Received by UCD: Sy17/2025 9:46:33 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Reports 04/17/2025
Well Name: GATO GRANDE 9-4 FED COM	Well Location: T23S / R32E / SEC 9 / SESE / 32.3125739 / -103.6746773	County or Parish/State: LEA / NM
Well Number: 733H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM98192	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551329	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2840514

Type of Submission: Notice of Intent

Date Sundry Submitted: 03/07/2025

Date proposed operation will begin: 03/07/2025

Type of Action: APD Change Time Sundry Submitted: 06:58

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to move the SHL/BHL, a name change and depth and formation change on the subject well. Please see attached revised C102, Drill plan, directional plan. Permitted SHL: SESE 250 FSL, 1205 FEL, 9-23S-32E Proposed SHL: SESE, 206 FSL, 1092 FEL, 9-23S-32E Permitted BHL: LOT 2, 20 FNL, 1650 FEL, 4-23S-32E Proposed BHL: LOT 1, 20 FNL, 330 FEL, 4-23S-32E Permitted Well name: GATO GRANDE 9-4 FED COM 733H Proposed Well name: GATO GRANDE 9-4 FED COM 733H Proposed Well name: GATO GRANDE 9-4 FED COM 834H Permitted TVD/MD: 12295 / 22741 - [98248 WC-025 G-08 S243217P/UPR WOLFCAMP Proposed TVD/MD: 12744 / 23235 - [98393] WC-025 S233206C;LWR WOLFCAMP (GAS)

NOI Attachments

Procedure Description

5.5_20lb_P110HP_TALON_RD_20250307134353.pdf

7.625_29.7lb_P110_HP_Talon_SFC_20250307134324.pdf

9.625_40lb_J55_SeAH_20250307134252.pdf

New_Site_Map_834H_GATO_GRANDE_9_WP_3_R2_20250307124143.pdf

WA018132100_GATO_GRANDE_9_4_FED_COM_834H_R3_20250306170915.pdf

GATO_GRANDE_9_4_FED_COM_834H_combined_20250306170913.pdf

GATO_GRANDE_9_4_FED_COM_834H_Directional_Plan_03_05_25_20250306170913.pdf

 Received to OCD-44702823.344 ED COM
 Well Location: T23S / R32E / SEC 9 / SESE / 32.3125739 / -103.6746773
 County or Parish/State: LEA / 2 of SESE / 32.3125739 / -103.6746773

 Well Number: 733H
 Type of Well: OIL WELL
 Allottee or Tribe Name:

 Lease Number: NMNM98192
 Unit or CA Name:
 Unit or CA Number:

 US Well Number: 3002551329
 Operator: DEVON ENERGY PRODUCTION COMPANY LP
 PRODUCTION COMPANY LP

Conditions of Approval

Additional

9_23_32_P_Sundry_ID_2840514_Gato_Grande_9_4_Fed_Com_834H_Alt_20250321125435.pdf

9_23_32_P_Sundry_ID_2840514_Gato_Grande_9_4_Fed_Com_834H_20250321125435.pdf

Gato_Grande_9_4_Fed_Com_834H_Dr_COA_20250321125435.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: LAUREN WATSON

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional

Street Address: 333 W. SHERIDAN AVE.

City: OKLAHOMA CITY

Phone: (405) 552-3379

Email address: LAUREN.WATSON@DVN.COM

Field

Representative Name:

City:

Phone:

Email address:

Street Address:

State:

State: OK

Zip:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 04/16/2025

Signed on: MAR 07, 2025 06:58 PM

Received by OCD: 4/17/2025 9:46:33 AM

<i>cccircu by</i> 0 <i>cb</i> . 47		10:00 / 11/1			ruge o oj .	
Form 3160-5 (June 2019)	UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT			FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021 5. Lease Serial No.		
Do not	use this f	OTICES AND REPO form for proposals to Jse Form 3160-3 (A	6. If Indian, Allottee or Tribe Name			
	SUBMIT IN T	RIPLICATE - Other instru	uctions on page 2	7. If Unit of CA/Agreement, N	ame and/or No.	
1. Type of Well Oil Well	Gas W	/ell Other		8. Well Name and No.		
2. Name of Operator				9. API Well No.		
3a. Address			3b. Phone No. (include area code)	10. Field and Pool or Explorate	ory Area	
4. Location of Well (Foot	tage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish, State		
	12. CHE0	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE	OF NOTICE, REPORT OR OTH	IER DATA	
TYPE OF SUBMI	SSION		TYP	E OF ACTION		
Notice of Intent		Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report	t	Casing Repair Change Plans	New Construction Plug and Abandon	Recomplete Temporarily Abandon	Other	
Final Abandonmer	nt Notice	Convert to Injection	Plug Back	Water Disposal		
the proposal is to deep the Bond under which completion of the inv	pen directional n the work will olved operatio ndonment Not	lly or recomplete horizontall l be perfonned or provide the ns. If the operation results in	ly, give subsurface locations and me e Bond No. on file with BLM/BIA. n a multiple completion or recomple	easured and true vertical depths o Required subsequent reports must etion in a new interval, a Form 31	rk and approximate duration thereof. If of all pertinent markers and zones. Attach st be filed within 30 days following 160-4 must be filed once testing has been he operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)		
	Title	
Signature	Date	
THE SPACE FOR FEDE	RAL OR STATE OF	FICE USE
Approved by		
	Title	Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant certify that the applicant holds legal or equitable title to those rights in the subject lea which would entitle the applicant to conduct operations thereon.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		llfully to make to any department or agency of the United State

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Additional Remarks

Permitted TVD/MD: 12295 / 22741 - [98248 WC-025 G-08 S243217P/UPR WOLFCAMP Proposed TVD/MD: 12744 / 23235 - [98393] WC-025 S233206C;LWR WOLFCAMP (GAS)

Location of Well

0. SHL: SESE / 250 FSL / 1115 FEL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.3125739 / LONG: -103.6746773 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 100 FSL / 1650 FEL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.312156 / LONG: -103.6764081 (TVD: 12097 feet, MD: 12149 feet) PPP: SWSE / 194 FSL / 1654 FEL / TWSP: 23S / RANGE: 32E / SECTION: 4 / LAT: 32.3268571 / LONG: -103.6765092 (TVD: 12385 feet, MD: 17700 feet) BHL: LOT 2 / 20 FNL / 1650 FEL / TWSP: 23S / RANGE: 32E / SECTION: 4 / LAT: 32.340806 / LONG: -103.6764262 (TVD: 12295 feet, MD: 22741 feet)

Gato Grande 9-4 Fed Com 834H

	su	rface csg in a	14 3/4	inch hole.		Design	Factors			Surface	•	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	45.50		j 55	btc	12.47	3.55	0.53	1,261	6	0.89	6.70	
"B"			,	btc				0	Ŭ	0.00		0
	w/8.4#	/g mud, 30min Sfc Csg Test	psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	1,261				57,376
Comparison o		Inimum Required Ceme						.,				- ,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
14 3/4	0.5563	711	1024	702	46	9.00	4014	5M				1.50
urst Frac Grac	dient(s) for Segn	nent(s) A, B = , b All > C).70, OK.									
				· — · — · — · — · — · — · — · — · — · —					-			••=•=•
85/8		ing inside the	10 3/4		In ind	Design			50	Int 1		VA/-:-!
Segment	#/ft	Grade	- 110	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	vam sprint fj	1.89	0.59	1.03	12,333	1	1.72	1.00	,
"B"	10.00						Tatal	0				0 394.656
	w/8.4#	g mud, 30min Sfc Csg Test The comont		dad to achieve a ter of	0	ft from su	Totals:	12,333 1261				,
Hole	Annular	1 Stage	1 Stage	ided to achieve a top of Min	0 1 Stage	Drilling	Calc	Reg'd				overlap. Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
9 7/8	0.1261	619	891	1566	-43	10.50	4148	5M				0.61
	0.1201	019	6915	1500	-43	10.50						Σ%exces
O V Tool(s):		20					sum of sx	<u>Σ CuFt</u>				29
by stage % : Class 'C' tail cm		30	27				1107	2014				29
	it yiu > 1.55											
Tail cmt		ing inside the	8 5/8			Design Fa	ctors		-	Prod 1		
Tail cmt 5 1/2	casi	ing inside the Grade	8 5/8	Coupling	Joint	Design Fa		Length	BØs	Prod 1		Weight
Tail cmt 5 1/2 Segment	casi #/ft	ing inside the Grade		Coupling dwc/c is+	Joint 2 86	Collapse	Burst	Length 23 235	B@s	a-B	a-C	-
Tail cmt 5 1/2 Segment "A"	casi	0	8 5/8 p 110	Coupling dwc/c is+	Joint 2.86			23,235	B@s 2			464,700
Tail cmt 5 1/2 Segment	casi #/ft 20.00	Grade	p 110			Collapse	Burst 2.07	23,235 0	-	a-B	a-C	464,700 0
Tail cmt 5 1/2 Segment "A"	casi #/ft 20.00	Grade	p 110 psig: 2,804	dwc/c is+		Collapse	Burst 2.07 Totals:	23,235	-	a-B	a-C	464,700 0
Tail cmt 5 1/2 Segment "A"	casi #/ft 20.00	Grade /g mud, 30min Sfc Csg Test p The cement	p 110 _{psig:} 2,804 volume(s) are inter		2.86 12133	Collapse 1.74 ft from su	Burst 2.07 Totals:	23,235 0 23,235 200	-	a-B	a-C	464,700 0 464,700 overlap.
Tail cmt 5 1/2 Segment "A" "B"	casi #/ft 20.00 w/8.4#	Grade	p 110 psig: 2,804	dwc/c is+	2.86	Collapse 1.74	Burst 2.07 Totals: urface or a	23,235 0 23,235 200 Req'd	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" Hole	casi #/ft 20.00 w/8.4# Annular	Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage	p 110 _{psig:} 2,804 volume(s) are inter 1 Stage	dwc/c is+ nded to achieve a top of Min	2.86 12133 1 Stage	Collapse 1.74 ft from su Drilling	Burst 2.07 Totals: urface or a Calc	23,235 0 23,235 200	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8	casi #/ft 20.00 w/8.4# Annular Volume 0.1733	Grade //g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt	dwc/c is+ nded to achieve a top of Min Cu Ft	2.86 12133 1 Stage % Excess	Collapse 1.74 ft from su Drilling Mud Wt	Burst 2.07 Totals: urface or a Calc	23,235 0 23,235 200 Req'd	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist Hole-Cplg
Tail cmt 51/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm	casi #/ft 20.00 w/8.4# Annular Volume 0.1733	Grade //g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442	dwc/c is+ nded to achieve a top of Min Cu Ft	2.86 12133 1 Stage % Excess	Collapse 1.74 ft from su Drilling Mud Wt 10.50	Burst 2.07 Totals: urface or a Calc MASP	23,235 0 23,235 200 Req'd	2	a-B 3.46	a-C 2.91	464,700 0 464,700 overlap. Min Dist Hole-Cplg
Tail cmt 51/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 it yld > 1.35	Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1547	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt	dwc/c is+ nded to achieve a top of Min Cu Ft 1924	2.86 12133 1 Stage % Excess 27	Collapse 1.74 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: urface or a Calc MASP Factors	23,235 0 23,235 200 Req'd	2	a-B 3.46	a-C 2.91	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment	casi #/ft 20.00 w/8.4# Annular Volume 0.1733	Grade //g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442	dwc/c is+	2.86 12133 1 Stage % Excess	Collapse 1.74 ft from su Drilling Mud Wt 10.50	Burst 2.07 Totals: urface or a Calc MASP	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 2.91	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 (lass 'C' tail cm #N/A 0 Segment "A"	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 it yld > 1.35	Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1547	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442	dwc/c is+	2.86 12133 1 Stage % Excess 27	Collapse 1.74 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: urface or a Calc MASP Factors	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight 0
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 ut yld > 1.35 #/ft	Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1547 Grade	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2	dwc/c is+	2.86 12133 1 Stage % Excess 27	Collapse 1.74 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight 0 0
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A"	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 ut yld > 1.35 #/ft	Grade /g mud, 30min Sfc Csg Test (The cement of 1 Stage Cmt Sx 1547 Grade /g mud, 30min Sfc Csg Test (p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2 psig:	dwc/c is+	2.86 12133 1 Stage % Excess 27 #N/A	Collapse 1.74 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst Totals:	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight 0 0 0
Tail cmt 51/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B"	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 tryld > 1.35 #/ft w/8.4#	Grade /g mud, 30min Sfc Csg Test (The cement v 1 Stage Cmt Sx 1547 Grade /g mud, 30min Sfc Csg Test (Cmt vol ca	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2 psig: alc below includes	dwc/c is+	2.86 12133 1 Stage % Excess 27 #N/A #N/A	Collapse 1.74 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weigh 0 0 0 0 0 0 0 0 0 0 0 0
Tail cmt 51/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 t) tyld > 1.35 #/ft w/8.4# Annular	Grade /g mud, 30min Sfc Csg Test r 1 Stage Cmt Sx 1547 Grade /g mud, 30min Sfc Csg Test r Cmt vol ci 1 Stage	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2 psig: alc below includes 1 Stage	dwc/c is+	2.86 12133 1 Stage % Excess 27 #N/A #N/A 1 Stage	Collapse 1.74 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight 0 0 0 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole Size	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 tryld > 1.35 #/ft w/8.4#	Grade //g mud, 30min Sfc Csg Test r 1 Stage Cmt Sx 1547 Grade //g mud, 30min Sfc Csg Test r Cmt vol ci 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2 psig: alc below includes 1 Stage CuFt Cmt	dwc/c is+	2.86 12133 1 Stage % Excess 27 #N/A 1 Stage % Excess	Collapse 1.74 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A	2	a-B 3.46	a-C 2.91 sing>	0 464,700 overlap. Min Dist Hole-Cplg 0.79 Weight 0 0 0
Tail cmt 51/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole	casi #/ft 20.00 w/8.4# Annular Volume 0.1733 t) tyld > 1.35 #/ft w/8.4# Annular	Grade /g mud, 30min Sfc Csg Test r 1 Stage Cmt Sx 1547 Grade /g mud, 30min Sfc Csg Test r Cmt vol ci 1 Stage	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 2442 5 1/2 psig: alc below includes 1 Stage	dwc/c is+	2.86 12133 1 Stage % Excess 27 #N/A #N/A 1 Stage	Collapse 1.74 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.46	a-C 2.91 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.79 Weight 0 0 0 overlap. Min Dist

.

Gato Grande 9-4 Fed Com 834H

9 5/8	SULL	ace csg in a	13 1/2	inch hole.		Design	Factors			Surface	2	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	12.49	4.36	0.59	1,261	7	0.98	8.23	
"B"			,	btc				0	- i - i	0.00		0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	1,261				50,440
comparison o		nimum Required Ceme						, -				,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	622	896	616	45	9.00	4014	5M				1.44
urst Frac Grad	dient(s) for Segme	nt(s)A,B=,bAll>C).70, OK.									
7 5/8	casin	g inside the	9 5/8			Design	Factors		-	Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70		p 110	talon sfc	2.50	1.08	1.55	12,333	2	2.59	1.81	366,290
"B"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig:				Totals:	12,333	-			366,290
		The cement	volume(s) are inten	ded to achieve a top of	0	ft from su	Irface or a	1261				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.1005	493	710	1249	-43	10.50	4148	5M				0.43
V Tool(s):			6915				sum of sx	<u>Σ CuFt</u>				Σ%exces
oy stage % :		30	26				878	1595				28
Tail cmt 5 1/2												
51/4		g incide the	7 5 /0			Decign Ec			-	Dred 1		••=•=•
Saamant		g inside the	7 5/8	Coupling		Design Fa			D@-	Prod 1		Woight
	#/ft	g inside the Grade	-	 Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	-
"A"		0	7 5/8 p 110	Coupling talon rd	Joint 2.86			23,235	B@s 2		a-C	464,700
	#/ft 20.00	Grade	p 110			Collapse	Burst 2.07	23,235 0	-	a-B	a-C	464,700 0
"A"	#/ft 20.00	Grade mud, 30min Sfc Csg Test (p 110 psig: 2,804	talon rd	2.86	Collapse 1.89	Burst 2.07 Totals:	23,235 0 23,235	-	a-B	a-C	464,700 0 464,700
"A" "B"	#/ft 20.00 w/8.4#/g	Grade mud, 30min Sfc Csg Test (The cement	p 110 _{psig:} 2,804 volume(s) are inten	talon rd	2.86 12133	Collapse 1.89 ft from su	Burst 2.07 Totals: Inface or a	23,235 0 23,235 200	-	a-B	a-C	464,700 0 464,700 overlap.
"A" "B" Hole	#/ft 20.00 w/8.4#/g Annular	Grade mud, 30min Sfc Csg Test (The cement) 1 Stage	p 110 psig: 2,804 volume(s) are inten 1 Stage	talon rd ded to achieve a top ol Min	2.86 12133 1 Stage	Collapse 1.89 ft from su Drilling	Burst 2.07 Totals: Irface or a Calc	23,235 0 23,235 200 Req'd	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist
"A" "B" Hole Size	#/ft 20.00 w/8.4#/g Annular Volume	Grade mud, 30min Sfc Csg Test (The cement of 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt	talon rd Ided to achieve a top of Min Cu Ft	2.86 12133 1 Stage % Excess	Collapse 1.89 ft from su Drilling Mud Wt	Burst 2.07 Totals: Inface or a	23,235 0 23,235 200	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist Hole-Cpl
"A" "B" Hole Size 6 3/4	#/ft 20.00 w/8.4#/g Annular Volume 0.0835	Grade mud, 30min Sfc Csg Test (The cement) 1 Stage	p 110 psig: 2,804 volume(s) are inten 1 Stage	talon rd ded to achieve a top ol Min	2.86 12133 1 Stage	Collapse 1.89 ft from su Drilling	Burst 2.07 Totals: Irface or a Calc	23,235 0 23,235 200 Req'd	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist
"A" "B" Hole Size 6 3/4 Class 'C' tail cm	#/ft 20.00 w/8.4#/g Annular Volume 0.0835	Grade mud, 30min Sfc Csg Test (The cement of 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt	talon rd Ided to achieve a top of Min Cu Ft	2.86 12133 1 Stage % Excess	Collapse 1.89 ft from su Drilling Mud Wt	Burst 2.07 Totals: Irface or a Calc	23,235 0 23,235 200 Req'd	-	a-B	a-C	464,700 0 464,700 overlap. Min Dist Hole-Cpl
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A	#/ft 20.00 w/8.4#/g Annular Volume 0.0835	Grade mud, 30min Sfc Csg Test (The cement of 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195	talon rd Ided to achieve a top of Min Cu Ft	2.86 12133 1 Stage % Excess	Collapse 1.89 ft from su Drilling Mud Wt 10.50	Burst 2.07 Totals: Inface or a Calc MASP	23,235 0 23,235 200 Req'd	2	a-B 3.46	a-C 3.17	464,700 0 464,700 overlap. Min Dist Hole-Cpl
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A 0	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35	Grade mud, 30min Sfc Csg Test (The cement v 1 Stage Cmt Sx 751	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt	talon rd Ided to achieve a top of Min Cu Ft 928	2.86 12133 1 Stage % Excess 29	Collapse 1.89 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: Inface or a Calc MASP Factors	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A 0 Segment	#/ft 20.00 w/8.4#/g Annular Volume 0.0835	Grade mud, 30min Sfc Csg Test (The cement of 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195	talon rd ded to achieve a top of Min Cu Ft 928 Coupling	2.86 12133 1 Stage % Excess	Collapse 1.89 ft from su Drilling Mud Wt 10.50	Burst 2.07 Totals: Inface or a Calc MASP	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17	464,700 0 464,700 overlap. Min Dist Hole-Cplg 0.43 Weight
A" "B" Hole Size 6 3/4 ilass 'C' tail on #N/A 0 Segment "A"	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35	Grade mud, 30min Sfc Csg Test (The cement v 1 Stage Cmt Sx 751	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195	talon rd ded to achieve a top of Min Cu Ft 928 Coupling 0.00	2.86 12133 1 Stage % Excess 29	Collapse 1.89 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: Inface or a Calc MASP Factors	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weight 0
"A" "B" Hole 6 3/4 ilass 'C' tail on #N/A 0 Segment	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft	Grade mud, 30min Sfc Csg Test n The cement 1 Stage Cmt Sx 751 Grade	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195 5 1/2	talon rd ded to achieve a top of Min Cu Ft 928 Coupling	2.86 12133 1 Stage % Excess 29	Collapse 1.89 ft from su Drilling Mud Wt 10.50 Design	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weight
"A" "B" Hole Size 6 3/4 class 'C' tail on #N/A 0 Segment "A"	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft	Grade mud, 30min Sfc Csg Test 1 The cement 1 1 Stage Cmt Sx 751 Grade	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195 5 1/2 psig:	talon rd ided to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00	2.86 12133 1 Stage % Excess 29 #N/A	Collapse 1.89 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst Totals:	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weight 0 0 0 0
"B" Hole Size 6 3/4 Class 'C' tail on #N/A 0 Segment "A" "B"	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft w/8.4#/g	Grade mud, 30min Sfc Csg Test r The cement v 1 Stage Cmt Sx 751 Grade mud, 30min Sfc Csg Test r Cmt vol ca	p 110 psig: 2,804 volume(s) are inter 1 Stage CuFt Cmt 1195 5 1/2 psig: alc below includes	talon rd ided to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended	2.86 12133 1 Stage % Excess 29 #N/A	Collapse 1.89 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weigh 0 0 0 0 0 0 0 0 0 0 0 0 0
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A 0 Segment "A"	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft	Grade mud, 30min Sfc Csg Test 1 The cement 1 1 Stage Cmt Sx 751 Grade	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195 5 1/2 psig:	talon rd ided to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00	2.86 12133 1 Stage % Excess 29 #N/A	Collapse 1.89 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	Burst 2.07 Totals: urface or a Calc MASP Factors Burst Totals:	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weight 0 0 0 0 overlap. Min Dist
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A 0 Segment "A" "B" Hole	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft w/8.4#/g Annular	Grade mud, 30min Sfc Csg Test i The cement v 1 Stage Cmt Sx 751 Grade mud, 30min Sfc Csg Test i Cmt vol ci 1 Stage	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195 5 1/2 psig: alc below includes 1 Stage	talon rd ided to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended Min	2.86 12133 1 Stage % Excess 29 #N/A 1 Stage	Collapse 1.89 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE	2	a-B 3.46	a-C 3.17 sing>	464,700 overlap. Min Dist Hole-Cplg 0.43 Weight 0 0 0
"A" "B" Hole Size 6 3/4 Class 'C' tail on #N/A 0 Segment "A" "B" Hole Size	#/ft 20.00 w/8.4#/g Annular Volume 0.0835 nt yld > 1.35 #/ft w/8.4#/g Annular	Grade mud, 30min Sfc Csg Test (The cement v 1 Stage Cmt Sx 751 Grade mud, 30min Sfc Csg Test (Cmt vol ca 1 Stage Cmt Sx	p 110 psig: 2,804 volume(s) are inten 1 Stage CuFt Cmt 1195 5 1/2 psig: alc below includes 1 Stage CuFt Cmt	talon rd ided to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended Min Cu Ft 0	2.86 12133 1 Stage % Excess 29 #N/A 1 Stage % Excess	Collapse 1.89 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	Burst 2.07 Totals: urface or a Calc MASP Factors Burst	23,235 0 23,235 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.46	a-C 3.17 sing>	464,700 0 464,700 overlap. Min Dist Hole-Cpl 0.43 Weight 0 0 0 0 overlap. Min Dist

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP -
LOCATION:	Section 9, T.23 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 834H
ATS/API ID:	3002551329
APD ID:	10400081231
Sundry ID:	2840514

COA

Primary Desig	<u>, 11.</u>		
H2S	Yes 🔽		
Potash	None 💌	None	
Cave/Karst Potential	Low		
Cave/Karst Potential			
Variance	🖸 None	C Flex Hose	C Other
Wellhead	Conventional and Multibov	vl 🔽	
Other	4 String 5 String	Capitan Reef	WIPP
		None	
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement Squeeze None
Special	Water	COM	Unit
Requirements	Disposal/Injection		
Special	Batch Sundry	Waste Prevention	
Requirements		None 🝷	
Special	BOPE Break Testing	□ Offline	Casing
Requirements	□ Offline BOPE Testing	Cementing	Clearance
Variance			

Primary Design:

Alternate Design:

Potash	None 🔽	None	
Cave/Karst Potential	Low		
Cave/Karst Potential			
Other	☐4 String ☐5 String	Capitan Reef None	WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement Squeeze None

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

Primary Design

B. CASING

- The 9-5/8 inch surface casing shall be set at approximately 1261 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 13 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6915'.
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 385 sxs Class C)

Operator has proposed to pump down **9-5/8**" X **7-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **7-5/8**" casing to surface after the second stage BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Alternate Design

C. CASING

- 4. The 10-3/4 inch surface casing shall be set at approximately 1261 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ hours or 500 pounds compressive strength, whichever is greater. (This is to

include the lead cement)

- g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- c. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6915'.
- d. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 488 sxs Class C)

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or</u> operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

D. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi. **Annular which shall be tested to 5000 (5M) psi.**
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

E. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

 Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 3/21/2025

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110

P110 HP	USS-TALON	HTQ™	RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		
Outside Diameter	5.500	5.900	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-TALON HTQ™ RD		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	13,150	13,150	psi	
Minimum Internal Yield Pressure	14,360	14,360	psi	
Minimum Pipe Body Yield Strength	729,000		lb	
Joint Strength		729,000	lb	
Compression Rating		729,000	lb	
Reference Length		24,300	ft	[5]
Maximum Uniaxial Bend Rating		104.2	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		
Make-Up Loss		5.58	in.	
Minimum Make-Up Torque		18,400	ft-lb	[4]
		04 400	ft-lb	[4]
Maximum Make-Up Torque		21,400	II-ID	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bend rating shown is structural only.

- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

5/15/2024 6:31:14 PM

U. S. Steel Tubular Products 7.625" 29.70lb/ft (0.375" Wall) P110 HP USS-TALON SFC™

		······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ECHANICAL PROPERTIES	Pipe	USS-TALON SFC™		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-TALON SFC™		
Outside Diameter	7.625	7.900	in.	
Wall Thickness	0.375		in.	
Inside Diameter	6.875	6.815	in.	
Standard Drift	6.750	6.750	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	29.70		lb/ft	
Plain End Weight	29.06		lb/ft	
SECTION AREA	Pipe	USS-TALON SFC™		
Critical Area	8.541	7.331	sq. in.	
Joint Efficiency		85.8	%	
PERFORMANCE	Pipe	USS-TALON SFC™		
Minimum Collapse Pressure	7,260	7,260	psi	
Minimum Internal Yield Pressure	10,750	10,750	psi	
Minimum Pipe Body Yield Strength	1,068,000		lb	
Joint Strength		916,000	lb	
Compression Rating		916,000	lb	
Reference Length		20,560	ft	
Maximum Uniaxial Bend Rating		64.4	deg/100 ft	
IAKE-UP DATA	Pipe	USS-TALON SFC™		
Make-Up Loss		5.08	in.	
Minimum Make-Up Torque		30,000	ft-lb	
Maximum Make-Up Torque		33,000	ft-lb	
Maximum Operating Torque		80,500		

Notes

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bend rating shown is structural only.

4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

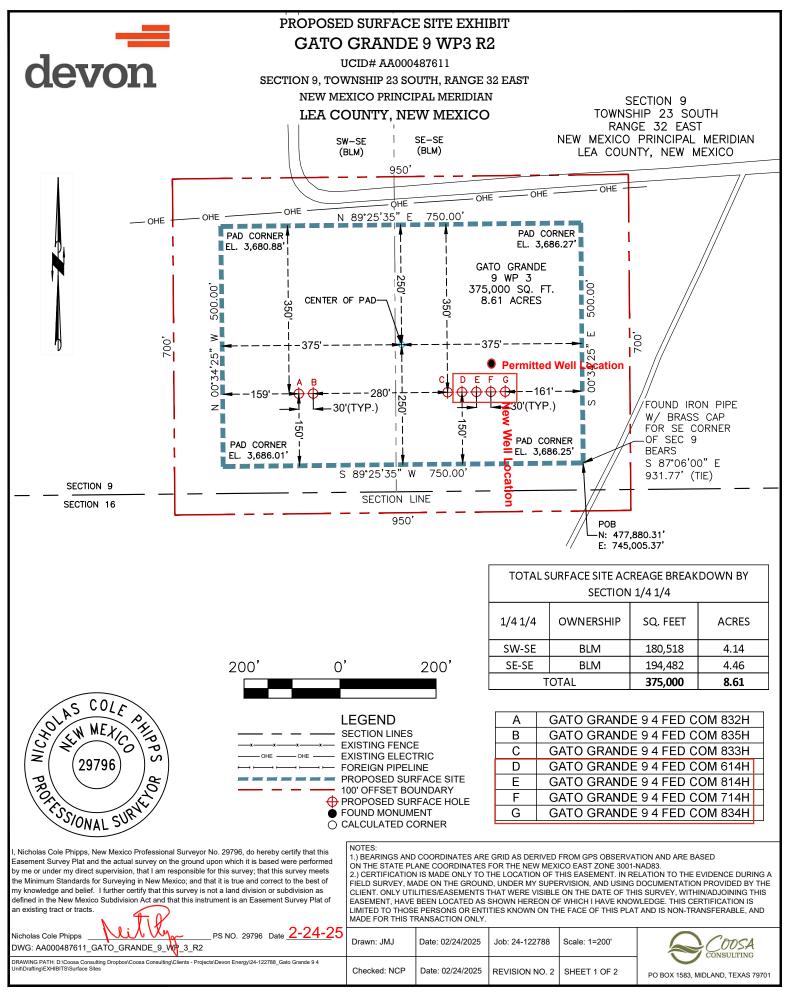
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

SěAH 9.625" 40# .395" J-55


Dimensions (Nominal)

Outside Diameter Wall	9.625 0.395	in. in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse, PE	2570	psi
Internal Yield Pressure at Minimum Yield		
PE	3950	psi
LTC	3950	psi
ВТС	3950	psi
Yield Strength, Pipe Body	630	1000 lbs.
Joint Strength		
STC	452	1000 lbs.
LTC	520	1000 lbs.
втс	714	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Released to Imaging: 5/14/2025 1:46:02 PM

Received by OCD: 4/17/2025 9:46:33 AM

C-102

Via OCD Permitting

API Number

Property Code

6137

Section

9

Section

4

Section

9

Section

9

Section

4

Dedicated Acres

Order Numbers

638.93

OGRID No.

UL

UL

UL

UL

UL

LOT 1

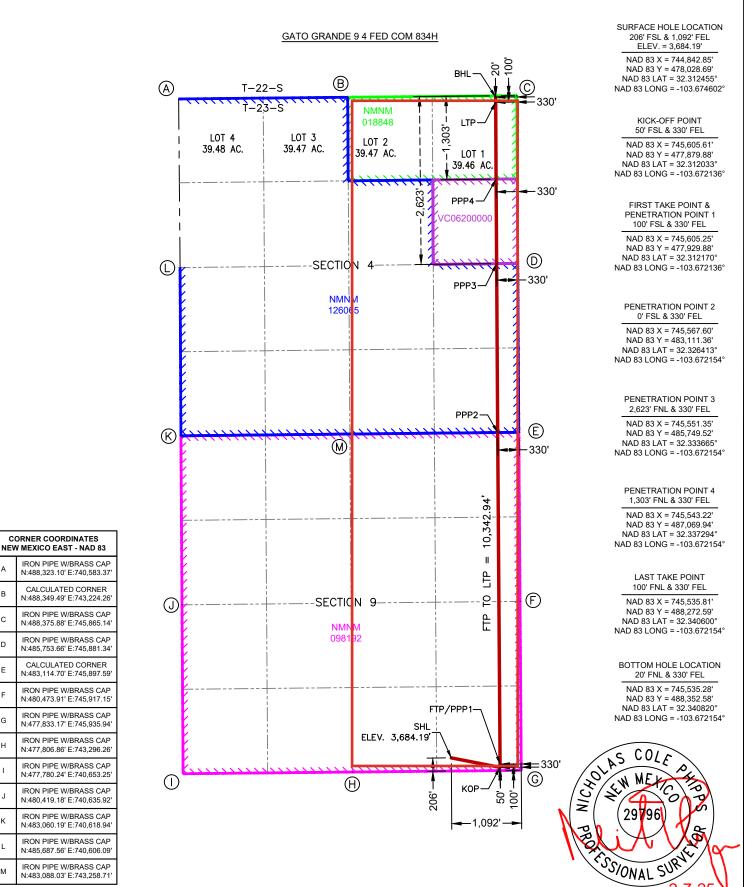
Ρ

Ρ

LOT 1

Ρ

OPERATOR CERTIFICATIONS


I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling	actual surveys made by n correct to the best of my b NICHOLAS COLE PI	ne or under my supervis pelief.	s plat was plotted from field notes of on, and that the same is true and
order from the division. Atom 3/6/2025	COOSA CONSULTIN PO BOX 1583, MIDLA	AND, TEXAS 79701	Triscours culture
Signature Date	Signature and Seal of Pro		UNAL 39
Lauren Watson			
Printed Name	Certificate Number	Date of Survey	
Lauren.Watson@dvn.com Email Address	29796		2/7/2025

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. <u>Released to Imaging: 5/14/2025 1:46:02 PM</u>

Received by OCD: 4/17/2025 9:46:33 AM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

А

В

С

D

Е

F

G

н

I

J

к

L

Μ

1. Geologic Formations

TVD of target	12746	Pilot hole depth	N/A
MD at TD:	23235	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	1160		
Salt	1454		
Base of Salt	4564		
Delaware	4819		
Cherry Canyon	5966		
Brushy Canyon	6915		
1st Bone Spring Lime	8640		
Bone Spring 1st	9780		
Bone Spring 2nd	10408		
3rd Bone Spring Lime	10946		
Bone Spring 3rd	11550		
Wolfcamp	11945		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

GATO GRANDE 9-4 FED COM 834H

		Wt		Casing Interva		Interval	Casing Interval		
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)	
13 1/2	9 5/8	40	J-55	BTC	0	1185	0	1185	
8 3/4	7 5/8	29.7	P110HP	TALON SFC	0	12333	0	12333	
6 3/4	5 1/2	20	P110HP	TALON RD	0	23235	0	12746	

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	622	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	385	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	493	6980	13.2	1.44	Tail: Class H / C + additives
Production	62	10433	9	3.27	Lead: Class H /C + additives
Production	689	12433	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	1185	0	1185
9 7/8	8 5/8	32	P110	Sprint FJ	0	12333	0	12333
7 7/8	5 1/2	20	P110	DWC / C-IS+	0	23235	0	12746

2. Casing Program (Secondary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Secondary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	711	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	488	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	619	6980	13.2	1.44	Tail: Class H / C + additives
Production	117	10433	9	3.27	Lead: Class H /C + additives
Froduction	1430	12433	13.2	1.44	Tail: Class H / C + additives

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:					
			An	Annular		50% of rated working pressure					
Int 1	13-5/8"	5M	Bline	d Ram	Х						
Int I	13-3/8	5141	Pipe	e Ram		5M					
			Doub	le Ram	Х	JIVI					
			Other*								
			Annul	ar (5M)	х	100% of rated working					
			Annular (5		А	pressure					
Production	13-5/8" 10M	10M	Blind Ram		Х						
Tioduction		15-5/6	15-5/0	15-5/0	13-3/0	15-5/0	IOM	10111	Pipe Ram		
			Double Ram		Х	10101					
			Other*								
			Annul	ar (5M)							
			Blin	d Ram							
			Pipe Ram								
			Double Ram								
			Other*			1					
N A variance is requested for	the use of a	a diverter on the s	urface casin	g. See attache	ed for schema	atic.					
Y A variance is requested to r	un a 5 M a	nnular on a 10M s	system								

5. Mud Program

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, Co	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Addition	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?					
BH pressure at deepest TVD	6959					
Abnormal temperature	No					

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

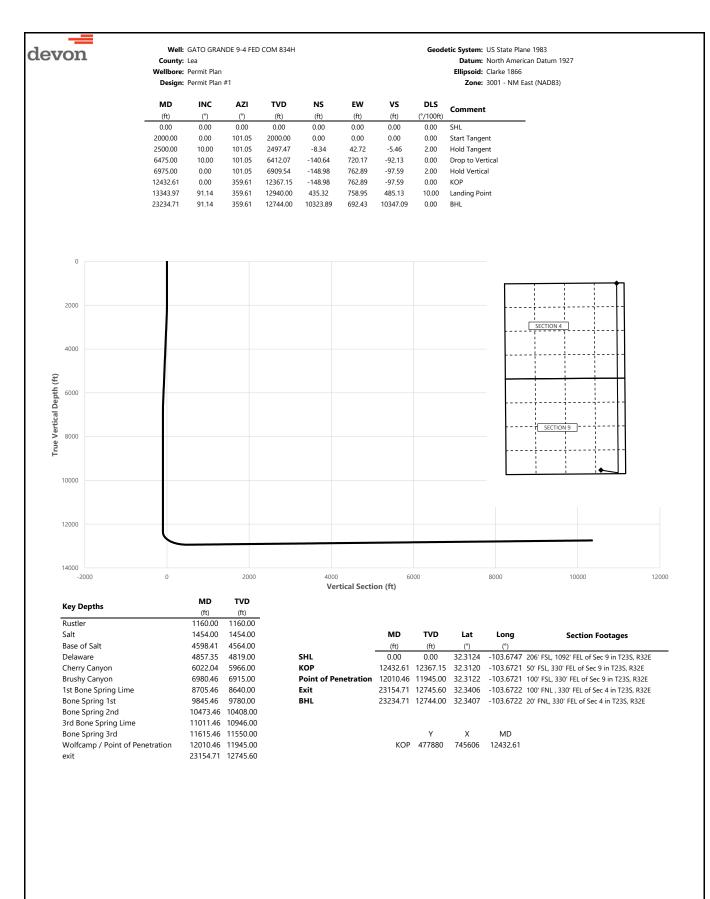
Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

Ν	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.


NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

- X Directional Plan
- Other, describe

levon		County:	Lea	NDE 9-4 FED	COM 834H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927
			Permit Plar Permit Plar						Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	0.00 100.00	0.00 0.00	0.00 101.05	0.00 100.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	SHL
	200.00	0.00	101.05	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	101.05	300.00	0.00	0.00	0.00	0.00	
	400.00	0.00	101.05	400.00	0.00	0.00	0.00	0.00	
	500.00	0.00	101.05	500.00	0.00	0.00	0.00	0.00	
	600.00	0.00	101.05	600.00	0.00	0.00	0.00	0.00	
	700.00	0.00	101.05	700.00	0.00	0.00	0.00	0.00	
	800.00 900.00	0.00 0.00	101.05 101.05	800.00 900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1000.00	0.00	101.05	1000.00	0.00	0.00	0.00	0.00	
	1100.00	0.00	101.05	1100.00	0.00	0.00	0.00	0.00	
	1160.00	0.00	101.05	1160.00	0.00	0.00	0.00	0.00	Rustler
	1200.00	0.00	101.05	1200.00	0.00	0.00	0.00	0.00	
	1300.00	0.00	101.05	1300.00	0.00	0.00	0.00	0.00	
	1400.00	0.00	101.05	1400.00	0.00	0.00	0.00	0.00	
	1454.00	0.00	101.05	1454.00	0.00	0.00	0.00	0.00	Salt
	1500.00 1600.00	0.00 0.00	101.05 101.05	1500.00 1600.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1700.00	0.00	101.05	1700.00	0.00	0.00	0.00	0.00	
	1800.00	0.00	101.05	1800.00	0.00	0.00	0.00	0.00	
	1900.00	0.00	101.05	1900.00	0.00	0.00	0.00	0.00	
	2000.00	0.00	101.05	2000.00	0.00	0.00	0.00	0.00	Start Tangent
	2100.00	2.00	101.05	2099.98	-0.33	1.71	-0.22	2.00	
	2200.00	4.00	101.05	2199.84	-1.34	6.85	-0.88	2.00	
	2300.00	6.00	101.05	2299.45	-3.01	15.40	-1.97	2.00	
	2400.00 2500.00	8.00 10.00	101.05 101.05	2398.70 2497.47	-5.34 -8.34	27.36 42.72	-3.50 -5.46	2.00 2.00	Hold Tangent
	2600.00	10.00	101.05	2595.95	-11.67	59.76	-7.64	0.00	Told rangent
	2700.00	10.00	101.05	2694.43	-15.00	76.80	-9.82	0.00	
	2800.00	10.00	101.05	2792.91	-18.33	93.84	-12.01	0.00	
	2900.00	10.00	101.05	2891.39	-21.65	110.89	-14.19	0.00	
	3000.00	10.00	101.05	2989.87	-24.98	127.93	-16.37	0.00	
	3100.00	10.00	101.05	3088.35	-28.31	144.97	-18.55	0.00	
	3200.00 3300.00	10.00 10.00	101.05 101.05	3186.83 3285.31	-31.64 -34.97	162.02 179.06	-20.73 -22.91	0.00 0.00	
	3400.00	10.00	101.05	3383.79	-38.30	196.10	-25.09	0.00	
	3500.00	10.00	101.05	3482.27	-41.62	213.14	-27.27	0.00	
	3600.00	10.00	101.05	3580.75	-44.95	230.19	-29.45	0.00	
	3700.00	10.00	101.05	3679.23	-48.28	247.23	-31.63	0.00	
	3800.00	10.00	101.05	3777.72	-51.61	264.27	-33.81	0.00	
	3900.00	10.00	101.05	3876.20	-54.94	281.32	-35.99	0.00	
	4000.00 4100.00	10.00 10.00	101.05 101.05	3974.68 4073.16	-58.26 -61.59	298.36 315.40	-38.17 -40.35	0.00 0.00	
	4200.00	10.00	101.05	4171.64	-64.92	332.44	-42.53	0.00	
	4300.00	10.00	101.05	4270.12	-68.25	349.49	-44.71	0.00	
	4400.00	10.00	101.05	4368.60	-71.58	366.53	-46.89	0.00	
	4500.00	10.00	101.05	4467.08	-74.91	383.57	-49.07	0.00	
	4598.41	10.00	101.05	4564.00	-78.18	400.35	-51.21	0.00	Base of Salt
	4600.00	10.00	101.05	4565.56	-78.23	400.62	-51.25	0.00	
	4700.00 4800.00	10.00 10.00	101.05 101.05	4664.04 4762.52	-81.56 -84.89	417.66 434.70	-53.43 -55.61	0.00 0.00	
	4800.00	10.00	101.05	4762.52	-84.89 -86.80	434.70 444.48	-55.81	0.00	Delaware
	4900.00	10.00	101.05	4861.00	-88.22	451.74	-57.79	0.00	
	5000.00	10.00	101.05	4959.48	-91.55	468.79	-59.97	0.00	
	5100.00	10.00	101.05	5057.97	-94.88	485.83	-62.15	0.00	
	5200.00	10.00	101.05	5156.45	-98.20	502.87	-64.33	0.00	
	5300.00	10.00	101.05	5254.93	-101.53	519.92	-66.51	0.00	
	5400.00 5500.00	10.00	101.05	5353.41 5451.89	-104.86 -108.19	536.96 554.00	-68.69 -70.87	0.00	
	5600.00 5600.00	10.00 10.00	101.05 101.05	5451.89 5550.37	-108.19 -111.52	554.00 571.04	-70.87 -73.05	0.00 0.00	
	5700.00	10.00	101.05	5648.85	-111.52	588.09	-75.23	0.00	
	5800.00	10.00	101.05	5747.33	-118.17	605.13	-77.41	0.00	
	5900.00	10.00	101.05	5845.81	-121.50	622.17	-79.59	0.00	
	6000.00	10.00	101.05	5944.29	-124.83	639.22	-81.77	0.00	
	6022.04	10.00	101.05	5966.00	-125.56	642.97	-82.25	0.00	Cherry Canyon
	6100.00	10.00	101.05	6042.77	-128.16	656.26	-83.95	0.00	
	6200.00	10.00	101.05	6141.25	-131.49	673.30	-86.13	0.00	
	6300.00	10.00	101.05	6239.73	-134.81	690.34	-88.31	0.00	
	6400.00	10.00	101.05	6338.22	-138.14	707.39	-90.49	0.00	

evon		County: Wellbore:	Lea Permit Plar		COM 834H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866
	MD	Design: INC	Permit Plar	TVD	NS	EW	vs	DLS	Zone: 3001 - NM East (NAD83)
	(ft)	(°)	(°)	(ft)	(ft)	E VV (ft)	VS (ft)	(°/100ft)	Comment
-	6475.00	10.00	101.05	6412.07	-140.64	720.17	-92.13	0.00	Drop to Vertical
	6500.00	9.50	101.05	6436.72	-141.45	724.33	-92.66	2.00	
	6600.00	7.50	101.05	6535.61	-144.28	738.83	-94.52	2.00	
	6700.00	5.50	101.05	6634.96	-146.45	749.94	-95.94	2.00	
	6800.00	3.50	101.05	6734.65	-147.96	757.64	-96.92	2.00	
	6900.00	1.50	101.05	6834.55	-148.79	761.92	-97.47	2.00	
	6975.00 6980.46	0.00 0.00	101.05 359.61	6909.54 6915.00	-148.98 -148.98	762.89 762.89	-97.59 -97.59	2.00 0.00	Hold Vertical
	7000.00	0.00	359.61	6934.54	-148.98	762.89	-97.59	0.00	Brushy Canyon
	7100.00	0.00	359.61	7034.54	-148.98	762.89	-97.59	0.00	
	7200.00	0.00	359.61	7134.54	-148.98	762.89	-97.59	0.00	
	7300.00	0.00	359.61	7234.54	-148.98	762.89	-97.59	0.00	
	7400.00	0.00	359.61	7334.54	-148.98	762.89	-97.59	0.00	
	7500.00	0.00	359.61	7434.54	-148.98	762.89	-97.59	0.00	
	7600.00	0.00	359.61	7534.54	-148.98	762.89	-97.59	0.00	
	7700.00	0.00	359.61	7634.54	-148.98	762.89	-97.59	0.00	
	7800.00	0.00	359.61	7734.54	-148.98	762.89	-97.59	0.00	
	7900.00	0.00	359.61	7834.54	-148.98	762.89	-97.59	0.00	
	8000.00	0.00	359.61	7934.54	-148.98	762.89	-97.59	0.00	
	8100.00 8200.00	0.00 0.00	359.61 359.61	8034.54 8134.54	-148.98 -148.98	762.89 762.89	-97.59 -97.59	0.00 0.00	
	8300.00	0.00	359.61	8234.54	-148.98	762.89	-97.59	0.00	
	8400.00	0.00	359.61	8334.54	-148.98	762.89	-97.59	0.00	
	8500.00	0.00	359.61	8434.54	-148.98	762.89	-97.59	0.00	
	8600.00	0.00	359.61	8534.54	-148.98	762.89	-97.59	0.00	
	8700.00	0.00	359.61	8634.54	-148.98	762.89	-97.59	0.00	
	8705.46	0.00	359.61	8640.00	-148.98	762.89	-97.59	0.00	1st Bone Spring Lime
	8800.00	0.00	359.61	8734.54	-148.98	762.89	-97.59	0.00	
	8900.00	0.00	359.61	8834.54	-148.98	762.89	-97.59	0.00	
	9000.00 9100.00	0.00 0.00	359.61 359.61	8934.54 9034.54	-148.98 -148.98	762.89	-97.59 -97.59	0.00 0.00	
	9200.00	0.00	359.61	9034.54 9134.54	-148.98	762.89 762.89	-97.59	0.00	
	9300.00	0.00	359.61	9234.54	-148.98	762.89	-97.59	0.00	
	9400.00	0.00	359.61	9334.54	-148.98	762.89	-97.59	0.00	
	9500.00	0.00	359.61	9434.54	-148.98	762.89	-97.59	0.00	
	9600.00	0.00	359.61	9534.54	-148.98	762.89	-97.59	0.00	
	9700.00	0.00	359.61	9634.54	-148.98	762.89	-97.59	0.00	
	9800.00	0.00	359.61	9734.54	-148.98	762.89	-97.59	0.00	
	9845.46	0.00	359.61	9780.00	-148.98	762.89	-97.59	0.00	Bone Spring 1st
	9900.00	0.00	359.61	9834.54	-148.98	762.89	-97.59	0.00	
	10000.00	0.00	359.61	9934.54	-148.98	762.89	-97.59	0.00	
	10100.00 10200.00	0.00 0.00	359.61 359.61	10034.54 10134.54	-148.98 -148.98	762.89 762.89	-97.59 -97.59	0.00 0.00	
	10200.00	0.00	359.61	10134.54	-148.98	762.89	-97.59	0.00	
	10300.00	0.00	359.61	10234.54	-148.98	762.89	-97.59	0.00	
	10473.46	0.00	359.61	10408.00	-148.98	762.89	-97.59	0.00	Bone Spring 2nd
	10500.00	0.00	359.61	10434.54	-148.98	762.89	-97.59	0.00	· -
	10600.00	0.00	359.61	10534.54	-148.98	762.89	-97.59	0.00	
	10700.00	0.00	359.61	10634.54	-148.98	762.89	-97.59	0.00	
	10800.00	0.00	359.61	10734.54	-148.98	762.89	-97.59	0.00	
	10900.00	0.00	359.61	10834.54	-148.98	762.89	-97.59	0.00	
	11000.00	0.00	359.61	10934.54	-148.98	762.89	-97.59	0.00	and Pone Caring Lime
	11011.46	0.00	359.61	10946.00	-148.98	762.89	-97.59	0.00	3rd Bone Spring Lime
	11100.00 11200.00	0.00 0.00	359.61 359.61	11034.54 11134.54	-148.98 -148.98	762.89 762.89	-97.59 -97.59	0.00 0.00	
	11200.00	0.00	359.61	11134.54	-148.98	762.89	-97.59	0.00	
	11400.00	0.00	359.61	11234.54	-148.98	762.89	-97.59	0.00	
	11500.00	0.00	359.61	11434.54	-148.98	762.89	-97.59	0.00	
	11600.00	0.00	359.61	11534.54	-148.98	762.89	-97.59	0.00	
	11615.46	0.00	359.61	11550.00	-148.98	762.89	-97.59	0.00	Bone Spring 3rd
	11700.00	0.00	359.61	11634.54	-148.98	762.89	-97.59	0.00	
	11800.00	0.00	359.61	11734.54	-148.98	762.89	-97.59	0.00	
	11900.00	0.00	359.61	11834.54	-148.98	762.89	-97.59	0.00	
	12000.00	0.00	359.61	11934.54	-148.98	762.89	-97.59	0.00	
	12010.46	0.00	359.61	11945.00	-148.98	762.89	-97.59	0.00	Wolfcamp / Point of Penetration
	12100.00	0.00	359.61	12034.54	-148.98	762.89	-97.59	0.00	
	12200.00	0.00	359.61	12134.54	-148.98	762.89	-97.59	0.00	
		0.00	359.61	12234.54	-148.98	762.89	-97.59	0.00	
	12300.00 12400.00	0.00	359.61	12334.54	-148.98	762.89	-97.59	0.00	

levon	1	County:		NDE 9-4 FED	COM 834H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866
			Permit Plar						Zone: 3001 - NM East (NAD83)
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
	12500.00	6.74	359.61	12434.39	-145.02	762.86	-93.65	10.00	
	12600.00	16.74	359.61	12532.17	-124.70	762.72	-73.38	10.00	
	12700.00 12800.00	26.74 36.74	359.61 359.61	12624.94 12709.88	-87.71 -35.18	762.47 762.12	-36.49 15.90	10.00 10.00	
	12900.00	46.74	359.61	12784.40	31.31	761.67	82.21	10.00	
	13000.00	56.74	359.61	12846.25	109.73	761.14	160.42	10.00	
	13100.00	66.74	359.61	12893.54	197.69	760.55	248.15	10.00	
	13200.00	76.74	359.61	12924.83	292.53	759.91	342.73	10.00	
	13300.00 13343.97	86.74 91.14	359.61 359.61	12939.19 12940.00	391.37 435.32	759.25 758.95	441.30 485.13	10.00 10.00	Landing Point
	13400.00	91.14	359.61	12938.89	491.34	758.58	541.00	0.00	g
	13500.00	91.14	359.61	12936.91	591.32	757.90	640.71	0.00	
	13600.00	91.14	359.61	12934.93	691.29	757.23	740.42	0.00	
	13700.00 13800.00	91.14 91.14	359.61 359.61	12932.95 12930.96	791.27 891.25	756.56 755.88	840.13 939.84	0.00 0.00	
	13900.00	91.14	359.61	12928.98	991.23	755.21	1039.55	0.00	
	14000.00	91.14	359.61	12927.00	1091.21	754.54	1139.25	0.00	
	14100.00	91.14	359.61	12925.02	1191.18	753.87	1238.96	0.00	
	14200.00 14300.00	91.14 91.14	359.61 359.61	12923.04 12921.06	1291.16 1391.14	753.19 752.52	1338.67 1438.38	0.00 0.00	
	14300.00 14400.00	91.14 91.14	359.61	12921.06	1391.14 1491.12	752.52 751.85	1438.38 1538.09	0.00	
	14500.00	91.14	359.61	12917.09	1591.10	751.17	1637.80	0.00	
	14600.00	91.14	359.61	12915.11	1691.07	750.50	1737.51	0.00	
	14700.00	91.14	359.61	12913.13	1791.05	749.83	1837.22	0.00	
	14800.00 14900.00	91.14 91.14	359.61 359.61	12911.15 12909.17	1891.03 1991.01	749.15 748.48	1936.93 2036.64	0.00 0.00	
	15000.00	91.14	359.61	12907.19	2090.99	747.81	2136.34	0.00	
	15100.00	91.14	359.61	12905.20	2190.97	747.13	2236.05	0.00	
	15200.00	91.14	359.61	12903.22	2290.94	746.46	2335.76	0.00	
	15300.00 15400.00	91.14 91.14	359.61 359.61	12901.24 12899.26	2390.92 2490.90	745.79 745.11	2435.47 2535.18	0.00 0.00	
	15500.00	91.14	359.61	12897.28	2590.88	744.44	2634.89	0.00	
	15600.00	91.14	359.61	12895.30	2690.86	743.77	2734.60	0.00	
	15700.00	91.14	359.61	12893.32	2790.83	743.10	2834.31	0.00	
	15800.00 15900.00	91.14 91.14	359.61 359.61	12891.33 12889.35	2890.81 2990.79	742.42 741.75	2934.02 3033.72	0.00 0.00	
	16000.00	91.14	359.61	12887.37	3090.77	741.08	3133.43	0.00	
	16100.00	91.14	359.61	12885.39	3190.75	740.40	3233.14	0.00	
	16200.00	91.14	359.61	12883.41	3290.72	739.73	3332.85	0.00	
	16300.00 16400.00	91.14 91.14	359.61 359.61	12881.43 12879.44	3390.70 3490.68	739.06 738.38	3432.56 3532.27	0.00 0.00	
	16500.00	91.14	359.61	12877.46	3590.66	737.71	3631.98	0.00	
	16600.00	91.14	359.61	12875.48	3690.64	737.04	3731.69	0.00	
	16700.00	91.14	359.61	12873.50	3790.62	736.36	3831.40	0.00	
	16800.00 16900.00	91.14 91.14	359.61 359.61	12871.52 12869.54	3890.59 3990.57	735.69 735.02	3931.10 4030.81	0.00 0.00	
	17000.00	91.14	359.61	12867.56	4090.55	734.34	4030.81	0.00	
	17100.00	91.14	359.61	12865.57	4190.53	733.67	4230.23	0.00	
	17200.00	91.14	359.61	12863.59	4290.51	733.00	4329.94	0.00	
	17300.00 17400.00	91.14 91.14	359.61 359.61	12861.61 12859.63	4390.48 4490.46	732.33 731.65	4429.65 4529.36	0.00 0.00	
	17500.00	91.14	359.61	12857.65	4590.44	730.98	4629.07	0.00	
	17600.00	91.14	359.61	12855.67	4690.42	730.31	4728.78	0.00	
	17700.00	91.14 01.14	359.61	12853.68	4790.40	729.63	4828.49	0.00	
	17800.00 17900.00	91.14 91.14	359.61 359.61	12851.70 12849.72	4890.37 4990.35	728.96 728.29	4928.19 5027.90	0.00 0.00	
	18000.00	91.14	359.61	12847.74	5090.33	727.61	5127.61	0.00	
	18100.00	91.14	359.61	12845.76	5190.31	726.94	5227.32	0.00	
	18200.00	91.14	359.61	12843.78	5290.29	726.27	5327.03	0.00	
	18300.00 18400.00	91.14 91.14	359.61 359.61	12841.80 12839.81	5390.26 5490.24	725.59 724.92	5426.74 5526.45	0.00 0.00	
	18400.00	91.14 91.14	359.61	12837.83	5490.24 5590.22	724.92	5626.45 5626.16	0.00	
	18600.00	91.14	359.61	12835.85	5690.20	723.57	5725.87	0.00	
	18700.00	91.14	359.61	12833.87	5790.18	722.90	5825.57	0.00	
	18800.00 18900.00	91.14 91.14	359.61 359.61	12831.89 12829.91	5890.16 5990.13	722.23	5925.28 6024 99	0.00 0.00	
	18900.00	91.14 91.14	359.61 359.61	12829.91 12827.93	5990.13 6090.11	721.56 720.88	6024.99 6124.70	0.00	
	19100.00	91.14	359.61	12825.94	6190.09	720.21	6224.41	0.00	
	19200.00	91.14	359.61	12823.96	6290.07	719.54	6324.12	0.00	
	19300.00	91.14	359.61	12821.98	6390.05	718.86	6423.83	0.00	

on		County: Wellbore:			COM 834H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	19400.00	91.14	359.61	12820.00	6490.02	718.19	6523.54	0.00	
	19500.00	91.14	359.61	12818.02	6590.00	717.52	6623.25	0.00	
	19600.00	91.14	359.61	12816.04	6689.98	716.84	6722.95	0.00	
	19700.00	91.14	359.61	12814.05	6789.96	716.17	6822.66	0.00	
	19800.00	91.14	359.61	12812.07	6889.94	715.50	6922.37	0.00	
	19900.00	91.14	359.61	12810.09	6989.91	714.82	7022.08	0.00	
	20000.00	91.14	359.61	12808.11	7089.89	714.15	7121.79	0.00	
	20100.00	91.14	359.61	12806.13	7189.87	713.48	7221.50	0.00	
	20200.00	91.14	359.61	12804.15	7289.85	712.80	7321.21	0.00	
	20300.00	91.14	359.61	12802.17	7389.83	712.13	7420.92	0.00	
	20400.00	91.14	359.61	12800.18	7489.80	711.46	7520.63	0.00	
	20500.00	91.14	359.61	12798.20	7589.78	710.79	7620.34	0.00	
	20600.00	91.14	359.61	12796.22	7689.76	710.11	7720.04	0.00	
	20700.00	91.14	359.61	12794.24	7789.74	709.44	7819.75	0.00	
	20800.00	91.14	359.61	12792.26	7889.72	708.77	7919.46	0.00	
	20900.00	91.14	359.61	12790.28	7989.70	708.09	8019.17	0.00	
	21000.00	91.14	359.61	12788.29	8089.67	707.42	8118.88	0.00	
	21100.00	91.14	359.61	12786.31	8189.65	706.75	8218.59	0.00	
	21200.00	91.14	359.61	12784.33	8289.63	706.07	8318.30	0.00	
	21300.00	91.14	359.61	12782.35	8389.61	705.40	8418.01	0.00	
	21400.00	91.14	359.61	12780.37	8489.59	704.73	8517.72	0.00	
	21500.00	91.14	359.61	12778.39	8589.56	704.05	8617.42	0.00	
	21600.00	91.14	359.61	12776.41	8689.54	703.38	8717.13	0.00	
	21700.00	91.14	359.61	12774.42	8789.52	702.71	8816.84	0.00	
	21800.00	91.14	359.61	12772.44	8889.50	702.03	8916.55	0.00	
	21900.00	91.14	359.61	12770.46	8989.48	701.36	9016.26	0.00	
	22000.00	91.14	359.61	12768.48	9089.45	700.69	9115.97	0.00	
	22100.00	91.14	359.61	12766.50	9189.43	700.02	9215.68	0.00	
	22200.00	91.14	359.61	12764.52	9289.41	699.34	9315.39	0.00	
	22300.00	91.14	359.61	12762.54	9389.39	698.67	9415.10	0.00	
	22400.00	91.14	359.61	12760.55	9489.37	698.00	9514.80	0.00	
	22500.00	91.14	359.61	12758.57	9589.34	697.32	9614.51	0.00	
	22600.00	91.14	359.61	12756.59	9689.32	696.65	9714.22	0.00	
	22700.00	91.14	359.61	12754.61	9789.30	695.98	9813.93	0.00	
	22800.00	91.14	359.61	12752.63	9889.28	695.30	9913.64	0.00	
	22900.00	91.14	359.61	12750.65	9989.26	694.63	10013.35	0.00	
	23000.00	91.14	359.61	12748.66	10089.24	693.96	10113.06	0.00	
	23100.00	91.14	359.61	12746.68	10189.21	693.28	10212.77	0.00	
	23154.71	91.14	359.61	12745.60		692.92	10267.31	0.00	exit
	23200.00	91.14	359.61	12744.70	10289.19	692.61	10312.48	0.00	
	23234.71	91.14	359.61	12744.00		692.43	10347.09	0.00	BHL

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	i i
DEVON ENERGY PRODUCTION COMPANY, LP	6137	l
333 West Sheridan Ave.	Action Number:	l
Oklahoma City, OK 73102	453046	l
	Action Type:	l
	[C-103] NOI Change of Plans (C-103A)	J

CONDITIONS

CONDITIONO		
Created By	Condition	Condition Date
matthew.gomez	Administrative order required for non-standard location prior to production.	5/14/2025
matthew.gomez	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	5/14/2025
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.	5/14/2025
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.	5/14/2025
matthew.gomez	Any previous COA's not addressed within the updated COA's still apply.	5/14/2025

Page 38 of 38

Action 453046