30 015 37646

BOPCO, L.P.

810 Houston St. Fort Worth, Texas 76102 817-885-2453

August 30, 2017

FEDERAL EXPRESS

Bureau of Land Management Carlsbad District Office 620 E. Green St. Carlsbad, New Mexico 88220 Attn: Mr. Chris Walls New Mexico State Land Office Commissioner of Public Lands 310 Old Santa Fe Trail Santa Fe, New Mexico 87501 Attention: Mr. Anchor Holm New Mexico Oil Conservation Division 1220 St. Francis Santa Fe, New Mexico 87505 Attention: Mr. William Jones

Re: Commercial Determination Poker Lake Unit 303H Delaware Formation

Eddy County, New Mexico

Gentlemen:

Please find attached hereto one (1) copy of XTO's (as agent and attorney in fact for BOPCO, LP) commercial determination worksheets and exhibits which indicate that the subject well is a non-commercial well in the Delaware Formation. Please indicate your concurrence to the above Commercial Determination to the undersigned at the address above.

Thank you very much and should you have any questions or comments in regard to the attached commercial determination, please do not hesitate to contact the undersigned at the number or email address below.

Very truly yours,

Law Armstrong (817) 885-2453

Allen_armstrong@xtoenergy.com

Bureau of Land Management	New Mexico State Land Office	New Mexico Oil Conservation Division
By:	By:	By:
Its:	Its:	Its:
Date:	Date:	Date:

BOPCO, L.P.

Date: August 28, 2017

To: Law Armstrong

From: Trent Boneau

Re: Commercial Determination: POKER LAKE UNIT 303H

API 3001537646 25S 31E Sec 4

Eddy County, New Mexico

Attached is the economic worksheet and well forecast to be submitted for commercial determination. The Poker Lake Unit 303H was drilled in 2012 as a horizontal producer to a measured depth of 17,120' in the Delaware. The well is producing from perforations from 8386'-13845'. By mid-year 2017 the well has produced 52 kBO, and as of Aug 27, 2017 it was testing 23 bopd, 83 kcfd, and 581 bwpd on ESP. This well is expected to recover approximately 203 kBOE from the current completion. The 303H cost \$6.65M to drill and complete.

Historical data along with the most recent EIA future pricing estimates for oil and natural gas were utilized in the economic evaluation. Prices were adjusted downward by approximately 12% to account for local conditions. Operating costs were assumed to be \$10k/mo, declining to \$5k/mo plus a fixed \$0.75/bw cost for water disposal.

The Poker Lake 303H is expected to have a lifetime undiscounted cashflow of approximately -\$2.4M. It is a marginal producer with a very high water cut and is **not commercial**.

Trent Boneau
Reservoir Engineering Advisor
Delaware Basin Subsurface Team

Well Name Poker Lake Unit 303H API Number 3001537646 Formation Delaware Actual CAPEX, 5K 6648.313 5/1/2012 First Production Date First Forecast Date 1/1/2017 Cum Oil to Date (kbo) 42.192 Cum Wet Gas to Date (Mef) Water to Date (kbw) 145.406 1094.659 Assumed Shrink NGL Yield Assumed 0.6 EUR Oil EUR Wet Gas 125 0.9 0.82 0.8 WTI Price % HI lub Price % NGL Price % 8.19 7.09 Tax Gas Tax Oil WI % 100 NRI % 85.16263 OPX/mo Yr 1-3 OPX/mo Yr 4+ 10000 5000 OPX/water (\$/bbl) 0.75 CAPEX, Sk 6648 313 ECONOMICS MODULE

NON-COMMERCIAL

TOTAL NCF 0% DISCOUNT -2,393 KS TOTAL NCF 5% DISCOUNT -3,369 K\$

138255 bo 389266 kcf

	Date	Oil Volume	Wet Gas Volume	Dry Cas Volume	NGL Volume, gals	Oil Price	Gas Price	NGL Price	Total Gross Revenue	Net Resenue	Total Opcost MS	Local Taxes	Net Oper Income	Total Capital	BTax CFlow	Discounted Cash Flow 5%
HISTORICAL	2012	21039	55611	33367	291958	94.10	2.75	0.73	2027.4	1727	459.4	134.30	1133	6648.313	-5515	-5515
HISTORICAL	2013	9943	29217	17530	153389	97.90	3.73	0.76	1022.8	871	313.5	66.81	491	0	491	467
HISTORICAL	2014	11195	60382	36229	317006	93.30	4.39	0.72	1253.9	1068	337 H	78.98	651	0	651	590
HISTORICAL	2015	15	196	118	1029	49.00	2.63	0.38	1.2	1	60.3	0.07	-59	0	-59	-51
HISTORICAL	2016	5670	8998	5399	47240	43.00	2:52	0.33	243.2	207	170.3	15.98	2t	0	21	17
FORECAST	2017	10603	32567	19540	170978	46.07	2.70	0.36	531.8	453	266.3	34.30	152	0	152	119
FORECAST	2018	B719	26054	15632	136782	49.37	2.89	0.38	466,4	397	229.7	30.05	137	0	137	103
FORECAST	2019	7431	20843	12506	109426	52.90	3.10	0.41	421.5	359	204.6	27.16	127	()	127	90
FORECAST	2020	6644	17395	10437	91323	56:6B	3.32	0,44	399.5	340	189.3	25.76	125	0	125	85
FORECAST	2021	6046	15307	9184	80364	60.73	3.56	0.47	387.6	330	177,7	24.98	127	0	127	82
FORECAST	2022	5502	13471	RDR2	70720	65.08	3.81	0.50	376.1	320	167.1	24.24	129	0	129	79
FORECAST	2023	5007	12034	7220	63178	69.73	4.09	0.54	365.7	311	157.4	23.56	130	()	130	76
FORECAST	2024	4556	10951	6571	57492	74.71	4.38	0.5B	356.6	304	148.7	22.94	132	0	132	74
FORECAST	2025	4146	9965	5979	52318	\$ 0.06	4.51	0.62	346.8	295	140.7	22.35	132	0	132	70
FORECAST	2026	3773	9068	5441	47609	81.58	4.61	0.63	321.7	274	133.4	20.71	120	0	120	61
FORECAST	2027	3434	8252	4951	43324	83.13	4.71	0.64	298.3	254	126.8	19.20	108	0	108	52
FORECAST	2028	3125	7510	4506	39425	84.71	4.81	0.66	.276.7	236	120.8	17.80	97	()	97	44
FORECAST	2029	2843	6834	4100	35877	86,32	4.92	0.67	256.6	219	115.3	16.50	87	0	87	38
FORECAST	2030	2587	6219	3731	32648	88.00	5,(11)	0.68	238.0	203	110.3	.15:31	77	0	77	32
FORECAST	2031	2355	5659	3395	29710	89.58	5.02	0.69	220.3	188	105.8	14.18	68	0	68	27
FORECAST	2032	2143	5150	3090	27036	91,20	5.04	0.71	203.9	174	101,7	13.13	59	U	59	22
FORECAST	2033	1950	4686	2812	24603	92.84	5.05	0.72	188.7	161	97,9	12.16	51	0	51	18
FORECAST	2034	1774	4264	2559	22388	94.51	5.07	0.73	174.7	149	94.5	11.26	43	0	43	15
FORECAST	2035	1615	3881	2328	20373	96.00	5.09	0.74	161,4	137	91,4	10.41	36	0	36	12
FORECAST	2036	1469	3531	2119	18540	97.34	5.09	0.75	148.8	127	88.6	9.60	28	0	28	9
FORECAST	2037	1337	3214	1928	16871	98.71	5.08	0.77	137.1	117	86.0	8.86	22	0	22	6
FORECAST	2038	1217	2924	1755	15353	100.09	5,08	0.78	126.4	LOR	83,7	8.17	16	O	16	4
FORECAST	2039	1107	2661	1597	13971	101.49	5.08	0.79	116.6	99	81.5	7.54	10	0	10	3
FORECAST	2040	1008	2422	1453	12714	103.00	5.07	0.80	107,6	92	79.6	6.96	5	0	5	1
TOTAL		138255	389266	233559	2043644				11177	9519	4540	723	4255	6648	-2393	-3369

DISTRICT I 1625 N. Prench Dr., Hobbs, NM 88240 DISTRICT II 1301 W. Grand Avenue, Artesia, NM 88210

Energy, Minerals and Natural Resources Department JUN 07 2012 Revised State of New Mexico

RECEIVED

Form C-102 October 15, 2009

to appropriate District Office

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410

DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 OIL CONSERVATION DIVINION OF ARTESIA

1220 South St. Francis Dr. Santa Fe, New Mexico 87505

MENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

API	Number			Pool Code Pool Name					
30-01	5-37	646	50	386	P	oker hak	aware)		
Property (Property Nam			Well Nu	mber
30640	2			P	303H				
OGRID N	o.		_		Operator Nam	ie		Elevat	
2607	37				341	3411'			
					Surface Loc	ation			
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
N	4	25 S	31 E		1264	SOUTH	2310	WEST	EDDY
			Bottom	Hole Loc	ation If Diffe	erent From Sur	face		
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	32	24 S	31 E		299	SOUTH	1890	EAST	EDDY
Dedicated Acre	s Joint o	r Infill Co	nsolidation	Code Ord	der No.				
380									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

Form 3160-4 (March) 012)

*(See instructions and spaces for additional data on page 2)

UNITED STATES

FORM APPROVED

BUREAU OF LAND MANAGEMENT										OMB NO 1004-0137 Expires. October 31, 2014									
	\w	E I I	COMP	ETIC	N OP I	RECOMPLE	TION	PEPORT	A NID I	റദ			5 1	ease S	erial No.				
	**	CLL	COMP		NO OK I	(ECOMPLE	HON	NEFORT /	יואט ד	.00					M030457	0			
la Type of	Well	X	Oil Well	П	Gas Well	Dry [Other								, Allottee or		ame		=
b Type of	Completion					Deepen [Plug B	ack 🔲 Diff	Resvr ,	,			L						_
			Other:												CA Agreem M71016X		e and No)	
2. Name of	Operator												8. L	ease N	ame and We	ll No			
3 Address	Bo	<u> </u>	O, L.P.					3a Phone I	Ja dinal						Lake Uni	t		303H	
.)	P O Box	2760	Midlan	d Tx	79702			(432)683	3-2277	nae are I	ea coae	?)	9. F	API We	30-0	15-37	646		
4. Location	of Well (R	eport l	ocation cl	early an	d in accord	lunce with Fede	ral requir	ements)*							nd Pool or E	•			
At surfac	e III Ni	929	W- 4 24	50 31	E: 1264	FSL 2310 I	2WI - I	at NI 22002	00211	ona	102 /	170006		Poker	Lake, S	(Delav	vare)		
	OL IV,	SES	W, 4, Z.)J, J.	E, 1204	FSL 23101	· W L, L	at IN. 32032	.031 L	ong.	105.4	170000		Survey	or Area		ii.		
At ton no	od interval	renorte	ed below										12	1; T2:	SS; R31E or Parish		3 State		
At top pit	JO MILLIVON	сропс	d ociow																
At total d	epth UL	0: <u>\$</u> \	WSE 32	<u>, 24S,</u>	31E; 29	9 FSL 1890	FEL:	Lat N 32.1	00350	Long	g. W	103.474	1813	Eddy			M		
14. Date Sp	oudded 03/0	4/20	12 15.	Date T	D Reach	04/05/2012	2	6. Date Com		05/0 leady t	5/201	2	17.	Elevati	ions (DF, R	KB, RT,	GL)*		
18. Total D	epth: MD	13,	845'			ug Back T D	MD					ridge Plug	Set:	MD					
21. Type E		D 7,		oc Dun	(Submit as	nu of cook)	TVD			22 V	lac wal	l cored?	XI.	TVD	Yes (Subr	nit analys	us)		
Caliper	; PltExpA	ITC	FL/GR;	PltEx	pTDLD	CompNeut					Vas DS		X)	10 E	Yes (Subr	nit report	Z		
23. Casing					_	•		_			pirection	nal Survey	7 🔲 1	10 X	Yes (Subr	піт сору)	3		
Hole Size	Size/Gri		Wt (#/ft		op (MD)	Bottom (MI	Sta	ge Cementer		of Sks		Slurry	Vol.		ment Top*	T	O	2	田田
17-1/2"	13-3/8			0	ор (м.р.)	872	-	Depth		of Cer	nent	(BB	L)			-	C COTT	Puppu	\square
12-1/4"	9-5/8 C		40.00	0		4,319	_		860 1,430			243 443		Circ		-		12	
8-3/4"	7 N80	\rightarrow	26.00	0		8,386				TL;V	/C	145		Circ		+-	AFIT	20	<
6-1/8"	4-1/2 H	_		829	5	13,815			230	110, 1	<u> </u>	173		Circi	urate	+	1111	2	111
				- 1		1.5,0.0				-		_				+	32		
																	1		
24. Tübing Sıze	Record Depth :		(D) Pe-	ker Dep	th (MD)	Q:	1 5	ah Can (A(D)	Dark	D41-	ADV I	0.			1.0.0			1 /1 /	
2-7/8	7,404	2C1 (1VI	(L) Fac	kei Dep	III (MID)	Size	Det	oth Set (MD)	Packer	Depui	ן (עוא	Siz	е	De	pth Set (MD	, ,	acker D	epth (M	D)
25 Product							26.	Perforation											
A)Delawa	Formatio	n		1,340	ор	Bottom	0.40	Perforated In			_	Size		Holes	D. I		Status		
B)	11.6			1,340		6,508	0,49	5 - 13,766			Frac		Port		Produci				
C)											<u></u>				200	BANK	UNIX I	600 A	
D).															- 176				MA
27. Acid, F			, Cement S	Squeeze	, etc.								1					ज्ञ में प	The A
8,494 - I	Depth Inter	val		10.00	0 1- 0	EH 1 :		20.202	Amount	and Ty	pe of N	Material	11 1	6/20					
8,494 - 1	3,/04					25# Linear G 5/30 Super L			. 2300	VIKI	ng; ,	264,998	Ibs. I	6/30	Ottawa;				
			P	03,12	0 105. 10	5/30 Super L	C (CKI	~) <u> </u>									A COUNT	ONT	
	····													F	ECL	AM	ALL	UIX.	
28 Product															DUE	1.3.	10		
Date First Produced	Test Date	Hours Tested		luction	Oil BBL	Gas MCF	Water BBL	Oil Grav Corr A		Ga	savity	Prod	uction N	/lethod					
	5/27/12	24			146	388	2,616	42.7	•		8122								
Choke	Tbg. Press		24 F	lr	Oil	Gas	Water	Gas/Oil		•	il Stan								
	Flwg.	Press.			BBL	MCF	BBL	Ratio		""		1	JED.	211	FAD	חדו	חחי		
48/640	160	110	_	-	146	388	2,616	2657		PC)W	IACI	itΥ	IEL	FOR	KEL	JUK	U	
28a. Produc					1	1	1.,	1300/				1.00					7	-+	
Date First		Hours			Oil	Gas	Water	Oil Grav		Ga.		Prod	uction N	lethod			1		
Produced		Tested	I Prod	uction	BBL	MCF	BBL	Corr Al	21	Gra	ivitý			HIR	102	012			
OL I	The D											<u> </u>		VUIN	2	U.C.			
Choke Size	Tbg Press Flwg.	Csg. Press	24 H Rate		Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio		We	II Stati	12		4/1	20				
	SI											D	NDE M	LOE	LAND MA	NACE	MENT	- }	

	Test Date		Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
duced		Tested	Production	BBL	MCF	BBL	Corr API	Gravity		
e l		Csg Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status		
	SI .		-							
	Ction - Inter	rval D Hours	Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
oduced		Tested	Production	BBL	MCF	BBL	Corr. API	Gravity		
ze	Tbg Press Flwg Si	Csg. Press	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status		
Dispos Sold		S (Solid, us	ed for fuel, ve	nted, etc.)						
		us Zones	Include Aqu	ifers);				31. Format	ion (Log) Markers	
Show a	dl important	zones of	orosity and o	ontents the		intervals and a ing and shut-in	ll drill-stem tests, pressures and			
		m.	D		-	esiesiana C :	onte etc		No	Тор
rom	nation	Тор	Bottom		Des	criptions, Cont	ents, etc.		Name	Meas. Depti
Bell Car	nyon	4,340	5,244	San	dstone			Rustler		434'
Cherry	Canyon	5,244	6,508	San	dstone			Salado		824'
Brushy	Canyon	6,508	NR	San	dstone			base/Sal	t	4,085'
								Lamar		4,302'
								Bell Can	iyon	4,340'
								Cherry C		5,244'
									ry Canyon	6,437'
								Brushy (6,508
								Didsity	Janyon	0,508
2 Additu 2-7/8" F	ional remark	ks (include	plugging pro L-80 tubi	cedure).	-					
. 170	DOD OIG	o.s ppr	2 00 1401	6						
							•			
3 Indica	ite which ite	ms have b	en attached	y placing	a check in th	e appropriate b	oxes			
Elec	trical/Mecha	anical Logs	(1 full set req	'd)		Geologic Repo	on DST	Report	X Directional Survey	
		_	and cement v			Core Analysis		·	,	
									records (see attached instructi	ons*
	-		andra J. B		t. 7379	mprese and corr	Title Sr. Reg			vii3)
		7	~ d · -	0	BoOt		Date 06/06/2		•	
	gnature	W MILL		V	$\mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $		Date VU/VU/4	U14		

(Continued on page 3) (Form 3160-4, page 2)