)

2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 100 PPM, 300 PPM, or 500 PPM ROE.

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H ₂ S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

- Location NAD 83 GPS Coordinates *Lat: 32.322292, Long: -104.010020*
- 3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is NM HWY 31, which is approx. 3350' from the location.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Section 7.0 – Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H₂S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0**.

With H₂S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1**.

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Table 7.0. Physical	Properties of H ₂ S
---------------------	--------------------------------

Properties of H2S	Description
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production.
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air.

Although H₂S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Table 7.1. Hazards & Toxicity

Concentration (ppm)	Symptoms/Effects
0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients.
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

H₂S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO₂ is produced as a constituent of flaring H₂S Gas and can present hazards associated, which are

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

similar to H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

	SULFUR DIOXIDE TOXICITY		
Concentration		Effects	
%SO ₂	PPM		
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.	
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.	
0.15	150	So irritating that it can only be endured for a few minutes.	
0.05	500	Causes a sense of suffocation, even with first breath.	

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description	
NIOSH PEL 10 PPM	 PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day. 	
OSHA General Industry Ceiling PEL – 20 PPM	 The maximum exposure limit, which cannot be exceeded for any length of time. 	
IDLH 100 PPM	 Immediately Dangerous to Life and Health 	
Permian Resources PEL 10 PPM	 Permian Resources Policy Regarding H2S for employee safety 	

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H₂S contingency plan for sites where the H₂S concentrations are as follows.

Table 8.1. Calculating H ₂ S Radius of	Exposure
---	----------

ł	H ₂ S Radius of Exposure	Description	Control and Equipment Requirements
1	00 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 100ppm	ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated).

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

		ROE > 3,000-ft
500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

The ROE of an H₂S release is calculated to determine if a potentially hazardous volume of H₂S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H₂S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **<u>100 ppm ROE</u>**:

 $x = [(1.589) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

To determine the extent of the **500 ppm ROE**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description
X =	ROE in feet
Q =	Max volume of gas released determined to be released in cubic feet per day (ft ³ /d) normalized to standard temperature and pressure, 60°F and 14.65 psia
Mole fraction H ₂ S =	Mole fraction of H ₂ S in the gaseous mixture released.

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - **CASE 1** -100 ppm ROE < 50'
 - **CASE 2** 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
 - **CASE 3** -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

Table 8.3. NMAC 19.15.11 Com	pliance Requirements Drilling & Production
	phanee negatienents brining a rioudetion

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS	5 - DRILLI	ING & PRO	DUCTION
PROVISION	CASE 1	CASE 2	CASE 3
H ₂ S Concentration Test	Х	X	X
H-9	Х	Х	Х
Training	Х	Х	Х
District Office Notification	Х	Х	X
Drill Stem Tests Restricted	X*	X*	Х
BOP Test	X*	X*	Х
Materials		Х	Х
Warning and Marker		Х	Х
Security		Х	Х
Contingency Plan			Х
Control and Equipment Safety			X
Monitors		X**	X**
Mud (ph Control or Scavenger)			X*
Wind Indicators		X**	X
Protective Breathing Equipment		X**	X
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X
Flare Stacks			X*

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H₂S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 *CFR* Part 1910.134).

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.
- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. <u>Personal H₂S Monitors</u>

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes
 - Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. <u>Respiratory Protection</u>

111.

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.
- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Appendix A $H_2S SDS$

Supersedes: 10-15-2013

SECTION 1: Identification 1.1. Product identifier	
	. Culatanaa
Product form	: Substance
Name	: Hydrogen sulfide
	: 7783-06-4
Formula	: H2S
Other means of identification	: Hydrogen sulfide
Product group	: Core Products
1.2. Recommended use and restr	
Recommended uses and restrictions	: Industrial use Use as directed
1.3. Supplier	
Praxair Canada inc. 1200 – 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-1682 www.praxair.ca	
1.4. Emergency telephone number	er
Emergency number	: 1-800-363-0042 Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier or Praxair sales representative.
SECTION 2: Hazard identificati	on
2.1. Classification of the substan	
GHS-CA classification Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 STOT SE 3 H335	
GHS-CA classification Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330	
GHS-CA classificationFlam. Gas 1H220Liquefied gasH280Acute Tox. 2 (Inhalation: gas)H330STOT SE 3H335	
GHS-CA classification Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 STOT SE 3 H335 2.2. GHS Label elements, includin GHS-CA labelling	
GHS-CA classification Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 STOT SE 3 H335 2.2. GHS Label elements, including	
GHS-CA classification Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 STOT SE 3 H335 2.2. GHS Label elements, includir GHS-CA labelling Hazard pictograms	ing precautionary statements : : : : : : : : : : : : :

EN (English)

SDS ID : E-4611

1/9

.

an Resources Corporation	Н, С С С	ntingency Pla	n	Eddy County, New Mexic	
•		H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H,		Eddy County, New Mexico	
	Astrodog 083				
	122	I, 161H, 172H			
IPRAXAIR	Hydrogen sul Safety Data Sheet according to the Hazardous Proc Date of issue: 10-15-1979	E-4611		-2013	
	Avoid release to Wear protective protection Leaking gas fire In case of leaka Store locked up	nly outdoors or in a we the environment gloves, protective clot : Do not extinguish, ur ge, eliminate all ignitio	hing, eye protection, respir less leak can be stopped s n sources	• •	
	Protect from sur Close valve afte Do not open val When returning	nlight when ambient te r each use and when e ve until connected to e	quipment prepared for use the valve outlet cap or plug	125°F)	
2.3. Other hazards Other hazards not contributing to the	: Contact with liqu	uid may cause cold bu	ns/frostbite.		
classification					
2.4. Unknown acute toxicity (G No data available	HS-CA)				
SECTION 3: Composition/inf	ormation on ingredient	te			
3.1. Substances	ormation on ingreaten				
Name	CAS No.	% (Vol.)	Common Name (synonyr	ns)	
Hydrogen sulfide (Main constituent)	(CAS No) 7783-06-4	100	Hydrogen sulfide (H2S) / Hydr	ogen sulphide / Sulfur hydride / gen sulphide / Hydrogensulfide	
(Summered Hydrogen / Dinyaro		
3.2. Mixtures					
Not applicable					
Not applicable SECTION 4: First-aid measur					
Not applicable SECTION 4: First-aid measur 4.1. Description of first aid mea	asures	a air and keen at rest i	a position comfortable for	breathing. If not breathing	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid mea First-aid measures after inhalation	: Remove to frest give artificial res physician.	piration. If breathing is	difficult, trained personnel	breathing. If not breathing, should give oxygen. Call a	
Not applicable SECTION 4: First-aid measur 4.1. Description of first aid mea	asures : Remove to frest give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a	piration. If breathing is cause frostbite. For ex to exceed 105°F (41°C kin warming for at leas affected area. In case of	difficult, trained personnel posure to liquid, immediate C). Water temperature sho at 15 minutes or until norma	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus	piration. If breathing is cause frostbite. For exp to exceed 105°F (41°C kin warming for at leas affected area. In case of r. Seek medical evalua sh eyes thoroughly with yeballs to ensure that	difficult, trained personnel posure to liquid, immediate 2). Water temperature sho t 15 minutes or until norm of massive exposure, remo tion and treatment as soor	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus away from the e ophthalmologist	piration. If breathing is cause frostbite. For exp to exceed 105°F (41°C kin warming for at leas affected area. In case of r. Seek medical evalua sh eyes thoroughly with yeballs to ensure that	difficult, trained personnel posure to liquid, immediate). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor o water for at least 15 minu all surfaces are flushed the	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus away from the e ophthalmologist	piration. If breathing is cause frostbite. For exp to exceed 105°F (41° kin warming for at leas affected area. In case ir . Seek medical evalua th eyes thoroughly with yeballs to ensure that immediately. considered a potential	difficult, trained personnel posure to liquid, immediate). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor o water for at least 15 minu all surfaces are flushed the	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Inmediately flus away from the e ophthalmologist : Ingestion is not	piration. If breathing is cause frostbite. For exp to exceed 105°F (41° kin warming for at leas affected area. In case ir . Seek medical evalua th eyes thoroughly with yeballs to ensure that immediately. considered a potential	difficult, trained personnel posure to liquid, immediate). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor o water for at least 15 minu all surfaces are flushed the	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Inmediately flus away from the e ophthalmologist : Ingestion is not	piration. If breathing is cause frostbite. For exp to exceed 105°F (41°C kin warming for at leas affected area. In case to . Seek medical evalua sh eyes thoroughly with yeballs to ensure that immediately. considered a potential yed)	difficult, trained personnel posure to liquid, immediate). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor o water for at least 15 minu all surfaces are flushed the	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Inmediately flus away from the e ophthalmologist : Ingestion is not and effects (acute and delay on and special treatment, if f	piration. If breathing is cause frostbite. For exp to exceed 105°F (41° kin warming for at leas affected area. In case ir . Seek medical evalua sh eyes thoroughly with yeballs to ensure that immediately. considered a potential yed)	difficult, trained personnel bosure to liquid, immediate c). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor water for at least 15 minu all surfaces are flushed the route of exposure.	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure First-aid measures after inhalation First-aid measures after skin contact First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus away from the e ophthalmologist : Ingestion is not and effects (acute and delay on and special treatment, if r : Obtain medical is	piration. If breathing is cause frostbite. For exp to exceed 105°F (41° kin warming for at leas affected area. In case ir . Seek medical evalua sh eyes thoroughly with yeballs to ensure that immediately. considered a potential yed)	difficult, trained personnel bosure to liquid, immediate c). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor water for at least 15 minu all surfaces are flushed the route of exposure.	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering a spossible. tes. Hold the eyelids open and oroughly. Contact an	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid mea First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention Other medical advice or treatment	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus away from the e ophthalmologist : Ingestion is not and effects (acute and delay on and special treatment, if r : Obtain medical is asures	piration. If breathing is cause frostbite. For exp to exceed 105°F (41° kin warming for at leas affected area. In case ir . Seek medical evalua sh eyes thoroughly with yeballs to ensure that immediately. considered a potential yed)	difficult, trained personnel bosure to liquid, immediate c). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor water for at least 15 minu all surfaces are flushed the route of exposure.	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering a spossible. tes. Hold the eyelids open and oroughly. Contact an	
Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measures First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptoms No additional information available 4.3. Immediate medical attention Other medical advice or treatment SECTION 5: Fire-fighting measures	asures : Remove to fresh give artificial res physician. : The liquid may of warm water not skin. Maintain s returned to the a with warm water : Immediately flus away from the e ophthalmologist : Ingestion is not and effects (acute and delay on and special treatment, if r : Obtain medical is asures dia	piration. If breathing is cause frostbite. For ext to exceed 105°F (41°C kin warming for at leas affected area. In case of r. Seek medical evalua is heyes thoroughly with yeballs to ensure that immediately. considered a potential yed) necessary assistance. Treat with Dry chemical, Water s	difficult, trained personnel bosure to liquid, immediate c). Water temperature sho at 15 minutes or until norm of massive exposure, remo tion and treatment as soor water for at least 15 minu all surfaces are flushed the route of exposure.	should give oxygen. Call a ly warm frostbite area with uld be tolerable to normal al coloring and sensation have ve clothing while showering as possible. tes. Hold the eyelids open and oroughly. Contact an	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

2/9

.

Permian Resources Corporation	H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H	Eddy County, New Mexico

accordi	ty Data Sheet E-4611 Ig to the Hazardous Products Regulation (February 11, 2015) issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013
5.3. Specific hazards arising from the	azardous product
Fire hazard	: EXTREMELY FLAMMABLE GAS. If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard. Vapors can be ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharge, or other ignition sources at locations distant from product handling point. Explosive atmospheres may linger. Before entering an area, especially a confined area, check the atmosphere with an appropriate device.
Explosion hazard	: EXTREMELY FLAMMABLE GAS. Forms explosive mixtures with air and oxidizing agents.
Reactivity	: No reactivity hazard other than the effects described in sub-sections below.
Reactivity in case of fire	: No reactivity hazard other than the effects described in sub-sections below.
5.4. Special protective equipment and	precautions for fire-fighters
Firefighting instructions	: DANGER! Toxic, flammable liquefied gas
	Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective clothing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fire if safe to do so. On-site fire brigades must comply with their provincial and local fire code regulations.
Special protective equipment for fire fighters	 Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
Other information	: Containers are equipped with a pressure relief device. (Exceptions may exist where authorized by TC.).
SECTION 6: Accidental release me	asures
6.1. Personal precautions, protective e	quipment and emergency procedures
General measures	: DANGER! Toxic, flammable liquefied gas. Forms explosive mixtures with air and oxidizing agents. Immediately evacuate all personnel from danger area. Use self-contained breathing apparatus where needed. Remove all sources of ignition if safe to do so. Reduce vapors with fog or fine water spray, taking care not to spread liquid with water. Shut off flow if safe to do so Ventilate area or move container to a well-ventilated area. Flammable vapors may spread from leak and could explode if reignited by sparks or flames. Explosive atmospheres may linger. Before entering area, especially confined areas, check atmosphere with an appropriate device.
6.2. Methods and materials for contain	ment and cleaning up
Methods for cleaning up	: Try to stop release. Reduce vapour with fog or fine water spray. Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution. Dispose of contents/container in accordance with local/regional/national/international regulations. Contact supplier for any special requirements.
6.3. Reference to other sections For further information refer to section 8: E	require controls/marconal protection
SECTION 7: Handling and storage	
7.1. Precautions for safe handling	
Precautions for safe handling	: Leak-check system with soapy water; never use a flame
	All piped systems and associated equipment must be grounded
	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only non-sparking tools. Use only explosion-proof equipment
	Wear leather safety gloves and safety shoes when handling cylinders. Protect cylinders from physical damage; do not drag, roll, slide or drop. While moving cylinder, always keep in place removable valve cover. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Never insert an object (e.g, wrench, screwdriver, pr bar) into cap openings; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. Slowly open the valve. If the valve is hard to open, discontinue use and contact your supplier. Close the container valve after each use; keep closed even when empty. Never apply flame or localized heat directly to any part of the container. High temperatures may damage the container and could cause the pressure relief device to fail prematurely, venting the container contents. For other precautions in using this product, see section 16.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

3/9

•

Permian Resources Corporation

H ₂ S Contingency Plan	
Astrodog 0810 111H, 112H, 121H,	
122H, 161H, 172H	

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions

: Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g, NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

SECTION 8: Exposure controls/personal protection					
.1. Control parameters					
Hydrogen sulfide (7783-06-4					
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm			
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm			
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm			
Canada (Quebec)	VECD (mg/m ³)	21 mg/m ³			
Canada (Quebec)	VECD (ppm)	15 ppm			
Canada (Quebec)	VEMP (mg/m ³)	14 mg/m ³			
Canada (Quebec)	VEMP (ppm)	10 ppm			
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ³			
Alberta	OEL Ceiling (ppm)	15 ppm			
Alberta	OEL TWA (mg/m ³)	14 mg/m ³			
Alberta	OEL TWA (ppm)	10 ppm			
British Columbia	OEL Ceiling (ppm)	10 ppm			
Manitoba	OEL STEL (ppm)	5 ppm			
Manitoba	OEL TWA (ppm)	1 ppm			
New Brunswick	OEL STEL (mg/m ³)	21 mg/m ³			
New Brunswick	OEL STEL (ppm)	15 ppm			
New Brunswick	OEL TWA (mg/m ³)	14 mg/m³			
New Brunswick	OEL TWA (ppm)	10 ppm			
New Foundland & Labrador	OEL STEL (ppm)	5 ppm			
New Foundland & Labrador	OEL TWA (ppm)	1 ppm			
Nova Scotia	OEL STEL (ppm)	5 ppm			
Nova Scotia	OEL TWA (ppm)	1 ppm			
Nunavut	OEL Ceiling (mg/m ³)	28 mg/m ³			
Nunavut	OEL Ceiling (ppm)	20 ppm			
Nunavut	OEL STEL (mg/m ³)	21 mg/m ³			
Nunavut	OEL STEL (ppm)	15 ppm			
Nunavut	OEL TWA (mg/m ³)	14 mg/m³			
Nunavut	OEL TWA (ppm)	10 ppm			
Northwest Territories	OEL STEL (ppm)	15 ppm			

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

4/9

circa by 0 clb. 1/20/2020 0.11.17 1 11		1 "8
Permian Resources Corporation	H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 122H, 161H, 172H	
	•	
PRAXAIR	Hydrogen sulfide Safety Data Sheet E-4611	
	 according to the Hazardous Products Regulation (February 	
	Date of issue: 10-15-1979 Revision date: 08-10-201	6 Supersedes: 10-15-2013

Hydrogen sulfide (7783-06-4)				
Northwest Territories	OEL TWA (ppm)	10 ppm		
Ontario	OEL STEL (ppm)	15 ppm		
Ontario	OEL TWA (ppm)	10 ppm		
Prince Edward Island	OEL STEL (ppm)	5 ppm		
Prince Edward Island	OEL TWA (ppm)	1 ppm		
Québec	VECD (mg/m ³)	21 mg/m ³		
Québec	VECD (ppm)	15 ppm		
Québec	VEMP (mg/m ³)	14 mg/m ³		
Québec	VEMP (ppm)	10 ppm		
Saskatchewan	OEL STEL (ppm)	15 ppm		
Saskatchewan	OEL TWA (ppm)	10 ppm		
Yukon	OEL STEL (mg/m ³)	27 mg/m ³		
Yukon	OEL STEL (ppm)	15 ppm		
Yukon	OEL TWA (mg/m ³)	15 mg/m ³		
Yukon	OEL TWA (ppm)	10 ppm		

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and

	lighting.
8.3. Individual protection measures/Perso	onal protective equipment
Personal protective equipment	: Safety glasses. Face shield. Gloves.
Hand protection	: Wear work gloves when handling containers. Wear heavy rubber gloves where contact with product may occur.
Eye protection	: Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard Z94.3, "Industrial Eye and Face Protection", and any provincial regulations, local bylaws or guidelines.
Respiratory protection	Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators." Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).
Thermal hazard protection	: Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN 511 - Cold insulating gloves.
Other information	: Other protection : Safety shoes for general handling at customer sites. Metatarsal shoes and cuffless trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.
SECTION 9: Physical and chemical pr	, , , , , , , , , , , , , , , , , , ,

9.1. Information on basic physical and chemical properties		
Physical state	: Gas	
Appearance	: Colorless gas. Colorless liquid at low temperature or under high pressure.	
Molecular mass	: 34 g/mol	
Colour	: Colourless.	
Odour	: Odour can persist. Poor warning properties at low concentrations. Rotten eggs.	
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

5/9

Permian Resources Corporation	H ₂ S Contingency Plan
	Astrodog 0810 111H, 112H, 121H,
	122H, 161H, 172H

6

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

pH	: Not applicable.
pH solution	: No data available
Relative evaporation rate (butylacetate=1)	: No data available
Relative evaporation rate (ether=1)	: Not applicable.
Melting point	: -86 °C
Freezing point	: -82.9 °C
Boiling point	: -60.3 °C
Flash point	: Not applicable.
Critical temperature	: 100.4 °C
Auto-ignition temperature	: 260 °C
Decomposition temperature	: No data available
Vapour pressure	: 1880 kPa
Vapour pressure at 50 °C	: No data available
Critical pressure	: 8940 kPa
Relative vapour density at 20 °C	: >=
Relative density	: No data available
Relative density of saturated gas/air mixture	: No data available
Density	: No data available
Relative gas density	: 1.2
Solubility	: Water: 3980 mg/l
Log Pow	: Not applicable.
Log Kow	: Not applicable.
Viscosity, kinematic	: Not applicable.
Viscosity, dynamic	: Not applicable.
Viscosity, kinematic (calculated value) (40 °C)	: No data available
Explosive properties	: Not applicable.
Oxidizing properties	: None.
Flammability (solid, gas)	:
	4.3 - 46 vol %

9.2.	Other information		
Gas gro	up	:	Liquefied gas
Addition	al information	:	Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below ground level

10.1. Reactivity	
Reactivity	: No reactivity hazard other than the effects described in sub-sections below.
Chemical stability	: Stable under normal conditions.
Possibility of hazardous reactions	: May react violently with oxidants. Can form explosive mixture with air.
Conditions to avoid	 Avoid moisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces No smoking.
Incompatible materials	: Ammonia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat). Copper. (powdered). Fluorine. Lead. Lead oxide. Mercury. Nitric acid. Nitrogen trifluoride. nitrogen sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. (and moisture). Water.
Hazardous decomposition products	: Thermal decomposition may produce : Sulfur. Hydrogen.
SECTION 11: Toxicological info	
11.1. Information on toxicological e	
Acute toxicity (oral)	: Not classified

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation H₂S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Acute toxicity (inhalation)	: Inhalation:gas: FATAL IF INHALED.
Hydrogen sulfide (\f)7783-06-4	
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)
LC50 inhalation rat (ppm)	356 ppm/4h
ATE CA (gases)	356.0000000 ppmv/4h
ATE CA (vapours)	0.9900000 mg/l/4h
ATE CA (dust,mist)	0.9900000 mg/l/4h
Skin corrosion/irritation	: Not classified
	pH: Not applicable.
Serious eye damage/irritation	: Not classified
	pH: Not applicable.
Respiratory or skin sensitization	: Not classified
Germ cell mutagenicity	: Not classified
Carcinogenicity	: Not classified
Reproductive toxicity	: Not classified
Specific target organ toxicity (single exposure)	: MAY CAUSE RESPIRATORY IRRITATION.
Specific target organ toxicity (repeated exposure)	: Not classified

12.1. Toxicity	
cology - general	: VERY TOXIC TO AQUATIC LIFE.
Hydrogen sulfide (7783-06-4)	
LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])
12.2. Persistence and degradabilit	у
Hydrogen sulfide (7783-06-4)	
Persistence and degradability	Not applicable for inorganic gases.
12.3. Bioaccumulative potential	
Hydrogen sulfide (7783-06-4)	
BCF fish 1	(no bioaccumulation expected)
Log Pow	Not applicable.
Log Kow	Not applicable.
Bioaccumulative potential	No data available.
12.4. Mobility in soil	
Hydrogen sulfide (7783-06-4)	
Mobility in soil	No data available.
Log Pow	Not applicable.
Log Kow	Not applicable.
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution.
	,
12.5. Other adverse effects	
Other adverse effects	: May cause pH changes in aqueous ecological systems.
Effect on the ozone layer	: None
Effect on global warming	: No known effects from this product

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

7/9

Permian Resources Corporation		H ₂ S Contingency Plan	Eddy County, New Mexic
		Astrodog 0810 111H, 112H, 121H,	
		122H, 161H, 172H	
	PRAXAIR Sa	ydrogen sulfide afety Data Sheet E-4611 ording to the Hazardous Products Regulation (February 11, 2015)	
			s: 10-15-2013
	SECTION 13: Disposal considera	ations	
	13.1. Disposal methods		
	Waste disposal recommendations	: Do not attempt to dispose of residual or unused quantities	 Return container to supplier.
	SECTION 14: Transport informat	ion	
	14.1. Basic shipping description		
	In accordance with TDG		
	TDG		
	UN-No. (TDG)	: UN1053	
	TDG Primary Hazard Classes	: 2.3 - Class 2.3 - Toxic Gas.	
	TDG Subsidiary Classes	: 2.1	
	Proper shipping name	: HYDROGEN SULPHIDE	
	ERAP Index	: 500	
	EXAP Index Explosive Limit and Limited Quantity Index	: 0	
	Passenger Carrying Ship Index	: O : Forbidden	
	Passenger Carrying Road Vehicle or Passe Carrying Railway Vehicle Index		
	14.3. Air and sea transport		
	IMDG		
	UN-No. (IMDG)	: 1053	
	Proper Shipping Name (IMDG)	: HYDROGEN SULPHIDE	
	Class (IMDG)	: 2 - Gases	
	MFAG-No	: 117	
	IATA		
	UN-No. (IATA)	: 1053	
	Proper Shipping Name (IATA)	: Hydrogen sulphide	
	Class (IATA)	: 2	

SECTION 15: Regulatory information

15.1.	National	regulations	

Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List)

15.2. International regulations

Hydrogen sulfide (7783-06-4) Listed on the AICS (Australian Inventory of Chemical Substances) Listed on IECSC (Inventory of Existing Chemical Substances Produced or Imported in China) Listed on the EEC inventory EINECS (European Inventory of Existing Commercial Chemical Substances) Listed on the Japanese ENCS (Existing & New Chemical Substances) inventory Listed on the Korean ECL (Existing Chemicals List) Listed on NZIoC (New Zealand Inventory of Chemicals) Listed on PICCS (Philippines Inventory of Chemicals and Chemical Substances) Listed on the United States TSCA (Toxic Substances Control Act) inventory Listed on INSQ (Mexican national Inventory of Chemical Substances)

SECTION 16: Other information Date of issue : 15/10/1979 : 10/08/2016 Revision date Supersedes : 15/10/2013 Indication of changes: Training advice

: Users of breathing apparatus must be trained. Ensure operators understand the toxicity hazard. Ensure operators understand the flammability hazard.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

8/9

ed by OCD: 1/20/2025 5:11:19 PM		Pe
ermian Resources Corporation	H₂S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H	Eddy County, New Mexico
PRAXAI	according to the Hazardous Products Regulation (February 11, 2015)	es: 10-15-2013
Other information	 When you mix two or more chemicals, you can create ad and evaluate the safety information for each component I Consult an industrial hygienist or other trained person wh Before using any plastics, confirm their compatibility with Praxair asks users of this product to study this SDS and I and safety information. To promote safe use of this produ agents, and contractors of the information in this SDS an and safety information, [2] furnish this information to each each purchaser to notify its employees and customers of information The opinions expressed herein are those of qualified exp believe that the information contained herein is current as Since the use of this information and the conditions of us Canada Inc, it is the user's obligation to determine the co Praxair Canada Inc, SDSs are furnished on sale or delive independent distributors and suppliers who package and SDSs for these products, contact your Praxair sales repri supplier, or download from www.praxair.ca. If you have q would like the document number and date of the latest SI Praxair Suppliers in your area, phone or write Praxair Cara Address: Praxair Canada Inc, 1 City Centre Drive, Suite of PRAXAIR and the Flowing Airstream design are tradema Technology, Inc. in the United States and/or other countril 	before you produce the mixture. en you evaluate the end product. this product become aware of the product hazards ict, a user should (1) notify employees, d of any other known product hazards in purchaser of the product, and (3) ask the product hazards and safety erts within Praxair Canada Inc. We s of the date of this Safety Data Sheet. e are not within the control of Praxair nditions of safe use of the product. ery by Praxair Canada Inc, or the sell our products. To obtain current esentative, local distributor, or uestions regarding Praxair SDSs, DSs, or would like the names of the hada Inc, (Phone: 1-888-257-5149; 1200, Mississauga, Ontario, L5B 1M2). rks or registered trademarks of Praxair
NFPA health hazard	: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was given.	4
NFPA fire hazard	 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn readily. 	

and are not reactive with water. HMIS III Rating : 2 Moderate Hazard - Temporary or minor injury may occur : 4 Severe Hazard - Flammable gases, or very volatile flammable liquids with flash points below 73 F, and boiling points below 100 F. Materials may ignite spontaneously with air. (Class IA) Flammability

: 2 Moderate Hazard - Materials that are unstable and may undergo violent chemical changes at normal temperature and pressure with low risk for explosion. Materials may react violently with water or form peroxides upon exposure to air.

: 0 - Normally stable, even under fire exposure conditions,

SDS Canada (GHS) - Praxair

NFPA reactivity

Health

Physical

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Appendix B SO₂ SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290

al Name: SULFUR DIOXIDE	SDS ID: MAT2
Section 1 - PRODUCT AND COMPANY IDENTIFICATION	
Material Name	
SULFUR DIOXIDE	
Synonyms	
MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXID	
SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR O	XIDE;
SULFUR OXIDE(SO2)	
Chemical Family	
inorganic, gas	
Product Description	
Classification determined in accordance with Compressed Gas Association standards.	
Product Use	
Industrial and Specialty Gas Applications.	
Restrictions on Use	
None known.	
Details of the supplier of the safety data sheet	
MATHESON TRI-GAS, INC.	
3 Mountainview Road	
Warren, NJ 07059	
General Information: 1-800-416-2505	
Emergency #: 1-800-424-9300 (CHEMTREC)	
Outside the US: 703-527-3887 (Call collect)	
Section 2 - HAZARDS IDENTIFICATION	
Classification in accordance with paragraph (d) of 29 CFR 1910.1200.	
Gases Under Pressure - Liquefied gas	
Acute Toxicity - Inhalation - Gas - Category 3	
Skin Corrosion/Irritation - Category 1B	
Serious Eye Damage/Eye Irritation - Category 1	
Simple Asphyxiant	
GHS Label Elements	
Symbol(s)	
$\wedge \wedge \wedge$	
$\langle \langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle$	
Signal Word	
Danger	
Hazard Statement(s) Contains gas under pressure; may explode if heated.	
Contains gas under pressure; may explode if neated. Toxic if inhaled.	
Causes severe skin burns and eye damage.	
May displace oxygen and cause rapid suffocation.	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s)	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s) Prevention	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s)	

Page 1 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H	Eddy County, New Mexico

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Wash thoroughly after handling. Do not breathe dusts or mists. Response IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER or doctor. Specific treatment (see label). Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up. Protect from sunlight. Disposal Dispose of contents/container in accordance with local/regional/national/international regulations. Other Hazards Contact with liquified gas may cause frostbite.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
CAS Component Name Percent				
7446-09-5	Sulfur dioxide	100.0		
Section 4 - FIRST AID MEASURES				

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention. Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

No information on significant adverse effects.

- Indication of any immediate medical attention and special treatment needed
- Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

ermian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	
MATHESON		
ask The Gas Professionals'		
	Safety Data Sheet	
Material Name: SULFUR DIOXID	E	SDS ID: MAT22290
	Section 5 - FIRE FIGHTING MEASURES	
Extinguishing Media	L_	
Suitable Extinguishing Med carbon dioxide, regular dry ch	a emical, Large fires: Use regular foam or flood with fine wat	er sprav.
Unsuitable Extinguishing M		
None known.		
Special Hazards Arising from	m the Chemical	
Negligible fire hazard. Hazardous Combustion Pro	ducts	
sulfur oxides		
Fire Fighting Measures		
	if it can be done without risk. Cool containers with water sp ls of tanks. Keep unnecessary people away, isolate hazard ar	
	and Precautions for Firefighters	ca and deny entry.
	ng gear including self contained breathing apparatus (SCBA) for protection against
possible exposure.	· · · · · ·	
	tion 6 - ACCIDENTAL RELEASE MEASURE	S
	ctive Equipment and Emergency Procedures ning and equipment, see Section 8.	
	Containment and Cleaning Up	
Keep unnecessary people awa	y, isolate hazard area and deny entry. Stay upwind and keep	
	entering. Evacuation radius: 150 feet. Stop leak if possible	without personal risk.
Environmental Precautions	ay. Do not get water directly on material.	
Avoid release to the environm	ent.	
Avoid release to the environm	Section 7 - HANDLING AND STORAGE	
Avoid release to the environm	Section 7 - HANDLING AND STOKAGE	
Precautions for Safe Handlin	ng	
Precautions for Safe Handlin Do not get in eyes, on skin, or	ag on clothing. Do not breathe gas, fumes, vapor, or spray. Wa	
Precautions for Safe Handlin Do not get in eyes, on skin, or handling. Use only outdoors of	ng on clothing. Do not breathe gas, fumes, vapor, or spray. Wa r in a well-ventilated area. Wear protective gloves/protective	e clothing/eye
Precautions for Safe Handlin Do not get in eyes, on skin, or handling. Use only outdoors of protection/face protection. Co	ag on clothing. Do not breathe gas, fumes, vapor, or spray. Wa	e clothing/eye vorkplace. Do not eat,
Precautions for Safe Handlin Do not get in eyes, on skin, or handling. Use only outdoors o protection/face protection. Co drink or smoke when using th	ng on clothing. Do not breathe gas, fumes, vapor, or spray. Wa r in a well-ventilated area. Wear protective gloves/protective ntaminated work clothing should not be allowed out of the w	e clothing/eye vorkplace. Do not eat,
Precautions for Safe Handlii Do not get in eyes, on skin, or handling. Use only outdoors o protection/face protection. Co drink or smoke when using th Conditions for Safe Storage, Store in a well-ventilated place	ng on clothing. Do not breathe gas, fumes, vapor, or spray. Wa r in a well-ventilated area. Wear protective gloves/protective ntaminated work clothing should not be allowed out of the w is product. Keep only in original container. Avoid release to	e clothing/eye vorkplace. Do not eat,
Precautions for Safe Handlin Do not get in eyes, on skin, or handling. Use only outdoors o protection/face protection. Co drink or smoke when using th Conditions for Safe Storage, Store in a well-ventilated place Store locked up.	ng on clothing. Do not breathe gas, fumes, vapor, or spray. Wa r in a well-ventilated area. Wear protective gloves/protective ntaminated work clothing should not be allowed out of the w is product. Keep only in original container. Avoid release to Including any Incompatibilities	e clothing/eye vorkplace. Do not eat,
Precautions for Safe Handlin Do not get in eyes, on skin, or handling. Use only outdoors o protection/face protection. Co drink or smoke when using th Conditions for Safe Storage, Store in a well-ventilated place Store locked up. Protect from sunlight.	ng on clothing. Do not breathe gas, fumes, vapor, or spray. Wa r in a well-ventilated area. Wear protective gloves/protective ntaminated work clothing should not be allowed out of the w is product. Keep only in original container. Avoid release to Including any Incompatibilities	e clothing/eye vorkplace. Do not eat, the environment.

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Component Exposure Limits

Sulfur dioxide	7446-09-5
ACGIH:	0.25 ppm STEL

Page 3 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources CorporationH2S Contingency PlanEddy County, New MexicoAstrodog 0810 111H, 112H, 121H,
122H, 161H, 172H122H, 161H, 172H

Safety Data Sheet

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA ; 5 mg/m3 TWA	
	5 ppm STEL ; 13 mg/m3 STEL	
	100 ppm IDLH	
OSHA (US):	5 ppm TWA ; 13 mg/m3 TWA	
Mexico:	0.25 ppm STEL [PPT-CT]	

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)

There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits. Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact. Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES				
Appearance	colorless gas	Physical State	gas	
Odor	irritating odor	Color	colorless	
Odor Threshold	3 - 5 ppm	рН	(Acidic in solution)	
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)	
Boiling Point Range	Not available	Freezing point	Not available	
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available	
Autoignition Temperature	Not available	Flash Point	(Not flammable)	
Lower Explosive Limit	Not available	Decomposition temperature	Not available	
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 °C	
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C	

Page 4 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Astrodog 0810 111H, 112H, 121H,	
	122H, 161H, 172H	

Safety Data Sheet

Mate

2290

rial Name: SULFUR DIOXIDE SDS ID: MAT22				
Water Solubility	22.8 % (@ 0 °C)	Partition coefficient: n- octanol/water	Not available	
Viscosity	Not available	Kinematic viscosity	Not available	
Solubility (Other)	Not available	Density	Not available	
Physical Form	liquified gas	Molecular Formula	S-02	
Molecular Weight	64.06			
Solvent Solubility Soluble alcohol, acetic acid, sulfuric		Benzene, sulfuryl chloride, nitrobenzene ILITY AND REACTIVITY	s, Toluene, acetone	
Reactivity No reactivity hazard is expect Chemical Stability				
Stable at normal temperature Possibility of Hazardous R Will not polymerize. Conditions to Avoid	eactions			
	rial. Containers may rup	ture or explode if exposed to heat.		
bases, combustible materials	s, halogens, metal carbid	e, metal oxides, metals, oxidizing materia	als, peroxides, reducing	
agents Hazardous decomposition oxides of sulfur	products			
		DLOGICAL INFORMATION		
Information on Likely Routes of Exposure Inhalation Toxic if inhaled. Causes damage to respiratory system, burns, difficulty breathing Skin Contact skin burns Eye Contact eye burns Ingestion burns, nausea, vomiting, diarrhea, stomach pain Acute and Chronic Toxicity Component Analysis - LD50/LC50 The components of this material have been reviewed in various sources and the following selected endpoints are published: Sulfur dioxide (7446-09-5) Inhalation LC50 Rat 965 - 1168 ppm 4 h Product Toxicity Data Acute a Toxicity Toxicity Data				
Acute Toxicity Estimate No data available. Immediate Effects				

Page 5 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

<i>ed by OCD: 1/20/</i> Permian Resource			lan	Eddy County, New Mexico					
criman nesource			H ₂ S Contingency P rodog 0810 111H, 11						
			122H, 161H, 172						
				·					
	MATH	SON							
	askThe Gas	ofessionals™							
		S	afety Data Sheet						
Materia	al Name: SULI		·		SDS ID: MAT22290				
		ostbite, suffocation, res	piratory tract burns, skin burn	is, eye burns					
1	Delayed Effects No information (significant adverse effe	eets.						
	Irritation/Corr	vity Data rns, skin burns, eye bu	TDS						
1	Respiratory Ser		113						
	No data availabl Dermal Sensitiz	ion							
	No data availabl Component Ca	nogenicity							
F	Sulfur dioxide	446-09-5							
	ACGIH:	4 - Not Classifiable as	a Human Carcinogen						
	IARC:	Monograph 54 [1992] (0	Group 3 (not classifiable))						
	Germ Cell Mutagenicity No data available.								
	Tumorigenic Data								
	No data availabl Reproductive T	icity							
	No data availabl	raan Taxiaity Single	Eveneration						
1	Specific Target Organ Toxicity - Single Exposure No target organs identified.								
	Specific Target No target organs	rgan Toxicity - Repea lentified.	ted Exposure						
	Aspiration hazard								
	Not applicable. Medical Condit	ns Aggravated by Exp	osure						
	respiratory disor		ECOLOCICAL INF	ODMATION					
L	Component An	section 12 sis - Aquatic Toxicity	- ECOLOGICAL INFO	JEMATION					
	No LOLI ecotoxicity data are available for this product's components.								
1	Persistence and Degradability No data available.								
	Bioaccumulative Potential No data available.								
	Mobility No data available.								
ſ	ivo uata availabi	Section 13	- DISPOSAL CONSID	ERATIONS					
	Disposal Metho								
	Dispose of conte Component Wa		ce with local/regional/national	l/international regulations.					
		not published waste nu	mbers for this product's comp						
Ļ	US DOT Inform		4 - TRANSPORT INFO	RMATION					
		ULFUR DIOXIDE							

•

ermian Resources Corporation			H ₂ S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H			Eddy County, New Mexico
6	MATH askThe Gas					
			S	afety Data Sh	leet	
Material Name: SULFUR DIOXIDE Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3						SDS ID: MAT22290
	IMDG Informa Shipping Name Hazard Class: 2 UN#: UN1079 Required Label	SULPHUR	DIOXIDE			
	TDG Informatie Shipping Name: Hazard Class: 2 UN#: UN1079 Required Label International B	on: : SULFUR D 3 (s): 2.3 ulk Chemica	l Code	cals required by the II	BC Code to be identified	t as dangerous chemicals in
	ourk.	S	ection 15	- REGULATOR	Y INFORMATIO	N
	U.S. Federal Re This material con (40 CFR 355 Ap require an OSHA	tains one or pendix A), S.	ARA Sectio	following chemicals n 313 (40 CFR 372.6	required to be identified 5), CERCLA (40 CFR 3	l under SARA Section 302 i02.4), TSCA 12(b), and/or
	Sulfur dioxide	7446-09-5				
	SARA 302:	500 lb TPQ	2			
	OSHA (safety):	1000 lb TQ	(Liquid)			
	SARA 304:	500 lb EPC	-			
	Gas Under Press			bparts B and C) rep Corrosion/Irritation;	orting categories Serious Eye Damage/Ey	ve Irritation; Simple
	Asphyxiant U.S. State Regu					
	The following co Component	mponents ap	CA MA		ving state hazardous sub	stances lists:
	Sulfur dioxide	7446-09-5	\models			
				oxic Enforcement Ac	t (Proposition 65)	
	This product can	VARNING expose you t	o chemicals	s including Sulfur dio		o the State of California to
Dage		is or other re			-	
Page	/ 01 9		ISSU	ie date: 2021-01-30	Revision 8.0	Print date: 2021-01-30

ian Resources Corporation	H₂S Contingency Plan Astrodog 0810 111H, 112H, 121H, 122H, 161H, 172H	Eddy County, New Mexico								
MATHESOI askThe Gas Professional										
	Safety Data Sheet									
Material Name: SULFUR DIOX	DE	SDS ID: MAT22290								
Sulfur dioxide 7446-09-										
Repro/Dev. Tox developm										
Component Analysis - Inv Sulfur dioxide (7446-09-5)	ntory									
US CA AU CN E	U JP - ENCS JP - ISHL KR KECI - Annex 1 KR KEC	CI - Annex 2								
Yes DSL Yes Yes E	IN Yes Yes No									
KR - REACH CCA MX	NZ PH TH-TECI TW, CN VN (Draft)									
No Yes	Yes Yes Yes Yes Yes									
	Section 16 - OTHER INFORMATION									
NFPA Ratings										
Health: 3 Fire: 0 Instability: Hazard Scale: 0 = Minimal	h: 3 Fire: 0 Instability: 0 d Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe									
Summary of Changes SDS update: 02/10/2016										
Key / Legend										
	nce of Governmental Industrial Hygienists; ADR - European F al Oxygen Demand; C - Celsius; CA - Canada; CA/MA/MN/N									
	innesota/New Jersey/Pennsylvania*; CAS - Chemical Abstract tal Response, Compensation, and Liability Act; CFR - Code of									
(US); CLP - Classification, 1	abelling, and Packaging; CN - China; CPR - Controlled Produ	ucts Regulations; DFG -								
DSL - Domestic Substances	Deutsche Forschungsgemeinschaft; DOT - Department of Transportation; DSD - Dangerous Substance Directive; DSL - Domestic Substances List; EC – European Commission; EEC - European Economic Community; EIN -									
	European Inventory of (Existing Commercial Chemical Substances); EINECS - European Inventory of Existing Commercial Chemical Substances; ENCS - Japan Existing and New Chemical Substance Inventory; EPA -									
Environmental Protection A	gency; EU - European Union; F - Fahrenheit; F - Background	(for Venezuela Biological								
Association; ICAO - Interna	nternational Agency for Research on Cancer; IATA - Internati tional Civil Aviation Organization; IDL - Ingredient Disclosur	e List; IDLH -								
	ife and Health; IMDG - International Maritime Dangerous Go Law; IUCLID - International Uniform Chemical Information 1									
	n coefficient; KR KECI Annex 1 - Korea Existing Chemicals CL); KR KECI Annex 2 - Korea Existing Chemicals Inventor									
Existing Chemicals List (KE	CL), KR - Korea; LD50/LC50 - Lethal Dose/ Lethal Concent	ration; KR REACH CCA								
	aluation of Chemical Substances Chemical Control Act; LEL - OLI - List Of LIsts™ - ChemADVISOR's Regulatory Databas									
	Vorkplace; MEL - Maximum Exposure Limits; MX – Mexico; gency; NIOSH - National Institute for Occupational Safety and									
Jersey Trade Secret Registry	; Nq - Non-quantitative; NSL - Non-Domestic Substance List	(Canada); NTP -								
	n; NZ - New Zealand; OSHA - Occupational Safety and Healt PH - Philippines; RCRA - Resource Conservation and Recover									
	thorisation, and restriction of Chemicals; RID - European Rail Reauthorization Act; Sc - Semi-quantitative; STEL - Short-ter									
Page 8 of 9	Issue date: 2021-01-30 Revision 8.0	Print date: 2021-01-30								