Union Texas Petroleum

THE WASHINGTON

375 U.S. Highway 64
Farmington, New Mexico 87401
Telephone (505) 325-3587

February 20, 1986

R. L. Stamets
Oil Conservation Division
P.O. Box 2088
State Land Office Bldg.
Santa Fe, New Mexico 87501

Re: Angel Peak B #24E 1680' FSL 850' FEL Section 13, T28N-R11W San Juan County, NM

Dear Mr. Stamets:

Union Texas Petroleum is applying for a downhole commingling order for the referenced well in the Armenta Gallup and Basin Dakota fields. The ownership of the zones to be commingled is common. The Bureau of Land Management and the offset operators indicated in the attached land plats will receive notification of this proposed downhole commingling.

The subject well was completed on January 31, 1983. The Gallup formation was fracture stimulated with 309,000# sand in 455,000 gallons 75 quality foam in three stages. The Dakota formation was fracture stimulated with 86,000# sand in 86,000 gallons nitrified water. CAOF of the Dakota zone (3/22/83) was 372 MCFD. Initial production of the Gallup formation (4/15/83) was 25 BOPD and 378 MCFD. Average first full months production was 10 MCFD and zero oil from the Dakota and 2 BOPD and 148 MCFD from the Gallup. The Gallup horizon is currently produced with a plunger lift system and the Dakota is flowing intermittently from below a packer. Two tubing strings are utilized. Most recent production (12/85) from the Dakota is 22 MCFD with negligible oil and 22 MCFD and less than 0.5 BOPD from the Gallup.

This well is marginally productive and continued production will be dependent on few or no additional expenses and additional recoverable reserves from a planned workover to test the Chacra formation in this wellbore. It is planned to stimulate and test the Chacra formation. If economic, the commingled Gallup-Dakota stream will be produced up one tubing string from below a packer and the Chacra stream up another tubing string. The proposed commingling will result in the

Page 2 of 2 Stamets/Katirgis February 20, 1986

recovery of additional hydrocarbons from both the Gallup and Dakota formations, thereby preventing waste and will not violate correlative rights. Commingling the two zones will result in a more efficient operation by helping to lift the small amount of produced liquids from each zone without the aid of the plunger lift currently used on the Gallup.

The attached fluid analysis from the Gallup and Dakota zones of the subject well indicates the total value of the crude will not be reduced by the commingling. The reservoir characteristics of each of the zones are such that underground waste would not be caused by the proposed downhole commingling. The calculated static bottom hole pressure based on surface pressure and fluid level measurements is 238 psi in the Gallup and 472 psi in the Dakota; within the limits of Rule 303-C, Section 1(b), Part (6). The fluids from each zone are compatible and no precipitates will be formed as a result of commingling to damage either reservoir. Current flow tests (less than 0.5 BOPD and negligible water from the Gallup and negligible oil and water from the Dakota) indicate the daily production will not exceed the limit of Rule 303-C, Section 1(a), Parts (1) and (3).

The Division Aztec District office will be notified anytime the commingled well is shut in for seven consecutive days. To allocate the commingled production to each of the zones, Union Texas Petroleum will consult with the supervisor of the Aztec District office and determine an allocation formula for each of the producing zones.

Included with this letter are two plats showing ownership of offsetting leases, a production curve of each zone, Form C-116 (GOR Test), a Fluid Analysis Report and a wellbore diagram showing the proposed downhole configuration after commingling.

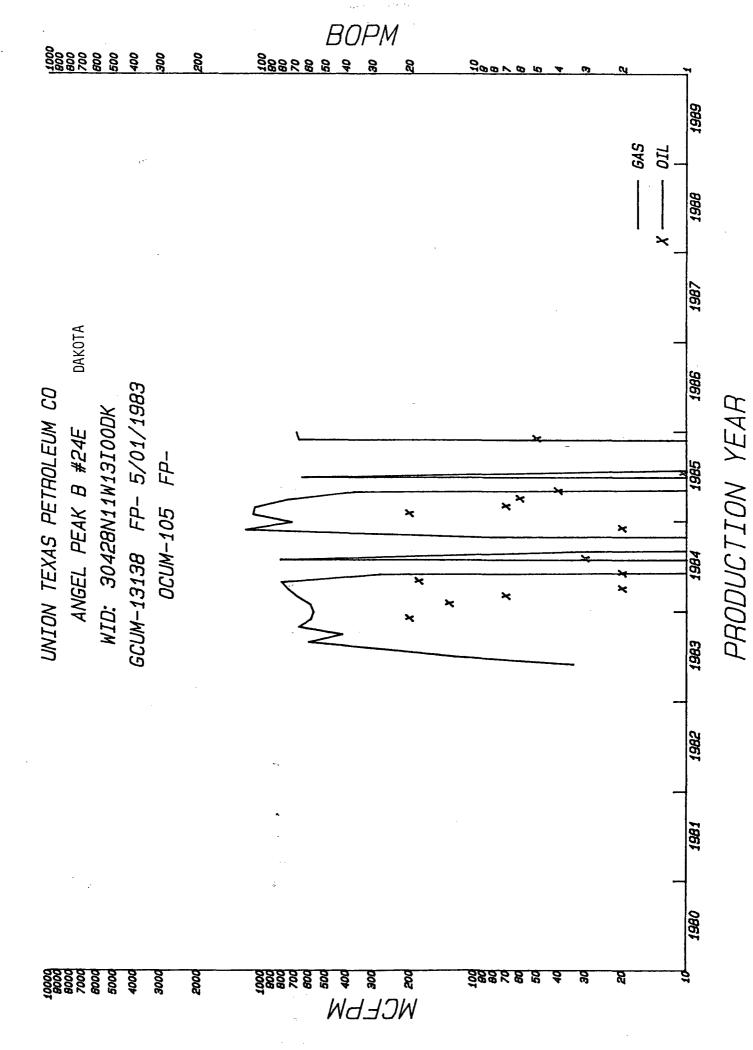
Yours truly,

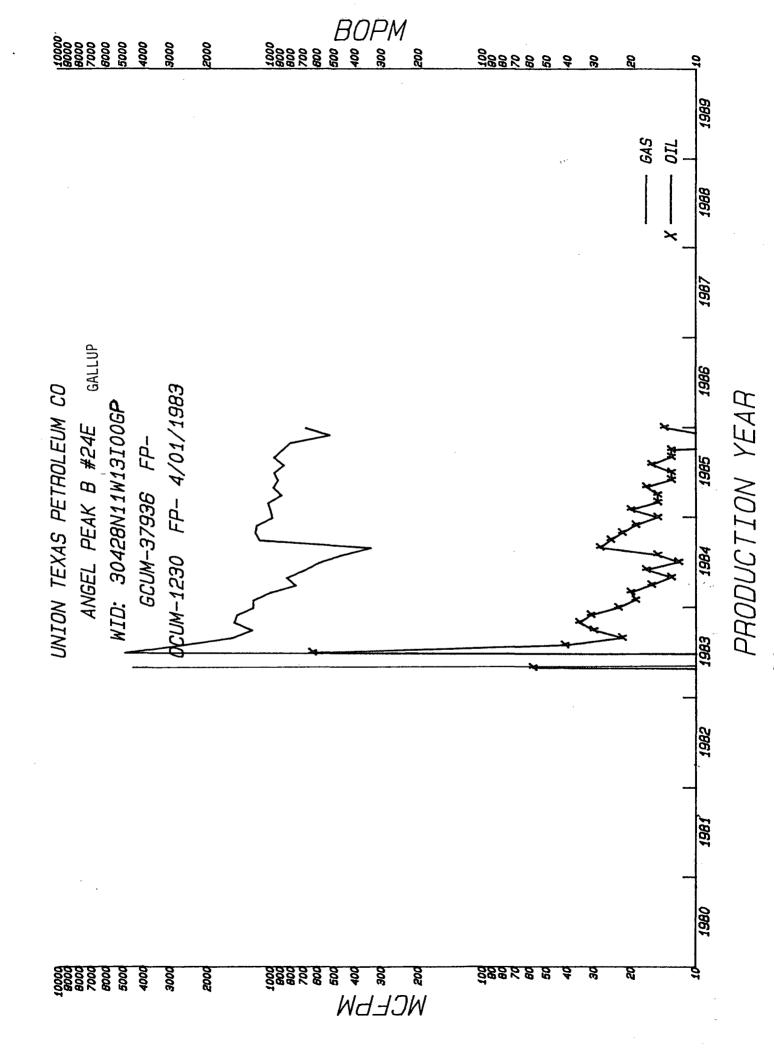
S. G. Katirgis

Petroleum Engineer

SGK:tb

Attachments/6


cc: Frank Chavez, OCD Aztec Office
W. K. Cooper
M. R. Reisz
Well file


	**************************************	(3) Republished (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	**************************************			I - 28 - N T. CORP.			LAND PLAT-DAKOTA FORMATION	WELLNAME	FIRST PRODUCTION DATE (YEAR-MONTH-DAY)	85 avg. Oil(80PD)/84S(Aicropd) (\$Tatus) Cum Oil(MBO)/8AS(Aimgre) — Through 8/30/85	688888888 Union Texas Acreage
15 W			*****	AMOCO	DAY BAS COM #1 2—1980) 7.7/488	CROWN CENTRAL PET	KUTZ FEDERAL 410				NEWMAN A 48 3-1960 8/1967 0.305/10.		NEW J. 17,725 O
WI	STATE A 500 4 51	(36) STATE CON AD \$28E 2-(86) 1.2/16/ 1.2/16/	MESA PET.	**************************************	NS 2004 41E NS 2014 41E NS 2014 1E	CONGRESS LACHMAN 44E	<u> </u>	e arranda	CONGRESS JACHMAN #4 CONGRESS JACHMAN #4 CONGRESS JACHMAN #4 CONGRESS JACHMAN #4	NEWAAN B 46E 3-1980 3-3-3-1980 13-3-1984	MERIDIAN	(61)	HEWMAN B #8 0 2/90/N 22/7386
2 -22222	STATE A CODA # 1E STATE A CODA # 1E STATE A CODA # 1E STATE A CODA # 1E	********	STATE COM AD \$28 >-1860 22:2/3849		NMGEL PEAK #21 12.5/2701	9	ANGEL PEAK B \$22 2-1914 0 2-1914 16.8/3291	ANGEL PEAK B 424E	*	ANSEL FEAK B 420 %	~ XXXX		***************************************
O (1)85/5/7.72	·	(9E)	38) - SSJANOO 8	(B)	•		ANGEL FAK 8 \$225 6-198 O -3/40(N) O -3/28 O	(3) Ab	ANGEL PEAK B #24 1.0/19183 40.8/19222	4	ANGEL PEAK B \$23E 11-1981 O	(E)	XX ANGE: FEM. B 425 X 24,90% O X 34,70% O XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
**************************************	97/∆: (МУКСТ () 1881—18 1881—18 1881—18 1881—1881 1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881—1881 1881 1881—1881 1881—1881 1881		CONGRESS #8 -1883 -1883 -20.8/4438			MERIDIAN	AZTEC #8E 7-(910) 1.0/256	AZTEC #7 6-19670 36-6/8397 38-6/8397	88888888	○ (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MERIDIAN	онто <u>д воут #2</u> 5.7244 О	NARATHON
***************************************		£	э ль карадиос 1691-6 0 мло/о.	E	AMORE 17.84 823 21:9/7883 O	21:(/4040		(4) ACTEMPT C 1.3/199(A) 2.2/208		HUGHES 42 2-1984 43.0/5382		O Willys: O Willys:	·
**************************************	374 SETHENCO SON (-) 100 SON (CONGRESS 47 	******		0555555	5 1				I			

R-11-W

R-10-W

R-11-W

NEW MEXICO OIL CONSERVATION COMMISSION GAS-OIL RATIO TESTS

Pewton 1 leter

ONION TEXAS PETROLEUM	LEUM		ď	Pool Armenta	Gal	lup/Basin Dakota	Dakota			Sa	San Juan				
375 U.S. Hwy 64, Farmington,	Farmington	N N	87401			<u> </u>	TYPE OF TEST - (X)		Scheduled		Con; letion	etion		i ii	Special (X)
	WELL	_	100	LOCATION		DATEOF	PHOKE	- T	DAILY	I .	- d	PROD. DURING		TEST	GAS - 01L
LEASE NAME	O Z	כ	s	-	œ	TEST	SIZE		ALLOW- ABLE	OF TEST HOURS	WATER BBLS.	GRAV.	OIL BBL S.	GAS M.C.F.	RATIO CU.FT/BBL
Angel Peak B (Gallup)	24E	Ĭ	13	28N	11W	12/26/85		85		24	0	44	7.	22	31,428
Angel Peak B (Dakota)	24E	H	13	28N	11W	12/26/85		226		24	0	53		15	N/A
	* .							•							
No well will be assigned an allowable greater than the amount of oil produced on the official test.	n allowable gree	iter tha	n the am	o Jo Junc	II produce	ed on the official	l test.				I her	еву сег	tify that	the abov	I hereby certify that the above information

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased silowables when authorized by the Commission,

is true and complete to the best of my know-

ledge and belief.

Gas volumes must be reported in MCF measured at a pressure base of 15,025 pala and a temperature of 60° F. Specific gravity base will be 0.60.

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with Rule 301 and appropriate pool rules.

S. Hahrain (Straine)
Petroleum Engineer

UNION TEXAS PETROLEUM ANGEL PEAK B24E LEASE FLUIDS

LABORATORY INVESTIGATION

OF

ANGEL PEAK GALLUP AND DAKOTA FLUIDS COMPATABILITY JANUARY 22, 1986

PREPARED FOR:

UNION TEXAS PETROLEUM Sterg Katirgis Petroleum Engineer

PREPARED BY:

James C. Terry PRODUCTION ANALYSTS

SUMMARY OF RESULTS

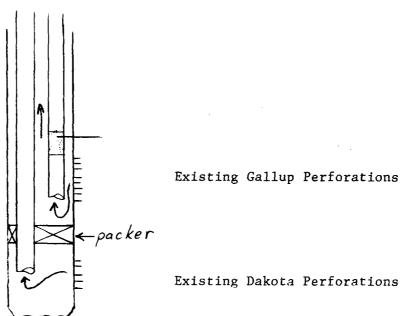
- 1. No precipitation of materials was observed from either admixture of fluids.
- 2. Emulsion testing was performed. There is no concern over emulsion effects.
- 3. The cloud point of oil mixtures dropped or remained the same upon mixing of fluids.
- 4. According to calculations not enough cool down from gas expansion will occur to alter paraffin deposition significantly.

JAMES C. TERRY

PRODUCTION ANALYSTS

Farmington, New Mexico

On Monday, January 13, 1986, a request for laboratory work was place by Sterg Katirgis, Petroleum Engineer of Union Texas Petroleum Corporation.


PURPOSE

Two oil samples were received of Mr. Katirgis with the request we investtigate the concern of potentially detrimental effects due to comingling of Gallup and Dakota fluids in the Angel Peak B24E.

INVESTIGATION

1. Background Information - Current Wellbore

a)

- b) BHST Gradient: 1.375° F/100 ft. depth.
- c) Current production problems are primarily due to paraffin deposition from surface down to ≈ 1000' depth.

d) Commingling Order Mixture Requirements:

The commingling requests present the mixing of Angel Peak B24E Dakota oil with Angel Peak B24E Gallup fluids (oil/water).

The tests performed simulated the mixture of fluids that may result from this commingling action. Each oil component was analyzed for API gravity, paraffin, pour point, and cloud point. Each water component was analyzed for dissolved solids, pH, specific gravity and resistivity. The mixture of oils addressed the potential increase in precipitation of materials and the potential increase in paraffin content by a synergistic effect of mixing oils of different constitution. Emulsion tests simulated the mixing environment of the wellbore where the water component of a fluid could by tied up in a resulting emulsion without the ability to break out and allow separation of the oil and water constituents. The emulsion test results present the number of ml (% of mixture) of water breakout at listed time intervals. The volume of test sample (mixture) used in the emulsion tests is 100 ml.

- 2. Concerns to address in analysis.
 - a) The precipitation of materials produced by the admixture of oils of potentially different constitution.
 - b) The creation of emulsions due to the admixture of different fluids.
 - c) Increased paraffin deposition by additive properties of oils.
 - d) Increased paraffin deposition due to the reduction of temperature accompanying gas expansion.
- 3. Steps taken in analysis
 - a) API Analysis of oils including: API Gravity
 Pour Point
 Cloud Point
 Paraffin Content
 B S & W
 - b) Discussion with Mr. Katirgis regarding the well bore production environment; e.g., mode of hydrocarbon production, pump type and operation, water components of production fluids, current paraffin problems, etc.
 - c) Mixing of oils in appropriate cases with additional cloud point testing to determine resulting fluid characteristics.
 - d) API Water Analysis
 - e) Emulsion tendency testing via mixing of fluids in appropriate cases.

DATA

Sample #1

Zone: Dakota

API Gravity @ 60°F 53.0

Cloud Point 22°F

Pour Point -1°F

Pafaffin Content 7.98% (weight)

Sample #2

Zone: Gallup

API Gravity @ 60°F 44.1

Cloud Point 2°F

Pour Point <-12°F

Paraffin Content 14.19% (weight)

Sample #3

Zone: 50/50 Mix

API Gravity @ 60° F 48.9

Cloud Point 24°F

Pour Point <-10°F

Paraffin Content 11.89% (weight)

Analysis	No	1
Date	1-22-8	6

PRODUCTION ANALYSTS

Oil Analysis

Operator Union Texas Petroleum	Date Sampled	1-10-86
Well Angel Peak B24E	Date Received	1-13-86
Field	Submitted By	Sterg Katirgis
Formation Dakota	Worked By	Clay Terry
Depth	Sample Description	Brownish, clear oil
County San Juan	sample. No water	phase or emulsion.
State New Mexico	Small bottom solid	is component.
API Gravity 53.0 ° at 60°F	SAMPLE COMPOS	SITION:
Paraffin Content 7.98 % by weight	н ₂ о	0 .
Asphaltene Content n/a by weight	Emulsion	0 :
Pour Point1 °F	Oil	780
Cloud Point 22 °F	Total	780 ml
Comments:		
B S & W Test Results:		
0il 99.9 Water 0 Solids < 0.1 Emulsion 0	Analyst	Bry

Analysi	s No.	2	
Date	1-22-	-86	

PRODUCTION ANALYSTS

Oil Analysis

ample

Analys	sis No	3
Date	1-22-86	•

PRODUCTION ANALYSTS

Oil Analysis

Operator <u>Union Texas Petroleum</u>	Date Sampled 1-10-86
Well Angel Peak B24E	Date Received 1-13-86
Field	Submitted By Sterg Katirgis
Formation <u>Gallup/Dakota</u>	Worked By <u>Clay Terry</u>
Depth	Sample Description 50/50 mix of oils from
County San Juan	Gallup and Dakota intervals.
State New Mexico	
API Gravity 48.9 ° at 60° F Paraffin Content 11.89 % by weight Asphaltene Content n/a % by weigh Pour Point $\sqrt{-10}$ °F	
Cloud Point 24 °F	
Gloud FormeF	
Comments:	•
B S & W Test Results:	
0i1 96.0% Water 0.4% Solids <0.1%	
	(0)

API WATER ANALYSIS REPORT FORM

Company Union Texas Petrole	um		Sample No. 2B	Date Sampled 1-10-86
Field Angel Peak Gal/Dak	Legal De	escription —	County or F San Juan	
Lease or Unit Angel Peak B	Well 24E	Depth -	Formation Gallup	Water, B/D H ₂ 0
Type of Water (Produced, S Produced	upply, etc.)	Sampling Point Separator		Sampled By SK

DISSOLVED SOLIDS			OTHER PROPERTIES
CATIONS	mg/l	ms/l	p H <u>6.3</u>
Sodium, Na (calc.)	218	9.5	Specific Gravity, 60/60 F
Calcium, Ca	0	0	Resistivity (ohm-meters) 75 F.
Magnesium, Mg	29	2 4	Total Hardness 120
Barium, Ba			
Potassium, K	180	4.6	
			,
			WATER PATTERNS — me/l
ANIONS		•	·
Chloride, Cl	383	10.8_	STANDARD
Sulfate. SO ₄	25	5	No. 20 10 0 10 20
Carbonate, COa			Na militari martina martina programa C1
Bicarbonate, HCOs	<u>319</u>	5.2	Са 1111 111
Hydroxide. OH	0_		
			Mattitititititititititititititititititit
			_{Fe} lավավավավավավակակակակ
			LOGARITHMIC
Total Dissolved Solids (Nammer hunter hunter hunter rechung rechung rechung rechung C1
,	1154		
Iron, Fe (total)			49 111
Sulfide, as H ₂ S			<u> </u>
			ğ ±
REMARKS & RECOM	MENDATIONS:		

Fig. 1 EMULSION TESTS DATA SHEET

OFFRATOR: UNION TEXAS SUBMITTED BY: S. KATIRGIS

SOURCE OF SAMPLE: ANGEL PEAK B24E

FIELD: Angel Peak Gal/B DATE SAMPLED: 1-10-86 FORMATION: Gallup/Dakota DATE RECEIVED: 1-13-86

DEPTH: Unknown

API GRAVITY OF OIL: 48.9

COUNTY: San Juan

TYPE & CONC. OF FLUID: 50/50 MIX OF

** * ** GALLUP/DAKOTA FLUIDS

TYPE & CONC. OF SOLIDS: TEST TEMPERATURE: 75°F

. FLUID RATIO:

ANALYSIS BY:

C. Terry

PERCENTAGE OF ORIGINAL H20 SEPARATED AT VARIOUS TIME INTERVALS AFTER EMULSIFYING

Test Number	1			*												
••				٠.		•										
Elapsed Time	Time	Vol	Time	Vol	Time	Vol	Time	Vp1	Time	Vol	Time	Vol	Time	Vol	Time	Vol
l min	1	4	ż		3		4	,	5		6		7		8	
2	2	6	3		4		5		6		7		8		9	
3	3	7	4		5		6		7		8		9		10	
4	4	7	5		6		7		8		9		10		11	
5	5	7	6		7		8		9		10		11		12	
6	6	7	7		8		9		10		11	• .	12		13	
7	7	7	8		9		10		11		12		13		14	
8	8	7	9		10		11		12		13		14		15	
ý	9	7_	10		11		12		13		14		15		16	. .
10	10	7	11		12		13		14		15		16		17	
20	20	7	21		22	. •	23		24		25		26		27	
30	30	7	31		32		33		34		35		36		37	
otal Vol (ml)		100														
ol.Emilsion/ Sludge		0														
1÷∂s*																
nterface**		-														
OIL		93														

REMARKS:

**The mixture of fluids was constructed to reflect proper proportions of the various fluids within each sample. Therefore, the mix was 50 ml Dakota oil, 43 ml Gallup oil, 6 ml Gallup $\mathrm{H}_2\mathrm{O}$, 1 ml Gallup Emulsion

^{*} Preferential wetting of solids: OB=oil-wet bottom; OO=oil-wet oil phase; WB=water-wet bottom; WO=water-wet oil phase
Ol=oil-wet interface; WI=water-wet interface
** Interface: F=Fluid; S=Solid; V=Viscous

CALCULATIONS

Cool down effects due to gas expansion:

Reference: Perry's Handbook of Chemical Engineering

RE: Adiabatic Expansion of Ethane, Methane

$$T_s = T_r \frac{P}{(-\frac{s}{r})}$$
 $(\frac{K-1}{K})$, where

 $T_s = Surface Temperature$

 T_r = Reservoir Temperature

P = Surface Pressure

 P_r = Reservoir Pressure

K = Specific heat at constant pressure
Specific heat at constant volume

Assumed values for maximum cool down due to gas expansion:

$$T_{s} = Unknown$$

$$T_r = 160^{\circ} F$$

$$P_s = 500 \text{ psi}$$

$$P_r = 2000 \text{ psi}$$

$$K = 1.2$$

$$T_s = 160 \ (\frac{500}{2000})$$

$$T_s = 127^{\circ} F$$

NOTE:

A total cooldown of 33°F would be expected

UNION TEXAS PETROLEUM CORP.

WELLBORE DIAGRAM DOWNHOLF COMMINGLE

L	DOWNTOLL COMMING	1. L
WELL NAMEAngel Peak B #24E		
LOCATION 1680' FSL; 850' FEL	SECTION	1 13 T 28N R 11W
COUNTY San Juan STATE	New Mex LEA	SE SF047017 B
·		GLE5838'
		кве5850'
		· ·
		кв12'
SURFACE CASING		WELL HISTORY
Hole size:17"		Spud date: <u>12-20-82</u>
Casing: 13-3/8"		Original owner:
Casing set @ 280'		IP: MCFDBOPDBWPD
Top of Cement: Surface		GOR
INTERMEDIATE CASING		Completion treatment:
Hole Size: 12-1/4"		CURRENT DATA
Casing: 9-5/8"		Pumping Unit:
Casing set @		Tubing: Ga1/Dk: 2-3/8" EUE 4.7# @ ±6350
Top of Cement: 0		CH · 2-3/8" FUE 4 7# @ +3000!
LINER HANGER		# Rod string:
Hanger Type:		Well Head:
Hanger Top @ 5211'		Remarks: DV tool @ 2077' & 5211'
FORMATION TOPS		Model D pkr @ ±4000'
Ojo Alamo 775'		
Kirtland Shale 885'		
Pictured Cliffs 1872'		
Lewis Shale		
Chacra2450'		
Cliffhouse 3450'		
Point Lookout 4207'		
Mancos Shale	N N	
Gallup5428'		
Greenhorn62621	1111	PERFORATIONS
Dakota 6295'		Gallup: 5431'-6051' (89 holes)
	GAL	Dakota: 6300'-6419' (31 holes)
PRODUCTION LINER	1111	DAKULA: 0300 -0419 (31 NOTES)
Hole Size: 8-1/2" 7"	144	Proposed Chacra: 2880'-90', 2985'-3005
Liner:	DK	- 10poseu chacra. 2000 - 30 , 2305 - 3005
Top of Cement: Liner Hanger		Date of Last Revision:
•	<i>A</i>	

PBTD 6518'

STATE OF NEW MEXICO

ENERGY AND MINERALS DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (505) 334-6178

OIL CONSERVATION DIVISION BOX 2088	4	(303) 354-3171
SANTA FE, NEW MEXICO 87501		
DATE 2/24/86 (EBU 20 1986)		:
RE: Proposed MC Proposed DHC Proposed NSL Proposed SWD Proposed WFX		
Proposed PMX		:
		χ.
Gentlemen:		
I have examined the application dated $2/21/86$		
for the Union Dex Pet Corp. angel Peak # 24E	I-13	-28 N-11W
Operator Lease and Well No.	.*	Unit, S-T-R
and my recommendations are as follows:		
Opprove.		
		,
		· · · · · · · · · · · · · · · · · · ·
Yours truly,		
J. Q		