

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report

Well Name: STEEL GUITAR 35-26 Well L

FED COM

Well Location: T26S / R29E / SEC 26 /

NENW / 32.0185887 / -103.9566998

County or Parish/State: EDDY /

NM

Well Number: 422H Type of Well: OTHER Allottee or Tribe Name:

Lease Number: NMNM19609 Unit or CA Name: Unit or CA Number:

LLC

Notice of Intent

Sundry ID: 2831393

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 01/13/2025 Time Sundry Submitted: 02:32

Date proposed operation will begin: 01/13/2025

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL and spacing on the subject well. Dedicated acreage changes from 862.40 acs to 431.99 acs. Please see attached revised C102, drill plan, and directional plan. Drill plan attachment was previously approved in Batch Sundry (ID 2761162). Permitted BHL: LOT 9, 35-26S-29E, 1804 FNL & 900 FWL Proposed BHL: LOT 9, 35-26S-29E, 50 FSL & 883 FWL

NOI Attachments

Procedure Description

STEEL_GUITAR_35_26_FED_COM_422H_01.22.25_20250122100248.pdf

STEEL_GUITAR_35_26_FED_COM_422H_DIRECTIONAL_PLAN__FINAL_SURVEYS__20250113143047.pd

STEEL_GUITAR_35_26_FED_COM_422H_AS_DRILLED_SIGNED_20250113111432.pdf

eived by OCD: 1/29/2025 10:22:18 AM Well Name: STEEL GUITAR 35-26

FED COM

Well Location: T26S / R29E / SEC 26 / NENW / 32.0185887 / -103.9566998

County or Parish/State: Page 2 of

NM

Well Number: 422H

Type of Well: OTHER

Allottee or Tribe Name:

Lease Number: NMNM19609

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001549851

Operator: WPX ENERGY PERMIAN

Conditions of Approval

Specialist Review

26_26_29_C_Sundry_ID_2831393_Steel_Guitar_422H_Eddy_NM19609_WPX_ENERGY_PERMIAN_LLC_13_22fa_9_ 29_2023_LV_20250129100354.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHANDEE THOMAS Signed on: JAN 22, 2025 10:02 AM

Name: WPX ENERGY PERMIAN LLC

Title: Regulatory Professional

Street Address: 333 W SHERDIAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 552-7853

Email address: SHANDEE.THOMAS@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer

BLM POC Phone: 5759885402 BLM POC Email Address: LVO@BLM.GOV

Disposition: Approved Disposition Date: 01/29/2025

Signature: Long Vo

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BURE	EAU OF LAND MANAGEMENT	5. Lease Serial No.		
Do not use this fo	OTICES AND REPORTS ON Worm for proposals to drill or to Use Form 3160-3 (APD) for suc	6. If Indian, Allottee or Tribe	Name	
	RIPLICATE - Other instructions on pag	7. If Unit of CA/Agreement, 1	Name and/or No.	
1. Type of Well Oil Well Gas W	ell Other		8. Well Name and No.	
2. Name of Operator			9. API Well No.	
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or Explora	tory Area
4. Location of Well (Footage, Sec., T.,R.	,M., or Survey Description)		11. Country or Parish, State	
12. CHEC	CK THE APPROPRIATE BOX(ES) TO INI	DICATE NATURE (OF NOTICE, REPORT OR OT	HER DATA
TYPE OF SUBMISSION		TYPI	E OF ACTION	
Notice of Intent	Acidize Deep Alter Casing Hydr	en aulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report		Construction	Recomplete	Other
		and Abandon	Temporarily Abandon	
Final Abandonment Notice	Convert to Injection Plug peration: Clearly state all pertinent details, i	<u>.</u>	Water Disposal	
is ready for final inspection.)				
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)	T. 4		
		Title		
Signature				
	THE SPACE FOR FEDI	ERAL OR STA	TE OFICE USE	
Approved by				
		Title		Date
	ed. Approval of this notice does not warran quitable title to those rights in the subject leduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43	U.S.C Section 1212, make it a crime for ar	y person knowingly	and willfully to make to any d	epartment or agency of the United States

any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENW / 430 FNL / 1867 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0185887 / LONG: -103.9566998 (TVD: 0 feet, MD: 0 feet)
PPP: NENW / 100 FNL / 1370 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195579 / LONG: -103.9586996 (TVD: 9891 feet, MD: 9955 feet)
PPP: SENW / 2582 FSL / 1340 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0134151 / LONG: -103.9590276 (TVD: 10297 feet, MD: 12400 feet)
BHL: LOT 9 / 1804 FNL / 900 FWL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002401 / LONG: -103.9597323 (TVD: 10297 feet, MD: 17198 feet)

STEEL GUITAR 35-26 FED COM 422H

1. Geologic Formations

TVD of target	10262	Pilot hole depth	N/A
MD at TD:	17294	Deepest expected fresh water	

Basin

Dasiii	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	4007		
Brushy Canyon	5096		
1st Bone Spring Lime	6701		
Bone Spring 1st	7627		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
Bone Spring 3rd	9527		
Wolfcamp	9839		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

ı			Wt			Casing	Interval	Casing	Interval
	Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
	13 1/2	9 5/8	40	J-55	BTC	0	466	0	466
	8 3/4	7 5/8	29.7	P110	Sprint FJ	0	9783	0	9783
	6 3/4	5 1/2	20	P110	DWC/C-IS & Sprint FJ	0	17294	0	10262

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Variance Approval -

o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe o All other 5-1/2" Production Casing will run DWC/C IS (6.05")

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	256	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	292 Surf		13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
III I	421	5224	13.2	1.44	Tail: Class H / C + additives
Production	62	7883	9	3.27	Lead: Class H /C + additives
Floduction	473	9883	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:	
				Annular		X	50% of rated working pressure
Int 1	13-5/8"	5M	Blind	d Ram	X		
IIIt I	13-3/6	3111	Pipe	Ram		5M	
			Doub	le Ram	X	J1V1	
			Other*				
			Annular (5M)	or (5M)	X	50% of rated working	
	13-5/8"		Ailliulai (51VI)		Λ	pressure	
Production		5M	Blind Ram		X	5M	
Troduction		3111	Pipe Ram Double Ram Other*				
					X	3101	
			Annular (5M)				
			Blind Ram Pipe Ram				
						1	
			Double Ram			1	
			Other*				
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.						
Y A variance is requested to 1	A variance is requested to run a 5 M annular on a 10M system						

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing								
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the							
X	Completion Report and shumitted to the BLM.							
	No logs are planned based on well control or offset log information.							
	Drill stem test? If yes, explain.							
	Coring? If yes, explain.							

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5603
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present
Y H2S plan attached.

STEEL GUITAR 35-26 FED COM 422H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachn	nents
X	Directional Plan
	Other, describe

devon

400

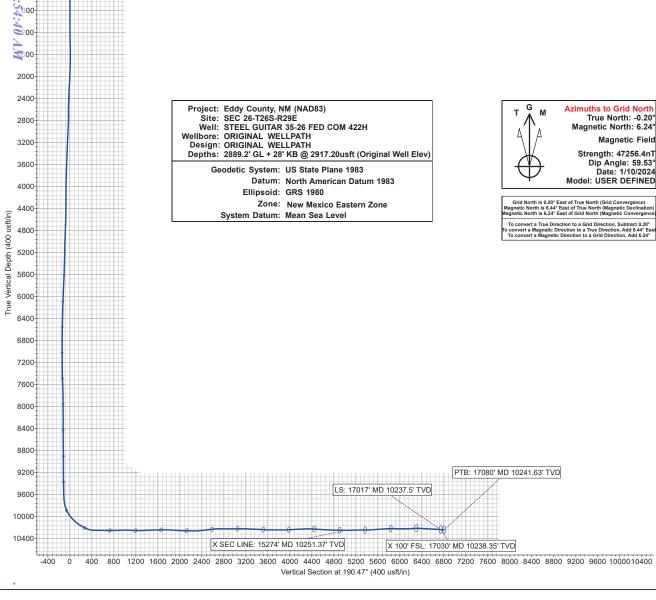
STEEL GUITAR 35-26 FED COM 422H

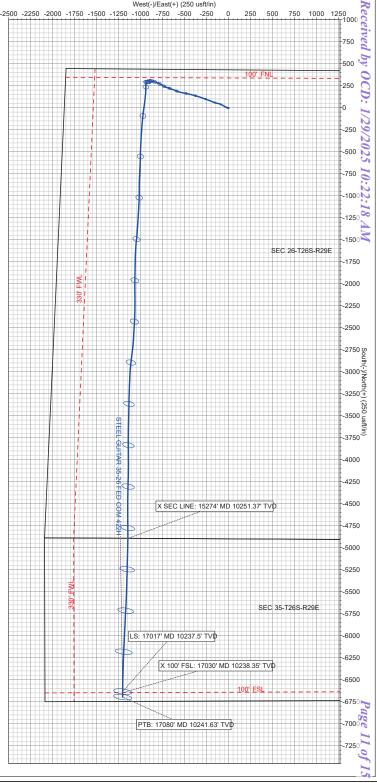
WELL DETAILS: STEEL GUITAR 35-26 FED COM 422H

ELEVATION: 2889.2' GL + 28' KB @ 2917.20usft (Original Well Elev) +N/-S +E/-W Northing Easting Latitude 0.00

Longitude 0.00 370722.05 657928.29 32.01863708 -103.95714461

ANNOTATIONS


MD	Inc	Azi	TVD	+N/-S	+E/-W	VSectE	Departure	Annotation
15274.00	89.87	180.65	10251.37	-4894.88	-1145.87	5021.61	6225.68	X SEC LINE: 15274' MD 10251.37' TVD
17017.00	86.24	180.00	10237.50	-6634.80	-1204.76	6743.26	7966.75	LS: 17017' MD 10237.5' TVD
17030.00	86.24	180.00	10238.35	-6647.77	-1204.76	6756.01	7979.73	X 100' FSL: 17030' MD 10238.35' TVD
17080.00	86.24	180.00	10241.63	-6697.66	-1204.76	6805.08	8029.62	PTB: 17080' MD 10241.63' TVD


True North: -0.20°

Strength: 47256.4nT Dip Angle: 59.53°

Date: 1/10/2024 Model: USER DEFINED

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

0.11	☐ Initial Submittal	
Submittal	☐ Amended Report	

Submit Electronicall	У
Via OCD Permitting	

Type:

API Number 30-015-49851	Pool Code 98220	Pool Name PURPLE SAGE; WOLFCAME	P (GAS)
Property Code 333183	Property Name STEEL GUITAR	35-26 FED COM	Well Number 422H
OGRID No. 246289	Operator Name WPX ENERGY I	PERMIAN, LLC	Ground Level 2889.2
Surface Owner: □State □Fee □Ti	ribal ☑ Federal	Mineral Owner: □State □Fee □Tribal ☑Fed	eral

Surface Location

UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County	
C	26	26 S	29 E		430 NORTH	1867 WEST	32.0186371°1	N 103.9571446°W	EDDY	
					Bottom H	ole Location				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County	
	35	26 S	29 E	9	50 SOUTH	883 WEST	32.0002411°1	N 103.9611054°W	EDDY	
Dedica	ted Acres	Infill or Defi	ning Well	Defining	Well API	Overlapping Space	cing Unit (Y/N)	Consolidation Code	nsolidation Code	
431.	99	INFILL		30-015-49377						
Order N	Numbers.					Well setbacks are	under Common C	Ownership: ☐ Yes ☐ No		

Kick Off Point (KOP)

	Kick Oil Fullit (KOF)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
D	26	26 S	29 E		151 NORTH	916 WEST	32.0194347°N	103.9601679°W	EDDY
	First Take Point (FTP)								
UL D	Section 26	Township 26 S	Range 29 E	Lot	Ft. from N/S 736 NORTH	Ft. from E/W 890 EAST	Latitude 32.0178279°N	Longitude 103.9603477°W	County EDDY
					Last Take	Point (LTP)			
UL	Section 35	Township 26 S	Range 29 E	Lot 9	Ft. from N/S 133 SOUTH	Ft. from E/W 884 WEST	Latitude 32.0004687°N	Longitude 103.9611039°W	County EDDY

Unitized Area or Area of Uniform Interest	Spacing Unit Type ☑Horizontal ☐ Vertical	Ground Floor Elevation:

OPERATOR CERTIFICATIONS

I hereby certify that the information contained herein is true and complete to the best ofmy knowledge and belief, and, if the well is a vertical or directional well, that this $organization\ either\ owns\ a\ working\ interest\ or\ unleased\ mineral\ interest\ in\ the\ land$ including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest run leased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order here to fore entered by the division.

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed al will be located or obtained a compulsory pooling order from the division.

1/9/25

Date

SHANDEE THOMAS

Printed Name

SHANDEE.THOMAS@DVN.COM

Email Address

SURVEYOR CERTIFICATIONS

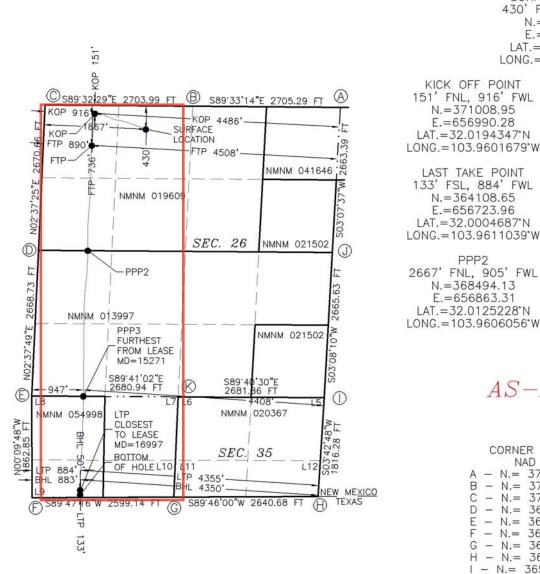
I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

Signature and Seal of Professional Survey FILIMON F. JARAMILLO

CertificateNumber

PLS 12797

Dateof Survey


OCTOBER 24, 2024

SURVEY NO. 9857A

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

STEEL GUITAR 35-26 FED COM 422H EL. = 2889.2

> GEODETIC COORDINATES NAD 83 NMSP EAST SURFACE LOCATION 430' FNL, 1867' FWL N.=370722.05 E.=657928.29 LAT.=32.0186371°N LONG.=103.9571446°W

KICK OFF POINT FIRST TAKE POINT 151' FNL, 916' FWL 736' FNL, 890' FEL N.=371008.95 N.=370424.24 E.=656990.28 E.=656936.58 LAT.=32.0194347*N LAT.=32.0178279°N LONG.=103.9601679'W LONG.=103.9603477*W LAST TAKE POINT BOTTOM OF HOLE 133' FSL, 884' FWL 50' FSL, 883' FWL N.=364108.65 N.=364025.85 E.=656723.96 E.=656723.79 LAT.=32.0004687*N LAT.=32.0002411°N LONG.=103.9611039'W LONG.=103.9611054°W PPP3 0' FNL, 947' FWL 2667' FNL, 905' FWL N = 368494.13N.=365829.32 E.=656863.31 E.=656782.61

AS-DRILLED

LAT.=32.0051982°N

LONG.=103.9608956°W

LAT.=32.0125228°N

CORNER COORDINATES TABLE NAD 83 NMSP EAST 371124.47 E.= 661488.25 В N.= 371145.53 E.= 658783.63 C 371167.17 656080.31 E.= N.= D 368499.89 E.= 655958.09 N.=E N =365834.55 E.= 655835.64 363972.11 N =655840.95 363981.73 N.= E.= 658439.51 363992.48 661079.59 N.=E.= - N.= 365804.56 E.= 661197.19 - N.= 368465.62 E.= 661343.00 365819.76 658515.96 N.=E.= **LEGEND** SECTION LINE QUARTER LINE LEASE LINE WELL PATH

Steel Guitar 422H

	#/ft	surface csg in a	13 1/2									
"A" "B" Comparison of P	#/ft		13 1/2	inch hole.		<u>Design</u>	Factors			Surface		
"B" Comparison of P		Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
Comparison of P	40.00		j 55	btc	33.80	11.8	0.74	466	19	1.24	22.28	18,640
				btc				0				0
		8.4#/g mud, 30min Sfc Csg Test		Tail Cmt	does not	circ to sfc.	Totals:	466				18,640
TIOIC	Annular	o Minimum Required Ceme 1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume		CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
	0.4887	Cmt Sx 256	369	228	% EXCESS 62	9.00	3184	5M				1.44
Burst Frac Gradier	nt(s) for Se	gment(s) A, B = , b All > 0.7	70, OK.									
7 5/8		asing inside the	9 5/8			<u>Design</u>				Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	29.70		p 110	vam sprint fj	2.94	1.38	1.54	9,783	2	2.58	2.31	
"B"							_ ,	0				0
	w/	8.4#/g mud, 30min Sfc Csg Test					Totals:	9,783				290,55
				led to achieve a top of	0	ft from su		466				overlap.
	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
8 3/4	0.1005	421	606	987	-39	10.50	3340	5M				0.55
D V Tool(s):			5096				sum of sx	<u>Σ CuFt</u>				Σ%exces
by stage % :		29	30				713	1278				29
Tail cmt		asing inside the	75/8			Design Fa	ctors			Prod 1		
5 1/2		asing inside the Grade	7 5/8	Coupling	Joint	Design Fa		Length	B@s	Prod 1 a-B	a-C	Weigh
5 1/2 Segment	#/ft	asing inside the Grade		Coupling dwc/c is	Joint 3 55	Collapse	Burst	Length	B@s	а-В	a-C	Weigh
5 1/2 Segment "A"	#/ft 20.00		p 110	dwc/c is	3.55	Collapse 2.39	Burst 2.51	9,283	3	a-B 4.21	4.00	185,66
5 1/2 Segment "A" "B"	#/ft 20.00 20.00		p 110 p 110	dwc/c is vam sprint sf	3.55 32.74	2.39 2.16	2.51 2.57	9,283 979	3 3	a-B 4.21 4.30	4.00 3.62	185,66 19,58 0
5 1/2 Segment "A" "B" "C"	#/ft 20.00		p 110	dwc/c is vam sprint sf dwc/c is	3.55	Collapse 2.39	Burst 2.51	9,283 979 7,032	3	a-B 4.21	4.00	185,66 19,58 0 140,64
5 1/2 Segment "A" "B"	#/ft 20.00 20.00 20.00	Grade	p 110 p 110 p 110	dwc/c is vam sprint sf	3.55 32.74	2.39 2.16	2.51 2.57 2.51	9,283 979 7,032 0	3 3	a-B 4.21 4.30	4.00 3.62	185,66 19,58 0 140,64 0
5 1/2 Segment "A" "B" "C"	#/ft 20.00 20.00 20.00	Grade 8.4#/g mud, 30min Sfc Csg Test	p 110 p 110 p 110	dwc/c is vam sprint sf dwc/c is 0	3.55 32.74 ∞	2.39 2.16 2.16	2.51 2.57 2.51 Totals:	9,283 979 7,032 0 17,294	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88
5 1/2 Segment "A" "B" "C" "D"	#/ft 20.00 20.00 20.00	Grade 8.4#/g mud, 30min Sfc Csg Test The cement vi	p 110 p 110 p 110 p 110 posig: 2,042 olume(s) are intend	dwc/c is vam sprint sf dwc/c is 0	3.55 32.74 ∞	2.39 2.16 2.16 ft from su	2.51 2.57 2.51 Totals:	9,283 979 7,032 0 17,294 200	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap.
5 1/2 Segment "A" "B" "C" "D"	#/ft 20.00 20.00 20.00 w/	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage	p 110 p 110 p 110 p 110 posig: 2,042 olume(s) are intend 1 Stage	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min	3.55 32.74 ∞ 9583 1 Stage	2.39 2.16 2.16 ft from su Drilling	Burst 2.51 2.57 2.51 Totals: rface or a Calc	9,283 979 7,032 0 17,294 200 Req'd	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis
5 1/2 Segment "A" "B" "C" "D"	#/ft 20.00 20.00 20.00 w/ Annular Volume	Grade 8.4#/g mud, 30min Sfc Csg Test I The cement vi 1 Stage Cmt Sx	p 110 p 110 p 110 p 110 psig: 2,042 olume(s) are intend 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft	3.55 32.74 ∞ 9583 1 Stage % Excess	2.39 2.16 2.16 ft from su Drilling Mud Wt	2.51 2.57 2.51 Totals:	9,283 979 7,032 0 17,294 200	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage	p 110 p 110 p 110 p 110 posig: 2,042 olume(s) are intend 1 Stage	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min	3.55 32.74 ∞ 9583 1 Stage	2.39 2.16 2.16 ft from su Drilling	Burst 2.51 2.57 2.51 Totals: rface or a Calc	9,283 979 7,032 0 17,294 200 Req'd	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis
5 1/2 Segment "A" "B" "C" "D"	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test I The cement vi 1 Stage Cmt Sx	p 110 p 110 p 110 p 110 psig: 2,042 olume(s) are intend 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft	3.55 32.74 ∞ 9583 1 Stage % Excess	2.39 2.16 2.16 ft from su Drilling Mud Wt	Burst 2.51 2.57 2.51 Totals: rface or a Calc	9,283 979 7,032 0 17,294 200 Req'd	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test I The cement vi 1 Stage Cmt Sx	p 110 p 110 p 110 p 110 psig: 2,042 olume(s) are intend 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft	3.55 32.74 ∞ 9583 1 Stage % Excess	2.39 2.16 2.16 ft from su Drilling Mud Wt	Burst 2.51 2.57 2.51 Totals: rface or a Calc	9,283 979 7,032 0 17,294 200 Req'd	3 3	a-B 4.21 4.30	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 r/d > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage Cmt Sx 535	p 110 p 110 p 110 p 110 psig: 2,042 olume(s) are intend 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646	3.55 32.74 ∞ 9583 1 Stage % Excess 37	Collapse 2.39 2.16 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP	9,283 979 7,032 0 17,294 200 Req'd	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test I The cement vi 1 Stage Cmt Sx	p 110 p 110 p 110 p 110 sig: 2,042 olume(s) are intend 1 Stage Cuft Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646	3.55 32.74 ∞ 9583 1 Stage % Excess	Collapse 2.39 2.16 2.16 ft from su Drilling Mud Wt 10.50	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP	9,283 979 7,032 0 17,294 200 Req'd BOPE	3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl #N/A 0 Segment "A"	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 r/d > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage Cmt Sx 535	p 110 p 110 p 110 p 110 sig: 2,042 olume(s) are intend 1 Stage Cuft Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646 Coupling 0.00	3.55 32.74 ∞ 9583 1 Stage % Excess 37	Collapse 2.39 2.16 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP	9,283 979 7,032 0 17,294 200 Req'd BOPE	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35 Weigh
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 r/d > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage Cmt Sx 535	p 110 p 110 p 110 p 110 sig: 2,042 olume(s) are intend 1 Stage Cuft Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646	3.55 32.74 ∞ 9583 1 Stage % Excess 37	Collapse 2.39 2.16 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP	9,283 979 7,032 0 17,294 200 Req'd BOPE Length 0 0	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35 Weigh 0
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl #N/A 0 Segment "A"	#/ft 20.00 20.00 20.00 20.00 w/ Annular Volume 0.0835 r/d > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test The cement vi 1 Stage Cmt Sx 535 Grade 8.4#/g mud, 30min Sfc Csg Test	p 110 p 110 p 110 p 110 p 110 sig: 2,042 solume(s) are intend 1 Stage CuFt Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646 Coupling 0.00 0.00	3.55 32.74 ∞ 9583 1 Stage % Excess 37 #N/A	Collapse 2.39 2.16 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design Collapse	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP Factors Burst Totals:	9,283 979 7,032 0 17,294 200 Req'd BOPE Length 0 0	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62 a-C	185,66 19,586 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl #N/A 0 Segment "A" "B"	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 //d > 1.35 #/ft	Grade 8.4#/g mud, 30min Sfc Csg Test The cement vi 1 Stage Cmt Sx 535 Grade 8.4#/g mud, 30min Sfc Csg Test Cmt vol Cal	p 110 p 110 p 110 p 110 p 110 sig: 2,042 olume(s) are intend 1 Stage Cuft Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646 Coupling 0.00 0.00 his csg, TOC intended	3.55 32.74 ∞ 9583 1 Stage % Excess 37 #N/A	Collapse 2.39 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design Collapse ft from su	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	9,283 979 7,032 0 17,294 200 Req'd BOPE Length 0 0 4N/A	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62 a-C	185,66 19,58 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0 overlap.
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl #N/A 0 Segment "A" "B"	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 v/ld > 1.35 #/ft w/	Grade 8.4#/g mud, 30min Sfc Csg Test i The cement vi 1 Stage Cmt Sx 535 Grade 8.4#/g mud, 30min Sfc Csg Test i Cmt vol cai 1 Stage	p 110 p 110 p 110 p 110 p 110 sig: 2,042 solume(s) are intend 1 Stage CuFt Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646 Coupling 0.00 0.00 his csg, TOC intended Min	3.55 32.74 ∞ 9583 1 Stage % Excess 37 #N/A	Collapse 2.39 2.16 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	9,283 979 7,032 0 17,294 200 Req'd BOPE Length 0 0 #N/A Req'd	3 3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62 a-C	185,66 19,586 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0 overlap. Min Dis
5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt yl #N/A 0 Segment "A" "B"	#/ft 20.00 20.00 20.00 w/ Annular Volume 0.0835 //d > 1.35 #/ft	Grade 8.4#/g mud, 30min Sfc Csg Test The cement vi 1 Stage Cmt Sx 535 Grade 8.4#/g mud, 30min Sfc Csg Test Cmt vol Cal	p 110 p 110 p 110 p 110 p 110 sig: 2,042 olume(s) are intend 1 Stage Cuft Cmt 884	dwc/c is vam sprint sf dwc/c is 0 led to achieve a top of Min Cu Ft 646 Coupling 0.00 0.00 his csg, TOC intended	3.55 32.74 ∞ 9583 1 Stage % Excess 37 #N/A	Collapse 2.39 2.16 2.16 ft from su Drilling Mud Wt 10.50 Design Collapse ft from su	Burst 2.51 2.57 2.51 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	9,283 979 7,032 0 17,294 200 Req'd BOPE Length 0 0 4N/A	3 3 3	a-B 4.21 4.30 4.21	4.00 3.62 3.62 a-C	185,66 19,580 140,64 0 345,88 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0

Carlsbad Field Office 1/29/2025 Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 426197

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	426197
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
matthew.gomez	None	4/4/2025