Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

	FORM APPROVED
(OMB No. 1004-0137
Ex	pires: October 31, 2021

	5.	Lease	Serial	No
--	----	-------	--------	----

BURI	EAU OF LAND MANAGEMENT		3. Lease Schai ivo.		
Do not use this f	OTICES AND REPORTS ON Worm for proposals to drill or to Jse Form 3160-3 (APD) for suc	6. If Indian, Allottee or	6. If Indian, Allottee or Tribe Name		
abandoned wen.	ose romi oroc-o (Ar b) for suc	лі ріорозаіз.	7 IfII:: 4 - f C A / A	None and None	
	TRIPLICATE - Other instructions on page	9 2	/. If Unit of CA/Agree	ement, Name and/or No.	
1. Type of Well			8. Well Name and No.		
Oil Well Gas W	Vell Other				
2. Name of Operator			9. API Well No.		
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or I	Exploratory Area	
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish,	State	
12. CHE	CK THE APPROPRIATE BOX(ES) TO INC	DICATE NATURE OF NO	TICE, REPORT OR OTH	IER DATA	
TYPE OF SUBMISSION		TYPE OF A	CTION		
Notice of Intent	Acidize Deep Alter Casing Hydra	=	oduction (Start/Resume)	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair New	Construction Re	ecomplete	Other	
Subsequent Report	Change Plans Plug	and Abandon Te	mporarily Abandon		
Final Abandonment Notice	Convert to Injection Plug	Back W	ater Disposal		
completed. Final Abandonment Not is ready for final inspection.)	ns. If the operation results in a multiple comices must be filed only after all requirements				
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)	Title			
Signature		Date			
	THE SPACE FOR FEDE	ERAL OR STATE C	FICE USE		
Approved by			I		
rr		Title	I	Date	
	ned. Approval of this notice does not warrant quitable title to those rights in the subject lead duct operations thereon.		'		
	B U.S.C Section 1212, make it a crime for an		villfully to make to any de	partment or agency of the United States	

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

C-102					G	36 :		Revised July 9, 2024			
Submit Electronic			Energy	v. Mine	State of Ne erals & Natur		es Department		Initial Submittal		
Via OCD Permitt	ing				ONSERVA'		*	Submittal	Amended Report	:	
								Type:	As Drilled		
Property Name and	l Well Number				STARK 5 F	ED COM 52	23H				
		WI	ELL LO	CATIO	ON AND A	CREAGE	DEDICATION	N PLAT			
API Number 30-0	015-48298	Pool Code	13354			Pool Name	ORRAL CANYON	N BONE S	SPRING SOL	ITH	
Property Code		Property N	ame					1, 50112	Well Number		
OGRID No.	3870	Operator N	ame		STARK :	5 FED COM	1		Ground Level Ele	23H evation	
73	77				EOG RESC	•	NC.		3.	167'	
UL or Lot No.	Section	Township	Danas	Lot		E Location	Latitude		Longitude	County	
B	5	26 S	Range 30 E	Lot		1410 FEL	N 32.078087°)3.899437°	EDDY	
		I	F	Bottom :	Hole Location	If Different	From Surface	I			
UL or Lot No.	Section 8	Township 26 S	Range 30 E	Lot		Feet from the E/W	Latitude N 32.050137°		Longitude)3.898475°	County EDDY	
-	0	20 3	30 L		100 T SL	TITISTEE	14 32.030137		J3.090473	LDD1	
Dedicated Acres	Infill or Defi	ning Well Defin	ing Well API			Overlapping Spa	acing Unit (Y/N)	Consolidat	ed Code		
640							YES				
Order Numbers	PENI	DING CO	M AGREE	MENT	Kick Off	Point (KOP		are under Comm	on Ownership: Ye	s No	
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S F		Latitude		Longitude	County	
Α	5	26 S	30 E		50 FNL	1113 FEL	N 32.078945°	W 10	3.898481°	EDDY	
						Point (FTF	<u>′</u>				
UL or lot no.	Section 5	Township 26 S	Range 30 E	Lot		eet from the E/W	Latitude N 32.078807°	W 10	Longitude)3.898480°	County EDDY	
						Point (LTP		00 10	3.030400	LDD1	
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S F	Feet from the E/W	Latitude		Longitude	County	
Р	8	26 S	30 E		100 FSL	1113 FEL	N 32.050137°	W 10)3.898475°	EDDY	
Jnitized Area or A	rea of Uniform I	nterest		Spacing	Unity Type Horizo	ntal Vertical	Ground F	loor Elevation	3192'		
OPERATO	OR CERTIF	FICATION				SURVEY	ORS CERTIFICAT	TION			
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief; and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received The consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.							OSIONAL SUPERIOR				
	a McC	Connell			8/15/2024	_ Signature and	Seal of Professional Surveyor			CTANGE OF CASE	
KAYLA M	ICCONNE	ELL	Date			I hereby cer notes of act	rtify that the well locat tual surveys made by m correct to the best of r	ion shown on e or under m	this plat was plott		
Print Name KAYLA_N	ICCONNI	ELL@EO	GRESOR	CES.C	OM		LL L. MCDONAL		.L.S.	William Will	
E-mail Address						- Certificate Nur	Certificate Number 29821 Date of Survey FEBRUARY 8, 2024				

C-102	St	ate of New	z Mexico			Revised July 9, 2024
Submit Electronically	Energy, Minerals			es Departmen	t	Initial Submittal
Via OCD Permitting	OIL CON				Submittal	Amended Report
					Type:	As Drilled
Property Name and Well Number	1		D 00M 5	2011		
	<u> </u>	TARK 5 FE	:D COM 52	23H		
SURFACE LOCATION NEW MEXICO EAST NAD 1983 X=675727' Y=392415' LAT=N32.078087° LONG=W103.899437° NAD 1927 X=634541' Y=392358' LAT=N32.077962° LONG=W103.898956° 361' FNL 1410' FEL KOP LOCATION NEW MEXICO EAST NAD 1983 X=676022' Y=392729' LAT=N32.078945° LONG=W103.898481° NAD 1927 X=634836' Y=392671' LAT=N32.078820° LONG=W103.898000° 50' FNL 1113' FEL	31 32 6 5 7 8 - 7 8 - 7 8	X = 674473' Y = 392766' X = 674531' Y = 387455' X = 674525' Y = 382138'	SHL AZ = 43.28° 430.2′ AZ = 43.28° 100′	32 33 33 33 1113 1113 1113 1113 1113 111	677153'	FIRST TAKE POINT NEW MEXICO EAST NAD 1983 X=676022' Y=392679' LAT=N32.078807° LONG=W103.898480° NAD 1927 X=634836' Y=392621' LAT=N32.078683° LONG=W103.898000° 100' FNL 1113' FEL LOWER MOST PERF./ BOTTOM HOLE LOCATION NEW MEXICO EAST NAD 1983 X=676066' Y=382249' LAT=N32.050137° LONG=W103.898475° NAD 1927 X=634880' Y=382192' LAT=N32.050013° LONG=W103.897996° 100' FSL 1113' FEL

Stark 5 Fed Com 523H

Revised Permit Information 07/19/2024:

Well Name: Stark 5 Fed Com 523H; FKA Banjo 5 Fed Com 762H

Location: SHL: 361' FNL & 1410' FEL, Section 5, T-26-S, R-30-E, EDDY Co., N.M.

BHL: 100' FSL & 1113' FEL, Section 8, T-26-S, R-30-E, EDDY Co., N.M.

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,320	0	1,320	10-3/4"	40.5#	J-55	STC
9-7/8"	0	3,559	0	3,540	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	8,951	0	8,929	6"	20#	P110-EC	VAM Sprint SF
6-3/4"	8,951	19,806	8,929	9,506	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availability.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

		Wt.	Yld	Slurry Description				
Depth	No. Sacks	ppg	Ft3/sk	Siurry Description				
1,320' 10-3/4''	300	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)				
	120	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1120')				
3,540' 8-5/8"	220	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)				
	110	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 2847')				
19,806' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)				
	1650	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 5,826')				

Stark 5 Fed Com 523H

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the 6" and 5-1/2" production casing strings with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (5,826') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,320'	Fresh - Gel	8.6-8.8	28-34	N/c
1,320' – 3,540'	Brine	9.0-10.5	28-34	N/c
3,540' – 19,806'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Shallow Target Offline Bradenhead Production Cement (EOG BLM Variance 3c)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)
- Alternate Shallow Casing Designs (EOG BLM Variance 5a)

8. TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS:

J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Stark 5 Fed Com 523H

361' FNL 1410' FEL

FNL Proposed Wellbore

KB: 3192' GL: 3167'

Section 5

T-26-S, R-30-E

API: 30-025-****

Bit Size: 13" 10-3/4", 40.5#, J-55, STC @ 0' - 1,320' If production Bradenhead is performed, **TOC** will be at surface TOC @ 3,059', if performed Bit Size: 9-7/8" conventionally. 8-5/8", 32.#, J-55, BTC-SC @ 0' - 3,540' Lateral: 19,806' MD, 9,506' TVD **Upper Most Perf:** Bit Size: 7-7/8"|Bit Size: 6-3/4" 100' FNL & 1113' FEL Sec. 5 6", 24.5#, P110-EC, VAM Sprint-TC **Lower Most Perf:** 100' FSL & 1113' FEL Sec. 8 @ 0' - 8,929' BH Location: 100' FSL & 1113' FEL Sec. 8, T-26-S, R-30-E 5-1/2", 20.#, P110-EC, VAM Sprint SF @ 8,929' - 19,806' KOP: 9,051' MD, 9,029' TVD EOC: 9,800' MD, 9,506' TVD

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,242'
Tamarisk Anhydrite	1,292'
Top of Salt	1,549'
Base of Salt	3,436'
Lamar	3,634'
Bell Canyon	3,661'
Cherry Canyon	577'
Brushy Canyon	5,826'
Bone Spring Lime	7,481'
Leonard (Avalon) Shale	7,547'
1st Bone Spring Sand	8,412'
2nd Bone Spring Shale	8,685'
2nd Bone Spring Sand	9,134'
3rd Bone Spring Carb	9,615'
3rd Bone Spring Sand	10,326'
Wolfcamp	10,738'
TD	9,506'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	3,661'	Oil
Cherry Canyon	577'	Oil
Brushy Canyon	5,826'	Oil
Leonard (Avalon) Shale	7,547'	Oil
1st Bone Spring Sand	8,412'	Oil
2nd Bone Spring Shale	8,685'	Oil
2nd Bone Spring Sand	9,134'	Oil

Midland

Eddy County, NM (NAD 83 NME) Stark 5 Fed Com #523H

OH

Plan: Plan #0.1 RT

Standard Planning Report

08 August, 2024

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com Well: #523H

Wellbore: OH
Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

Minimum Curvature

Project Eddy County, NM (NAD 83 NME)

Map System: US State Plane 1983
Geo Datum: North American Datum 1983

Map Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

Using geodetic scale factor

Site Stark 5 Fed Com

 Site Position:
 Northing:
 392,302.00 usft
 Latitude:
 32° 4′ 39.959 N

 From:
 Map
 Easting:
 676,510.00 usft
 Longitude:
 103° 53′ 48.874 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #523H

 Well Position
 +N/-S
 0.0 usft
 Northing:
 392,415.00 usft
 Latitude:
 32° 4′ 41.108 N

 +E/-W
 0.0 usft
 Easting:
 675,727.00 usft
 Longitude:
 103° 53′ 57.969 W

+E/-W 0.0 usft Easting: 675,727.00 usft Longitude: 103° 53° 57.969 W

Position Uncertainty 0.0 usft Wellhead Elevation: usft Ground Level: 3,167.0 usft

Grid Convergence: 0.23 °

Wellbore OH

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2020
 8/8/2024
 6.31
 59.61
 47,048.69959321

Design Plan #0.1 RT

Audit Notes:

Version: PLAN Tie On Depth: 0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 178.09

Plan Survey Tool Program Date 8/8/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 19,805.5 Plan #0.1 RT (OH) EOG MWD+IFR1

MWD + IFR1

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com Well: #523H

Wellbore: OH
Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,417.0	0.00	0.00	1,417.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,716.4	5.99	43.21	1,715.8	11.4	10.7	2.00	2.00	0.00	43.21	
5,548.6	5.99	43.21	5,527.2	302.7	284.4	0.00	0.00	0.00	0.00	
5,848.0	0.00	0.00	5,826.0	314.1	295.1	2.00	-2.00	0.00	180.00	
9,050.5	0.00	0.00	9,028.5	314.1	295.1	0.00	0.00	0.00	0.00	KOP(Stark 5 Fed Con
9,271.0	26.47	180.00	9,241.2	264.1	295.1	12.01	12.01	-81.65	180.00	FTP(Stark 5 Fed Corr
9,800.4	90.00	179.76	9,505.9	-163.3	296.4	12.00	12.00	-0.05	-0.27	
19,805.5	90.00	179.76	9,506.0	-10,168.3	339.1	0.00	0.00	0.00	0.00	PBHL(Stark 5 Fed Co

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com

 Well:
 #523H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

Design:	Plan #0.1 RT								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0			700.0						
	0.00	0.00		0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,417.0	0.00	0.00	1,417.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	1.66	43.21	1,500.0	0.9	0.8	-0.8	2.00	2.00	0.00
1,600.0	3.66	43.21	1,599.9	4.3	4.0	-4.1	2.00	2.00	0.00
1,700.0	5.66	43.21	1,699.5	10.2	9.6	-9.9	2.00	2.00	0.00
1,716.4	5.99	43.21	1,715.8	11.4	10.7	-11.0	2.00	2.00	0.00
1,800.0	5.99	43.21	1,799.0	17.7	16.7	-17.2	0.00	0.00	0.00
1,900.0	5.99	43.21	1,898.5	25.3	23.8	-24.5	0.00	0.00	0.00
2,000.0	5.99	43.21	1,997.9	33.0	31.0	-31.9	0.00	0.00	0.00
2,100.0	5.99	43.21	2,097.4	40.6	38.1	-39.3	0.00	0.00	0.00
2,200.0	5.99	43.21	2,196.8	48.2	45.2	-46.6	0.00	0.00	0.00
2,300.0	5.99	43.21	2,296.3	55.8	52.4	-54.0	0.00	0.00	0.00
2,400.0	5.99	43.21	2,395.7	63.4	59.5	-61.3	0.00	0.00	0.00
2,500.0	5.99	43.21	2,495.2	71.0	66.7	-68.7	0.00	0.00	0.00
2,600.0	5.99	43.21	2,594.6	78.6	73.8	-76.1	0.00	0.00	0.00
2,700.0	5.99	43.21	2,694.1	86.2	81.0	-83.4	0.00	0.00	0.00
2,800.0	5.99	43.21	2,793.5	93.8	88.1	-90.8	0.00	0.00	0.00
2,900.0 3,000.0	5.99 5.99	43.21 43.21	2,893.0 2,992.5	101.4 109.0	95.2 102.4	-98.1 -105.5	0.00	0.00 0.00	0.00
3,100.0	5.99 5.99	43.21	2,992.5 3,091.9	116.6	102.4	-105.5 -112.9	0.00 0.00	0.00	0.00 0.00
3,200.0	5.99	43.21	3,191.4	124.2	116.7	-112.9	0.00	0.00	0.00
3,300.0	5.99	43.21	3,290.8	131.8	123.8	-127.6	0.00	0.00	0.00
3,400.0	5.99	43.21	3,390.3	139.4	130.9	-134.9	0.00	0.00	0.00
3,500.0	5.99	43.21	3,489.7	147.0	138.1	-142.3	0.00	0.00	0.00
3,600.0	5.99	43.21	3,589.2	154.6	145.2	-149.7	0.00	0.00	0.00
3,700.0	5.99	43.21	3,688.6	162.2	152.4	-157.0	0.00	0.00	0.00
3,800.0	5.99	43.21	3,788.1	169.8	159.5	-164.4	0.00	0.00	0.00
3,900.0	5.99	43.21	3,887.5	177.4	166.7	-171.7	0.00	0.00	0.00
4,000.0	5.99	43.21	3,987.0	185.0	173.8	-179.1	0.00	0.00	0.00
4,100.0	5.99	43.21	4,086.5	192.6	180.9	-186.5	0.00	0.00	0.00
4,200.0	5.99	43.21	4,185.9	200.2	188.1	-193.8	0.00	0.00	0.00
4,300.0	5.99	43.21	4,285.4	207.8	195.2	-201.2	0.00	0.00	0.00
4,400.0	5.99	43.21	4,384.8	215.4	202.4	-208.5	0.00	0.00	0.00
4,500.0	5.99	43.21	4,484.3	223.0	209.5	-215.9	0.00	0.00	0.00
4,600.0	5.99	43.21	4,583.7	230.6	216.7	-223.3	0.00	0.00	0.00
4,700.0	5.99	43.21	4,683.2	238.2	223.8	-230.6	0.00	0.00	0.00
4,800.0	5.99	43.21	4,782.6	245.8	230.9	-238.0	0.00	0.00	0.00
4,900.0	5.99	43.21	4,882.1	253.4	238.1	-245.3	0.00	0.00	0.00
5,000.0	5.99	43.21	4,981.5	261.0	245.2	-252.7	0.00	0.00	0.00
5,100.0	5.99	43.21	5,081.0	268.6	252.4	-260.1	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com

 Well:
 #523H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

sign:	Flail #0.1 KT								
nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	5.99	43.21	5,180.5	276.2	259.5	-267.4	0.00	0.00	0.00
5,300.0	5.99	43.21	5,279.9	283.8	266.6	-274.8	0.00	0.00	0.00
5,400.0	5.99	43.21	5,379.4	291.4	273.8	-282.1	0.00	0.00	0.00
5,500.0	5.99	43.21	5,478.8	299.0	280.9	-289.5	0.00	0.00	0.00
5,548.6	5.99	43.21	5,527.2	302.7	284.4	-293.1	0.00	0.00	0.00
5,600.0	4.96	43.21	5,578.3	306.3	287.8	-296.5	2.00	-2.00	0.00
5,700.0	2.96	43.21	5,678.1	311.3	292.5	-301.4	2.00	-2.00	0.00
5,800.0	0.96	43.21	5,778.0	313.8	292.3	-303.8	2.00	-2.00 -2.00	0.00
5,848.0	0.00	0.00	5,826.0	314.1	294.6	-303.6	2.00	-2.00 -2.00	0.00
5,900.0	0.00	0.00	5,878.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,000.0	0.00	0.00	5,978.0	314.1	295.1	-304.1	0.00	0.00	0.00
0,000.0	0.00		5,976.0						
6,100.0	0.00	0.00	6,078.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,200.0	0.00	0.00	6,178.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,300.0	0.00	0.00	6,278.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,400.0	0.00	0.00	6,378.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,500.0	0.00	0.00	6,478.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,600.0	0.00	0.00	6,578.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,700.0	0.00	0.00	6,678.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,800.0	0.00	0.00	6,778.0	314.1	295.1	-304.1	0.00	0.00	0.00
6,900.0	0.00	0.00	6,878.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,000.0	0.00	0.00	6,978.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,100.0	0.00	0.00	7,078.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,200.0	0.00	0.00	7,178.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,300.0	0.00	0.00	7,278.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,400.0	0.00	0.00	7,378.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,500.0	0.00	0.00	7,478.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,600.0	0.00	0.00	7,578.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,700.0	0.00	0.00	7,678.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,800.0	0.00	0.00	7,778.0	314.1	295.1	-304.1	0.00	0.00	0.00
7,900.0	0.00	0.00	7,878.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,000.0	0.00	0.00	7,978.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,100.0	0.00	0.00	8,078.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,200.0	0.00	0.00	8,178.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,300.0	0.00	0.00	8,278.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,400.0	0.00	0.00	8,378.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,500.0	0.00	0.00	8,478.0	314.1	295.1	-304.1	0.00	0.00	0.00
,									
8,600.0	0.00	0.00	8,578.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,700.0 8,800.0	0.00	0.00 0.00	8,678.0	314.1	295.1	-304.1	0.00	0.00	0.00
	0.00		8,778.0 8,878.0	314.1	295.1	-304.1	0.00	0.00	0.00
8,900.0 9,000.0	0.00 0.00	0.00 0.00	8,878.0 8,978.0	314.1 314.1	295.1 295.1	-304.1 -304.1	0.00 0.00	0.00 0.00	0.00 0.00
9,050.5	0.00	0.00	9,028.5	314.1	295.1	-304.1	0.00	0.00	0.00
9,075.0	2.94	180.00	9,053.0	313.5	295.1	-303.5	12.01	12.01	0.00
9,100.0	5.94	180.00	9,077.9	311.5	295.1	-301.5	12.01	12.01	0.00
9,125.0	8.94	180.00	9,102.7	308.3	295.1	-298.3	12.01	12.01	0.00
9,150.0	11.95	180.00	9,127.3	303.8	295.1	-293.8	12.01	12.01	0.00
9,175.0	14.95	180.00	9,151.6	298.0	295.1	-288.0	12.01	12.01	0.00
9,775.0	17.95	180.00	9,175.6	290.9	295.1	-280.9	12.01	12.01	0.00
9,200.0 9,225.0	20.95	180.00	9,175.6	290.9	295.1	-260.9 -272.6	12.01	12.01	0.00
9,250.0	20.95	180.00	9,199.1	273.0	295.1	-272.6 -263.0	12.01	12.01	0.00
9,250.0 9,271.0	23.95 26.47	180.00	9,222.2	273.0 264.1	295.1	-253.0 -254.1	12.01	12.01	0.00
9,275.0 9,300.0	26.95	180.00	9,244.8	262.3	295.1	-252.3	12.00	12.00	-0.13
9.300.0	29.95	179.97	9,266.8	250.4	295.1	-240.4	12.00	12.00	-0.11

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com

 Well:
 #523H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

Design:	Plan #0.1 RT								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,350.0	35.95	179.92	9,308.7	223.2	295.1	-213.2	12.00	12.00	-0.08
9,375.0	38.95	179.91	9,328.6	208.0	295.2	-198.0	12.00	12.00	-0.07
9,400.0	41.95	179.89	9,347.6	191.8	295.2	-181.8	12.00	12.00	-0.06
9,425.0	44.95	179.88	9,365.7	174.6	295.2	-164.6	12.00	12.00	-0.05
9,450.0	47.95	179.87	9,383.0	156.4	295.3	-146.5	12.00	12.00	-0.05
9,475.0	50.95	179.85	9,399.2	137.5	295.3	-127.5	12.00	12.00	-0.04
9,500.0	53.95	179.84	9,414.5	117.6	295.4	-107.7	12.00	12.00	-0.04
9,525.0	56.95	179.84	9,428.6	97.0	295.4	-87.1	12.00	12.00	-0.04
9,550.0	59.95	179.83	9,441.7	75.7	295.5	-65.9	12.00	12.00	-0.04
9,575.0	62.95	179.82	9,453.7	53.8	295.5	-43.9	12.00	12.00	-0.03
9,600.0	65.95	179.81	9,464.4	31.2	295.6	-21.4	12.00	12.00	-0.03
9,625.0	68.95	179.80	9,474.0	8.1	295.7	1.7	12.00	12.00	-0.03
9,650.0	71.95	179.80	9,482.4	-15.4	295.8	25.3	12.00	12.00	-0.03
9,675.0	74.95	179.79	9,489.5	-39.4	295.9	49.2	12.00	12.00	-0.03
9,700.0	77.95	179.78	9,495.4	-63.7	296.0	73.5	12.00	12.00	-0.03
9,725.0	80.95	179.77	9,499.9	-88.2	296.1	98.1	12.00	12.00	-0.03
9,750.0	83.95	179.77	9,503.2	-113.0	296.2	122.8	12.00	12.00	-0.03
9,775.0	86.95	179.76	9,505.2	-137.9	296.3	147.7	12.00	12.00	-0.03
9,800.4	90.00	179.76	9,505.9	-163.3	296.4	173.1	12.00	12.00	-0.03
9,900.0	90.00	179.76	9,505.9	-262.9	296.8	272.7	0.00	0.00	0.00
10,000.0	90.00	179.76	9,505.9	-362.9	297.2	372.6	0.00	0.00	0.00
10,100.0	90.00	179.76	9,505.9	-462.9	297.6	472.6	0.00	0.00	0.00
10,200.0	90.00	179.76	9,505.9	-562.9	298.1	572.6	0.00	0.00	0.00
10,300.0	90.00	179.76	9,505.9	-662.9	298.5	672.5	0.00	0.00	0.00
10,400.0	90.00	179.76	9,505.9	-762.9	298.9	772.5	0.00	0.00	0.00
10,500.0	90.00	179.76	9,505.9	-862.9	299.3	872.4	0.00	0.00	0.00
10,600.0	90.00	179.76	9,505.9	-962.9	299.8	972.4	0.00	0.00	0.00
10,700.0	90.00	179.76	9,505.9	-1,062.9	300.2	1,072.3	0.00	0.00	0.00
10,800.0	90.00	179.76	9,505.9	-1,162.9	300.6	1,172.3	0.00	0.00	0.00
10,900.0	90.00	179.76	9,505.9	-1,262.9	301.1	1,272.3	0.00	0.00	0.00
11,000.0	90.00	179.76	9,505.9	-1,362.9	301.5	1,372.2	0.00	0.00	0.00
11,100.0	90.00	179.76	9,505.9	-1,462.9	301.9	1,472.2	0.00	0.00	0.00
11,200.0	90.00	179.76	9,505.9	-1,562.9	302.3	1,572.1	0.00	0.00	0.00
11,300.0	90.00	179.76	9,505.9	-1,662.9	302.8	1,672.1	0.00	0.00	0.00
11,400.0	90.00	179.76	9,505.9	-1,762.9	303.2	1,772.0	0.00	0.00	0.00
11,500.0	90.00	179.76	9,505.9	-1,862.9	303.6	1,872.0	0.00	0.00	0.00
11,600.0	90.00	179.76	9,505.9	-1,962.9	304.0	1,972.0	0.00	0.00	0.00
11,700.0	90.00	179.76	9,505.9	-2,062.9	304.5	2,071.9	0.00	0.00	0.00
11,800.0	90.00	179.76	9,505.9	-2,162.9	304.9	2,171.9	0.00	0.00	0.00
11,900.0	90.00	179.76	9,505.9	-2,262.9	305.3	2,271.8	0.00	0.00	0.00
12,000.0	90.00	179.76	9,505.9	-2,362.9	305.8	2,371.8	0.00	0.00	0.00
12,100.0	90.00	179.76	9,505.9	-2,462.9	306.2	2,471.7	0.00	0.00	0.00
12,200.0	90.00	179.76	9,505.9	-2,562.9	306.6	2,571.7	0.00	0.00	0.00
12,300.0	90.00	179.76	9,505.9	-2,662.9	307.0	2,671.7	0.00	0.00	0.00
12,400.0	90.00	179.76	9,505.9	-2,762.9	307.5	2,771.6	0.00	0.00	0.00
12,500.0	90.00	179.76	9,505.9	-2,862.9	307.9	2,871.6	0.00	0.00	0.00
12,600.0	90.00	179.76	9,505.9	-2,962.9	308.3	2,971.5	0.00	0.00	0.00
12,700.0	90.00	179.76	9,505.9	-3,062.9	308.7	3,071.5	0.00	0.00	0.00
12,800.0	90.00	179.76	9,505.9	-3,162.9	309.2	3,171.5	0.00	0.00	0.00
12,900.0	90.00	179.76	9,505.9	-3,262.9	309.6	3,271.4	0.00	0.00	0.00
13,000.0	90.00	179.76	9,505.9	-3,362.9	310.0	3,371.4	0.00	0.00	0.00
13,100.0	90.00	179.76	9,505.9	-3,462.9	310.4	3,471.3	0.00	0.00	0.00
13,200.0	90.00	179.76	9,505.9	-3,562.9	310.9	3,571.3	0.00	0.00	0.00
13,300.0	90.00	179.76	9,505.9	-3,662.9	311.3	3,671.2	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com

 Well:
 #523H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #523H

kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

esign:	Flall #U. I KI								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,400.0	90.00	179.76	9,505.9	-3,762.9	311.7	3,771.2	0.00	0.00	0.00
13,500.0	90.00	179.76	9,505.9	-3,862.9	312.2	3,871.2	0.00	0.00	0.00
13,600.0	90.00	179.76	9,505.9	-3,962.9	312.6	3,971.1	0.00	0.00	0.00
13,700.0	90.00	179.76	9,505.9	-4,062.9	313.0	4,071.1	0.00	0.00	0.00
13,800.0	90.00	179.76	9,505.9	-4,162.9	313.4	4,171.0	0.00	0.00	0.00
13,900.0	90.00	179.76	9,505.9	-4,262.9	313.9	4,271.0	0.00	0.00	0.00
14,000.0	90.00	179.76	9,505.9	-4,362.9	314.3	4,370.9	0.00	0.00	0.00
14,100.0	90.00	179.76	9,505.9	-4,462.9	314.7	4,470.9	0.00	0.00	0.00
14,200.0	90.00	179.76	9,505.9	-4,562.9	315.1	4,570.9	0.00	0.00	0.00
14,300.0	90.00	179.76	9,505.9	-4,662.9	315.6	4,670.8	0.00	0.00	0.00
14,400.0	90.00	179.76	9,505.9	-4,762.9	316.0	4,770.8	0.00	0.00	0.00
14,500.0	90.00	179.76	9,505.9			4,770.8			
14,600.0	90.00	179.76	9,505.9	-4,862.9 -4,962.9	316.4 316.9	4,070.7	0.00 0.00	0.00 0.00	0.00 0.00
14,000.0	90.00	1/9./0	9,505.9	-4,902.9	310.9	4,970.7	0.00		0.00
14,700.0	90.00	179.76	9,505.9	-5,062.9	317.3	5,070.7	0.00	0.00	0.00
14,800.0	90.00	179.76	9,505.9	-5,162.9	317.7	5,170.6	0.00	0.00	0.00
14,900.0	90.00	179.76	9,505.9	-5,262.9	318.1	5,270.6	0.00	0.00	0.00
15,000.0	90.00	179.76	9,505.9	-5,362.9	318.6	5,370.5	0.00	0.00	0.00
15,100.0	90.00	179.76	9,505.9	-5,462.9	319.0	5,470.5	0.00	0.00	0.00
15,200.0	90.00	179.76	9,505.9	-5,562.9	319.4	5,570.4	0.00	0.00	0.00
15,300.0	90.00	179.76	9,505.9	-5,662.9	319.8	5,670.4	0.00	0.00	0.00
15,400.0	90.00	179.76	9,505.9	-5,762.9	320.3	5,770.4	0.00	0.00	0.00
15,500.0	90.00	179.76	9,505.9	-5,862.9	320.7	5,870.3	0.00	0.00	0.00
15,600.0	90.00	179.76	9,505.9	-5,962.9	321.1	5,970.3	0.00	0.00	0.00
15,700.0	90.00	179.76	9,505.9	-6,062.9	321.5	6,070.2	0.00	0.00	0.00
15,800.0	90.00	179.76	9,505.9	-6,162.9	322.0	6,170.2	0.00	0.00	0.00
15,900.0	90.00	179.76	9,506.0	-6,262.9	322.4	6,270.1	0.00	0.00	0.00
16,000.0	90.00	179.76	9,506.0	-6,362.9	322.8	6,370.1	0.00	0.00	0.00
16,100.0	90.00	179.76	9,506.0	-6,462.9	323.3	6,470.1	0.00	0.00	0.00
16,200.0	90.00	179.76	9,506.0	-6,562.9	323.7	6,570.0	0.00	0.00	0.00
16,300.0	90.00	179.76	9,506.0	-6,662.9	324.1	6,670.0	0.00	0.00	0.00
16,400.0	90.00	179.76	9,506.0	-6,762.9	324.5	6,769.9	0.00	0.00	0.00
16,500.0	90.00	179.76	9,506.0	-6,862.9	325.0	6,869.9	0.00	0.00	0.00
16,600.0	90.00	179.76	9,506.0	-6,962.9	325.4	6,969.8	0.00	0.00	0.00
16,700.0	90.00	179.76	9,506.0	-7,062.9	325.8	7,069.8	0.00	0.00	0.00
16,800.0	90.00	179.76	9,506.0	-7,062.9 -7,162.9	326.2	7,069.8	0.00	0.00	0.00
16,900.0	90.00	179.76	9,506.0	-7,162.9 -7,262.9	326.2	7,169.6	0.00	0.00	0.00
17,000.0	90.00	179.76	9,506.0	-7,262.9 -7,362.9	320. <i>1</i> 327.1	7,269.7	0.00	0.00	0.00
17,000.0	90.00	179.76	9,506.0	-7,362.9 -7,462.9	327.1	7,369.7 7,469.6	0.00	0.00	0.00
17,200.0	90.00	179.76	9,506.0	-7,562.9	328.0	7,569.6	0.00	0.00	0.00
17,300.0	90.00	179.76	9,506.0	-7,662.9	328.4	7,669.6	0.00	0.00	0.00
17,400.0	90.00	179.76	9,506.0	-7,762.9	328.8	7,769.5	0.00	0.00	0.00
17,500.0	90.00	179.76	9,506.0	-7,862.9	329.2	7,869.5	0.00	0.00	0.00
17,600.0	90.00	179.76	9,506.0	-7,962.9	329.7	7,969.4	0.00	0.00	0.00
17,700.0	90.00	179.76	9,506.0	-8,062.9	330.1	8,069.4	0.00	0.00	0.00
17,800.0	90.00	179.76	9,506.0	-8,162.9	330.5	8,169.3	0.00	0.00	0.00
17,900.0	90.00	179.76	9,506.0	-8,262.9	330.9	8,269.3	0.00	0.00	0.00
18,000.0	90.00	179.76	9,506.0	-8,362.9	331.4	8,369.3	0.00	0.00	0.00
18,100.0	90.00	179.76	9,506.0	-8,462.9	331.8	8,469.2	0.00	0.00	0.00
18,200.0	90.00	179.76	9,506.0	-8,562.9	332.2	8,569.2	0.00	0.00	0.00
18,300.0	90.00	179.76	9,506.0	-8,662.9	332.6	8,669.1	0.00	0.00	0.00
18,400.0	90.00	179.76	9,506.0	-8,762.9	333.1	8,769.1	0.00	0.00	0.00
18,500.0	90.00	179.76	9,506.0	-8,862.9	333.5	8,869.0	0.00	0.00	0.00
18,600.0	90.00	179.76	9,506.0	-8,962.9	333.9	8,969.0	0.00	0.00	0.00
18,700.0	90.00	179.76	9,506.0	-9,062.9	334.4	9,069.0	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Stark 5 Fed Com Well: #523H

 Well:
 #523H

 Wellbore:
 OH

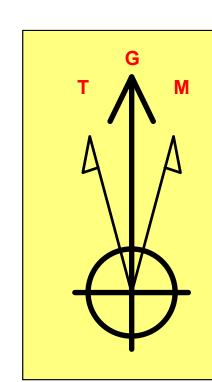
 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #523H


kb = 26' @ 3193.0usft kb = 26' @ 3193.0usft

Grid

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,800.0	90.00	179.76	9,506.0	-9,162.9	334.8	9,168.9	0.00	0.00	0.00
18,900.0	90.00	179.76	9,506.0	-9,262.9	335.2	9,268.9	0.00	0.00	0.00
19,000.0	90.00	179.76	9,506.0	-9,362.9	335.6	9,368.8	0.00	0.00	0.00
19,100.0	90.00	179.76	9,506.0	-9,462.9	336.1	9,468.8	0.00	0.00	0.00
19,200.0	90.00	179.76	9,506.0	-9,562.8	336.5	9,568.8	0.00	0.00	0.00
19,300.0	90.00	179.76	9,506.0	-9,662.8	336.9	9,668.7	0.00	0.00	0.00
19,400.0	90.00	179.76	9,506.0	-9,762.8	337.3	9,768.7	0.00	0.00	0.00
19,500.0	90.00	179.76	9,506.0	-9,862.8	337.8	9,868.6	0.00	0.00	0.00
19,600.0	90.00	179.76	9,506.0	-9,962.8	338.2	9,968.6	0.00	0.00	0.00
19,700.0	90.00	179.76	9,506.0	-10,062.8	338.6	10,068.5	0.00	0.00	0.00
19,805.5	90.00	179.76	9,506.0	-10,168.3	339.1	10,174.0	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Stark 5 Fed Com # - plan hits target cen - Point	0.00 ter	0.00	9,028.5	314.1	295.1	392,729.00	676,022.00	32° 4' 44.204 N	103° 53' 54.525 W
FTP(Stark 5 Fed Com #: - plan hits target cen - Point	0.00 ter	0.00	9,241.2	264.1	295.1	392,679.00	676,022.00	32° 4' 43.709 N	103° 53' 54.528 W
PBHL(Stark 5 Fed Com - plan hits target cen - Point	0.00 ter	0.00	9,506.0	-10,168.3	339.1	382,249.00	676,066.00	32° 3′ 0.492 N	103° 53' 54.505 W

2100

2400

2700

3000

3900

4200

5700

Azimuths to Grid North
True North: -0.23°
Magnetic North: 6.08°

Magnetic Field Strength: 47048.7nT Dip Angle: 59.61° Date: 8/8/2024 Model: IGRF2020

To convert a Magnetic Direction to a Grid Direction, Add 6.08° To convert a Magnetic Direction to a True Direction, Add 6.31° East To convert a True Direction to a Grid Direction, Subtract 0.23°

Eddy County, NM (NAD 83 NME)

Stark 5 Fed Com #523H

Plan #0.1 RT

PROJECT DETAILS: Eddy County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980
Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

WELL DETAILS: #523H

3167.0

kb = 26' @ 3193.0usft

Northing Easting Latittude Longitude
392415.00 675727.00 32° 4' 41.108 N 103° 53' 57.969 W

SECTION DETAILS										
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	1417.0	0.00	0.00	1417.0	0.0	0.0	0.00	0.00	0.0	
3	1716.4	5.99	43.21	1715.8	11.4	10.7	2.00	43.21	-11.0	
4	5548.6	5.99	43.21	5527.2	302.7	284.4	0.00	0.00	-293.1	
5	5848.0	0.00	0.00	5826.0	314.1	295.1	2.00	180.00	-304.1	
6	9050.5	0.00	0.00	9028.5	314.1	295.1	0.00	0.00	-304.1	KOP(Stark 5 Fed Com #523H)
7	9271.0	26.47	180.00	9241.2	264.1	295.1	12.01	180.00	-254.1	FTP(Stark 5 Fed Com #523H)
8	9800.4	90.00	179.76	9505.9	-163.3	296.4	12.00	-0.27	173.1	
9	19805.5	90.00	179.76	9506.0	-10168.3	339.1	0.00	0.00	10174.0	PBHL(Stark 5 Fed Com #523H)

CASING DETAILS

No casing data is available

1200

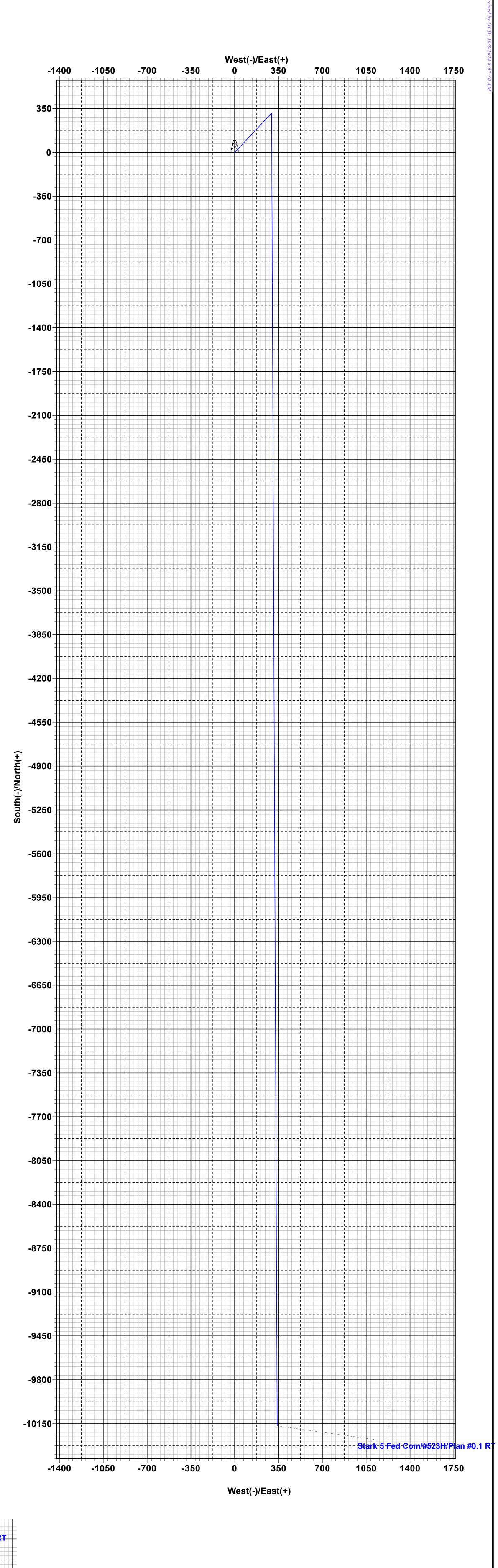
1600

2400

2800

 WELLBORE TARGET DETAILS (MAP CO-ORDINATES)

 Name
 TVD
 +N/-S
 +E/-W
 Northing
 Easting


 KOP(Stark 5 Fed Com #523H)
 9028.5
 314.1
 295.1
 392729.00
 676022.00

 FTP(Stark 5 Fed Com #523H)
 9241.2
 264.1
 295.1
 392679.00
 676022.00

 PBHL(Stark 5 Fed Com #523H)
 9506.0
 -10168.3
 339.1
 382249.00
 676066.00

7600

9200

4000

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

PAD: BANJO 5 FED COM AND STARK 5 FED COM SHL: SEC5, T26S, R30E

Well Name	API#	Sur	face	Intern	iediate	Production	
wen Name	AFI#	MD	TVD	MD	TVD	MD	TVD
Banjo 5 Fed Com #512H (FKA 592H)	30-015-47903	1,320	1,320	3,608	3,536	19,505	9,161
Banjo 5 Fed Com #521H (FKA 503H)	30-015-48201	1,320	1,320	3,811	3,536	20,011	9,506
Banjo 5 Fed Com #588H (FKA 502H)	30-015-47815	1,320	1,320	3,579	3,536	20,069	9,752
Banjo 5 Fed Com #593H (FKA 583H)	30-015-48251	1,320	1,320	3,728	3,536	20,195	9,752
Stark 5 Fed Com #522H (FKA Banjo 5 Fed Com 763H)	30-015-48292	1,320	1,320	3,638	3,536	19,876	9,506
Stark 5 Fed Com #523H (FKA Banjo 5 Fed Com 762H)	30-015-48298	1,320	1,320	3,559	3,536	19,806	9,506
Stark 5 Fed Com #589H (FKA Banjo 5 Fed Com 773H)	30-015-48197	1,320	1,320	3,548	3,536	20,040	9,752
Stark 5 Fed Com #594H (FKA Banjo 5 Fed Com 802H)	30-015-48206	1,320	1,320	3,599	3,536	20,088	9,752

ALL PREVIOUS COAs STILL APPLY

Above listed wells are approved for 4 Designs listed in the "EOG BLM Variance 5a - Alternate Shallow Casing Designs" document. The casing set points and directional plans for the wells in the batch are within the boundary conditions reviewed in the blanket design. The COA is written for the deepest well on the pad. Operator is responsible to review the cement volumes based on the set points, design executed and to achieve the TOC requirements listed in the COA.

COA

H2S	• Yes	O No	
Potash	None	O Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	Primary Cement
_	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	☑ COM	□ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	☑ Break Testing	✓ Offline	✓ Casing
Variance	_	Cementing	Clearance

A. CASING

Shallow Design A:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,320** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 3,536 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **20,088** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design B:

- 1. The **10-3/4** inch surface casing shall be set at approximately **1,320** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall

be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 8-5/8 inch intermediate casing shall be set at approximately 3,536 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **20,088** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design C:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,320** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 3,536 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch production casing shall be set at approximately **20,088** feet. The minimum required fill of cement behind the **6** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design D:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,320** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 3,536 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch x 5.5 inch tapered production casing shall be set at approximately 20,088 feet. The minimum required fill of cement behind the 6 inch x 5.5 inch tapered production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Production Bradenhead Plan Reviewed and is OK for all four designs.

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

Casing Clearance:

- Overlap clearance OK.
- Salt annular variance in place.
- 1" surface clearance not met. Operator aware and will perf and squeeze if necessary

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM_NM_CFO_DrillingNotifications@BLM.GOV**; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that

- of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43** CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before

- cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time

between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 8/29/2024

Stark 5 Fed Com 523H (FKA Banjo 5 Fed Com 762H) API #: 30-015-48298 Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.
- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.
- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).
 - Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.
- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Inermediate Bradenhead Cement
- EOG BLM Variance 3a b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Shallow Target Offline Bradenhead:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

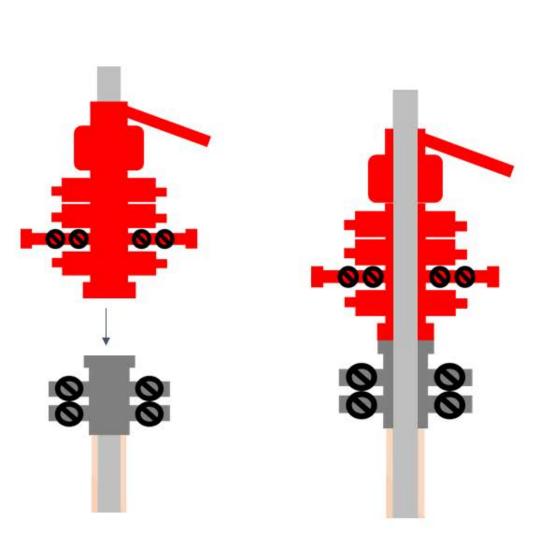
The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

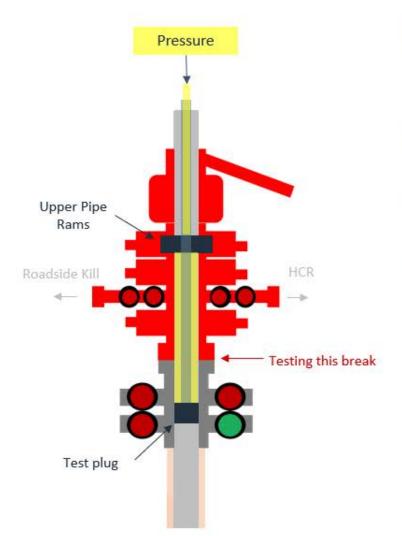
Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.

Test plug


Break Test Diagram (HCR valve)


Blind Rams Roadside Kill Pressure Testing this break

Steps

- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill
- 4. Open HCR (pressure application)
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Offline Intermediate Cementing Procedure

2/24/2022

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Offline Intermediate Cementing Procedure

2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

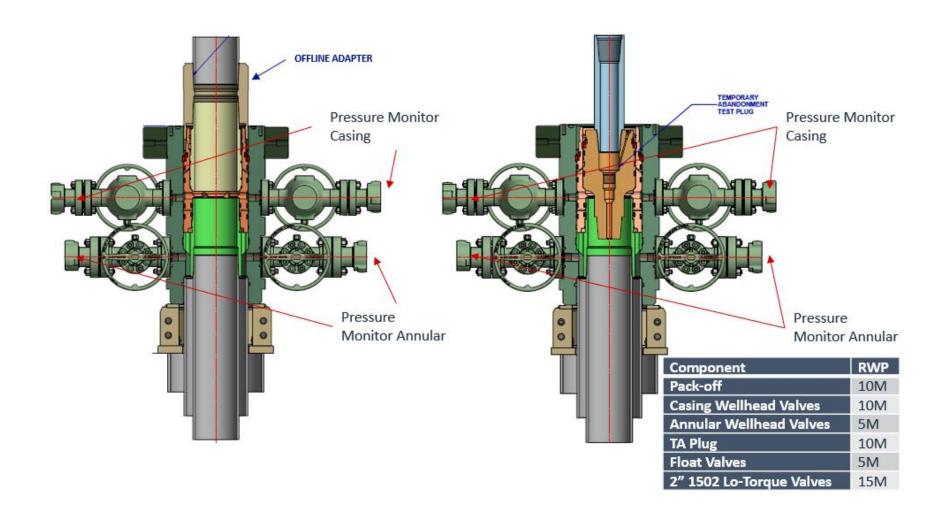
Page | 3

2/24/2022

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

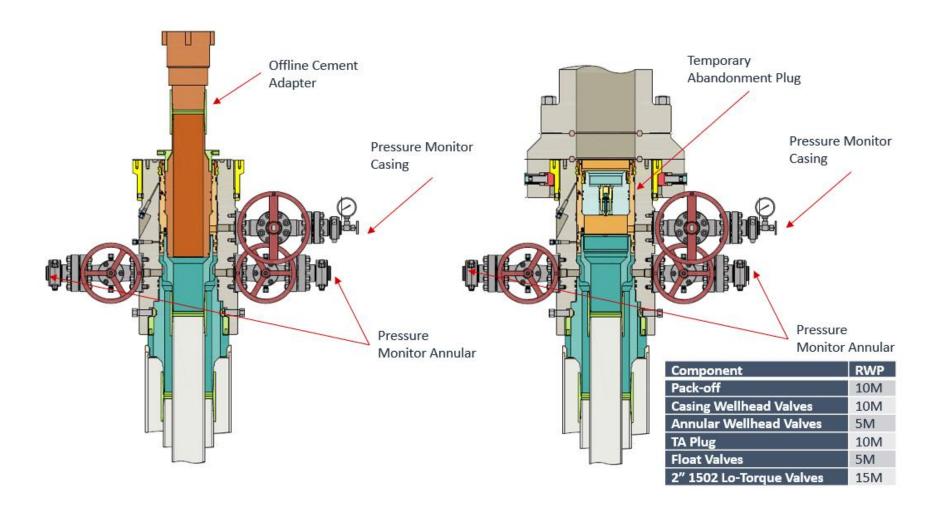
General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

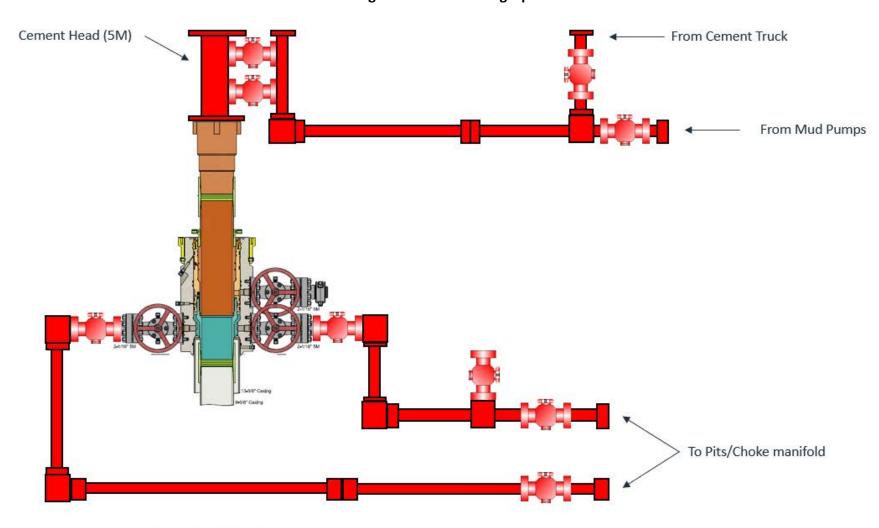
- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

2/24/2022


Figure 1: Cameron TA Plug and Offline Adapter Schematic

2/24/2022

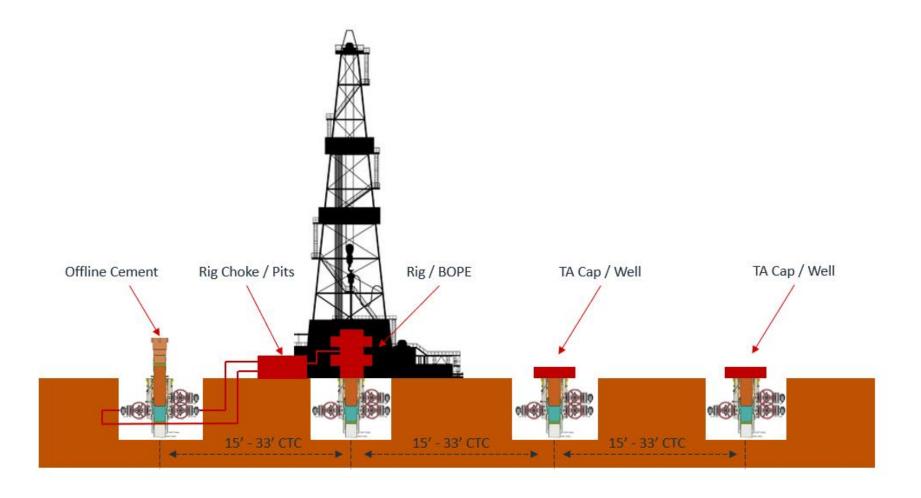
Figure 2: Cactus TA Plug and Offline Adapter Schematic



Page | 6

2/24/2022

Figure 3: Back Yard Rig Up


*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Figure 4: Rig Placement Diagram

Page | 8

Received by OCD: 10/8/2024 8:07:30 AM

Page 43 of 97

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

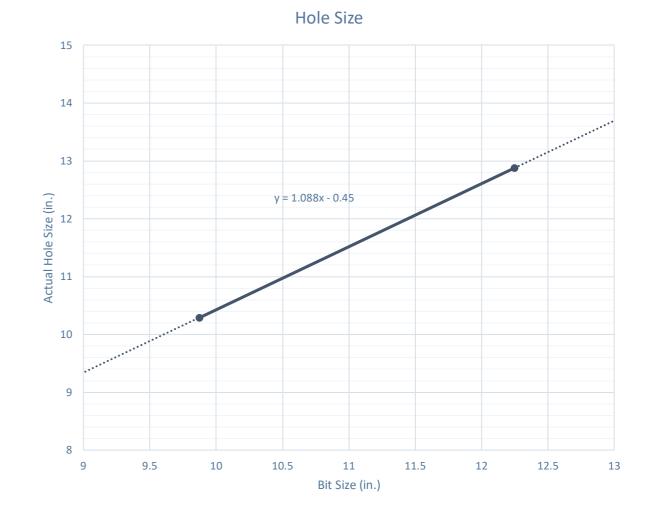
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

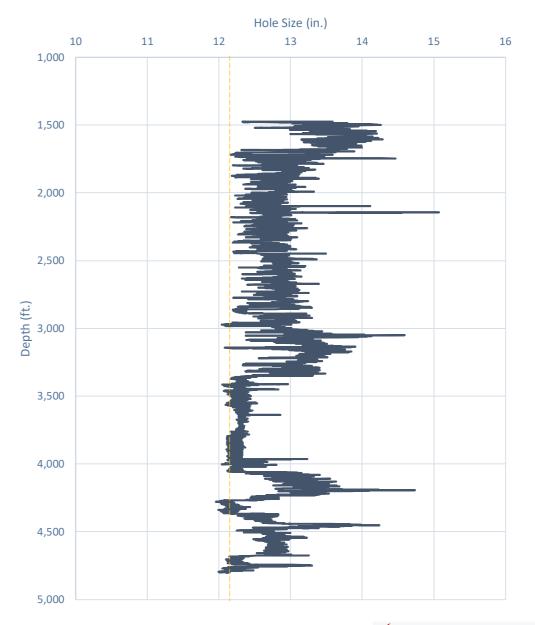

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

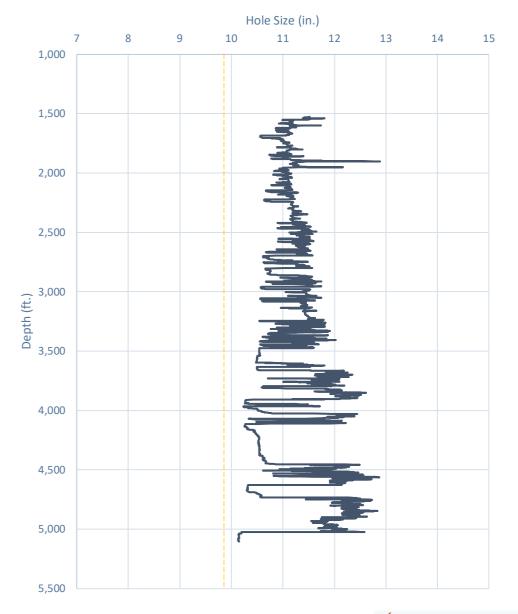


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

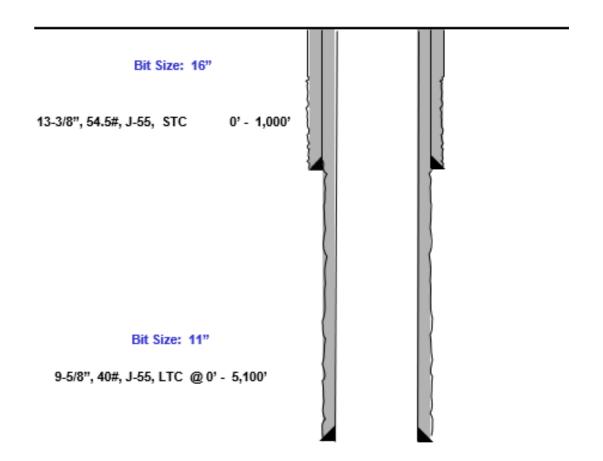
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

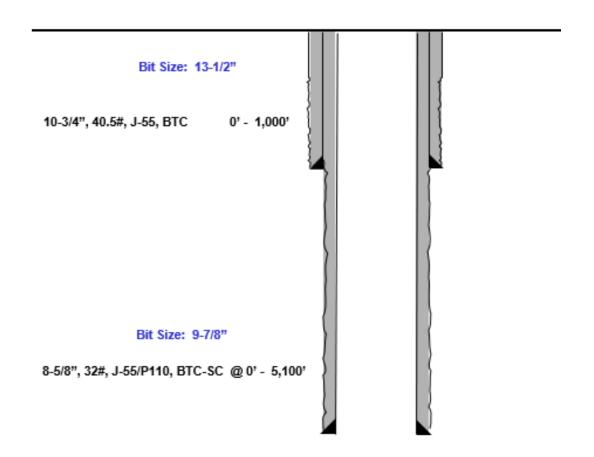
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{^{2}}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 10/8/2024 8:07:30 AM

Page 51 of 97

Index

Released to Imaging: 2/27/2025 1:38:12 PM

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in K55 HC 40.00 lbs/ft **Technical Data Sheet**

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8 750	in		•	1

Connection Parameters								
Connection OD	10.625	in						
Coupling Length	10.500	in						
Threads Per Inch	8	tpi						
Standoff Thread Turns	3.50	turns						
Make-Up Loss	4.750	in						
Min. Internal Yield Pressure	3,950	psi						

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

Œ	Back	to	Previo	ous	List
			_		

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ртре	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-		lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength		909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Nom. Pipe Body Area

Received by OCD: 10/8/2024 8:07:30 AM

Page 53 of 97

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric BTC STC Ptpe **Mechanical Properties** Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diamete 10.750 11.750 Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 Alternate Drift 40.50 Nominal Linear Weight, T&C lbs/ft 38.91 lbs/ft Plain End Weight Performance Ptpe BTC STC Minimum Collapse Pressure psi Minimum Internal Yield Pressure 3,130 3.130 3.130 629.00 1000 lbs Minimum Pipe Body Yield Strength 700 420 Joint Strength 1000 lbs

Ptpe

11,522

BTC

4.81

6,915

STC

3.50

3,150

5,250

in.

ft-lbs

ft-lbs

ı							V	val	loui	ec
ш					API	5CT, 1	0th Ed.	Connect	tion Data	Sheet
8	O.D. (in) WEIGHT (lb/ft	, I	WALL (in	n)	GRA	DE	*API DR	IFT (in)	RBV	V %
A FT		2.00 1.13	0.352		J55	5	7.79	96	87	.5
MADE IN USA	Material Properties	(PE)				P	ipe Bod	y Data (l	PE)	
DEI	Pipe						Geo	metry		
_	Minimum Yield Strength:	55	ksi		Nomina	IID:			7.92 i	nch
#0d	Maximum Yield Strength:	80	ksi		Nominal Area:				9.149 in ²	
_	Minimum Tensile Strength:	75	ksi		*Special/Alt. Drift:				7.875 inch	
# NTS	Coupling						Perfo	rmance		
#0/M	Minimum Yield Strength:	55	ksi		Pipe Body Yield Strength:				503 kips	
_	Maximum Yield Strength:	80	ksi		Collaps	e Resi	stance:		2,530	psi
DA 7.875	Minimum Tensile Strength:	75	ksi		Internal Y (API Hist		essure:		3,930	psi
S2L2	API Connection D Coupling OD: 9.625					AP	l Conne	ction To	rque	
S	STC Performand	e				,	STC Tord	que (ft-ll	os)	
4 J55	STC Internal Pressure:	3,930	psi		Min:	2,793	Opti:	3,724	Max:	4,655
32#	STC Joint Strength:	372	kips							
8.625	LTC Performand	е				- 1	LTC Tord	que (ft-ll	os)	
8	LTC Internal Pressure:	3,930	psi		Min:	3,130	Opti:	4,174	Max:	5,217

*Alt. Drift will be used unless API Drift is specified on order.

417 kips

3,930 psi

503 kips

LTC Joint Strength:

BTC Internal Pressure:

BTC Joint Strength:

SC-BTC Performance - Cplg OD = 9,125"

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALIQUIREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF, AND ON AN "AS IS "SAGIS WITHOUT WARDARN'D OR PERSENSATION OF ANY KIND, WHETHER EXPRESS OR IMPUED, INCLUDING WITHOUT LIMITATION ANY WARRARNY OF MERCHANITABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLDUREC OR ITS AFFILIATES OR RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNTINE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

BTC Torque (ft-lbs)

follow API guidelines regarding positional make up

Reference Length

Make-Up Data

Make-Up Loss

Minimum Make-Up Torque

Maximum Make-Up Torque

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sh	Shallow Design Boundary Conditions										
	Max Inc	Max DLS									
	MD (ft)	TVD (ft)	(deg)	(°/100usft)							
Surface	2030	2030	0	0							
Intermediate	7793	5650	40	8							
Production	28578	12000	90	25							

Shallow Design A

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

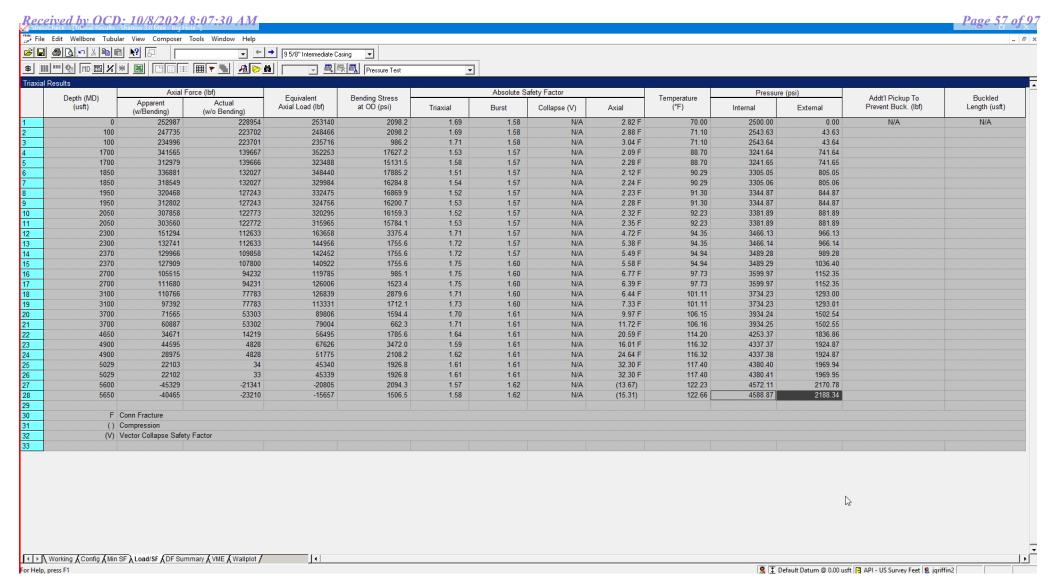
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

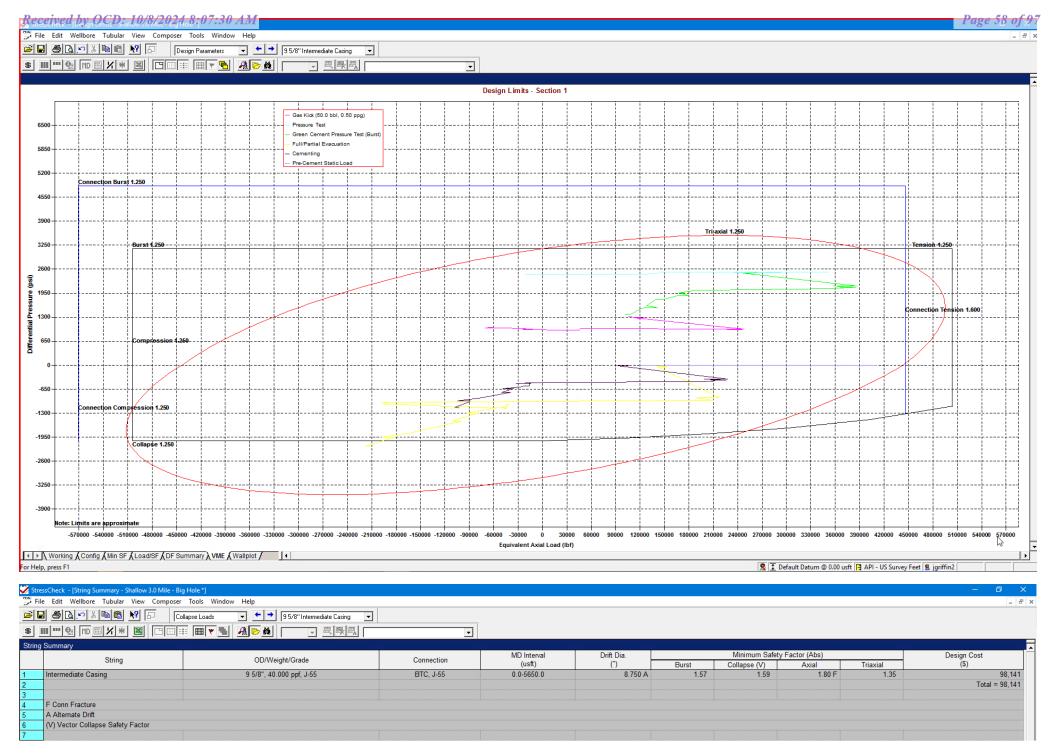
Shallow Design A

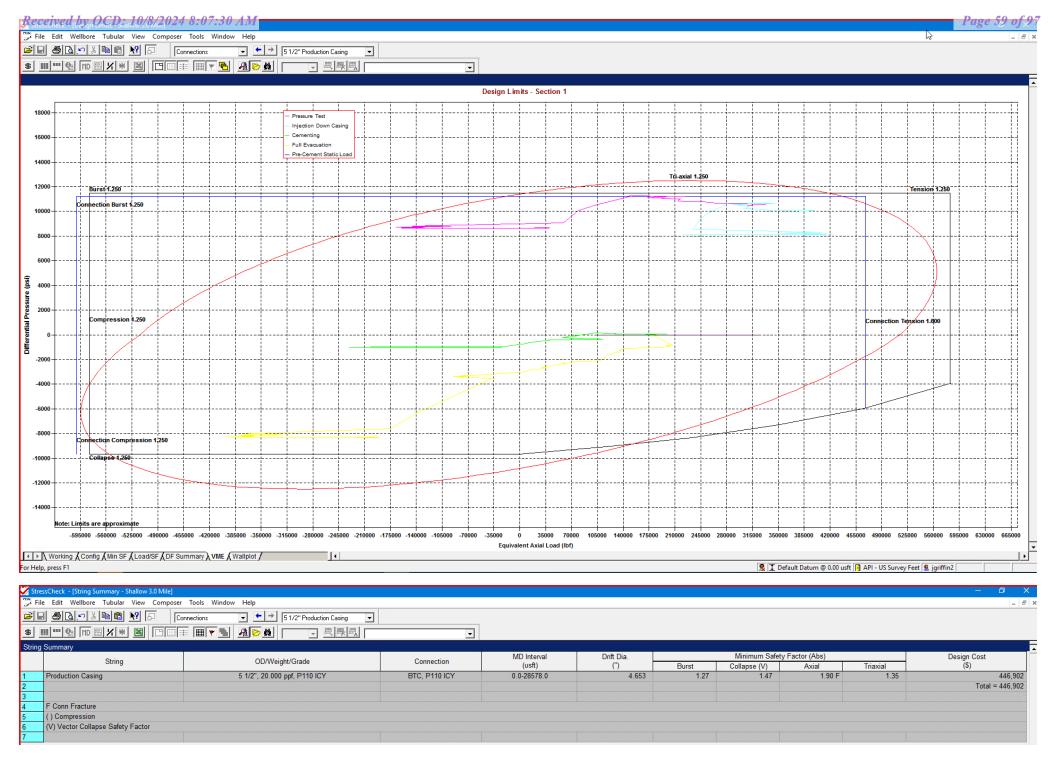

Proposed Wellbore

KB: 3558' GL: 3533'

Bit Size: 16'' 13-3/8", 54.5#, J-55, STC @ 0' - 2,030' If production Bradenhead is performed, TOC will be surface TOC: 7,460', if performed conventionally. Bit Size: 11" 9-5/8", 40.#, J-55, LTC @ 0' - 7,960' Lateral: 29,353' MD, 12,000' TVD Bit Size: 6-3/4" 5-1/2", 20.#, P110-EC, DWC/C IS MS @ 0' - 29,353'

Bit Size: 6-3/4"


KOP: 13,378' MD, 11,771' TVD EOC: 13,738' MD, 12,000' TVD


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 25

Shallow Design B

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

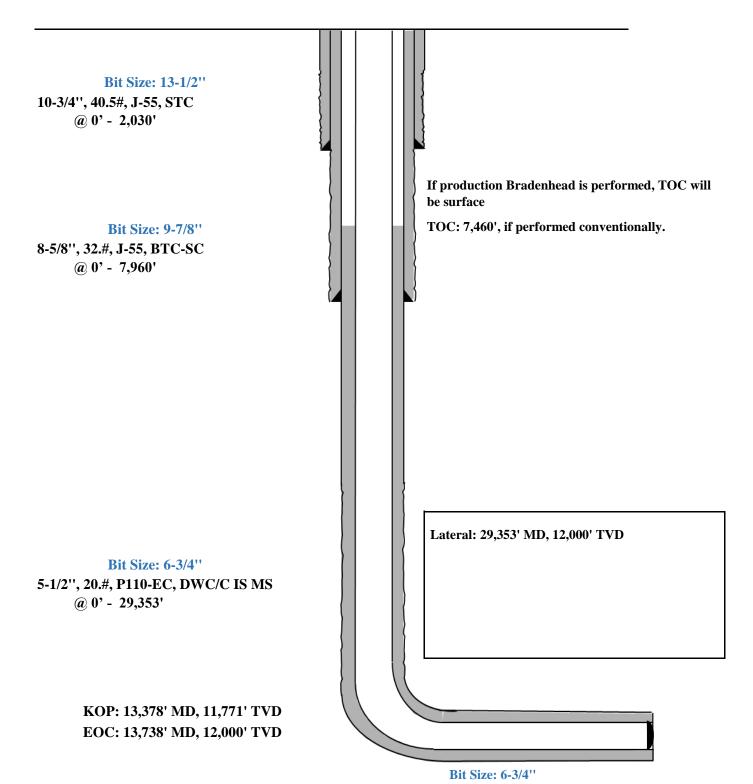
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

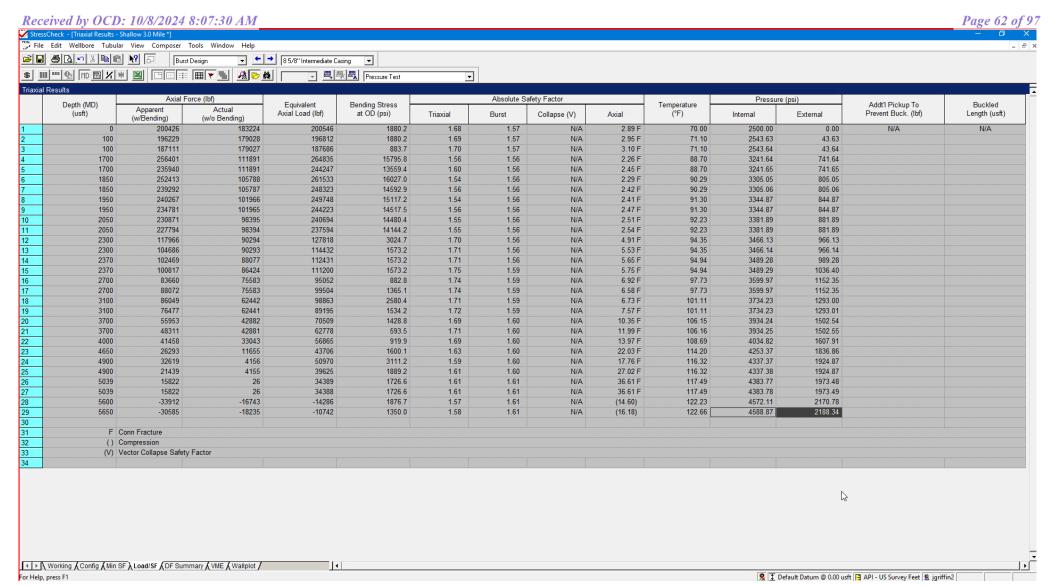
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

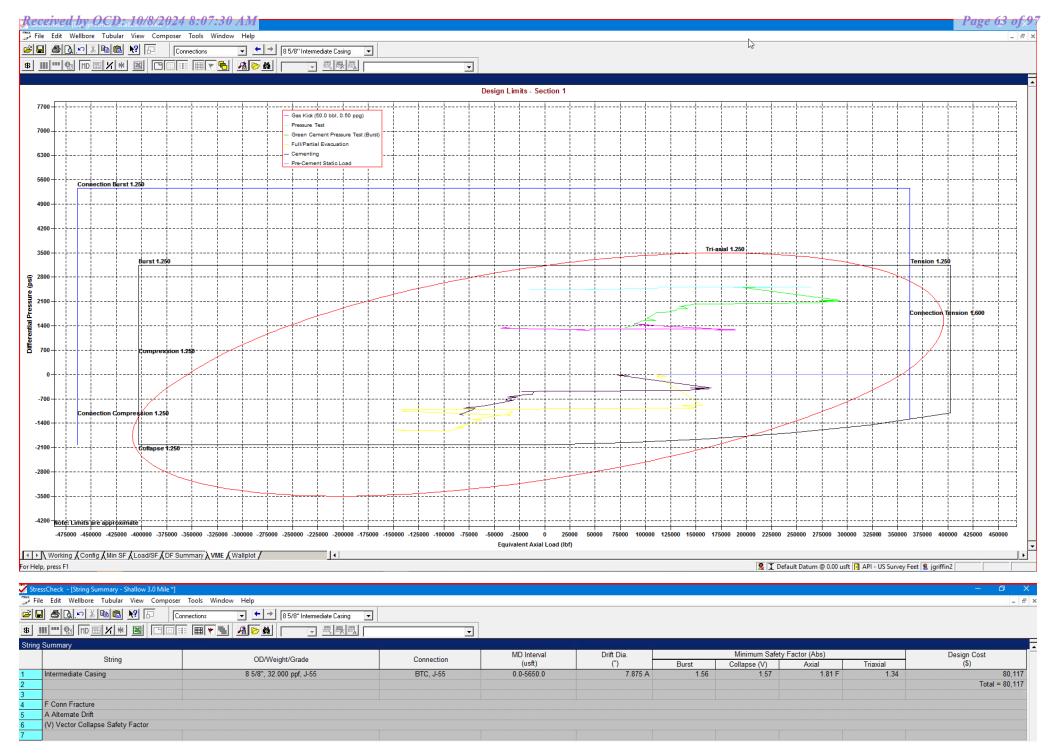

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 8-5/8"	470	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

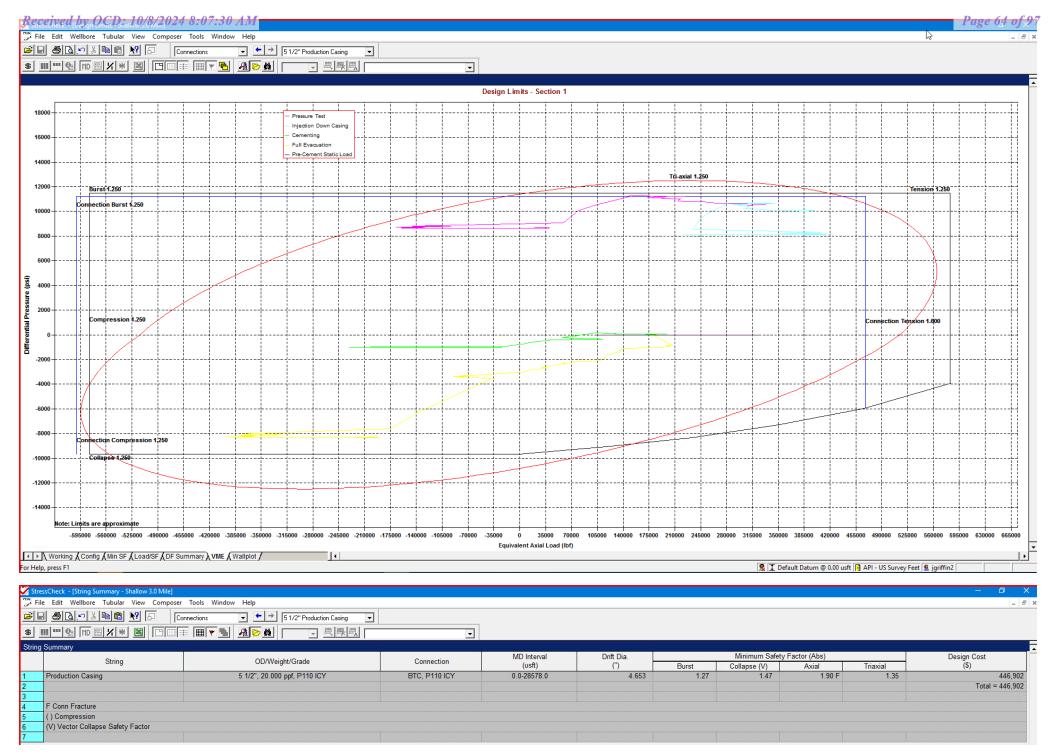


Shallow Casing Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 25

Shallow Design C

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

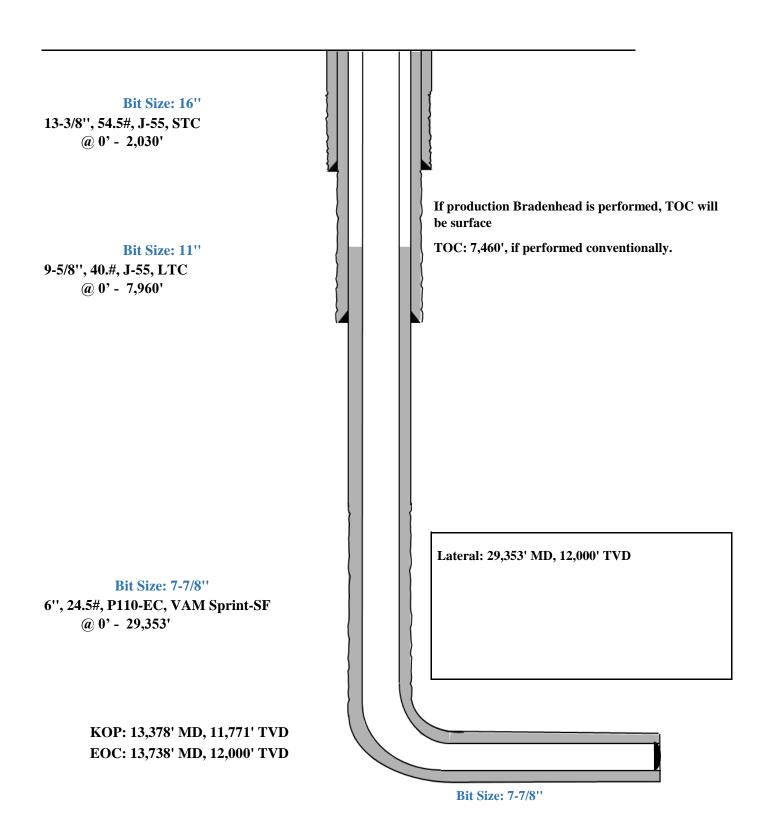
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

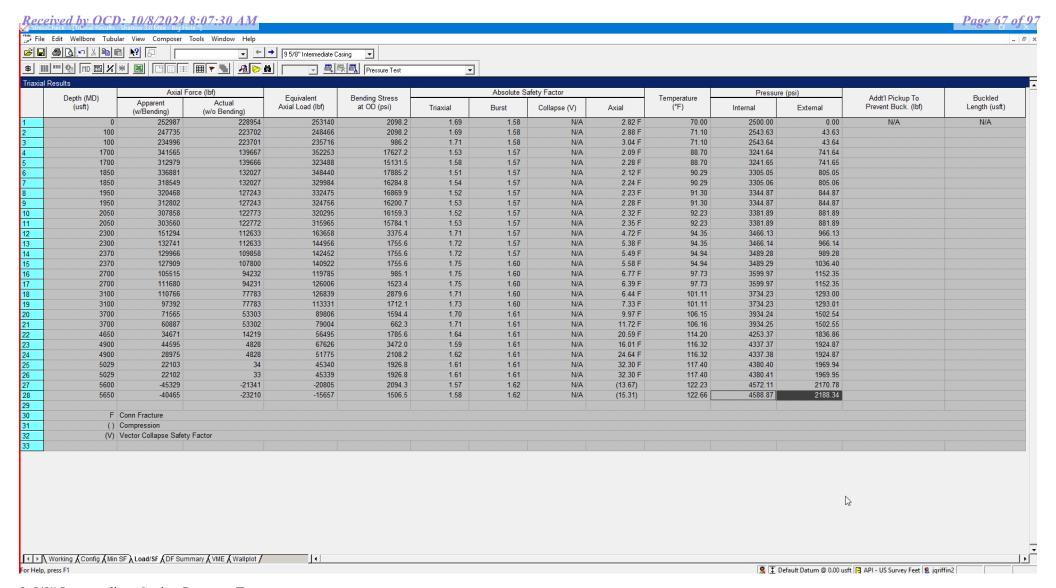
Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

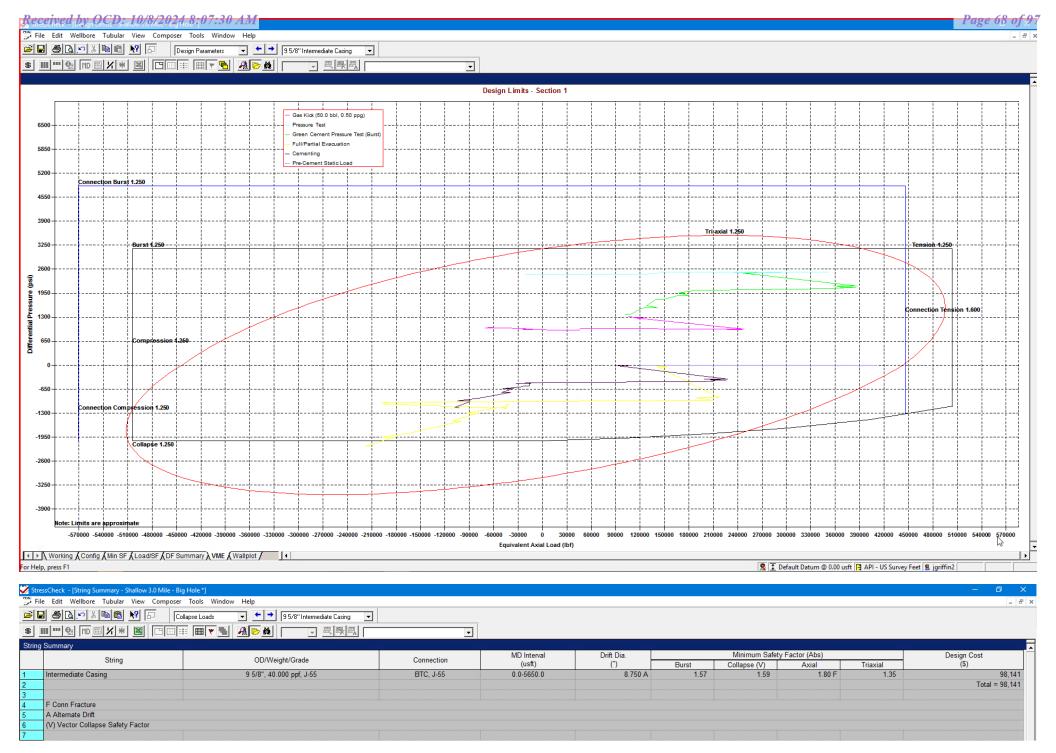

		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk		
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')	
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')	
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)	
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)	

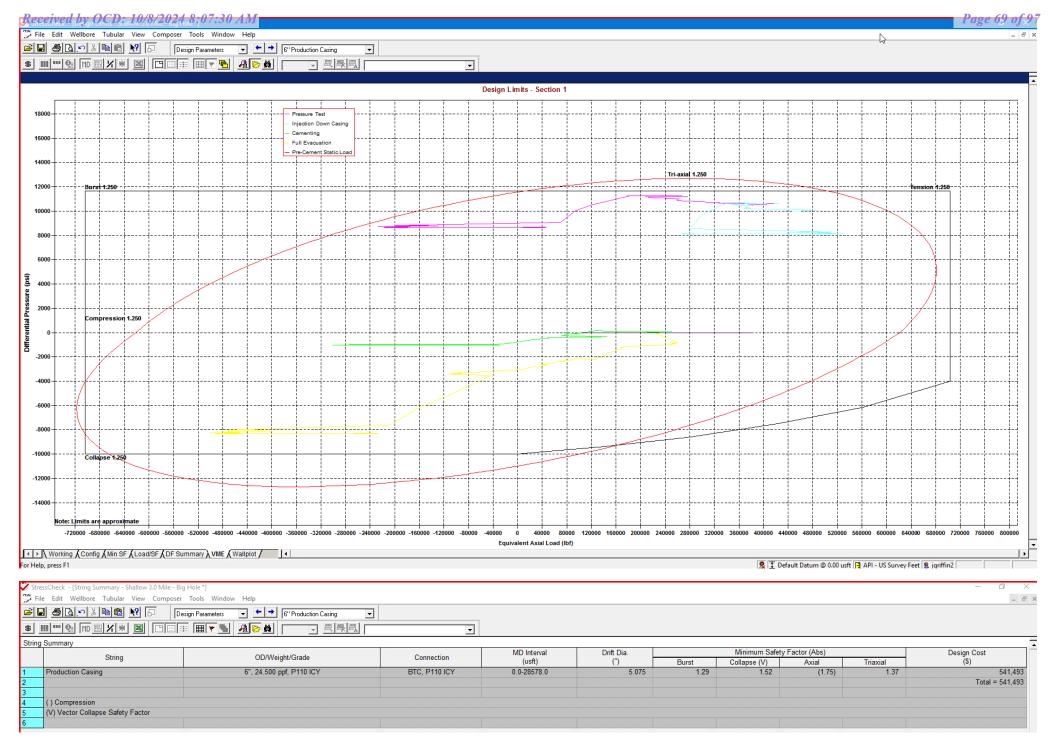


Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

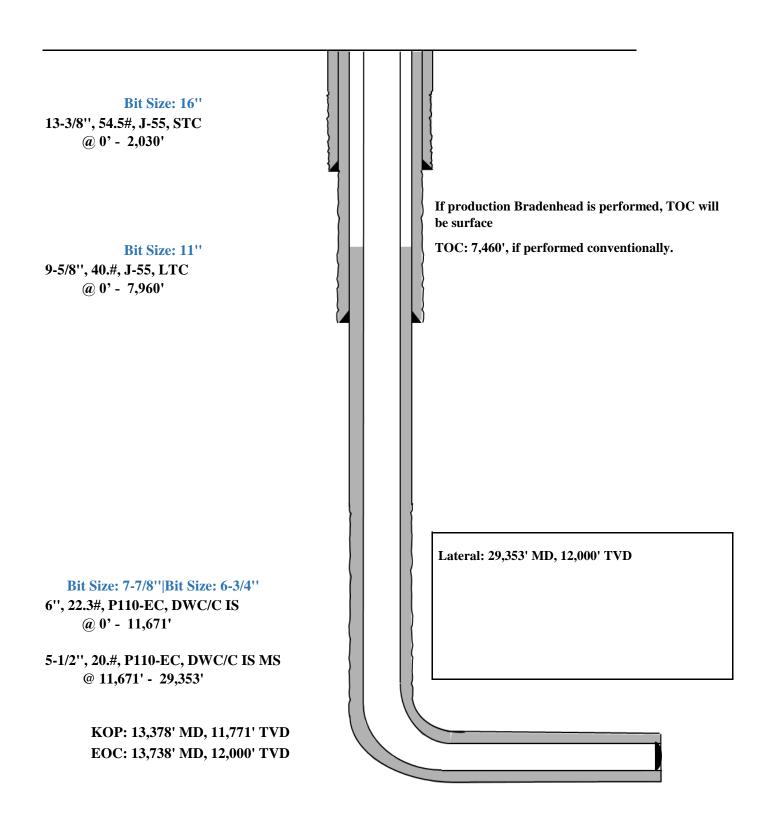
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

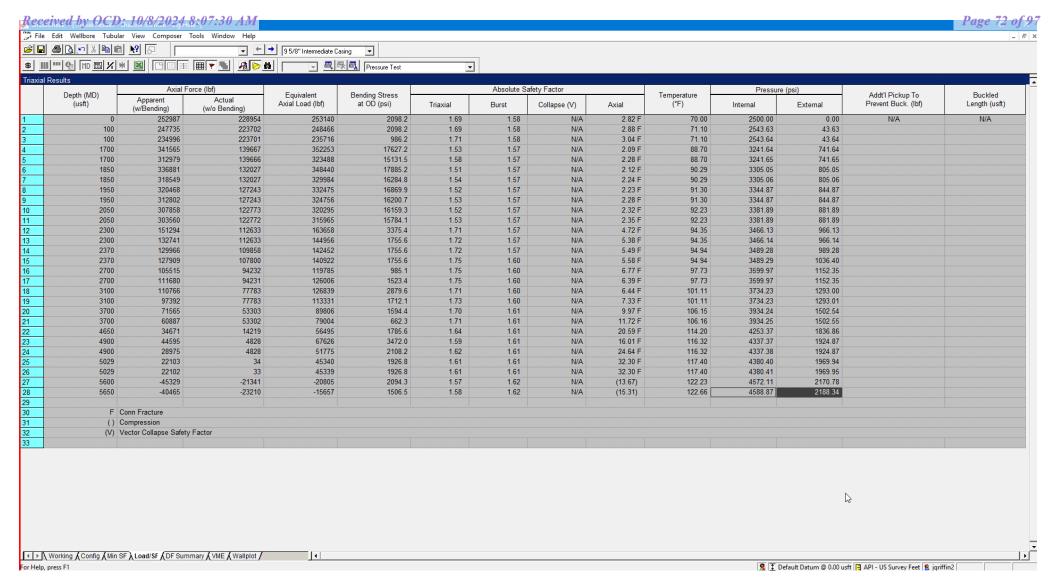
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

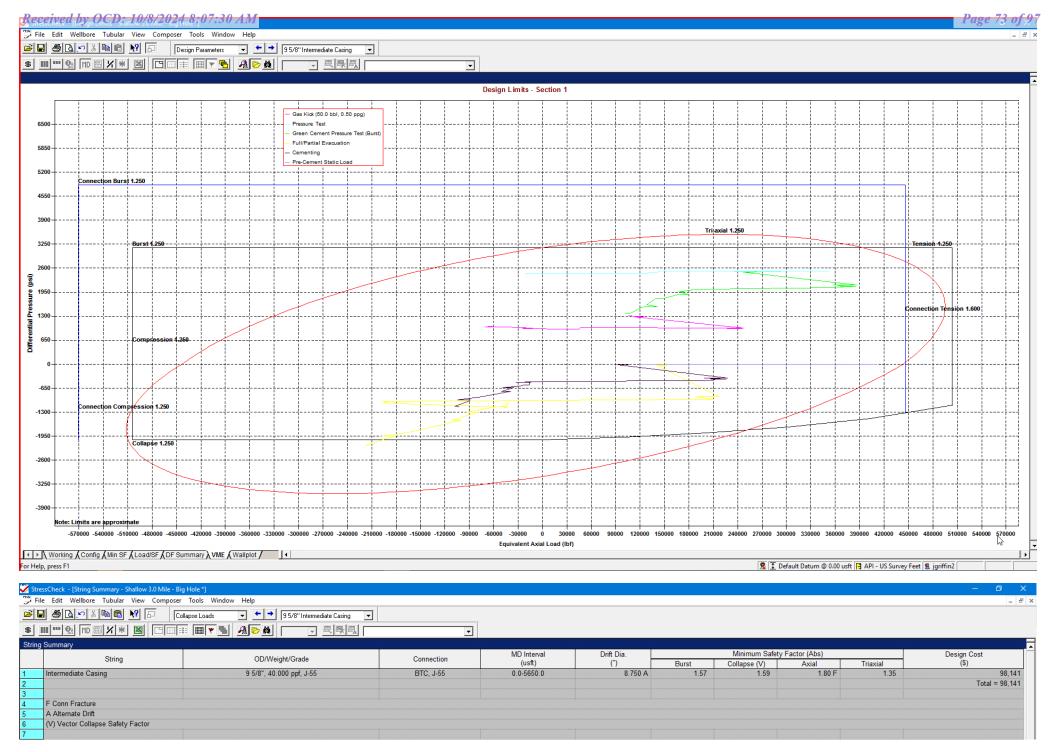

		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk		
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')	
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')	
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)	
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)	

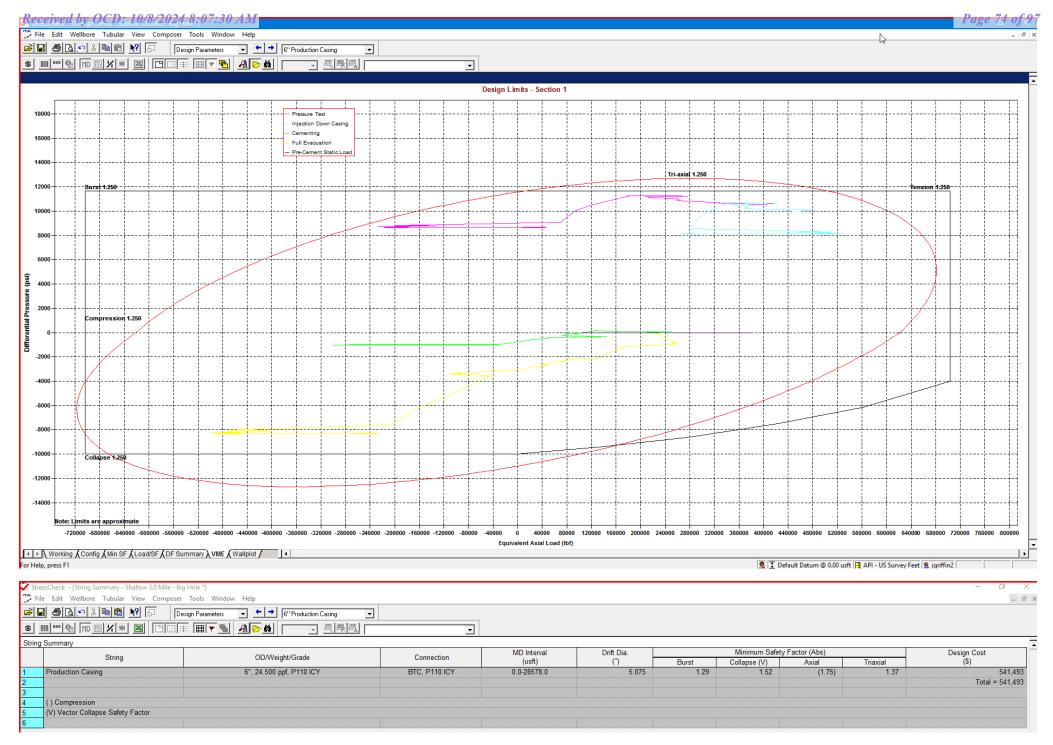


Shallow Design D

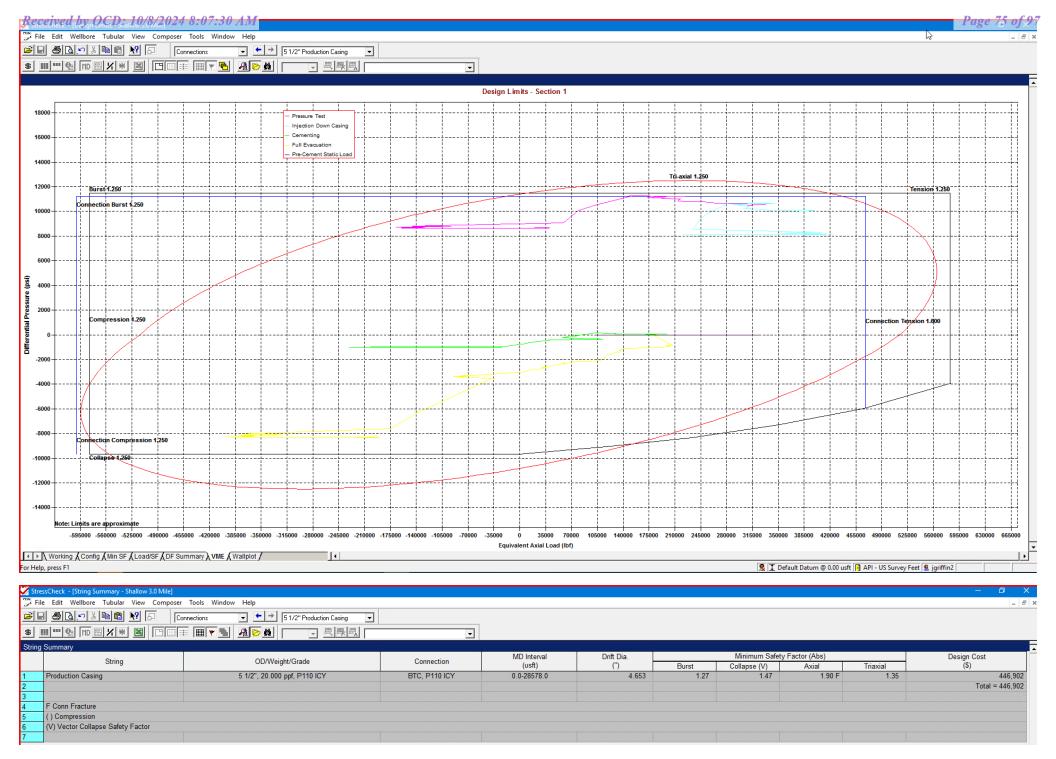
Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 25

Shallow Casing Design 501H

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

New Search »					
					Back to Previous List
					USC Metric
6/8/2015 10:04:37 AM		2		4	
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	2	-	_	psi
Maximum Yield Strength	80,000			1-2	psi
Minimum Tensile Strength	75,000	-	_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375		14.375	in.
Wall Thickness	0.380	=	=.		in.
Inside Diameter	12.615	12.615	_	12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	-	_	-	-	in.
Nominal Linear Weight, T&C	54.50	-	 .::	3-0	lbs/ft
Plain End Weight	52.79	<u>-</u>		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	=-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	m a	2,740	psi
Minimum Pipe Body Yield Strength	853.00		-	-	1000 lbs
Joint Strength	=	909	##C3	514	1000 lbs
Reference Length	-	11,125	_	6,290	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	=	4.81		3.50	in.
Minimum Make-Up Torque			20 8	3,860	ft-lbs
Released to Imaging: 2/27/2025 1:38:12 PM Maximum Make-Up Torque	-	- :	_	6,430	ft-lbs

« Back to Previous List

					USC Metri
6/8/2015 10:23:27 AM	N-	87	100	-04	υ _λ
Mechanical Properties	Ptpe	втс	LTC	STC	

Minimum Yield Strength	55,000	-		_	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	<u>-</u>		_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	-	E.)		in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	_	=	, - 21	lbs/ft
	4.				

Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	=	₩.	#34	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	_	=	-	lbs/ft
Plain End Weight	38.97	=	-		lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-		 :	1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	ft

Standard Diff.	0.075	0.075	0.075	0.073	
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	_	=	752	lbs/ft
Plain End Weight	38.97	=	-	_	libs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00		# 1		1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	r u	11,898	8,665	7,529	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque	92	<u>68</u>	3,900	3,390	ft-lbs
Released to Imaging: 2/27/2025 1:38:12 PM Maximum Make-Up Torque	1 4		6,500	5,650	ft-lbs

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC API DRIFT (in.) 4.653 RBW% 87.5 CONNECTION
DWC/C-IS MS

Plain End: 19.83

PIPE PROPERTIES					
Outside Diameter	5.500	in.			
Inside Diameter	4.778	in.			
Nominal Area	5.828	sq.in.			
Grade Type	API 5CT				
Min. Yield Strength	125	ksi			
Max. Yield Strength	140	ksi			
Min. Tensile Strength	135	ksi			
Yield Strength	729	klb			
Ultimate Strength	787	klb			
Min. Internal Yield	14,360	psi			
Collanse	12 090	nei			

	CONNECTION PROPERTIES						
۱.	Connection Type	Semi-Prem	ium T&C				
١.	Connection O.D. (nom)	6.115	in.				
۱.	Connection I.D. (nom)	4.778	in.				
	Make-Up Loss	4.125	in.				
si	Coupling Length	9.250	in.				
si	Critical Cross Section	5.828	sq.in.				
si	Tension Efficiency	100.0%	of pipe				
b	Compression Efficiency	100.0%	of pipe				
b	Internal Pressure Efficiency	100.0%	of pipe				
si	External Pressure Efficiency	100.0%	of pipe				
si							

CONNECTION PERFORMANCES					
Yield Strength	729	klb			
Parting Load	787	klb			
Compression Rating	729	klb			
Min. Internal Yield	14,360	psi			
External Pressure	12,090	psi			
Maximum Uniaxial Bend Rating	104.2	°/100 ft			
Reference String Length w 1.4 Design Factor	26,040	ft			

	FIELD END TORQUE VALUES								
,	Min. Make-up torque	16,100	ft.lb						
,	Opti. Make-up torque	17,350	ft.lb						
,	Max. Make-up torque	18,600	ft.lb						
i	Min. Shoulder Torque	1,610	ft.lb						
i	Max. Shoulder Torque	12,880	ft.lb						
t	Min. Delta Turn	-	Turns						
t	Max. Delta Turn	0.200	Turns						
_	Maximum Operational Torque	21,100	ft.lb						
	Maximum Torsional Value (MTV)	23,210	ft.lb						
	,								

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com
Tech Support Email: tech.support@vam-usa.com

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

10.750 40.50/0.350 J55 PDF

New Search »

« Back to Previous List

USC Metric

6/8/2015 10:14:05 AM

Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350				in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50		-		lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque				3,150	ft-lbs
Released to Imaging: 2/27/2025 1:38:12 PM Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT ((lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)			
Pipe			
Minimum Yield Strength:	55 ksi		
Maximum Yield Strength:	80 ksi		
Minimum Tensile Strength:	75 ksi		
Coupling			
Minimum Yield Strength:	55 ksi		
Maximum Yield Strength:	80 ksi		
Minimum Tensile Strength:	75 ksi		

Pipe Body Data (PE)			
Geometry			
Nominal ID:	7.92 inch		
Nominal Area:	9.149 in ²		
*Special/Alt. Drift:	7.875 inch		
Performance			
Pipe Body Yield Strength:	503 kips		
Collapse Resistance:	2,530 psi		
Internal Yield Pressure: (API Historical)	3,930 psi		

API Connection Data Coupling OD: 9.625"				
STC Performand	е			
STC Internal Pressure:	3,930	psi		
STC Joint Strength:	372	kips		
LTC Performance				
LTC Internal Pressure:	3,930	psi		
LTC Joint Strength:	417	kips		
SC-BTC Performance - Cplg OD = 9.125"				
BTC Internal Pressure:	3,930	psi		
BTC Joint Strength:	503	kips		

API Connection Torque						
	5	STC Tor	que (ft-lb	s)		
Min:	2,793	Opti:	3,724	Max:	4,655	
	LTC Torque (ft-lbs)					
Min:	3,130	Opti:	4,174	Max:	5,217	
	-	OTC Tou		\		
BTC Torque (ft-lbs)						
follow API guidelines regarding positional make up						

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

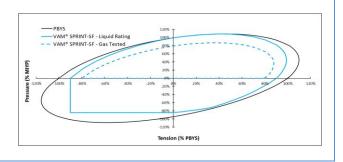
ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

Connection Data Sheet

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection
6 in. Nominal: 24.50 Plain End: 23.95 O.400 in. P110EC 5.075 in. VAM® SPRINT-SF


PI PE PROPERTIES		
Nominal OD	6.000	in.
	5.200	
Nominal ID		in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	High Yield	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral:	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCE	S	
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb
()	,	

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

china@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES		
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE	VALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

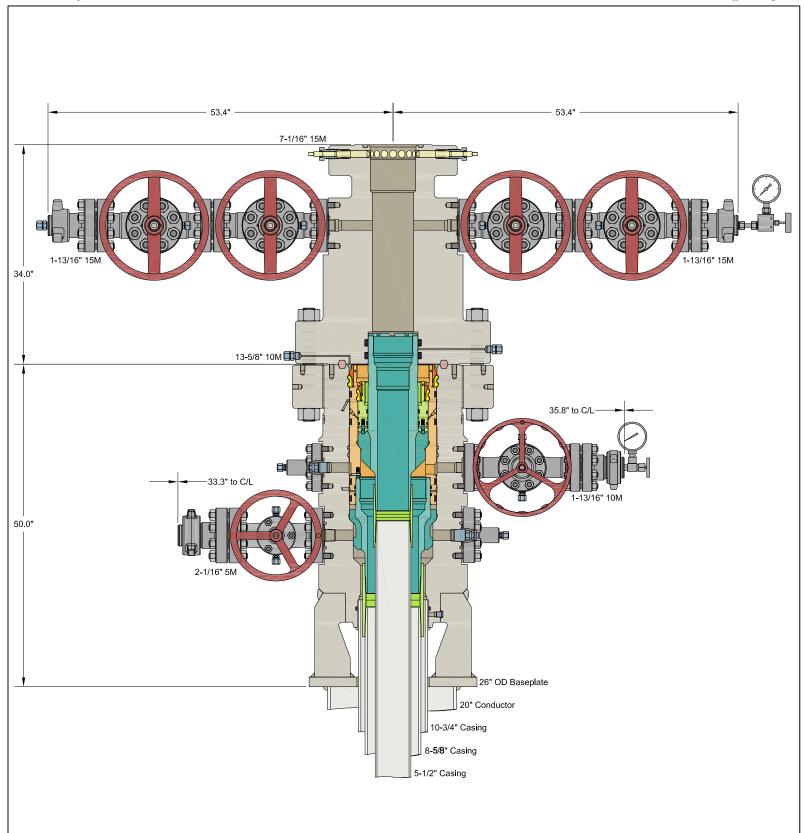
All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>


DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

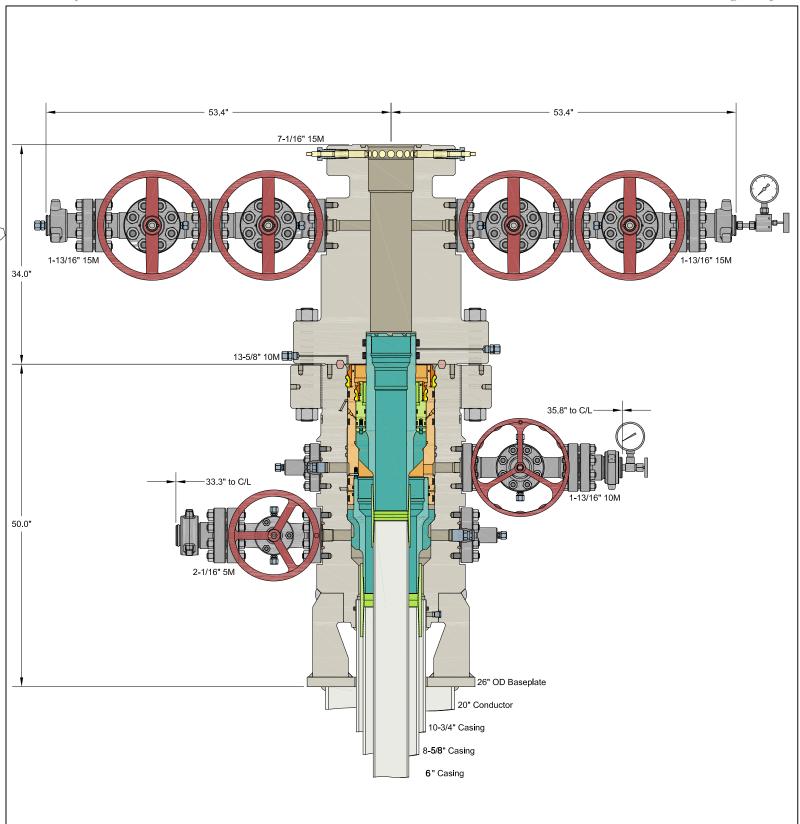
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

ALL DIMENSIONS APPROXIMATE

CACTUS WELLHEAD LLC


10-3/4" x 8-5/8" x 5-1/2" MBU-3T-SF-SOW Wellhead System With 8-5/8" & 5-1/2" Pin Bottom Mandrel Casing Hangers And 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS Tubing Head

EOG RESOURCES

DRAWN DLE 14APR21
APPRV

DRAWING NO.

SDT-3141

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

ALL DIMENSIONS APPROXIMATE

CACTUS WELLHEAD LLC

10-3/4" x 8-5/8" x 5-1/2" MBU-3T-SF-SOW Wellhead System With 8-5/8" & 5-1/2" Pin Bottom Mandrel Casing Hangers And 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS Tubing Head

EOG RESOURCES

DRAWN DLE 14APR21
APPRV

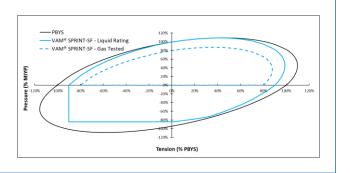
DRAWING NO.

SDT-3141

Issued on: 08 Jul. 2020 by Wesley Ott

Connection Data Sheet

	1		İ	i	
OD	Weight	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	20.00 lb/ft	0.361 in.	P110EC	4.653 in.	VAM® SPRINT-SF
	'				


PIPE PROPERTIES		
Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Cross Section Area	5.828	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION P	ROPERTIES	
Connection Type	Semi-Premium Integral	Semi-Flush
Connection OD (nom):	5.783	in.
Connection ID (nom):	4.717	in.
Make-Up Loss	5.965	in.
Critical Cross Section	5.244	sqin.
Tension Efficiency	90.0	% of pipe
Compression Efficiency	90.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES					
Tensile Yield Strength	656	klb			
Compression Resistance	656	klb			
Internal Yield Pressure	14,360	psi			
Collapse Resistance	12,080	psi			
Max. Structural Bending	89	°/100ft			
Max. Bending with ISO/API Sealability	30	°/100ft			

TORQUE VALUES		
Min. Make-up torque	20,000	ft.lb
Opt. Make-up torque	22,500	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	40,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM^{\circledR} like VAM^{\circledR}

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

^{* 87.5%} RBW

CONNECTION DATA SHEET

Make-up Torque (ft-lb) 25,000 MIN 26,000 OPTI 27,000 MAX Torque with Sealability (ft-lb) 52,600 MTS Locked Flank Torque (ft-lb) 1,300 MIN 18,200 MAX (2) MTS: Maximum Torque with Sealability. Note: Thread compound must be applied as a thin even layer

PIPE BODY PROPERTIES

Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Wall Thickness	0.400	in.
Minimum Wall Thickness	87.5	%
Nominal Weight (API)	24.50	lb/ft
Plain End Weight	23.95	lb/ft
Drift	5.075	in.
Grade Type	High Yie	ld
Grade Type Minimum Yield Strength	High Yie	ld <i>ksi</i>
Minimum Yield Strength	125	ksi
Minimum Yield Strength Maximum Yield Strength	125 140	ksi ksi
Minimum Yield Strength Maximum Yield Strength Minimum Ultimate Tensile Strength	125 140 135	ksi ksi ksi
Minimum Yield Strength Maximum Yield Strength Minimum Ultimate Tensile Strength Pipe Body Yield Strength	125 140 135 880	ksi ksi ksi klb

CONNECTION PROPERTIES

Connection Type	Semi-Pr	emium Threaded & Cou
Nominal Connection OD	6.525	in.
Nominal Connection ID	5.267	in.
Make-up Loss	4.283	in.
Coupling Length	8.831	in.
Tension Efficiency	100	% Pipe Body
Compression Efficiency	100	% Pipe Body
Internal Pressure Efficiency	100	% Pipe Body
External Pressure Efficiency	100	% Pipe Body

JOINT PERFORMANCES

Tension Strength	880	klb
Compression Strength	880	klb
Internal Pressure Resistance	14,580	psi
External Pressure Resistance	12,500	psi
Maximum Bending, Structural	95	°/100 ft
Maximum Bending, with Sealability(1)	30	°/100 ft
Maximum Load on Coupling Face	373	klb

(1) Sealability rating demonstrated as per API RP 5C5 / ISO 13679

BOOST YOUR EFFICIENCY, REDUCE COSTS AND ENSURE 100% WELL INTEGRITY WITH VAM® FIELD SERVICE

Scan the QR code to contact us

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)						
Pipe						
Minimum Yield Strength:	55 ksi					
Maximum Yield Strength:	80 ksi					
Minimum Tensile Strength:	75 ksi					
Coupling						
Minimum Yield Strength:	55 ksi					
Maximum Yield Strength:	80 ksi					
Minimum Tensile Strength:	75 ksi					

Pipe Body Data (PE)					
Geometry					
Nominal ID:	7.92 inch				
Nominal Area:	9.149 in ²				
*Special/Alt. Drift:	7.875 inch				
Performance					
Pipe Body Yield Strength:	503 kips				
Collapse Resistance:	2,530 psi				
Internal Yield Pressure: (API Historical)	3,930 psi				

API Connection Data			
Coupling OD: 9			
STC Perform	nance		
STC Internal Pressure:	3,930 psi		
STC Joint Strength:	372 kips		
LTC Perform	nance		
LTC Internal Pressure:	3,930 psi		
LTC Joint Strength:	417 kips		
SC-BTC Performance - C	plg OD = 9.125"		
BTC Internal Pressure:	3,930 psi		
BTC Joint Strength:	503 kips		

API Connection Torque					
	5	STC Tor	que (ft-lb	s)	
Min:	2,793	Opti:	3,724	Max:	4,655
LTC Torque (ft-lbs)					
Min:	3,130	Opti:	4,174	Max:	5,217
	_	NTO T	/£ 4_11a	- 1	
BTC Torque (ft-lbs)					
follow API guidelines regarding positional make up					

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

PDF

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

JSC () Metric

Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-			3,150	ft-lbs
Released to Imaging: 2/27/2025 1:38:12 PM Maximum Make-Up Torque		-	-	5,250	ft-lbs

EOG Batch Casing

Pad Name: Banjo 32-5 Stark 32-5 Fed Com SHALLOW

SHL: Section 5, Township 26-S, Range 30-E, Eddy County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API#	Surface		Intermediate		Production	
wen rame	A11#	MD	TVD	MD	TVD	MD	TVD
Banjo 5 Fed Com #512H (FKA 592H)	30-015-47903	1,320	1,320	3,608	3,536	19,505	9,161
Banjo 5 Fed Com #521H (FKA 503H)	30-015-48201	1,320	1,320	3,811	3,536	20,011	9,506
Banjo 5 Fed Com #588H (FKA 502H)	30-015-47815	1,320	1,320	3,579	3,536	20,069	9,752
Banjo 5 Fed Com #593H (FKA 583H)	30-015-48251	1,320	1,320	3,728	3,536	20,195	9,752
Stark 5 Fed Com #522H (FKA Banjo 5 Fed Com 763H)	30-015-48292	1,320	1,320	3,638	3,536	19,876	9,506
Stark 5 Fed Com #523H (FKA Banjo 5 Fed Com 762H)	30-015-48298	1,320	1,320	3,559	3,536	19,806	9,506
Stark 5 Fed Com #589H (FKA Banjo 5 Fed Com 773H)	30-015-48197	1,320	1,320	3,548	3,536	20,040	9,752
Stark 5 Fed Com #594H (FKA Banjo 5 Fed Com 802H)	30-015-48206	1,320	1,320	3,599	3,536	20,088	9,752

EOG Batch Casing

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,242'
Tamarisk Anhydrite	1,292'
Top of Salt	1,549'
Base of Salt	3,436'
Lamar	3,634'
Bell Canyon	3,661'
Cherry Canyon	577'
Brushy Canyon	5,826'
Bone Spring Lime	7,481'
Leonard (Avalon) Shale	7,547'
1st Bone Spring Sand	8,412'
2nd Bone Spring Shale	8,685'
2nd Bone Spring Sand	9,134'
3rd Bone Spring Carb	9,615'
3rd Bone Spring Sand	10,326'
Wolfcamp	10,738'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	3,661'	Oil
Cherry Canyon	577'	Oil
Brushy Canyon	5,826'	Oil
Leonard (Avalon) Shale	7,547'	Oil
1st Bone Spring Sand	8,412'	Oil
2nd Bone Spring Shale	8,685'	Oil
2nd Bone Spring Sand	9,134'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 1,320' and circulating cement back to surface.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 390636

CONDITIONS

Operator:	OGRID:		
EOG RESOURCES INC	7377		
5509 Champions Drive	Action Number:		
Midland, TX 79706	390636		
	Action Type:		
	[C-103] NOI Change of Plans (C-103A)		

CONDITIONS

Created By		Condition Date
ward.rikala	Prior to the submission of this C-104, there was a C-103 NOI submitted for approval. The C-103 NOI was not approved or rejected; however, the work requested in the C-103 NOI was performed and completed without NMOCD approval. This action is currently under review from our legal department	2/27/2025