Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-025-54435 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

eived	by OCL): 2/14/2	025 10:0	98:37	AM								Page 2
<u>C</u> -	-102			Er	nergy, Minera	ls &		esources				Re	vised July 9, 2024
Sub	mit Electi	ronically			OIL C	ONS	ERVATIO:	N DIVIS	SION	ŀ			tial Submittal
	OCD Pern										Submitt	-1	nended Report
											Туре:		Drilled
												□ AS	Driffed
API N	umber			Pool	Code	VELL	LOCATION	INFORM.					
	30)-025-5	4435		41450					BONE	SPRI	NG, NOF	RTH
Prope	rty Code	337063		Prop	erty Name		RE WOL	F 28 F	ED COM			Well 1	lumber 601H
OGRID		0396		Oper	ator Name	A۱	VANT OP						d Level Elevation 3707.8
Surfa	ce Owner:	☐ State ☐	Fee T	ribal [X Federal			Mineral Own	ner: 🗌 State 🗌 F	ee 🗌 T	ribal 🔀 Fo	ederal	
							Surface I	ocation					
UL	Section	Township	Range	Lot	Ft. from N/S	1	Ft. from E/W		Latitude	Ι	Longitu	ıde	County
N	28	18 S	32 E		362 FSL		865 FWL	32.71	22437° N	103	77382	224° W	LEA
						Bo	ottom Hol	e Locatio	on				
UL	Section	Township	Range	Lot	Ft. from N/S	1	Ft. from E/W		Latitude		Longitu	ıde	County
М	30	18 S	32 E		330 FSL	. 1	00 FWL	32.7	22358° N	103	.81404	421° W	LEA
Dedica	ted Acres			Т	Infill or Defining	Well	Defining W	ell API	Overlapping Spa	cing Un	it (Y/N)	Consolidat	ion Code
									l sample of the		(-, -,		
	642.24							W-11 41	<u> </u>			□ v 「	□ No
Order	Numbers.							Well Setbac	ks are under Con	nmon U	wnersmp:	∐ res [NO
						K	ick Off Po	oint (KO	P)				
UL	Section	Township	_	Lot	Ft. from N/S		Ft. from E/W		Latitude		Longitu		County
Р	29	18 S	32 E		330 FSL		50 FEL	32.7	121704° N	103	78004	₊90° W	LEA
						Fi	rst Take I	Point (F	TP)				
υL	Section	Township	Range	Lot	Ft. from N/S	- 1	Ft. from E/W		Latitude		Longitu		County
Р	29	18 S	32 E		330 FSL	.	100 FEL	32.7	121707° N	103	.7802	II6° W	LEA
							ast Take F		,				
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W		Latitude		Longitu		County
М	30	18 S	32 E		300 FSL		100 FWL	32.7	22358° N	103	.81404	421° W	LEA
Unitie	ad Area o	r Area of	Uniform I	torost		**			W		Grou	nd Floor Ele	evetion:
Ome	ou Area or	Alea of		101680	Spacing	Unit	Type 🔯 Horiz	zontai 🔲	Vertical 		4104		
OPER	ATOR C	ERTIFICA	TIONS					SURVEY	OR CERTIF	CATI	ONS		
					erein is true and co tical or directional u	-	at this	•	rtify that the well			_	
organiz	ation either	owns a wo	rking intere	st or u	nleased mineral inte	rest in	the land	•	of actual surveys me is true and co		-	-	upervision, and f. I further certify
					is a right to drill th I a working interest				Field Services, In				
interest		oluntary poo			a compulsory pooling			New Mexico	is the company 1	providin	g this inf	ormation.	
If this	wall is a h	orizontal eve	IL I fourther	certifi	that this organizat	ion, has	received the			1.00			
consent	of at least	one lessee	or owner of	a work	king interest or unle	ased m	ineral interest		A	VU	10		
		-			n which any part of pooling order from		_		ON SIN A	MEY	12		
			/						13/27	MEX	8/I	1	
	/	$Y \perp$								4831			
, C'	A	1-15	<u> </u>	/	1/	<u>27/2</u>	025		(%)\X	1	AVO	1/21	
Signa	ture	3.5		,					(\7	14	tel	ru/	
		Me	ghan T	wele				Signatur	e and Seal of Pro	ofession	el Survey	or	, /

1/30/24 Date of Field Survey

Date of Certification

mtwele@outlook.com

Printed Name

E-mail Address

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description

Effective May 25, 2021

I. Operator: Avant Operating, LLC OG	RID: 330396 Date:	02/12/2025
II. Type: \boxtimes Original \square Amendment due t	to 🗆 19.15.27.9.D(6)(a)	NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.
If Other, please describe:		

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Dire Wolf 28 Fed Com 301H		N-28-T18S-R32E	449FSL/1557FWL	950 BBL/D	1800 MCF/D	4000 BBL/D
Dire Wolf 28 Fed Com 302H		N-28-T18S-R32E	468FSL/1563FWL	950 BBL/D	1800 MCF/D	4000 BBL/D
Dire Wolf 28 Fed Com 303H		N-28-T18S-R32E	487FSL/1568FWL	950 BBL/D	1800 MCF/D	4000 BBL/D
Dire Wolf 28 Fed Com 501H		N-28-T18S-R32E	405FSL/1711FWL	1400 BBL/D	2400 MCF/D	6000 BBL/D
Dire Wolf 28 Fed Com 502H		N-28-T18S-R32E	425FSL/1717FWL	1400 BBL/D	2400 MCF/D	6000 BBL/D
Dire Wolf 28 Fed Com 503H		N-28-T18S-R32E	444FSL/1722FWL	1400 BBL/D	2400 MCF/D	6000 BBL/D
Dire Wolf 28 Fed Com 601H		N-28-T18S-R32E	362FSL/1865FWL	1300 BBL/D	2000 MCF/D	5000 BBL/D
Dire Wolf 28 Fed Com 602H		N-28-T18S-R32E	381FSL/1871FWL	1300 BBL/D	2000 MCF/D	5000 BBL/D
Dire Wolf 28 Fed Com 603H		N-28-T18S-R32E	401FSL/1876FWL	1300 BBL/D	2000 MCF/D	5000 BBL/D

IV. Central Delivery Point Name: Dire Wolf 28 Fed Com CTB

[See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Dire Wolf 28 Fed Com 301H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 302H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 303H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 501H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 502H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 503H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 601H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 602H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026
Dire Wolf 28 Fed Com 603H		01/16/2026	02/18/2026	02/23/2026	03/17/2026	03/17/2026

VI. Separation Equipment: ⊠ Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VIII. Best Management Practices:

☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

(h)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🖂 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: (a) power generation on lease; **(b)** power generation for grid; (c) compression on lease; (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery;

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Received by OCD: 2/14/2025 10:08:37 AM

11:28:03 AM
1:28:03 A
1:28:03 A
1:28:03
1:28:03
1:28:0
1:28:0
1:28:0
1:28:0
1:28:0
1:28:0
1:28
1:28
1:2
1:2
$\ddot{=}$
$\ddot{=}$
-
5
-4 3
V_{J}
9
_
- 1
00
273
-
S
- 6.5
01
- 63
~
Pine
0,
- 0.4
- 57
_
9
- 63
-
-
0
_
1
-
9
97
્ર
- 2
-
9
O
_~
e
e

to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. Signature: Printed Name: Phillip G. Title: Regulatory Compliance Manager, Pennian Business Unit E-mail Address: Phillip.levasseur@coterra.com Date: 02/12/2025 Phone: 432-620-1642 OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct

Avant Operating, LLC Natural Gas Management Plan

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Avant Operating, LLC (Avant) will take the following actions to comply with the regulations listed in 19.15.27.8:
 - A. Avant will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. Avant will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas.
 - B. All drilling operations will be equipped with a rig flare located at least 100' from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flowback will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, Avant will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications. Avant will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will be analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Avant will comply with the performance standards requirements and provisions listed in 19.15.27.8 (I) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs to minimize the waste. Production storage tanks constructed after May 25, 2021, will be equipped with automatic gauging system. Flares constructed after May 25, 2021, will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. Avant will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - E. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared, or beneficially used during production operations, will be measured, or estimated. Avant will install equipment to measure

Well Name: DIRE WOLF 28 FED COM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

02/07/2025

APD ID: 10400099127

Submission Date: 06/17/2024

Highlighted data reflects the most recent changes

Operator Name: AVANT OPERATING LLC

Well Number: 601H

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured		Mineral Resources	Producina
ID	Formation Name	Elevation		Depth	Lithologies		Formatio
14992621	QUATERNARY	3708	0	Ö	OTHER : Caliche	USEABLE WATER	N
14992622	RUSTLER ANHYDRITE	2580	1128	1128	ANHYDRITE	NONE	N
14992623	YATES	993	2715	2715	SANDSTONE	NATURAL GAS, OIL	N
14992632	SEVEN RIVERS	525	3183	3209	LIMESTONE	NATURAL GAS, OIL	N
14992633	QUEEN	-100	3808	3859	LIMESTONE	NATURAL GAS	N
14992630	CAPITAN REEF	-769	4477	4555	LIMESTONE	USEABLE WATER	N
14992625	CHERRY CANYON	-1276	4984	5082	SANDSTONE	NATURAL GAS, OIL	N
14992626	BRUSHY CANYON	-1842	5550	5671	SANDSTONE	NATURAL GAS, OIL, USEABLE WATER	N
14992631	BONE SPRING	-3234	6942	7119	SANDSTONE	NATURAL GAS, OIL	N
14992627	AVALON SAND	-3946	7654	7859	SANDSTONE	NATURAL GAS, OIL	N
14992634	FIRST BONE SPRING SAND	-4657	8365	8599	SANDSTONE	NATURAL GAS, OIL	N
14992635	BONE SPRING 2ND	-5514	9222	9480	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 15000

Equipment: A minimum 5M system will be used. The minimum blowout preventer equipment (BOPE) shown in BOP Diagram will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer, and an annular preventer (5000-psi WP). Both units will be hydraulically operated, and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas Order 2.

Requesting Variance? YES

Well Name: DIRE WOLF 28 FED COM Well Number: 601H

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Co-flex line will be tested in accordance with highest BOP test pressures (5000 psi) before drilling out of surface casing and (5000 psi) before drilling out of intermediate casing. Pressure tests will be charted for records. The manufacturers hydrostatic test report will be kept on location for inspection.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000 (high) / 250 (low) psig and the annular preventer to 3500 (high) / 250 (low) psig by an independent service company. Test charts will always be kept on site. Surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000 (high) / 250 (low) psig and the annular preventer to 3500 (high) / 250 (low) psig by an independent service company. Test charts will always be kept on site. Intermediate casing will be tested to 1500 psi for 30 minutes. A solid steel body pack-off will be used after running and cementing the intermediate casing. After installation, pack-off and lower flange will be pressure tested to 5000 psi. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe. This pressure test will be repeated at least once every 30 days, as per Onshore Order 2. Kelly cock will always be kept in the drill string. Full opening drill pipe stabbing valve (inside BOP) with proper drill pipe connections will always be kept on the rig floor. The multi-bowl wellhead will be installed by a third-party welder while being monitored by the vendors representative. All BOP equipment will be tested using a conventional test plug - not a cup or J-packer type. Both the surface and intermediate casing strings will be tested as per Onshore Order 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

Choke Diagram Attachment:

Lea_Unit_5M_Choke_20240116131747.pdf

BOP Diagram Attachment:

Lea_Unit_5M_BOP_Diagram_20240116131751.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1153	0	1153	3708	2555	1153	J-55	54.5	LT&C	1.12 5	1.12 5	DRY	1.6	DRY	1.6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5182	0	5084	3640	-1376	5182	J-55	40	LT&C	1.12 5	1.12 5	DRY	1.6	DRY	1.6
3	PRODUCTI ON	8.75	5.5	NEW	NON API	N	0	20628	0	10119	3679	-6411	20628	HCP -110			1.12 5	1.12 5	DRY	1.6	DRY	1.6

Casing Attachments

Well Name: DIRE WOLF 28 FED COM Well Number: 601H

Casing Attachments

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dire_Wolf_BS_Casing_Design_20240617171407.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dire_Wolf_BS_Casing_Design_20240614143348.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

5.5in_GBCD_Casing_Spec_20240614143431.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dire_Wolf_BS_Casing_Design_20240617171356.pdf

Section 4 - Cement

Well Name: DIRE WOLF 28 FED COM Well Number: 601H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1153	470	1.9	12.8	893	50	35% B_POZ & 65% Class C	6% Gel+5% SALT+0.25PPS Pol-E- Flake+0.005GPS
SURFACE	Tail		853	1153	215	1.33	14.8	286	20	Class C	1% CaCl2+0.005GPS NoFoam V1A
INTERMEDIATE	Lead		0	5182	960	1.9	12.8	1824	50	35% Class B Poz + 65% Class C	6% Gel+5% SALT+0.5% R- 1300+0.25PPS Pol-E- Flake+0.005GPS
INTERMEDIATE	Tail		4145	5182	300	1.36	14.8	408	20	Class C	5% SALT+0.005GPS NoFoam V1A
PRODUCTION	Lead		0	2062 8	930	3.38	10.7	3143	50	100% ProLite	5PPS Plexcrete STE+2% SMS+0.65% R-1300+0.2% FL- 24+3PPS Gilsonite+0.005GPS NoFoam V1A
PRODUCTION	Tail		9900	2062 8	2695	1.21	14.5	3261	20	50% B_POZ & 50% Class H	5% SALT+0.05% RCKCAS-100+0.75% FR-5+0.5% FL- 24+0.005GPS NoFoam

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials (e. g., barite, bentonite, LCM) to maintain mud properties and meet minimum lost circulation and weight increase requirements will always be kept on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) mud system will monitor pit volumes for gains or losses, flow rate, pump pressures, and stroke rate.

Circulating Medium Table

Top Depth
Bottom Depth
Mud Type
Min Weight (lbs/gal)
Max Weight (lbs/gal)
Density (lbs/cu ft)
Gel Strength (lbs/100 sqft)
НА
Viscosity (CP)
Salinity (ppm)
Filtration (cc)
Additional Characteristics

Well Name: DIRE WOLF 28 FED COM Well Number: 601H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1153	OTHER : Fresh Water	8.4	9							
1153	5182	OTHER : Cut Brine	9.5	9.5							
5182	9900	OTHER : Cut Brine	9.2	9.5							
9900	1065 0	OTHER : Cut Brine	9.5	9.5							
1065 0	2062 8	OIL-BASED MUD	9.2	9.2							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR log will be acquired by MWD tools throughout the well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG,

Coring operation description for the well:

No core or open hole or cased hole log is planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4857 Anticipated Surface Pressure: 2630

Anticipated Bottom Hole Temperature(F): 166

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Dire_Wolf_H2S_Packet_20240614144105.pdf

Well Name: DIRE WOLF 28 FED COM Well Number: 601H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Dire_Wolf_28_Fed_Com_601H_Plan_0.1_Anti_Collision_20240617171857.pdf Dire_Wolf_28_Fed_Com_601H_Plan_0.1_Report_20240617171901.pdf

Other proposed operations facets description:

All casing strings below the conductor will be pressure tested to 0.22 psi/ft x casing string length, or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield. If pressure declines more than 10% in 30 minutes, then corrective action will be taken.

Other proposed operations facets attachment:

Dire Wolf 28 Fed Com 601H WBS Prelim 20240617171905.pdf

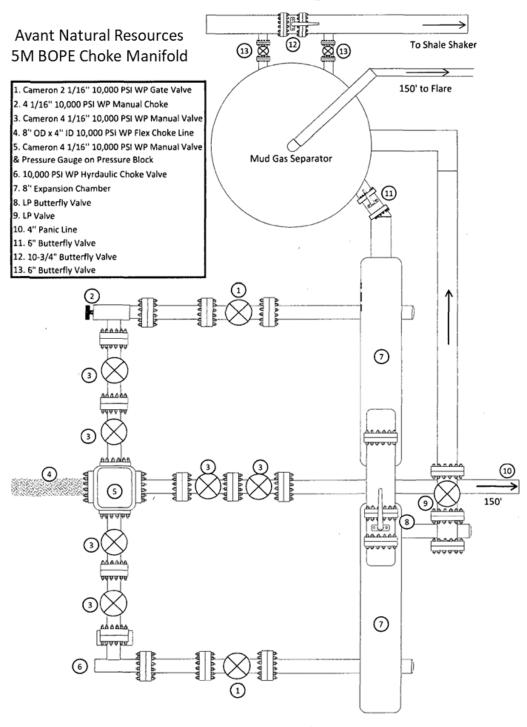
Dire_Wolf_28_Fed_Com_601H_Casing___Cement_20240617171914.pdf

Avant_Natural_Resources___3_String_Bone_Spring_Well___AES_VERT_MP_20240530124456.pdf

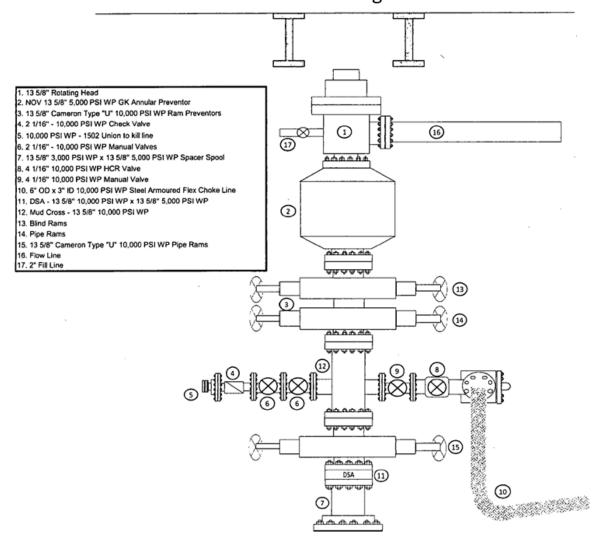
Dire_Wolf_MultiBowl_Wellhead_20240614144229.pdf

Flex_Line_Certification_20240310215029.pdf

Dire_Wolf_Pad_1_Waste_Minimization_Plan_20241104124502.pdf


Other Variance attachment:

Dire_Wolf_Casing_Cementing_Variance_20240614144624.pdf


Avant_Surface_Casing_Cement_Variance_20241105085228.pdf

Avant___Offline_Cementing_Procedure_20241105085244.pdf

Choke Manifold Diagram

Avant Natural Resources 5M BOP Diagram

PERFORMANCE DATA SHEET

Revised May 2020

5.500" 20.0# IP HCP-110 with GB CD Butt

DIMENSIONAL DATA			
Casing OD	5.500 in	Pipe Grade	IP HCP-110
Coupling OD	6.300 in	Coupling Grade	P-110
Pipe Gauge	0.361 in	T&C WPF	20.00 lbs/ft
Drift Diameter	4.653 in	PE WPF	19.83 lbs/ft
MECHANICAL DATA			
Pipe IP Yield Minimum	125,000 psi	Collapse Pressure	12,200 psi
Pipe Tensile Minimum	125,000 psi	Pipe Body Internal Yield Pressure	14,360 psi
Coupling Yield Minimum	110,000 psi	Leak at E7 Plane	21,500 psi
Coupling Tensile Minimum	125,000 psi	Pipe Hydrostatic Test @ 80% SMYS	13,100 psi
CONNECTION & PIPE DATA			
Thread Name	GB CD Butt	Coupling Thread Fracture Strength	1,013,000 lbs
loint Strength	685,000 lbs	Pipe Body Plain End Yield	729,000 lbs
Minimum Makeup Torque	10,000 ft-lbs	Pipe Thread Fracture Strength	685,000 lbs
Maximum Make-up Torque	20,000 ft-lbs	Coupling Internal Yield Pressure	16,240 psi
Maximum Operating Torque	33,660 ft-lbs		
Connection Yield Torque	35,440 ft-lbs		
Note:			

This document is for general information only. It should not, therefore, be relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability, and applicability. Anyone making use of this material does so at his own risk and assumes any and all liability resulting from such use. Centric Pipe, LLC disclaims any and all expressed or implied warranties of merchantability and/or fitness for any general or particular purpose.

CASING DESIGN CRITERIA & LOAD CASE ASSUMPTIONS

SURFACE CASING:

SIZE (in)	SURFACE CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	JOINT STRENGTH (k-lbs)	DEPTHS
13.375"	54.5# J-55 LTC	12.615	12.459	2740	1130	853	909	0' – SCP

Collapse: $DF_C = 1.25$

- Full internal evacuation: Collapse force equal to the mud gradient in which the casing will be ran.
- Cementing: Collapse force equal to the gradient of the planned cement slurries to planned depths and an internal force equal to the fluid gradient of displacement fluid.

Burst: $DF_B = 1.25$

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the gradient in which the casing will be ran.

Tension: $DF_T = 1.6$

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

INTERMEIDATE CASING:

SIZE (in)	INTERMEDIATE CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	JOINT STRENGTH (k-lbs)	DEPTHS
9-5/8"	40# J-55 LTC	8.835	8.679	3950	2570	630	520	0' - 4000'

Collapse: $DF_C = 1.25$

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be ran.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to fluid gradient of displacement fluid.

Burst: $DF_B = 1.25$

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be ran.
- Gas Kick Profile: Internal burst force at the shoe will be fracture pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will
 be ran above that. External force will be equal to the mud gradient in which the casing will be
 ran.

• Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be fracture pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be ran.

Tension: $DF_T = 1.6$

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

PRODUCTION CASING:

SIZE (in)	PRODUCTION CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	JOINT TENSION (k-lbs)	DEPTHS
5-1/2"	20# HCP-110 GBCD	4.778	4.653	12,640	12,200	641	641	0' - 24,000'

Collapse: $DF_C = 1.25$

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be ran. Internal force equal to gas gradient over one-third of setting depth and mud gradient with which the next hole section will be ran below that.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be ran above that and an internal force equal to the fluid gradient of displacement fluid.

Burst: $DF_B = 1.25$

- Pressure Test: 80% of burst casing test with an external force equal to the mud gradient in which the casing will be ran.
- Injection Down Casing: 9800 psi surface injection pressure plus an internal pressure gradient of with an external force equal to the mud gradient in which the casing will be ran.

Tension: $DF_T = 1.6$

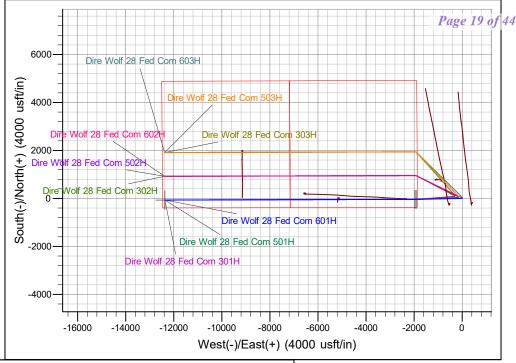
• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

WELL DETAILS: Dire Wolf 28 Fed Com 601H

Ground Elev: 3707.8 KB: Original Well Elev

+N/-S +E/-W Northing Easting Latittude Longitude 0.0 0.0 623299.77 713426.22 32.712244 -103.773822

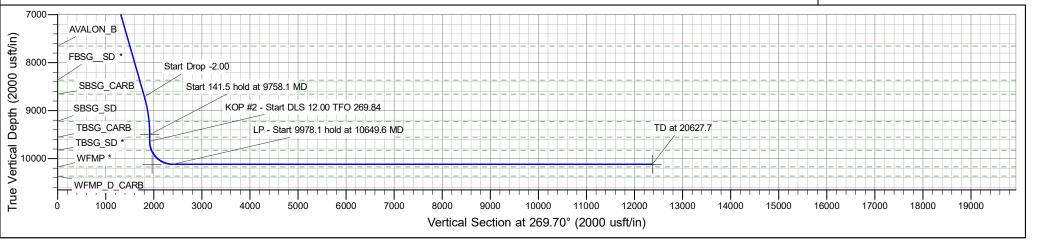
PROJECT DETAILS: Lea Co., NM (NAD 83)


Geodetic System: US State Plane 1983


Datum: North American Datum 1983

Ellipsoid: GRS 1980

Zone: New Mexico Eastern Zone


System Datum: Mean Sea Level

M Azimuths to Grid North
True North: -0.30°
Magnetic North: 8.39°

Magnetic Field
Strength: 49693.7nT
Dip Angle: 60.86°
Date: 12/31/2004
Model: IGRF2000

Avant Operating, LLC

Lea Co., NM (NAD 83) Dire Wolf 28 Pad Dire Wolf 28 Fed Com 601H

OH

Plan: Plan 0.1

Standard Planning Report

31 May, 2024

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site: Well: Dire Wolf 28 Fed Com 601H

Wellbore: OH Plan 0.1 Design:

Local Co-ordinate Reference: **TVD Reference:** MD Reference: North Reference: **Survey Calculation Method:**

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

Minimum Curvature

Project Lea Co., NM (NAD 83)

Map System: US State Plane 1983 North American Datum 1983 Geo Datum:

System Datum: Mean Sea Level

New Mexico Fastern Zone Map Zone:

Dire Wolf 28 Pad Site Northing: 623,386.05 usft Site Position: 32.712485 Latitude: From: Мар Easting: 713,117.85 usft Longitude: -103.774824 Slot Radius: 13-3/16 " **Position Uncertainty:** 0.0 usft

Well Dire Wolf 28 Fed Com 601H **Well Position** +N/-S 0.0 usft623,299.77 usft Latitude: 32.712244 Northing: +E/-W 0.0 usft Easting: 713,426.22 usft Longitude: -103.773823 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,707.8 usft **Position Uncertainty** 0.30 **Grid Convergence:**

ОН Wellbore Dip Angle Magnetics **Model Name** Declination Field Strength Sample Date (°) (°) (nT) IGRF2000 12/31/2004 8.70 60.86 49,693.69211873

Design Plan 0.1 Audit Notes: **PROTOTYPE** Version: Phase: Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 269.70

Plan Survey Tool Program 5/31/2024 Date **Depth From** Depth To (usft) (usft) Survey (Wellbore) **Tool Name** Remarks 0.0 20,627.7 Plan 0.1 (OH) B001Mb_MWD+HRGM OWSG MWD + HRGM

Plan Sections Vertical Build Measured Dogleg Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) Target 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 2,000.0 0.00 0.00 2,000.0 0.0 0.0 0.00 0.00 0.00 0.00 2,798.1 15.96 268.90 2,787.8 -2.1 -110.4 2.00 2.00 0.00 268.90 8,960.1 15.96 268.90 -34.6 -1,804.6 0.00 0.00 0.00 8.712.2 0.00 -1,915.0 -36.7 9,758.1 0.00 9,500.0 2.00 -2.00 0.00 180.00 KOP - Dire Wolf 28 Fe 0.00 9,899.6 -36.7 -1,915.0 0.00 0.00 9,641.5 0.00 0.00 0.00 0.00 10,649.6 90.00 269.84 10,119.0 -38.1 -2,392.5 12.00 12.00 -12.02 269.84 20,627.7 -12,370.5 0.00 90.00 269.84 10,119.0 -65.8 0.00 0.00 0.00 LTP/BHL - Dire Wolf 2

Database: EDM 5000.16 Single User Db
Company: Avant Operating, LLC
Project: Lea Co., NM (NAD 83)
Site: Dire Wolf 28 Pad

Dire Wolf 28 Pad Dire Wolf 28 Fed Com 601H

Wellbore: OH
Design: Plan 0.1

Well:

Local Co-ordinate Reference: TVD Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,128.0	0.00	0.00	1,128.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00	1,120.0	0.0	0.0	0.0	0.00	0.00	0.00
Rustler									
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
			,						
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1.900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP - Start		0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
		200.00	0.400.0	0.0	4.7	4.7	2.00	0.00	0.00
2,100.0	2.00	268.90	2,100.0	0.0	-1.7	1.7	2.00	2.00	0.00
2,200.0	4.00	268.90	2,199.8	-0.1	-7.0	7.0	2.00	2.00	0.00
2,300.0	6.00	268.90	2,299.5	-0.3	-15.7	15.7	2.00	2.00	0.00
2,400.0	8.00	268.90	2,398.7	-0.5	-27.9	27.9	2.00	2.00	0.00
2,500.0	10.00	268.90	2,497.5	-0.8	-43.5	43.5	2.00	2.00	0.00
2,600.0	12.00	268.90	2,595.6	-1.2	-62.6	62.6	2.00	2.00	0.00
2,700.0	14.00	268.90	2,693.1	-1.6	-85.1	85.1	2.00	2.00	0.00
	14.31	268.90	2,708.0	-1.7	-88.8	88.9	2.00	2.00	0.00
2,715.4	14.31	200.90	2,700.0	-1.7	-00.0	00.9	2.00	2.00	0.00
Yates									
2,798.1	15.96	268.90	2,787.8	-2.1	-110.4	110.4	2.00	2.00	0.00
Start 6162.0) hold at 2798.1 N	/ID							
2,800.0	15.96	268.90	2,789.6	-2.1	-111.0	111.0	0.00	0.00	0.00
2,900.0	15.96	268.90	2,885.8	-2.7	-138.4	138.5	0.00	0.00	0.00
3.000.0	15.96	268.90	2,981.9	-3.2	-165.9	166.0	0.00	0.00	0.00
3,100.0	15.96	268.90	3,078.1	-3.7	-193.4	193.5	0.00	0.00	0.00
3,200.0	15.96	268.90	3,174.2	-4.2	-220.9	220.9	0.00	0.00	0.00
3,209.1	15.96	268.90	3,183.0	-4.3	-223.4	223.5	0.00	0.00	0.00
Seven Rive	rs								
3,300.0	15.96	268.90	3,270.4	-4.8	-248.4	248.4	0.00	0.00	0.00
3,400.0	15.96	268.90	3,366.5	-5.3	-275.9	275.9	0.00	0.00	0.00
3,500.0	15.96	268.90	3,462.7	-5.8	-303.4	303.4	0.00	0.00	0.00
3,600.0	15.96	268.90	3,558.8	-6.3	-330.9	330.9	0.00	0.00	0.00
3,700.0	15.96	268.90	3,654.9	-6.9	-358.4	358.4	0.00	0.00	0.00
3,800.0	15.96	268.90	3,751.1	-7.4	-385.9	385.9	0.00	0.00	0.00
3,859.2	15.96	268.90	3,808.0	-7.7	-402.2	402.2	0.00	0.00	0.00
Queen									
3,900.0	15.96	268.90	3,847.2	-7.9	-413.4	413.4	0.00	0.00	0.00
4,000.0	15.96	268.90	3,943.4	-8.5	-440.9	440.9	0.00	0.00	0.00
4,100.0	15.96	268.90	4,039.5	-9.0	-468.4	468.4	0.00	0.00	0.00

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site: Well:

Dire Wolf 28 Fed Com 601H

Wellbore: ОН Design: Plan 0.1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

nned Survey									
Measured Depth (usft)	I Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,200 4,300 4,400	.0 15.96	268.90 268.90 268.90	4,135.7 4,231.8 4,328.0	-9.5 -10.0 -10.6	-495.9 -523.4 -550.9	495.9 523.4 550.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
4,500 4,555	.0 15.96	268.90 268.90	4,424.1 4,477.0	-11.1 -11.4	-578.3 -593.5	578.4 593.5	0.00 0.00	0.00 0.00	0.00 0.00
Capitan I		200.00	4 500 0	44.0	COT 0	605.9	0.00	0.00	0.00
4,600 4,700 4,800	.0 15.96	268.90 268.90 268.90	4,520.2 4,616.4 4,712.5	-11.6 -12.2 -12.7	-605.8 -633.3 -660.8	633.4 660.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
4,900 5,000 5,082	.0 15.96	268.90 268.90 268.90	4,808.7 4,904.8 4,984.0	-13.2 -13.7 -14.2	-688.3 -715.8 -738.5	688.4 715.9 738.5	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Cherry C		200.00	1,00 1.0		. 00.0	. 00.0	0.00	0.00	0.00
5,100 5,200	.0 15.96	268.90 268.90	5,001.0 5,097.1	-14.3 -14.8	-743.3 -770.8	743.4 770.9	0.00 0.00	0.00 0.00	0.00 0.00
5,300 5,400	.0 15.96	268.90 268.90	5,193.3 5,289.4	-15.3 -15.8	-798.3 -825.8	798.4 825.9	0.00 0.00	0.00 0.00	0.00 0.00
5,500 5,600 5,671	.0 15.96	268.90 268.90 268.90	5,385.6 5,481.7 5,550.0	-16.4 -16.9 -17.3	-853.3 -880.8 -900.3	853.4 880.9 900.4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Brushy C	Canyon								
5,700 5,800	.0 15.96	268.90 268.90	5,577.8 5,674.0	-17.4 -18.0	-908.3 -935.8	908.3 935.8	0.00 0.00	0.00 0.00	0.00 0.00
5,900		268.90	5,770.1	-18.5	-963.3	963.3	0.00	0.00	0.00
6,000	.0 15.96	268.90	5,866.3	-19.0	-990.8	990.8	0.00	0.00	0.00
6,100	.0 15.96	268.90	5,962.4	-19.5	-1,018.2	1,018.3	0.00	0.00	0.00
6,200	.0 15.96	268.90	6,058.6	-20.1	-1,045.7	1,045.8	0.00	0.00	0.00
6,300		268.90	6,154.7	-20.6	-1,073.2	1,073.3	0.00	0.00	0.00
6,400		268.90	6,250.9	-21.1	-1,100.7	1,100.8	0.00	0.00	0.00
6,500		268.90	6,347.0	-21.6	-1,128.2	1,128.3	0.00	0.00	0.00
6,600	.0 15.96	268.90	6,443.1	-22.2	-1,155.7	1,155.8	0.00	0.00	0.00
6,700		268.90	6,539.3	-22.7	-1,183.2	1,183.3	0.00	0.00	0.00
6,800		268.90	6,635.4	-23.2	-1,210.7	1,210.8	0.00	0.00	0.00
6,900		268.90	6,731.6	-23.8	-1,238.2	1,238.3	0.00	0.00	0.00
7,000		268.90	6,827.7	-24.3	-1,265.7	1,265.8	0.00	0.00	0.00
7,100	.0 15.96	268.90	6,923.9	-24.8	-1,293.2	1,293.3	0.00	0.00	0.00
7,118 BSPG_LI		268.90	6,942.0	-24.9	-1,298.4	1,298.5	0.00	0.00	0.00
7,200		268.90	7,020.0	-25.3	-1,320.7	1,320.8	0.00	0.00	0.00
7,300		268.90	7,116.2	-25.9	-1,348.2	1,348.3	0.00	0.00	0.00
7,400		268.90	7,212.3	-26.4	-1,375.7	1,375.8	0.00	0.00	0.00
7,500		268.90	7,308.4	-26.9	-1,403.2	1,403.3	0.00	0.00	0.00
7,600	.0 15.96	268.90	7,404.6	-27.4	-1,430.6	1,430.8	0.00	0.00	0.00
7,700		268.90	7,500.7	-28.0	-1,458.1	1,458.3	0.00	0.00	0.00
7,800		268.90	7,596.9	-28.5	-1,485.6	1,485.8	0.00	0.00	0.00
7,859		268.90	7,654.0	-28.8	-1,502.0	1,502.1	0.00	0.00	0.00
AVALON		000.00	7.000.0	00.0	4 540 4	4 540 0	0.00	0.00	0.00
7,900		268.90	7,693.0	-29.0	-1,513.1	1,513.3	0.00	0.00	0.00
8,000		268.90	7,789.2	-29.6	-1,540.6	1,540.8	0.00	0.00	0.00
8,100		268.90	7,885.3	-30.1	-1,568.1	1,568.3	0.00	0.00	0.00
8,200		268.90	7,981.5	-30.6	-1,595.6	1,595.7	0.00	0.00	0.00
8,300		268.90	8,077.6	-31.1	-1,623.1	1,623.2	0.00	0.00	0.00
8,400	.0 15.96	268.90	8,173.8	-31.7	-1,650.6	1,650.7	0.00	0.00	0.00

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site: Well:

Dire Wolf 28 Fed Com 601H

Wellbore: ОН Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,500.0 8,598.9	15.96	268.90 268.90	8,269.9 8,365.0	-32.2 -32.7	-1,678.1 -1,705.3	1,678.2 1,705.4	0.00 0.00	0.00 0.00	0.00 0.00
FBSGSE 8,600.0		268.90	8,366.0	-32.7	-1,705.6	1,705.7	0.00	0.00	0.00
8,700.0 8,800.0	15.96	268.90 268.90	8,462.2 8,558.3	-33.2 -33.8	-1,733.1 -1,760.6	1,733.2 1,760.7	0.00 0.00	0.00 0.00	0.00 0.00
8,900.0 8,902.6		268.90 268.90	8,654.5 8,657.0	-34.3 -34.3	-1,788.1 -1,788.8	1,788.2 1,788.9	0.00 0.00	0.00 0.00	0.00 0.00
SBSG_CA			•		,	,			
8,960.1		268.90	8,712.2	-34.6	-1,804.6	1,804.7	0.00	0.00	0.00
Start Drop		200.00	0.750.7	24.0	4.045.0	4.045.4	2.00	2.00	0.00
9,000.0 9,100.0		268.90 268.90	8,750.7 8,847.7	-34.8 -35.3	-1,815.3 -1,839.8	1,815.4 1,839.9	2.00 2.00	-2.00 -2.00	0.00 0.00
9,200.0		268.90	8,945.4	-35.7	-1,860.8	1,861.0	2.00	-2.00	0.00
9,300.0 9,400.0		268.90	9,043.8	-36.0	-1,878.5	1,878.6 1,892.8	2.00	-2.00 2.00	0.00
9,479.7		268.90 268.90	9,142.8 9,222.0	-36.3 -36.5	-1,892.6 -1,901.5	1,901.6	2.00 2.00	-2.00 -2.00	0.00 0.00
SBSG_SD 9,500.0	5.16	268.90	9,242.2	-36.5	-1,903.4	1,903.5	2.00	-2.00	0.00
•									
9,600.0 9,700.0		268.90 268.90	9,342.0 9,441.9	-36.7 -36.7	-1,910.6 -1,914.4	1,910.8 1,914.6	2.00 2.00	-2.00 -2.00	0.00 0.00
9,758.1	0.00	0.00	9,500.0	-36.7	-1,915.0	1,914.0	2.00	-2.00	0.00
	hold at 9758.1 MI				1,01010	1,010			
9,800.0	0.00	0.00	9,541.9	-36.7	-1,915.0	1,915.2	0.00	0.00	0.00
9,810.1 TBSG_CAI		0.00	9,552.0	-36.7	-1,915.0	1,915.2	0.00	0.00	0.00
9,899.6	0.00	0.00	9,641.5	-36.7	-1,915.0	1,915.2	0.00	0.00	0.00
KOP #2 - S	tart DLS 12.00 TF	O 269.84							
9,925.0	3.05	269.84	9,666.9	-36.7	-1,915.7	1,915.8	12.00	12.00	0.00
9,950.0	6.05	269.84	9,691.8	-36.7	-1,917.7	1,917.8	12.00	12.00	0.00
9,975.0		269.84	9,716.6	-36.8	-1,920.9	1,921.1	12.00	12.00	0.00
10,000.0	12.05	269.84	9,741.1	-36.8	-1,925.5	1,925.7	12.00	12.00	0.00
10,025.0		269.84	9,765.4	-36.8	-1,931.4	1,931.5	12.00	12.00	0.00
10,050.0		269.84	9,789.4	-36.8	-1,938.5	1,938.7	12.00	12.00	0.00
10,075.0 10,086.9		269.84 269.84	9,813.0 9,824.0	-36.8 -36.8	-1,946.8 -1,951.3	1,947.0 1,951.4	12.00 12.00	12.00 12.00	0.00 0.00
TBSG_SD		0000	0.000.0						
10,100.0		269.84	9,836.0	-36.9	-1,956.4	1,956.6	12.00	12.00	0.00
10,125.0		269.84	9,858.6	-36.9	-1,967.2	1,967.4	12.00	12.00	0.00
10,150.0 10,175.0		269.84 269.84	9,880.6 9,901.9	-36.9 -37.0	-1,979.2 -1,992.2	1,979.3 1,992.4	12.00 12.00	12.00 12.00	0.00 0.00
10,175.0		269.84 269.84	9,901.9 9,922.5	-37.0 -37.0	-1,992.2 -2,006.4	2,006.6	12.00	12.00	0.00
10,225.0	39.05	269.84	9,942.3	-37.0	-2,021.6	2,021.8	12.00	12.00	0.00
10,250.0		269.84	9,961.3	-37.1	-2,037.9	2,038.1	12.00	12.00	0.00
10,275.0 10,300.0		269.84 269.84	9,979.4 9,996.6	-37.1 -37.2	-2,055.1 -2,073.3	2,055.3 2,073.4	12.00 12.00	12.00 12.00	0.00 0.00
	Wolf 28 Fed Com		3,330.0	-51.2	-2,013.3	2,013.4	12.00	12.00	0.00
10,325.0		269.84	10,012.8	-37.2	-2,092.3	2,092.4	12.00	12.00	0.00
10,350.0	54.05	269.84	10,028.0	-37.3	-2,112.1	2,112.3	12.00	12.00	0.00
10,375.0		269.84	10,042.1	-37.3	-2,132.7	2,132.9	12.00	12.00	0.00
10,400.0		269.84	10,055.2	-37.4 27.5	-2,154.1 -2,176.0	2,154.2	12.00	12.00	0.00
10,425.0	63.05 66.05	269.84 269.84	10,067.1 10,077.8	-37.5 -37.5	-2,176.0 -2,198.6	2,176.2 2,198.8	12.00 12.00	12.00 12.00	0.00 0.00

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site:

Dire Wolf 28 Fed Com 601H

Wellbore: ОН Design: Plan 0.1

Well:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,475.0	69.05	269.84	10,087.4	-37.6	-2,221.7	2,221.9	12.00	12.00	0.00
10,500.0	72.05	269.84	10,095.7	-37.7	-2,245.3	2,245.4	12.00	12.00	0.00
10,525.0	75.05	269.84	10,102.8	-37.7	-2,269.3	2,269.4	12.00	12.00	0.00
10,550.0	78.05	269.84	10,108.6	-37.8	-2,293.6	2,293.7	12.00	12.00	0.00
10,575.0	81.05	269.84	10,113.1	-37.9	-2,318.1	2,318.3	12.00	12.00	0.00
10,600.0	84.05	269.84	10,116.4	-37.9	-2,342.9	2,343.1	12.00	12.00	0.00
10,625.0	87.05	269.84	10,118.3	-38.0	-2,367.9	2,368.0	12.00	12.00	0.00
10,649.6	90.00	269.84	10,119.0	-38.1	-2,392.5	2,392.6	12.00	12.00	0.00
LP - Start 99	78.1 hold at 106	49.6 MD							
10,700.0	90.00	269.84	10,119.0	-38.2	-2,442.8	2,443.0	0.00	0.00	0.00
10,800.0	90.00	269.84	10,119.0	-38.5	-2,542.8	2,543.0	0.00	0.00	0.00
10,900.0	90.00	269.84	10,119.0	-38.8	-2,642.8	2,643.0	0.00	0.00	0.00
11,000.0	90.00	269.84	10,119.0	-39.0	-2,742.8	2,743.0	0.00	0.00	0.00
11,100.0	90.00	269.84	10,119.0	-39.3	-2,842.8	2,843.0	0.00	0.00	0.00
11,200.0	90.00	269.84	10,119.0	-39.6	-2,942.8	2,943.0	0.00	0.00	0.00
11,300.0	90.00	269.84	10,119.0	-39.9	-3,042.8	3,043.0	0.00	0.00	0.00
11,400.0	90.00	269.84	10,119.0	-40.2	-3,142.8	3,143.0	0.00	0.00	0.00
11,500.0	90.00	269.84	10,119.0	-40.4	-3,242.8	3,243.0	0.00	0.00	0.00
11,600.0	90.00	269.84	10,119.0	-40.7	-3,342.8	3,343.0	0.00	0.00	0.00
11,700.0	90.00	269.84	10,119.0	-41.0	-3,442.8	3,443.0	0.00	0.00	0.00
11,800.0	90.00	269.84	10,119.0	-41.3	-3,542.8	3,543.0	0.00	0.00	0.00
11,900.0	90.00	269.84	10,119.0	-41.5	-3,642.8	3,643.0	0.00	0.00	0.00
	90.00	269.84					0.00	0.00	0.00
12,000.0 12,100.0	90.00	269.6 4 269.84	10,119.0 10,119.0	-41.8 -42.1	-3,742.8 -3,842.8	3,743.0 3,843.0	0.00	0.00	0.00
12,700.0	90.00	269.84	10,119.0	-42.1 -42.4	-3,942.8	3,943.0	0.00	0.00	0.00
12,300.0	90.00	269.84	10,119.0	-42.7	-4,042.8	4,043.0	0.00	0.00	0.00
12,400.0	90.00	269.84	10,119.0	-42.9	-4,142.8	4,143.0	0.00	0.00	0.00
12,500.0	90.00	269.84	10,119.0	-43.2 -43.5	-4,242.8	4,243.0	0.00	0.00	0.00
12,600.0 12,700.0	90.00 90.00	269.84 269.84	10,119.0 10,119.0	-43.5 -43.8	-4,342.8	4,343.0 4,443.0	0.00 0.00	0.00 0.00	0.00 0.00
12,800.0	90.00	269.84	10,119.0	-43.6 -44.1	-4,442.8 -4,542.8	4,543.0	0.00	0.00	0.00
12,900.0	90.00	269.84	10,119.0	-44.3	-4,642.8	4,643.0	0.00	0.00	0.00
13,000.0	90.00	269.84	10,119.0	-44.6	-4,742.8	4,743.0	0.00	0.00	0.00
13,100.0	90.00	269.84	10,119.0	-44.9	-4,842.8	4,843.0	0.00	0.00	0.00
13,200.0	90.00	269.84	10,119.0	-45.2	-4,942.8	4,943.0	0.00	0.00	0.00
13,300.0 13,400.0	90.00 90.00	269.84 269.84	10,119.0 10,119.0	-45.4 -45.7	-5,042.8 5 142 8	5,043.0 5,143.0	0.00 0.00	0.00 0.00	0.00 0.00
					-5,142.8				
13,500.0	90.00	269.84	10,119.0	-46.0	-5,242.8	5,243.0	0.00	0.00	0.00
13,600.0	90.00	269.84	10,119.0	-46.3	-5,342.8	5,343.0	0.00	0.00	0.00
13,700.0	90.00	269.84	10,119.0	-46.6	-5,442.8	5,443.0	0.00	0.00	0.00
13,800.0	90.00	269.84	10,119.0	-46.8	-5,542.8	5,543.0	0.00	0.00	0.00
13,900.0	90.00	269.84	10,119.0	-47.1	-5,642.8	5,643.0	0.00	0.00	0.00
14,000.0	90.00	269.84	10,119.0	-47.4	-5,742.8	5,743.0	0.00	0.00	0.00
14,100.0	90.00	269.84	10,119.0	-47.7	-5,842.8	5,843.0	0.00	0.00	0.00
14,200.0	90.00	269.84	10,119.0	-47.9	-5,942.8	5,943.0	0.00	0.00	0.00
14,300.0	90.00	269.84	10,119.0	-48.2	-6,042.8	6,043.0	0.00	0.00	0.00
14,400.0	90.00	269.84	10,119.0	-48.5	-6,142.8	6,143.0	0.00	0.00	0.00
14,500.0	90.00	269.84	10,119.0	-48.8	-6,242.8	6,243.0	0.00	0.00	0.00
14,600.0	90.00	269.84	10,119.0	-49.1	-6,342.8	6,343.0	0.00	0.00	0.00
14,700.0	90.00	269.84	10,119.0	-49.3	-6,442.8	6,443.0	0.00	0.00	0.00
14,800.0	90.00	269.84	10,119.0	-49.6	-6,542.8	6,543.0	0.00	0.00	0.00
14,900.0	90.00	269.84	10,119.0	-49.9	-6,642.8	6,643.0	0.00	0.00	0.00
15,000.0	90.00	269.84	10,119.0	-50.2	-6,742.8	6,743.0	0.00	0.00	0.00

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site: Well:

Dire Wolf 28 Fed Com 601H

Wellbore: ОН Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,100.0	90.00	269.84	10,119.0	-50.5	-6,842.8	6,843.0	0.00	0.00	0.00
15,200.0	90.00	269.84	10,119.0	-50.7	-6,942.8	6,943.0	0.00	0.00	0.00
15,300.0	90.00	269.84	10,119.0	-51.0	-7,042.8	7,043.0	0.00	0.00	0.00
15,400.0	90.00	269.84	10,119.0	-51.3	-7,142.8	7,143.0	0.00	0.00	0.00
15,500.0	90.00	269.84	10,119.0	-51.6	-7,242.8	7,243.0	0.00	0.00	0.00
15,600.0	90.00	269.84	10,119.0	-51.8	-7,342.8	7,343.0	0.00	0.00	0.00
15,700.0	90.00	269.84	10,119.0	-52.1	-7,442.8	7,443.0	0.00	0.00	0.00
15,800.0	90.00	269.84	10,119.0	-52.4	-7,542.8	7,543.0	0.00	0.00	0.00
15,900.0	90.00	269.84	10,119.0	-52.7	-7,642.8	7,643.0	0.00	0.00	0.00
16,000.0	90.00	269.84	10,119.0	-53.0	-7,742.8	7,743.0	0.00	0.00	0.00
16,100.0	90.00	269.84	10,119.0	-53.2	-7,842.8	7,843.0	0.00	0.00	0.00
16,200.0	90.00	269.84	10,119.0	-53.5	-7,942.8	7,943.0	0.00	0.00	0.00
16,300.0	90.00	269.84	10,119.0	-53.8	-8,042.8	8,043.0	0.00	0.00	0.00
16,400.0	90.00	269.84	10,119.0	-54.1	-8,142.8	8,143.0	0.00	0.00	0.00
16,500.0	90.00	269.84	10,119.0	-54.3	-8,242.8	8,243.0	0.00	0.00	0.00
16,600.0	90.00	269.6 4 269.84	10,119.0	-54.5 -54.6	-0,242.0 -8,342.8	8,343.0	0.00	0.00	0.00
16,700.0	90.00	269.84	10,119.0	-54.0 -54.9	-8,442.8	8,443.0	0.00	0.00	0.00
16,800.0	90.00	269.84	10,119.0	-55.2	-8,542.8	8,543.0	0.00	0.00	0.00
16,900.0	90.00	269.84	10,119.0	-55.5	-8,642.8	8,643.0	0.00	0.00	0.00
17,000.0	90.00	269.84	10,119.0	-55.7	-8,742.8	8,743.0	0.00	0.00	0.00
17,100.0	90.00	269.84	10,119.0	-56.0	-8,842.8	8,843.0	0.00	0.00	0.00
17,200.0	90.00	269.84	10,119.0	-56.3	-8,942.8	8,943.0	0.00	0.00	0.00
17,300.0	90.00	269.84	10,119.0	-56.6	-9,042.8	9,043.0	0.00	0.00	0.00
17,400.0	90.00	269.84	10,119.0	-56.8	-9,142.8	9,143.0	0.00	0.00	0.00
17,500.0	90.00	269.84	10,119.0	-57.1	-9,242.8	9,243.0	0.00	0.00	0.00
17,600.0	90.00	269.84	10,119.0	-57.4	-9,342.8	9,343.0	0.00	0.00	0.00
17,700.0	90.00	269.84	10,119.0	-57.7	-9,442.8	9,443.0	0.00	0.00	0.00
17,800.0	90.00	269.84	10,119.0	-58.0	-9,542.8	9,543.0	0.00	0.00	0.00
17,900.0	90.00	269.84	10,119.0	-58.2	-9,642.8	9,643.0	0.00	0.00	0.00
18,000.0	90.00	269.84	10,119.0	-58.5	-9,742.8	9,743.0	0.00	0.00	0.00
18,100.0	90.00	269.84	10,119.0	-58.8	-9,842.8	9,843.0	0.00	0.00	0.00
18,200.0	90.00	269.84	10,119.0	-59.1	-9,942.8	9,943.0	0.00	0.00	0.00
18,300.0	90.00	269.84	10,119.0	-59.4	-10,042.8	10,043.0	0.00	0.00	0.00
18,400.0	90.00	269.84	10,119.0	-59.6	-10,142.8	10,143.0	0.00	0.00	0.00
18,500.0	90.00	269.84	10,119.0	-59.9	-10,242.8	10,243.0	0.00	0.00	0.00
18,600.0	90.00	269.84	10,119.0	-60.2	-10,342.8	10,343.0	0.00	0.00	0.00
18,700.0	90.00	269.84	10,119.0	-60.5	-10,442.8	10,443.0	0.00	0.00	0.00
18,800.0	90.00	269.84	10,119.0	-60.7	-10,542.8	10,543.0	0.00	0.00	0.00
18,900.0	90.00	269.84	10,119.0	-61.0	-10,642.8	10,643.0	0.00	0.00	0.00
19,000.0	90.00	269.84	10,119.0	-61.3	-10,742.8	10,743.0	0.00	0.00	0.00
19,000.0	90.00	269.84 269.84	10,119.0	-61.6	-10,742.8 -10,842.8	10,743.0	0.00	0.00	0.00
19,100.0	90.00	269.84 269.84	10,119.0	-61.6 -61.9	-10,042.8 -10,942.8	10,643.0	0.00	0.00	0.00
19,200.0	90.00	269.84	10,119.0	-61.9 -62.1	-10,942.8	11,043.0	0.00	0.00	0.00
19,400.0	90.00	269.84	10,119.0	-62.1 -62.4	-11,142.8	11,143.0	0.00	0.00	0.00
19,500.0	90.00	269.84	10,119.0	-62.7	-11,242.8	11,243.0	0.00	0.00	0.00
19,600.0	90.00	269.84	10,119.0	-63.0	-11,342.8	11,343.0	0.00	0.00	0.00
19,700.0	90.00	269.84	10,119.0	-63.2	-11,442.8	11,443.0	0.00	0.00	0.00
19,800.0	90.00	269.84	10,119.0	-63.5	-11,542.8	11,543.0	0.00	0.00	0.00
19,900.0	90.00	269.84	10,119.0	-63.8	-11,642.8	11,643.0	0.00	0.00	0.00
20,000.0	90.00	269.84	10,119.0	-64.1	-11,742.8	11,743.0	0.00	0.00	0.00
20,100.0	90.00	269.84	10,119.0	-64.4	-11,842.8	11,843.0	0.00	0.00	0.00
20,200.0	90.00	269.84	10,119.0	-64.6	-11,942.8	11,943.0	0.00	0.00	0.00
20,300.0	90.00	269.84	10,119.0	-64.9	-12,042.8	12,043.0	0.00	0.00	0.00
20,400.0	90.00	269.84	10,119.0	-65.2	-12,142.8	12,143.0	0.00	0.00	0.00

EDM 5000.16 Single User Db Database: Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Dire Wolf 28 Pad Site: Well: Dire Wolf 28 Fed Com 601H

Wellbore: ОН Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference:

Survey Calculation Method:

North Reference:

Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev)

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,500.0	90.00	269.84	10,119.0	-65.5	-12,242.8	12,243.0	0.00	0.00	0.00
20,600.0	90.00	269.84	10,119.0	-65.8	-12,342.8	12,343.0	0.00	0.00	0.00
20.627.7	90.00	269.84	10,119.0	-65.8	-12,370.5	12,370.7	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP - Dire Wolf 28 Fed - plan hits target cen - Point	0.00 ter	0.00	9,500.0	-36.7	-1,915.0	623,263.03	711,511.22	32.712170	-103.780049
FTP - Dire Wolf 28 Fed (- plan misses target - Point	0.00 center by 163	0.00 4usft at 103	10,119.0 00.0usft MD	-36.9 (9996.6 TVD,	-1,965.0 -37.2 N, -207	623,262.90 3.3 E)	711,461.22	32.712171	-103.780212
LTP/BHL - Dire Wolf 28 I - plan hits target cen - Point	0.00 ter	0.00	10,119.0	-65.8	-12,370.5	623,233.94	701,055.74	32.712236	-103.814042

Casing Points							
	Measured Depth	Vertical Depth			Casing Diameter	Hole Diameter	
	(usft)	(usft)		Name	(")	(")	
	20,627.7	10,119.0	20" Casing		20	24	

Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
1,128.0	1,128.0	Rustler			
2,715.4	2,708.0	Yates			
3,209.1	3,183.0	Seven Rivers			
3,859.2	3,808.0	Queen			
4,555.0	4,477.0	Capitan Reef			
5,082.3	4,984.0	Cherry Canyon			
5,671.0	5,550.0	Brushy Canyon			
7,118.9	6,942.0	BSPG_LIME *			
7,859.4	7,654.0	AVALON_B			
8,598.9	8,365.0	FBSG_SD *			
8,902.6	8,657.0	SBSG_CARB			
9,479.7	9,222.0	SBSG_SD			
9,810.1	9,552.0	TBSG_CARB			
10,086.9	9,824.0	TBSG_SD *			
	Depth (usft) 1,128.0 2,715.4 3,209.1 3,859.2 4,555.0 5,082.3 5,671.0 7,118.9 7,859.4 8,598.9 8,902.6 9,479.7 9,810.1	Depth (usft) Depth (usft) 1,128.0 1,128.0 2,715.4 2,708.0 3,209.1 3,183.0 3,859.2 3,808.0 4,555.0 4,477.0 5,082.3 4,984.0 5,671.0 5,550.0 7,118.9 6,942.0 7,859.4 7,654.0 8,598.9 8,365.0 8,902.6 8,657.0 9,479.7 9,222.0 9,810.1 9,552.0	Depth (usft) Depth (usft) Name 1,128.0 1,128.0 Rustler 2,715.4 2,708.0 Yates 3,209.1 3,183.0 Seven Rivers 3,859.2 3,808.0 Queen 4,555.0 4,477.0 Capitan Reef 5,082.3 4,984.0 Cherry Canyon 5,671.0 5,550.0 Brushy Canyon 7,118.9 6,942.0 BSPG_LIME * 7,859.4 7,654.0 AVALON_B 8,598.9 8,365.0 FBSG_SD_SD * 8,902.6 8,657.0 SBSG_CARB 9,479.7 9,222.0 SBSG_SD 9,810.1 9,552.0 TBSG_CARB	Depth (usft) Depth (usft) Name Lithology 1,128.0 1,128.0 Rustler 2,715.4 2,708.0 Yates 3,209.1 3,183.0 Seven Rivers 3,859.2 3,808.0 Queen 4,555.0 4,477.0 Capitan Reef 5,082.3 4,984.0 Cherry Canyon 5,671.0 5,550.0 Brushy Canyon 7,118.9 6,942.0 BSPG_LIME * 7,859.4 7,654.0 AVALON_B 8,598.9 8,365.0 FBSG_SD * 8,902.6 8,657.0 SBSG_CARB 9,479.7 9,222.0 SBSG_SD 9,810.1 9,552.0 TBSG_CARB	Depth (usft) Depth (usft) Name Lithology Dip (°) 1,128.0 1,128.0 Rustler 2,715.4 2,708.0 Yates 3,209.1 3,183.0 Seven Rivers 3,859.2 3,808.0 Queen 4,555.0 4,477.0 Capitan Reef 5,082.3 4,984.0 Cherry Canyon 5,671.0 5,550.0 Brushy Canyon 7,118.9 6,942.0 BSPG_LIME * 7,859.4 7,654.0 AVALON_B 8,598.9 8,365.0 FBSG_SD * 8,902.6 8,657.0 SBSG_CARB 9,479.7 9,222.0 SBSG_SD 9,810.1 9,552.0 TBSG_CARB 1,128.0

Database: EDM 5000.16 Single User Db
Company: Avant Operating, LLC
Project: Lea Co., NM (NAD 83)
Site: Dire Wolf 28 Pad
Well: Dire Wolf 28 Fed Com 601H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Dire Wolf 28 Fed Com 601H WELL @ 3734.3usft (Original Well Elev) WELL @ 3734.3usft (Original Well Elev) Grid

Plan Annotations					
Measured	Vertical	Local Coor	dinates		
Depth	Depth	+N/-S	+E/-W		
(usft)	(usft)	(usft)	(usft)	Comment	
2,000.0	2,000.0	0.0	0.0	KOP - Start Build 2.00	
2,798.1	2,787.8	-2.1	-110.4	Start 6162.0 hold at 2798.1 MD	
8,960.1	8,712.2	-34.6	-1,804.6	Start Drop -2.00	
9,758.1	9,500.0	-36.7	-1,915.0	Start 141.5 hold at 9758.1 MD	
9,899.6	9,641.5	-36.7	-1,915.0	KOP #2 - Start DLS 12.00 TFO 269.84	
10,649.6	10,119.0	-38.1	-2,392.5	LP - Start 9978.1 hold at 10649.6 MD	
20,627.7	10,119.0	-65.8	-12,370.5	TD at 20627.7	

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Avant Operating LLC

LOCATION: S

Section 28, T.18 S., R.32 E., NMPM

COUNTY:

Lea County, New Mexico

WELL NAME & NO.: | Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1871 APD ID: 10400099096

Sundry ID: N/a

WELL NAME & NO.: Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1903 APD ID: 10400099115

Sundry ID: N/a

WELL NAME & NO.: | Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1902 APD ID: 10400099122

Sundry ID: N/a

WELL NAME & NO.: Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1901 APD ID: 10400099123

Sundry ID: N/a

WELL NAME & NO.: | Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1900 APD ID: 10400099127

Sundry ID: N/a

WELL NAME & NO.: Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-1914 APD ID: 10400099128

Sundry ID: N/a

WELL NAME & NO.: Dire Wolf 28 Fed Com 303H

ATS/API ID: ATS-24-2118 APD ID: 10400099129

Sundry ID: N/a

COA

H2S	Yes		
Potash	None	None	
Cave/Karst Potential	Low		
Cave/Karst Potential	□ Critical		
Variance	None	Flex Hose	C Other
Wellhead	Conventional and Multibowl	▼	
Other	□4 String □5 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	☐ Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter None	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	▼ COM	□ Unit
Special Requirements	☐ Batch Sundry	Waste Prevention Waste MP	
Special Requirements Variance	☐ BOPE Break Testing ☐ Offline BOPE Testing	▼ Offline Cementing	☐ Casing Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1220 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record),

- or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Offline Cementing

Operator has been (Approved) to pump the proposed cement program offline in the Surface and intermediate(s) intervals.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

✓ Lea County
Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

- initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 1/31/2025

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor th sufficient air hose not to restrict work activity.
- Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Company Personnel to be Notified

John Harper.	Vice President of Geoscience	Office: (720) 746-5045

Mobile: (678) 988-6644

Braden Harris, Engineer Mobile: (406) 600-3310

Local & County Agencies

Maljamar Volunter Fire Department 911	1 or ((5/5)	676-4100
---------------------------------------	--------	-------	----------

Lea	Cou	nty	Sheriff	(Lovington)				911 or (575) 396-3611
	_	_	_		. /1	_	`	(===) 000 0000

Lea County Emergency Management (Lovington) (575) 396-8602 Lea Regional Medical Center Hopital (Hobbs) (575) 492-5000

State Agencies

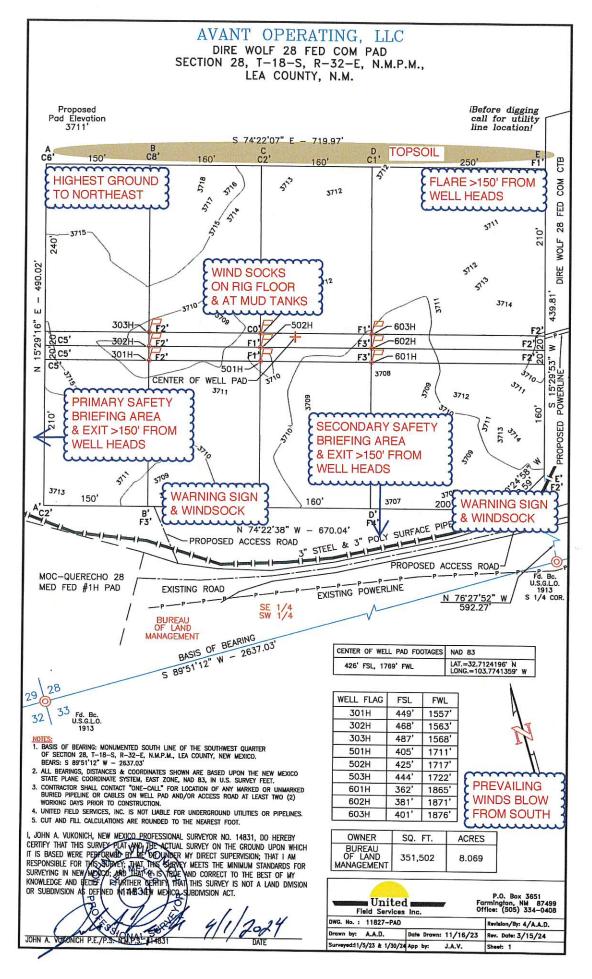
NM State Police (Hobbs)	(575) 392-5588
NM Oil Conservation (Hobbs)	(575) 370-3186
NM Oil Conservation (Santa Fe)	(505) 476-3440
NM Dept. of Transportation (Roswell)	(575) 637-7201

Federal Agencies

BLM (Carlsbad)	(575) 234-5972
BLM (Hobbs)	(575) 393-3612
National Response Center	(800) 424-8802
US EPA Region 6 (Dallas)	(800) 887-6063
-	(214) 665-6444

Veterinarians

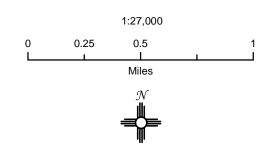
Lovington Veterinary Clinic	(575) 396-7387
Hobbs Animal Clinic	(575) 392-5563
Dal Paso Animal Hospital (Hobbs)	(575) 397-2286


Residents within 2 miles

None

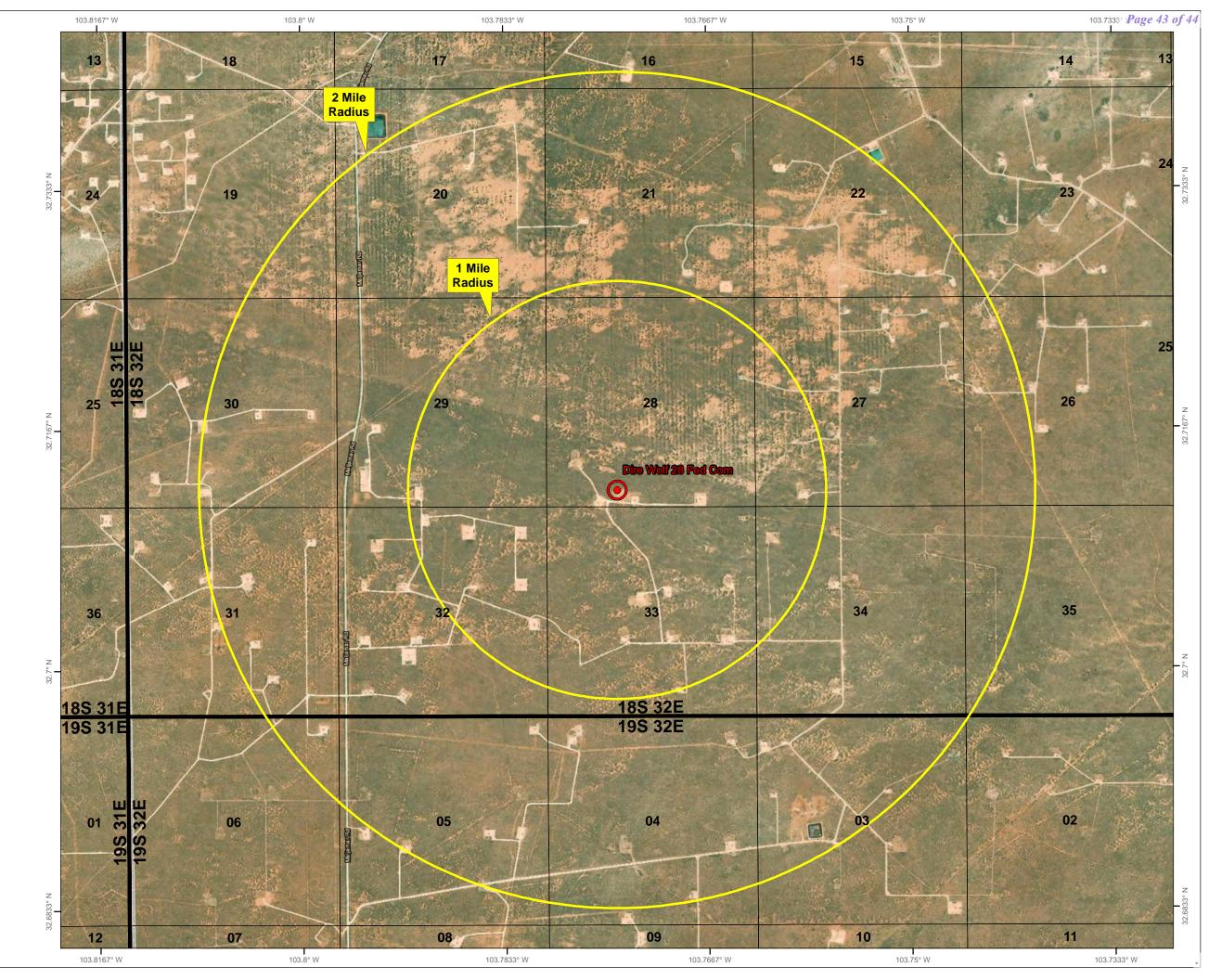
Air Evacuation

AeroCare (Lubbock)	(800) 627-2376
Med Flight Air Ambulance (Albuquerque)	(800) 842-4431
Lifeguard (Albuquerque)	(888) 866-7256



Dire Wolf 28 Fed Com H2S Contingency Plan: Radius Map

Section 28, Township 18S, Range 32E Lea County, New Mexico



NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., May 7, 2024 for Avant Operating, LLC

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 432207

CONDITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	432207
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
twelem	Cement is required to circulate on both surface and intermediate1 strings of casing.	2/14/2025
twelem	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	2/14/2025
pkautz	Administrative order required for non-standard spacing unit prior to production.	3/3/2025
pkautz	File As Drilled C-102 and a directional Survey with C-104 completion packet.	3/3/2025
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	3/3/2025
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	3/3/2025