
Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

C-102 Submit Electronically		State of Nev Energy, Minerals & Natur OIL CONSERVA				ral Resources Department			1	Revised July 9, 2024	
Via OCD Permitting		OIL CONSERVA				THON DIVISION				▼ Initial Submittal	
										al	l Report
									Type:	☐ As Drille	d
					WELL LOC		TION INFORMATION				
API Nu		-55256	Pool Code	53560)	Pool N	Name Salt Lake	e; Bone	Spring	9	
Propert	y Code 33776	6	Property Na	ame	THAI CUI	RRY 2	2 27 FED COM			Well Numbe	er #603H
OGRID	No. 3329	947	Operator N	ame	AVANT	OPER.	ATING II, LLC			Ground Leve	el Elevation 3532'
Surface	Owner: S	State □ Fee □	Tribal 🛛 Fe	deral		N	Mineral Owner: ☐ St	tate 🛚 Fee	☐ Tribal [X Federal	
					Su	rface L	ocation				
UL	Section	Township	Range	Lot	Ft. from N/S	F	Ft. from E/W	Latitude		Longitude	County
Α	22	20 S	32 E		566' FNL	-	511' FEL	32.564	387°	-103.747128°	LEA
					Botto	m Hole	e Location				
UL	Section	Township	Range	Lot	Ft. from N/S	F	Ft. from E/W	Latitude		Longitude	County
J	27	20 S	32 E		1420' FSI	L	2310' FEL	32.540	840°	-103.752985°	LEA
		l									
	ted Acres	Infill or Defi	ning Well	Defining	Defining Well API		Overlapping Spacing Unit (Y/N)		Consolidation Code		
	0.00	Infill					No				
Order 1	Numbers.					V	Well setbacks are un	der Commo	n Owners	hip: ∐Yes X lNo	
					Kick	Off Po	oint (KOP)				
UL	Section	Township	Range	Lot	Ft. from N/S	F	Ft. from E/W	Latitude		Longitude	County
Α	22	20 S	32 E		566' FNL	-	511' FEL	32.564	387°	-103.747128°	LEA
First T				Take P	Point (FTP)						
UL	Section	Township	Range	Lot	Ft. from N/S	F	Ft. from E/W	Latitude		Longitude	County
B 22 20 S 32 E			100' FNL	-	2310' FEL	32.565	684°	-103.752967°	LEA		
					Last	Take P	Point (LTP)				
UL	Section	Township	Range	Lot	Ft. from N/S	F	Ft. from E/W	Latitude		Longitude	County
J	27	20 S	32 E		1420' FSI	L	2310' FEL	32.540	840°	-103.752985°	LEA
	l								1		
Unitize	d Area or Ar	ea of Uniform I	nterest	Spacing	Unit Type 🛚 Ho	rizontal	□ Vertical	Grou	nd Floor E	levation: 3532'	
				•							
		TIFICATIONS			ulata ta tha haut of		RVEYOR CERTIFI		n on this pla	t was plotted from fi	ald notes of actual
my know	ledge and beli	ef, and, if the well	is a vertical or	directional w		surve	I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best				
		is a working inter bottom hole locat				oj m	y belief.			C.	PAPA
					r unleased mineral g order heretofore					The same of the sa	MEK
entered by the division.											
If this well is a horizontal well, I further certify that this organization has received the								((2	21209)		
consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed				1							
interval will be located or obtained a compulsory pooling order from the division.				1/		1	NO.	TE TOT			
Sarah Ferreyros 4/8/2025						· ゴI V	1arch	202581	ONAL SURVE		
Signatur		0	Date	·		Sign	nature and Seal of Profe	essional Surve	eyor		
Sara	ah Ferre	yros				212	209	MARCH	27, 2025	5	
Printed 1	Name					Cert	tificate Number	Date of Sur	vey		
sara	h@ava	ntnr.com									
Email A	Email Address										

WELL NAME: THAI CURRY 22 27 FED COM #603H ELEVATION: 3532'

NAD 83 (SHL/KOP) 566' FNL & 511' FEL
LATITUDE = 32.564387°
LONGITUDE = -103.747128°
NAD 27 (SHL/KOP)
LATITUDE = 32.564265°
LONGITUDE = -103.746632°
STATE PLANE NAD 83 (N.M. EAST)
N: 569552.01' E: 721933.55'
STATE PLANE NAD 27 (N.M. EAST)
N: 560480 01' E: 680752 11'

NAD 83 (FTP/PPP#1) 100' FNL & 2310' FEL
LATITUDE = 32.565684° LONGITUDE = -103.752967°
NAD 27 (FTP/PPP#1)
LATITUDE = 32.565563° LONGITUDE = -103.752470°
STATE PLANE NAD 83 (N.M. EAST)
N: 570013.89' E: 720132.21'
STATE PLANE NAD 27 (N.M. EAST)
N: 569951.79' E: 678951.80'

APPROXIMATE WELL BORE DISTANCE FROM FTP TO LTP					
5177.76'					
1320.36					
2540.47'					
9038.59'					

NAD 83 (PPP#2) 2310' FEL
LATITUDE = 32.551452°
LONGITUDE = -103.752977°
NAD 27 (PPP#2)
LATITUDE = 32.551330°
LONGITUDE = -103.752481°
STATE PLANE NAD 83 (N.M. EAST)
N: 564836.19' E: 720157.13'
STATE PLANE NAD 27 (N.M. EAST)
N: 564774.22' E: 678976.57'

NAD 83 (LTP/BHL) 1420' FSL & 2310' FEL
LATITUDE = 32.540840°
LONGITUDE = -103.752985°
NAD 27 (LTP/BHL)
LATITUDE = 32.540718°
LONGITUDE = -103.752489°
STATE PLANE NAD 83 (N.M. EAST)
N: 560975.41' E: 720175.95'
STATE PLANE NAD 27 (N.M. EAST)
N: 560913.53' E: 678995.29'

© FOUND MONUMENT
CALC. CORNER
SHL/ KOP/ FTP / PPP/ LTP / BHL
WELLBORE
HORIZONTAL SPACING UNIT
STATE OIL & GAS LEASE
BLM OIL & GAS LEASE

NOTES

- 1. ALL COORDINATES, BEARINGS, AND DISTANCES CONTAINED HEREIN ARE GRID, BASED UPON THE NEW MEXICO STATE PLANE COORDINATES SYSTEM, NORTH AMERICAN DATUM 83, NEW MEXICO EAST (3001).
- 2. THIS DOCUMENT IS BASED UPON AN ON THE GROUND SURVEY PERFORMED DURING MARCH, 2025. CERTIFICATION OF THIS DOCUMENT IS ONLY TO THE LOCATION OF THIS EASEMENT IN RELATION TO RECORDED MONUMENT OF DEEDS PROVIDED BY THE CLIENT.
- 3. ELEVATIONS MSL, DERIVED FROM G.N.S.S. OBSERVATION AND DERIVED FROM SAID ON-THE-GROUND SURVEY.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Avant Operating	; II, LLC OGRID: 33294	/ Date: 08/15/2025	
II. Type: ⊠ Original □ Ame If Other, please describe:	endment due to ☐ 19.15.27.9	9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.	

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated	Anticipated	Anticipated
				Oil BBL/D	Gas MCF/D	Produced Water
						BBL/D
Thai Curry 22-27 Fed Com 601H		A-22-T20S-R32E	573FNL/351FEL	819 BBL/D	985 MCF/D	2000 BBL/D
Thai Curry 22-27 Fed Com 602H		A-22-T20S-R32E	570FNL/431FEL	819 BBL/D	985 MCF/D	2000 BBL/D
Thai Curry 22-27 Fed Com 603H		A-22-T20S-R32E	566FNL/511FEL	819 BBL/D	985 MCF/D	2000 BBL/D
Thai Curry 22-27 Fed Com 701H		A-22-T20S-R32E	572FNL/371FEL	819 BBL/D	985 MCF/D	2000 BBL/D
Thai Curry 22-27 Fed Com 702H		A-22-T20S-R32E	569FNL/451FEL	819 BBL/D	985 MCF/D	2000 BBL/D
Thai Curry 22-27 Fed Com 721H		A-22-T20S-R32E	574FNL/331FEL	985 BBL/D	1491 MCF/D	2500 BBL/D
Thai Curry 22-27 Fed Com 722H		A-22-T20S-R32E	571FNL/411FEL	985 BBL/D	1491 MCF/D	2500 BBL/D
Thai Curry 22-27 Fed Com 723H		A-22-T20S-R32E	567FNL/491FEL	985 BBL/D	1491 MCF/D	2500 BBL/D
Thai Curry 22-27 Fed Com 802H		A-22-T20S-R32E	571FNL/391FEL	1168 BBL/D	2189 MCF/D	3000 BBL/D
Thai Curry 22-27 Fed Com 803H		A-22-T20S-R32E	568FNL/471FEL	1168 BBL/D	2189 MCF/D	3000 BBL/D

IV. Central Delivery Point Name: Thai Curry CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Thai Curry 22-27 Fed Com 601H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 602H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 603H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 701H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 702H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 721H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 722H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 723H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 802H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026
Thai Curry 22-27 Fed Com 803H		11/11/2025	12/22/2025	01/01/2026	02/01/2026	02/01/2026

VI. Separation Equipment: ⊠ Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: ⊠ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

Sec ₁	<u>tion</u>	<u>2 – </u>	Enh	nan	ced	Pl	<u>an</u>
E	FFE	CTIV	E AP	RIL	1, 2	022	

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
	-		Start Date	of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \boxtimes will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \square does \boxtimes does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

☑ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: □ Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

(i)

Section 3 - Certifications Effective May 25, 2021

	Effective May 25, 2021
Operator certifies that, a	after reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of	to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the a into account the current	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following:
Well Shut-In. □ Opera D of 19.15.27.9 NMAC	tor will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection ; or
	lan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential es for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage; reinjection for enhanced oil recovery;
(g) (h)	fuel cell production; and
(11)	ruci cen production, and

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

and Gas Act.

Signature:

Printed Name: John Harper

Title: SVP – Assets and Exploration

E-mail Address: John@avantnr.com

Date: 08/15/25

Phone: 678-988-6644

OIL CONSERVATION DIVISION

(Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil

Avant Operating II, LLC Natural Gas Management Plan

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Avant Operating, LLC (Avant) will take the following actions to comply with the regulations listed in 19.15.27.8:
 - A. Avant will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. Avant will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas.
 - B. All drilling operations will be equipped with a rig flare located at least 100' from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flowback will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. Avant will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will be analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Avant will comply with the performance standards requirements and provisions listed in 19.15.27.8 (1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs to minimize the waste. Production storage tanks constructed after May 25, 2021, will be equipped with automatic gauging system. Flares constructed after May 25, 2021, will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. Avant will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - E. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared, or beneficially used during production operations, will be measured, or estimated. Avant will install equipment to measure

Well Name: THAI CURRY 22 27 FED COM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

08/07/2025

APD ID: 10400104471

Submission Date: 04/16/2025

Highlighted data reflects the most recent changes

Operator Name: AVANT OPERATING II LLC

Well Number: 603H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
16179250	QUATERNARY	3532	0	0	OTHER : Caliche	USEABLE WATER	N
16179251	RUSTLER	2560	972	972	ANHYDRITE	NONE	N
16179252	YATES	833	2699	2706	SANDSTONE	NATURAL GAS, OIL	N
16179253	CAPITAN REEF	412	3120	3147	LIMESTONE	USEABLE WATER	N
16179254	CHERRY CANYON	-1261	4793	4805	SANDSTONE	NONE	N
16179255	BRUSHY CANYON	-2518	6050	6232	SANDSTONE	NATURAL GAS, OIL	N
16179256	BONE SPRING	-4152	7684	7953	LIMESTONE	NATURAL GAS, OIL	N
16179257	BONE SPRING 1ST	-5229	8761	9046	SANDSTONE	NATURAL GAS, OIL	N
16179258	BONE SPRING 2ND	-5792	9324	9609	SANDSTONE	NATURAL GAS, OIL	N
16179259	BONE SPRING 3RD	-6895	10427	10722	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 15000

Equipment: A minimum 5M system will be used. The minimum blowout preventer equipment (BOPE) shown in the BOP Diagram will be installed on the 13-3/8 casing and consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer, and an annular preventer (5000-psi WP). Both units will be hydraulically operated, and the ram-type will be equipped with blind rams on top and drill pipe rams on bottom. All BOPE will be tested in accordance with 43 CFR 3172.

Requesting Variance? YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Co-flex line will be tested in accordance with highest BOP test pressures (5000 psi) before drilling out of surface casing and (5000 psi) before drilling out of intermediate casing. Pressure tests will be charted for records. The manufacturers hydrostatic test report will be kept on location for inspection.

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000 (high) / 250 (low) psig and the annular preventer to 3500 (high) / 250 (low) psig by an independent service company. Test charts will always be kept on location. Surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000 (high) / 250 (low) psig and the annular preventer to 3500 (high) / 250 (low) psig by an independent service company. Test charts will always be kept on location. Intermediate casing will be tested to 1500 psi for 30 minutes. A solid steel body pack-off will be used after running and cementing the intermediate casing. After installation, pack-off and lower flange will be pressure tested to 5000 psi. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe. This pressure test will be repeated at least once every 30 days, as per 43 CFR 3172. Kelly cock will always be in the drill string. Full opening drill pipe stabbing valve (inside BOP) with proper drill pipe connections will always be on the rig floor. The multi-bowl wellhead will be installed by a third-party welder while being monitored by the vendors representative. All BOP equipment will be tested using a conventional test plug - not a cup or J-packer type. Both the surface and intermediate casing strings will be tested as per 43 CFR 3172.to at least 0.22 psi/ft or 1500 psi, whichever is greater, but not to exceed 70 percent of the minimum internal yield.

Choke Diagram Attachment:

5M_Choke_Diagram_20250409144341.pdf

BOP Diagram Attachment:

5M_BOP_Diagram_20250409144345.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	997	0	997	3532	2535	997	J-55	54.5	LT&C	1.25	1.25	DRY	1.6	DRY	1.6
	INTERMED IATE	12.2 5	10.75	NEW	API	Ν	0	2806	0	2799	3532	733	2806	J-55		OTHER - BTC	1.25	1.25	DRY	1.6	DRY	1.6
3	INTERMED IATE	9.87 5	8.625	NEW	NON API	N	0	4755	0	4743	3532	-1211	4755	HCL -80	32	OTHER - BK	1.25	1.25	DRY	1.6	DRY	1.6
4	PRODUCTI ON	7.87 5	5.5	NEW	NON API	N	0	19840	0	10672	3532	-7140	19840	HCP -110		OTHER - GBCD	1.25	1.25	DRY	1.6	DRY	1.6

Casing Attachments

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

Casing Attachments

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

TC_BS_CASING_ASSUMPTIONS_v2_20250619160821.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

TC_BS_CASING_ASSUMPTIONS_v2_20250603111713.pdf

API_BTC_Special_Clearance_10.750_0.350_J55__Casing__06172025_20250619160842.pdf

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

 $8.625 in_32.0_L_80_HC_BK__9.00 in_OD__20250619160859.pdf$

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

TC_BS_CASING_ASSUMPTIONS_v2_20250619160906.pdf

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

Casing Attachments

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

5.5in_GBCD_Casing_Spec_20250409155853.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

TC_BS_CASING_ASSUMPTIONS_v2_20250619160917.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	997	415	1.76	12.8	730	50	35% M_Poz+65% Class C	4% Gel+5% SALT+0.1% SMS+0.25PPS Pol-E- Flake+0.005GPS
SURFACE	Tail		697	997	215	1.33	14.8	286	20	100% Class C	1% CaCl2+0.005GPS NoFoam V1A
INTERMEDIATE	Lead		0	2806	300	1.76	12.8	528	20	35% M_Poz+65% Class C	4% Gel+5% SALT+0.1% SMS+0.25PPS Pol-E- Flake+0.005GPS
INTERMEDIATE	Tail		2244	2806	110	1.36	14.8	149	20	100% Class C	5% SALT+0.005GPS NoFoam V1A
INTERMEDIATE	Lead		0	4755	320	1.76	12.8	563	20	35% M_Poz+65% Class C	4% Gel+5% SALT+0.1% SMS+0.15% R- 1300+0.25PPS Pol-E- Flake+0.005GPS
INTERMEDIATE	Tail		3804	4755	120	1.37	14.8	165	20	100% Class C	5% SALT+0.4% CRT- 201+0.005GPS NoFoam V1A
INTERMEDIATE	Lead	3000	0	4755	220	1.76	12.8	387	136	35% M_Poz+65% Class C	4% Gel+5% SALT+0.1% SMS+0.2PPS Pol-E- Flake+0.005GPS
INTERMEDIATE	Tail		2640	4755	100	1.33	14.8	133	325	100% Class C	0.005GPS NoFoam V1A

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		5300	1984 0	275	3.28	10.7	902	0	100% ProLiteM	5PPS Plexcrete STE+2% SMS+0.65% R-1300+0.2% FL- 24+3PPS Gilsonite+0.005GPS NoFoam V1A
PRODUCTION	Tail		1048 0	1984 0	1350	1.21	14.5	1633	0	50% B_Poz+50% Class H	5% SALT+0.3% SMS+0.4% CRT- 201+0.5% FL- 24+0.005GPS NoFoam

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with 43 CFR 3172:

Diagram of the equipment for the circulating system in accordance with 43 CFR 3172:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials (e. g., barite, bentonite, LCM) to maintain mud properties and meet minimum lost circulation and weight increase requirements will always be kept on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) mud system will monitor pit volumes for gains or losses, flow rate, pump pressures, and stroke rate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	997	OTHER : Freshwater	8.4	9.9							
997	2806	OTHER : Brine	10	10							
2806	4755	OTHER : Freshwater	8.4	8.4							
4755	1048 0	OTHER : Cut Brine	9	9.5							
1048 0	1123 0	OIL-BASED MUD	9.5	9.5							Page 5 of 7

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1123 0	1984 0	OIL-BASED MUD	9.5	9.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR log will be acquired by MWD tools throughout the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, GAMMA RAY LOG,

Coring operation description for the well:

No core or open hole or cased hole log is planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4909 Anticipated Surface Pressure: 2561

Anticipated Bottom Hole Temperature(F): 172

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Thai_Curry_H2S_Packet_20250409145817.pdf

Well Name: THAI CURRY 22 27 FED COM Well Number: 603H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

TC_22_27_Fed_Com_603H_Plan_0.1_Report_20250414205421.pdf

TC_22_27_Fed_Com_603H_Plan_0.1_AC_20250414205424.pdf

Other proposed operations facets description:

Avant will be using Figure E from R111Q for your reference. All casing strings below the conductor will be pressure tested to 0.22 psi/ft x casing string length, or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield. If pressure declines more than 10% in 30 minutes, then corrective action will be taken.

Other proposed operations facets attachment:

Avant_4_String_R_111_Q_Multi_Bowl_Wellhead_20250409150458.pdf

Avant___Bone_Spring_4_string_R_111_Q____AES_VERT___MP_20250409150454.pdf

Flex_Line_Certification_20250409151139.pdf

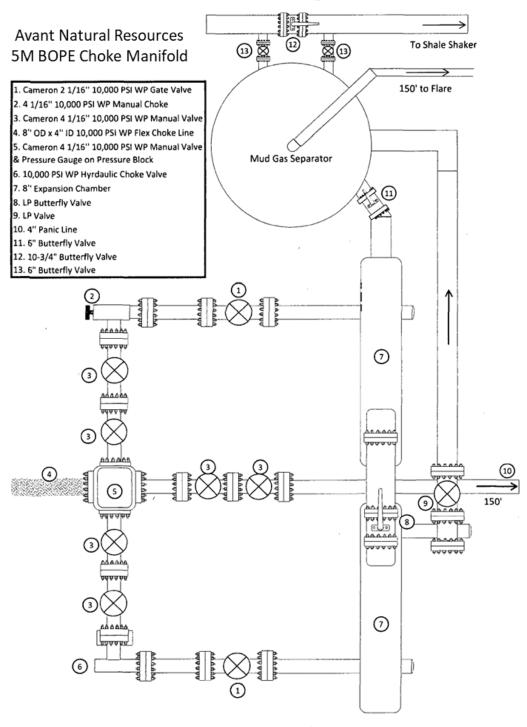
Pad_2_Waste_Minimization_Plan_20250507111350.pdf

Υ

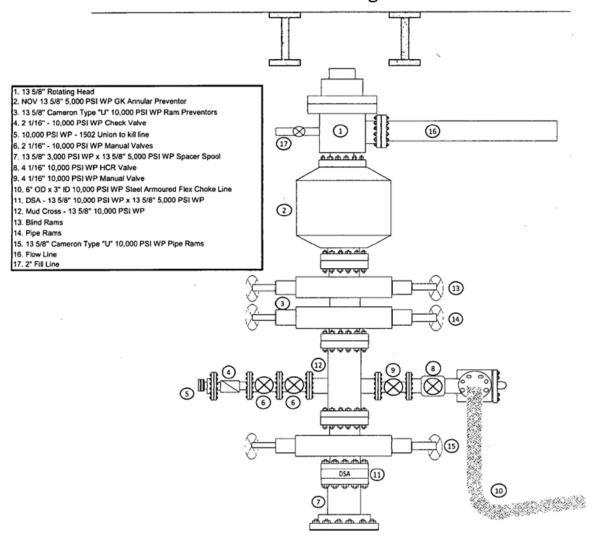
TC_22_27_Fed_Com_603H_Prelim_WBS_v2_20250619160959.pdf

Thai_Curry_22_27_Fed_Com_603H_Cement_Proposal_20250619161009.pdf

Other Variance request(s)?:


Other Variance attachment:

Avant_Surface_Offline_Cement_Variance_20250409150231.pdf


Avant___Offline_Cementing_Procedure_20250409150227.pdf

Thai_Curry_Casing_Variance_Request_20250409150123.pdf

Choke Manifold Diagram

Avant Natural Resources 5M BOP Diagram

Keeping You Connected.

Precision Connections BK Special Clearance 8.625 in. 32 lb/ft HC-L80 with 9 in. Coupling OD

,

Nominal OD	8.625	inches
Nominal Weight	32.00	lb/ft
Wall Thickness	0.352	inches
Plain End Weight	31.10	lb/ft
Drift	7.875	inches
Nominal ID	7.921	inches
Grade	HC-L80	
Min Yield	80,000	lbf/in²
Min Tensile	95,000	lbf/in²
Critical Section Area	9.149	in²
Pipe Body Yield Strength	732	kips
Min Internal Yield Pressure	5,710	psi
Collapse Pressure	3,820	psi

Connection

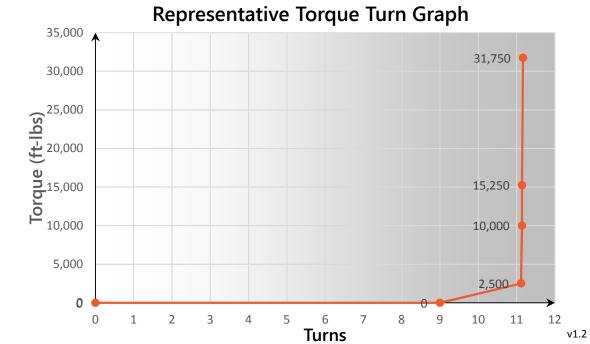
Coupling OD	9.000	inches
Coupling Length	9.625	inches
Make Up Loss	4.813	inches
Critical Section Area	7.498	in²
Internal Pressure Rating	100%	
External Pressure Rating	100%	
Tension Efficiency	82%	
Connection Strength	600	kips
Compression Efficiency	100%	
Uniaxial Bend Rating	40.7	° / 100 ft
Min Make Up Torque	10,000	ft-lbs 👖
Yield Torque	42,350	ft-lbs 🔰

v1.2 7/17/2019

This documentation contains confidential and proprietary information not to be reproduced or divulged in whole or in part to anyone outside of your company without prior written authorization from Precision Connections, LLC, and such documentation and information is provided to you upon such conditions of confidentiality.

Torque Data Sheet - Precision Connections BK SC

8.625 in. 32 lb/ft HC-L80 with 9 in. Coupling OD


Min Make Up Torque 10,000 ft-lbs Max Operating

Max Make Up Torque 31,750 ft-lbs Yield Torque

Optimum Torque 15,250 ft-lbs

Max Operating Torque 36,000 ft-lbs

Yield Torque 42,350 ft-lbs

7/17/2019

PERFORMANCE DATA SHEET

Revised May 2020

5.500" 20.0# IP HCP-110 with GB CD Butt

DIMENSIONAL DATA			
Casing OD	5.500 in	Pipe Grade	IP HCP-110
Coupling OD	6.300 in	Coupling Grade	P-110
Pipe Gauge	0.361 in	T&C WPF	20.00 lbs/ft
Drift Diameter	4.653 in	PE WPF	19.83 lbs/ft
MECHANICAL DATA			
Pipe IP Yield Minimum	125,000 psi	Collapse Pressure	12,200 psi
Pipe Tensile Minimum	125,000 psi	Pipe Body Internal Yield Pressure	14,360 psi
Coupling Yield Minimum	110,000 psi	Leak at E7 Plane	21,500 psi
Coupling Tensile Minimum	125,000 psi	Pipe Hydrostatic Test @ 80% SMYS	13,100 ps i
CONNECTION & PIPE DATA			
Thread Name	GB CD Butt	Coupling Thread Fracture Strength	1,013,000 lbs
Joint Strength	685,000 lbs	Pipe Body Plain End Yield	729,000 lbs
Minimum Makeup Torque	10,000 ft-lbs	Pipe Thread Fracture Strength	685,000 lbs
Maximum Make-up Torque	20,000 ft-lbs	Coupling Internal Yield Pressure	16,240 ps i
Maximum Operating Torque	33,660 ft-lbs		

This document is for general information only. It should not, therefore, be relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability, and applicability. Anyone making use of this material does so at his own risk and assumes any and all liability resulting from such use. Centric Pipe, LLC disclaims any and all expressed or implied warranties of merchantability and/or fitness for any general or particular purpose.

CASING DESIGN CRITERIA & LOAD CASE ASSUMPTIONS

SURFACE CASING:

SIZE (in)	INTERMEDIATE 1 CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	CONN OD (in)	JOINT STRENGTH (k-lbs)	DEPTHS
13.375"	54.5# J-55 LTC	12.615	12.459	2730	1130	853	14.375	909	0' - SCP'

Collapse: DFc ≥ 1.25

- Full internal evacuation: Collapse force equal to the mud gradient in which the casing will be ran.
- Cementing: Collapse force equal to the gradient of the planned cement slurries to planned depths and an internal force equal to the fluid gradient of displacement fluid.

Burst: DF_B ≥ 1.25

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the gradient in which the casing will be ran.

Tension: DFT ≥ 1.6

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

INTERMEDIATE 1 CASING:

SIZE (in)	INTERMEDIATE 1 CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	CONN OD (in)	JOINT STRENGTH (k-lbs)	DEPTHS
10.75"	40.5# J-55 BTC	10.05	9.894	3130	1580	629	11.25	0	0' - ICP'

Collapse: DFc ≥ 1.25

- Full internal evacuation: Collapse force equal to the mud gradient in which the casing will be ran.
- Cementing: Collapse force equal to the gradient of the planned cement slurries to planned depths and an internal force equal to the fluid gradient of displacement fluid.

Burst: DF_B ≥ 1.25

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the gradient in which the casing will be ran.
- Gas Kick Profile: Internal burst force at the shoe will be fracture pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be ran above that. External force will be equal to the mud gradient in which the casing will be ran.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be fracture pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be ran.

Tension: DF_T ≥ 1.6

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

INTERMEDIATE 2 CASING:

SIZE (in)	INTERMEDIATE 1 CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	CONN OD (in)	JOINT STRENGTH (k-lbs)	DEPTHS
8.625"	32# L-80 HC BK	7.921	7.875	5710	3820	732	9.00	600	0' - I2CP'

Collapse: DFc ≥ 1.25

- Full internal evacuation: Collapse force equal to the mud gradient in which the casing will be ran.
- Cementing: Collapse force equal to the gradient of the planned cement slurries to planned depths and an internal force equal to the fluid gradient of displacement fluid.

Burst: DF_B ≥ 1.25

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the gradient in which the casing will be ran.
- Gas Kick Profile: Internal burst force at the shoe will be fracture pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be ran above that. External force will be equal to the mud gradient in which the casing will be ran.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be fracture pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be ran.

Tension: DFT ≥ 1.6

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

PRODUCTION CASING:

SIZE (in)	INTERMEDIATE 1 CASING	ID (in)	DRIFT (in)	BURST (psi)	COLLAPSE (psi)	TENSION (k-lbs)	CONN OD (in)	JOINT STRENGTH (k-lbs)	DEPTHS
5.5"	20# P-110 HC GBCD	4.778	4.653	12630	11100	641	6.3	667	0' - TD''

Collapse: DFc ≥ 1.25

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be ran. Internal force equal to gas gradient over one-third of setting depth and mud gradient with which the next hole section will be ran below that.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be ran above that and an internal force equal to the fluid gradient of displacement fluid.

Burst: DF_B ≥ 1.25

- Pressure Test: 80% of burst casing test with an external force equal to the mud gradient in which the casing will be ran
- Injection Down Casing: 9800 psi surface injection pressure plus an internal pressure gradient of with an external force equal to the mud gradient in which the casing will be ran.

Tension: DFT ≥ 1.6

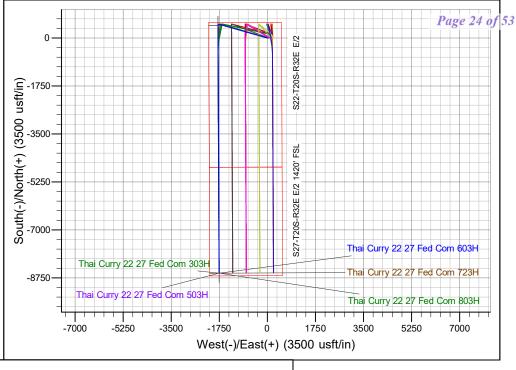
• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string, without considering buoyancy.

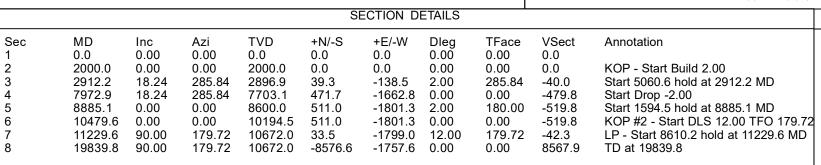
Received by OCD: 8/20/2025 10:05:19 AM

WELL DETAILS: Thai Curry 22 27 Fed Com 603H

Ground Elev: 3532.0 KB: 3557

+N/-S +E/-W Northing Easting Latittude Longitude 0.0 0.0 569552.01 721933.55 32.564387 -103.747128

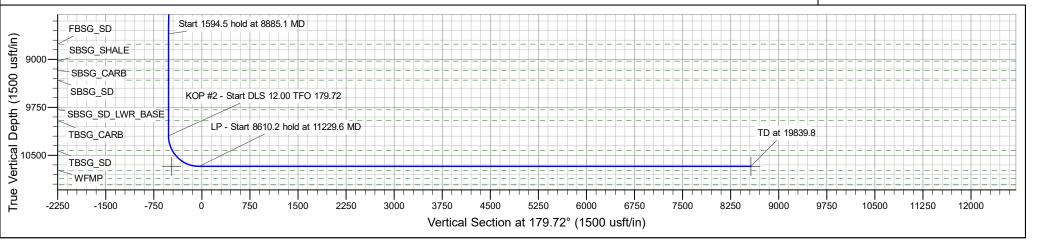

PROJECT DETAILS: Lea County, NM (NAD 83)


Geodetic System: US State Plane 1983 Datum: North American Datum 1983

Ellipsoid: GRS 1980

Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level



T M A

M Azimuths to Grid North True North: -0.32° Magnetic North: 7.54°

> Magnetic Field Strength: 48977.9nT Dip Angle: 60.53° Date: 12/31/2009 Model: IGRF200510

Avant Operating II, LLC

Lea County, NM (NAD 83)
Thai Curry 22 27 Fed Com Pad 1
Thai Curry 22 27 Fed Com 603H

OH

Plan: Plan 0.1

Standard Planning Report

01 April, 2025

Local Co-ordinate Reference:

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

OH

Departing II, LLC
TVD Reference:
burty, NM (NAD 83)
MD Reference:
burry 22 27 Fed Com Pad 1
burry 22 27 Fed Com 603H
North Reference:
Survey Calculation Method:

Well Thai Curry 22 27 Fed Com 603H WELL @ 3557.0usft (3557) WELL @ 3557.0usft (3557)

Minimum Curvature

Design: Plan 0.1

Wellbore:

Project

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum: Mean Sea Level

Site Thai Curry 22 27 Fed Com Pad 1

Lea County, NM (NAD 83)

 Site Position:
 Northing:
 569,695.12 usft
 Latitude:
 32.564778

 From:
 Lat/Long
 Easting:
 722,099.77 usft
 Longitude:
 -103.746586

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Thai Curry 22 27 Fed Com 603H **Well Position** +N/-S 0.0 usft 569,552.01 usft Latitude: 32.564387 Northing: +E/-W 0.0 usft Easting: 721,933.55 usft Longitude: -103.747128 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,532.0 usft **Position Uncertainty** 0.32 **Grid Convergence:**

ОН Wellbore Dip Angle Magnetics **Model Name** Declination Field Strength Sample Date (°) (°) (nT) IGRF200510 12/31/2009 7.86 60.53 48,977.87437129

Plan 0.1 Design Audit Notes: **PROTOTYPE** Version: Phase: Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 179.72

Plan Sections Dogleg Vertical Build Measured Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) Target 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 2,000.0 0.00 0.00 2,000.0 0.0 0.0 0.00 0.00 0.00 0.00 -138.5 2,912.2 18.24 285.84 2,896.9 39.3 2.00 2.00 0.00 285.84 7,972.9 18.24 285.84 7,703.1 471.7 -1,662.8 0.00 0.00 0.00 0.00 8,885.1 -1,801.3 0.00 0.00 8,600.0 511.0 2.00 -2.00 0.00 180.00 511.0 10,479.6 0.00 0.00 10,194.5 -1,801.3 0.00 0.00 0.00 0.00 11,229.6 90.00 179.72 10,672.0 33.5 -1,799.0 12.00 12.00 23.96 179.72 10,672.0 -1,757.6 0.00 19,839.8 90.00 179.72 -8,576.6 0.00 0.00 0.00 LTP/BHL - Thai Curry

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference:
TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00						0.00	
	0.00		800.0	0.0	0.0	0.0	0.00		0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
972.0	0.00	0.00	972.0	0.0	0.0	0.0	0.00	0.00	0.00
RUSTLER									
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,289.0	0.00	0.00	1,289.0	0.0	0.0	0.0	0.00	0.00	0.00
SOLADO									
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1.600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP - Start 2,100.0	2.00	285.84	2,100.0	0.5	-1.7	-0.5	2.00	2.00	0.00
2,200.0	4.00	285.84	2,199.8	1.9	-1.7 -6.7	-0.3 -1.9	2.00	2.00	0.00
2,300.0	6.00	285.84	2,299.5	4.3	-15.1	-4.4	2.00	2.00	0.00
2,400.0	8.00	285.84	2,398.7	7.6	-26.8	-7.7	2.00	2.00	0.00
2,500.0	10.00	285.84	2,497.5	11.9	-41.9	-12.1	2.00	2.00	0.00
2,600.0	12.00	285.84	2,595.6	17.1	-60.2	-17.4	2.00	2.00	0.00
2,700.0	14.00	285.84	2,693.1	23.2	-81.9	-23.6	2.00	2.00	0.00
2,706.1	14.12	285.84	2,699.0	23.6	-83.3	-24.0	2.00	2.00	0.00
YATES			,						
2,800.0	16.00	285.84	2,789.6	30.3	-106.8	-30.8	2.00	2.00	0.00
2,900.0	18.00	285.84	2,885.3	38.3	-134.9	-38.9	2.00	2.00	0.00
2,912.2	18.24	285.84	2,896.9	39.3	-138.5	-40.0	2.00	2.00	0.00
· · · · · · · · · · · · · · · · · · ·	6 hold at 2912.2 M		2,000.0	00.0	100.0	10.0	2.00	2.00	0.00
3,000.0	18.24	285.84	2,980.2	46.8	-165.0	-47.6	0.00	0.00	0.00
3,100.0	18.24	285.84	3,075.2	55.3	-195.1	-56.3	0.00	0.00	0.00
3,147.1	18.24	285.84	3,120.0	59.4	-209.3	-60.4	0.00	0.00	0.00
CAPITAN_F	REEF								
3,200.0	18.24	285.84	3,170.2	63.9	-225.2	-65.0	0.00	0.00	0.00
3,300.0	18.24	285.84	3,265.2	72.4	-255.3	-73.7	0.00	0.00	0.00
3,400.0	18.24	285.84	3,360.1	81.0	-285.5	-82.4	0.00	0.00	0.00
3,500.0	18.24	285.84	3,455.1	89.5	-315.6	-91.1	0.00	0.00	0.00
3,600.0	18.24	285.84	3,550.1	98.1	-345.7	-99.8	0.00	0.00	0.00
3,700.0	18.24	285.84	3,645.1	106.6	-375.8	-108.4	0.00	0.00	0.00
3,800.0	18.24	285.84	3,740.0	115.2	-405.9	-117.1	0.00	0.00	0.00
3,900.0	18.24	285.84	3,835.0	123.7	-436.1	-125.8	0.00	0.00	0.00
4,000.0	18.24	285.84	3,930.0	132.2	-466.2	-134.5	0.00	0.00	0.00
4,100.0	18.24	285.84	4,025.0	140.8	-496.3	-143.2	0.00	0.00	0.00

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference:

Survey Calculation Method:

North Reference:

Well Thai Curry 22 27 Fed Com 603H

WELL @ 3557.0usft (3557) WELL @ 3557.0usft (3557)

Grid

Minimum Curvature

,,,,									
ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,200.0	18.24	285.84	4,119.9	149.3	-526.4	-151.9	0.00	0.00	0.00
4,300.0	18.24	285.84	4,214.9	157.9	-556.5	-160.6	0.00	0.00	0.00
4,400.0	18.24	285.84	4,309.9	166.4	-586.6	-169.3	0.00	0.00	0.00
4,500.0	18.24	285.84	4,404.8	175.0	-616.8	-178.0	0.00	0.00	0.00
4,600.0	18.24	285.84	4,499.8	183.5	-646.9	-186.7	0.00	0.00	0.00
4,700.0	18.24	285.84	4,594.8	192.1	-677.0	-195.4	0.00	0.00	0.00
4,800.0	18.24	285.84	4,689.8	200.6	-707.1	-204.1	0.00	0.00	0.00
4,804.5	18.24	285.84	4,694.0	201.0	-708.5	-204.4	0.00	0.00	0.00
DELAWARE_	SANDS								
4,900.0	18.24	285.84	4,784.7	209.1	-737.2	-212.7	0.00	0.00	0.00
4,908.7	18.24	285.84	4,793.0	209.9	-737.2	-213.5	0.00	0.00	0.00
		200.04	₹,130.0	203.3	-1 35.5	-213.3	0.00	0.00	0.00
CHERRY_CN		00-01		c					
5,000.0	18.24	285.84	4,879.7	217.7	-767.4	-221.4	0.00	0.00	0.00
5,100.0	18.24	285.84	4,974.7	226.2	-797.5	-230.1	0.00	0.00	0.00
5,200.0	18.24	285.84	5,069.7	234.8	-827.6	-238.8	0.00	0.00	0.00
5,300.0	18.24	285.84	5,164.6	243.3	-857.7	-247.5	0.00	0.00	0.00
5,300.0 5,400.0			5,164.6	243.3 251.9		-247.5 -256.2		0.00	
	18.24	285.84			-887.8		0.00		0.00
5,500.0	18.24	285.84	5,354.6	260.4	-918.0	-264.9	0.00	0.00	0.00
5,600.0	18.24	285.84	5,449.5	269.0	-948.1	-273.6	0.00	0.00	0.00
5,700.0	18.24	285.84	5,544.5	277.5	-978.2	-282.3	0.00	0.00	0.00
5,800.0	18.24	285.84	5,639.5	286.0	-1,008.3	-291.0	0.00	0.00	0.00
5,900.0	18.24	285.84	5,734.5	294.6	-1,000.3	-299.7	0.00	0.00	0.00
6,000.0	18.24	285.84	5,829.4	303.1	-1,038.4	-308.3	0.00	0.00	0.00
6,100.0	18.24	285.84	5,629.4 5,924.4	311.7	-1,000.0	-306.3 -317.0	0.00	0.00	0.00
6,200.0	18.24	285.84	6,019.4	320.2	-1,128.8	-325.7	0.00	0.00	0.00
6,232.2	18.24	285.84	6,050.0	323.0	-1,138.5	-328.5	0.00	0.00	0.00
BRUSHY_CA	NYON								
6,300.0	18.24	285.84	6,114.4	328.8	-1,158.9	-334.4	0.00	0.00	0.00
6,400.0	18.24	285.84	6,209.3	337.3	-1,189.0	-343.1	0.00	0.00	0.00
6,500.0	18.24	285.84	6,304.3	345.9	-1,109.0	-351.8	0.00	0.00	0.00
6,600.0	18.24	285.84	6,399.3	354.4	-1,219.1	-360.5	0.00	0.00	0.00
	10.24	200.04			-1,249.3	-300.3	0.00		0.00
6,700.0	18.24	285.84	6,494.2	362.9	-1,279.4	-369.2	0.00	0.00	0.00
6,800.0	18.24	285.84	6,589.2	371.5	-1,309.5	-377.9	0.00	0.00	0.00
6,900.0	18.24	285.84	6,684.2	380.0	-1,339.6	-386.6	0.00	0.00	0.00
7,000.0	18.24	285.84	6,779.2	388.6	-1,369.7	-395.3	0.00	0.00	0.00
7,100.0	18.24	285.84	6,874.1	397.1	-1,399.9	-404.0	0.00	0.00	0.00
7,200.0	18.24	285.84	6,969.1	405.7	-1,430.0	-412.6	0.00	0.00	0.00
7,300.0	18.24	285.84	7,064.1	414.2	-1,460.1	-421.3	0.00	0.00	0.00
7,400.0	18.24	285.84	7,159.1	422.8	-1,490.2	-430.0	0.00	0.00	0.00
7,500.0	18.24	285.84	7,254.0	431.3	-1,520.3	-438.7	0.00	0.00	0.00
7,600.0	18.24	285.84	7,349.0	439.8	-1,550.5	-447.4	0.00	0.00	0.00
7,700.0	18.24	285.84	7,444.0	448.4	-1,580.6	-456.1	0.00	0.00	0.00
7.800.0	18.24	285.84	7,538.9	456.9	-1,610.7	-464.8	0.00	0.00	0.00
7,900.0	18.24	285.84	7,633.9	465.5	-1,640.8	-404.6 -473.5	0.00	0.00	0.00
		285.84					0.00		
7,952.7	18.24	200.84	7,684.0	470.0	-1,656.7	-478.1	0.00	0.00	0.00
BSPG_LIME									
7,972.9	18.24	285.84	7,703.1	471.7	-1,662.8	-479.8	0.00	0.00	0.00
Start Drop -2.	.00								
8,000.0	17.70	285.84	7,728.9	474.0	-1,670.8	-482.1	2.00	-2.00	0.00
8,100.0	15.70	285.84	7,824.7	481.8	-1,698.5	-490.1	2.00	-2.00	0.00
0,100.0			7,824.7 7,921.4	488.8	-1,722.9	-490.1 -497.2	2.00	-2.00 -2.00	0.00
0 200 0	19 70								0.00
8,200.0 8,271.4	13.70 12.27	285.84 285.84	7,991.0	493.1	-1,738.3	-501.6	2.00	-2.00	0.00

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference:
TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,300.0	11.70	285.84	8,019.0	494.8	-1,744.0	-503.3	2.00	-2.00	0.00
8,352.0	10.66	285.84	8,070.0	497.5	-1,753.7	-506.1	2.00	-2.00	0.00
AVALON_B									
8,400.0	9.70	285.84	8,117.2	499.8	-1,761.9	-508.4	2.00	-2.00	0.00
8,500.0 8,600.0	7.70 5.70	285.84 285.84	8,216.1 8,315.4	503.9 507.1	-1,776.4 -1,787.7	-512.6 -515.9	2.00 2.00	-2.00 -2.00	0.00 0.00
8,700.0	3.70	285.84	8,415.0	509.4	-1,795.6	-518.1	2.00	-2.00	0.00
8,800.0	1.70	285.84	8,514.9	510.7	-1,800.1	-519.4	2.00	-2.00	0.00
8,885.1	0.00	0.00	8,600.0	511.0	-1,801.3	-519.8	2.00	-2.00	0.00
	hold at 8885.1 N		0.044.0	544.0	1 001 0	540.0		2.22	2.22
8,900.0 9,000.0	0.00 0.00	0.00 0.00	8,614.9 8,714.9	511.0 511.0	-1,801.3 -1,801.3	-519.8 -519.8	0.00 0.00	0.00 0.00	0.00 0.00
9,046.1	0.00	0.00	8,761.0	511.0	-1,801.3	-519.8	0.00	0.00	0.00
FBSG_SD									
9,100.0	0.00	0.00	8,814.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
9,200.0	0.00	0.00	8,914.9 9.014.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
9,300.0 9,311.1	0.00 0.00	0.00 0.00	9,014.9 9,026.0	511.0 511.0	-1,801.3 -1,801.3	-519.8 -519.8	0.00 0.00	0.00 0.00	0.00 0.00
SBSG_SHAL		3.33	-,020.0	3	.,555	5.5.5	3.33	0.00	3.30
9,400.0	0.00	0.00	9,114.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
9,462.1	0.00	0.00	9,177.0	511.0	-1,801.3	-519.8	0.00	0.00	0.00
SBSG_CARE			0.011.0						
9,500.0 9,600.0	0.00 0.00	0.00 0.00	9,214.9 9,314.9	511.0 511.0	-1,801.3 -1,801.3	-519.8 -519.8	0.00 0.00	0.00 0.00	0.00 0.00
9,609.1	0.00	0.00	9,324.0	511.0	-1,801.3	-519.8	0.00	0.00	0.00
SBSG_SD									
9,700.0	0.00	0.00	9,414.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
9,800.0	0.00	0.00	9,514.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
9,900.0 10,000.0	0.00 0.00	0.00 0.00	9,614.9 9,714.9	511.0 511.0	-1,801.3 -1,801.3	-519.8 -519.8	0.00 0.00	0.00 0.00	0.00 0.00
10,074.1	0.00	0.00	9,789.0	511.0	-1,801.3	-519.8	0.00	0.00	0.00
SBSG_SD_L	_								
10,100.0	0.00	0.00	9,814.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
10,200.0	0.00	0.00	9,914.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
10,240.1 TBSG_CARE	0.00	0.00	9,955.0	511.0	-1,801.3	-519.8	0.00	0.00	0.00
10,300.0	0.00	0.00	10,014.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
10,400.0	0.00	0.00	10,114.9	511.0	-1,801.3	-519.8	0.00	0.00	0.00
10,479.6	0.00	0.00	10,194.5	511.0	-1,801.3	-519.8	0.00	0.00	0.00
	rt DLS 12.00 TF								
10,500.0	2.45	179.72	10,214.9	510.6	-1,801.3	-519.4	12.00	12.00	0.00
10,525.0 10,550.0	5.45 8.45	179.72 179.72	10,239.9 10,264.7	508.8 505.8	-1,801.3 -1,801.3	-517.6 -514.6	12.00 12.00	12.00 12.00	0.00 0.00
10,575.0	11.45	179.72	10,289.3	501.5	-1,801.3	-510.3	12.00	12.00	0.00
10,600.0	14.45	179.72	10,313.6	495.9	-1,801.2	-504.7	12.00	12.00	0.00
10,625.0	17.45	179.72	10,337.7	489.0	-1,801.2	-497.8	12.00	12.00	0.00
10,650.0	20.45	179.72	10,361.3	480.9	-1,801.2 1,901.1	-489.7	12.00	12.00	0.00
10,675.0 10,700.0	23.45 26.45	179.72 179.72	10,384.5 10,407.2	471.6 461.0	-1,801.1 -1,801.1	-480.4 -469.8	12.00 12.00	12.00 12.00	0.00 0.00
10,722.4	29.14	179.72	10,427.0	450.6	-1,801.0	-459.4	12.00	12.00	0.00
TBSG_SD									
10,725.0	29.45	179.72	10,429.3	449.3	-1,801.0	-458.1	12.00	12.00	0.00

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference:
TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,750.0	32.45	179.72	10,450.7	436.4	-1,800.9	-445.2	12.00	12.00	0.00
10,775.0 10,800.0	35.45	179.72 179.72	10,471.4 10,491.4	422.5 407.5	-1,800.9	-431.3 -416.3	12.00 12.00	12.00 12.00	0.00
10,800.0	38.45 41.45	179.72	10,491.4	407.5 391.4	-1,800.8 -1,800.7	-416.3 -400.2	12.00	12.00	0.00 0.00
10,625.0					-1,000.7				
10,850.0	44.45	179.72	10,528.9	374.4	-1,800.6	-383.2	12.00	12.00	0.00
10,875.0	47.45	179.72	10,546.2	356.4	-1,800.6	-365.2	12.00	12.00	0.00
10,878.0	47.82	179.72	10,548.3	354.2	-1,800.5	-363.0	12.00	12.00	0.00
	- Thai Curry 22 2			007.0	4 000 5	0.40.4	40.00	40.00	0.00
10,900.0	50.45	179.72	10,562.7	337.6	-1,800.5	-346.4	12.00	12.00	0.00
10,925.0	53.45	179.72	10,578.1	317.9	-1,800.4	-326.7	12.00	12.00	0.00
10,950.0	56.45	179.72	10,592.4	297.4	-1,800.3	-306.2	12.00	12.00	0.00
10,975.0	59.45	179.72	10,605.7	276.2	-1,800.2	-285.0	12.00	12.00	0.00
11,000.0	62.45	179.72	10,617.8	254.4	-1,800.1	-263.2	12.00	12.00	0.00
11,025.0	65.45	179.72	10,628.8	231.9	-1,800.0	-240.7	12.00	12.00	0.00
11,050.0	68.45	179.72	10,638.6	208.9	-1,799.8	-217.7	12.00	12.00	0.00
11,075.0	71.45	179.72	10,647.2	185.4	-1,799.7	-194.2	12.00	12.00	0.00
11,100.0	74.45	179.72	10,654.5	161.5	-1,799.6	-170.3	12.00	12.00	0.00
11,125.0	77.45	179.72	10,660.6	137.3	-1,799.5	-146.1	12.00	12.00	0.00
11,150.0	80.45	179.72	10,665.3	112.8	-1,799.4	-121.5	12.00	12.00	0.00
11,175.0	83.45	179.72	10,668.8	88.0	-1,799.3	-96.8	12.00	12.00	0.00
11,200.0	86.45	179.72	10,671.0	63.1	-1,799.1	-71.9	12.00	12.00	0.00
11,225.0	89.45	179.72	10,671.9	38.1	-1,799.0	-46.9	12.00	12.00	0.00
11,229.6	90.00	179.72	10,672.0	33.5	-1,799.0	-42.3	12.00	12.00	0.00
LP - Start 8	610.2 hold at 112	29.6 MD							
11,300.0	90.00	179.72	10,672.0	-36.9	-1,798.7	28.1	0.00	0.00	0.00
11,400.0	90.00	179.72	10,672.0	-136.9	-1,798.2	128.1	0.00	0.00	0.00
11,500.0	90.00	179.72	10,672.0	-236.9	-1,797.7	228.1	0.00	0.00	0.00
11,600.0	90.00	179.72	10,672.0	-336.9	-1,797.2	328.1	0.00	0.00	0.00
11,700.0	90.00	179.72	10,672.0	-436.9	-1,796.7	428.1	0.00	0.00	0.00
11,800.0	90.00	179.72	10,672.0	-536.9	-1,796.3	528.1	0.00	0.00	0.00
11,900.0	90.00	179.72	10,672.0	-636.9	-1,795.8	628.1	0.00	0.00	0.00
12,000.0	90.00	179.72	10,672.0	-736.9	-1,795.3	728.1	0.00	0.00	0.00
12,100.0	90.00	179.72	10,672.0	-836.9	-1,794.8	828.1	0.00	0.00	0.00
12,200.0	90.00	179.72	10,672.0	-936.9	-1,794.3	928.1	0.00	0.00	0.00
12,300.0	90.00	179.72	10,672.0	-1,036.9	-1,793.9	1,028.1	0.00	0.00	0.00
12,400.0	90.00	179.72	10,672.0	-1,136.9	-1,793.4	1,128.1	0.00	0.00	0.00
12,500.0	90.00	179.72	10,672.0	-1,236.9	-1,792.9	1,228.1	0.00	0.00	0.00
12,600.0	90.00	179.72	10,672.0	-1,336.9	-1,792.4	1,328.1	0.00	0.00	0.00
12,700.0	90.00	179.72	10,672.0	-1,436.9	-1,791.9	1,428.1	0.00	0.00	0.00
12,800.0	90.00	179.72	10,672.0	-1,536.9	-1,791.5	1,528.1	0.00	0.00	0.00
12,900.0	90.00	179.72	10,672.0	-1,636.9	-1,791.0	1,628.1	0.00	0.00	0.00
13,000.0	90.00	179.72	10,672.0	-1,736.9	-1,790.5	1,728.1	0.00	0.00	0.00
13,100.0	90.00	179.72	10,672.0	-1,836.9	-1,790.0	1,828.1	0.00	0.00	0.00
13,200.0	90.00	179.72	10,672.0	-1,936.9	-1,789.5	1,928.1	0.00	0.00	0.00
13,300.0	90.00	179.72	10,672.0	-2,036.9	-1,789.0	2,028.1	0.00	0.00	0.00
13,400.0	90.00	179.72	10,672.0	-2,136.9	-1,788.6	2,128.1	0.00	0.00	0.00
13,500.0	90.00	179.72	10,672.0	-2,236.9	-1,788.1	2,228.1	0.00	0.00	0.00
13,600.0	90.00	179.72	10,672.0	-2,336.9	-1,787.6	2,328.1	0.00	0.00	0.00
13,700.0	90.00	179.72	10,672.0	-2,436.9	-1,787.1	2,428.1	0.00	0.00	0.00
13,800.0	90.00	179.72	10,672.0	-2,536.9	-1,786.6	2,528.1	0.00	0.00	0.00
13,900.0	90.00	179.72	10,672.0	-2,636.8	-1,786.2	2,628.1	0.00	0.00	0.00
14,000.0	90.00	179.72	10,672.0	-2,736.8	-1,785.7	2,728.1	0.00	0.00	0.00
14,100.0	90.00	179.72	10,672.0	-2,730.8	-1,785.2	2,828.1	0.00	0.00	0.00
14,200.0	90.00	179.72	10,672.0	-2,936.8	-1,784.7	2,928.1	0.00	0.00	0.00

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference:
TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Design:	Plan 0.1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,300.0 14,400.0	90.00 90.00	179.72 179.72	10,672.0 10,672.0	-3,036.8 -3,136.8	-1,784.2 -1,783.8	3,028.1 3,128.1	0.00 0.00	0.00 0.00	0.00 0.00
14,500.0 14,600.0	90.00 90.00	179.72 179.72	10,672.0 10,672.0	-3,236.8 -3,336.8	-1,783.3 -1,782.8	3,228.1 3,328.1	0.00 0.00	0.00 0.00	0.00 0.00
14,700.0	90.00	179.72	10,672.0	-3,436.8	-1,782.3	3,428.1	0.00	0.00	0.00
14,800.0	90.00	179.72	10,672.0	-3,536.8	-1,781.8	3,528.1	0.00	0.00	0.00
14,900.0	90.00	179.72	10,672.0	-3,636.8	-1,781.4	3,628.1	0.00	0.00	0.00
15,000.0	90.00	179.72	10,672.0	-3,736.8	-1,780.9	3,728.1	0.00	0.00	0.00
15,100.0	90.00	179.72	10,672.0	-3,836.8	-1,780.4	3,828.1	0.00	0.00	0.00
15,200.0	90.00	179.72	10,672.0	-3,936.8	-1,779.9	3,928.1	0.00	0.00	0.00
15,300.0	90.00	179.72	10,672.0	-4,036.8	-1,779.4	4,028.1	0.00	0.00	0.00
15,400.0	90.00	179.72	10,672.0	-4,136.8	-1,778.9	4,128.1	0.00	0.00	0.00
15,500.0	90.00	179.72	10,672.0	-4,236.8	-1,778.5	4,228.1	0.00	0.00	0.00
15,600.0	90.00	179.72	10,672.0	-4,336.8	-1,778.0	4,328.1	0.00	0.00	0.00
15,700.0	90.00	179.72	10,672.0	-4,436.8	-1,777.5	4,428.1	0.00	0.00	0.00
15,800.0 15,900.0	90.00 90.00	179.72 179.72	10,672.0 10,672.0	-4,536.8 -4,636.8	-1,777.0 -1,776.5	4,528.1 4,628.1	0.00 0.00	0.00 0.00	0.00 0.00
16,000.0	90.00	179.72	10,672.0	-4,736.8	-1,776.1	4,728.1	0.00	0.00	0.00
16,100.0	90.00	179.72	10,672.0	-4,836.8	-1,775.6	4,828.1	0.00	0.00	0.00
16,200.0	90.00	179.72	10,672.0	-4,936.8	-1,775.1	4,928.1	0.00	0.00	0.00
16,300.0	90.00	179.72	10,672.0	-5,036.8	-1,774.6	5,028.1	0.00	0.00	0.00
16,400.0	90.00	179.72	10,672.0	-5,136.8	-1,774.1	5,128.1	0.00	0.00	0.00
16,500.0	90.00	179.72	10,672.0	-5,236.8	-1,773.7	5,228.1	0.00	0.00	0.00
16,600.0	90.00	179.72	10,672.0	-5,336.8	-1,773.2	5,328.1	0.00	0.00	0.00
16,700.0	90.00	179.72	10,672.0	-5,436.8	-1,772.7	5,428.1	0.00	0.00	0.00
16,800.0	90.00	179.72	10,672.0	-5,536.8	-1,772.2	5,528.1	0.00	0.00	0.00
16,900.0	90.00	179.72	10,672.0	-5,636.8	-1,771.7	5,628.1	0.00	0.00	0.00
17,000.0	90.00	179.72	10,672.0	-5,736.8	-1,771.3	5,728.1	0.00	0.00	0.00
17,100.0	90.00	179.72	10,672.0	-5,836.8	-1,770.8	5,828.1	0.00	0.00	0.00
17,200.0	90.00	179.72	10,672.0	-5,936.8	-1,770.3	5,928.1	0.00	0.00	0.00
17,300.0 17,400.0	90.00 90.00	179.72 179.72	10,672.0 10,672.0	-6,036.8 -6,136.8	-1,769.8 -1,769.3	6,028.1 6,128.1	0.00 0.00	0.00 0.00	0.00 0.00
17,500.0	90.00	179.72	10,672.0	-6,236.8	-1,768.9	6,228.1	0.00	0.00	0.00
17,600.0	90.00	179.72	10,672.0	-6,336.8	-1,768.4	6,328.1	0.00	0.00	0.00
17,700.0	90.00	179.72	10,672.0	-6,436.8	-1,767.9	6,428.1	0.00	0.00	0.00
17,800.0	90.00	179.72	10,672.0	-6,536.8	-1,767.4	6,528.1	0.00	0.00	0.00
17,900.0	90.00	179.72	10,672.0	-6,636.8	-1,766.9	6,628.1	0.00	0.00	0.00
18,000.0	90.00	179.72	10,672.0	-6,736.8	-1,766.4	6,728.1	0.00	0.00	0.00
18,100.0	90.00	179.72	10,672.0	-6,836.8	-1,766.0	6,828.1	0.00	0.00	0.00
18,200.0	90.00	179.72	10,672.0	-6,936.8	-1,765.5	6,928.1	0.00	0.00	0.00
18,300.0	90.00	179.72	10,672.0	-7,036.8	-1,765.0	7,028.1	0.00	0.00	0.00
18,400.0	90.00	179.72	10,672.0	-7,136.8	-1,764.5	7,128.1	0.00	0.00	0.00
18,500.0	90.00	179.72	10,672.0	-7,236.8	-1,764.0	7,228.1	0.00	0.00	0.00
18,600.0	90.00	179.72	10,672.0	-7,336.8	-1,763.6	7,328.1	0.00	0.00	0.00
18,700.0	90.00	179.72	10,672.0	-7,436.8	-1,763.1	7,428.1	0.00	0.00	0.00
18,800.0 18,900.0	90.00 90.00	179.72 179.72	10,672.0 10,672.0	-7,536.8 -7,636.8	-1,762.6 -1,762.1	7,528.1 7,628.1	0.00 0.00	0.00 0.00	0.00 0.00
19,000.0	90.00	179.72	10,672.0	-7,736.8	-1,761.6	7,728.1	0.00	0.00	0.00
19,000.0	90.00	179.72	10,672.0	-7,736.8 -7,836.8	-1,761.6 -1,761.2	7,728.1	0.00	0.00	0.00
19,200.0	90.00	179.72	10,672.0	-7,936.8	-1,760.7	7,928.1	0.00	0.00	0.00
19,300.0	90.00	179.72	10,672.0	-8,036.8	-1,760.7	8,028.1	0.00	0.00	0.00
19,400.0	90.00	179.72	10,672.0	-8,136.8	-1,759.7	8,128.1	0.00	0.00	0.00
19,500.0	90.00	179.72	10,672.0	-8,236.8	-1,759.2	8,228.1	0.00	0.00	0.00
19,600.0	90.00	179.72	10,672.0	-8,336.8	-1,758.8	8,328.1	0.00	0.00	0.00

Design:

Planning Report

EDM 5000.16 Single User Db Database: Company: Avant Operating II, LLC Project: Lea County, NM (NAD 83) Thai Curry 22 27 Fed Com Pad 1 Site: Well: Thai Curry 22 27 Fed Com 603H Wellbore:

ОН Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference:

Survey Calculation Method:

North Reference:

Well Thai Curry 22 27 Fed Com 603H

WELL @ 3557.0usft (3557) WELL @ 3557.0usft (3557)

Minimum Curvature

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,700.0 19,800.0 19,839.8 TD at 19839 .	90.00 90.00 90.00 8 - LTP/BHL - Th	179.72 179.72 179.72 nai Curry 22 27 F	10,672.0 10,672.0 10,672.0 Fed Com 603H	-8,436.8 -8,536.8 -8,576.6	-1,758.3 -1,757.8 -1,757.6	8,428.1 8,528.1 8,567.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP/PPP#1 - Thai Curry - plan misses target of - Point	0.00 center by 164	0.00 .0usft at 108	10,672.0 78.0usft MD	461.9 (10548.3 TVD	-1,801.3), 354.2 N, -18	570,013.89 800.5 E)	720,132.21	32.565684	-103.752967
LTP/BHL - Thai Curry 22 - plan hits target cent - Point	0.00 ter	0.00	10,672.0	-8,576.6	-1,757.6	560,975.41	720,175.95	32.540840	-103.752985

mations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	972.0	972.0	RUSTLER			
	1,289.0	1,289.0	SOLADO			
	2,706.1	2,699.0	YATES			
	3,147.1	3,120.0	CAPITAN_REEF			
	4,804.5	4,694.0	DELAWARE_SANDS			
	4,908.7	4,793.0	CHERRY_CNYN			
	6,232.2	6,050.0	BRUSHY_CANYON			
	7,952.7	7,684.0	BSPG_LIME			
	8,271.4	7,991.0	AVALON_A			
	8,352.0	8,070.0	AVALON_B			
	9,046.1	8,761.0	FBSG_SD			
	9,311.1	9,026.0	SBSG_SHALE			
	9,462.1	9,177.0	SBSG_CARB			
	9,609.1	9,324.0	SBSG_SD			
	10,074.1	9,789.0	SBSG_SD_LWR_BASE			
	10,240.1	9,955.0	TBSG_CARB			
	10,722.4	10,427.0	TBSG_SD			

Database: EDM 5000.16 Single User Db
Company: Avant Operating II, LLC
Project: Lea County, NM (NAD 83)
Site: Thai Curry 22 27 Fed Com Pad 1
Well: Thai Curry 22 27 Fed Com 603H

Wellbore: OH
Design: Plan 0.1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Thai Curry 22 27 Fed Com 603H WELL @ 3557.0usft (3557) WELL @ 3557.0usft (3557)

Minimum Curvature

Plan Annotations							
Measured	Vertical	Local Coordinates					
Depth	Depth	+N/-S	+E/-W				
(usft)	(usft)	(usft)	(usft)	Comment			
2,000.0	2,000.0	0.0	0.0	KOP - Start Build 2.00			
2,912.2	2,896.9	39.3	-138.5	Start 5060.6 hold at 2912.2 MD			
7,972.9	7,703.1	471.7	-1,662.8	Start Drop -2.00			
8,885.1	8,600.0	511.0	-1,801.3	Start 1594.5 hold at 8885.1 MD			
10,479.6	10,194.5	511.0	-1,801.3	KOP #2 - Start DLS 12.00 TFO 179.72			
11,229.6	10,672.0	33.5	-1,799.0	LP - Start 8610.2 hold at 11229.6 MD			
19,839.8	10,672.0	-8,576.6	-1,757.6	TD at 19839.8			

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Avant Operating II LLC
LOCATION: Section 22, T.20 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: Thai Curry 22 27 Fed Com 301H

ATS/API ID: ATS-25-1663 APD ID: 10400104388

Sundry ID: N/a

WELL NAME & NO.: Thai Curry 22 27 Fed Com 302H

ATS/API ID: ATS-25-1415 APD ID: 10400104389

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 303H

ATS/API ID: ATS-25-1416 APD ID: 10400104390

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 401H

ATS/API ID: ATS-25-1417 APD ID: 10400104391

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 402H

ATS/API ID: ATS-25-1418 APD ID: 10400104392

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 501H

ATS/API ID: ATS-25-1419 APD ID: 10400104393

Sundry ID: N/a

WELL NAME & NO.: Thai Curry 22 27 Fed Com 502H

ATS/API ID: ATS-25-1420 APD ID: 10400104394

Sundry ID: N/a

WELL NAME & NO.: Thai Curry 22 27 Fed Com 503H

ATS/API ID: ATS-25-1421 APD ID: 10400104395

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 601H

ATS/API ID: ATS-25-1444 APD ID: 10400104467

Sundry ID: N/a

WELL NAME & NO.: Thai Curry 22 27 Fed Com 602H

ATS/API ID: ATS-25-1451 APD ID: 10400104469

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 603H

ATS/API ID: ATS-25-1452 APD ID: 10400104471

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 701H

ATS/API ID: ATS-25-1454 APD ID: 10400104485

Sundry ID: N/a

WELL NAME & NO.: | Thai Curry 22 27 Fed Com 702H

ATS/API ID: ATS-25-1447 APD ID: 10400104487

Sundry ID: N/a

COA

H2S	No 🔻		
Potash	R-111-Q •	Figure E	
Cave/Karst Potential	Medium 🔽		
Cave/Karst Potential	☐ Critical		
Variance	None	© Flex Hose	C Other
Wellhead	Conventional and Multibowl	•	
Other	✓ 4 String ☐ 5 String	Capitan Reef Int 2	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter Prod	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	▼ COM	□ Unit
Special Requirements	☐ Batch Sundry	Waste Prevention Waste MP	
Special Requirements Variance	☐ BOPE Break Testing ☐ Offline BOPE Testing	✓ Offline Cementing	☐ Casing Clearance

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR part 3170 Subpart 3176, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 997 feet (a minimum of 70 feet into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8 hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing shall be set at approximately **2780 feet** is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing shall be set at approximately 4550 feet is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Option 2:

Operator has proposed a DV tool(s), the depth may be adjusted as long as the cement is changed proportionally. The DV tool(s) may be cancelled if cement circulates to surface on the first stage.

DV tool(s) shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall contact the BLM if DV tool(s) depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool(s): Cement to circulate. If cement does not circulate off the DV tool(s), contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool(s):
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - The top of cement in the annulus between the 2st intermediate and the production casing strings shall stand un-cemented at least 500 feet below the 2st intermediate shoe. Zero percent excess shall be pumped on the production cement slurry.

After hydraulic fracturing operations have been concluded and no longer than 180 days after the well is brought online, the operator shall bradenhead cement at least 500 feet tie-back into the previous casing but not higher than USGS Marker Bed No. 126. (Squeeze 260 sxs Class C and 128 bbls Displacement Fluid)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

Operator has proposed to pump down 8 5/8" X 5-1/2" annulus post completion.

Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus or operator shall run a CBL from TD of the 5-1/2" casing to surface to verify TOC.

Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore. Report the amount of fluid utilized to pump the cement slurry and the calculated top of cement slurry to the BLM. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure and ensure cement tie-back requirement.

Operator has proposed an open annulus completion in R-111-Q. <u>Submit results to the BLM</u>. <u>Pressure monitoring device and Pressure Safety Valves must be installed at surface on the **8** 5/8" x 5-1/2" annulus.</u>

In the event of a casing failure during completion, the operator must contact the BLM at (575-706-2779) and (575-689-5981 Lea County).

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 10-3/4 intermediate casing shoe shall be 3000 (3M) psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Offline Cementing

Operator has been (Approved) to pump the proposed cement program offline in the Surface and intermediate(s) intervals.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

✓ Lea County
Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

- initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 8/5/2025

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor th sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Company Personnel to be Notified

John Harper, Vice President of Geoscience	Office: (720) 746-5045
---	------------------------

Mobile: (678) 988-6644

Braden Harris, Engineer Mobile: (406) 600-3310

Local & County Agencies

Maljamar Volunter Fire Department	911 or ((575) 676-4100
-----------------------------------	----------	------	------------

Lea County Sheriff (Lovington)	911 or (575) 396-3611
Los County Emergency Management (Lovington)	(575) 206 9602

Lea County Emergency Management (Lovington) (575) 396-8602 Lea Regional Medical Center Hopital (Hobbs) (575) 492-5000

State Agencies

(575) 392-5588
(575) 370-3186
(505) 476-3440
(575) 637-7201

Federal Agencies

BLM (Carlsbad)	(575) 234-5972
BLM (Hobbs)	(575) 393-3612
National Response Center	(800) 424-8802
US EPA Region 6 (Dallas)	(800) 887-6063
	(214) 665-6444

Veterinarians

Lovington Veterinary Clinic	(575) 396-7387
Hobbs Animal Clinic	(575) 392-5563
Dal Paso Animal Hospital (Hobbs)	(575) 397-2286

Residents within 2 miles

None

Air Evacuation

AeroCare (Lubbock)	(800) 627-2376
Med Flight Air Ambulance (Albuquerque)	(800) 842-4431
Lifeguard (Albuquerque)	(888) 866-7256

1:18:09

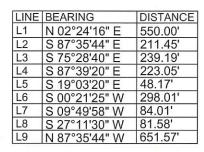
REV

SHEET 1 OF 2

Prevailing Winds

Blow from South

4 April 2025


21209

DATE: 04/03/2025

DATE: 04/03/2025

PROJECT ID: 25-03-5314

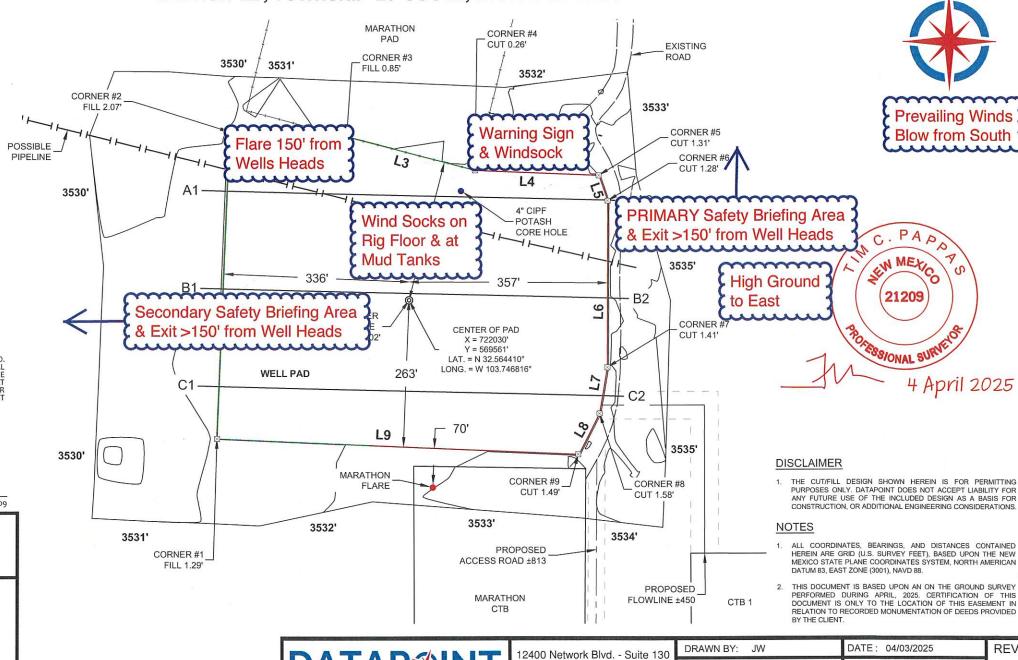
LEA COUNTY, NEW MEXICO SECTION 22, TOWNSHIP 20 SOUTH, RANGE 32 EAST

TOP OF PAD ELEVATION = 3.532.20' CUT SLOPE = 33.33% - 3.000:1 - 18.43° FILL SLOPE = 33.33% - 3.000:1 - 18.43°

CUT VOLUME: 151,749.72 C.F. - 5,620.36 C.Y. FILL VOLUME: 130,370.31 C.F. - 4,828.53 C.Y. NET VOLUME: 21,379.41 C.F. - 791.83 C.Y. 359,708 SQ.FT. - 8.258 ACRES

I, TIM C. PAPPAS, NEW MEXICO PROFESSIONAL SURVEYOR NO. 21209, DO HEREBY CERTIFY THAT THIS PLAT AND THE ACTUAL SURVEY ON THE GROUND UPON WHICH IT IS BASED WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION; THAT THIS SURVEY MEETS OR EXCEEDS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO; AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF

TIM C. PAPPAS,


N.M. P.L.S. NO. 21209

AVANT OPERATING II, LLC

Situated in SECTION 22, TOWNSHIP 20 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY. NEW MEXICO

THAI CURRY 22 27 FED COM PAD 1

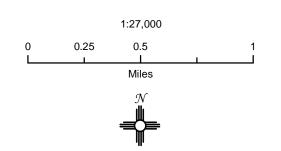
BUREAU OF LAND MANAGEMENT **CUT & FILL PRELIM**

San Antonio, TX 78249

Phone: 726-777-4240

CHECKED BY: JH

AFE#

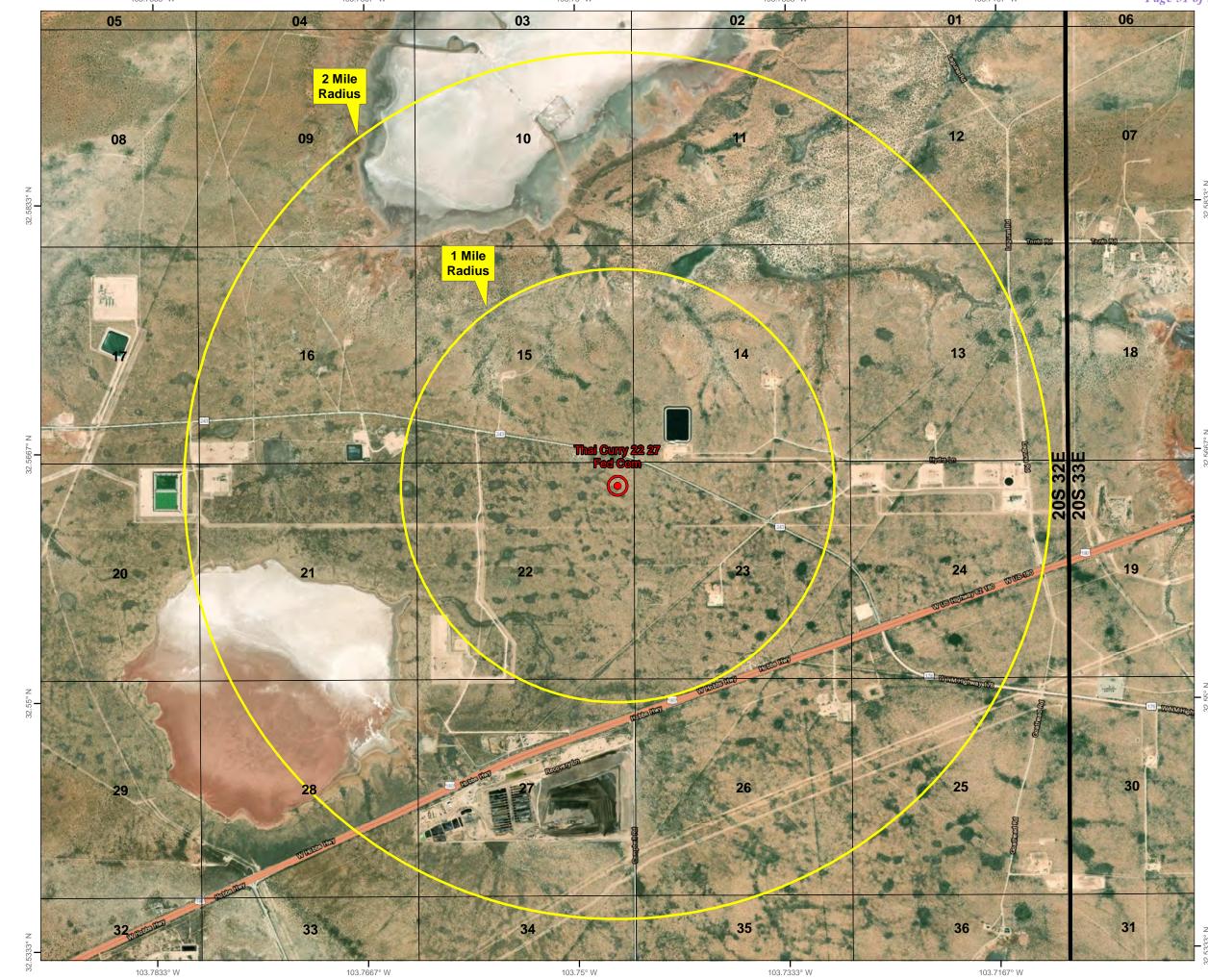

103.75° W

Avant Operating II, LLC

Thai Curry 22 27 Fed Com H2S Contingency Plan: Radius Map

Section 22, Township 20S, Range 32E Lea County, New Mexico

Pad Center



NAD 1983 New Mexico State Plane East FIPS 3001 Feet

Prepared by Permits West, Inc., March 31, 2025 for Avant Operating II, LLC

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

ACKNOWLEDGMENTS

Action 497603

ACKNOWLEDGMENTS

Operator:	OGRID:
Avant Operating II, LLC	332947
1515 Wynkoop Street	Action Number:
Denver, CO 80202	497603
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

ACKNOWLEDGMENTS

I hereby certify that no additives containing PFAS chemicals will be added to the completion or recompletion of this well.

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 497603

CONDITIONS

Operator:	OGRID:
Avant Operating II, LLC	332947
1515 Wynkoop Street	Action Number:
Denver, CO 80202	497603
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
twelem	Cement is required to circulate on both surface and intermediate1 strings of casing.	8/20/2025
twelem	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	8/20/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	9/23/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	9/23/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	9/23/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	9/23/2025
ward.rikala	This well is within the Capitan Reef. The first intermediate casing string shall be sat and cemented back to surface immediately above the Capitan Reef. The second intermediate string shall be set and cemented back to surface immediately below the base of the Capitan Reef.	9/23/2025
ward.rikala	Operator must comply with all of the R-111-Q requirements.	9/23/2025