NM1 - __9___

MONITORING REPORT

YEAR(S):

2010 - 2012

Memorandum

RECEIVED OCD

2012 FEB - 1 P 2: 46

To: Glenn vonGonten

From: Robyn Miller

Date: 1/31/2012

Re: Sunco Well

Enclosed are the 2011 4th Quarter Sample Results for Permit NM1-9 and the Annual Class I Well Report for 2011. All the appendices and these two documents are on the enclosed flash drive.

If you have any questions, please let me know. I may be reached at 432.571.7116.

RECEIVED OUD

2011 4th Quarter Sample Results For On-Site Landfarm

Key Energy Services, LLC
Permit NM1-9
January 31, 2012

Submitted to:

Glenn von Gonten-Acting Bureau Chief

New Mexico Oil Conservation Division

1220 South St. Francis Drive

Santa Fe, NM 87505

Submitted by:

Daniel K. Gibson

Corporate Environmental Director

Key Energy Services LLC

6 Desta Drive Suite 4300

Midland, TX 79705

(432) 571-7536 ph

(432) 571-7173 fax

January 31, 2012

<u>Summary of Analytical Results:</u>

This report presents the 4th quarter sampling analytical results for landfarm cells #1 and #2. Appendix A contains chain-of-custody forms, field notes with pertinent information, sample locations, and selected photos. The sampling was conducted pursuant to a sampling plan submitted to OCD on December 30, 2011 and approved by OCD on January 9, 2012. Appendix B contains the sampling plan and approval.

Laboratory data for the Treatment Zone (TZ) cells (#1) and (#2) reported concentrations for TPH by Method 418.1 of 4,370 mg/kg and 2,570 mg/kg, Chlorides of 100 mg/kg and 430 mg/kg respectfully, and TPH (Method 8015m GRO/DRO) of "ND" for both cells, and BTEX (8021) of "ND" for both cells.

Laboratory data for the Vadoze Zone (VZ) samples for cells (#1) and (#2) reported concentrations for TPH by Method 418.1 of 12.8 mg/kg and 12.8 mg/kg, Chlorides of 10 mg/kg and 240 mg/kg respectfully, and TPH (Method 8015m GRO/DRO) of "ND" for both cells, and BTEX (8021) of "ND" for both cells.

The Vadose Zone samples also included values for "General Chemistry" and WQCC metals which are contained in Appendix A. Values were checked and compared to on-site background levels. The results revealed that constituents of concern were either within the background range, or statistically close to the background.

Please note that no additional material has been added to the landfarm for over a year. Key has sold this facility to Agua Moss, LLC and is in the process of transferring the permits for this facility to Agua Moss.

If you have any questions please do not hesitate to call me at 432-571-7536 or email dgibson@keyenergy.com.

Sincerely yours,

Daniel K. Gibson

Corporate Environmental Director

Key Energy Services, LLC

Appendix A

- Analytical Results with Chain-of-Custody
- Field Notes
- Photos

Appendix B

- Sample Plan
- OCD Approval

Appendix A

- Analytical Results with Chain-of-Custody
- Field Notes
- Photos

EPA METHOD 8015 Modified Nonhalogenated Volatile Total Petroleum Hydrocarbons

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #1-TZ	Date Reported:	01-11-12
Laboratory Number:	60778	Date Sampled:	01-10-12
Chain of Custody No:	12869	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-10-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Requested:	8015 TPH
:		•	

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, December 1996.

Comments:

Key NNI-9 Landfarm Cell #1

Analyst

Review

EPA METHOD 8015 Modified Nonhalogenated Volatile Total Petroleum Hydrocarbons

٠	•		
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #1-3-VZ-3'	Date Reported:	01-11-12
Laboratory Number:	60779	Date Sampled:	01-10-12
Chain of Custody No: -	12869	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-10-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid

Waste; SW-846, USEPA, December 1996.

Comments:

Key NMI-9 Landfarm Cell #1

Analyst

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

y EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	01-11-12 (DAVQC	Date Reported:		01-12-12
Laboratory Number:	60762		Date Sampled:		N/A
Sample Matrix:	Methylene	Chloride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		01-11-12
Condition:	N/A		Analysis Reques	ited:	TPH
•	I-Cal			%	
	Date	I-Cal RF:	C-Cal RF:	Difference	Accept. Range
Gasoline Range C5 - C10	40919	9.996E+02	1.000E+03	0.04%	0 - 15%
Diesel Range C10 - C28	40919	9.996E+02	1.000E+03	0.04%	0 - 15%
Blank Conc. (mg/L - mg/K	g)	Concentration	D€	etection Limit	
Gasoline Range C5 - C10		8.0		0.2	
Diesel Range C10 - C28		0.9		0.1	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Range	
Gasoline Range C5 - C10	ND	ND ,	0.00%	0 - 30%	
		,			
Diesel Range C10 - C28	ND	ND	0.00%	0 - 30%	÷
Diesel Range C10 - C28 Spike Conc. (mg/Kg)	ND : Sample	ND Spike Added	0.00% Spike Result	0 - 30% % Recovery	Accept, Range
	, i .	·			Accept. Range 75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid

Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 60762-60763 and 60776-60780

Analyst

Review-

•

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mércado Street, Suite 1.15, Durango, CO 81301

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy		Project #:		98065-0013
Sample ID:	Cell #1-3-VZ-3*		Date Reported:		01-12-12
Laboratory Number:	60779	•	Date Sampled:		01-10-12
Chain of Custody:	12869		Date Received:		01-10-12
Sample Matrix:	Soil		Date Analyzed:		01-11-12
Preservative:	Cool		Date Extracted:		01-10-12
Condition:	Intact		Analysis Requested:		BTEX
			Dilution:		10
				Det.	
1	•	Concentration		Limit	
Parameter		(ug/Kg)		(ug/Kg)	
	,				
_					
Benzene		ND		10.0	
Toluene	•	ND		10.0	
Ethylbenzene	•	ND		10.0	
p,m-Xylene		ND		10.0	
o-Xylene	•	ND	i .	10.0	
•					
Total BTEX		ND	!		

ND - Parameter not detected at the stated detection limit.

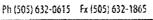
Surrogate Recoveries: Parameter		Percent Recovery
	Fluorobenzene	91.6 %
•	1,4-difluorobenzene	99.1 %
	Bromochlorobenzene	96.4 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,


USEPA, December 1996.

Comments:

Key NMI-9 Landfarm Cell #1

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:	N/A 0111BBLK QA/QC 60780 Soil N/A N/A	 	Project #: Date Reported: Date Sampled: Date Received: Date Analyzed: Analysis: Dilution:	0° N N 0°	/A 1-11-12 /A /A 1-11-12 TEX
Calibration and	I-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.
Detection Limits (ug/L)		Accept. Rang	e 0 - 15%	Conc	Limit
Benzene	1.59G3E+007	1.5995E÷007	0.2%	ND .	1.0
Toluene	1.6492E+007 ·	1.6525E+007	0.2%	ND	1.0
Ethylbenzene	1,4751E+007	1.4780E+007	0.2%	ND	1.0.
p,m-Xylene	3.8120E+007	3.8198E+007	0.2%	ND	1.0
o-Xylene	1.3792E+007	1.3819E+007	0.2%	ND	1.0
Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect. Limit
Benzene	182	187	2.8%	0 - 30%	10.0
Toluene	3,400	3,460	1.8%	0 - 30%	10.0
Ethylbenzene	709	719	1.5%	0 - 30%	10.0
p,m-Xylene	5,770	5,760	0.2%	0 - 30%	10.0
o-Xylene	1,710	1,760	2.9%	0 - 30%	10.0
€					
Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	Accept Range
Benzene	182	500	708	. 104%	39 - 150
Toluene	3,400	500	3,900	100%	46 - 148
Ethylbenzene	709	500	1,330	110%	32 - 160
p,m-Xylene	5,770	1000	6,570		46 - 148
o-Xylene	1,710	500	2,300		46 - 148
O-Ayione	1,110	300	000, ــ	10 170	,, ,,,

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

Releiences:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

- QA/QC for Samples 60763, 60777, 60779 and 60780

Analyst

1.0.00

Ph (505) 632-0615 Fx (505) 632-1865

5796 US Highway 64, Farmington, NM 87401

Three Springs + 65 Mercado Street, Suite 115, Durango, CO 81301

envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #1- TZ	Date Reported:	01-11-12
Laboratory Number:	60778	Date Sampled:	01-10-12
Chain of Custody No:	12869	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-11-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

4,370

6.4

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key NMI-9 Landfarm Cell #1

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #1-3-VZ-3'	Date Reported:	01-11-12
Laboratory Number:	60779	Date Sampled:	01-10-12
Chain of Custody No:	12869	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-11-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	· (mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

12.8

6.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable. Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: Ke

Key NMI-9 Landfarm Cell #1

Analyst

Review

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

envirotech-inc com laboratory@envirotech-inc com

EPA METHOD 418.1 Analytical Laboratory TOTAL PETROLEUM HYDROCARBONS QUALITY ASSURANCE REPORT

Client:

QA/QC

Project #:

N/A

Sample ID:

QA/QC

Date Reported:

01-11-12

Laboratory Number:

01-11-TPH.QA/QC 60763

Date Sampled:

N/A

Sample Matrix:

Freon-113

Date Analyzed:

01-11-12

Preservative:

N/A

Date Extracted:

01-11-12

Condition:

N/A

Analysis Needed:

TPH

Calibration

I-Cal Date 11-16-11 C-Cal Date 01-11-12

I-Cal RF:

1,610

C-Cal RF: % Difference Accept. Range

1,720

6.84%

<-/- 10%

Blank Conc. (mg/Kg)

TPH

Concentration

ND

Detection Limit

6.4

Duplicate Conc. (mg/Kg)

TPH

Sample 462

Duplicate

% Difference Accept. Range

353

23.6%

*/- 30%

Spike Conc. (mg/Kg)

Sample

Spike Added Spike Result % Recovery Accept Range

TPH

462

2,000

2,630

107%

80 - 120%

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

QA/QC for Samples 60763, 60776-60779

Analyst

Chloride

Client: **Key Energy** Project #: 98065-0013 Sample ID: Cell #1- TZ Date Reported: 01-11-12 Lab ID#: 60778 Date Sampled: 01-10-12 Sample Matrix: Soil Date Received: 01-10-11 Preservative: Cool Date Analyzed: 01-11-12 Condition: Intact Chain of Custody: 12869

Parameter

Concentration (mg/Kg)

Total Chloride

100

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key NVII-9 Landfarm Cell #1

Analyst

Review

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suita 115, Durango, CO 81301

envirotech-inc.com laboratory@envirotech-inc.com

TRACE METAL ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #1-3-VZ-3'	Date Reported:	01/12/12
Laboratory Number:	60779	Date Sampled:	01/10/12
Chain of Custody:	12869	Date Received:	01/10/12
Sample Matrix:	Soil	Date Analyzed:	01/11/12
Preservative:	Cool	Date Digested:	01/11/12
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 40 14	0.04	
Arsenic	1.40 🗸	0.01	
Aluminum	1,840 6	0.01	
Barium	54.5	10.0	
Boron	1.11 - 4	0.01	
Cadmium	ND V	0.01	•
Chromium	0.69 🚩	0.01	•
Cobalt	1.14	0.01	•
Copper	11.8 - `	0.01	
Iron	2,020 🗸	0.01	
Lead	2.37 シ	0.01	
Manganese	65.2 V	0.01	•
Molybdenum	0.15 - ⁷ .	0.01	
Mercury	ND K	0.01	
Nickel	13.1 - ?	0.01	•
Selenium	0.04	0.01	•
Silver	1.73	0.01	
Zinc	7.04	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key NMI-9 Landfarm Cell #1

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

5796 US Highway 64, Farmington, NM 87401
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

					Accounty 1400	usussoc i	(C)O(C
Client:		QAVQC	,	Project #:			N/A
Sample ID:		01-11-TM	DAVOC	Date Report	ed:		01/12/12
Laboratory Number:	-	60777		Date Sample	ed:		N/A
Sample Matrix:		Soil		Date Receiv	ed:		N/A
Analysis Requested:		Trace Meta	ils	Date Analyz	ed:		01/11/12
Condition: Blank & Duplicate Conc. (mg/Kg)	instrument Blank (mg/Kg)	N/A Method Blank	Detection Limit	Date Digeste Sample	ed: Uuplicate	% ህጠ.	01/11/12 Acceptance Kange
Arsenic	ИD	ND	0.01	1.58	1.62	2.47%	0% - 30%
Aluminum	ND	ND	0.01	2380	2410	1.26%	0% - 30%
Barium	ND	ND	0.01	83.6	83.5	0.11%	0% - 30%
Boron	ND	ND	0.01	2.03	2.01	1.23%	0% - 30%
Cadmium	ND	ИD	0.01	0.02	0.02	0.00%	0% - 30%
Chromium .	ND	ND	0.01	1.40	1.65	18.3%	0% - 30%
Cobalt	ND	ND	0.01	1.60	1.64	2.25%	0% - 30%
Copper	ND	ND	0.01	17.1	17.0	0.18%	0% - 30%
Iron	ND	ND	0.01	3090	3080	0.32%	0% - 30%
Lead	ND	ND	0.01	2.99	3.03	1.34%	0% - 30%
Manganese	ИD	ИD	0.01	72.4	70.3	2.89%	0% - 30%
Molybdenum	ND -	ND	0.01	80.0	0.08	0.00%	0% - 30%
Mercury	ND	ND	0.01	ND	ND	0.00%	0% - 30%
Nickel	ND	ND	0.01	21.0	20.7	1.38%	0% - 30%
Selenium	ND	ИD	0.01	ND .	ND	0.00%	0% - 30%
Silver	ND	ND	0.01	1.64	1.75	6.33%	0% - 30%
Zinc	ИĎ	ND	0.01	10.2	10.2	0.00%	0% - 30%
Spike Conc. (mg/Kg)		Spike Added	Sample	Spiked Sample	Percent Recovery		Acceptance Kange
Arsenic		2.50	1.58	3.47	85.0%		80% - 120%
Aluminum		2.50	2,380	2,240	94.0%		80% - 120%
Barium		5.00	83.6	83.2	93.9%		80% - 120%
Boron		5.00	2.03	6.15	87.4%		80% - 120%
Cadmium		2.50	0.02	2.02	80.2%		80% - 120%
Chromium		5.00	1.40	5.44	85.1%		80% - 120%
Cobalt	•	2.50	1.60	3.30	80.5%		80% - 120%
Copper	•	5.00	17.1	19.6	88.8%		80% - 120%
tron		2.50	3,090	2,880	93.1%		80% - 120%
Lead		5.00	2.99	6.95	87.0%		80% - 120%
Manganese		2.50	72.4	63.4	84.7%		80% - 120%
Molybdenum		1.00	0.08	0.86	80.1%		80% - 120%
Mercury		1.00	ND	0.93	92.6%		80% - 120%
Nickel		5.00	21.0	24.1	92.5%		80% - 120%
Selenium	•	1.00	ИD	0.83	83.1%		80% - 120%
Silver		1.00	1:64	2.21	83.5%		80% 120%
Zinc		5.00	10.2	13.3	87.6%		80% - 120%

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Studges and Soils.

SW-846, USEPA, December 1996.

Method 6010B. Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 60777, 60779, 60752, 60762.

5796 US Highway 6 A FAITH STORY NAM 87401

Ph (505) 632-08-20-18-5 Ph (970) 259-0615 Ft (500) 362-1879 enviroieth-inctom laboratory@enviroieth-inc.com

CATION / ANION ANALYSIS

Client: Key Energy Project #: 98065-0013 Sample ID: Cell #1-3-VZ-3' Date Reported: 01-12-12 Laboratory Number: 60779 Date Sampled: 01-10-12 Chain of Custody: 12869 Date Received: 01-10-12 Sample Matrix: Soil Extract Date Analyzed: 01-10-12

Preservative: Cool Condition: Intact

	Analytical			
Parameter	Result	Units		40.0
рН	10.0	S.Ü.		
Conductivity @ 25° C	748	umhos/cm	•	
Total Dissolved Solids @ 180C	480	mg/L		·
Total Dissolved Solids (Calc)	56 0	mg/L		
SAR	8.20	ratio		
Total Alkalinity as CaCO3	520	mg/L		
Total Hardness as CaCO3	86.1	mg/L		
Bicarbonate as CaCO3	520	mg/L	8.5	meq/L
Carbonate as CaCO3	< 0.01	mg/L	0.000	meq/L
Hydroxide as CaCO3	< 0.01	mg/L	0.001	meq/L
Nitrate Nitrogen	0.30	mg/L	0.005	meq/L
Nitrite Nitrogen	< 0.01	mg/L	0.000	meq/L
Chloride	10.0	mg/L	. 0	meq/L
Fluoride	0.630	mg/L	0.033	meq/L
Phosphate	3.40	mg/L	0.107	meq/L
Sulfate	25.5	mg/L	0.53	meq/L
Iron	16.8	mg/L	0.602	meq/L
Calcium	14.6	mg/L	1	meq/L
Magnesium	12.1	mg/L	1	meq/L
Potassium	6.38	mg/L	0.2	meq/L
Sodium	175	mg/L	8 .	meq/L
Cations		•	9	meq/L
Anions			9	meq/L
Cation/Anion Difference		•	0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key NMI-9 Landfarm Cell #1

5796 US Highway 64. Farmington, NM 87401

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

Review

Ph (970) 259-0615 Fr (800) 362-1879

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Water Analysis

Client:

Key Energy

Project #:

98065-0013

Sample ID:

Cell #1-3-VZ-3'

Date Reported:

01-12-12

Laboratory Number:

60779

Date Sampled:

Chain of Custody:

01-10-12

Sample Matrix:

Soil Extract

Date Received:

01-10-12 01-12-12

Preservative: Condition:

Cool Intact

Date Analyzed:

12869

Analytical

Parameter

Result

Units

Cyanide (total)

ND

mg/L

Reference:

U.S.E.P.A., Method 335.3 Cyanide, Total.

Comments: Key NMI-9 Landfarm Cell #1

Analyst

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

CHAIN OF CUSTODY RECORD

_									1332		1 11 122									·			
Client:	Weight .	1	Project Name / 1	Location 上別所	APPA CZ	1441						RCRA 8 Metals +1/0 22	沙北	ANAL	YSIS	/ PAF	RAME	TERS					
Client Address:			Sampler Name:						150	TE		N	13	T	7		T						
Client Address:	Canall	Liviline	Le Client No.: ト	7,00	Days (*:			TPH (Method 8015)	BTEX (Method 8021)	826(ls +	T	-									
Client Phone No.:			Client No.:	,E4	Guerra	•			thod	etho	thod	Meta	/nioin/		h H/		3.1)	l H				000	ntacı
505-715-6					-0013			, , , em en	_ Se	3	Me.	00	110		1		41		13	1 .		e (<u>e</u>
Sample No./	Sample		Lab No.		iample	No./Volumo of Containers	Pre	servativ	H	TEX	20	(A)	Cation / Anion (RCI	TCLP with H/P	PAH	TPH (418.1)	CHLORIDE	CK			Sample Cool	Sample Intact
Identification	Date	Time	·····		Matrix Sludge	Containers	Fy.	ra jax		100	>	<u> </u>	0	Œ	-	0						<u>(v)</u>	8/
CELLE 1-TZ	1110112	1:50	1 GO778	Solid Solid	Aqueous	7,7,	-	1		ļ	ļ	ļ. <u>.</u>	ļ									V	V
CELL# 1-72 CAU#1-3-12-3	1110112	22%	60779	Soil Solid	Sludge Aqueous	2-102		X	X	X		X	X				X	X	X			V	
				Soil Solid	Sludge Aqueous								بدا	21/21/								1010	
				Soil Solid	Sludge Aqueous								10 PC V	10/1									
The second secon			·	Soil Solid	Sludge Aqueous							1/1/2											
				Soll Solid	Sludge - Aqueous							(4)											
				Soil Solid	Sludge Aqueous							1. AL											
				Soil Solid	Sludge Aqueous							20,110											
**************************************				Soil Solid	Sludge Aqueous							19,											
magin and a second control of the co				Soil Salid	Sludge Aqueous							CE											
Relinquished by: (Signa		<i>^</i>	Λ.	- 1	Date	Time	F	Receive	ed by:	(Sign	ature))		****			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ate	l	me
Relinquished by: (Signature)	હ્યા ખેતુન	P_{in}	$\int_{V}^{V_{K}}$		11/0/13	3:15A	i	Receive	Par	اسنر	A	(5)	4/2	}~	٠	under Hearn				i/	0/12	3:	Day
Relinquished by: (Signa	ature)		J				F	Receive	ed by:	(Sign	ature)		DO	,							7		,
Relinquished by: (Signa	ature)			***************************************			F	Receive	ed by:	(Sign	ature))			·········								
205H		Briggeresser gagengeneraren errere		1	1						n_			·	*********		·····	······································	***************************************	<u> </u>	······	<u> </u>	
たいつ可				- ((rc															

EPA METHOD 8015 Modified Nonhalogenated Volatile Total Petroleum Hydrocarbons

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2-TZ	Date Reported:	01-11-12
Laboratory Number:	60776	Date Sampled:	01-10-12
Chain of Custody No:	12868	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-10-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, December 1996.

Comments:

Key NMI-9 Landfarm Cell #2

Analyst

Review

.

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 F1 (800) 362-1879

EPA METHOD 8015 Modified Nonhalogenated Volatile **Total Petroleum Hydrocarbons**

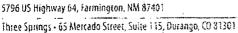
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2S-5-VZ-3'	Date Reported:	01-11-12
Laboratory Number:	60777	Date Sampled:	01-10-12
Chain of Custody No:	12868	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-10-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Requested:	8015 TPH

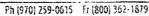
Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid


Waste, SW-846, USEPA, December 1996.


Comments:

Key NMI-9 Landfarm Cell #2

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	•	Project #:		N/A
Sample ID:	01-11-12	QA/QC	Date Reported:		01-12-12
Laboratory Number:	60762		Date Sampled:		N/A
Sample Matrix:	Methylene	: Chloride	Date Received:		N/A
Preservative:	N/A	•	Date Analyzed:	•	01-11-12
Condition:	N/A		Analysis Reques	sted:	TPH
	I-Cal			%	
	Date	I-Cal RF:	C-Cal RF:	Difference	Accept. Range
Gasoline Range C5 - C10	40919	9.996E÷0	1.000E+03	0.04%	0 - 15%
Diesel Range C10 - C28	40919	9.996E+0	2 1.000E+03	0.04%	0 - 15%
Blank Conc. (mg/L - mg/Kg	3)	Concentration	D	etection Limit	· ·
Gasoline Range C5 - C10	- •	0.8		0.2	
Diesel Range C10 - C28		0.9	· .	0.1	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Range	
Gasoline Range C5 - C10	ND	ND	0.00%	0 - 30%	
Diesel Range C10 - C28	ИD	ND	0.00%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	/ Accept. Range
Gasoline Range C5 - C10	ND	250	283	113%	75 - 125%
Diesel Range C10 - C28	ND	250	233	93.3%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid

Waste,

SW-846, USEPA, December 1996.

Comments:

5796 US Highway 64, Farmington, NM 87401

QA/QC for Samples 60762-60763 and 60776-60780

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy		Project #:		98065-0013
Sample ID:	Cell #2S-5-VZ-3*		Date Reported:		01-12-12
Laboratory Number:	60777		Date Sampled:		01-10-12
Chain of Custody:	12868		Date Received:		01-10-12
Sample Matrix:	Soil		Date Analyzed:		01-11-12 .
Preservative:	Cool		Date Extracted:		01-10-12
Condition:	Intact		Analysis Requested:		BTEX
			Dilution:		10
				Det.	- The state of the
		Concentration		Limit	
Parameter		(ug/Kg)		(ug/Kg)	
Benzene		ND		10.0	
Toluene		ND		10.0	
Ethylbenzene		ND	ı	10.0	
p,m-Xylene		ND	•	10.0	
o-Xylene		ИО		10.0	,
Total BTEX		ND	•		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	94.7 %
	1,4-difluorobenzene	102 %
•	Bromochlorobenzene	96.1 %

References:

Method 5030B. Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996,

Comments:

Key NMI-9 Landfarm Cell #2

Analyst

5796 US Highway 64, Farmington, NM 87401

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A		Project #:	N	/A
Sample ID:	0111BBLK QA/QC		Date Reported:	0	1-11-12
Laboratory Number:	60780		Date Sampled:	N	/A :
Sample Matrix:	Scil	•	Date Received:	1	l/A
Preservative:	N/A		Date Analyzed:	0	1-11-12
Condition:	N/A		Analysis:	8	TEX
	•		Dilution:	10	
Calibration and	I-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.
Detection Limits (ug/L)		Accept. Rang	je 0 - 15%	Conc	Limit
Benzene	1.5963E+007	1.5995E+007	0.2%	ND	1.0
Toluene	1.6492E+007	1.6525E+007	0.2%	ND	1.0
Ethylbenzene	1.4751E+007	1.4780E+007	0.2%	ND	1.0
p,m-Xylene	3.8120E+007	3.8196E+007	0.2%	ND	1.0
o-Xylene	1.3792E+007	1.3819E+007	0.2%	ND	1.0
Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect. Limit
Benzene	182	187	2.8%	0 - 30%	10.0
Toluene	3,400	3,460	1.8%	0 - 30%	10.0
Ethylbenzene	709	719	1.5%	0 - 30%	10.0
p,m-Xylene	5,770	5,760	0.2%	0 - 30%	10.0
o-Xylene	1,710	1,760	2.9%	0 - 30%	10.0
,					
Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	Accept Range
Benzene	182	500	708	104%	39 - 150
Toluene	. 3,400	500	3,900	100%	46 - 148
Ethylbenzene	709	500	1,330	110%	32 - 160
p,m-Xylene	5,770	1000	6,570		46 - 148
o-Xylene	1,710	500	2,300		46 - 148
o Ayidha	1,710		۵,300	1U-7/0	40 - 140

ND - Parameter not detected at the stated detection limit.

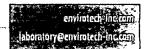
Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA

December 1998.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using


Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 60763, 60777, 60779 and 60780

Analyst

Ph (505) 632-0615 Fx (505) 632-1865

TRACE METAL ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2S-5-VZ-3'	Date Reported:	01/12/12
Laboratory Number:	60777	Date Sampled:	01/10/12
Chain of Custody:	12868	Date Received:	01/10/12
Sample Matrix:	Soil	Date Analyzed:	01/11/12
Preservative:	Cool .	Date Digested:	01/11/12
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	,
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	1.58 🗡	0.01	•
Aluminum	2,380 >	0.01	
Barium	83.6 🐇	0.01	
Boron	2.03 -7	0.01	
Cadmium	0.020	0.01	
Chromium	1.40 🐣	0.01	
Cobalt	1.60 💆	0.01	
Copper	17.1 /	0.01	
Iron	3,090 🗡	0.01	•
Lead	2.99 -	0.01	
Manganese	72.4 V	0.01	
Molybdenum	0.08 - ?	0.01	
Mercury	ND /	0.01	
Nickel	21.0 - ?	0.01	
Selenium	ND /	0.01	•
Silver	1.64	0.01	
Zinc	10.2	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key NMI-9 Landfarm Cell #2

Analyst

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

Client:		QA/QC		Project #:			N/A				
Sample ID:		01-11-TM (DA/OC	Date Report	od:	•)1/12/12				
Laboratory Number:		60777	2/400	Date Sample		NIA					
Sample Matrix:		Soil		Date Receiv		N/A					
Analysis Requested:		Trace Meta	ite	Date Analyz		01/11/12					
Condition: Blank & Duplicate Conc. (mg/Kg)	instrument Blank (mg/Kg)	N/A Method	Uetection Limit	Date Digest Sample)1/11/12 Acceptance , Kange				
Arsenic	ND	ND	0.01	1.58	1.62	2.47%	0% - 30%				
Aluminum	ND	ND	0.01	2380	2410	1.26%	0% - 30%				
Barium	ND	ND -	0.01	83.6	83.5	0.11%	0% - 30%				
Boron	ND	ND .	0.01	2.03	2.01	1.23%	0% - 30%				
Cadmium	ND	ND	0.01	0.02	0.02	0.00%	0% - 30%				
Chromium	ND	ND	0.01	1.40	1.65	18.3%	0% - 30%				
Cobalt	ND	ND	0.01	1.60	1.64	2.25%	0% - 30%				
Copper	ND .	ND	0.01	17.1	17.0		0% - 30%				
Iron	מא מא	ND	0.01			0.18%					
Lead				3090	3080	0.32%	0% - 30%				
· · · · · · · · · · · · · · · · · · ·	ND ND	ND ND	0.01	2.99 72.4	3.03	1.34%	0% - 30%				
Manganese	•	ND	0.01		70.3	2.69%	0% - 30%				
Molybdenum	ND	ND	0.01	80.0	0.08	0.00%	0% - 30%				
Mercury	ND .	ND	0.01	ND	ND	0.00%	0% - 30%				
Nickel	ND	ND	0.01	21.0	20.7	1.38%	0% - 30%				
Selenium	ND	ND	0.01	ND	ND	0.00%	0% - 30%				
Silver	ND	ND	0.01	1.64	1.75	6.33%	0% - 30%				
Zinc Spike Conc. (mg/Kg)	ND	ND Spike Added	0.01 Sample	10.2 Spiked Sample	10.2 Percent Recovery	0.00%	0% - 30% Acceptance Kange				
Arsenic		2.50	1.58	3.47	85.0%		80% - 120%				
Aluminum		2.50	2,380	2,240	94.0%	•	80% - 120%				
Barium		5.00	83.6	83.2	93.9%		80% - 120%				
Boron		5.00	2.03	6.15	87.4%		80% - 120%				
Cadmium		2.50	0.02	2.02	80.2%		80% - 120%				
Chromium		5.00	1.40	5.44	85.1%		80% - 120%				
Cobalt		2.50	1.60	3.30	80.5%		80% - 120%				
Copper		5.00	17.1	19.6	88.8%		80% - 120%				
Iron		2.50	3,090	2,880	93.1%		80% - 120%				
Lead		5.00	2.99	6.95	87.0%		80% - 120%				
Manganese		2.50	72.4	63.4	84.7%		80% - 120%				
Molybdenum		1.00	0.08	0.86	80.1%		80% - 120%				
Mercury		1.00	ND -	0.93	92.6%		80% - 120%				
Nickel		5.00	21.0	24.1	92.5%		80% - 120%				
Selenium	,	1.00	ND	0.83	83.1%		80% - 120%				
Silver		1.00	1.64	2.21	83.5%		80% - 120%				
Zinc		5.00	10.2	13.3	87.6%		80% - 120%				

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 60777, 60779, 60752, 60762.

5796 US Highway 6Artelystgton, NM 87401

Ph (505) 632-0466/e67 (505) 632-1865

Intact

CATION / ANION ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2S-5-VZ-3'	Date Reported:	01-12-12
Laboratory Number:	60777	Date Sampled:	01-10-12
Chain of Custody:	12868	Date Received:	01-10-12
Sample Matrix: 🔧	Soil Extract	Date Analyzed:	01-10-12
Preservative:	Cool		

	Analytical			
Parameter	Result	Units		
Hq	8.88	S.U.	· · ·	
Conductivity @ 25° C	764	umhos/cm		
Total Dissolved Solids @ 180C	1,000	mg/L	,	
Total Dissolved Solids (Calc)	680	mg/L		
SAR	10.2	ratio		
Total Alkalinity as CaCO3	80.0	mg/L		
Total Hardness as CaCO3	85.0	mg/L		
Bicarbonate as CaCO3	80.0	mg/L	1.3	meq/L
Carbonate as CaCO3	< 0.01	mg/L	0.000	meq/L
Hydroxide as CaCO3	< 0.01	mg/L	0.001	meq/L
Nitrate Nitrogen	0.200	mg/L	0.003	meq/L
Nitrite Nitrogen	0.011	mg/L	0.000	meq/L
Chloride	240	mg/L	7	meq/L
Fluoride	1.19	mg/L	0.063	meq/L
Phosphate	0.100	mg/L	0.003	meq/L
Sulfate	145	mg/L	3.02	meq/L
Iron	0.578	mg/L	0.021	meq/L
Calcium	13.7	mg/L	1	meq/L
Magnesium	12.4	mg/L	1	meq/L
Potassium	2.38 '	mg/L·	0.1	meq/L
Sodium	216	mg/L	9	meq/L
Cations	•		11	meq/L
Anions			. 11	meq/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key NI/II-9 Landfarm Cell #2

Analyst

Condition:

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

5796 US Highway 64, Farmington, NM 87401

Ph (970) 259-0615 Fr (800) 362-1879

Ph (505) 632-0615 Fx (505) 632-1865

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2- TZ	Date Reported:	01-10-12
Laboratory Number:	60776	Date Sampled:	01-10-12
Chain of Custody No:	12868	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-11-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Needed:	TPH-418.1

	,	Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

2,570

64.2

ND = Parameter not detected at the stated detection limit.

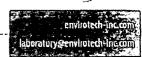
References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key NMI-9 Landfarm Cell #2


Analyst

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

Three Springs • 65 Mercado Street, Suite 175, Durango, CO 81301

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

- Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell #2S-5-VZ-3'	Date Reported:	01-10-12
Laboratory Number:	60777	Date Sampled:	01-10-12
Chain of Custody No:	12868	Date Received:	01-10-12
Sample Matrix:	Soil	Date Extracted:	01-11-12
Preservative:	Cool	Date Analyzed:	01-11-12
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

12.8

6.4

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key NMI-9 Landfarm Cell #2

Analyst

Review

envirotech-inicicom

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS QUALITY ASSURANCE REPORT

Client:

QA/QC

Project #:

N/A

Sample ID:

QA/QC

Date Reported:

01-11-12

Laboratory Number:

01-11-TPH.QA/QC 60763

Date Sampled:

N/A

Sample Matrix:

Freon-113

Date Analyzed:

01-11-12

Preservative:

N/A

Date Extracted:

01-11-12

Condition:

N/A

Analysis Needed:

TPH

Calibration

I-Cal Date

11-16-11

C-Cal Date 01-11-12 I-Cal RF:

1,610

C-Cal RF: % Difference Accept. Range

1.720

6.84%

÷/- 10%

Blank Conc. (mg/Kg) TPH

Concentration ND

Detection Limit

6.4

Duplicate Conc. (mg/Kg)

TPH

Sample

Duplicate

% Difference Accept. Range

462

353

23.6%

***/- 30%**

Spike Conc. (mg/Kg)

TPH

Sample

Spike Added Spike Result % Recovery Accept Range

462

2,000

2,630

107%

80 - 120%

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

QA/QC for Samples 60763, 60776-60779

Analyst

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879

Chloride

Client: Key Energy Project #: 98065-0013 Sample ID: Cell #2- TZ Date Reported: 01-11-12 Lab ID#: 60776 Date Sampled: 01-10-12 Sample Matrix: Soil Date Received: 01-10-11 Preservative: Cool Date Analyzed: 01-11-12

Condition: Intact Chain of Custody: 12868

Parameter

Concentration (mg/Kg)

Total Chloride

430

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key NMI-9 Landfarm Cell #2

Analyst

Review

Ph (505) 632-0615 Fx (505) 632-1865

Water Analysis

Client:

Key Energy

Project #:

98065-0013

Sample ID:

Cell #2S-5-VZ-3'

Date Reported:

01-12-12

Laboratory Number:

60777

Date Sampled:

01-10-12

Sample Matrix:

Soil Extract

Date Received:

01-10-12

Preservative:

Cool

Date Analyzed:

01-12-12

Condition:

Intact

Chain of Custody:

12868

Analytical

Parameter Result

Units

Cyanide (total)

0.001

mg/L

Reference:

U.S.E.P.A., Method 335.3 Cyanide, Total.

Comments: Key NMI-9 Landfarm Cell #2

Analyst

5796 US Highway 64, Farmington, NM 87401

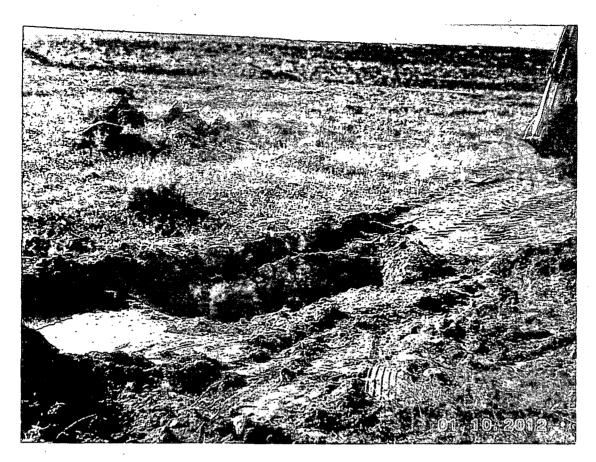
Ph (505) 632-0615 Fx (505) 632-18651

Ph (970) 259-0615 fr (800) 362-1879

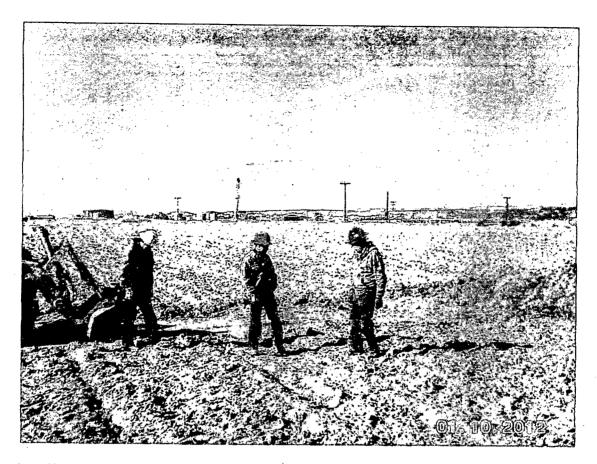
envijotech;inc.com laboratory⊜envirotech;inc.com

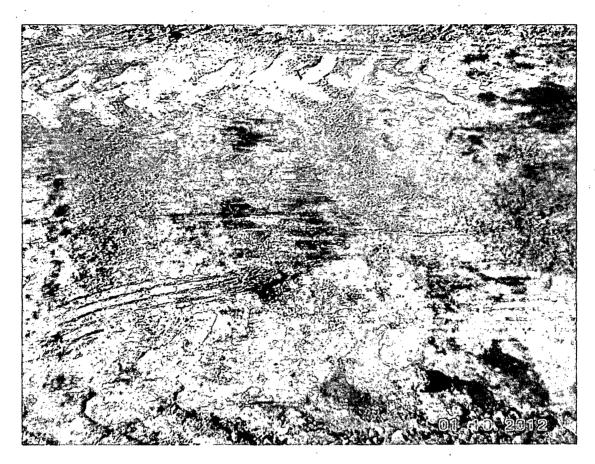
Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

CHAIN OF CUSTOUY RECORD


Client:	ाष्ट्रभे <i>ष</i> ्		Project Name / 1	Location /-/A/M	THEN CE	42	***********					N	Ũ,	ANAL	YSIS	/ PAR	AME	TERS			~		
Client Aricheces			Sampler Name:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marian Company			1:0	E	Ta	1-3	11/1]	T	T	[T					
Wayne price 7	Quan	hhaith	& Lower	N_{μ}	an Price	No./Volume of Containers			3015	1 802	8260	RCRA 8 Metals 7-2	Cation / Anion - Gray				1						
Client Phone No.:		-	Client No.:	F64	ENSIN				g	thoc	bot.	etal	ligh	1	TOLP with H/P		-	Ш				ō	act
505 -715 -	3809		7	206	Enemy 5 - 00 13	i 7			Met	Me	Met	100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		with		TPH (418.1)	CHLORIDE	Cil		1	Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	9	Sample	No./Volume	Pres	ervativo	J. H	台	00	SHA CHA	ation	RCI	금	PAH	H.	19	Ü			ldmi	ldui
Identification	Date	Time			Matrix	Containers	470	HOI TOC	F	'n	>	ř	Ö	ŭ	F	2	E	0	ļ		•	ŝ	8
CELL 42- TZ	Helis-	2:10	A.60776	(Solf Solid	Aqueous			X	X						<u> </u>		X	X				1/	V
CAL#25-5-12-3	i lie 112	1:30	60777	Solid	Sludge Aqueous	2-402		X	X	X		X	X	****			X	X	X			V	V
				Solid Solid	Sludge Aqueous								ىد	21.121									
·				Soil Solid	Sludge Aqueous			<u> </u>				8,7	1.67	15 17									
				Soil Solid	Sludge Aqueous							27.75					•				-		
				Soil Solid	Sludge Aqueous							7.											
				Soil Solid	Sludge Aqueous	***************************************						加雪	,							·			
# ************************************		AND THE PERSON NAMED IN COLUMN 1		Soil Solid	Sludge Aqueous							201		··						pa			
	***************************************			Soil Solid	Sludge Aqueous							16								***************************************			
.di:-481************************************	•			Soil Solid	Sludge Aqueous	***************************************						(77)			******								
Relinquished by: (Signa	Ll iture)			1	Date	Time	R	eceive	d by:	l (Signa	ature)				1	1		l		Da	ile	Tir	ne
Relinquished by: (Signa	Wan	m f	2 Page	······	1/10/12	3:15A	1	A	بيثك	NA		17	m	 	***				e de l'addonna de la conse	1/10	/12	3 (2 C:17
Relinquished by: (Signa	iture)		<i>f</i>				Re	eceive	d by:	(Signa	ature)	y Q									,		
Relinquished by: (Signa	iture)	and the second s	and the second s	,			Po	ceive	d by:	(Signa	ature)	aar ar ad January ay y	er et e Pertugues	***************************************		***************************************		**************************************				***************************************	
1205H					y 64 • Farmine		aly	ical	Lat	ora	iory	′		rhi, ggicol con escorra		·							enement der de des des enements des la company de la compa

JAN 10 2012. PAZE: 4th OTA SAMPLING for 2011 MFY LAURGARY. BIMP: CALM NM1-9 TEMP: 40-50 = SAY, MUSTER CLEME HITTY LO SAKEL MERENNY: WARRE SHIRES JIE. MA AREC, IN PROPERL GARY HISTUS LAGUA Mass PHOTOS - YES TZ - DITCPITE LOCATIONS ___ X Q. 041 - PITTIN PISCECUMO CAS- SEE BELOW COC CROSS RFG! TRACE 160,119 ENVIR TEXT - 12869 CELL# 25-5-12-TAN10, 2012 N3645.5.13 W108 04.285 JAN 19, 2012 NW · N36 45.484 W 108.04.30 CF4 # 1-3-11-LAND FIRE PER ME LATIONS LOCATIONS (ACTIVE PAPT - INSIDE BERMS) CELLATE AZCEUTIO N 36 - 45,535 A 108 4.321 " Se 71 & E 67 (500) " CELL HI-CENTER N36-45, 494 2 108 04,270 1. 36-45,507 h 108- 4,366 " SOUTHAN ALL SAN'S 1 1- +5.517 w 108-4.318 SW-N36 45.483 W108 04.308 " SCOTO EAST S. N 36. 45.517 6 108 - 4.273 " FASI F SE-N36 45.781 20108 04.219 N 36- 45.519 4 15. 4.269 " KORTHISTS IF . 1 36 - 45,557 à 21 . Q. Q. C. " NORTH MINNER (RA) - 136-45,557 2 28-4.823 NE - N36 45,509 21/108 04.276 "Not " AFSI La -N36- 45,500 and 4,870 NW- N36-45,505' W/08-04,326 W/57(4)-N36-45,592 W108-4,393' PUNI HOUSE 14 N36-45.491 6125- 2 793


Key Energy NM1-9 Landfarm 2011 4th QTR Sampling Event Jan 10, 2012 Photos Documentation


Tailgate Safety Meeting

Cell #1 SW corner sample labeled Cell#1-3-VZ-3'. Background shows dyke of unlined pond.

Landfarm Cell #2 looking west. Sample location for vadoze zone labeled 2S-5-3'. Noted some stained soil found about 12-14" below current surface. Material was removed and spread out in landfarm for remediation.

Stained soil as mentioned above.

Appendix B

- Sample PlanOCD Approval

From: wayne price <wayneprice77@earthlink.net>

Bana January 2, 2012 4:33:42 PM MST

To. brad.a.iones@state.nm.us. Glenn.VonGonten@state.nm.us

C. EMNRD Bailey Jami <Jami.bailey@state.nm.us>, daniel.sanchez@state.nm.us; Jim Davis <jdaguamoss@hotmail.com>, Dan

Gibson <dgibson@keyenergy.com>

We plan on sampling on Tuesday Jan 10, 2012.

On Dec 30, 2011, at 2:58 PM, wayne price wrote:

Dear Brad and Glenn:

Key Energy has requested I meet with the new Operator (Agua Moss) and perform the fourth quarter sampling event. I want to make sure we are meeting the OCD's minimum standards for sampling the existing landlarm.

Pursuant to the relative new Part 36 rule, the current existing permit NM1-9, and OCD's June 30, 2011 clarification letter to all operators explaining the agency's position on the required sampling. I have put together a recommended 4 th quarter sampling plan that includes the following:

Treatment Zone Monitoring for each cell (i.e. Cell #1 and #2)

Cell #1-Collections composite soil sample from 4 discrete samples collected in the top 6 inches of the treatment zone. The samples shall be analyzed for TPH (8015 M), TPH 418.1, and Chlorides (300.1).

Cell #2- Same as Cell #1.

Vadose Zone Monitoring for each cell (i.e. Cell #1 and #2.)

Cell #1- Collect one(1) random soil sample from 2-3 feet below the bottom of the native ground surface. The samples shall be analyzed for BTEX (8021), TPH (8015 M), TPH 418 1, Chlorides (300.1), major cations/anions (i.e. General Chemistry) and WQCC metals. The metals will include, Arsenic, Banum, Cadmium, Cyanide, Fluoride, Lead, Total Mercury, Selenium, Silver, Copper, Iron, Manganese, Zinc, Aluminum, Boron, Cobalt, Molybdenum, and Nickel. Uranium will not be ran unless required by OCD.

Cell #2: Same as Cell #1.

Random will be determined by "Out of Hat" drawing. Cell #1 (one acre) will be divided into 4 gnds, Cell #2 (4 acres) will be divided into 16 gnds. All sampling will be conducted pursuant to generally acceptable. EPA procedures, methods and pursuant to OCD rules and regulations.

The results will be submitted to OCD and Agua Moss within one month after analysis is complete. Since Key Energy is responsible for the fourth quarter analysis, a release response notification porsuant to 19.15.36.15.E.5 will be made by reporting (flagging) if any constituents of (BTEX, TPH, CL) exceeds the POL or background.

If applicable, if a release has been detected pursuant to the rule. Key Energy respectfully requests, a detay in requiring an immediately collection and analyzing a minimum of four randomly selected, independent samples for TPH, BTEX, Chlorides, and the constituents listed in Subsection A and B of 20.6.2.3103 (WQCC), until Agua Moss has an opportunity to meet with OCD to determine a path forward for their facility. Most likely Agua Moss will be the operator of record by the time the analytical report is submitted, and thus they will most likely want the opportunity to discuss this issue with OCD.

Therefore, Key Energy has two request for approval.

- 1. Is the above described sampling program approved, as is, or with conditions; and
- 2 Key is requesting a delay from the part of the release rule i.e. 19.15,36.15.E.5. (if applicable) that requires immediate action if a release has been detected and a possible action plan submittal.

We know you are very busy this time of year, but we feel we need OCD in the loop from the "get go" to help Agua Moss stan off on the right foot with the agency. We are sampling at the end of next week, so an expedited response to our request will be most appreciated! A simple yes or no, or with conditions will suffice due to the limited time you have to evaluate. Also, any disclaimer you feel necessary is in order.

Have a Happy New Year!

"VonGonten, Glenn, EMNRD" <Glenn VonGonten@state.nm.us>
RE: NM1-9 Landfarm Sampling
January 9, 2012 2:25:39 PM MST
wayne price <wayneprice77@earthlink.net>

"Sanchez, Daniel J., EMNRD" <daniel.sanchez@state.nm.us>, "Gerholt, Gabrielle, EMNRD" <Gabrielle.Gerholt@state.nm.us>

Wayne,

Your proposed sampling protocols, schedule, and analytical methods are hereby approved, including the metals in the vadose zone. Please note the permit requirement to backfill boreholes, sample points, etc.

OCD cannot approve Key's request to delay complying with the release requirements of Part 36 if Key determines that a release has occurred. Key and the new operators may approach OCD with an alternate proposal when the results are obtained.

Please contact me if you have any questions.

Glenn

From: wayne price [mailto:wayneprice77@earthlink.net]

Sent: Friday, December 30, 2011 2:59 PM

To: Jones, Brad A., EMNRD; VonGonten, Glenn, EMNRD; Bailey, Jami, EMNRD; Sanchez, Daniel J., EMNRD

Cc: <u>idaquamoss@hotmail.com</u>; Dan Gibson Subject: NM1-9 Landfarm Sampling

Dear Brad and Glenn:

Key Energy has requested I meet with the new Operator (Agua Moss) and perform the fourth quarter sampling event. I want to make sure we are meeting the OCD's minimum standards for sampling the existing landfarm.

Pursuant to the relative new Part 36 rule, the current existing permit NM1-

9, and OCD's June 30, 2011 clarification letter to all operators explaining the agency's position on the required sampling. I have put together a recommended 4 th quarter sampling plan that includes the following:

Treatment Zone Monitoring for each cell (i.e. Cell #1 and #2).

Cell #1-Collect one composite soil sample from 4 discrete samples collected in the top 6 inches of the treatment zone. The samples shall be analyzed for TPH (8015 M), TPH 418.1, and Chlorides (300.1). Cell #2- Same as Cell #1.

Vadose Zone Monitoring for each cell (i.e. Cell #1 and #2.)

Cell #1- Collect one(1) random soil sample from 2-3 feet below the bottom of the native ground surface. The samples shall be analyzed for BTEX (8021), TPH (8015 M), TPH 418.1, Chlorides (300.1), major cations/anions (i.e. General Chemistry) and WQCC metals. The metals will include, Arsenic, Barium, Cadmium, Cyanide, Fluoride, Lead, Total Mercury, Selenium, Silver, Copper, Iron, Manganese, Zinc, Aluminum, Boron, Cobalt, Molybdenum, and Nickel. Uranium will not be ran unless required by OCD.

Cell #2: Same as Cell #1.

Random will be determined by "Out of Hat" drawing. Cell #1 (one acre) will be divided into 4 grids, Cell #2 (4 acres) will be divided into 16 grids. All sampling will be conducted pursuant to generally acceptable EPA procedures, methods and pursuant to OCD rules and regulations.

The results will be submitted to OCD and Agua Moss within one month after analysis is complete. Since Key Energy is responsible for the fourth quarter analysis, a release response notification pursuant to 19.15.36.15.E.5

will be made by reporting (flagging) if any constituents of (BTEX, TPH, CL) exceeds the PQL or background.

If applicable, if a release has been detected pursuant to the rule, Key Energy respectfully requests a delay in requiring an immediately collection and analyzing a minimum of four randomly selected, independent samples for TPH, BTEX, Chlorides, and the constituents listed in Subsection A and B of 20.6.2.3103 (WQCC), until Agua Moss has an opportunity to meet with OCD to determine a path forward for their facility. Most likely Agua Moss will be the operator of record by the time the analytical report is submitted, and thus they will most likely want the opportunity to discuss this issue with OCD.

Therefore, Key Energy has two request for approval.

- 1. Is the above described sampling program approved, as is, or with conditions; and
- 2. Key is requesting a delay from the part of the release rule i.e. 19.15.36.15.E.5, (if applicable) that requires immediate action if a release has been detected and a possible action plan submittal.

We know you are very busy this time of year, but we feel we need OCD in the loop from the "get go" to help Agua Moss start off on the right foot with the agency. We are sampling at the end of next week, so an expedited response to our request will be most appreciated! A simple yes or no, or with conditions will suffice due to the limited time you have to evaluate. Also, any disclaimer you feel necessary is in order.

Have a Happy New Year!

Jones, Brad A., EMNRD

From:

wayne price [wayneprice77@earthlink.net]

Sent:

Friday, April 01, 2011 8:49 AM

To:

Jones, Brad A., EMNRD

Cc:

Dan Gibson

Subject:

Key Farmington Landfarm NM-9

Attachments:

2010 4th QTR Landfarm Results NM-9 copy.pdf; 2010 4th QTR sample points copy.pdf

Good Morning Brad,

Please find attached the 4th quarter sampling results and a sample point plot plan showing where the samples were taken. The samples were collected pursuant to the action and reponse plan submitted to the OCD in October of 2010.

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-1-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57321	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Vou Energy	Decided #1	00085 0012
Cilent.	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-3-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57322	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-6-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57323	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project#:	98065-0013
Sample ID:	Cell-2D-2-VZ-5'	Date Reported:	02-26-11
Laboratory Number:	57324	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	NĐ	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-TZ	Date Reported:	02-26-11
Laboratory Number:	57325	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	5.8	0.2
Diesel Range (C10 - C28)	11.4	0.1
Total Petroleum Hydrocarbons	17.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-TZ	Date Reported:	02-26-11
Laboratory Number:	57326	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	5.9	0.2
Diesel Range (C10 - C28)	16.5	0.1
Total Petroleum Hydrocarbons	22.4	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-TZ	Date Reported:	02-26-11
Laboratory Number:	57327	Date Sampled:	02-24-11
Chain of Custody No:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	4.3	0.2
Diesel Range (C10 - C28)	6.8	0.1
Total Petroleum Hydrocarbons	11.1	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-TZ	Date Reported:	02-26-11
Laboratory Number:	57328	Date Sampled:	02-24-11
Chain of Custody No:	.11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	02-25-11 QA/QC	Date Reported:	02-25-11
Laboratory Number:	57315	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	· N/A
Preservative:	N/A	Date Analyzed:	02-25-11
Condition:	N/A	Analysis Requested:	TPH

The same of the sa	I-Cal Date	l-Cal RF:	C-Cal RF	% Difference	Accept Range
Gasoline Range C5 - C10	02-25-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	02-25-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L - mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1

Duplicate Conc. (mg/Kg)	Sample	/ Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	254	102%	75 - 125%
Diesel Range C10 - C28	ND	250	255	102%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 57315-57328, 57291-57293

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-1-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57321	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

	Dilution:	10
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	22.2	1.2
o-Xylene	ND	0.9
Total BTEX	22.2	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.2 %
•	1,4-difluorobenzene	93.2 %
	Bromochlorobenzene	90.5 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

			•
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-3-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57322	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
·		Dilution:	10

P			
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	•
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total RTFX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	106 %
	1,4-difluorobenzene	91.5 %
	Bromochlorobenzene	98.9 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-6-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57323	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	1.5	1.0	
p,m-Xylene	25.0	1.2	
o-Xylene	2.1	0.9	

Total BTEX 28.6

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	113 %
·	1,4-difluorobenzene	108 %
	Bromochlorobenzene	104 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-2-VZ-5'	Date Reported:	02-25-11
Laboratory Number:	57324	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		, •	
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
D	ND	• •	
Benzene Toluene	ND ND	0.9 1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	103 %
	1,4-difluorobenzene	87.8 %
	Bromochlorobenzene	101 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-TZ	Date Reported:	02-25-11
Laboratory Number:	57325	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	.02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
_			
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND ND	1.2	
o-Xylene	ND	0.9	

Total BTEX

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	105 %
	1,4-difluorobenzene	86.4 %
	Bromochlorobenzene	97.2 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

ND

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-TZ	Date Reported:	02-25-11
Laboratory Number:	57326	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

	Dilution:	10	
Parameter	Concentration (ug/Kg)	Det. Llmit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	95.4 %
	1,4-difluorobenzene	93.7 %
	Bromochlorobenzene	95.9 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Cllent:	N/A	F	Project#:	!	N/A
Sample ID:	0225BBLK QA/Q0		Date Reported:	() 2-25-1 1
Laboratory Number:	57315	[Date Sampled:	1	N/A
Sample Matrix:	Soil	(Date Received:	Į.	N/A
Preservative:	N/A	[Date Analyzed:	(02-25-11
Condition:	N/A	ı	Analysis:	I	BTEX
			Dilution:	1	0
The second control of	I-Cal RF	C-Cal RF	N WDiff:	Blank	Detect
Detection Limits (ug/L)		C-Cal RF	%Diff* 60 - 15%	Blank Conc	Detect. J Limit
Detection Limits (ug/L)	Control of the second of the s	C-Cal RF	N WDiff:	Blank	Detect
Detection Limits (ug/L) Benzene Toluene	1.4101E+005	C-Cal RF Accept: Rang 1.4129E+005	%Diff: è 0 - 15% 0.2%	Blank Conc ND	Detect Limit 0.1
Calibration and Detection Limits (ug/L) Benzene Toluene Ethylbenzene p,m-Xylene	1.4101E+005 1.4303E+005	C-Cal RF Accept: Rang 1.4129E+005 1.4332E+005	%Diff: e 0 - 15% 0.2% 0.2%	Blank Conc ND ND	Detect Limit 0.1 0.1

Duplicate Conc. (ug/Kg)	Sample Du	iplicate	%Diff:	Accept Range	Detect Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ИD	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	ount Spiked Spi	ked Sample //	Recovery	Accept Range
Benzene	ND	500	423	84.6%	39 - 150
Toluene	ND	500	525	105%	46 - 148
Ethylbenzene	ND	500	439	87.8%	32 - 160
p,m-Xylene	ND	1000	1,020	102%	46 - 148
o-Xylene	ND	500	433	86.6%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

 ${\tt Method}~5030B, {\tt Purge-and-Trap, Test}~{\tt Methods}~{\tt for}~{\tt Evaluating}~{\tt Solid}~{\tt Waste}, {\tt SW-846}, {\tt USEPA},$

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photolonization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 57315, 57321-57326, 57291-57293

Re

Client:	Key Energy	Project #:	98065-0013
Sample ID:	CELL-2C-TZ	Date Reported:	02-25-11
Laboratory Number:	57327	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
	·	Dilution:	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND .	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.3 %
	1,4-difluorobenzene	108 %
	Bromochlorobenzene	89.1 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	CELL-2D-TZ	Date Reported:	02-25-11
Laboratory Number:	57328	Date Sampled:	02-24-11
Chain of Custody:	11227	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	ND ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total RTFY	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	107 %
	1,4-difluorobenzene	114 %
•	Bromochlorobenzene	105 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	N/A]	Project#:		N/A	
Sample ID:	0225BBLK QA/Q0	3	Date Reported:		02-25-11	
Laboratory Number:	57317		Date Sampled:		N/A	
Sample Matrix:	Soil		Date Received:		N/A	
Preservative:	N/A		Date Analyzed:		02-25-11	
Condition:	N/A		Analysis:		BTEX	
	•					
Calibration and	LCal RF		Dilution: %Diff		10 Detect	100 C
Calibration, and Detection Limits (ug/L)	√ LCal RF:	C-Cal RF Accept: Rang	%Diff.	Blank Conc	10 Detect Limit	
"我是我们的一个人,我们就是一个人的,我们还是对什么。""你是一个人的,我们就是一个人的。"	4.2789E+006	C-Cal RF:	%Diff.	Blank	Detect	
Detection Limits (ug/L)		C-Cal RF: Accept: Rang	%Diff je 0 - 15%	Blank Conc	Detect. Limit	
Detection Limits (ug/L) Benzene	4.2789E+006	C-Cal RF: Accept: Rang 4.2875E+006	%Diff i <u>e 0 = 15%</u> 0.2%	Blank Conc ND	Detect. Limit 0.1	
Detection Limits (ug/L) Benzene Toluene	4.2789E+006 1.2882E+006	Accept: Rang 4.2875E+006 1.2908E+006	0.2% 0.2%	Blank Conc ND ND	Detect. Limit 0.1 0.1	

Duplicate Conc. (ug/Kg)	Sample	uplicate	%Diff	Accept Range	Detect. Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	161	168	4.3%	0 - 30%	1.0
Ethylbenzene	14.9	14.4	3.4%	0 - 30%	1.0
p,m-Xylene	1,300	1,380	6.2%	0 - 30%	1.2
o-Xylene	111	116	4.2%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	ount Spiked : Spi	ked Sample %	Recovery	Accept Range
Benzene	ND	500	528	106%	39 - 150
Toluene	· 161	500	682	103%	46 - 148
Ethylbenzene	· 14.9	500	512	99.5%	32 - 160
p,m-Xylene	1,300	1000	2,380	103%	46 - 148
o-Xylene	111	500	658	108%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

QA/QC for Samples 57317, 57319-57320, 57327-57328, 57275, 57277

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-1-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57321	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	1.91	0.01	
Aluminum	4920	0.01	
Barium	202	0.01	
Cadmium	0.30	0.01	
Chromium	3.55	0.01	
Cobalt	2.56	0.01	
Copper	6.08	0.01	
Iron	4100	0.01	
Lead	4.79	0.01	
Manganese	193	0.01	
Molybdenum	0.08	0.01	
Mercury	ND	0.01	
Nickel	4.18	0.01	
Selenium	0.05	0.01	
Silver	ND	0.01	
Zinc	17,1	0.01	•

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-3-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57322	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	2.08	0,01	
Aluminum	5850	0.01	
Barium	234	0.01	
Cadmium	0.33	0.01	
Chromium	3.91	0.01	
Cobalt	2.80	0.01	
Copper	7.01	0.01	
Iron	4670	0.01	
Lead	4.68	0.01	
Manganese	192	0.01	
Molybdenum	0.06	0.01	
Mercury	ND	0.01	
Nickel	4.89	0.01	
Selenium	0.09	0.01	
Silver	ND	0.01	
Zinc	19.0	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-6-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57323	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/K g)	(mg/Kg)	
	′		
Arsenic	0.92	0.01	
Aluminum	1250	0.01	
Barium	56.5	0.01	
Cadmium	0.11	0.01	
Chromium	0.72	0.01	•
Cobalt	1.33	0.01	
Copper	1.15	0.01	
Iron	1710	0.01	
Lead	2.07	0.01	
Manganese	141	0.01	
Molybdenum	0.29	0.01	
Mercury	ND	0.01	
Nickel	1,24	0.01	
Selenium	0.08	0.01	
Silver	ND	0.01	
Zinc		0101	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-2-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57324	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	2.31	0.01	
Aluminum	2540	0.01	
Barium	291	0.01	
Cadmium	0.12	0.01	
Chromium	1.23	0.01	
Cobalt	1.82	0.01	
Copper	1.79	0.01	
Iron	1910	0.01	
Lead	2.38	0.01	
Manganese	145	0.01	
Molybdenum	0.27	0.01	
Mercury	ND	0.01	
Nickel	1.99	0.01	
Selenium	ND	0.01	
Silver	ND	0.01	•
Zinc	6.47	0.01	-

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-TZ	Date Reported:	03/03/11
Laboratory Number:	57325	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
·	:	Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Anamia	0.24	0.04	
Arsenic	2.31	0.01	
Aluminum	3630	0.01	
Barium	947	0.01	
Cadmium	0.63	0.01	
Chromium	8.16	0.01	
Cobalt	2.34	0.01	
Copper	20.0	0.01	
Iron	7200	0.01	
Lead	12.6	0.01	
Manganese	267	0.01	
Molybdenum	0.86	0.01	
Mercury	1.07	0.01	
Nickel	5.37	0.01	
Selenium	0.24	0.01	
Silver	ND	0.01	
Zinc	71.4	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-TZ	Date Reported:	. 03/03/11
Laboratory Number:	57326	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	•
Arsenic	2.49	0.01	
Aluminum	3980	0.01	•
Barium	1030	0.01	
Cadmium	0.53	0.01	
Chromium	8.54	0.01	
Cobalt	2.43	0.01	
Copper	19.1	0.01	
Iron	6960	0.01	
Lead	13.0	0.01	
Manganese	266	0.01	
Molybdenum	0.78	0.01	
Mercury	0.94	0.01	
Nickel	5.20	0.01	
Selenium	1.63	0.01	
Silver	ND	0.01	
Zinc	81.0	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-TZ	Date Reported:	03/03/11
Laboratory Number:	57327	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
	,	Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	2.26	0.01	
Aluminum	3700	0.01	
Barium	971	0.01	
Cadmium	0.43	0.01	
Chromium	7.20	0.01	
Cobalt	2.14		
		0.01	
Copper	14.8	0.01	
Iron	5900	0.01	
Lead	10.5	0.01	
Manganese	196	0.01	
Molybdenum	0.69	0.01	
Mercury	0.49	0.01	
Nickel	4.52	0.01	
Selenium	0.15	0.01	
Silver	ND	0.01	•
Zinc	44.0	0.01	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

Anályst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-TZ	Date Reported:	03/03/11
Laboratory Number:	57328	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Analyzed:	02/28/11
Preservative:	Cool	Date Digested:	02/28/11
Condition:	Intact	Analysis Needed:	Total Metals
		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
	······································		
Arsenic	1.92	0.01	
Aluminum	2980	0.01	
Barium	470	0.01	
Cadmium	0.29	0.01	
Chromium	3.65	0.01	
Cobalt	1.95	0.01	
Copper	7.96	0.01	
Iron	3720	0.01	
Lead	9.13	0.01	
Manganese	162	0.01	
Molybdenum	0.45	0.01	
Mercury	0.07	0.01	
Nickel	3.63	0.01	
Selenium	0.03	0.01	
Silver	ND	0.01	
Zinc	26.0	0.01	
-	— • - •		

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

Key Farmington NM1-9 Land Farm

TRACE METAL ANALYSIS Quality Control / **Quality Assurance Report**

Client:		QA/QC		Project #:		1	N/A
Sample ID:		02-28 TM	QA/QC	Date Repo	rted:	(03/03/11
Laboratory Number:		57323		Date Samp	oled:	ı	N/A
Sample Matrix:		Soil		Date Rece	ived:	ı	N/A
Analysis Requested:		Trace Met	als	Date Analy	/zed:		02/28/11
Condition:		N/A		Date Dige:			02/28/11
Blank & Duplicate Conc. (mg/Kg) = E	Instrument Iank (mg/K	Method) Blank	Detection Limit	Sample	Duplicate	% Diff.	Acceptance Range
Arsenic	ND	ND	0.01	0.92	0.91	0.5%	0% - 30%
Aluminum	ND	ND	0.01	1,250	1,260	0.8%	0% - 30%
Barlum	ND	ND	0.01	56.5	56.4	0.2%	0% - 30%
Cadmium	ND	ND	0.01	0.11	0.11	0.0%	0% - 30%
Chromium	ND	ND	0.01	0.72	0.73	0.4%	0% - 30%
Cobalt	В	ND	0.01	1.33	1.32	0.4%	0% - 30%
Copper	ND	ND	0.01	1.15	1.16	1.0%	0% - 30%
Iron	ND	ND	0.01	1,710	1,700	0.6%	0% - 30%
Lead	ND	ND	0.01	2.07	2.06	0.2%	0% - 30%
Manganese	ND	ND	0.01	141	140	0.6%	0% - 30%
Molybdenum	ND	ND	0.01	0.29	0.29	0.0%	0% - 30%
Mercury	ND	ND	0.01	ND	ND	0.0%	0% - 30%
Nickel	ND	ND	0.01	1.24	1.24	0.0%	0% - 30%
Selenium	ND	ND	0.01	80.0	80.0	0.0%	0% - 30%
Silver	ND	ND	0.01	ND	ND	0.0%	0% - 30%
Zinc	ND	ND	0.01	5.55	5.53	0.4%	0% - 30%
Spike Conc. (mg/Kg)		Spike Added	Sample	Spiked Sampl			Acceptance Range
Arsenic		2.50	0.92	3.23	94.5%	a	80% - 120%
Aluminum		2.50	1,250	1,180	94.2%		80% - 120%
Barium		5.00	56.5	58.4	94.9%		80% - 120%
Cadmium		2.50	0.11	2.40	92.1%		80% - 120%
Chromium		5.00	0.72	5.51	96.2%		80% - 120%
Cobalt		2.50	1.33	3.46	90.6%		80% - 120%
Copper		5.00	1.15	6.03	98.1%		80% - 120%
iron		2.50	1,710	1,540	89.9%		80% - 120%
Lead		5.00	2.07	6.35	89.9%		80% - 120%
Manganese		2.50	141	135	94.0%		80% - 120%
Molybdenum		1.00	0.29	1.19	92.2%		80% - 120%
Mercury		1.00	ND	0.88	88.4%		80% - 120%
Nickel		5.00	1.24	5.64	90.4%		80% - 120%
Selenium		1.00	0.08	1.01	93.8%		80% - 120%
Silver		1.00	ND	0.97	97.4%		80% - 120%
Zinc		5.00	5.55	10.1	95.4%		80% - 120%

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 57321-57328

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-1-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57321	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
рН	7.66	s.u.		
Conductivity @ 25° C	501	umhos/cm	• •	•
Total Dissolved Solids @ 180C	276	mg/L		
Total Dissolved Solids (Calc)	288	mg/L		
SAR	1.50	ratio	•	
Total Alkalinity as CaCO3	100	mg/L		•
Total Hardness as CaCO3	151	mg/L		
Bicarbonate as HCO3	100	mg/L	1.64	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L '	0.00	meq/L
Nitrate Nitrogen	4.29	mg/L	0.07	meq/L
Nitrite Nitrogen	0.012	mg/L	0.00	meq/L
Chloride	82.0	mg/L	2.31	meq/L
Fluoride	1.89	mg/L	0.10	meq/L
Phosphate	4.70	mg/L	0.15	meq/L
Sulfate	35.0	mg/L	0.73	meq/L
Iron	0.321	mg/L	0.01	meq/L
Calcium	39.8	mg/L	1.99	meq/L
Magnesium	12.6	mg/L	1.04	meq/L
Potassium	5.14	mg/L	0.13	meq/L
Sodium	42.1	mg/L	1.83	meq/L
Cations	•		5.00	meq/L
Anions			5.00	meq/L
Cation/Anion Difference			0.00%	•

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

Cllent:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-3-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57322	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
pН	7.41	s.u.		
Conductivity @ 25° C	1,320	umhos/cm		
Total Dissolved Solids @ 180C	744	mg/L		
Total Dissolved Solids (Calc)	807	mg/L		
SAR	3.00	ratio		-
Total Alkalinity as CaCO3	104	mg/L		
Total Hardness as CaCO3	399	mg/L		
Bicarbonate as HCO3	104	mg/L	1.70	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.71	mg/L	0.076	meq/L
Nitrite Nitrogen	0.020	mg/L	0.00	meq/L
Chloride	356	mg/L	10.03	meq/L
Fluoride	1.72	mg/L	0.090	meq/L
Phosphate	4.55	mg/L	0.144	meq/L
Sulfate	99.5	mg/L	2.07	meq/L
lron	0.206	mg/L	0.007	meq/L
Calcium	96.6	mg/L	4.82	meq/L
Magnesium	38.4	mg/L	3.16	meq/L
Potassium	3.91	mg/L	0.100	meq/L
Sodium	139	mg/L	6.03	meq/L
Cations			14.1	meq/L
Anions			14.1	meq/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-6-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57323	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
рН	9.56	s.u.		
Conductivity @ 25° C	393	umhos/cm	•	
Total Dissolved Solids @ 180C	256	mg/L		
Total Dissolved Solids (Calc)	252	mg/L	`	
SAR	4.30	ratio		
Total Alkalinity as CaCO3	108	mg/L		
Total Hardness as CaCO3	44.2	mg/L		
Bicarbonate as HCO3	108	mg/L	1.77	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.22	mg/L	0.068	meq/L
Nitrite Nitrogen	0.093	mg/L	0.00	meq/L
Chloride	40.5	mg/L	1.14	meq/L
Fluoride	2.85	mg/L	0.150	meq/L
Phosphate	4.73	mg/L	0.150	meq/L
Sulfate	47.2	mg/L	0.983	meq/L
Iron	9.07	mg/L	0.325	meq/L
Calcium	8.19	mg/L	0.409	meq/L
Magnesium	5.80	mg/L	0.477	meq/L
Potassium	6.62	mg/L	0.169	meq/L
Sodium	66.4	mg/L	2.89	meq/L
Cations			4.27	meq/L
Anions		·	4.27	meq/L
Cation/Anion Difference			0.00%	•

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-2-VZ-5'	Date Reported:	03/03/11
Laboratory Number:	57324	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			<u> </u>
Parameter	Result	Units		Units
pH	8.48	ş.u.		
Conductivity @ 25° C	1,390	umhos/cm		
Total Dissolved Solids @ 180C	832	mg/L		
Total Dissolved Solids (Calc)	943	mg/L		
SAR	8.90	ratio	•	
Total Alkalinity as CaCO3	90.0	mg/L		
Total Hardness as CaCO3	168	mg/L		
Bicarbonate as HCO3	90.0	mg/L	1.48	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.46	mg/L	0.072	meq/L
Nitrite Nitrogen	0.010	mg/L	.0.00	meq/L
Chloride	195	mg/L	5.49	meq/L
Fluoride	6.25	mg/L	0.329	meq/L
Phosphate	4.66	mg/L	0.147	meq/L
Sulfate	358	mg/L	7.46	meq/L
Iron	0.063	mg/L	0.00	meq/L
Calcium	28.3	mg/L	1.41	meq/L
Magnesium	23.8	mg/L	1.96	meq/L
Potassium	2.86	mg/L	0.073	meq/L
Sodium	265	mg/L	11.53	meq/L
Cations			15.0	meq/L
Anions			15.0	meq/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

5796 US Highway 64, Farmington, NM 87401

Ph (505)632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-TZ	Date Reported:	03/03/11
Laboratory Number:	57325	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact	•	

	Analytical			
Parameter	Result	Units		Units
рН	7.38	s.u.		
Conductivity @ 25° C	1,460	umhos/cm		
Total Dissolved Solids @ 180C	1,070	mg/L		
Total Dissolved Solids (Calc)	1,020	mg/L		
SAR	4.60	ratio		
Total Alkalinity as CaCO3	124	mg/L		
Total Hardness as CaCO3	358	mg/L		
Bicarbonate as HCO3	124	mg/L	2.03	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.33	mg/L	0.070	meq/L
Nitrite Nitrogen	< 0.01	mg/L	0.00	meq/L
Chloride	238	mg/L	6.72	meq/L
Fluoride	2.80	mg/L	0.147	meq/L
Phosphate	5.06	mg/L	0.160	meq/L
Sulfate	345	mg/L	7.18	meq/L
Iron	0.079	mg/L	0.00	meq/L
Calcium	102	mg/L	5.10	meq/L
Magnesium	25.1	mg/L	2.06	meq/L
Potassium	20.2	mg/L	0.517	meq/L
Sodium	198	mg/L	8.63	meq/L
Cations			16.3	meq/L
Anions	•		16.3	meq/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Ceil-2B-TZ	Date Reported:	03/03/11
Laboratory Number:	. 57326	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
рН	7.32	s.u.		
Conductivity @ 25° C	1,590	umhos/cm		
Total Dissolved Solids @ 180C	1,110	mg/L		
Total Dissolved Solids (Calc)	1,080	mg/L	•	
SAR	5.30	ratio		
Total Alkalinity as CaCO3	118	mg/L		
Total Hardness as CaCO3	357	mg/L		
Bicarbonate as HCO3	118	mg/L	1.93	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.39	mg/L	0.071	meq/L
Nitrite Nitrogen	< 0.01	mg/L	0.00	meq/L
Chloride	285	mg/L	8.05	meq/L
Fluoride	2.93	mg/L	0.154	meq/L
Phosphate	4.85	mg/L _.	0.153	meq/L
Sulfate	343	mg/L	7.14	meq/L
iron	0.097	mg/L	0.00	meq/L
Calcium	99.6	mg/L	4.97	meq/L
Magnesium	26.5	mg/L	2.18	meq/L
Potassium	11.1	mg/L	0.284	meq/L
Sodium	232	mg/L	10.1	meq/L
Cations			17.5	meq/L
Anions			17.5	meq/L
Cation/Anion Difference		•	0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

5796 US Highway 64, Farmington, NM 87401

Analyst

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-TZ	Date Reported:	03/03/11
Laboratory Number:	57327	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
рН	7.52	s.u.		
Conductivity @ 25° C	2,440	umhos/cm		
Total Dissolved Solids @ 180C	1,430	mg/L		
Total Dissolved Solids (Calc)	1,510	mg/L		
SAR	6.60	ratio		
Total Alkalinity as CaCO3	70.0	mg/L		
Total Hardness as CaCO3	480	mg/L		
Bicarbonate as HCO3	70.0	mg/L	1.15	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	42.3	mg/L	0.682	meq/L
Nitrite Nitrogen	0.010	mg/L	0.00	meq/L
Chloride	350	mg/L	9.9	meq/L
Fluoride	16.1	mg/L	0.845	meq/L
Phosphate	46.2	mg/L	1.46	meq/L
Sulfate	500	mg/L	10.4	meq/L
Iron	0.083	mg/L	0.00	meq/L
Calcium	142	mg/L	7.09	meq/L
Magnesium	30.6	mg/L	2.52	meq/L
Potassium	9.94	mg/L	0.254	meq/L
Sodium	335	mg/L	14.6	meq/L
Cations			24.4	meq/L
Anions			24.4	mea/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

Review

5796 US Highway 64, Farmington, NM 87401

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-TZ	Date Reported:	03/03/11
Laboratory Number:	57328	Date Sampled:	02/24/11
Chain of Custody:	11227	Date Received:	02/24/11
Sample Matrix:	Soil Extract	Date Extracted:	02/25/11
Preservative:	Cool	Date Analyzed:	. 02/28/11
Condition:	Intact		

	Analytical			
Parameter	Result	Units		Units
рН	8.72	s.u.		
Conductivity @ 25° C	382	umhos/cm		
Total Dissolved Solids @ 180C	218	mg/L		
Total Dissolved Solids (Calc)	236	mg/L		
SAR	3.90	ratio		
Total Alkalinity as CaCO3	102	mg/L		
Total Hardness as CaCO3	48.9	mg/L		
Bicarbonate as HCO3	102	mg/L	1.67	meq/L
Carbonate as CO3	< 0.01	mg/L	0.00	meq/L
Hydroxide as OH	< 0.01	mg/L	0.00	meq/L
Nitrate Nitrogen	4.22	mg/L	0.07	meq/L
Nitrite Nitrogen	< 0.01	mg/L	0.00	meq/L
Chloride	22.2	mg/L	0.63	meq/L
Fluoride	5.25	mg/L	0.28	meq/L
Phosphate	4.60	mg/L	0.15	meq/L
Sulfate	55.6	mg/L	1.16	meq/L
iron	5.64	mg/L	0.20	meq/L
Calcium	15.0	mg/L	0.75	meq/L
Magnesium	2.78	mg/L	0.23	meq/L
Potassium	2.16	mg/L	0.06	meq/L
Sodium	62.3	mg/L	2.71	meq/L
Cations			3.95	meq/L
Anions			3.95	meq/L
Cation/Anion Difference			0.00%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments Key Farmington NM1-9 Land Farm

Review

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-1-VZ-5'	Date Reported:	03/01/11
Laboratory Number:	57321	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

999

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: Key Farmington NM1-9 Land Farm

st //

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-3-VZ-5'	Date Reported:	03/01/11
Laboratory Number:	57322	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

480

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Key Farmington NM1-9 Land Farm Comments:

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-6-VZ-5'	Date Reported:	03/01/11
Laboratory Number:	57323	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

45.3

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: Key Farmington NM1-9 Land Farm

Reviev

5796 US Highway 64, Farmington, NM 87401

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-2-VZ-5'	Date Reported:	03/01/11
Laboratory Number:	57324	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

26.6

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Key Farmington NM1-9 Land Farm Comments:

5796 US Highway 64, Farmington, NM 87401

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2A-TZ	Date Reported:	03/01/11
Laboratory Number:	57325	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

	,	Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

10,800

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NM1-9 Land Farm

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2B-TZ	Date Reported:	03/01/11
Laboratory Number:	57326	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

12,000

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: Key Farmin

Key Farmington NM1-9 Land Farm

Review

5796 US Highway 64, Farmington, NM 87401

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2C-TZ	Date Reported:	03/01/11
Laboratory Number:	57327	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

	,	Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

14,000

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Key Farmington NM1-9 Land Farm Comments:

Review

5796 US Highway 64, Farmington, NM 87401

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2D-TZ	Date Reported:	03/01/11
Laboratory Number:	57328	Date Sampled:	02/24/11
Chain of Custody No:	11227	Date Received:	02/24/11
Sample Matrix:	Soil	Date Extracted:	03/01/11
Preservative:	Cool	Date Analyzed:	03/01/11
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

4,060

6.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: Key Farmington NM1-9 Land Farm

Analyst //

Review

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS **QUALITY ASSURANCE REPORT**

Client:

QA/QC

Project #:

N/A

Sample ID:

QA/QC

Date Reported: Date Sampled:

03/01/11 N/A

Sample Matrix:

Laboratory Number:

Freon-113

03/01/11

03-01-TPH.QA/QC 57321

Date Analyzed:

Preservative:

03/01/11

Condition:

N/A N/A Date Extracted: Analysis Needed: 03/01/11 **TPH**

Calibration

I-Cal Date C-Cal Date

03/01/11

I-Cal RF: C-Cal RF: % Difference Accept. Range

3.6%

1,660 1,720

+/- 10%

Blank Conc. (mg/Kg)

Concentration

Detection Limit

TPH

TPH

ND

6.7

Duplicate Conc. (mg/Kg) **TPH**

Sample 999

Duplicate 932

% Difference 6.7%

Accept: Range +/- 30%

Spike Conc. (mg/Kg)

Sample 999

Spike Added Spike Result % Recovery 2,000

2,930

97.7%

Accept Range 80 - 120%

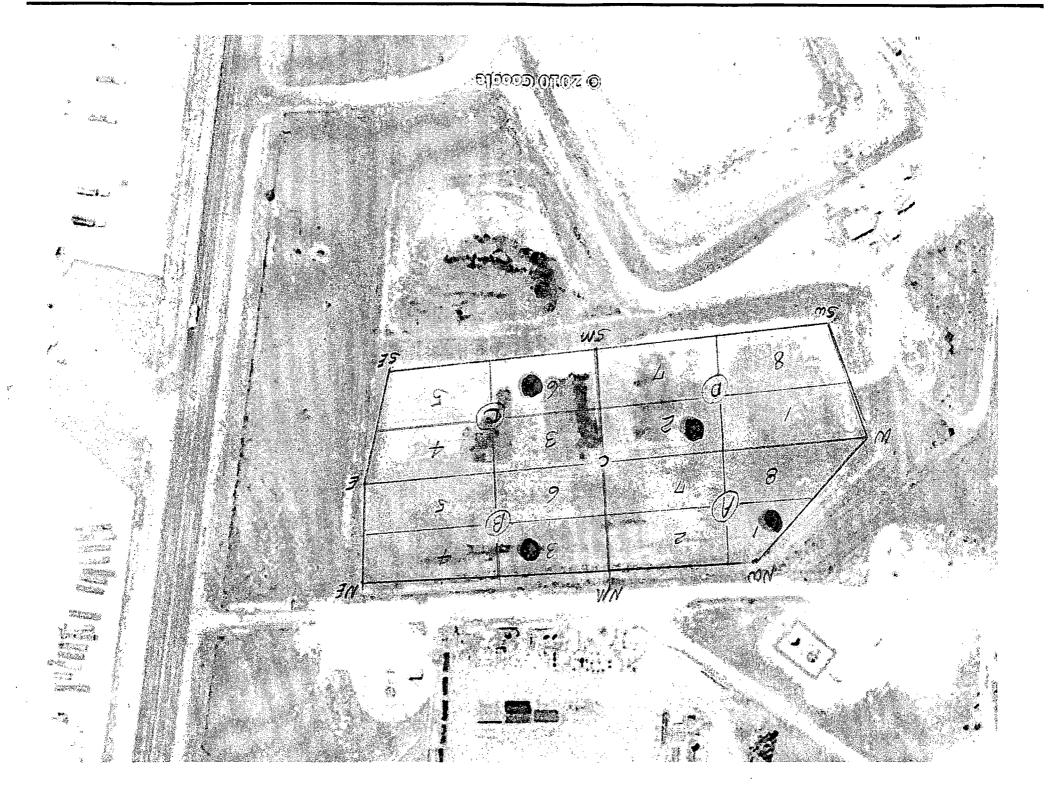
ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:


QA/QC for Samples 57321-57328

			Oi i	7 11	4 Oi	CO.		. •											ı	122	<u>_</u> /		
Client:			Project Name /									為	£	ANAL	YSIS.	/ PAR	AME	TERS				-	
NEY ENERGY			KEY FARN	1/1/9	ON NMI	1-9 LA	WD.	SAPA	1_			(g)	新	•					_ 1.0				
Client Address:			Sampler Name	WAY	WE PRICA	=			X	X	6	3	3/10				X		46		$\neg \top$		Γ
5651 45 HWY6	4 87	401		PRA	CE LLC				901	8	826	1 5	35		_			TERS	METALS				
Client Phone No.:	<u> </u>		Client No.: ac	7N/ ~					og 10	th Og	g	eta	ie		学		F.	ш	W :			C000	
1-505-715-2	809		Client No.:	りしゅう	-001	5			TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals + (Wace	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE	WACC		İ	ပိ	$\frac{1}{3}$
Sample No./	Sample	Sampl			Sample	No./Volume	Pres	servative	Ĭ	Щ	Ö.	Y.Y.	iğ.	5	뜻	PAH	H _c	일	3			Samble (Sample Intact
Identification	Date	Time			Matrix	of Containers	HgCl ₂	HC U	<u> </u>	<u> </u>	>	E .	<u>ِێ</u>	꼾	12	Y.	Ľ,	ㅎ	7			တ္တ	ပ်
CELLEA-1-VZ-5	2/24/1	13:5	357321	Soil Solid	Sludge Aqueous	2-40Z		X	X	X		X	X				X					Y	Y
EU-28-3-12-5	11	14:0	7 57322	Solid	Sludge Aqueous	H		X	X	X		X	X				X					1	
ELL-2C-BVZ-5	15	14:1:	57323	Solid	Sludge Aqueous	tř		X	×	X		X	X				X		Ni				
EU20-2-VZ-5	13	14:2	8 57324	Solid	Sludge Aqueous	V		X	X	X		Γ. —	X				X		Mo				
ELLEA-TZ	1/		8 57325	Solid	Sludge Aqueous	γJ		X	X	X		X	X			-	X		3				7
EU-2B-TZ	k	14;4:	3 57326	Solid	Sludge Aqueous	11		X	X	X		X	X				X		MW. AL				
EUZC-TZ	10	14:4	9 57327	Solid	Sludge Aqueous	ij		X	X	X		X	X				X		Z / N				1
ELLZD-TZ	Ŋ	14,5	0 57328	Solid	Sludge Aqueous	IJ		X	X	X		X	X				X	1	10				_
				Soil Solid	Sludge Aqueous													7	CH'				
		,,,		Soil Solid	Sludge Aqueous						- +-												
Relinquished by: (Signa	iture)	L		_ _	Date	Time	R	eceive	d by:	(Signa	ature)								-	Date	e	Tir	ne
WAYNE PRIZE	212	3R.			2/24/11	15:26	2	()) a	U NG	$D_{\mathbf{v}}$	10	dr.								2 /24	du	5:	24
Relinquished by: (Signa	iture)	/					R	Receive	d by:	(Signa	ature)			-			·						_
Z1		- ~			2/24/4	15:36	4	(Ve	ne	213	ΝĪ	ب								2/24	<i> \r</i>	5 :3	34
CHAYNE PAI Relinquished by: (Signa	ture)						R	leceive	d by:	Signe	ibre)						·						
RUSH	1					env	 / j	ro	t		:h]						 -					

KVWT

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615, • lab@envirotech-inc.com

Key Energy Services 6 Desta Drive Suite 4300 Midland: Texas 79705

Telephone: 432.620.0300
Facsimile: 432.571 7173
www.keyenergy.com
RECEIVED OCE

2010 MOY -1 P 1: 36

October 28, 2010

Mr. Daniel Sanchez UIC Director State of New Mexico 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

VIA EMAIL AND US MAIL

Subject: Key Farmington-NM-01-0009 Landfarm 3rd quarter sampling and response plan

Dear Mr. Sanchez:

Pursuant to conversations with Mr. Brad Jones, Key Energy Services, LLC has been requested to submit an amendment to the recently submitted landfarm action plan. Mr. Jones has indicated to Key that pursuant to the rule, a response plan is required. While Key does not totally agree with this assessment and does not believe a release has occurred, in the spirit of cooperation, please find below Key's amended plan. Also included in this correspondence are the results of the 2010 third quarter sampling results.

The "Landfarm Recommendations" included in correspondence dated September 9, 2010 should be considered to be Landfarm Commitments and Response Action Plan. This response action plan addresses changes in the landfarm operation to prevent contamination and a plan for remediation.

- Perform the 3rd quarter sampling event as scheduled: Two soil samples were collected from the vadose zone in Cell #2. The north and south portions of the cell were subdivided into 8 sections. Two randomly selected areas (one each in the north and south portions) were sampled at a depth of approximately 5 feet below grade. A map of the Cell # 2 grid, along with a summary table of results, and the laboratory analytical report is attached.
- To mitigate vadose zone concerns, Key will continue to excavate those areas of concern and bring them to the surface to be aggressively tilled and remediated. Key is aggressively remediating the treatment zone soils. Key has tilled the landfarm almost every day and will continue to do so.
- Key has not or will not add any more soils to the treatment cells.

• As part of the release response, Key will perform a comprehensive sampling event in the 4th quarter as outlined below after which Key will meet with OCD to determine a path forward.

The 3rd quarter results show definite progress in our actions as of to date.

The 4th quarter sampling will consist of the following:

Treatment Zone Sampling: (Cell #2 only at this time)

Cell #2 will be quartered into quads A, B, C & D with one composite sample collected from each quad consisting of 4 discrete samples for each composite and analyzed for TPH (Methods 418.1 & 8015 (GRO and DRO)), Chlorides, BTEX and WQCC metals.

Vadose Zone Sampling: (Cell #2 only at this time)

Cell #2 will be quartered into quads A, B, C & D, with each quad further sub-divided into 4 separate quads A1-4, B1-4, C1-4 and D1-4. A random sample will be collected from each major quad at approximately 4-5 feet below the original ground surface. Each sample will be analyzed for TPH (Methods 418.1 & 8015 (GRO and DRO)), Chlorides, BTEX and WQCC metals.

Key anticipates the landfarm soil in both the treatment zone and vadose zone will be remediated to acceptable standards in due time. We also want to point out that the constituents found are at such low levels the possibility of groundwater contamination or public health issues from the landfarm is unlikely.

Key fully intends to meet its responsibilities at the Sunco facility. We do not believe there are substantive differences that cannot be resolved through continued discussion. Please contact me at 432-571-7536 if you have questions or concerns regarding this information.

Sincerely,

Daniel K. Gibson, P.G.

Corporate Environmental Director

Mr. Brad Jones State of New Mexico 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Mr. Glenn VonGonten State of New Mexico 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Mr. Wayne Price Price LLC 312 Encantado Ridge CT NE Rio Rancho, New Mexico 87124

Mr. Loren Molleur

Attachments

Key Energy Services, LLC Surface Waste Management Facility Sunco Disposal Facility Permit NM-01-0009

SW/4 NW/4 of Section 2, Township 29 North, Range 12 West, NMPM San Juan County, New Mexico

			BTEX						TPH	Chloride			
Location	Location Sample Date				, EPA 80	021B			EPA 418.1	1 EPA 8015m			EPA 4500B
Location	Sample Date		Benzene	Toluene	Ethylbenzene	p,m- Xylenes	o-Xylene	Total BTEX	Total TPH	GRO C-5 - C-10	DRO C-10 - C-35	Total TPH	Total Chloride
OCD Land	farm Closure Li	mits	0.2					50	2500	****		1000	1000
2N-VZ-1-7	10/8/2010		<0.0009	< 0.001	< 0.001	< 0.0012	0.0015	0.0015	51.3	<0.2	<0.1	<0.2	240
2S-VZ-1-4	10/8/2010	•	< 0.0009	< 0.001	<0.001	<0.0012	0.0022	0.0022	50.0	<0.2	<0.1	<0.2	65

- 1) OCD Rule 53.G Specific Requirements Applicable to Landfarms, Treatment zone closure performance standards
- 2) Results in mg/Kg.
- 3) Results above detection limit indicated by bold font.

Chloride

Client: Key Energy Project #: 98065-0013 Sample ID: Cell 2N-VZ-1-7 Date Reported: 10-08-10 Lab ID#: 56115 Date Sampled: 10-07-10 Sample Matrix: Soil 10-07-10 Date Received: Preservative: Cool Date Analyzed: 10-08-10 Condition: Intact Chain of Custody: 9948

Parameter

Concentration (mg/Kg)

Total Chloride

240

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2N-VZ-1-7	Date Reported:	10-11-10
Laboratory Number:	56115	Date Sampled:	10-07-10
Chain of Custody No:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Extracted:	10-08-10
Preservative:	Cool	Date Analyzed:	10-08-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
,	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

51.3

39.4

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

V

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2N-VZ-1-7	Date Reported:	10-11-10
Laboratory Number:	56115	Date Sampled:	10-07-10
Chain of Custody:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Analyzed:	10-11-10
Preservative:	Cool	Date Extracted:	10-08-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	• <u>•</u> •1,5	0.9

Total BTEX 1.5

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	102 %	
	1,4-difluorobenzene	92.9 %	
	Bromochlorobenzene	103 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2N-VZ-1-7	Date Reported:	10-11-10
Laboratory Number:	56115	Date Sampled:	10-07-10
Chain of Custody No:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Extracted:	10-08-10
Preservative:	Cool	Date Analyzed:	10-11-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM 1-9 Land Farm

Chloride

Client: Key Energy Project #: 98065-0013 Cell 2S-VZ-1-4 Sample ID: Date Reported: 10-08-10 Lab ID#: 56116 Date Sampled: 10-07-10 Sample Matrix: Soil Date Received: 10-07-10 Preservative: Cool Date Analyzed: 10-08-10 Condition: Intact Chain of Custody: 9948

Parameter

Concentration (mg/Kg)

Total Chloride

65

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2S-VZ-1-4	Date Reported:	10-11-10
Laboratory Number:	56116	Date Sampled:	10-07-10
Chain of Custody No:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Extracted:	10-08-10
Preservative:	Cool	Date Analyzed:	10-08-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

50.0

39.4

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

V

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2S-VZ-1-4	Date Reported:	10-11-10
Laboratory Number:	56116	Date Sampled:	10-07-10
Chain of Custody:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Analyzed:	10-11-10
Preservative:	Cool	Date Extracted:	10-08-11
Condition:	Intact	Analysis Requested:	BTEX
•		Dilution:	10

		Det.
	Concentration	Limit
Parameter	(ug/Kg)	(ug/Kg)
		,

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	e ⁶⁰ 2.2	0.9

Total BTEX 2.2

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.0 %
	1,4-difluorobenzene	105 %
	Bromochlorobenzene	105 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NM 1-9 Land Farm

Analyst

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell 2S-VZ-1-4	Date Reported:	10-11-10
Laboratory Number:	56116	Date Sampled:	10-07-10
Chain of Custody No:	9948	Date Received:	10-07-10
Sample Matrix:	Soil	Date Extracted:	10-08-10
Preservative:	Cool	Date Analyzed:	10-11-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	. ND		

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NM 1-9 Land Farm

1,0

Analyst

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

0.1

Client:	QA/QC		Project #:		N/A
Sample ID:	10-11-10 QA/0	QC .	Date Reported:		10-11-10
Laboratory Number:	56109		Date Sampled:		N/A
Sample Matrix:	Methylene Chlor	ride	Date Received:		N/A
Preservative:	N/A °		Date Analyzed:		10-11-10
Condition:	N/A .		Analysis Request	ted:	TPH
Gasoline Range C5 - C10	4:@aliDate 10-11-10	9.9960E+002	@:@allrF 1.0000E+003	%/Difference 0.04%	Accept Ranbe
Diesel Range C10 - C28	10-11-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Blank Conc. (mc/L=mc/K		Consentation		Đế Gọ (loặi Liế	ile.
Gasoline Range C5 - C10		ND		0.2	

Duplicate Gency(mg/kg)) 🐫 🦰 s	miele E e el Diu	olicate = 5%	Difference Ac	cent Rance
	,	ND	0.0%	0 - 30%
	ND	ND	0.0%	0 - 30%

Spike@one.(mo/kg);	> Sample ≟∜	Spike Added	Spike Result	% Reloovery	Accepts Range
Gasoline Range C5 - C10	ND	250	232	92.7%	75 - 125%
Diesel Range C10 - C28	ND	250	240	96.0%	75 - 125%

ND

ND - Parameter not detected at the stated detection limit.

References:

Diesel Range C10 - C28

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 56109, 56113, 56115-56116, 56122

Analyst

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

Client:

QA/QC

Project #:

N/A

Sample ID:

QA/QC

Date Reported:

10-11-10

Laboratory Number:

10-08-TPH.QA/QC 56113

Date Sampled:

N/A

Sample Matrix:

Freon-113

Date Analyzed:

10-08-10

Preservative: Condition:

N/A N/A Date Extracted: Analysis Needed: 10-08-10 **TPH**

Calibration

I-Cal Date

C-Cal Date

I-Cal RF:

C-Cal RF:

% Difference

Accept. Range

10-05-10

10-08-10

1,640

1,690

3.0% +/- 10%

Blank/Conc. (mg/Kg)

TPH

Concentration

Detection Limit

39.4

Duplicate Conc. (mg/Kg)

Sample

ND

Duplicate

% Difference Accept. Range

TPH

TPH

73.6

74.9

1.8%

+/- 30%

Spike Conc. (mg/Kg)

Sample 73.6

Spike Added Spike Result - % Recovery. 2,000

1,710

82.5%

Accept Range 80 - 120%

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

QA/QC for Samples 56113, 56115-56116

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID:	1011BBLK QA/QC	Date Reported:	10-11 -1 0
Laboratory Number:	56120	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	10-11-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

		·	Dilation.	,,,	*	
Calibration and	e dicaling	C-Califfales	%Diff+	n Blanker	Defect	
Defection Limits (ug/L)		AcceptoRano	je:p/e:15%-;	ri@ono	Lipit	
Benzene	3.6566E+005	3.6639E+005	0.2%	ND	0.1	
Toluene	4.3456E+005	4.3543E+005	0.2%	ND	0.1	
Ethylbenzene	3.9461E+005	3.9540E+005	0.2%	ND	0.1	
p,m-Xylene	9.3605E+005	9.3793E+005	0.2%	ND	0.1	
o-Xylene	3.5110E+005	3.5181E+005	0.2%	ND	0.1	

Duplicate Cone (ug/Kg)):							
Benzene	ND	ND	0.0%	0 - 30%	0.9		
Toluene	3.6	3.5	2.8%	0 - 30%	1.0		
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0		
p,m-Xylene	276	292	5.9%	0 - 30%	1.2		
o-Xylene	82 .5	81.4	1.3%	0 - 30%	0.9		

Spike Gonda (ug/Kg)	Samples Amo	uni Spiked - Spi	kediSamplp : %	Recovery	AcceptRanger
Benzene	ND	500	5 85	117%	39 - 150
Toluene	3.6	500	554	110%	46 - 148
Ethylbenzene	ND	500	592	118%	32 - 160
p,m-Xylene	276	1000	1,510	118%	46 - 148
o-Xylene	82.5	500	663	114%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 56109, 56113, 56115-56116, 56118/56120-56122

Ańalyst

CHAIN OF CUSTODY RECORD

09948

Client:			Project Na	lame / L	ocation:	:				T						Vele	/ DAD	ANG						
KEYENE	=RGY	'	KEYPA	RMIN	610N	NM1-9	LANDE	MR	M						ANAL	10101	/ FAD.	Alvi⊏ i	i Eno					
Client Address: 5657 v3 HWY 64	37401			Name: V	WAYN	E PRICE	E	<u> </u>		(Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	S						*			•		
Client Phone No.:			Client No.).:						1 8	5	g	etal	ig	'	물		=	,,,				ō	act
1-505-715-28	309		91	BOLES.	- 00V	3	*			/leth	Mel	Net	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	Sample	Sampl	le	b No.		ample	No./Volume			e I	Ä	ြင့်	₩.	tion		ا بِهُ ا	I	`	[일]				直	m d
Identification	Date	Time	9			Vatrix	Containers	HgCI,	HCI N	E HAL	<u> </u>	8	<u></u>	్రి	泛	일	PAH		$\frac{1}{2}$				Sa	Sa.
CELL 2N-VZ-1-7	10-1-10	1:47	561	15	Soil Solid	Sludge Aqueous	1/402	1 1	·	X	×					-		X	×				7	7
CELL 2N-VZ-1-17	10-7-12	12:12	P 5611	الو	Solid	Sludge Aqueous	Y4/02		8	X	\mathbb{X}							X	X				7	4
					Soil Solid	Sludge Aqueous												•	7					
					Soil Solid	Sludge Aqueous															,			
		,			Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous				1														
				1	Soil Solid	Sludge Aqueous				1	1													
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous																		
			-		Soll Solid	Sludge Aqueous																		
Relinquished by: (Signal	iture)					Date 10-7-10	Time 3:00 #		eceiv	ed by	/: (Sign	ature)		5							Da	ite 1/10	Tir 3100	
Relinquished by: (Signa	iture)							Ř	eceiv	ed by:	r: (Sign	ature))	-										
Relinquished by: (Signa	iture)							R	eceiv	ed by	r: (Sign	ature)	,											
TZ= TREATM			<u> </u>	2 S0 U	ITH			<u>_</u>						56		977	Aci	+Es	マーム	ANT) FA	19.M		
VZ >VADOSE	ZONE	<i>:</i>	NT	> NORT	74	3	env				e (,	i	940T O 99	-PL	4N	OR 1	~ 2	SAN	n., npL	سی	
				5796 US	3 Highwa	y 64 • Farming		-					<u>-</u>		1	~00	AT	TON	27					

Meeting Agenda:

Parties: OCD and Key Energy

Date: August 24, 2010

Reference: NM1-9 Pond and Landfarm

Subject: Draft Plan

The following is a draft plan to continue the process of deciding the future operations of the NM1-9 Key Farmington Surface Waste Management Facility:

Background:

In March 2009, OCD issued Key an approval to investigate a possible pond leak, and to take the opportunity to clean out the solids/sludge in the pond and associated treating facility.

The plan included setting several ABT's near the injection well for temporary storage of incoming fluids. That system is still in place to date. The approval did not have an expiration date.

Key recognizes that the temporary system is just that, temporary. The business climate during the recent recession had basically put any large expenditures on hold. Key feels that since the pond and all of the treatment tanks have been emptied and cleaned, any substantial environmental threat is basically negated.

Key has submitted draft closure plans, at the request of OCD, in order to understand the ramifications of such closure and obtain guidance from OCD.

However, Key has not officially submitted an official closure plantas little els that some parts of the facility may still be useful and needs clarification from OCD on the ramifications of the new rule part 36.

Draft Action Plan:

- I. Meet with OCD and brainstorm on the possible scenarios of closing or operating part, or all of the facility.
 - A. Topics may include using the existing liner as secondary containment for the treating system.
 - B. Closing or continued using the landfarm.
 - C. Latest landfarm analysis.
 - D. Burying landfarm soils on site.
 - E. Remediation of the landfarm soils.
 - F. Closure standards for the landfarm.
 - G. Continue to operate as is until business climate improves.
- II. Provide OCD a decision within 60 days on which route Key intends to take.
- III. Continue working with OCD until an agreeable path forward is approved.

RECEIVED OCD 2010 AUG 24 P 4: 27

RECEIVED OCD 2010 AUG 24 P 4: 27

Key Energy Farmington Permit NM1-9 Landfarm Sample Report 2nd Quarter 2010

August 20, 2010

To:

Dan Gibson-Key Energy Corporate Environmental Manager

Loren Molleur- Key Energy Sr. Director Fluids Management Div.

From:

Wayne Price-Price LLC

Date:

August 20, 2010

Subject:

Key Farmington NM1-9

Landfarm Sample Report 2nd. qtr.

Introduction:

Please find enclosed a copy of the 2nd qtr landfarm sample results for your review. The report consists of a Sample Results Matrix Table, Sampling Periods & Analysis Sheet, Sample Field Notes Plot Plan, Landfarm Sampling/Safety Plan, Photos and the Laboratory Results with Chain of Custodies and QA/QC documentation.

The permitted landfarm consists of two cells, cell #1 (one acre), and cell #2 (four acres). Cell #1 has been inactive for years and may have never been used and presently has vegetation growing in it.

Cell # 2 is the active cell and currently has not been filled to capacity. There are areas in Cell #2 that have never been used. In order to obtain good representative samples, it was decided to divide cell #2 into two sections, South and North. Treatment zone samples were taken from each active section as four discrete samples were collected from surface to 6 inches deep and composited in a stainless steel bowl, and transferred to clean jars and placed on ice. The south and north section samples were labeled Cell-2S-TZ and Cell-2N-TZ respectfully.

Vadose samples were collected with a backhoe at depths from 3-4 feet deep. At each sample location the treatment zone soil was scraped away to decrease the chance of cross contamination. Sample jars were filled directly out of the bucket and placed on ice.

Random sample locations were determine by using a "out -of-the- hat" drawing method for the south and north active sections that were divided into grids, 18 for the south and 16 for the north. Please refer to the attached plot plan, which shows where the vadose samples were actually collected and provides a cross reference to the chain-of-custody sample ID's.

Previously, soil taken from grid #7 Cell-2N formed a dirt pile located in the far SW part of Cell-2S. 12 discrete samples were collected from the dirt pile. A clean

shovel was used to dig two to three feet into the pile at six locations and 6 surface samples were taken, all composited into one sample.

Findings:

The "treatment zone" results ranged from 49,500 mg/kg to 86,800 mg/kg for TPH (418.1), 19.1 mg/kg to 128 mg/kg for TPH (8015 GRO/DRO), non-detect to 48.5 ug/kg for BTEX (8021), and 165mg/kg to 265 mg/kg for Chlorides.

"<u>Vadose Zone</u>" results ranged from 23.6 mg/kg to 11,100 mg/kg for TPH (418.1), non-detect for all TPH (8015 GRO/DRO), non-detect for all BTEX (8021), and 5 mg/kg to 410 mg/kg for Chlorides.

The "dirt pile" results were 27,800 mg/kg for TPH (418.1), 1.3 mg/kg for TPH (8015 GRO/DRO), 11.2 ug/kg for BTEX (8021), and 400 mg/kg for Chlorides.

During the vadose zone sampling, oily stained soil with moderate hydrocarbon odors were observed just below the surface to one to two feet deep in grid areas; Cell-2S-VZ-1-7, 2N-VZ-2-5, 2N-VZ-2-4, and 2N-VZ-2-14. Photos attached.

Conclusions:

The two "<u>treatment zone</u>" sampling results showed high levels for aliphatic hydrocarbons TPH (418.1), and during the sampling event four areas were discovered that had un-remediated soils. The chlorides are very low with an average of 215 mg/kg.

The "<u>vadose zone</u>" results reveal that most of the aromatic hydrocarbons are mostly non-detect, except samples Cell-2S-VZ-4 (grid #18) and Cell-2N-VZ-3 (grid #4) which showed slightly elevated levels of GRO/DRO 4.4 mg/kg to 28.8 mg/kg.

The vadose zone did show levels of aliphatic hydrocarbons ranging from 23.6 mg/kg to 11,100 mg/kg of TPH (418.1) with an average of 2647 mg/kg.

The chlorides in the vadose averaged 196 mg/kg well below the WQCC groundwater standard of 250 mg/l.

Recommendations and Immediate Actions:

The "<u>vadose zone</u>" should be given additional time for natural bio-remediated to occur. It is not recommend at this time to attempt to remove these soils as the un-remediated soils from the surface may cross contaminate the vadose zone.

The chlorides in both the treatment and vadose zone are at such low levels that no risk to the environment would be anticipated.

The treatment of the un-remediated soils and dirt pile have began and are being taken to the surface, spread out and tilled aggressively until acceptable levels are obtained.

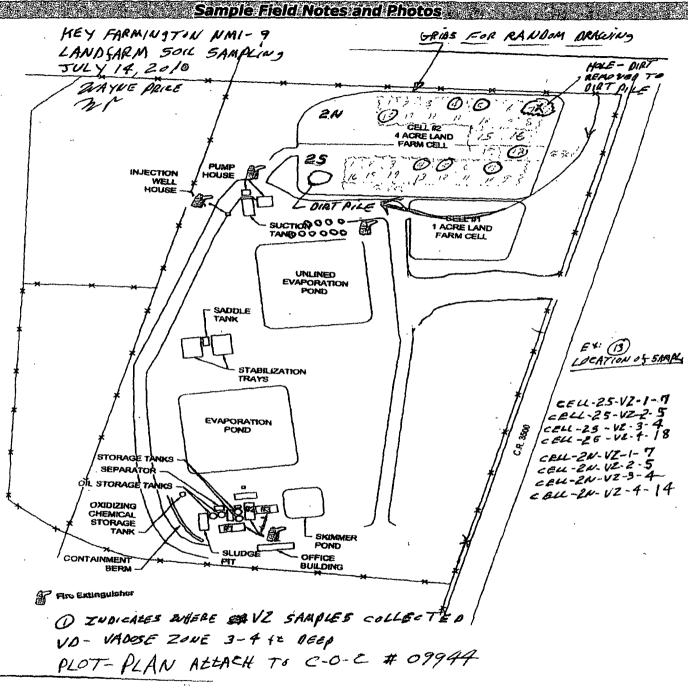
Future Use or Closure of the Landfarm:

Recommend Key meet with agency i.e. OCD to seek an acceptable path forward.

	Sample Re	esuits Matrix Ta	ble for 2nd Q	TR 2010			,			,		×4 .	, ,	
Sample ID:	Date:	Sample Matrix		Chlorides Total mg/kg	TPH 418.1 Total mg/kg	TPH 8015 Total mg/kg	GRO mg/kg	DRO	BTEX 802: Total ug/kg			Ethyl-Ben ug/kg		
Treatment Zone-TZ														ı
Cell-2S-TZ	"7/14/2010"	Soil		265	86,800	19.1	7.9	11.2	ND	ND	ND	ND	ND	ND
Cell-2N-TZ	"7/14/2010"	Soil	<u>Average</u>	165 215	49,500 <i>68,150</i>	128	28.3	99.7	48.5	6.2	7.9	8.1	14.9	11.4
Vadose Zone-VZ									•		•			
Cell-2S-VZ-1	"7/14/2010"	Soil*		175	117	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2S-VZ-2	"7/14/2010"	Soil		375	23.6	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2S-VZ-3	"7/14/2010"	Soll		410	2730	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2S-VZ-4	"7/14/2010"	Soil		130	6650	4.4	2.1	2.3	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-1	"7/14/2010"	Soil		5	347	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-2	"7/14/2010"	Soil*		55	51.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-3	"7/14/2010"	Soil*		235	11,100	25.8	8.3	17.5	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-4	"7/14/2010"	Soil*	<u>Average</u>	180 <u>196</u>	158 2647	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
Dirt Pile	"7/14/2010"	Soil*		400	27,800	1.3	ND	1.3	11.2	ND	ND	ND.	6.1	5.1

Notes and Comments See Sample Field Notes below for sample collection location grids.

Example: Cell-2N-VZ-1 was collected from the North half of Cell #2 in grid #7.


>Soil* these areas were noted to have dark stained soils with moderate hydrocarbon odors approximately 1-2 feet deep in places. See attached photos

- >Cell-2S is South half of Cell #2
- >Cell-2N is North half of Cell #2
- >Cell #1 not sampled out of service for several years
- >Treatment Zone samples were 1 composite from 4 discrete samples
- > Vadose Zone samples were randomly selected using "out of the hat number draw" for grids- sample taken between 3-4 feet below the treatment zone-
- >Dirt Pile sample was 1 composite from 12 discrete samples
- >Background Samples not yet established

Highligthed cells requires action Action: More aggressive tilling

Key Energy Farmington Permit NM1-9 Landfarm Sample Report-2nd Quarter 2010

Sample Frequency	1st Qtr	2nd Qtr	3 rd Qtr	4th Qtr	5-years	*
	Analysis	Analysis	Analysis	Analysis	Analysis	
Permit 711 requirements			***************************************		***************************************	
reatment Zone	NA	NA.	•	NA	NA	
adose Zone- 1 random sample /cell 2-3 ft elow bottom of treatment zone	TPH/BTEX	TPH/BTEX	TPH/BTEX	TPH/BTEX/Gen Chem/WQCC metals	NA	
Part 36 requirements		***************************************				
reatment Zone-one composite from 4 liscrete sample		TPH/CI		TPH/CI		
adose Zone- 4 random samples per cell 3-4		TPH/BTEX/CI		TPH/BTEX/CI	WQCC 3103 A&B	

09749

Key Energy Services NM1-9 SWM

Date: July 14, 2010 C-O-C # 0 9944

Landfarm Sampling and Safety Plan: (SENI-ANNUAL)+ Date: July 14, 2010 (-0-C # 0 9944 (JUATERLY)

Objective:

Collect soil samples pursuant to requirements of the NMOCD old rule 711 and Part 36 permit requirements.

Procedure and protocol:

All samples will be collected and analyzed per approved EPA methods. QA/QC will be performed in the field, transport, delivery and analyzing of the samples.

Standard Industry sampling SOP's and protocols will be used in equipment cleaning. personal protection, sample containers, prevention of cross-contamination, and proper preservation, etc.

Sampling personal will have previous experience in collecting EPA type samples. Onthe-job training will be conducted during this exercise for Key and other employees responsible for future sample collection.

Landfarm description:

Landfarm cell #2 is divided in two sections, the south and north sections. In the past these samples have been labeled Cell #1 and Cell #2. The south samples will be labeled cell 2-S, and the north samples will be labeled cell 2-N. Landfarm cell #1 is an old inactive cell.

Sample description, type and locations:

Vadose Zone Sampling:

The existing permit condition per the rule 711 requires Treatment Zone Sampling (which is actually vadose zone) a minimum of one random soil sample to be collected per cell (<5ac) quarterly and analyzed for TPH(418.1 or 8015m) and BTEX (8020) to be collected 2-3 feet below the landfarm native ground surface.

The relative new rule part 36 for landfarms requires that vadose zone sampling be a minimum of four random soil samples collected per cell (<5 ac) semi-annually and analyzed for TPH(418.1, 8015m DRO/GRO), BTEX (8020), and Chlorides (EPA 300.1) to be collected 3-4 feet below the landfarm original ground surface.

In order to satisfy both permit conditions, the following vadose samples will be collected and analyzed for the following constituents:

<u>Cell #2-S</u>- 4 random selected points, 3-4 feet deep, analyzed for TPH 418.1, 8015m DRO/GRO, BTEX (8021), Chlorides 300.1.

Cell #2-N 4 random selected points, 3-4 feet deep, Analyzed same as cell #2-S.

Treatment Zone Sampling:

Part 36 also requires semi-annual sampling of the treated soil (Treatment Zone). One composite soil sample consisting of 4 discrete soil samples must be collected and analyzed for TPH (418.) or 8015m DRO/GRO) and Chlorides EPA 300.1.

In order to satisfy both permit conditions, the following treatment zone soil samples will be collected and analyzed for the following constituents:

<u>Cell #2-S-</u> 1 composite soil sample consisting of 4 discrete soil samples collected from the treatment zone surface to approximately one foot deep and analyzed for TPH 418.1, 8015m DRO/GRO, Chlorides 300.1.

<u>Cell #2-N</u>—I composite soil sample consisting of 4 discrete soil samples collected from the treatment zone surface to approximately one foot deep and analyzed for TPH 418.1, 8015m DRO/GRO, Chlorides 300.1.

Selected Sampling:

Located in the SW corner of Cell #2-8 is a dirt pile that was taken from the NE corner of Cell #2-N, as it was considered to be high in Chlorides. This pile will be sampled to determine the current status:

Dirt Pile will be sampled by taking 12 random selected samples and composite into one and will be analyzed for TPH 418.1, 8015m DRO/GRO, BTEX (8021), Chlorides 300.1.

Note: Random sample selection will be determined in the field using a simple "out of the hat" drawing. 4 samples will be drawn from 16 equal areas from each cell. See attached plot plan.

Safety Plan:

An on-site tailgate safety meeting will be conducted by the Key Personal describing on-site hazards.

Price LLC will include any safety issues concerning sampling.

Note all-Hazards:

MODING TRUCKS, BACK-HOLE BILL BE SHUT DOWN FOR SAMPLE COLLECTION HAND SIGNALS, SNATTER, AUGS, BESTS, WASP, IUSECUS,

Sign-off: Attending:

MAYNE PRICE IN FRAME AND PRICE MISON SU

HC PUTMAN

NEIL ALLEN Dert accom

Below-Photo of Cell-2N-VZ-2 shows oily stained dirt about one foot under surface.

Below-Photo of Cell-2N-VZ-3 shows oily stained dirt about one foot under surface.

Below-Photo of Cell-2N-VZ-4 shows oily stained dirt about one foot under surface.

RECEIVED OCD

2010 AUG 24 P 4: 27

Key Energy Farmington Permit NM1-9 Landfarm Sample Report 2nd Quarter 2010

August 20, 2010

To: Dan Gibson-Key Energy Corporate Environmental Manager

Loren Molleur- Key Energy Sr. Director Fluids Management Div.

From: Wayne Price- Price LLC

Date: August 20, 2010

Subject: Key Farmington NM1-9

Landfarm Sample Report 2nd. qtr.

Introduction:

Please find enclosed a copy of the 2nd qtr landfarm sample results for your review. The report consists of a Sample Results Matrix Table, Sampling Periods & Analysis Sheet, Sample Field Notes Plot Plan, Landfarm Sampling/Safety Plan, Photos and the Laboratory Results with Chain of Custodies and QA/QC documentation.

The permitted landfarm consists of two cells, cell #1 (one acre), and cell #2 (four acres). Cell #1 has been inactive for years and may have never been used and presently has vegetation growing in it.

Cell # 2 is the active cell and currently has not been filled to capacity. There are areas in Cell #2 that have never been used. In order to obtain good representative samples, it was decided to divide cell #2 into two sections, South and North. Treatment zone samples were taken from each active section as four discrete samples were collected from surface to 6 inches deep and composited in a stainless steel bowl, and transferred to clean jars and placed on ice. The south and north section samples were labeled Cell-2S-TZ and Cell-2N-TZ respectfully.

Vadose samples were collected with a backhoe at depths from 3-4 feet deep. At each sample location the treatment zone soil was scraped away to decrease the chance of cross contamination. Sample jars were filled directly out of the bucket and placed on ice.

Random sample locations were determine by using a "out -of-the- hat" drawing method for the south and north active sections that were divided into grids, 18 for the south and 16 for the north. Please refer to the attached plot plan, which shows where the vadose samples were actually collected and provides a cross reference to the chain-of-custody sample ID's.

Previously, soil taken from grid #7 Cell-2N formed a dirt pile located in the far SW part of Cell-2S. 12 discrete samples were collected from the dirt pile. A clean

shovel was used to dig two to three feet into the pile at six locations and 6 surface samples were taken, all composited into one sample.

Findings:

The "treatment zone" results ranged from 49,500 mg/kg to 86,800 mg/kg for TPH (418.1), 19.1 mg/kg to 128 mg/kg for TPH (8015 GRO/DRO), non-detect to 48.5 ug/kg for BTEX (8021), and 165mg/kg to 265 mg/kg for Chlorides.

"<u>Vadose Zone</u>" results ranged from 23.6 mg/kg to 11,100 mg/kg for TPH (418.1), non-detect for all TPH (8015 GRO/DRO), non-detect for all BTEX (8021), and 5 mg/kg to 410 mg/kg for Chlorides.

The "dirt pile" results were 27,800 mg/kg for TPH (418.1), 1.3 mg/kg for TPH (8015 GRO/DRO), 11.2 ug/kg for BTEX (8021), and 400 mg/kg for Chlorides.

During the vadose zone sampling, oily stained soil with moderate hydrocarbon odors were observed just below the surface to one to two feet deep in grid areas; Cell-2S-VZ-1-7, 2N-VZ-2-5, 2N-VZ-2-4, and 2N-VZ-2-14. Photos attached.

Conclusions:

The two "<u>treatment zone</u>" sampling results showed high levels for aliphatic hydrocarbons TPH (418.1), and during the sampling event four areas were discovered that had un-remediated soils. The chlorides are very low with an average of 215 mg/kg.

The "<u>vadose zone</u>" results reveal that most of the aromatic hydrocarbons are mostly non-detect, except samples Cell-2S-VZ-4 (grid #18) and Cell-2N-VZ-3 (grid #4) which showed slightly elevated levels of GRO/DRO 4.4 mg/kg to 28.8 mg/kg.

The vadose zone did show levels of aliphatic hydrocarbons ranging from 23.6 mg/kg to 11,100 mg/kg of TPH (418.1) with an average of 2647 mg/kg.

The chlorides in the vadose averaged 196 mg/kg well below the WQCC groundwater standard of 250 mg/l.

Recommendations and Immediate Actions:

The "<u>vadose zone</u>" should be given additional time for natural bio-remediated to occur. It is not recommend at this time to attempt to remove these soils as the un-remediated soils from the surface may cross contaminate the vadose zone.

The chlorides in both the treatment and vadose zone are at such low levels that no risk to the environment would be anticipated.

The treatment of the un-remediated soils and dirt pile have began and are being taken to the surface, spread out and tilled aggressively until acceptable levels are obtained.

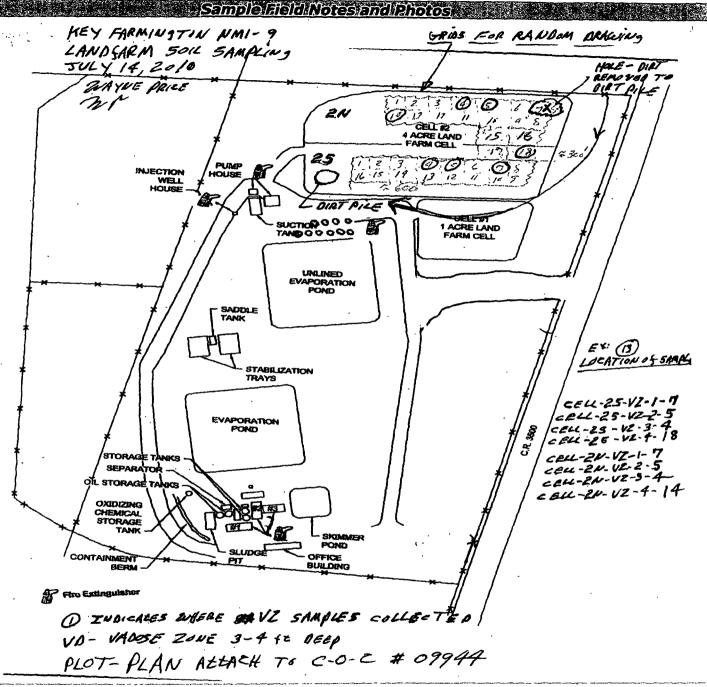
Future Use or Closure of the Landfarm:

Recommend Key meet with agency i.e. OCD to seek an acceptable path forward.

	Sample Re	esuits Matrix Ta	ble for 2nd Q	TR 2010										4.
Sample ID:	Date:	Sample Matrix		Chlorides Total mg/kg	TPH 418.1 Total mg/kg	TPH 8015 Total mg/kg	GRO mg/kg	DRO mg/kg	BTEX 8021 Total ug/kg	-	Toluene ug/kg	Ethyl-Ben ug/kg	M-P,Xylene ug/kg	0-Xylene ug/kg
Treatment Zone-TZ														
Cell-2S-TZ	"7/14/2010"	Soll		265	86,800	19.1	7.9	11.2	ND .	ND	ND	ND	ND	ND
Cell-2N-TZ	"7/14/2010"	Soil	Average	165 <i>215</i>	49,500 68,150	128	28.3	99.7	48.5	6.2	7.9	8.1	.14.9	11.4
Vadose Zone-VZ														
Cell-2S-VZ-1	"7/14/2010"	Soil*		175	117	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2S-VZ-2	"7/14/2010"	₋ Soll		375	23.6	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2S-VZ-3	"7/14/2010"	Soil		410	2730	ND	ND	ND	ND	ND	ND	ND	ND	ND
Celi-2S-VZ-4	"7/14/2010"	Soil		130	6650	4.4	2.1	2.3	ND	ND	ND	ND	ND	ND :
Cell-2N-VZ-1	"7/14/2010"	Soil		5	347	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-2	. "7/14/2010"	Soil*		55	51.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-3	"7/14/2010"	Soil*		235	11,100	25.8	8.3	17.5	ND	ND	ND	ND	ND	ND
Cell-2N-VZ-4	"7/14/2010 "	Soil*	Average	180 <u>196</u>	158 <u>2647</u>	ND	ND	ND	ND ,	ND	ND	ND	ND	ND
Dirt Pile	"7/14/2010"	Soil*		400	27,800	1.3	ND	1.3	11.2	ND	ND	ND	6.1	5.1

Notes and Comments See Sample Field Notes below for sample collection location grids.

Example: Cell-2N-VZ-1 was collected from the North half of Cell #2 in grid #7.


>Soil* these areas were noted to have dark stained soils with moderate hydrocarbon odors approximately 1-2 feet deep in places. See attached photos

- >Cell-2S is South half of Cell #2
- >Cell-2N is North haif of Cell #2
- >Cell #1 not sampled out of service for several years
- >Treatment Zone samples were 1 composite from 4 discrete samples
- >Vadose Zone samples were randomly selected using "out of the hat number draw" for grids- sample taken between 3-4 feet below the treatment zone-
- >Dirt Pile sample was 1 composite from 12 discrete samples
- >Background Samples not yet established

Highligthed cells requires action Action: More aggressive tilling

Key Energy Farmington Permit NM1-9 Landfarm Sample Report-2nd Quarter 2010

Sample Frequency	1st Qtr	2nd Qtr	3 rd Qtr	4th Qtr	5-years	
	Analysis	Analysis	Analysis	Analysis	Analysis	
Permit 711 requirements		***************************************			**************************************	
reatment Zone /adose Zone- 1 random sample /cell 2-3:ft	· NA	NA		NA TRU/RTEV/Con Cham/MOCC	NA	
pelow bottom of treatment zone	TPH/BTEX	TPH/BTEX	TPH/BTEX	TPH/BTEX/Gen Chem/WQCC metals	NÁ	
Part 36 requirements	^			*****		
Treatment Zone-one composite from 4 discrete sample		TPH/CI		TPH/CI		
Vadose Zone- 4 random samples per ceil 3-4 to below bottom of treatment zone		TPH/BTEX/CI		TPH/BTEX/CI	WQCC 3103 A&B	

09749

Key Energy Services NM1-9 SWM Landfarm Sampling and Safety Plan: (SENC-ANNUAL)+

Date: July 14, 2010 C-O-C # 09944 (QUANTERLY)

Objective:

Collect soil samples pursuant to requirements of the NMOCD old rule 711 and Part 36 permit requirements.

Procedure and protocol:

All samples will be collected and analyzed per approved EPA methods. QA/QC will be performed in the field, transport, delivery and analyzing of the samples.

Standard Industry sampling SOP's and protocols will be used in equipment cleaning, personal protection, sample containers, prevention of cross-contamination, and proper preservation, etc.

Sampling personal will have previous experience in collecting EPA type samples. Onthe-job training will be conducted during this exercise for Key and other employees responsible for future sample collection.

Landfarm description:

Landfarm cell #2 is divided in two sections, the south and north sections. In the past these samples have been labeled Cell #1 and Cell #2. The south samples will be labeled cell 2-S, and the north samples will be labeled cell 2-N. Landfarm cell #1 is an old inactive cell.

Sample description, type and locations:

Vadose Zone Sampling:

The existing permit condition per the rule 711 requires Treatment Zone Sampling (which is actually vadose zone) a minimum of one random soil sample to be collected per cell (<5ac) quarterly and analyzed for TPH(418.1 or 8015m) and BTEX (8020) to be collected 2-3 feet below the landfarm native ground surface.

The relative new rule part 36 for landfarms requires that vadosc zone sampling be a minimum of four random soil samples collected per cell (<5 ac) semi-annually and analyzed for TPH(418.1, 8015m DRO/GRO), BTEX (8020), and Chlorides (EPA 300.1) to be collected 3-4 feet below the landfarm original ground surface.

In order to satisfy both permit conditions, the following vadose samples will be collected and analyzed for the following constituents:

Cell #2-S- 4 random selected points, 3-4 feet deep, analyzed for TPH 418.1, 8015m DRO/GRO, BTEX (8021), Chlorides 300.1.
Cell #2-N 4 random selected points, 3-4 feet deep, Analyzed same as cell #2-S.

Treatment Zone Sampling:

Part 36 also requires semi-annual sampling of the treated soil (Treatment Zone). One composite soil sample consisting of 4 discrete soil samples must be collected and analyzed for TPH (418.1 or 8015m DRO/GRO) and Chlorides EPA 300.1.

In order to satisfy both permit conditions, the following treatment zone soil samples will be collected and analyzed for the following constituents:

<u>Cell #2-S-</u> 1 composite soil sample consisting of 4 discrete soil samples collected from the treatment zone surface to approximately one foot deep and analyzed for TPH 418.1, 8015m DRO/GRO, Chlorides 300.1.

<u>Cell #2-N</u> 1 composite soil sample consisting of 4 discrete soil samples collected from the treatment zone surface to approximately one foot deep and analyzed for TPH 418.1, 8015m DRO/GRO, Chlorides 300.1.

Selected Sampling.

Located in the SW corner of Cell #2-S is a dirt pile that was taken from the NE corner of Cell #2-N, as it was considered to be high in Chlorides. This pile will be sampled to determine the current status:

Dirt Pile will be sampled by taking 12 random selected samples and composite into one and will be analyzed for TPH 418.1, 8015m DRO/GRO, BTEX (8021), Chlorides 300.1.

Note: Random sample selection will be determined in the field using a simple "out of the hat" drawing. 4 samples will be drawn from 16 equal areas from each cell. See attached plot plan.

Safety Plan:

An on-site tailgate safety meeting will be conducted by the Key Personal describing on-site hazards.

Price LLC will include any safety issues concerning sampling.

Note all Hazards:

WIND CAM TEMP 90 F- 95 F

MODING TRUCKS, BACK-HOLE BILL BE SHUT DOWN for SAMPLE COLLECTION HAND EIGHNIS, SNATES, AUES, BEETS, WASP, JUSTICES,

Sign-off: Attending:

WAYNE PRIZE INT

M. PRICE Mary an Pru

STEVE VILSON SW

HE PUTMAN.

NEIL ALLEN Del acen

Below-Photo of Cell-2N-VZ-2 shows oily stained dirt about one foot under surface.

Below-Photo of Cell-2N-VZ-3 shows oily stained dirt about one foot under surface.

Below-Photo of Cell-2N-VZ-4 shows oily stained dirt about one foot under surface.

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-TZ	Date Reported:	07-19-10
Laboratory Number:	55146	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	7.9	0.2
Diesel Range (C10 - C28)	11.2	0.1
Total Petroleum Hydrocarbons	19.1	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-TZ	Date Reported:	07-19-10
Laboratory Number:	55147	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-19-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	28.3	0.2
Diesel Range (C10 - C28)	99.7	0.1
Total Petroleum Hydrocarbons	128	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Pavian

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55148	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste.

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-2	Date Reported:	07-19-10
Laboratory Number:	55149	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55150	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Anglyet

Client:

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

98065-0013

Sample ID:	Cell-2S-VZ-4	Date Reported:	07-19-10
Laboratory Number:	55151	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	
Preservative:	Cool	Date Analyzed:	Λ
Condition:	Intact	Analysis Requested:	
			Sample ID
			(e)\-25-
_		Concentration	## (*e 2S=
Parameter		(mg/Kg)	ع العام

Project #:

Gasoline Range (C5 - C10)	2.1	0.2
Diesel Range (C10 - C28)	2.3	0.1
Total Petroleum Hydrocarbons	4.4	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Key Energy

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Revision

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55152	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Poviou

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-2	Date Reported:	07-19-10
Laboratory Number:	55153	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Down

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55154	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool .	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	8.3	0.2
Diesel Range (C10 - C28)	17.5	0.1
Total Petroleum Hydrocarbons	25.8	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Radiana

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-4	Date Reported:	07-19-10
Laboratory Number:	55155	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil ·	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Review \

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative:	QA/QC 07-15-10 QA/ 55148 Methylene Chlo N/A		Project #: Date Reported: Date Sampled: Date Received: Date Analyzed:	:	N/A 07-19-10 N/A N/A 07-15-10
Condition:	NA		Analysis Reque	ested:	TPH
Gasoline Range C5 - C10 Diesel Range C10 - C28	I-Cal Date 05-07-07 05-07-07	I-Cal RF: 9.9960E+002 9.9960E+002	C-Cal RF: 1.0000E+003 1.0000E+003	% Difference 0.04% 0.04%	Accept. Range 0 - 15% 0 - 15%
Blank Conc. (mg/L - mg/Kg)	•	Concentration		Detection Limit	
Gasoline Range C5 - C10	•	ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept. Range
Gasoline Range C5 - C10	ND	250	252	101%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55146, 55148-55155

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC		Project #:	1	N/A
Sample ID:	07-19-10 QA/	QC	Date Reported:		07-19-10
Laboratory Number:	55172		Date Sampled:		N/A
Sample Matrix:	Methylene Chlo	ride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		07-19-10
Condition:	N/A		Analysis Reque	ested:	TPH
	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept. Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Blank Conc. (mg/L - mg/Kg)		Concentration		Detection Limit	İ
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND,		0.2	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	
Diesel Range C10 - C28	8.4	8.3	1.2%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept. Range
Gasoline Range C5 - C10	ND	250	250	99.9%	75 - 125%
Diesel Range C10 - C28	8.4	250	273	106%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55147; 55172-55173; 55179-55180; 55189

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55148	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	100 %
	1,4-difluorobenzene	100 %
	Bromochlorobenzene	100 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

December 1350.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55150	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	· ND	1.2
o-Xylene	ND	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	100 %
	1,4-difluorobenzene	100 %
•	Bromochlorobenzene	100 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

a distribution of the contract			
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-4	Date Reported:	07-19-10
Laboratory Number:	55151	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	· ND	1.2
o-Xylene	ND	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
-	Fluorobenzene	100 %
•	1,4-difluorobenzene	100 %
	Bromochlorobenzene	100 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-848, USEPA, December 1996.

Marked COOAD Assessful Valatia Ossasias Test Markeda for Foot Safe a California Control of the C

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55152	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total BTEX	. ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
-	Fluorobenzene	100 %
	1,4-difluorobenzene	100 %
	Bromochlorobenzene	100 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-2	Date Reported:	07-19-10
Laboratory Number:	55153	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter		Percent Recovery	
	Fluorobenzene	4	100 %	
	1,4-difluorobenzene	•	. 100 %	
	Bromochlorobenzene		100 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55154	Date Sampled:	07-14-10
Chain of Custody:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg) 0.9	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	, ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	100 %
	1,4-difluorobenzene	100 %
	Bromochlorobenzene	100 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics. Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	N/A 0715BBLK QA/QC		Project #		N/A
Sample ID: Laboratory Number:	55148		Date Reported Date Sampled		07-19-10 N/A
Sample Matrix:	Sail		Date Received:		N/A
Preservative:	N/A		Date Analyzed:		07-15-10
Condition:	N/A		Analysis:		BTEX
Calibration and	i-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.
Detection Limits (ug/L)		Accept. Ran	ge 0 - 15%	Conc	Limit
Benzene	8.2897E+006	8.3063E+006	0.2%	ND	0.1
Toluene	6.6921E+006	6 7056E+006	0.2%	ND	0.1
Ethylbenzene	4.8308E+006	4.8405E+006	0.2%	ND	0.1
p,m-Xylene	1 2135E+007	1 2159E+007	0.2%	ND	0.1
o-Xylene	4.2395E+006	4 2480E+006	0.2%	ND	0.1
Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect. Limit
Benzene ·	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9
Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	Accept Range
Benzene	ND	50.0	50.3	101%	39 - 150
Toluene	ND	50.0	50.7	101%	46 - 148
Ethylbenzene	ND	50.0	50.6	101%	32 - 160
p,m-Xylene	ND	100	100	99.7%	46 - 148
o-Xvlene	ND	50.0	49.4	98.8%	46 - 148
O-VAIGI1E	1475	30.0	43. 4	JU.U /0	40 - 140

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

Comments:

QA/QC for Samples 55148-55155

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-TZ	Date Reported:	07-1 9 -10
Laboratory Number:	55146	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)
		•

Total Petroleum Hydrocarbons 86,800 443

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Pavibu

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-TZ	Date Reported:	07-19-10
Laboratory Number:	55147	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons 49,500 177

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

__XOUR

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55148	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

117

17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-2	Date Reported:	07-19-10
Laboratory Number:	55149	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

Parameter	Concentration (mg/kg)	Det. Limit (mg/kg)
Total Petroleum Hydrocarbons	23.6	17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55150	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

2,730

17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2S-VZ-4	Date Reported:	07-19-10
Laboratory Number:	55151	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

•		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons 6,650 17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-1	Date Reported:	07-19-10
Laboratory Number:	55152	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

Parameter	Concentration (mg/kg)	Det. Limit (mg/kg)
	í	

Total Petroleum Hydrocarbons

347

17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-2	Date Reported:	07-19-10
Laboratory Number:	55153	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

•		Det.
•	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)
	·	

Total Petroleum Hydrocarbons 51.7 17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

V Analyst

177

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-3	Date Reported:	07-19-10
Laboratory Number:	55154	Date Sampled:	07-14-10
Chain of Custody No:	9944	Date Received:	. 07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons 11,100

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst Analyst

Raviou

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Cell-2N-VZ-4	Date Reported:	07-19-10
Laboratory Number:	55155	Date Sampled:	Ò7-14-10
Chain of Custody No:	9944	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons 158 17.7

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

QA/QC Project #: N/A Client: QA/QC 07-19-10 Sample ID: Date Reported: 06-15-TPH.QA/QC 55149 Laboratory Number: Date Sampled: N/A Freon-113 Sample Matrix: Date Analyzed: 07-15-10 Preservative: N/A Date Extracted: 07-15-10 N/A Analysis Needed: **TPH** Condition:

Blank Conc. (mg/Kg)

Concentration

Detection Limit

ND

17.7

Duplicate Conc. (mg/Kg)SampleDuplicate% DifferenceAccept. RangeTPH23.625.16.4%+/- 30%

Spike Conc. (mg/Kg)SampleSpike AddedSpike Result% RecoveryAccept RangeTPH23.62,0001,85091.4%80 - 120%

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: QA/QC for Samples 55146-55155

De lie Hongod

Client: **Key Energy** Project #: 98065-0013 Sample ID: Cell-2S-TZ Date Reported: 07-19-10 55146 Lab ID#: Date Sampled: 07-14-10 Sample Matrix: Soil Date Received: 07-14-10 Preservative: Cool Date Analyzed: 07-16-10 Condition: intact Chain of Custody: 9944

Parameter

Concentration (mg/Kg)

Total Chloride

265

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst Manager

98065-0013 Key Energy Project #: Client: 07-19-10 Cell-2N-TZ Date Reported: Sample ID: 55147 Date Sampled: 07-14-10 Lab ID#: 07-14-10 Soil Date Received: Sample Matrix: Date Analyzed: 07-16-10 Cool Preservative: Chain of Custody: 9944 Intact Condition:

Parameter

Concentration (mg/Kg)

Total Chloride

165

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Client: Key Energy Project #: 98065-0013 Cell-2S-VZ-1 Date Reported: Sample ID: 07-19-10 55148 Date Sampled: Lab ID#: 07-14-10 Sample Matrix: Soil Date Received: 07-14-10 07-16-10 Preservative: Cool Date Analyzed: Chain of Custody: Condition: Intact 9944

Parameter

Concentration (mg/Kg)

Total Chloride

175

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst Monpool

RANK

Client: Key Energy
Sample ID: Cell-2S-VZ-2
Lab ID#: 55149
Sample Matrix: Soil
Preservative: Cool
Condition: Intact

 Project #:
 98065-0013

 Date Reported:
 07-19-10

 Date Sampled:
 07-14-10

 Date Received:
 07-14-10

 Date Analyzed:
 07-16-10

 Chain of Custody:
 9944

Parameter

Concentration (mg/Kg)

Total Chloride

375

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst Analyst

RAVIEW

Client: Key Energy Project #: 98065-0013 Cell-2S-VZ-3 Sample ID: Date Reported: 07-19-10 Lab ID#: 55150 Date Sampled: 07-14-10 Sample Matrix: Soil Date Received: 07-14-10 Preservative: Cool Date Analyzed: 07-16-10 Intact Chain of Custody: Condition: 9944

Parameter

Concentration (mg/Kg)

Total Chloride

410

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Rhitiew

Client: Key Energy
Sample ID: Cell-2S-VZ-4
Lab ID#: 55151
Sample Matrix: Soil
Preservative: Cool
Condition: Intact

 Project #:
 98065-0013

 Date Reported:
 07-19-10

 Date Sampled:
 07-14-10

 Date Received:
 07-14-10

 Date Analyzed:
 07-16-10

 Chain of Custody:
 9944

Parameter

Concentration (mg/Kg)

Total Chloride

130

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Client: Key Energy Project #: 98065-0013 Sample ID: Cell-2N-VZ-1 Date Reported: 07-19-10 Lab ID#: 55152 Date Sampled: 07-14-10 Sample Matrix: Soil Date Received: 07-14-10 Preservative: Cool Date Analyzed: 07-16-10 Condition: Intact Chain of Custody: 9944

Parameter

Concentration (mg/Kg)

Total Chloride

5

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

7---

Client: Key Energy
Sample ID: Cell-2N-VZ-2
Lab ID#: 55153
Sample Matrix: Soil
Preservative: Cool
Condition: Intact

 Project #:
 98065-0013

 Date Reported:
 07-19-10

 Date Sampled:
 07-14-10

 Date Received:
 07-14-10

 Date Analyzed:
 07-16-10

 Chain of Custody:
 9944

Parameter

Concentration (mg/Kg)

Total Chloride

55

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Paviou

Client: Key Energy
Sample ID: Cell-2N-VZ-3
Lab ID#: 55154
Sample Matrix: Soil
Preservative: Cool
Condition: Intact

 Project #:
 98065-0013

 Date Reported:
 07-19-10

 Date Sampled:
 07-14-10

 Date Received:
 07-14-10

 Date Analyzed:
 07-16-10

 Chain of Custody:
 9944

Parameter

Concentration (mg/Kg)

Total Chloride

235

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

Analyst

Key Energy Project #: 98065-0013 Client: Cell-2N-VZ-4 Date Reported: 07-19-10 Sample ID: Lab ID#: 55155 Date Sampled: 07-14-10 Soil Sample Matrix: Date Received: 07-14-10 Cool 07-16-10 Preservative: Date Analyzed: intact Chain of Custody: 9944 Condition:

Parameter

Concentration (mg/Kg)

Total Chloride

180

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Key Farmington NMI-9 Land Farm

TZ=Treatment Zone; VZ=Vadose Zone; S=South; N=North

ent: KEY ENE	egy			ct Name				2 4 110 (4								ANAL	ÝSIS	/ PAR	AME	TERS	·····				
							NM1-9		1411		<u> </u>	K_			 		1	r	,			—т			_
ant Address:	OTAA	,	Samp	oler Nam			ie price				15)	927	09							'	1	.]			
51 US Hay 64	0/40/					PRI	CELL	·c			8	8 2	182	ais	ے		Œ.	Î	_					_ .	к
ont Phone No.: 505-7/5-28	09		Client	^{ι Νο} . ΄	20	45	-00	13			(Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		with H/P		TPH (418.1)	RIDE				Sample Cool	e intact
Sample No./ Identification	Sample Date	Sampl		Lab No.			ample Vlatrix	No./Volume of Containers			TPH (втех	000	RCRA	Cation	졅	TOLP	PAH	TPH (CHLORIDE				Samp	Sample
LL-25-TZ X	7-14-10	10:19	5	5141	٥	Solid Solid	Sludge Aqueous	40Z -2-		X	X								X	X				1	س،
LE2N-TZ	"	10:2	7.5		٠,	Solid	Sludge Aqueous	402 -2-		X	X								X	X				1	سا
11-25-VZ-1 *	"	10:4	9 45	514	8	Soil) Solid	Sludge Aqueous	1/		X	X	X							X	X				1	<u>_</u>
11-25-VZ-2)	k "	12:28	5	514	99	Solid Solid	Sludge Aqueous	11		X	X	X							X	X				4	
1-25-VZ-3	11	12:3	77 y 5	515	0		Sludge Aqueous	n		X	X	X							X	X			\perp	4	<u></u>
1-25-VZ-4	4	12:54	,5	515	1	Solid Solid	Sludge Aqueous	И		X	X	X							X	X				4	<u>レ</u>
1-2N-VZ-1 >	4	1:02	5	515	၁	Solid Solid	Sludge Aqueous	l1		1	X	X							X	X				4	<u>レ</u>
4-2N-VZ-2)	ч	1:231	m5	515	3	Solid	Sludge Aqueous	И		*	X	X							X	X				4	`レ
'L-2N-VZ-3"	۱۰ ا	1:430	2,5	515	4	Solid	Sludge Aqueous	1(X	Y	X							1	X				4	ر. سر
12-2N-VZ-4	11	1:58	e 5	5155	5 <u> </u>	Solid Solid	Studge Aqueous	13		7	X	<u>X</u> .							X	X				4	<u></u>
nquished by: (Signa	ature)	1					Date	Time	- 1	eceivo	ed by	: (Sigr	nature					~				Da	/ /	Tim	
NVF PRICE D	ature)						7-4-10	2:15/		eceiv	ed by	: (Sigr	nature	<u> </u>	>		£	<u>>-</u>	-	>	***************************************	7/4	1/10	14	[5
nquished by: (Signa	aturo)					,			B	eceiv/	ad by	: (Sigr	nati ire	7			 					 		,	
Tiquidition by, (digite		٠.										. (J.g.													
Z = TREATM	ENT Z	ONE	,	5 = 50 U= 100	UTH PTH			env	/i	rc	t	6	cl	1	9	- 14	T 3	ÉLE	:ZT#	₹Ø AVØ	C.A.C.A	a Dr.	OT F)/ AL	,
Z = VADOSE	: ZONE		0	,				An	aly	tica	l Lo	bor	atoı	y ·	SEE	At	tACI	4 CP	0	7/4	4	mer.	VZ S	AM)L1
mail Way,	e of	<u> H.C</u>	. Ku	trazes	щs	Highwa	y 64 • Farmin	gton, NM 87	401 •	505-6	32-06	15 • la	b@er	viroted	ch-Inc.	com		····		OCA	TIB		<u></u>	OC	.00
W/ result	5 .																				AUC	eni Pil	inting • F	omi 26	.49

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Dirt Pile	Date Reported:	07-15-10
Laboratory Number:	55156	Date Sampled:	07-14-10
Chain of Custody No:	9945	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-14-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	1.3	0.1
Total Petroleum Hydrocarbons	1.3	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Key Farmington NMI-9 Land Farm

Analyst

Review Review

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	07-15-10 QA/QC	Date Reported:	07-15-10
Laboratory Number:	55143	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	07-15-10
Condition:	N/A	Analysis Requested:	TPH

	-l-Cal Date	I-Cal RF	C-CallRF	% Difference	Accept: Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L-: mg/Kg)	Concentration		Detection Limit
Gasoline Range C5 - C10	ND	; ′	0.2
Diesel Range C10 - C28	ND		0.1
Total Petroleum Hydrocarbons	ND		0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept: Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	255	102%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%.

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55141, 55143-55145 and 55156

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Dirt Pile	Date Reported:	07-15-10
Laboratory Number:	55156	Date Sampled:	07-14-10
Chain of Custody:	9945	Date Received:	07-14-10
Sample Matrix:	Soil	Date Analyzed:	07-15-10
Preservative:	Cool	Date Extracted:	07-14-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)		
Benzene	ND	0.9		
Toluene	ND	1.0		
Ethylbenzene	ND	1.0		
p,m-Xylene	6.1	1.2		
o-Xylene	5.1	0.9		
Total BTEX	11.2			

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
-	Fluorobenzene	100 %
	1,4-difluorobenzene	100 %
	Bromochlorobenzene	100 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Key Farmington NMI-9 Land Farm

Revi

Client:	N/A	Project #:	N/A
Sample ID:	0715BBLK QA/QC	Date Reported:	07-15-10
Laboratory Number:	55143	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	07-15-10
Condition:	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/L)	I-Calire	C-CallRF Accepts Rang		Blank Gond	Detect. Eimit
Benzene	7.9583E+005	7.9742E+005	0.2%	ND	0.1
Toluene	8.7319E+005	8.7494E+005	0.2%	ND	0.1
Ethylbenzene	7.8172E+005	7.8329E+005	0.2%	ND	0.1
p,m-Xylene	1.8923E+006	1.8961E+006	0.2%	ND	0.1
o-Xylene	6.6287E+005	6.6420E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg) Sample Duplicate Accept Range Detect Limit							
Benzene	ND	ND	0.0%	0 - 30%	0.9		
Toluene	ND	ND	0.0%	0 - 30%	1.0		
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0		
p,m-Xylene	2.2	2.0	9.1%	0 - 30%	1.2		
o-Xylene	5.1	5.1	0.0%	0 - 30%	0.9		

Spike Conc: (ug/Kg)	Sample Amo	unt Spiked #Spik	ed Sample - %	Recovery	Accept Range
Benzene	ND	50.0	50.2	100%	39 - 150
·Toluene	ND	50.0	49.5	99.0%	46 - 148
Ethylbenzene	ND	50.0	49.4	98.8%	32 - 160
p,m-Xylene	2.2	100	99.1	98.9%	46 - 148
o-Xylene	5.1	50.0	50.0	99.0%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 55141-55143 and 55156

Analyst

Povious

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Dirt Pile	Date Reported:	07-15-10
Laboratory Number:	55156	Date Sampled:	07-14-10
Chain of Custody No:	9945	Date Received:	07-14-10
Sample Matrix:	Soil	Date Extracted:	07-15-10
Preservative:	Cool	Date Analyzed:	07-15-10
Condition:	Intact	Analysis Needed:	TPH-418.1

	•	•	-	· ·• ·	•	•	Det.
		Concentration					Limit
Parameter				(mg/kg)			(mg/kg)

Total Petroleum Hydrocarbons 27,800 151

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

Key Farmington NMI-9 Land Farm

Analyst

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	QA/QC	Date Reported:	07-15-10
Laboratory Number:	07-15-TPH.QA/QC 55156	Date Sampled:	N/A
Sample Matrix:	Freon-113	Date Analyzed:	07-15-10
Preservative:	N/A	Date Extracted:	07-15-10
Condition:	N/A	Analysis Needed:	° TPH

Calibration	I-Cal Date	C-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept. Range
	06-30-10	07-15-10	1,716	1,770	3.1%	+/- 10%

Blank Conc. (mg/Kg) TPH	Concentration ND		Detection Limi	it i jili ji siye
Duplicate Conc. (mg/Kg) TPH	Sample 27,800	Duplicate 23,400	% Difference 15.8%	Accept. Range +/- 30%
Spike Conc. (mg/Kg) Sample 27 800	Spike Added	Spike Result	. ,	Accept Range

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

QA/QC for Samples 55156, 55141, 55143 and 55159

Analyst

Review

Key Energy Project #: 98065-0013 Client: Dirt Pile Date Reported: 07-15-10 Sample ID: 07-14-10 Date Sampled: 55156 Lab ID#: 07-14-10 Soil Date Received: Sample Matrix: Date Analyzed: 07-15-10 Cool Preservative: Chain of Custody: 9945 Condition: Intact

Parameter Concentration (mg/Kg)

Total Chloride

400

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Key Farmington NMI-9 Land Farm

Analyst

Review

CHAIN OF CUSTODY RECORD

0994845 110

int: KEY EVER	44		Project Name / L						ANALYSIS / PARAMETERS													
	•		KEY FARMUN Sampler Name: WAYNE PA	STON	NM1-9	LANDSA	RM															
nt Address:			Sampler Name:						2	<u>2</u>	6						1					
int Phone No.:	874	01	ZUAYNE PA	PIZE.	PRICE	LLC.		•	801	98	978	S				•		1				
int Phone No.:								*****	8	ള	ğ	eta	ië		学		=	l			ō	act
505-715-28			980	65	-001	3			TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE		1	Sample Cool	Sample Intact
Sample No./	Sample	Samp	le Lab No.	5	Sample	No./Volume	Preser	vative	Ē	ă	Ö	¥.	ţį.		٩	I	Ţ	9			ğ.	Ē
Identification	Date	Time			Matrix	No./Volume of Containers	HgCl, HC	18	윤		8	8	S	Ω	2	PAH					Sa	Sa
RT PILE	7-14-10	Milo	My 55156	Solid	Sludge Aqueous	40Z 2		X	X	X							X	X			V	4
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous	,																
				Soil Solid	Sludge Aqueous														-			
			·	Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous	-										-						
quished by: (Sign	ature)				Date 17-14-10	Time 2:45	Re	ceive	ed by:	(Sign	ature)		1		سر مرسست	2				ate 4/10	ł	me 4/5
iquished by: (Sign	ature)		· · · · · · · · · · · · · · · · · · ·			<i></i>	Re	ceive	d by:	(Sign	ature)	1)		<u></u>		<	5	 	<u> </u>		1=
quished by: (Sign	ature)			- 			Re	ceive	d by:	(Sign	ature))				<u>-</u>						
,			5796 U	S Highwa	ay 64 • Farmin		alyt	ica	l La	bore	ator	y	h-Inc.c	com	,							

COVER LETTER

Thursday, April 22, 2010

Christine Walters Envirotech 5796 US Highway 64 Farmington, NM 87401

TEL: (505) 632-0615 FAX (505) 632-1865

RE: Key Energy

Dear Christine Walters:

Order No.: 1004278

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 4/14/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

		nemenna i su manua i ja	.,
Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #1 Top	Date Reported:	04-23-10
Laboratory Number:	53755	Date Sampled:	04-19-10
Chain of Custody No:	9118	Date Received:	04-19-10
Sample Matrix:	Soil	Date Extracted:	04-21-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	144	0.1
Total Petroleum Hydrocarbons	144	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

Review Weetles

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #2 Top	Date Reported:	04-23-10
Laboratory Number:	53756	Date Sampled:	04-19-10
Chain of Custody No:	9118	Date Received:	04-19-10
Sample Matrix:	Soil .	Date Extracted:	04-21-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Analysis Requested:	8015 TPH
Chain of Custody No: Sample Matrix: Preservative:	9118 Soil Cool	Date Received: Date Extracted: Date Analyzed:	04-19-10 04-21-10 04-22-10

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	222	0.1
Total Petroleum Hydrocarbons	222	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

Review

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

and the substantial processing and the substantial processing		•	
Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #1 Bottom	Date Reported:	04-23-10
Laboratory Number:	53757	Date Sampled:	04-19-10
Chain of Custody No:	9118	Date Received:	04-19-10
Sample Matrix:	Soil	Date Extracted:	04-21-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	74.6	0.1
Total Petroleum Hydrocarbons	74.6	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

			- · -
Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #2 Bottom	Date Reported:	04-23-10
Laboratory Number:	53758	Date Sampled:	04-19-10
Chain of Custody No:	9118	Date Received:	04-19-10
Sample Matrix:	Soil	Date Extracted:	04-21-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	185	0.1
Total Petroleum Hydrocarbons	185	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

> SW-846, USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

Review Malter

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	04-22-10 QA/0	QC .	Date Reported:		04-23-10
Laboratory Number:	53755		Date Sampled:		N/A
Sample Matrix:	Methylene Chlor	ride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		04-22-10
Condition:	N/A		Analysis Reque	sted:	TPH
	. 100		1	5 8 8 g - 5	1.1
Gasoline Range C5 - C10	05-07-07	1.1049E+003	1.1054E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07 ·	1.1095E+003	1.1100E+003	0.04%	0 - 15%
operation of the second of the		, 7 - 42, 49 5 C		Andrew Programme	.
Gasoline Range C5 - C10 🏏		ND		0.2	
Diesel Range C10 - C28	•	ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
Facilities for the experience of	2014 AB	$\mathcal{S}_{\mathbf{q}} = \{ \mathbf{r}_{\mathbf{q}} \delta_{\mathbf{q}} \}$	March American	er es sur	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	
Diesel Range C10 - C28	144	139	3.4%	0 - 30%	
•			·		
	+ + 1	1 1 1 1 1 1 1 1	1141	<u> </u>	<u> </u>
Gasoline Range C5 - C10	ND	250	248	99.2%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53755 - 53758 and 53774 - 53779.

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Ćlient:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #1 Bottom	Date Reported:	04-23-10
Laboratory Number:	53757	Date Sampled:	04-19-10
Chain of Custody:	9118	Date Received:	04-19-10
Sample Matrix:	Soil	Date Analyzed:	04-22-10
Preservative:	Cool	Date Extracted:	04-21-10
Condition:	Intact	Analysis Requested:	BTEX

		Det.
	Concentration	Limit _.
Parameter	(ug/Kg)	(ug/Kg)
;		

•		
Benzene	ND	0.9
Toluene	ND ·	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	83.4 %
	1,4-difluorobenzene	78.9 %
	Bromochlorobenzene	80.9 %

References:

Total BTEX

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #2 Bottom	Date Reported:	04-23-10
Laboratory-Number:	53758	Date Sampled:	04-19-10
Chain of Custody:	9118	Date Received:	04-19-10
Sample Matrix:	Soil	Date Analyzed:	04-22-10
Preservative:	Cool	Date Extracted:	04-21-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	•
Ethylbenzene	ND	1.0	
p,m-Xylene	ND /	1.2 ,	

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	82.4 %
	1,4-difluorobenzene	82.9 %
•	Bromochlorobenzene	79.4 %

References:

o-Xylene

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

ND

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Sunco SWD #1

Analyst

Mustu miceters
Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

			
Client:	N/A	Project #:	N/A
-Sample ID:	04-22-BTEX_QA/QC	Date_Reported:	04-23-10
Laboratory Number:	53757	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	: N/A
Preservative:	N/A	Date Analyzed:	04-22-10
Condition:	N/A	Analysis:	BTEX

referbeteretijsker jester	st of pay leader	G. British	· MEET	(figure)	Control of the
e vita di la viga di					
	·			,	
Benzene	1.4266E+005	1.4295E+005	0.2%	ND	0.1
Toluene	1.2613E+006	1,2638E+006	0.2%	ND .	0.1
Ethylbenzene	1.2057E+006	1.2081E+006	0.2%	ND	0.1
p,m-Xylene	1.0690E+006	1.0712E+006	0.2%	ND	0.1
o-Xylene	2.6876E+006	2.6930E+006	0.2%	ND	0.1

ggafejarar (1944), ingdengi	ing the light	to Angapta	A. 1. (1)	et a ment of the period	Four Bond of Control No.
	•				•
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	· ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND _.	0.0%	0 - 30%	0.9

Negatian (2006) halpethold						
	,	•				•
Benzene		N	D 50.0	38.4	76.7%	39 - 150
Toluene		N	D 50.0	44.9	89.8%	46 - 148
Ethylbenzene		N	D 50.0	45.1	90.2%	32 - 160
p,m-Xylene		, N	D 100	84.5	84.5%	46 - 148
o-Xylene		N	D 50.0	44.4	88.8%	46 - 148
0-Aylene		I	D 30.0	****	00.0 /6	40 - 140

ND - Parameter not detected at the stated detection limit.

References.

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 53755 - 53758 and 53774 - 53779.

Analyst

Review

	•		
Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #1 Top	Date Reported:	04-23-10
Lab ID#.	53755	Date-Sampled:	04-19-10
Sample Matrix:	Soil	Date Received:	04-19-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Chain of Custody:	9118

Parameter Concentration (mg/Kg)

Total Chloride

120

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Sunco SWD #1

·			•	
Client:	Key Energy Serv.	Project #:	98065-0013	
Sample_ID:	Sample #2 Top	Date Reported:	04-23-10	
Lab ID#:	53756	Date Sampled:	04-19-10	=.
Sample Matrix:	Soil	Date Received:	04-19-10	
Preservative:	Cool	Date Analyzed:	04-22-10	
Condition:	Intact	Chain of Custody:	9118	

Parameter	Concentration (mg/Kg)

Total Chloride

195

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Sunco SWD #1

Analyst

/ hristin of Wellon Review

		•	•
Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #1 Bottom	Date Reported:	04-23-10
Lab ID#:	53757	Date Sampled:	04-19-10
Sample Matrix:	Soil	Date Received:	04-19-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Chain of Custody:	9118

Parameter		Concentration (mg/Kg)	}
ratattietet	•	Concentration (mg/Ng)	
	······································	 	

Total Chloride

115

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Sunco SWD #1

Analyst

Mutte Muster Review

Client:	Key Energy Serv.	Project #:	98065-0013
Sample ID:	Sample #2 Bottom	Date Reported:	04-23-10
Lab ID#:	53758	Date Sampled:	04-19-10
Sample Matrix:	Soil	Date Received:	04-19-10
Preservative:	Cool	Date Analyzed:	04-22-10
Condition:	Intact	Chain of Custody:	9118

Parameter	Concentration (mg/Kg)
·	

Total Chloride

165

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Sunco SWD #1

Analyst

Mustle of Woo Lan

CHAIN OF CUSTODY RECORD

09118

ACCENT Printing • Form 28-0807

Client:		P	roject Name / L	ocation:	;	· · · ·		1.5.1						ANAL	YSIS.	/ PAR	AMET	ERS					
Key Bueze	Seev.		Sauca S	541 K	")	-										1							
Client Address:		1 9	Sampler Name:			,		-	5)	(17)	<u>6</u>											}	
			12.C Client No.:	ALL	lew _				TPH (Method 8015)) B P	VOC (Method 8260)	<u>.s</u>	_		<u>a</u>								
Client Phone No.:		C	Client No.:	10	- 20	77			pod	Ř	Pod	/eta	nio		Ξ		Ē	ш				00	ıtacı
505-486-20	210		_981) ES	, -00	1.5		•	Met	X	Met	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
· Sample No./	Sample	Sample	Lab No		Sample	No./Volum				Ĕ	ည	₹	iệi	5	붓	PAH	. 표	일				dms	amp
Identification	Date	Time		!	Matrix	of Containers	HgCl	на	<u> </u>	<u>_</u>	<u>ک</u>	<u> </u>	ပြီ	RC	<u> </u>	8	<u> </u>	Ö	4			S	<u>~</u>
Sample #1 Top	4/19/10	11:30	53755	Solid	Sludge Aqueous	1-402				MM BTEX (Method 8021)	دح	,				,		\				1	<u></u>
54mp 12 +2 Top	4/10/10	11:25	53756	Soild	Sludge Aqueous)			/	13/	دی								1			4	سا "
Same #1 bother	1	11:30	53757	Solid Solid	Sludge Aqueous				V	1													V
Sample #2 Bottom	1	i	53758	Solid	Sludge Aqueous	1			/	V								~				1	V
				Soil Solid	Sludge Aqueous																		
			-	Soil Solid	Sludge Aqueous													-	1				
				Soil	Sludge Aqueous				1.									•					
				Soil Solid	Sludge Aqueous				 			·						,					
				Soil	Sludge Aqueous				-		٠,					ļ							•
				Solid	Sludge												 						•
Relinquishedby: (Signa	ature) ·	L	1	Jona	Aqueous	Time	<u>J∵</u> I	eceiv	ed by:	(Sign	ature) /	I	l	L	l	l	<u> </u>	++	Da	ite	Tir	ne
Del a	el	_			4/19/10				-		<i>\\</i>				77		:			4/1	9/10	, /2.	15
Relinquishedby: (Signa	ature)			_				eceiv	ed by:	(Sign	ature	0					0			1,7,4			
Relinquishedby: (Signa	ature)			····			R	eceiv	ed by:	(Sign	ature)	•						+	+			
					<u> </u>																,		
	•	•	r		一 入「		. •			_	_ 1			,			:		\prod				
•					二 3	en											;						
•		-	•	7		Aı	naly	tico	al La	bore	ator	У				•							
			5796 US	S Highwa	y 64 • Farming	aton. NM 8	7401 •	505-6	32-061	5 • la	h@en	virotec	h-inc d	com			ì	,					

COVER LETTER

Friday, April 16, 2010

Christine Walters Envirotech 5796 US Highway 64 Farmington, NM 87401

TEL: (505) 632-0615 FAX (505) 632-1865

RE: Key Energy

Dear Christine Walters:

Order No.: 1004248

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 4/13/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 A7. license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Hall Environmental Analysis Laboratory, Inc.

Date: 16-Apr-10

CLIENT:

Envirotech

Client Sample ID: 53668-SWD

Lab Order:

1004248

Collection Date: 4/12/2010 2:30:00 PM

Project:

Date Received: 4/13/2010

Lab-ID:-

Key Energy 1004248-01

Matrix: AQUEOUS

					•
EPA METHOD 8270C: SEMIVOLATI	LES				Analyst: JDC
Acenaphthene	ND T	50	μg/L	1	4/14/2010 5:53:58 PM
Acenaphthylene	ND	- 50	µg/L	1 🔐	4/14/2010 5:53:58 PM
Aniline	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Anthracene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Azobenzene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Benz(a)anthracene	ND	50	µg/Ľ	1	4/14/2010 5:53:58 PM
Benzo(a)pyrene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Benzo(b)fluoranthene	, ND	50	μg/L	1	4/14/2010 5:53:68 PM
Benzo(g,h,i)perylene	. ND	50	μg/L	1	4/14/2010 5:53:58 PM
Benzo(k)fluoranthene	ND	50	µg/L	1	4/14/2010 5:53:58 PM
Benzoic acid	ND	100	μg/L	1	4/14/2010 5:53:58 PM
Benzyl alcohol	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Bis(2-chloroethoxy)methane	ND	50	µg/L	1	4/14/2010 5:53:58 PM
Bis(2-chloroethyl)ether	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Bis(2-chloroisopropyl)ether	ND	50	ha/r	1	4/14/2010 5:53:58 PM
Bis(2-ethylhexyl)phthalate	1300	250	μg/L	5	4/15/2010 3:40:10 PM
4-Bromophenyl phenyl ether	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Butyl benzyl phthalate	' ND	50	μg/L	1,	4/14/2010 5:53:58 PM
Carbazole	ND ND	50	μg/L	1	4/14/2010 5:53:58 PM
4-Chloro-3-methylphenol	ND	50	μg/L	1	4/14/2010 5:53:58 PM
4-Chloroaniline	ND	50	μg/L	· 1	4/14/2010 5:53:58 PM
2-Chloronaphthalene	. ND	50	μg/L	,1	4/14/2010 5:53:58 PM
2-Chlorophenol	ND	50	μg/Ŀ	. 1	4/14/2010 5:53:58 PM
4-Chlorophenyl phenyl ether	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Chrysene	ND	50	µg/L	1 '	4/14/2010 5:53:58 PM
Di-n-butyl phthalate	ND	50	μg/L	1.	4/14/2010 5:53:58 PM
Di-n-octyl phthalate	1500	250	µg/L	5	4/15/2010 3:40:10 PM
Dibenz(a,h)anthracene	ND	50	µg/L	1	4/14/2010 5:53:58 PM
Dibenzofuran	ND	50	μg/L	1 .	4/14/2010 5:53:58 PM
1,2-Dichlorobenzene	ND ·	50	µg/L	1	4/14/2010 5:53:58 PM
1,3-Dichlorobenzene	. ND	50	µg/L	1	4/14/2010 5:53:58 PM
1,4-Dichlorobenzene	· ND	50	µg/L`	, 1	4/14/2010 5:53:58 PM
3,3 ⁻ -Dichlorobenzidine	, ND	50	µg/L	1	4/14/2010 5:53:58 PM
Diethyl phthalate	ND	50	h8∖Ր	1	4/14/2010 5:53:58 PM
Dimethyl phthalate	ND	50	µg/L	1 '	4/14/2010 5:53:58 PM
2,4-Dichlorophenol	ND	. 100	µg/L .	1	4/14/2010 5:53:58 PM
2,4-Dimethylphenol	ND	50 ·	µg/L	1	4/14/2010 5:53:58 PM
4,6-Dinitro-2-methylphenol	ND	100	h8/r	1	4/14/2010 5:53:58 PM
2,4-Dinitrophenol	ND	100	µg/L	1	4/14/2010 5:53:58 PM
2,4-Dinitrotofuene	ND	50	ha\r	1	4/14/2010 5:53.58 PM
2,6-Dinitrotoluene	ND	50	µg/L	1	4/14/2010 5:53:58 PM

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Page 1 of 2

Hall Environmental Analysis Laboratory, Inc.

Date: 16-Apr-10

CLIENT:

Envirotech

Client Sample ID: 53668-SWD

Lab Order:

Collection Date: 4/12/2010 2:30:00 PM

Project:

1004248

Date Received: 4/13/2010

Lab.ID:

Key Energy 1004248-01

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLAT	ILES				Analyst: JDC
Fluoranthene	. ND	50	μg/L	1	4/14/2010 5:53:58 PM
Fluorene	ND	50	μg/L	· 1	4/14/2010 5:53:58 PM
Hexachlorobenzene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Hexachlorobutadiene	. ND	50	.µg/L	1	4/14/2010 5:53:58 PM
Hexachlorocyclopentadiene	· ND	50	μg/L	1	4/14/2010 5:53:58 PM
Hexachloroethane	ND	50	μg/L	1	4/14/2010 5:53:58 PM
indeno(1,2,3-cd)pyrene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Isophorone	ND	. 50	μg/L	1	4/14/2010 5:53:58 PM
2-Methylnaphthalene	290	50	μg/L	· 1	4/14/2010 5:53:58 PM
2-Methylphenol	94	50	μg/L	1.	4/14/2010 5:53:58 PM
3+4-Methylphenol	69	50	μg/L	1 .	4/14/2010 5:53:58 PM
N-Nitrosodi-n-propylamine	ND	50	μg/L	1	4/14/2010 5:53:68 PM
N-Nitrosodimethylamine	ND	50	μg/L	1	4/14/2010 5:53:58 PM
N-Nitrosodiphenylamine	ND	50	μg/L -	· 1	4/14/2010 5:53:58 PM
Naphthalene	220	50	μg/L	1	4/14/2010 5:53:58 PM
2-Nitroaniline	ND	50	µg/L	1	4/14/2010 5:53:58 PM
3-Nitroanlline	ND	50	μg/L	1	4/14/2010 5:53:58 PM
4-Nitroaniline	ND	50	μg/L	1 .	4/14/2010 5:53:58 PM
Nitrobenzene	ND	50	μg/L	1	4/14/2010 5:53:68 PM
2-Nitrophenol	ND.	50	μg/L	1	4/14/2010 5:53:58 PM
4-Nitrophenol	ND	. 50	μg/L	1	4/14/2010 5:53:58 PM
Pentachlorophenol	ND	100	μg/L	1	4/14/2010 5:53:58 PM
Phenanthrene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Phenol	95	50	μg/L	1	4/14/2010 5:53:58 PM
Pyrene	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Pyridine	ND	50	μg/L	1	4/14/2010 5:53:58 PM
1,2,4-Trichlorobenzene	· ND	. 50	μg/L	1	4/14/2010 5:53:58 PM
2,4,5-Trichlorophenol	· ND	50	μg/L	1	4/14/2010 5:53:58 PM
2,4,6-Trichlorophenol	ND	50	μg/L	1	4/14/2010 5:53:58 PM
Surr. 2,4,6-Tribromophenol	74,2	16.6-150	%REC	1	4/14/2010 5:53:58 PM
Surr. 2-Fluorobiphenyl	71.6	19.6-134	%REC	1	4/14/2010 5:53:58 PM
Surr: 2-Fluorophenol	34.1	9.54-113	%REC	1	4/14/2010 5:53:58 PM
Surr. 4-Terphenyl-d14	88.6	22.7-145	%REC	1	4/14/2010 5:53:58 PM
Surr. Nitrobenzene-d5	66.6	14.6-134	%REC	1	4/14/2010 5:53:58 PM
Surr: Phenol-d5	41.5	10.7-80.3	%REC	1	4/14/2010 5:53:58 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated 'NC
- Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 16-Apr-10

QA/QC SUMMARY REPORT

Client:

Envirotech

Project:

Key Energy

Work Order:

1004248

Analyte	Result	_Units	PQL	SPK Va SPK ref			hLimit	
Method: EPA Method 8270C	-Semivolatiles	3					A salvala Dala	4/15/2010 3:09:36 F
Sample ID: mb-21933		MBLK			Batch ID:	21933	Analysis Date	4/15/2010 3:08:30 1
Acenaphthene	· ND	μg/L	10	•			•	
Acenaphthylene	ND	µg/L	10					
Aniline	ND	µg/L	10					•
Anthracene	ND	μg/L	10					
Azobenzene	ND	μg/L	10					
Benz(a)anthracene	ND	μg/L	10				•	
Benzo(a)pyrene	ND	µg/L	10					
Benzo(b)fluoranthene	ND.	µg/L	10				,	
Benzo(g,h,i)perylene	, ND	μg/L	10					
Benzo(k)fluoranthene	ND	μg/L	10					
Benzolc acid	ND .	μg/L	20					
Benzyl alcohol	ND	μg/L	10					
Bis(2-chloroethoxy)methane	ND .	μg/L	10					
• • • • • • • • • • • • • • • • • • • •	ND	µg/L	10					•
Bis(2-chloroethyl)ether	ND	μg/L	10					
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	ND	μg/L	10					
	ND	μg/L	10					
4-Bromophenyl phenyl ether	ND	µg/L	10					•
Butyl benzyl phthalate Carbazole	ND	μg/L	10					
Carbazole 4-Chloro-3-methylphenol	ND	μg/L	10	,			*	•
• • • •	ND	hâ\r hâ\r	10					
4-Chloroaniline	ND	µg/L	10		•			
2-Chloronaphthalene	ND	μg/L μg/L	10					,
2-Chlorophenol			10,					
4-Chlorophenyl phenyl ether	ND ND	µg/L	10,		•	•		
Chrysene	, ND	µg/L	10					•
Di-n-butyl phthalate	ND	µg/L µg/L	10				•	
Di-n-octyl phthalate	ND ND		10					
Dibenz(a,h)anthracene	ND ND	μg/L _.	10					
Dibenzofuran	ND	μg/L μg/L	10					
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND	µg/L	10					
1,4-Dichlorobenzene	ND	µg/L	10					
3,3'-Dichlorobenzidine	ND	· μg/L	10				•	
Diethyl phthalate	ND	µg/L	10			•		
Dimethyl phthalate	ND	µg/L	10				•	
2,4-Dichlorophenol	ND .	μg/L μg/L	20					
2,4-Dimethylphenol	ND	µg/L	10		,			
4,6-Dinitro-2-methylphenol	ND	µg/∟ µg/L	20					
2,4-Dinitrophenol	ND	μg/L	20		•			
2,4-Dinitrotoluene	ND	μg/L	10					•
2,6-Dinitrotoluene	ND	µg/L	10					
Fluoranthene	ND	µg/L	10					
Fluorene	ND	µg/L	10					
Hexachlorobenzene	ND	μg/L	10					

Qualifiers:

Page 1

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

Envirotech

Project: Key Energy

Work Order:

1004248

Analyte	Result	Units	PQL	SPK Va SPK	ref	%Kec Lo	WLIMIT HI	gnumit	70110	-RPDL·lmit-Qual-
Method: EPA Method 8270C	: Semivolatile	B			·					
Sample ID: mb-21933	•	MBLK				Batch ID:	21933	Analy	sis Date:	4/15/2010 3:09:36 P
Hexachlorobutadiene	ND	μg/L	10							
Hexachlorocyclopentadiene	ND	μg/L	10							
Hexachloroethane	ND	μg/L	10					•		
Indeno(1,2,3-cd)pyrene	ND	μg/L	10	•		•				,
Isophorone	ND	μg/L	10							
2-Methylnaphthalene	ND	μg/L	10							•
2-Methylphenol	ND	μg/L	10		•					
3+4-Methylphenol	ND	μg/L	10							
N-Nitrosodi-n-propylamine	ND	μg/L	10							•
N-Nitrosodimethylamine	ND	μg/L	10							
N-Nitrosodiphenylamine	ND	µg/L	10.	,			*			
• •	ND	µg/L	10							
Naphthalene	ND	μg/L	10	•						
2-Nitroanlline	ND	μg/L	10							
3-Nitroaniline	. ND		. 10							•
4-Nitroaniline	ND ND	μg/L´. ´	10							
Vitrobenzene	ND	µg/L	·. 10							
2-Nitrophenol		μg/L	10							
I-Nitrophenol	ND ND	μg/L·	20							•
Pentachlorophenol	ND	μg/L	10	•						
Phenanthrene	ND	µg/L								
Phenol	ND	μg/L	10 -							
Pyrene	ND	μg/L	. 10							
Pyridine	ND	h8/r	10							
1,2,4-Trichlorobenzene	ND	μg/L	10			,				
2,4,5-Trichlorophenol	ND	µg/L	10	-						
2,4,6-Trichlorophenol	· ND	µg/L	10			Batch ID:	21933	Analy	sis Date:	4/14/2010 2:51:29 P
Sample ID: Ics-21933		LCS						•	ois Date.	4/14/2010 2.51.28 F
Acenaphthene	78.54	µg/L	10	100	0	78.5	33.2	88.1		
1-Chloro-3-methylphenol	139.7	µg/L	10	200	0	69.9	26.5	101		
2-Chlorophenol	131.5	µg/L	10	200	0	65.8	27.5	88.7		
t,4-Dichlorobenzene	65.76	µg/L	10	100	0	65.8	27.2	74.1		
2,4-Dinitrotoluene	80 48	µg/L	10	100	0	80.5	32.6	107		
N-Nitrosodi-n-propylamine	65.90	μg/L 	10	· 100	0	65.9	27.1	98.3		•
4-Nitrophenol	98.68	µg/L	10	200	0	48.3	6.78	74.7		
Pentachlorophenol	156.8	hg/r	20	200	0	78.4	14.8	113		•
Phenol	72 32	μg/L	10	200	0	36.2	17	53.4		
Pyrene	70.36	μg/L 	10	100 .	0	70.4	27	96.3		
1,2,4-Trichlorobenzene	64.76	µg/L	10	100	0	64.8	30	77.9	-:- D-4-	414 410040 0:04:44 DI
Sample ID: (csd-21933		LCSD				Batch ID:	21933		sis Date.	4/14/2010 3:21:44 PI
Acenaphthene	79.58	µg/L	10	100	0	79.6	33.2	88.1	1.32	30.5
1-Chloro-3-methylphenol	149.9	μg/L	10	200	0	74.9	26.5	101	7.00	28.8
2-Chlorophenol	137.1	µg/L	10	200	0	68.6	27.5	88.7	4:17	107
1,4-Dichlorobenzene	56.12	μ g/L	10	100	0	56.1	27.2	· 74.1	15.8	62.1
2,4-Dinitrotoluene	83.52	μg/L	10	100	0	83.5	32.6	107	3.71	14.7

m m. . . 1 . t.

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 2 .

Date: 16-Apr-10

QA/QC SUMMARY REPORT

lient: 'roject:	Envirotech Key Energy							,		Work	Order:	1004248
Analyte		Result	<u> </u>	PQL	SPK-Va-	SPK ref-	%Rec L	owLimit_Hi	ghLimit	%RPD	RPDLimit	Qual
	A Method 8270C: S	emivolatil	es LCSD				Batch ID:	21933	Analysis	s Date:	4/14/20 10	3:21:44 PM_
lample ID: Id		63.66	µg/L	10	100	0	63.7	27.1	96.3	3.46	30.3	•
I-Nitrosodi-n-p	уоруштіне	96 12	μg/L	10	200	0	48.1	6.78	74.7 113	0.581 0.255	36.3 49	•
entachloroph	enol	157 2	μg/L	20 10	200 200	0	78.6 35.9 `	14.8 17	53.4	0.805	52.4	
Pyrene		71.74 _. 73.54	µg/L µg/L	10	100	0	73.5	27	96.3	4.42	16.3	
1,2,4-Trichloro	benzene	66.52	μg/L	- 10	. 100	Ò	66.5	30	77.9	2.68	36.4 .	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 3

Hall Environmental Analysis Laboratory, Inc.

	Sample	Rece	lpt Ch	ecklist				
Client Name ENVIROTECH				Date Received	l:	4/1	3/2010	
Work Order Number 1004248			ı	Received by:	TLS	. X	(' · · · ·)	
	1- <i>X</i> /		1	Sample ID la	bels checked	by:	<u>ى</u>	
Checklist completed by: Signature			Date	5/10		initial	,	
Matrix:	Carrier name:	Greyh	ound					·
Shipping container/cooler in good condition?	٠	Yes	Y	No 🗀	Not Present			
Custody seals intact on shipping container/cook	ler?	Yes	✓	No 🗆	Not Present	☐ No	t Shipped	
Custody seals intact on sample bottles?	•	Yes [J	No 🗆	N/A	$ \mathbf{V} $		•
Chain of custody present?		Yes	y .	No 🗆				,
Chain of custody signed when relinquished and	received?	Yes (Y	No 🗆				
Chain of custody agrees with sample labels?		Yes	Y	No 🗌				
Samples in proper container/bottle?		Yes [V	No 🗌				
Sample containers intact?		Yes E	y .	No 🗌				
Sufficient sample volume for indicated test?	•	Yes 6	✓	No 🗆				
All samples received within holding time?		Yes E	7	No 🗆			Number of bottles che	
Water - VOA vials have zero headspace?	No VOA vials subn	nitted 6	V	Yes 🗔	No 🗌		pH:	OROG 101
Water - Preservation labels on bottle and cap n	natch?	Yes []	No 🗌	N/A 🗹			
Water - pH acceptable upon receipt?		Yes [No 🗆 ·	N/A ☑		<2 >12 unle selow.	ess noted
Container/Temp Blank temperature?		6.6	•	<6° C Acceptable				
COMMENTS:			٠	If given sufficient	ume to cool.			
·				•	•			
		==	==:				====	
	•						•	
•					-			•
Client contacted	Date contacted:		,	Perso	n contacted			
Contacted by:	Regarding:							
Comments:				•				
			:					_,
Corrective Action .					·			
								·
•								

□ Other ____ Client: □ Standard QA/QC Package: email or Feet Chalters Och Total-Inchroject Manager. Phone #: Address: 5796 US HWY SUMMOD! Date If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the arialytical report. かららい AW 10 1430 53668-5W Time といる □ Level 4 (Full Validation) Sample Request ID 10248 Project #: (98065-0013 3 Ambers Container Type and # Sampler Up Hilen Project Name: Christine waters **Standard** key Energy Preservative Coo Type ☐ Rush 6 Remarks BTEX + MTBE + TMB's (8021)87811 # C BTEX + MTBE + TPH (Gas only) 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 TPH Method 8015B (Gas/Diesel) TPH (Method 418.1) www.hallenvironmental.com EDB (Method 504.1) EDC (Method 8260) Analysis Request 8310 (PNA or PAH) Fax 505-345-4107 Anions (F,Cl,NO3,NO2,PO4,SO4) 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA)

Air Bubbles (Y or N)

Chain-of-Custody Record

Tum-Around Time:

ANALYSIS LABORATORY HALL ENVIRONMENTAL

2000 APR 28 P 1:09

Client:	Key Energy	Project #:'	98065-0013
Sample ID:	SWD	Date Reported:	04-13-10
Laboratory Number:	53668	Date Sampled:	04-12-10
Chain of Custody:	9069	Date Received:	04-12-10
Sample Matrix:	Aqueous	Date Analyzed:	04-13-10
Preservative:	Cool	Date Digested:	04-13-10
Condition:	Intact	Analysis Needed:	RCRA Metals
		Det.	<u> </u>
Parameter	Concentration (mg/Kg)	Limit (mg/Kg)	
1	(9.1.9)	(1119/119)	
Barium	8.23	0.001	·.
Cadmium	ND	0.001	
Chromium	0.146	0.001	
Lead	0.006	0.001	
Selenium	0.003	0.001	
Silver	0.026	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectroscopy, SW-846, USEPA, December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Sunco SWD #1

TRACE METAL ANALYSIS **Quality Control / Quality Assurance Report**

10.9%

0% - 30%

0.029

Client ⁻		QA/QC		Project #:	,	•	QA/QC	
Sample ID:		04-12 TM	QAVAC	Date Rep	orted:		04-13-10	
Laboratory Number		53668		Date San	ipled:	·	N/A	
Sample Matrix		Aqueous		Date Rec	eived.		N/A	
Analysis Requested	d:	RCRA Met	als	Date Ana	lyzed:		04-13-10	
Condition:		N/A		Date Dige	ested:		04-13-10	
Elegic (2000) aug Elegic (1000) aug Barium		e Consol And ND	0.001	8.23	8.66	987 5.2%	Assertance Partyr 0% - 30%	
Cadmium	ND	ND	0.001	ND	ND	0.0%	0% - 30%	
Chromium	ND	ND	0.001	0.146	0.149	2.0%	0% - 30%	٠
Lead	ND	ND,	0.001	0.006	0.005	16.4%	0% - 30%	
Selenium	ND	ND	0.001	0.003	0.002	28.6%	0% - 30%	

0.026

			F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Barium	0.500	8.23	8.97	103%	80% - 120%
Cadmium	0.250	ND	0.242	96.7%	80% - 120%
Chromium	0.500	0.146	0.680	105%	80% - 120%
Lead	0.500	0.006	0.471	93.1%	80% - 120%
Selenium	0.100	0.003	0.084	81.7%	80% - 120%
Silver	0.100	0.026	0.141	112%	80% - 120%

ND - Parameter not detected at the stated detection limit.

ND

ND

0.001

References:

Silver

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53668.

Analyst

TOTAL MERCURY ANALYSIS

0.02

Client:	Key Energy	Project #:	98065-0013
Sample ID:	SWD		04-13-10
Laboratory Number:	53668	Date Sampled:	04-12-10.
Chain of Custody:	9069	Date Received:	04-12-10
Sample Matrix:	Aqueous	Date Analyzed:	04-13-10
Condition:	Cool & Intact	Date Digested:	04-13-10
		Analysis Needed:	Total Mercury
	e der um der som i de demokratisker om den de senten de de de de de de de de de de de de de		Det.
	Concentration		Limit
Parameter	(ug/L)	. ((ıg/L)

ND - Parameter not detected at the stated detection limit.

References:

Mercury

Method 7470A, Mercury in Liquid Waste (Manual Cold-Vapor Technique).

SW-846, USEPA, December 1996.

0.09

Comments:

Sunco SWD #1

Apalyst

Review

Total Mercury Analysis Quality Control / **Quality Assurance Report**

Client:		QA/QC		Project #:			N/A
Sample ID:		-04-13-Hg QA	/QC	- Date Reporte	ed:		04-13-10
Laboratory Number:		53668		Date Sample	d:		N/A
_Sample Matrix:		_Aqueous		Date Receive	ed:		N/A
Analysis Requested:		Total Mercury	•	Date Analyze	ed:		04-13-10
Condition:		N/A	•	Date Digeste			04-13-10
	Instrument Blank (ug/L)	Method Blank (ug/L)	Detection Limit	Sămple	Duplicate	Ø% Diff.	Acceptance Range
٠.							
Mercury	ND	ND	0.02	0.09	0.08	11.1%	0% - 30%
Spike Conc. (ug/L)	*1)	Spike Added	Sample	Spiked Sample	Percent Recovery		Acceptance Range
Mercury		10.0	0.09	8.26	81.8%	,	80% - 120%
•							-070 IM070

ND - Parameter not detected at the stated detection limit.

References:

Method 7470A, Mercury in Liquid Waste (Manual Cold-Vapor Technique).

SW-846, USEPA, December 1996.

Comments:

QA/QC for Sample 53668.

CATION / ANION ANALYSIS

•		•	*
Client:	Key Energy	Project #:	98065-0013
Sample ID:	SWD ·	Date Reported:	04-14-10
Laboratory Number:	53668	Date Sampled:	04-12-10
Chain of Custody:	9069	Date Received:	04-12-10
Sample Matrix:	Aqueous	Date Analyzed:	04-13-10
Preservative:	Cool		
Condition:	Intact		,

Parameter	Analytical Result	Units	·	
pH	8.38	s.u.	,	
Conductivity @ 25° C	17,600	umhos/cm		
Total Dissolved Solids @ 180C	10,800	mg/L	•	
Total Dissolved Solids (Calc)	10,830	mg/L		•
SAR	50.6	ratio	·	
Total Alkalinity as CaCO3	1,340	mg/L		
Total Hardness as CaCO3	969	mg/L		
Bicarbonate as CaCO3	1,340	mg/L	21.96	meq/L
Carbonate as CaCO3	<0.1	mg/L	0.00	meq/L
Hydroxide as CaCO3	<0.1	mg/L	0.00	meg/L
Nitrate Nitrogen	0.900	mg/L	0.01	meq/L
Nitrite Nitrogen	0.037	mg/L	0.00	meg/L
Chloride	4,850	mg/L	136.82	meg/L
Fluoride	2.06	mg/L	0.11	meg/L .
Phosphate	2.94	mg/L	0.09	meg/L
Sulfate	1,020	mg/L	21.24	meq/L
Iron	1.65	mg/L	0.06	meq/L
Calcium	362	mg/L	18.06	meq/L
Magnesium	15.5	mg/L	1.28	meq/L
Potassium	142	mg/L	3.63	meq/L
Sodium	3,620	mg/L	157.47	meq/L
Cations			180.44	meq/L
Anions			180.23	meq/L
Cation/Anion Difference			0.12%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Sunco SWD #1

SUSPECTED HAZARDOUS WASTE ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	-SWD	Date Reported:	04-14-10
Lab ID#:	53668	Date Sampled:	04-12-10
Sample Matrix:	Aqueous	Date Received:	04-12-10
Preservative:	Cool	Date Analyzed:	04-14-10
Condition:	Intact	Chain of Custody:	9069

Parameter Result

IGNITABILITY:

Negative

CORROSIVITY:

Negative

pH = 8.33

REACTIVITY:

Negative

RCRA Hazardous Waste Criteria

Parameter

Hazardous Waste Criterion

IGNITABILITY:

Characteristic of Ignitability as defined by 40 CFR, Subpart C, Sec. 261.21.

(i.e. Sample ignition upon direct contact with flame or flash point < 60° C.)

CORROSIVITY:

Characteristic of Corrosivity as defined by 40 CFR, Subpart C, Sec. 261.22.

(i.e. pH less than or equal to 2.0 or pH greater than or equal to 12.5)

REACTIVITY:

Characteristic of Reactivity as defined by 40 CFR, Subpart C, Sec. 261.23. (i.e. Violent reaction with water, strong base, strong acid, or the generation

of Sulfide or Cyanide gases at STP with pH between 2.0 and 12.5)

Reference:

40 CFR part 261 Subpart C sections 261.21 - 261.23, July 1, 1992.

Comments:

Sunco SWD #1

Analyst

Review

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	SWD	Date Reported:	04-13-10
Chain-of-Custody:	9069	Date-Sampled:	04=12=10
Laboratory Number:	53668	Date Received:	04-12-10
Sample Matrix:	Aqueous	Date Analyzed:	04-12-10
Preservative:		Analysis Requested:	8260 VOC ···
Condition:	Cool and Intact		

	Concentration		Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
•,			-,	
Benzene	667	(ug/L)	1.0	10
Toluene	5,140	(ug/L)	1.0	100
Ethylbenzene	887	(ug/L)	1.0	10
Xylenes, Total	3,520	(ug/L)	1.0	100
Methyl tert-butyl ether (MTBE)	ND	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	7.60	(ug/L)	1.0	10
1,3,5-Trimethylbenzene	1,060	(ug/L)	1.0	10
1,2-Dichloroethane (EDC)	18.8	. (ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	178	(ug/L)	1.0	1
1-Methylnaphthalene	83.0	(ug/L)	2.0	. 1
2-Methylnaphthalene	ND	(ug/L)	2.0	1
Bromobenzene	88.4	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	· ND	(ug/L)	1.0	1
Bromoform	ND	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chlorobenzene	. ND	(ug/L)	1.0	1 .
Chloroethane .	ND	(ug/L)	2.0	1
Chloroform	ND	(ug/L)	1.0	1 .
Chloromethane	ND ·	(ug/L)	1.0	1
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	` 1.0	1
cis-1,2-Dichloroethene	ND ,	(ug/L)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/L)	1.0	· 1
1,2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/Ĺ)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	ND	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND .	(ug/L)	. 1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	. 1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	ND	(ug/L)	1.0	1
2,2-Dichloropropane	ND	(ug/L)	1.0	1

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client:

Key Energy

Sample ID:

SWD

53668 Laboratory Number: -

page	•
------	---

•	Concentration	n	Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
1,1-Dichloropropene	'ND	(ug/L)	1.0	1
Hexachlorobutadiene	ND	(ug/L)	· ··1.0	1
Isopropylbenzene	745	(ug/L)	1.0	10
4-lsopropyltoluene	97.3	(ug/L)	1.0	. 1
Methylene Chloride	ND	(ug/L)	3.0	1
n-Butylbenzene	ND	(ug/L)	1.0	1
n-Propylbenzene	183	(ug/L)	1.0	1
sec-Butylbenzene	ND	(ug/L)	1.0	· 1
Styrene	2,206	(ug/L)	1.0	10
tert-Butylbenzene	ND	(ug/L)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethane	ND	(ug/L)	1.0	1
1,1,2,2-Tetrachioroethane	ND	(ug/L)	1.0	. 1
trans-1,2-Dichloroethene	ND	(ug/L)	1.0	1
trans-1,3-Dichloropropene	. ND	(ug/L)	1.0	1
Trichloroethene (TCE)	ND	(ug/L)	1.0	1
Trichlorofluoromethane	ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/L)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/L)	1.0	1
1,1,1-Trichloroethane	ND	(ug/L)	1.0	1
1,1,2-Trichloroethane	ND ND	(ug/L)	1.0	1
1,2,3-Trichloropropane	ND	. (ug/L)	2.0	1
Vinyl Chloride	ND (ug/L)	(ug/L)	2.0	1
Surrogates:		Rec. Limits		
Dibromofluoromethane	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Toluene-d8

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260 Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

97.2

106

103

% Recovery

% Recovery

% Recovery

Comments:

Sunco SWD #1

Analyst

74.6-123

84.2-115

78.6-115

QUALITY ASSURANCE / QUALITY CONTROL DOCUMENTATION

EPA Method 8260B Volatile Organic Compounds by GC/MS Daily Calibration Report

Client: QA/QC Project #: N/A Sample ID: **Daily Calibration** Date Reported: 04-13-10 Laboratory-Number -0412V--Date-Sampled: N/A Sample Matrix: Water Date Received: N/A Preservative: N/A Date Analyzed: 04-12-10 Condition: N/A **Analysis Requested:** 8260 VOC

Parameter		Concentration			% Recovery
Toluene 100 98.1 98.1 80120 Ethylbenzene 100 90.3 90.3 80.120 Sylenes, Total 100 104 104 80120 Methyl tert-butyl ether (MTBE) 100 84.3 84.3 80120 IL,2.4-Trimethylbenzene 100 85.1 85.1 80120 IL,2.5-Trimethylbenzene 100 88.6 88.6 80120 IL,2.5-Dichloroethane (EDC) 100 88.6 88.6 80120 IL,2.Dichloroethane (EDB) 100 96.5 96.5 80120 IL,2.Dichloroethane (EDB) 100 96.5 96.5 80120 IL,2.Dichloroethane (EDB) 100 94.7 94.7 80120 E-Methylnaphthalene 100 94.7 94.7 80120 E-Methylnaphthalene 100 105 105 80120 Bromochloromethane 100 86.1 86.1 80120 Bromochloromethane 100 86.1 86.1 80120 Bromochloromethane 100 86.1 86.1 80120 Bromothoromethane 100 85.5 85.5 80120 Bromothoromethane 100 84.1 84.1 80120 Bromothane 100 84.1 84.1 80120 Bromothane 100 85.5 85.5 80120 Bromothane 100 84.7 94.7 80120 Carbon Tetrachloride 100 85.5 85.5 80120 Carbon Tetrachloride 100 85.5 85.5 80120 Chloroethane 100 84.7 84.7 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 90.3 90.3 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 90.8 90.8 80120 Chloroethane 100 96.8 96.8 80120 Chloroethane 100 96.8 96.9 80120 Cis-1,2-Dichloroethane 100 96.8 96.9 80120 Dibromochloromethane 100 96.8 96.9 80120 Dibromochloromethane 100 97.7 97.7 80120 Ilphoroethane 100 97.7 97.7 80120 Ilphoroethane 100 97.7 97.7 80120 Ilphoroethane 100 98.4 88.4 88.4 80120 Ilphoroethane 100 98.8 88.4 88.4 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 93.9 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 8012	Parameter	(ug/L)	Result	% Recovered	Limits
Toluene 100 98.1 98.1 80120 Ethylbenzene 100 90.3 90.3 80.120 Sylenes, Total 100 104 104 80120 Methyl tert-butyl ether (MTBE) 100 84.3 84.3 80120 IL,2.4-Trimethylbenzene 100 85.1 85.1 80120 IL,2.5-Trimethylbenzene 100 88.6 88.6 80120 IL,2.5-Dichloroethane (EDC) 100 88.6 88.6 80120 IL,2.Dichloroethane (EDB) 100 96.5 96.5 80120 IL,2.Dichloroethane (EDB) 100 96.5 96.5 80120 IL,2.Dichloroethane (EDB) 100 94.7 94.7 80120 E-Methylnaphthalene 100 94.7 94.7 80120 E-Methylnaphthalene 100 105 105 80120 Bromochloromethane 100 86.1 86.1 80120 Bromochloromethane 100 86.1 86.1 80120 Bromochloromethane 100 86.1 86.1 80120 Bromothoromethane 100 85.5 85.5 80120 Bromothoromethane 100 84.1 84.1 80120 Bromothane 100 84.1 84.1 80120 Bromothane 100 85.5 85.5 80120 Bromothane 100 84.7 94.7 80120 Carbon Tetrachloride 100 85.5 85.5 80120 Carbon Tetrachloride 100 85.5 85.5 80120 Chloroethane 100 84.7 84.7 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 90.3 90.3 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 85.5 85.5 80120 Chloroethane 100 90.8 90.8 80120 Chloroethane 100 96.8 96.8 80120 Chloroethane 100 96.8 96.9 80120 Cis-1,2-Dichloroethane 100 96.8 96.9 80120 Dibromochloromethane 100 96.8 96.9 80120 Dibromochloromethane 100 97.7 97.7 80120 Ilphoroethane 100 97.7 97.7 80120 Ilphoroethane 100 97.7 97.7 80120 Ilphoroethane 100 98.4 88.4 88.4 80120 Ilphoroethane 100 98.8 88.4 88.4 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 93.9 80120 Ilphoroethane 100 98.7 95.7 80120 Ilphoroethane 100 98.9 93.9 93.9 80120 Ilphoroethane 100 98.9 93.9 93.9 8012	Renzene	100	96 N	0.00	80 - 120
Ethylbenzene 100 90.3 90.3 80 - 120 Xylenes, Total 100 104 104 80 - 120 Methyl tert-butyl ether (MTBE) 100 84.3 84.3 80 - 120 1,2.4-Trimethylbenzene 100 85.1 85.1 80 - 120 1,3.5-Trimethylbenzene 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDC) 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 105 105 80 - 120 Brombochloromethane 100 86.1 86.1 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromoform 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120					
Xylenes, Total 100 104 104 80 - 120 Methyl tert-butyl ether (MTBE) 100 84.3 84.3 80 - 120 1,2,4-Trimethylbenzene 100 85.1 85.1 80 - 120 1,3,5-Trimethylbenzene 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDC) 100 86.5 96.5 80 - 120 1,2-Dibromoethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 86.1 86.1 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120					
Methyl tert-butyl ether (MTBE) 100 84.3 84.3 80 - 120 1,2,4-Trimethylbenzene 100 85.1 85.1 80 - 120 1,3,5-Trimethylbenzene 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDC) 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 86.1 86.1 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromodichloromethane 100 85.5 85.5 80 - 120 Bromodichloromethane 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2					
1,2,4-Trimethylbenzene 100 85.1 85.1 80 - 120 1,3,5-Trimethylbenzene 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDC) 100 88.6 88.6 80 - 120 1,2-Dibromoethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 86.1 86.1 80 - 120 Bromobenzene 100 87.6 86.1 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Carbon Tetrachloride 100 93.2 93.2 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorobentane 100 94.7 84.7 80 - 120		•	•		
1,3,5-Trimethylbenzene 100 88.6 88.6 80 - 120 1,2-Dichloroethane (EDC) 100 88.6 88.6 80 - 120 1,2-Dibromoethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 86.1 86.1 80 - 120 Bromobenzene 100 87.6 87.6 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chloroethane 100 93.2 93.2 80 - 120 Chlorotofume 100 84.7 84.7 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 <					
1,2-Dichloroethane (EDC) 100 88.6 88.6 80 - 120 1,2-Dibromoethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 105 105 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chloroethane 100 93.2 93.2 80 - 120 Chloroethane 100 84.7 84.7 80 - 120 Chlorotoluene 100 86.2 86.2 80 - 120 4-Chloro	•			•	•
1,2-Dibromoethane (EDB) 100 96.5 96.5 80 - 120 Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 105 105 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromodichloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chloroethane 100 90.3 90.3 80 - 120 Chloroethane 100 84.7 84.7 80 - 120 Chloroethane 100 85.5 85.5 80 - 120 Chloroethane	•				
Naphthalene 100 89.1 89.1 80 - 120 1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 105 105 80 - 120 Bromochozene 100 86.1 86.1 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorothane 100 93.2 93.2 80 - 120 Chlorothane 100 90.3 90.3 80 - 120 Chlorothane 100 84.7 84.7 80 - 120 Chlorothane 100 85.5 85.5 80 - 120 Chlorothane 100 85.5 85.5 80 - 120 Chlorotoluene 100 <td>• •</td> <td></td> <td></td> <td></td> <td></td>	• •				
1-Methylnaphthalene 100 94.7 94.7 80 - 120 2-Methylnaphthalene 100 105 105 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromobenzene 100 87.6 87.6 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromochloromethane 100 85.5 85.5 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chloroform 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 Chlorotoluene 100 86.2 86.2 80 - 120 Chlorotoluene 100 86.2 86.2 80 - 120 Cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 Cis-1,3-Dichloropropene 100 96.8 96.8 80 - 120 Cis-1,3-Dichloropropene 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromochloromethane 100 94.3 94.3 80 - 120 Dibromochloromethane 100 95.6 95.6 80 - 120 Dibromochloromethane 100 95.6 95.6 80 - 120 1,2-Dichlorobenzene 100 96.4 96.4 80 - 120 1,2-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 93.9 93.9 80 - 120 1,1-Dichloroethane 100 95.7 95.7 80 - 120 1,2-Dichloropropane 1					
2-Methylnaphthalene 100 105 105 80 - 120 Bromobenzene 100 86.1 86.1 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Bromomethane 100 95.5 85.5 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorotofume 100 90.3 90.3 80 - 120 Chlorotofume 100 84.7 84.7 80 - 120 Chlorotoluene 100 86.5 85.5 80 - 120 2-Chlorotoluene 100 86.2 86.2 80 - 120 2-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,3-Dichloroperpene			•		
Bromobenzene 100 86.1 86.1 80 - 120 Bromochloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorobenzene 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloropenpene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropane 100 96.8 87.8 80 - 120 Dibromochloromethane </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Bromochloromethane 100 87.6 87.6 80 - 120 Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorothane 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chlorothane 100 90.3 90.3 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropane 100 96.8 96.9 80 - 120 Dibromochloromethane<					
Bromodichloromethane 100 84.1 84.1 80 - 120 Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorotethane 100 90.3 90.3 80 - 120 Chlorotemane 100 84.7 84.7 80 - 120 Chlorotemane 100 100 100 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 2-Chlorotoluene 100 86.2 86.2 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 1,4-Dichlorobe					
Bromoform 100 85.5 85.5 80 - 120 Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chloroferm 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chlorothane 100 100 100 80 - 120 Chlorotoluene 100 85.5 85.5 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropane 100 96.8 96.8 80 - 120 1,2-Dibromo-3-chloropropane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene<					
Bromomethane 100 94.7 94.7 80 - 120 Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chlorotethane 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chloromethane 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 96.9 96.9 80 - 120 1,2-Dibromo-3-chloropropane 100 87.8 87.8 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120					
Carbon Tetrachloride 100 85.5 85.5 80 - 120 Chlorobenzene 100 93.2 93.2 80 - 120 Chloroethane 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chlorotoluene 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 4-Chlorotoluene 100 86.8 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 96.9 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromochloromethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120					
Chlorobenzene 100 93.2 93.2 80 - 120 Chloroethane 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chloromethane 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 1,2-Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromochloromethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,4-Dichloroethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 93.9 93.9 80 - 120 <td>•</td> <td></td> <td>•</td> <td></td> <td></td>	•		•		
Chloroethane 100 90.3 90.3 80 - 120 Chloroform 100 84.7 84.7 80 - 120 Chloromethane 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 1,2-Dibromoethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120					
Chloroform 100 84.7 84.7 80 - 120 Chloromethane 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 1,2-Dibromo-s-chloropropane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 Dibromoethane 100 95.6 95.6 80 - 120 1,2-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120 1,1-Dichloropropane 100 93.9 93.9 80 - 120			•		
Chloromethane 100 100 100 80 - 120 2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 87.8 87.8 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120 1,1-Dichloroperbane 100 88.4 88.4 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120					
2-Chlorotoluene 100 85.5 85.5 80 - 120 4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	Chloromethane				
4-Chlorotoluene 100 86.2 86.2 80 - 120 cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,2-Dichloropropane 100 93.9 93.9 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	2-Chlorotoluene				
cis-1,2-Dichloroethene 100 96.8 96.8 80 - 120 cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,2-Dichloropropane 100 93.9 93.9 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	4-Chlorotoluene				
cis-1,3-Dichloropropene 100 90.6 90.6 80 - 120 1,2-Dibromo-3-chloropropane 100 96.9 96.9 80 - 120 Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 1,1-Dichloroethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,2-Dichloropropane 100 93.9 93.9 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	cis-1,2-Dichloroethene	100		- ·	
Dibromochloromethane 100 87.8 87.8 80 - 120 Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	cis-1,3-Dichloropropene	100	90.6	90.6	
Dibromoethane 100 94.3 94.3 80 - 120 1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,2-Dibromo-3-chloropropane	100	96.9	96.9	80 - 120
1,2-Dichlorobenzene 100 95.6 95.6 80 - 120 1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	Dibromochloromethane	100	87.8	87.8	80 - 120
1,3-Dichlorobenzene 100 96.4 96.4 80 - 120 1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	Dibromoethane	100	94.3	94.3	80 - 120
1,4-Dichlorobenzene 100 97.7 97.7 80 - 120 Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,2-Dichlorobenzene	100	95.6	95.6	80 - 120
Dichlorodifluoromethane 100 87.5 87.5 80 - 120 1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,3-Dichlorobenzene	100	96.4	96.4	80 - 120
1,1-Dichloroethane 100 88.4 88.4 80 - 120 1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,4-Dichlorobenzene	100	97.7	97.7	80 - 120
1,1-Dichloroethene 100 93.9 93.9 80 - 120 1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	Dichlorodifluoromethane	-100	87.5	87.5	80 - 120
1,2-Dichloropropane 100 95.7 95.7 80 - 120 1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,1-Dichloroethane	100	88.4	88.4	80 - 120
1,3-Dichloropropane 100 85.0 85.0 80 - 120	1,1-Dichloroethene	100	93.9	93.9	80 - 120
,	1,2-Dichloropropane	100	95.7	95.7	80 - 120
2,2-Dichloropropane 100 83.5 83.5 80 - 120	1,3-Dichloropropane	100	85.0	85.0	80 - 120
	2,2-Dichloropropane	100	83.5	83.5	80 - 120

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:

QA/QC

Sample ID:

Daily Calibration

Laboratory Number:

0412V

page 2

	Concentration		% Recovery		
-Parameter	(ug/L)	Result	% Recovered	Limits	
1,1-Dichloropropene	100	84.0	84.0	80 - 120	
Hexachlorobutadiene	100	89.1	89.1	80 - 120	
Isopropylbenzene	100	94.7	94.7	80 - 120	
4-Isopropyltoluene	100	105.5	105.5	80 - 120	
Methylene Chloride	100	101.2	101.2	80 - 120	
n-Butylbenzene	100	91.6	91.6	80 - 120	
n-Propylbenzene	100	92.0	92.0	80 - 120	
sec-Butylbenzene	100	88.6	88.6	80 - 120	
Styrene	100	86.9	86.9	80 - 120	
tert-Butylbenzene	. 100	89.8	89.8	80 - 120	
Tetrachloroethene (PCE)	100	97.7	97.7	80 - 120	
1,1,1,2-Tetrachloroethane	100	84.7	84.7	80 - 120	
1,1,2,2-Tetrachloroethane	100	91.0	91.0	80 - 120	
trans-1,2-Dichloroethene	100	91.3	91.3	80 - 120	
trans-1,3-Dichloropropene	100	82.4	82.4	80 - 120	
Trichloroethene (TCE)	100	85.3	85.3	80 - 120	
Trichlorofluoromethane	100	84.6	84.6	80 - 120	
1,2,3-Trichlorobenzene	100	95.2	95.2	80 - 120	
1,2,4-Trichlorobenzene	100	94.7	94.7	80 - 120	
1,1,1-Trichloroethane	100	85.0	85.0	80 - 120	
1,1,2-Trichloroethane	100	83.7	83.7	80 - 120	
1,2,3-Trichloropropane	100	85.9	85.9	80 - 120	
Vinyl Chloride	100	86.3	86.3	80 - 120	
Surrogates:		Rec. Limits			

Surrogates:		Rec. Limits			
Dibromofluoromethane	101	% Recovery	78.6-115		
1,2-Dichloroethane-d4	106	% Recovery	74.6-123		
Toluene-d8	89.3	% Recovery	84.2-115		
4-Bromofluorobenzene	93.0	% Recovery	78.6-115	,	

ND = Parameter not detected at the stated detection limit.

References.

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 53637 and 53668.

Analyst

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	Blank	Date Reported:	04-13-10
Laboratory-Number:	0412VBLK	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative.	N/A	Date Analyzed:	04-12-10
Condition:	N/A	Analysis Requested:	8260 VOC

	Concentration		Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
· .	,			
Benzene	ND ·	(ug/Ľ)	1.0	1
Toluene	ND	(ug/L)	. 1.0	1
Ethylbenzene	· ND	(ug/L)	1.0	1
Xylenes, Total	ND	(ug/L)	1.0	1
Methyl tert-butyl ether (MTBE)	, ND	(ug/L)	1.0	· 1
1,2,4-Trimethylbenzene	ND	(ug/Ļ)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/L)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	ND	(ug/L)	1.0	1
1-Methylnaphthalene	ND	(ug/L)	2.0	1
2-Methylnaphthalene	ND .	(ug/L)	2.0	1
Bromobenzene	ND	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	ND	(ug/L)	1.0	1
Bromoform	ND	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chlorobenzene	ND	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	· 1
Chloroform	· ND	(ug/L)	1.0	1
Chloromethane	ND	(ug/L)	1.0	1 .
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	1.0	1 .
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/L)	1.0	1
1,2-Dibromo-3-chloropropane	· ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	ND	· (ug/L)	1.0	1
1,3-Dichlorobenzene	ND	(ug/L)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	`1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
1,1-Dichloroethene	· ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	, ND	(ug/L)	1.0	1 .
2,2-Dichloropropane	ND .	(ug/L)	1.0	1

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:

QA/QC

Sample ID:

Blank

Laboratory Number:

0412VBLK

page 2

	Concentration	1	Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
4.4 Dichlerenzonono	ND .	(may)		
1,1-Dichloropropene	ND ND	(ug/L)	1.0	1 4
Hexachlorobutadiene		(ug/L)	1.0	1,
Isopropylbenzene	ND	(ug/L)	1.0	, 1
4-Isopropyltoluene	ND	(ug/L)	1.0	, 1
Methylene Chloride	ND	(ug/L)	1.0	1
n-Butylbenzene	. ND	(ug/L)	1.0	1
n-Propylbenzene	ND	(ug/L)	1.0	1
sec-Butylbenzene	, ND	(ug/L)	1.0	1
Styrene	ND	(ug/L)	1.0	1
tert-Butylbenzene	, ND .	(ug/L)	1.0	1 '
Tetrachloroethene (PCE)	ND	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethane	ND	(ug/L)	1.0	1
1,1,2,2-Tetrachloroethane	ND	(ug/L)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/L)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/L)	1.0	1
Trichloroethene (TCE)	ND	(ug/L)	. 1.0	1
Trichlorofluoromethane	. ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/L)	1.0	" 1
1,2,4-Trichlorobenzene	ND	(ug/L)	1.0	1.
1,1,1-Trichloroethane	ND .	(ug/L)	1.0	1.
1,1,2-Trichloroethane	ND	(ug/L)	1.0	1
1,2,3-Trichloropropane	ND	(ug/L)	2.0	1
Vinyl Chloride	ND	(ug/L)	2.0	1
Surrogates:			Rec. Limits	
Dibromofluoromethane	78.9	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	89.4	% Recovery	74.6-123	1
Toluene-d8	94.6	% Recovery	84.2-115	1

ND = Parameter not detected at the stated detection limit.

References:

4-Bromofluorobenzene

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography. / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

95.9

Comments:

QA/QC for Samples 53637 and 53668.

Analyst

Musture of Westers Review

EPA Method 8260B

Volatile Organic Compounds by GC/MS Quality Assurance Report

4
-13-10
/
4
12-10
30 VOC

Spike		Units: ug/L	Recovery	Det.				
Analyte	Sample	Added	Result	%Recovery	Limits	Limit		
Benzene	330	100.0	385	89.6%	85.3 - 120	1.0		
Toluene	1,800	100.0	2,090	110%	73 - 123	1.0		
Chlorobenzene	ND	100.0	103	103%	84.7 - 119	· 1.0		
1,1-Dichloroethene	ND	100.0	100	100%	83.4 - 122	1.0		
Trichloroethene (TCE)	ND	100.0	98	98.4%	76.1 - 126	1.0		

Spike Duplicate	,	Units: ug/L		Recovery	Det.			
Analyte	Sample	Added	Result	%Recovery	Limits	Limit		
Benzene	330	100.0	358	83.3%	85.3 - 120	1.0		
Toluene	1,800	100.0	1,950	103%	73 - 123	1.0		
Chlorobenzene	ND	100.0	96	95.8%	84.7 - 119	1.0		
1,1-Dichloroethene	ND	100.0	96	95.9%	83.4 - 122	1.0		
Trichloroethene (TCE)	ND	100.0	88	88.1%	76.1 - 126	1.0		

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 53637 and 53668.

CHAIN OF CUSTODY RECORD

. 09069

				• • • • • • • • • • • • • • • • • •		'	000																	•		
Client: Key Enero				Project Name /											ANAL	NALYSIS / PARAMETERS										
	10	1		Sampler Name:	5WB)	- /-				ļ		,														
Client Address:	ب)		Sampler Name:	/.	, .				315)	BTEX (Method 8021)	260)														
Client Phone No.:	+	i	,	Client No.:	en-)	poc	8 00	tals	6		₽				<u> </u>			_	ਹ		
486-2010					3065	-0013			٠	TPH (Method 8015)	(Met	VOC (Method 8260)	RCRA & Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE	α			Sample Cool	Sample Intact		
Sample No./	Ť:	Sample	Samp	· I Iah No	1	Sample	No./Volume	Pres		Ī	Ĕ	2	Ä.	tion	_	ď	I	Ţ	일	828	Ha	AS	idu.	ğ		
. Identification		Date	Time	200 140.	l	Matrix		HgCl,	Ю		181	>	R	ပိ	PCI	1	PAH	片	さ_	9		+	ညီ	Sa		
SWD	1	Inlin	14.3	53668	Soil- Solid	Sludge Aqueous	726 cmle 1900L 2404s	age .				X	K	X	K					X	×	×	4	4		
1					Soil Solid	Sludge Aqueous	125																J	1		
					Soil Solid	Sludge Aqueous								`							·			-		
	1				Soil Solid	Sludge Aqueous														•			 	·		
	1				Soil Solid	Sludge Aqueous						,				,										
	╫				Soil Solid	Sludge Aqueous																				
					Soil	Sludge Aqueous																				
	ı				Soil Solid	Sludge Aqueous																				
					Soil Solid	Sludge Aqueous						,									-					
					Soil Solid	Sludge Aqueous				-				-												
Relinquished by: (Sig		ure)	2			Date 4/12/10	7:55	F	Receive	d by:			7	/	1	-		-	,		D:	ate	1	me		
Relinquished by: (Sig.	nati	ure)	-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	eceive	ed by:	(Sign	ature)	Y	out	&	-					1/2	719	17-	<u>- </u>		
Relinquished by: (Sig	nat	ure)						F	Receive	ed by:	(Sign	ature)						· .								
·		1						$oldsymbol{\perp}$													L		<u> </u>			
					4		on.	, i	r c	. +	<u> </u>	~ k								•	•					

Hall Environmental Analysis Laboratory, Inc.

Date: 22-Apr-10

CLIENT:

Envirotech

Client Sample ID: 53668-SWD

Lab Order: Project: 1004278 Key Energy Collection Date: 4/12/2010 2:30:00 PM

Date Received: 4/14/2010

Lab ID:

1004278-01

-Matrix:-AQUEOUS

Analyses	 Result	PQL Qı	ial Units	DF	Date Analyzed
EPA 200.8: METALS			,		Analyst: TES
Arsenic	0.0039	0.0025	mg/L	2.5	4/20/2010 2:49:28 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε Estimated value
- Analyté detected below quantitation limits
- NC Non-Chlorinated
- PQI. Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Maximum Contaminant Level MCL
- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits

Date: 22-Apr-10

QA/QC SUMMARY REPORT

Client:

Envirotech

Project:

Key Energy

Work Order:

1004278

 Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hjg	ghLimit %RPD	RPDLimit_Qual	
Method: EPA 200.8: Metals Sample ID: MB-21976		-MBLK-			Batch ID:	21976_	-Analysis Date:	-4/20/2010 2:26:04 PM	
Arsenic Sample ID: LLLCS-21976	ND	mg/L LCS	0.0025	MARTITE SPECIAL AND ASSESSED A	Batch ID:	21976	Analysis Date:	4/20/2010 2:31:38 PM	
Arsenic	0.05223	mg/L	0.0025	0.05 0.	104	80	120		

Qualifiers:

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

Client Name ENVIROTECH		Date Received:		4/14/2010
Work Order Number 1004278	-	Received by: Sample ID labe	ARS	Ω
Checklist completed by:	4.14	Sample ID labe	is checked by.	Initials
Signalura	Date -			
Matrix: Carrier name	Greyhound	*		
Shipping container/cooler in good condition?	Yes 🗹	No 🗆 N	lot Present) '
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌 N	lot Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗌	No 🗆 N	I/A 🔽	9
Chain of custody present?	Yes. 🗹	No 🔲		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels?	Yes 🗹	No 🔲		
Samples in proper container/bottle?	Yes 🗹	No 🗆	•	
Sample containers intact?	· Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗀	•	
All samples received within holding time?	Yes 🗹	No □		Number of pres
Water - VOA vials have zero headspace? No VOA vials sub	mitted 🗹	Yes 🗌	No 🗌	bottles checked pH:
Water - Preservation labels on bottle and cap match?	Yes 🗹	No 🗌	N/A 🔲 .	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	N/A 🗌	(<2) >12 unless no
Container/Temp Blank temperature?		<6° C Acceptable		QBION.
COMMENTS:	* • • • • • • • • • • • • • • • • • • •	If given sufficient tin	ne to cool.	
	•			•
			_====	
·				
,				·
				•
Client contacted Date contacted:		Person	contacted	
Contacted by: Regarding:				 .
Comments:			4	
		,		
			·	
		···· ••• · · ·		
Corrective Action				
-				

		Custody Record	Turn-Around		HALL ENVIRONMENTAL ANALYSIS LABORATORY														
Cilerit.	Envir	atech	Standard] /	AN	AL'	YS:	IS		AB	OI	RA	TOI	RY	
			Project Name	Ener	•				www	v.hall	lenvir	ronn	nenta	ıl.co	ψ		•		
Address:	5796L	15 Hwy 64	ICEU	- Ener	-gif		490	1 Hav	kins 1	NE -	Albu	uque	rque	, NN	187	109			
Fari	nina	400 nm 8740	Project #:	., ~		<u> </u>	_Tel.	. 505 ₋	345-3	97 <u>5</u>	F	ax 5	05-3	345	410	<u>5</u>	·		
Phone #:	505°	400,000 8740 632-0615	480	165-0	013					A	naly	sis i	≀equ	iest	-			Ļ	
email or f	ах#: <u>Си</u> У	1 Hers Denviroted	Project/Mana	lger:		E	only)	<u>38</u>	1			ĝ	S		4	}			
QA/QC Pa	-	☐ Level 4 (Full Validation)	Chris	stine L	Walters	TMB's (8021)	(Gas	TPH Method 8015B (Gas/Diesel)				Anions (F,CI,NO3,NO2,PO4,SO4)	8081_Pesticides / 8082_PCB		F	(-1688	Con Comp	2	
			Sampler:	Reil All	len] <u>B</u>	TPH			6	7	Š	808			H	# 6		Î
□ EDD(Туре)		0.010	2.0000		+	+	30.5	50 2	826	PA	ğ	es/		8	Y	ごほ]	Ö
		,	Sample ten			+ MTBE	MTBE	POL 3	De la	thod	Aor	ਹ	ticid	8	M:Y	્રે તે.	➾	4	es (
Date	Time	Sample Request ID	Container	Preservative	HEAL No.	+	+)	TPH Method 8015B	EDB (Method 504.1)	EDC (Method 8260)	8310 (PNA or PAH)	38	Pes	8260B (VOA)	8270 (Semi-VOA)	7	DE	ś	Air Bubbles (Y or N)
Date		Campio riequest ib	Type and #	Туре	1004278	втех	втех	五	8	2	310	io l	8	260	270	4	T)C	۱ ,	<u>8</u>
4/12/10	14:30	23778 - QTTD	Plastic 125 mL	Hno3	-1											X			
															Ш				
																		<u> </u>	
									\										
														1.					
	•	,					·									<u>. </u>			
					·							i							
					·								-		-		\perp		
													- 1						
		·							,										
				10				Ŀ											
4/13/10	1	Relinguished by:	npor	Received by:	9:20 4/14/10	Ren	narks:	een.	-	cun		15 0	5		517	18	ado	जां ।	١
Date:	Time:	Relinquished by:		Received by		م ا	عط	})eer	cdic	3 \		HA	ik	11V	70			判
						F	<u>'0</u>	<u> </u>	48	ا ما	<u> </u>			N.	NO	ا تعل	tho	الما	للبل
If no	cessary, samples	submitted to Hall Environmental may be s	subcontracted to other a	eccredited laboratoric	es. This serves as notice of this	possibil	lity. Any	sub-co	ntracted	data w	ill be c	earty	otate	d on t	ie ana	ytical n	eport.	III	4
				**						r							1	411	$\mathcal{F}\mathcal{O}$

CHAIN OF CUSTODY RECORD

09069

Client:		. P	roject Name / L							•	,			ANAL	YSIS /	/ PAR	AME	ΓERS					
Key Energy Client Address:	<u>u</u>		Sunco 5	SWO)	#/				<u> </u>	, ·		, ——-	·			,			<u> </u>				
Client Address:	J		ampler Name:						2	12(6											. '	
			Neil All	en-					801	986	85(<u>8</u>	l _										
Client Phone No.:		C	lient No.:				•		٥	₽ E	ρ _c ,	leta	اق		Ŧ	1	E.	Ш				8	taci
486-2010			98	3065	0013				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA & Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE	a			Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	S	Sample	No./Volume			E E	ĭ.	ပ္	, RA	tion		م	ı	Ţ	일	8240	Ha	AS	m.	립
Identification	Date	Time	Lab No.	l	Matrix	of Containers	HgCl,	на .	<u>P</u>	<u>B</u>	. 8	2	ပိ	PCI	2	PAH	<u> </u>	ರ	0			_g_	Sa
5WI)	Hrilo	14:30	53668	Soil Solid (Sludge Aqueous	7 2/ cml 1 900i 2 404; 1 125 1 256	ns				×	K	X	K					X	×	×	4	1
				Soil Solid	Sludge Aqueous	125						,	'				1						
				Soil Solid	Sludge Aqueous																		· · ·
				Soil Solid	Sludge Aqueous																		
		,		Soil Solid	Sludge Aqueous				 							,	1					•	
	,			Soil Solid	Sludge						·			,			1						
		_		Soil	Aqueous Sludge		1-1		 								-						
				Solid	Aqueous		1	_	ļ							-	<u> </u>		-	_			
				Soil Solid	Sludge Aqueous												:						
	·	-		Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
Relinquished by: (Signa	ature)	^	1	•	Date	Time	R	eceiv	ed by:	(Sign	ature)			10	·		:			D	ate		me
Ver C	ll	~			4/12/10	2:55	T,	2	20	rd	ax	7	12.		-					4/	ella	14	55
Relinquished by: (Signa	ature)			-				ecelve	ed by:	(Sign	ature	1	ev.	_			:			1	7		
Relinquishedby: (Signa	ature)					,	R	eceive	ed by:	(Sign	ature))			-		<u> </u>	+		-			
														•			í		Ì	Ì			
		-		1	3	env	/i	rc) t	e	cł	1	,		,				2,	· · · · · ·			
-				-		An	aly	tica	i Lai	bord	ator	y				•	:		*			- ,	
			5796 US	S Highwa	v 64 • Farmin	aton. NM 87	401 •	505-6	32-061	5 • lat	h@env	/irotec	h-inc d	om:			- 1 -	1 1					[

CATION / ANION ANALYSIS

Client	Key Energy 2010 FEB	9	PM	1	51 Project #:	98065-0013
Sample ID:	Lot #1 4'				Date Reported:	01-29-10
Laboratory Number:	53011	-			Date Sampled:	01-26-10
-Chain-of-Gustody:	8688				Date Received:	01-26-10
Sample Matrix:	Soil Extract				Date Extracted:	01-27-10
Preservative:	Cool				Date Analyzed:	01-28-10
Condition:	Intact					

Parameter	Analytical Result	Unito		
pH	7.43	Units		
•		s.u.		
Conductivity @ 25° C	2,350	umhos/cm		
Total Dissolved Solids @ 180C	1,720	mg/L		
Total Dissolved Solids (Calc)	1,624	mg/L		
SAR	15.8	ratio		
Total Alkalinity as CaCO3	130	mg/L		
Total Hardness as CaCO3	179	mg/L		•
Bicarbonate as HCO3	130	mg/L	2.13	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0:1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.700	mg/L	0.01	meq/L
Nitrite Nitrogen	0.033	mg/L	0.00	meq/L
Chloride	520	mg/L	14.67	meq/L
Fluoride	1.34	mg/L	0.07	meq/L
Phosphate	3.30	mg/L	0.10	meq/L
Sulfate	423	mg/L	8.81	meq/L
Iron	0.079	mg/L	0.00	meq/L
Calcium	63.0	mg/L	3.14	meq/L
Magnesium	5.19	mg/L	0.43	meq/L
Potassium	43.1	mg/L	1.10	meq/L
Sodium	485	mg/L	21.10	meq/L
Cations			25.77	meq/L
Anions			25.79	meq/L
Cation/Anion Difference			0.08%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm

CATION / ANION ANALYSIS

,	1		
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 3.5'	Date Reported:	01-29-10
Laboratory Number:	53013	Date Sampled:	01-26-10
Chain of Custody:	8688	Date-Received:	01-26-10
Sample Matrix:	Soil Extract	Date Extracted:	01-27-10
Preservative:	Cool	Date Analyzed:	01-28-10
Condition:	Intact		

	Analytical			
Parameter	Result	Units		
рН	7.78	s.u.	,	
Conductivity @ 25° C	1,330	umhos/cm		
Total Dissolved Solids @ 180C	830	mg/L		
Total Dissolved Solids (Calc)	790	mg/L		
SAR	15.9	ratio		
Total Alkalinity as CaCO3	80.0	mg/L		
Total Hardness as CaCO3	54.8	. mg/L		
Bicarbonate as HCO3	80.0	mg/L	1.31	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.300	mg/L	0.00	meq/L
Nitrite Nitrogen	0.012	mg/L	0.00	meq/L
Chloride	310	mg/L	8.75	meq/L
Fluoride	1.58	mg/L	0.08	meq/L
Phosphate	1.40	mg/L	0.04	meq/L
Sulfate	134	mg/L	2.79	meq/L
Iron	0.119	mg/L	0.00	meq/L
Calcium	15.8	mg/L	0.79	meq/L
Magnesium	3.74	mg/L ·	. 0.31	meq/L
Potassium	4.41	mg/L	0.11	meq/L
Sodium	270	mg/L	11.75	meq/L
Cations .			12.96	meq/L
Anions		·	12.98	meq/L
Cation/Anion Difference			0.16%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm

Review

5796 US Highway 64, Farmington, NM 87401

Chloride

	•		
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #1 6"	Date Reported:	01-28-10
Lab ID#:	53012	Date Sampled:	01-26-10
Sample-Matrix:	Soil	Date-Received:	01-26-10
Preservative:	Cool	Date Analyzed:	01-27-10
Condition:	Intact	Chain of Custody:	8688

Parameter Concentration (mg/Kg)

Total Chloride

730

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm

Chloride

-			•
Client;	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 6"	Date Reported:	01-28-10
Lab ID#:	53014	Date Sampled:	01-26-10
Sample Matrix:	Soil -	Date_Received:	01-26-10
Preservative:	Cool .	Date Analyzed:	01-27-10
Condition:	Intact	Chain of Custody:	8688

Parameter Concentration (mg/Kg)

Total Chloride

495

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm

Analyst

Mesther Walles
Review

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #1 4'	Date Reported:	01-28-10
Laboratory Number:	53011	Date Sampled:	01-26-10
Chain of Custody No:	8688	Date Received:	01-26-10
Sample Matrix:	Soil .	Date Extracted:	01-26-10
Preservative:	Cool	Date Analyzed:	, 01-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	4.4	0.2
Diesel Range (C10 - C28)	256	0.1
Total Petroleum Hydrocarbons	260	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm

Analyst

(hhistin m Waeters)
Review

. Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #1 6"	Date Reported:	01-28-10
Laboratory Number:	53012	Date Sampled:	01-26-10
Chain of Custody No:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Extracted:	01-26-10
Preservative:	` Cool `	Date Analyzed:	01-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	65.5	0.2
Diesel Range (C10 - C28)	2,010	0.1
Total Petroleum Hydrocarbons	2,080	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm

Client.	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 3.5'	Date Reported:	01-28-10
Laboratory Number:	53013	Date Sampled:	01-26-10
Chain of Custody No:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Extracted:	01-26-10
Preservative:	Cool	Date Analyzed:	01-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	5.6	0.2
Diesel Range (C10 - C28)	424	0.1
Total Petroleum Hydrocarbons	430	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm

Analyst

Mattre m Walles
Review

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 6"	Date Reported:	01-28-10
Laboratory Number:	53014	Date Sampled:	. 01-26-10
Chain of Custody No:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Extracted:	01-26-10
Preservative:	Cool	Date Analyzed:	01-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	30.9	0.2
Diesel Range (C10 - C28)	749	0.1
Total Petroleum Hydrocarbons	780	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm

Quality Assurance Report

Client.	, QA/QC	Project #:	N/A
Sample ID:	01-27-10 QA/QC	Date Reported:	01-28-10
Laboratory Number:	53008	Date Sampled:	, N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	01-27-10
Condition:	N/A	Analysis Requested:	TPH

			GAC BIRE SUS	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	1.0313E+003	1.0317E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.3230E+002	9.3268E+002	0.04%	0 - 15%

Blank Cone (mp/L-mg/kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	. ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Displicate/Gone/(make)	Sample ES	Dimicate	- % Difference	Accept Range
Gasoline Range C5 - C10	3.6	3.4	5.6%	0 - 30%
Diesel Range C10 - C28	52.3	52.5	0.4%	0 - 30%

Spike Cane, (mg/ktg)	Sample 7	, Spiké Added	Spike Result	% Recovery	≁: Accept Range
Gasoline Range C5 - C10	3.6	250	240	94.5%	75 - 125%
Diesel Range C10 - C28	52.3	250	297	98.3%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53008 - 53014.

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

			•
Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #1 4'	Date Reported:	01-28-10
Laboratory Number:	53011	Date Sampled:	01-26-10
Chain of Custody:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Analyzed:	01-27-10
Preservative:	Cool	Date Extracted:	01-26-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
		· · · · · · · · · · · · · · · · · · ·	
Benzene	3.9	0.9	
Toluene	7.9	1.0	
Ethylbenzene	7.2	. 1.0	
p,m-Xylene	52.9	1.2	
o-Xylene	28.8	0.9	
Total BTEX	101		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.0 %
•	1,4-difluorobenzene	88.3 %
	Bromochlorobenzene	97.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 3.5'	Date Reported:	01-28-10
Laboratory Number:	53013	Date Sampled:	01-26-10
Chain of Custody:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Analyzed:	01-27-10
Preservative:	Cool	Date Extracted:	01-26-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
•			
Benzene	3.9	0.9	•
Toluene	6.5	1.0	
Ethylbenzene	4.1	1.0	
p,m-Xylene	45.1	1.2	
o-Xylene	16.5	0.9	
Total BTEX	76.1		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	 94.0 %	
	1,4-difluorobenzene	90.3 %	
	Bromochlorobenzene	99.0 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID.	01-27-BT QA/QC	Date Reported:	01-28-10
Laboratory Number	53007	Date Sampled:	N/A
_Sample.Matrix:	Soil	Date Received:	N/A
Preservative.	N/A	Date Analyzed:	01-27-10
Condition	N/A	Analysis:	BTEX

Calibration and Detection Limits (up/L	i (i-Cal·RF))	© Cal RF Accept Ran	%D# je.G+18% ^[2]	Blank Conc	Detect Limit
Benzene	1 1135E+006	1.1157E+006	0.2%	ND	0.1
Toluene	1 0905E+006	1 0927E+006	0.2%	ND	0.1
Ethylbenzene	1.0262E+006	1 0283E+006	0.2%	ND	0.1
p,m-Xylene	2.5603E+006	2.5655E+006	0.2%	ND	0.1
o-Xylene	9 7499E+005	9 7694E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	Stationica de l'assertation de la Sil	ig (loga)(G)	ZZJII.	Accept Range	Detect Jumin
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	, ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	·ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike(Cong.(ug/Kg)	Sample And	niet Spika, jesoi	(GESANE)E		Accept Range
Benzene	ND	50.0	49.5	99.0%	39 - 150
Toluene	ND	50.0	48.9	97.8%	46 - 148
Ethylbenzene	ND	50.0	48.9	97.8%	32 - 160
p,m-Xylene	ND	100	98.5	98.5%	46 - 148
o-Xylene	ND	50.0	49.6	99.2%	46 - 148

ND - Parameter not detected at the stated detection limit.

References

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 53007, 53009 - 53011, and 53013

Analyst

"hustine in Walters

TRACE METAL ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #1 4'	Date Reported:	01-28-10
-Laboratory-Number:	53011	Date Sampled:	01-26-10
Chain of Custody:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Analyzed:	01-28-10
Preservative:	Cool	Date Digested:	01-27-10
Condition [.]	Intact	Analysis Needed:	Total Metals

	-	Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
		,	
Arsenic	0.159	0.001	
Barium	147	0.001	
Cadmium	0.012	0.001	
Chromium	0.961	0.001	
Lead	0.803	0.001	
Mercury	ND	0.001	
Selenium	ND	0.001	
Silver	ND	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectroscopy, SW-846, USEPA, December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Landfarm

Analyst

Mustum Waltons
Review

TRACE METAL ANALYSIS

Client:	Key Energy	Project #:	98065-0013
Sample ID:	Lot #2 3.5'	Date Reported:	01-28-10
-Laboratory-Number:	53013	Date Sampled:	01-26-10
Chain of Custody:	8688	Date Received:	01-26-10
Sample Matrix:	Soil	Date Analyzed:	01-28-10
Preservative.	Cool	Date Digested:	01-27-10
Condition:	Intact ·	Analysis Needed:	Total Metals

		Det.	,
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
	,	•	
Arsenic	0.126	0.001	
Barium	136	0.001	•
Cadmium	0.014	0.001	
Chromium	1.05	0.001	
Lead	1.30	0.001	
Mercury	0.010	0.001	
Selenium	ND [*]	0.001	
Silver	ND	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectroscopy, SW-846, USEPA, December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Landfarm

Analyst

Review

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

QA/QC	Project #:	QA/QC
01-28 TM QA/AC	Date Reported:	01-28-10
53011	Date Sampled	N/A
Soil	Date Received	N/A
Total RCRA Metals	Date Analyzed:	01-28-10
· N/A	Date Digested.	01-27-10
	01-28 TM QA/AC 53011 Soil Total RCRA Metals	01-28 TM QA/AC Date Reported: 53011 Date Sampled Soil Date Received: Total RCRA Metals Date Analyzed:

Blank & Duplicate Conc. (mg/Kg)	instrument Blank (mg/Kg)	Method Blank	Detection Limit	in Sample	Duplicati	DHI.	Acceptance Range
Arsenic	ND	ND	0.001	0.159	0.131	17.6%	0% - 30%
Barium	ND	ND	0.001	147	145	1.4%	0% - 30%
Cadmium	- ND	ND	0.001	0.012	0.011	5.1%	0% - 30%
Chromium	ND	ND	0.001	0.961	0.803	16.5%	0% - 30%
Lead	ND	ND	0.001	0.803	0.819	2.0%	0% - 30%
Mercury	ND	ND	0.001	ND	ND	0.0%	0% - 30%
Selenium	ND	ND	0.001	ND	ND	0.0%	0% - 30%
Silver	ND	ND .	0.001	ND	ND	0.0%	0% - 30%

Spike Conc. (mg/kg)	Spike Added	Sample	Spiked Sample	Percent Recovery	Acceptance Range
and the control of th					
Arsenic	0.250	0.159	0.345	84.1%	80% - 120%
Barium	0.500	147	151	102%	80% - 120%
Cadmium	0.250	0.012	0.248	94.8%	80% - 120%
Chromium	0.500	0.961	1.24	84.7%	80% - 120%
Lead	0.500	0.803	1.23	94.6%	80% - 120%
Mercury	0.100	ND	0.081	80.8%	80% - 120%
Selenium	0.100	ND	0.084	84.1%	80% - 120%
Silver	0.100	ND	0.089	88.9%	80% - 120%

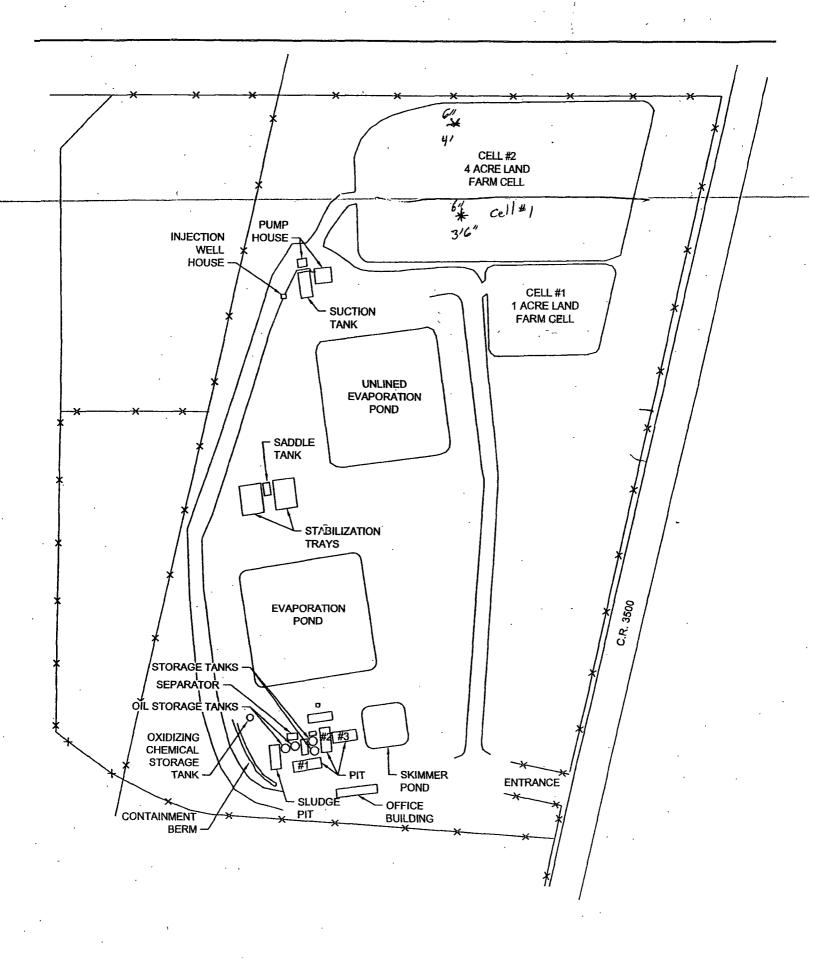
ND - Parameter not detected at the stated detection limit.

References

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision


Spectorscopy, SW-846, USEPA, December 1996

Comments:

QA/QC for Samples 53006, 53011, 53013, and 53019

Analyst

Review

Client:				Project Name / Location:						T	ANALYSIS / PARAMETERS													
Client Address:				handlam						AMELOGATAMANETERO														
Client/Address:				Sampler Name:						3021)	260)													
Client Phone No.:				Client No.:				- 8g	pod 8	od 8%	etals	ion		₽ F		£					ō	act		
	<u> </u>		9806	5 -				Meth	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion	RCI	TCLP with H/P	РАН	TPH (418.1)	CHLORIDE				le Co	le Int		
Sample No./ Identification	1	ample Samp Date Time		⊟ Lab No.	Sample Matrix		No./Volume Preservative of Containers											□ 💳			-	Sample Cool	Sample Intact	
int 4/4'	1/	26/10	12:	53011	Solid Solid	Sludge Aqueous	1402 1009			\			1	1									ч	Ц
Lot #16" Lot #23/2' Lot #26"	1	1	12%	53012	Soil Solid	Sludge Aqueous	1402	-		/									/				ノ	ノ
Let #23/21				53013	Solid	Sludge Aqueous	140 E			V	/		\checkmark	/									TO COMPANY OF THE	
Let # 26"			1:35	53014	Soil Solid	Sludge Aqueous	1402		0										/					
					Soil Solid	Sludge Aqueous			,															
			,	·	Soil Solid	Sludge Aqueous		}					-			1								<u> </u>
				, Ohn	Soil Solid	Sludge Aqueous										-								
					Soil Solid	Sludge Aqueous			•															
	٠		l		Soil Solid	Sludge Aqueous							,											
					Soil Solid	Sludge Aqueous Date																		
Relinquished by: (Signature)							Time Received by: (Signature)												Date Tin			- 1		
Relinquished by: (Signature)						01-26-10		Received by: (Signature)											1	1	· / ·			
Relinquished by: (Signature)								Received by: (Signature)																
												<u></u>		L										

PO# 1468085

5796 US Highway 64 • Farmington ANM 87401 • 505-632-0615 • lab@envirotech-inc.com