ANNUAL CLASS I WELL REPORT Waste Disposal Well #1 January – December 2012 Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield, New Mexico Permit # - UIC-CL1-009 API # - 30-45-29002 Submitted January 30, 2013 Prepared by: Kelly Robinson **Environmental Supervisor** ### Certification I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. Ron Weaver Regional Terminals Manager # TABLE OF CONTENTS | EXECUT | IVE SUMMARY | 1 | |-------------------|---|----| | 1.0 | INTRODUCTION | | | 2.0 | SUMMARY OF ACTIVITIES | 3 | | 3.0
3.1
3.2 | INJECTION VOLUME Injection Volume Injection Well Down-Time | 4 | | 4.0 | SAMPLING AND CHEMICAL ANALYSIS | 5 | | 5.0
5.1 | TESTING AND MAINTENANCE ACTIVITIES Mechanical Integrity Testing | | | 6.0
6.1
6.2 | WELL EVALUATION Well Evaluation Area of Review (AOR) | 7 | | 7.0
7.1
7.2 | CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations | 8 | | 8.0 | REFERENCES | 10 | ### **LIST OF FIGURES** Figure 1 Site Location Map Figure 2 Well Schematic Figure 3 Disposal Well and Area Wells ### LIST OF TABLES Table 1 Monthly Injection Well Report Table 2 Area of Review Table 3 2012 Quarterly Analytical Summary ### LIST OF APPENDICES Appendix A Form C-103 Notifications Appendix B Laboratory Analytical Reports Appendix C Laboratory Quality Assurance Plan ### **EXECUTIVE SUMMARY** This report provides a summary of activities conducted in 2012 on Waste Disposal Well #1 (WDW-#1) at the Bloomfield Refinery. The following is a summary of well operations and well testing activities performed in 2012. ### **Operational Summary** **Injection Volume -** The volume injected into the disposal well during 2012 was 8,996,020 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste. **Maintenance Operations** - No down-hole maintenance activities were conducted in 2012. Mechanical Integrity Tests - The 2012 well testing program witnessed by a representative of the New Mexico Oil Conservation Division (NMOCD) included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound. **Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1. ### Recommendations Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, mechanical integrity testing, and Bradenhead testing. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130. ### 1.0 INTRODUCTION This report provides a summary of activities conducted during 2012 on Waste Disposal Well #1 (WDW #1). The disposal well is part of the Bloomfield Refinery operations. The refinery is located immediately south of Bloomfield, New Mexico in San Juan County. The well location is depicted in Figure 1. The physical address of the facility is as follows: ### **Bloomfield Refinery** #50 County Road 4990 Bloomfield, NM 87413 The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 550 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north. WDW #1 is owned by San Juan Refining Company, a New Mexico corporation. It is operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc. an Arizona corporation. ### 1.1 Well Information Well Name & Number: Waste Disposal Well #1 OCD UIC: UIC-CL1-009 OCD Discharge Plan Permit Number: GW-130 Well Classification: Class I Non-hazardous API Number: 30-045-29002 Legal Location: 1250 FEL, 2442FSL, I Sec 27 T29S R11E Physical Address: #50 Road 4990, Bloomfield, NM 87413 ### 2.0 SUMMARY OF ACTIVITIES The following list of activities was conducted in 2012 on WDW #1 located at the Bloomfield Refinery: | • | 01/17/12 | 1st Quarter 2012 Sampling Event | |---|----------|---------------------------------| | • | 04/03/12 | 2nd Quarter 2012 Sampling Event | | • | 07/31/12 | 3rd Quarter 2012 Sampling Event | | • | 09/06/12 | Bradenhead Test | | • | 09/06/12 | High-Pressure Shut-Down Test | | • | 09/06/12 | Mechanical Integrity Test | | • | 10/11/12 | 4th Quarter 2011 Sampling Event | Quarterly samples collected for laboratory analysis were submitted to Hall Environmental Laboratories located in Albuquerque, New Mexico. Copies of the analytical reports are provided in Appendix B. A summary of the analytical results is provided in Table 3. A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness the Bradenhead Test, High-Pressure Shut-Down Test, and Mechanical Integrity Test on September 6, 2012. A copy of the test reports is provided in Appendix A. The Annual Pressure Fall-Off Test was not conducted in 2012. In an e-mail to Western from NMOCD dated August 2, 2012, it states that Fall Off Test frequency requirements are believe evaluated by NMOCD and operators will be notified by NMOCD when a Fall Off Test is required. Western did not receive notification from NMOCD that a Fall-Off Test was required for 2012. ### 3.0 INJECTION VOLUME The Monthly Injection Well Report summarizing injection volumes and well performance parameters is presented as Table 1. ### 3.1 Injection Volume The volume injected into the disposal well during 2012 was 8,996,020 gallons. Throughout 2012 the Bloomfield Refinery injection well operated within the operational limits of less than 1,150 psi. ### 3.2 Injection Well Down-Time The injection well was down approximately 4,019 hours in 2012. Decreased volume of plant produced water during 2012 resulted in extended periods in which the injection well was not operational. General maintenance activities on the injection well equipment upstream of the injection well also contributed to the injection well down-time during 2012. ### 4.0 SAMPLING AND CHEMICAL ANALYSIS Samples were collected of the injection water on a quarterly basis and analyzed for the following per Item #9 of the Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004: - Volatile Organic Compounds (VOCs); - Semi-Volatile Organic Compounds (SVOCs); - General Chemistry Parameters (included calcium, potassium, magnesium, sodium, bicarbonate, carbonate, chloride, sulfate, total dissolved solids, pH, and conductivity); - RCRA 8 Metals; and - RCRA Characteristics for Ignitability, Corrosivity, and Reactivity. First quarter samples were collected on January 17, 2012. Second quarter samples were collected April 3, 2012. Third quarter samples were obtained July 31, 2012. Fourth quarter samples were taken October 11, 2012. A summary of the analytical results is provided in Table 3. All quarterly samples collected for laboratory analysis were submitted to Hall Environmental Analysis Laboratory located in Albuquerque, NM. The analytical results conclude that the injected water did not exhibit characteristics of hazardous waste. The respective quarterly analytical reports and Laboratory Quality Assurance Plan are provided in Appendices B and C, respectively. ### 5.0 TESTING AND MAINTENANCE ACTIVITIES In addition to the conducting general preventative maintenance activities on the injection well equipment, the following testing and well maintenance activities were conducted during 2012: Mechanical Integrity Testing (including high-pressure shutdown and Bradenhead Testing) All activities were conducted following NMOCD approval, and such documentation is provided in Appendix A. The following is a brief summary of the testing and well maintenance activities conducted in 2012. ### 5.1 Mechanical Integrity Testing A representative of New Mexico Oil Conservation Division (NMOCD) was on-site to witness a High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test (MIT) on September 6, 2012. All tests were witnessed by Monica Kuehling of NMOCD-Aztec. The MIT held at 495 psi for 30 minutes, therefore confirming the integrity of the well. A copy of the Test Reports is provided in Appendix A. ### 6.0 WELL EVALUATION ### 6.1 Well Evaluation In 2012, the injection well operated normally and within the operation limit of 1,150 psi. The increased down-time of well operations when compared to 2011 operational hours is mostly contributed to the decrease in produced water at the Bloomfield facility. ### 6.2 Area of Review (AOR) The Area of Review data was updated in the 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report (Cobb & Associates, 2011). No new wells were found in the one-mile radius. Fifty-eight wells were found within a one-mile radius of WDW #1, which injects water into the Mesaverde formation. The wells and status are spotted on
an area map, Figure 3, with a well number listed with the well data in Table 2. Of these wells, 15 have been plugged and abandoned. Four wells are classified as dry holes and are believed to be plugged and abandoned. Twenty-four wells produce petroleum from shallow zones. One well is an Entrada injection well. Fourteen wells produce petroleum from the Dakota and Gallup zones, which are deeper than the Mesaverde interval used for injection purposes. No wells are producing from the injection interval within a one-mile radius of WDW #1. Twenty-four of the 59 wells have penetrated the injection zone. Of these, three have been plugged. Five wells are currently producing from shallow zones and 14 wells produce from deep zones. There are two injection wells including WDW #1 and Ashcroft SWD #1 well. No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1. ### 7.0 CONCLUSIONS AND RECOMMENDATIONS The following is a summary of well operations and well testing activities performed in 2012. ### 7.1 Conclusions **Injection Volume -** The volume injected into the disposal well during 2012 was 8,996,020 gallons. Western Refining suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Sampling and Chemical Analyses - Injection fluids samples were collected on a quarterly basis for chemical analysis. Analytical results did not exhibit characteristics of hazardous waste. **Maintenance Operations -** No down-hole maintenance activities were conducted in 2012. **Mechanical Integrity Tests** - The 2012 well testing program witnessed by a representative of OCD included a High-Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrity Test. Results of these tests prove that the operational integrity of the well is sound. Well Evaluation – The injection well operated normally within the operational limit of 1,150 psi throughout 2012. **Area of Review (AOR) -** No wells are currently producing petroleum from the Mesaverde injection zone within the AOR, a one-mile radius of WDW #1. ### 7.2 Recommendations Western will continue the routine monitoring, maintenance, and testing programs which include quarterly chemical analysis of injection fluids, high-pressure shut-down testing, mechanical integrity testing, and Bradenhead testing in 2013. Western will continue to utilize the maximum operating injection pressure at the wellhead as permitted by Discharge Permit GW-130. # 8.0 REFERENCES Cobb & Associates, 2009a, Evaluation of Disposal Well #1 Bloomfield Refinery, August 26, 2009. Cobb & Associates, 2011, 2011 Annual Bottomhole Pressure Surveys and Pressure Fall-Off Tests for Waste Disposal Well #1Report December 21, 2011. Bloomfield Refinery Class I (Non-Hazardous) Disposal Well UIC-CL1-009 (GW-130) Discharge Permit Renewal dated March 23, 2004. ## WESTERN REFINING DISPOSAL WELL #1 NW, SW SECTION 26, T29N, R11W NO.: 30-045-29002 8-5/8", 48#/ft, Surface Casing @ 830' TOC: Surface Hole Size: 11.0" Tubing: 2-7/8", Acid Resistant Fluoroline Cement Lined Wt of Tubing: 6.5 #/ft Wt of Tubing Lined: 7.55 #/ft Tubing ID: 2.128" Tubing Drift ID: 2.000" Minimum ID @ Packer: ~1.87" estimated Packer: Unknown Packer Type @ 3221' Could be a Guiberson or similar model Uni-6 Perforations: 3276' - 3408' 4JSPF 0.5 EHD Top of the Cliff House Formation: 3276' Fill was cleaned out of well on 4/20/06 Fill was orginally tagged at 3325' Perforations: 3435' - 3460' 4JSPF 0.5 EHD Top of the Menefee Formation: 3400' RBP: 3520' 5-1/2", 15.5#/ft, Production Casing @3600' TOC: Surface Hole Size: 7-7/8" Figure 3 # WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD REFINERY P.O. BOX 159 **BLOOMFIELD, NEW MEXICO 87413** NE1/4 SE1/4 SECTION 27, T29N, R11W NMPM, SAN JUAN COUNTY, NEW MEXICO MONTHLY INJECTION WELL REPORT **DISCHARGE PLAN GW-130** | | Т | | | | | 1 | | | | | | | | |-----------------------|------------|-----------|-----------|---------|---------|---|---------|-----------|-----------|-----------|-----------|---------|--| | ES
ES | AVG | (GPM) | 42 | 23 | 19 | | 18 | 4 | 23 | 4 | 59 | 23 | | | ON-LINE
FLOW RATES | NIM | (GPM) | 21 | 17 | 2 | | 14 | 0 | 0 | 0 | 0 | 0 | | | | MAX | (GPM) | 98 | 30 | 25.0 | | 27 | 28 | 64 | 62 | 99 | 62 | | | SURE | AVG | (PSIA) | 158 | 174 | 207 | | 236 | 173 | 158 | 160 | 151 | 170 | | | ANNULAR PRESSURE | NW | (PSIA) | 131 | 158 | 179 | | 196 | 107 | 107 | 132 | 120 | 111 | | | NNA | MAX | (PSIA) | 200 | 186 | 239 | | 278 | 245 | 200 | 200 | 176 | 208 | | | SURE | AVG | (PSIA) | 929 | 906 | 888 | | 895 | 862 | 893 | 849 | 913 | 899 | | | INJECTION PRESSURE | N | (PSIA) | 901 | 885 | 882 | | 879 | 844 | 841 | 830 | 837 | 838 | | | ELNI. | MAX | (PSIA) | 1045 | 625 | 668 | | 935 | 941 | 1016 | 686 | 1008 | 966 | | | DOWN- | TIME | (HRS) | 194 | 0 | 0 | | 0 | 637 | 246 | 711 | 360 | 439 | | | TOTALIZER | INJECTED | (GALLONS) | 1,384,309 | 927,412 | 841,031 | | 753,498 | 125,509 | 991,574 | 109,779 | 1,390,728 | 996,779 | | | AMOUNT
TO SOLAR | EVAP PONDS | (GALLONS) | 408,692 | 596,588 | 875,969 | | 937,502 | 1,751,491 | 1,336,426 | 2,448,221 | 21,272 | 516,221 | | | AMOUNT
OF WATER | ~ | (GALLONS) | 855 | 1,806 | 859 | | 2,011 | 1,819 | 2,350 | 5 | 2,630 | 2,496 | | | | PERIOD | 2012 | JAN | FEB | MAR | | APR | MAY | NOL | JUL | AUG | SEP | | | 23 | - | 6 | |-----------|-----------|---------| | 0 | 0 | 0 | | 58 | 21 | 47 | | 141 | 173 | 159 | | 106 | 125 | 115 | | 202 | 185 | 187 | | 688 | 827 | 817 | | 835 | 218 | 157 | | 166 | 861 | 006 | | 321 | 673 | 438 | | 1,069,507 | 41,469 | 364,425 | | 466,493 | 1,050,531 | 938,575 | | 609 | 2,291 | 2,199 | | ОСТ | NOV | DEC | gallons 8,996,020 The total amount injected in 2012 is: CERTIFICATION 1-29-13 DATE: Page 1 | Pen.
Status Ini.
Zone | INJ Yes | P&A Yes | Shallow No | Deep Yes | P&A No | CBM No | CBM No | P&A No | Shallow Yes | Shallow Yes | Shallow No | Deep Yes | Deep Yes | | Shallow No | | | | | | | | | | |-----------------------------|----------------------------|-----------------|-----------------|-----------------|-------------------|----------------|--------------------------|-------------------------|------------------------------|-------------------------|-----------------------------|-------------------------|-------------------------|---------------|-----------------------------|------------------------------|--|---|---|---|--|---|--|--| | RESERVOIR | MESAVERDE | DAKOTA | CHACRA | GALLUP | PICTURED CLIFFS | FRUITLAND COAL | FRUITLAND COAL | | CHACRA | PICTURED CLIFFS | FRUITLAND SAND | DAKOTA | DAKOTA | | CHACRA | CHACRA
FRUITLAND COAL | CHACRA
FRUITLAND COAL | CHACRA FRUITLAND COAL FRUITLAND COAL | CHACRA FRUITLAND COAL FRUITLAND COAL DAKOTA | CHACRA FRUITLAND COAL FRUITLAND COAL DAKOTA GALLUP | CHACRA FRUITLAND COAL DAKOTA GALLUP FRUITLAND COAL | CHACRA FRUITLAND COAL DAKOTA GALLUP FRUITLAND COAL CHACRA | CHACRA FRUITLAND COAL DAKOTA GALLUP FRUITLAND COAL CHACRA CHACRA | CHACRA FRUITLAND COAL DAKOTA GALLUP FRUITLAND COAL CHACRA CHACRA PICTURED CLIFFS | | OPERATOR | WESTERN REFINING MESAVERDE | BP AMERICA | XTO ENERGY, INC | XTO ENERGY, INC | Pre-Ongard | HOLCOMB O&G | H-27-29N-11W HOLCOMB O&G | Pre-Ongard | H-27-29N-11W XTO ENERGY, INC | Burlington | F-27-29N-11W MANANA GAS INC | Burlington | / Burlington | | F-27-29N-11W MANANA GAS INC | MANANA GAS INC
Burlington | Marvaine Ges INC
Burlington
Pre-Ongard | F-27-29N-11W MANANA GAS INC
L-27-29N-11W Burlington
C-27-29N-11W Pre-Ongard
F-26-29N-11W HOLCOMB O&G | F-27-29N-11W MANANA GAS INC
L-27-29N-11W Burlington
C-27-29N-11W Pre-Ongard
F-26-29N-11W HOLCOMB O&G
F-26-29N-11W XTO ENERGY, INC | Burlington Pre-Ongard HOLCOMB O&G XTO ENERGY, INC | MANANA GAS INC Burlington Pre-Ongard HOLCOMB O&G XTO ENERGY, INC Burlington Burlington | Burlington Pre-Ongard HOLCOMB O&G XTO ENERGY, INC Burlington Burlington | Burlington Pre-Ongard HOLCOMB O&G XTO ENERGY, INC Burlington Burlington Burlington | Burlington Pre-Ongard HOLCOMB O&G XTO ENERGY, INC Burlington Burlington Burlington Fenergen | | ULSTR | I-27-29N-11W | I-27-29N-11W | I-27-29N-11W | I-27-29N-11W | I-27-29N-11W | I-27-29N-11W | H-27-29N-11W | H-27-29N-11W Pre-Ongard | H-27-29N-11W | K-27-29N-11W Burlington | F-27-29N-11W | F-27-29N-11W Burlington | M-26-29N-11W Burlington | T 27 20N 141A | F-2/-2314-1 1 vv | L-27-29N-11W | | | | , | , _ | , _ , | , _ , _ | | | P&A Date | | 19-Jan-94 | | | 18-Oct-82 | | | 18-Aug-55 | | | | | | | | | 09-Nov-78 | Total
Depth | 3514 | 6298 | 2839 | 6177 | 1717 | 1714 | 1689 | 1800 | 6262 | 5808 | 1354 | 6160 | 6348 | 2710 | | 6214 | 6214
800 | 6214
800
4030 | 6214
800
4030
6242 | 6214
800
4030
6242
6148 | 6214
800
4030
6242
6148
1760 | 6214
800
4030
6242
6148
1760
2857 | 6214
800
4030
6242
6148
1760
2857
2869 | 6214
800
4030
6242
6148
1760
2857
2869 | | Perf
Bottom | 3514 | 6298 | 2839 | 5646 | | 1714 | 1689 | | 2810 | 1770 | 1354 | 6160 | 6348 | 2710 | | 1661 | 1661 | 1661 | 1661
1645
6242 | 1661
1645
6242
6148 | 1661
1645
6242
6148
1760 | 1661
1645
6242
6148
1760
2857 |
1661
1645
6242
6148
1760
2857
2869 | 1661
1645
6242
6148
1760
2857
2869 | | Top | 3276 | 6157 | 2827 | 5314 | | 1543 | 1483 | | 2701 | 1680 | 1326 | 6024 | 6176 | 2578 | | 1388 | | | | | | | | | | APINO | 30-045-29002 | 30-045-07825 | 30-045-23554 | 30-045-30833 | 30-045-07812 | 30-045-34463 | 30-045-34409 | 30-045-07883 | 30-045-24084 | 30-045-25673 | 30-045-27361 | 30-045-24673 | 30-045-12003 | 30-045-27365 | 30-045-07835 | 20-01-0-00 | 30-045-07896 | 30-045-07896
30-045-25329 | | | | | | | | **! | - | - | - | ᄄ | - | - | 7 | 7 | 7 | 8 | - | Ħ | - | - | - | | - | | # | | • | | | | | WELLNAME | 0.00 DISPOSAL | DAVIS GAS COM F | DAVIS GAS COM G | DAVIS GAS COM F | Davis Pooled Unit | JACQUE | JACQUE | Davis PU/FB Umbarger | DAVIS GAS COM F | CONGRESS | LAUREN KELLY | MANGUM | CALVIN | MARIAN S | MANGUM | | Black Diamond | Black Diamond
DAVIS GAS COM J | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D CONGRESS | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D CONGRESS CALVIN | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D CONGRESS CALVIN SUMMIT | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D CONGRESS CALVIN SUMMIT CONGRESS | Black Diamond DAVIS GAS COM J SULLIVAN GAS COM D CONGRESS CALVIN SUMMIT CONGRESS Garland "B" | | Miles to
DW1 | 0.00 | 0.11 | 0.12 | 0.15 | 0.16 | 0.18 | 0.23 | 0.23 | 0.24 | 0.41 | 0.49 | 0.49 | 0.51 | 0.52 | 0.55 | | 0.56 | 0.56 | 0.56 | | | | | | | Map
Seq. | - | 7 | က | 4 | 2 | 9 | 7 | 80 | 6 | 5 | = | 12 | 13 | 4 | 15 | | 16 | 16 | 17 18 | 16
17
18
19 | 16
18
19
20 | 16
18
19
20
21 | 16
17
18
19
20
21
22 | 16
17
18
19
20
21
22
23 | | Pen.
Int.
Zone | Š | Yes | Ŷ | ŝ | Š | Yes | 8 | Š | Š | Yes | Š | 2 | ş | Yes | Yes | 2 | Yes | ž | Yes | Yes | Yes | ş | Yes | 2 | |------------------------------|----------------------|--------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------|--------------|------------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------------|----------------------------|-------------------------|-------------------------| | Status | Shallow | Deep | Shallow | Shallow | P&A | P&A | P&A | Shallow | CBM | Deep | Shallow | Shallow | DRY | Deep | Deep | Shallow | Deep | DRY | Shallow | Deep | <u> 2</u> | P&A | Deep | DRY | | RESERVOIR | CHACRA | GALLUP | PICTURED CLIFFS S | CHACRA | FRUITLAND SAND | DAKOTA | (N/A) | CHACRA | FRUITLAND COAL | DAKOTA | FRUITLAND SAND | PICTURED CLIFFS | FARMINGTON | DAKOTA | DAKOTA | FARMINGTON, NORTH Shallow | DAKOTA | FARMINGTON | CHACRA | GALLUP | MORRISON BLUFF EN | PICTURED CLIFFS | DAKOTA | | | OPERATOR | ENERGEN | Burlington | Burlington | P-22-29N-11W MANANA GAS INC | O-22-29N-11W JOHN C PICKETT | P-22-29N-11W MANANA GAS INC | Pre-Ongard | N-22-29N-11W MANANA GAS INC | G-34-29N-11W CHAPARRAL O&G | Pre-Ongard | Burlington | B-26-29N-11W XTO ENERGY, INC | D-34-29N-11W MCELVAIN O&G | Burlington | Pre-Ongard | Burlington | Burlington | B-26-29N-11W XTO ENERGY, INC | E-35-29N-11W CHAPARRAL O&G | Burlington | Pre-Ongard | | ULSTR | M-27-29N-11W ENERGEN | K-26-29N-11W | M-27-29N-11W Burlington | P-22-29N-11W | O-22-29N-11W | | M-26-29N-11W Pre-Ongard | N-22-29N-11W | N-22-29N-11W | N-22-29N-11W | N-22-29N-11W | G-34-29N-11W | M-23-29N-11W Pre-Ongard | J-26-29N-11W | B-26-29N-11W | D-34-29N-11W | F-34-29N-11W Burlington | O-23-29N-11W Pre-Ongard | E-35-29N-11W Burlington | C-35-29N-11W Burlington | B-26-29N-11W | | G-34-29N-11W Burlington | P-28-29N-11W Pre-Ongard | | P&A Date | | | | | 02-Mar-00 | 14-Jun-99 | 11-Nov-58 | | | | | | | | | | | | | | | 18-Dec-99 | | | | <u>Total</u>
<u>Depth</u> | 2790 | 5870 | 1678 | 2754 | 1466 | 6274 | 1917 | 2732 | 1608 | 6226 | 1410 | 1736 | 2335 | 6430 | 6160 | 1525 | 6347 | 2015 | 6328 | 5943 | 7382 | 1790 | 6340 | 870 | | Perf
Bottom | 2790 | 5870 | 1678 | 2754 | 1466 | 6274 | | 2732 | 1608 | 6226 | 1410 | 1736 | | 6430 | 6160 | 1064 | 6347 | | 2906 | 5943 | 7070 | 1790 | 6340 | | | Perf | 2668 | 5295 | 1648 | 2627 | 1380 | 6072 | | 2622 | 1440 | 6052 | 1390 | 1726 | | 6172 | 6047 | 1060 | 6202 | | 2784 | 5369 | 6952 | 1776 | 6171 | | | APINO | 30-045-24573 | 30-045-25612 | 30-045-21732 | 30-045-26721 | 30-045-07959 | 30-045-07961 | 30-045-07776 | 30-045-26731 | 30-045-34312 | 30-045-07940 | 30-045-13089 | 30-045-20755 | 30-545-02123 | 30-045-33093 | 30-045-07733 | 30-045-24834 | 30-045-24835 | 30-545-02124 | 30-045-24837 | 30-045-25675 | 30-045-30788 | 30-045-20752 | 30-045-07672 | 30-045-07751 | | ##1 | က | က | 듔 | 7 | - | - | - | - | - | - | 7 | 7 | က | # | - | = | 7E | 4 | # | 15 | - | - | S | - | | WELLNAME | GARLAND | CALVIN | GARLAND B | NANCY HARTMAN | GRACE PEARCE | HARTMAN | Davis | MARY JANE | ROYAL FLUSH | COOK | COOK | SHELLY | HARE | CALVIN | SULLIVAN GAS COM D | ELLEDGE FEDERAL 34 | CONGRESS | HARE | CONGRESS | CONGRESS | ASHCROFT SWD | LEA ANN | CONGRESS | Viles EE | | Map Miles to
Seq. DW1 | 0.65 | 0.67 | 0.68 | 0.70 | 0.71 | 0.72 | 0.73 | 0.75 | 0.76 | 0.79 | 0.79 | 0.82 | 0.82 | 0.84 | 0.85 | 0.85 | 0.89 | 06.0 | 06.0 | 06.0 | 0.90 | 0.90 | 0.94 | 0.94 | | Map
Seq. | 25 | 5 8 | 27 | 78 | 53 | 30 | 33 | 32 | 33 | 8 | 35 | 36 | 37 | 38 | 39 | 4 | 4 | 4 | 43 | 4 | 45 | 46 | 47 | 8 | | ren Zene
Zene | Š
V | ş
V | ş
4 | p Yes | Š
V | ę
K | ow No | ο
N | A Yes | ow No | Ŷ
≻ | |-----------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------|--|-----------------------------------|------------------------------|--------------------------|-----------------------------------|----------------------------|----------------| | Status | P&A | P&A | P&A | Deep | P&A | P&A | Shallow | CBM | P&A | Shallow | DRY | | RESERVOIR | PICTURED CLIFFS | PICTURED CLIFFS | | DAKOTA | PICTURED CLIFFS | PICTURED CLIFFS | CHACRA | FRUITLAND COAL | DAKOTA | PICTURED CLIFFS | FRUITLAND SAND | | <u>OPERATOR</u> | Pre-Ongard | Pre-Ongard | Pre-Ongard | A-28-29N-11W XTO ENERGY, INC | Pre-Ongard | Pre-Ongard | B-26-29N-11W XTO ENERGY, INC | K-23-29N-11W HOLCOMB O&G | BP AMERICA | E-34-29N-11W CHAPARRAL O&G | Pre-Ongard | | ULSTR | 23-Jun-55 G-26-29N-11W Pre-Ongard | 05-May-78 A-28-29N-11W Pre-Ongard | 05-Jun-78 A-28-29N-11W Pre-Ongard | A-28-29N-11W | 1420 31-Aug-53 G-26-29N-11W Pre-Ongard | 30-Oct-53 J-34-29N-11W Pre-Ongard | B-26-29N-11W | K-23-29N-11W | 10-Mar-97 K-23-29N-11W BP AMERICA | E-34-29N-11W | -34-29N-11W | | P&A Date | 23-Jun-55 | 05-May-78 | 05-Jun-78 | | 31-Aug-53 | 30-Oct-53 | | | 10-Mar-97 | | | | <u>Total</u>
Depth | 006 | 1600 | 900 | 6125 | 1420 | S | 2761 | 2761 | 6182 | 1731 | FrtInd | | Bottom | | | | 6125 | | | 2761 | 1648 | 6182 | 1731 | | | To de | | | | 6023 | | | 2750 | 1470 | 6154 | 1712 | | | APINO | 1X 30-045-29107 | 30-045-07895 | 30-045-07762 | 30-045-07894 6023 | 30-045-07870 | 30-045-07674 | 30-045-23163 2750 | 30-045-23550 1470 | 30-045-07985 6154 | 30-045-20609 1712 | 30-545-02151 | | ** | ¥ | 8 | က | - | - | - | - | - | - | - | 8 | | WELLNAME | Sullivan | Madsen Selby Pooled Unit | Masden-Selby | MASDEN GAS COM | Suffivan | CONGRESS | EARL B SULLIVAN | STATE GAS COM BS | PEARCE GAS COM | CHAPARRAL | 0.99 CONGRESS | | DW1 | 0.95 | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | | | 49 | 20 | 21 | 25 | 53 | 54 | 22 | 26 | 22 | 28 | 29 | | Pen Ini. Zone | 2 | 12 | 4 | 0 | 9 | 4 | 0 | 35 | |---------------|--------|-----|-----|---|-----|---------|--------------|-------| | Pen In | Kes | က | 0 | 8 | 8 | က | 4 | 24 | | Total | Wells | 15 | 4 | 8 | ^ | 17 | 4 | 29 | | | Status | P&A | Diy | Z | CBM | Shallow | Deep | Total | Injection Well 2012 Quarterly Analytical Summary | Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane | Characteristics | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | |---|-----------------|----------------|----------------|----------------|--------------| | 1,1,2-Tetrachloroethane
1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane | | | < 1.0 | | | | 1,1,2,2-Tetrachloroethane | | - 1 0 | | < 1.0 | < 10 | | | | < 1.0 | < 1.0 | < 1.0 | < 10 | | | | < 2.0 | < 2.0 | < 2.0 | < 20 | | 1,1,2-Trichloroethane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,1-Dichloroethane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,1-Dichloroethene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,1-Dichloropropene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2,3-Trichlorobenzene
1,2,3-Trichloropropane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2,4-Trichlorobenzene | | < 2.0
< 1.0 | < 2.0
< 1.0 | < 2.0
< 1.0 | < 20
< 10 | | 1,2,4-Trimethylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2-Dibromo-3-chloropropane | | < 2.0 | < 2.0 | < 2.0 | < 20 | | 1,2-Dibromoethane (EDB) | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2-Dichlorobenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2-Dichloroethane (EDC) | 500 | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,2-Dichloropropane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,3,5-Trimethylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,3-Dichlorobenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,3-Dichloropropane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 1,4-Dichlorobenzene | 7500 | < 1.0 | < 1.0 | < 1.0 | < 10 | | I-Methylnaphthalene | | < 4.0 | < 4.0 | < 4.0 | < 40 | | 2,2-Dichloropropane | | < 2.0 | < 2.0 | < 2.0 | < 20 | | 2-Butanone | | 24 | <
10 | 21 | < 100 | | 2-Chlorotoluene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | 2-Hexanone | | < 10 | < 10 | < 10 | < 100 | | 2-Methylnaphthalene
4-Chlorotoluene | | < 4.0 | < 4.0 | < 4.0 | < 40 | | 4-Isopropyltoluene | | < 1.0
< 1.0 | < 1.0
< 1.0 | < 1.0
< 1.0 | < 10
< 10 | | 4-Methyl-2-pentanone | | < 1.0 | < 1.0 | < 1.0 | < 100 | | Acetone | | 520 | 78 | 590 | 130 | | Benzene | 500 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Bromobenzene | 200 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Bromodichloromethane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Bromoforin | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Bromomethane | | < 3.0 | < 3.0 | < 3.0 | < 30 | | Carbon disulfide | | 32 | < 10 | < 10 | < 100 | | Carbon Tetrachloride | 500 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Chlorobenzene | 100000 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Chloroethane | | < 2.0 | < 2.0 | < 2.0 | < 20 | | Chloroform | 6000 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Chloromethane | | < 3.0 | < 3.0 | < 3.0 | < 30 | | cis-1,2-DCE | | < 1.0 | < 1.0 | < 1.0 | < 10 | | cis-1,3-Dichloropropene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Dibromochloromethane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Dibromomethane
Dichlorodifluoromethane | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Ethylbenzene | | < 1.0
< 1.0 | < 1.0
< 1.0 | < 1.0
< 1.0 | < 10
< 10 | | Hexachlorobutadiene | 500 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Isopropylbenzene | 300 | < 1.0 | < 1.0 | < 1.0 | < 10 | | Methyl tert-butyl ether (MTBE) | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Methylene Chloride | | < 3.0 | < 3.0 | < 3.0 | < 30 | | Naphthalene | | < 2.0 | < 2.0 | < 2.0 | < 20 | | n-Butylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 30 | | n-Propylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | sec-Butylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Styrene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | tert-Butylbenzene | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Tetrachloroethene (PCE) | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Toluene | | 12 | < 1.0 | 2.6 | < 10 | | trans-1,2-DCE | | < 1.0 | < 1.0 | < 1.0 | < 10 | | trans-1,3-Dichloropropene
Trichloroethene (TCE) | | < 1.0 | < 1.0 | < 1.0 | < 10 | | Trichlorofluoromethane | | < 1.0
< 1.0 | < 1.0 | < 1.0 | < 10 | | Vinyl chloride | 200 | < 1.0 | < 1.0
< 1.0 | < 1.0
< 1.0 | < 10
< 10 | | Xylenes, Total | 200 | < 1.5 | < 1.5 | < 1.5 | < 15 | 1 Injection Well 2012 Quarterly Analytical Summary | | Toxicity | | | | | |---|---|--------------|---------------|---------------|---------------| | Semi-Volatile Organic Compounds (ug/L) | Characteristics | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | | 1,2,4-Trichlorobenzene | T | < 10 | < 50 | < 50 | < 50 | | 1,2-Dichlorobenzene | | < 10 | < 50 | < 50 | < 50 | | 1,3-Dichlorobenzene | | < 10 | < 50 | < 50 | < 50 | | 1,4-Dichlorobenzene | 7500 | < 10 | < 50 | < 50 | < 50 | | 1-Methylnaphthalene | | < 10 | < 50 | < 50 | < 50 | | 2,4,5-Trichlorophenol | • | < 10 | < 50 | < 50 | < 50 | | 2,4,6-Trichlorophenol
2,4-Dichlorophenol | 2000 | < 10 | < 50 | < 50 | < 50 | | 2,4-Directly lphenol | | < 20
< 10 | < 100
< 50 | < 100
< 50 | < 100
< 50 | | 2,4-Dinitrophenol | | < 20 | < 100 | < 100 | < 100 | | 2,4-Dinitrotoluene | 130 | < 10 | < 50 | < 50 | < 50 | | 2,6-Dinitrotoluene | | < 10 | < 50 | < 50 | < 50 | | 2-Chloronaphthalene | | < 10 | < 50 | < 50 | < 50 | | 2-Chlorophenol | | < 10 | < 50 | < 50 | < 50 | | 2-Methylnaphthalene | | < 10 | < 50 | < 50 | < 50 | | 2-Methylphenol | | 26 | < 50 | < 50 | < 50 | | 2-Nitroaniline | | < 10 | < 50 | < 50 | < 50 | | 2-Nitrophenol | | < 10 | < 50 | < 50 | < 50 | | 3,3'-Dichlorobenzidine | | < 10 | < 50 | < 50 | < 50 | | 3+4-Methylphenol | | 31 | 81 | 140 | < 50 | | 3-Nitroaniline 4,6-Dinitro-2-methylphenol | | < 10
< 20 | < 50 | < 50 | < 50
< 100 | | 4-Bromophenyl phenyl ether | | < 20
< 10 | < 100
< 50 | < 100
< 50 | < 100
< 50 | | 4-Chloro-3-methylphenol | | < 10 | < 50
< 50 | < 50 | < 50
< 50 | | 4-Chloroaniline | | < 10 | < 50 | < 50 | < 50 | | 4-Chlorophenyl phenyl ether | | < 10 | < 50 | < 50 | < 50 | | 4-Nitroaniline | | < 20 | < 100 | < 100 | < 50 | | 4-Nitrophenol | | < 10 | < 50 | < 50 | < 50 | | Acenaphthene | | < 10 | < 50 | < 50 | < 50 | | Acenaphthylene | | < 10 | < 50 | < 50 | < 50 | | Aniline | | < 10 | < 50 | < 50 | < 50 | | Anthracene | | < 10 | < 50 | < 50 | < 50 | | Azobenzene | | < 10 | < 50 | < 50 | < 50 | | Benz(a)anthracene | | < 10 | < 50 | < 50 | < 50 | | Benzo(a)pyrene | | < 10 | < 50 | < 50 | < 50 | | Benzo(b)fluoranthene
Benzo(g,h,i)perylene | | < 10
< 10 | < 50
< 50 | < 50
< 50 | < 50
< 50 | | Benzo(k)fluoranthene | | < 10 | < 50 | < 50 | < 50 | | Benzoic acid | | < 20 | < 100 | < 100 | < 100 | | Benzyl alcohol | | < 10 | < 50 | < 50 | < 50 | | Bis(2-chloroethoxy)methane | | < 10 | < 50 | < 50 | < 50 | | Bis(2-chloroethyl)ether | | < 10 | < 50 | < 50 | < 50 | | Bis(2-chloroisopropyl)ether | | < 10 | < 50 | < 50 | < 50 | | Bis(2-ethylhexyl)phthalate | | < 10 | < 50 | < 50 | < 50 | | Butyl benzyl phthalate | | < 10 | < 50 | < 50 | < 50 | | Carbazole | | < 10 | < 50 | < 50 | < 50 | | Chrysene | | < 10 | < 50 | < 50 | < 50 | | Dibenz(a,h)anthracene | | < 10 | < 50 | < 50 | < 50 | | Dibenzofuran | | < 10 | < 50 | < 50 | < 50 | | Diethyl phthalate
Dimethyl phthalate | | < 10
< 10 | < 50
< 50 | < 50
< 50 | < 50
< 50 | | Di-n-butyl phthalate | | < 10 | < 50
< 50 | < 50
< 50 | < 50
< 50 | | Di-n-octyl phthalate | | < 10 | < 50 | < 50 | < 100 | | Fluoranthene | | < 10 | < 50 | < 50 | < 50 | | Fluorene | | < 10 | < 50 | < 50 | < 50 | | Hexachlorobenzene | 130 | < 10 | < 50 | < 50 | < 50 | | Hexachlorobutadiene | 500 | < 10 | < 50 | < 50 | < 50 | | Hexachlorocyclopentadiene | | < 10 | < 50 | < 50 | < 50 | | Hexachloroethane | 3000 | < 10 | < 50 | < 50 | < 50 | | Indeno(1,2,3-cd)pyrene | | < 10 | < 50 | < 50 | < 50 | | Isophorone | | < 10 | < 50 | < 50 | < 50 | | Naphthalene | 2000 | < 10 | < 50 | < 50 | < 50 | | Nitrobenzene | 2000 | < 10 | < 50 | < 50 | < 50 | | N-Nitrosodimethylamine
N-Nitrosodi-n-propylamine | | < 10 | < 50
< 50 | < 50 | < 50 | | N-Nitrosodi-n-propytainine
N-Nitrosodiphenylainine | | < 10
< 10 | < 50
< 50 | < 50
< 50 | < 50
< 50 | | Pentachlorophenol | 100000 | < 20 | < 100 | < 100 | < 50
< 100 | | Phenanthrene | 100000 | < 10 | < 50 | < 50 | < 100
< 50 | | Phenol | | 14 | < 50 | < 50 | < 50 | | Pyrene | | < 10 | < 50 | < 50 | < 50 | | Pyridine | 5000 | < 10 | < 50 | < 50 | < 50 | Injection Well 2012 Quarterly Analytical Summary | | Toxicity
Characteristics | 1-4 () | 2nd Quarter | 3rd Quarter | 4th Quarter | |---|-----------------------------|-------------|--------------|-------------|-------------| | General Chemistry (mg/L unless otherwi | | 1st Quarter | 211d Quarter | 3rd Quarter | 4th Quarter | | Specific Conductance (umhos/cm) | 1 | 2,700 | 2,900 | 4200 | 4600 | | Chloride | | 710 | 850 | 1100 | 1200 | | Sulfate | | 68 | 77 | 15 | 37 | | Total Dissolved Solids | | 1,770 | 2,120 | 2740 | 2910 | | pH (pH Units) | | 7.32 | 6.91 | 7.95 | 7.35 | | Bicarbonate (As CaCO3) | | 320 | 330 | 510 | 510 | | Carbonate (As CaCO3) | | < 2.0 | < 2.0 | < 2.0 | < 2.0 | | Calcium | | 120 | 110 | 94 | 150 | | Magnesium | | 26 | 35 | 44 | 44 | | Potassium | | 10 | 15 | 17 | 14 | | Sodium | | 450 | 800 | 760 | 670 | | Total Alkalinity (as CaCO3) | İ | 320 | 330 | 510 | 510 | | Total Metals (mg/L) | | | | | | | Arsenic | 5.0 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | | Barium | 100.0 | 0.43 | 0.46 | 0.39 | 0.41 | | Cadmium | 1.0 | < 0.0020 | < 0.0020 | < 0.0020 | < 0.0020 | | Chromium | 5.0 | < 0.0060 | < 0.0060 | < 0.0060 | < 0.0060 | | Lead | 5 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | | Selenium | 1 | < 0.050 | < 0.050 | < 0.050 | < 0.050 | | Silver | 5 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | | Mercury | 0.2 | < 0.00020 | 0.00038 | < 0.00020 | < 0.00020 | | Ignitability, Corrosivity, and Reactivity | | | | | | | Reactive Cyanide (mg/kg) | | < 1.0 | < 1.0 | < 0.1 | < 0.01 | | Reactive Sulfide (mg/kg) |] | 4.8 | 4.07 | 10 | 6.43 | | Ignitability (°F) | < 140° F | > 200 | > 200 | >200 | > 200 | | Corrosivity (ph Units) | < 2 or > 12.5 | 6.58 | 6.58 | 7.55 | 6.43 | ### Robinson, Kelly From: Chavez, Carl J, EMNRD [CarlJ.Chavez@state.nm.us] Sent: Thursday, August 30, 2012 11:06 AM To: Robinson, Kelly Cc: Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD; Kuehling, Monica, EMNRD Subject: RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval Attachments: MIT Approval 8-30-2012.pdf ### Kelly: The New Mexico Oil Conservation Division (OCD) hereby approves the C-103 (See attachment) for specified well testing proposed by Western Refining Southwest, Inc. - Bloomfield Refinery (Western). Western must coordinate with Ms. Kuehling at the OCD Aztec DO to witness the testing. Please contact me if you have questions. Thank you. Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505 Office: (505) 476-3490 E-mail: CarlJ.Chavez@State.NM.US Website: http://www.emnrd.state.nm.us/ocd/ "Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental **From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com] Sent: Thursday, August 30, 2012 10:41 AM To: Chavez, Carl J, EMNRD Subject: RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval ### Carl, I apologize. I was not aware that the FOT was currently being evaluated by OCD. I would like to withdraw my C-103 for the Annual Fall-Off Test at this time. Western would rather postpone the testing until such time that OCD had determined that a Fall-Off Test for
the injection well at the Bloomfield Refinery is needed. I appreciate the courtesy reminder. After receipt of your approval on the C-103 for the MIT, Bradenhead, and High-Pressure Fall-Off Test, we will make sure those tests are scheduled and completed prior to the September 30, 2012 deadline. Thanks gain for the reminder. Sincerely, Kelly R. Robinson Environmental Supervisor ### Western Refining Southwest, Inc. 111 County Road 4990 Bloomfield, NM87413 (o) 505-632-4166 (c) 505-801-5616 - (f) 505-632-4024 - (e) kelly.robinson@wnr.com From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us] **Sent:** Thursday, August 30, 2012 10:31 AM To: Robinson, Kelly Subject: RE: UIC-CL-009 Annual Testing for 2012 - Request for Approval Kelly: Based on the attached OCD E-mail dated August 2, 2012, I believe that Western may not have to conduct a Fall-Off Test this year. Please let me know if you wish to proceed with conducting a FOT and I will address the C-103 for it today. Western does need to proceed to complete the annual Bradenhead and MIT by Midnight 9/30 under the OCD Discharge Permit and for OCD reporting to the EPA. I will respond to the C-103 today hopefully after you let me know if Western still wishes to proceed with the FOT this year. Thank you. Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505 Office: (505) 476-3490 E-mail: CarlJ.Chavez@State.NM.US Website: http://www.emnrd.state.nm.us/ocd/ "Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental **From:** Robinson, Kelly [mailto:Kelly.Robinson@wnr.com] Sent: Wednesday, August 29, 2012 1:30 PM To: Chavez, Carl J, EMNRD **Cc:** Powell, Brandon, EMNRD; Kuehling, Monica, EMNRD; Schmaltz, Randy **Subject:** UIC-CL-009 Annual Testing for 2012 - Request for Approval Good Afternoon Sir, On behalf of Western Refining Southwest, Inc. – Bloomfield Refinery (Western), I am requesting OCD's approval to conduct the following annual testing on the Bloomfield Refinery's injection well (UIC-CL-009): - MIT, Bradenhead, and High-Pressure Shutdown Tests; and - Annual Fall-Off Test. Attached are the completed C-103 notifications for these events. The proposed testing protocol for the Annual Fall-Off Test mirrors the procedures followed in previous years. A more detailed summary of the proposed testing procedures for the Annual Fall-Off Test is included with the C-103 notification attached. Pending OCD approval and availability to witness the testing, Western would like to conduct the MIT, Bradenhead, and High-Pressure Shutdown Tests on Thursday, September 6th. Western is currently in communication with OCD-Aztec to confirm a date for testing that would work with their availability. In addition pending OCD approval, Western would like to initiate the Annual Fall-Off Test starting Monday, September 10th, 2012. If you have any questions or need any additional information, please do not hesitate to contact me at your convenience. Thank you for your time! Sincerely, Kelly R. Robinson Environmental Supervisor ### Western Refining Southwest, Inc. 111 County Road 4990 Bloomfield, NM87413 - (o) 505-632-4166 - (c) 505-801-5616 - (f) 505-632-4024 - (e) kelly.robinson@wnr.com | Desire II Energy, Minerals and Natural Resources May 17, 20 Energy, Minerals and Natural Resources Desire II Energy Minerals and Natural Resources Oil. CONSER VATION DIVISION Division II Divis | Office Office | State of New Me | exico | | | n C-103 | |--|---|--|--
--|--|--| | District | District I | Energy, Minerals and Nati | iral Resources | | Ma | y 27, 2004 | | Other Conserved and Proposed State (1997) Andrews Andr | | | | 1 | | | | District Series Rd, Autre, NM 87410 Santa Fe, NM 87505 | | OIL CONSERVATION | DIVISION | the same of sa | | | | Santa Fc, NM 87505 6. State Oil & Gas Lease No. N/A 87505 120 S St Francis Dr. Senia Fc, NM 87505 150 SUNDRY NOTICES AND REPORTS ON WELLS 7. Lease Name or Unit Agreement Name Disposal DIFFERENT RESERVOIR USE "APPLICATION FOR PERMIT" (FORM CIDIT POR NOTICE) 1. Type of Well: Oil Well Gas Well Other X (Disposal) 8. Well Number #001 1. Type of Well: Oil Well Gas Well Other X (Disposal) 8. Well Number #001 1. Type of Well: Oil Well Gas Well Other X (Disposal) 8. Well Number #001 1. Type of Well: Oil Well Gas Well Other X (Disposal) 8. Well Number #001 1. Type of Well: Oil Well Gas Well Other X (Disposal) 8. Well Number #001 1. Type of Western Refining Southwest, Inc Bloomfield Refinery 037218 10. Pool name or Wildcat Wild | District III | 1220 South St. Fra | ncis Dr. | | | m | | N/A | | Santa Fe, NM 8 | 7505 | | | <u> </u> | | Disposal | 1220 S. St. Francis Dr., Santa Fe, NM | , | | | is isolate inc. | | | DIFFERENT RESERVOIR USE 'APPLICATION FOR PERMIT' (FORM C-101) FOR SUCH PROPOSALS. Type of Well: Oil Well | | | | 7. Lease Name o | r Unit Agreemen | t Name | | 1. Type of Well: Oil Well Gas Well Other X (Disposal) S. Well Number 4001 | DIFFERENT RESERVOIR USE APPLICA | | | Disposal | | | | 2. Name of Operator 9. OGRID Number 037218 | | ias Well [Other X (Disposal) | | 8. Well Number | #001 | | | 3. Address of Operator #50 Road 4990 Bloomfield, NM 87413 4. Well Location Unit Letter 1: 2442 feet from the South line and 1250 feet from the East line Section 27 Township 29 S Range 11 E NMPM County San Juan 11. Elevation (Show whether DR RKB, RT, GR, etc.) 11. Elevation for whether DR RKB, RT, GR, etc.) 11. Elevation for Closure The period of Closure The Depth to Groadwater Distance from nearest tresh water well Distance from nearest surface water Pit Liner Thickness: 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data 13. NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PUG AND ABANDON SUBSEQUENT REPORT OF: PULL OR ALTER CASING MULTIPLE COMPL CAMPLE COMPL CASING/CEMENT JOB ALTERING CASING ALTERING CASING ALTERING CASING OTHER. MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integr Test on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is at to be on-site to witness the testing activities 1 hereby certify that the information above is true and complete to the best of my knowledge and belief. 1 further certify that any pit or below that has been will be constructed of the closed according to NMOCD guidelines 1, a general permit or an intested distrastive OCD-approved plan of the construction of the cons | | the state of s | and the second s | 9. OGRID Numb | er | The same of sa | | Blanco/Mesa Verde | | Bloomfield Refinery | | 037218 | | | | Well Location | | | | 1 | | | | Unit Letter 1: 2442 feet from the South line and 1250 feet from the East line Section 27 Township 29 S Range 11 E NMPM County San Juan 11: Elevation (Show whether DR, RKB, RT, GR, etc.) Fit or Redom-crede Task Annoleculosa Der Cierure Distance from searest fresh water well Distance from nearest surface water Pit Depth to Groundwater Distance from searest fresh water well Distance from nearest surface water Pit Liner Thickness: mill Below-Grade Tank: Volume bibb; Construction Material 12: Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: PERRFORM REMEDIAL WORK PLUG AND ABANDON SUBSEQUENT REPORT OF: REMEDIAL WORK ALTERING CASING COMMENCE DISTANCE DISTANCE PLUG AND ABANDON CASING/CEMENT JOB J | #50 Road 4990 Bloomfield, NM 87 | 7413 | | Blanco/Mesa Ver | đe | | | Section 27 Township 29 S Range 11 E NMPM County San Juan | 4. Well Location | A Control of the Cont | The second secon | | V-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | *************************************** | | Pit or Reton-crede Task Application Or Closure | Unit Letter 1 : 2442 fee | from the South | line and1250_fe | et from the East | line | | | Pit or Retom_crede Task Application Or Clorure | Section 27 | Township 29 S Range | 11 E NM | PM Cou | nty San Juan | | | Pit December 1 Distance from nearest levels water well Distance from nearest surface water | | 11. Elevation (Show whether DR | , RKB, RT, GR, etc., | | MA. | | | Pit Liner Thickness: mil Below-Grade Tank: Volume bbls; Construction Material | Pit or Below-grade Tank Application or | Closure | Annual Control of the State | | | - 100 Z. C. W. W. | | 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING COMMENCE ORILLING OPNS PAND A COMMENCE ORILLING OPNS PAND A CASING/CEMENT JOB OTHER: MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER. OTHER 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates,
including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates to the Class Linjection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below trade tank has been will be constructed from their office to ensure testing is performed at a time that a representative GOD-approved plan | Pit type Depth to Groundwate | PrDistance from nearest fresh v | vater well Dist | ance from nearest surf | ace water | | | NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING TEMPORARILY ABANDON CHANGE PLANS COMMENCE DRILLING OPNS. P AND A PULL OR ALTER CASING MULTIPLE COMPL CASING/CEMENT JOB OTHER: MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER OTHE | Pit Liner Thickness: mil | | | | - | | | NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING TEMPORARILY ABANDON CHANGE PLANS COMMENCE DRILLING OPNS. P AND A PULL OR ALTER CASING MULTIPLE COMPL CASING/CEMENT JOB P AND A OTHER: MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER. OTHER. 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated di of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completi or recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities Thereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below the performance of t | | | | V | D . | | | PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING COMMENCE ORILLING OPNS PAND A OTHER MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER. 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities Thereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below that has become the construction of closed according to NMOCD guidelines a general permit or an (attached) alternative OCD-approved plan SIGNATURE TITLE Environmental Supervisor DATE 8/29/2012 Type or print name Kelly Robinson E-mail address: Kelly Robinson@wnr.com Telephone No. (505) 632-4166 For State Use Only | 12. Check Ap | propriate Box to indicate N | ature of Notice, | Report or Other | Data | | | PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERING CASING COMMENCE ORILLING OPNS PAND A OTHER MIT, Bradenhead, and High Pressure Shut-Down Tests OTHER. 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities Thereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below that has become the construction of closed according to NMOCD guidelines a general permit or an (attached) alternative OCD-approved plan SIGNATURE TITLE Environmental Supervisor DATE 8/29/2012 Type or print name Kelly Robinson E-mail address: Kelly Robinson@wnr.com Telephone No. (505) 632-4166 For State Use Only | NOTICE OF INT | ENTION TO: | SUB | SEQUENT RE | PORT OF | | | TEMPORARILY ABANDON | | | i . | | | ING 🖂 | | 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities [Inhereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below grade tank has been/will be coastracted or closed according to NMOCD guidelines [], a general permit [] or an (attached) alternative OCD-approved plan [] SIGNATURE: [Inhereby Complete No. (505) 632-4166 For State Use Only] TITLE [Invironmental Supervisor DATE 8/29/2012] Type or print name [Kelly Robinson No. (505) 632-4166 For State Use Only] | | | | | | | | 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below grade tank has been will be constructed or closed according to NMOCD guidelines , a general permit or an (attached) alternative OCD-approved plan SIGNATURE TITLE Environmental Supervisor DATE 8/29/2012 Type or print name Kelly Robinson E-mail address: Kelly Robinson@wnr.com Telephone No. (505) 632-4166 For State Use Only | PULL OR ALTER CASING | MULTIPLE COMPL | 1 | | | _ | | 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated do of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integration on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or below grade tank has been will be constructed or closed according to NMOCD guidelines , a general permit or an (attached) alternative OCD-approved plan SIGNATURE TITLE Environmental Supervisor DATE 8/29/2012 Type or print name Kelly Robinson E-mail address: Kelly Robinson@wnr.com Telephone No. (505) 632-4166 For State Use Only | OTHER: MIT, Bradenhead, and High | h Pressure Shut-Down Tests 🛛 | OTHER: | | | | | of starting any proposed work). SEE RULE 1103. For Multiple Completions: Attach wellbore diagram of proposed completion recompletion. Bloomfield Refinery requests permission to perform the annual High Pressure Shutdown Test, Bradenhead Test, and Mechanical Integrates on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is also be on-site to witness the testing activities Thereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or belongrade tank has been will be constructed or closed according to NMOCD guidelines [], a general permit [] or an (attached)
alternative OCD-approved plan [] SIGNATURE | _ | | | | | | | Test on the Class I injection well referenced above on September 6th, 2012, pending final scheduling with OCD Aztec representative's schedule. Western will contact the OCD Aztec office to ensure testing is performed at a time that a representative from their office is all to be on-site to witness the testing activities I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that any pit or belong grade tank has been will be constructed or closed according to NMOCD guidelines, a general permit or an (attached) alternative OCD-approved plan | of starting any proposed work | | | | | | | SIGNATURE TITLE Environmental Supervisor DATE 8/29/2012 Type or print name Kelly Robinson E-mail address: Kelly Robinson@wnr.com Telephone No. (505) 632-4166 For State Use Only | Test on the Class I injection well references the OC western will contact the OC | enced above on September 6th, 20
2D Aztec office to ensure testing i | 012, pending final so | cheduling with OCI | Aztec represent | ative's | | | grade tank has been will be constructed or clo SIGNATURE Type or print name Kelly Robinson | TITLE E | , a general permit | rvisor DATE | 8/29/2012 | t or below-
J plan []. | | | | Charen TITLE 2 | Environmen | stal Engine | DATE 3/3 | 1201 | ### Chavez, Carl J, EMNRD From: Chavez, Carl J, EMNRD Sent: Thursday, August 02, 2012 8:06 AM **To:** pthompson@merrion.bz; Holder, Mike (Mike.Holder@hollyfrontier.com); Combs, Robert (Robert.Combs@hollyfrontier.com); Schmaltz, Randy (Randy.Schmaltz@wnr.com); Cheryl.Johnson@wnr.com Cc: Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD Subject: UIC Class I (NH) Injection Well Operators (Annual MIT Reminder) Due on/or before September 30, 2012 ### Dear Sir or Madam: It is that time of year again to remind operators that their annual MIT for this season must be completed by 9/30/2012. The list of operator names with associated UIC Class I (non-hazardous) Injection Wells are provided above. Operators are aware of the MIT (30 min @ 300 psig or more MIT with Bradenhead) requirement(s) that are typically run with the Fall-Off Test (FOT). The OCD is currently evaluating the FOT frequency requirement at OCD UIC Class I Facilities in New Mexico and until further notice either specified in a discharge permit renewal and/or via communication, you will know when a FOT is required for your well soon. Please contact me at (505) 476-3490 on or before June 30, 2012 to schedule your MIT date and time. I will coordinate with the District Staff to finalize the MIT date and time so that an OCD District Office inspector may be present to witness the MIT. Thank you for your cooperation in this matter. File: UICI- 5, 8, 8-0, 8-1 & 9 Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505 Office: (505) 476-3490 E-mail: CarlJ.Chavez@State.NM.US Website: http://www.emnrd.state.nm.us/ocd/ "Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental ### Robinson, Kelly From: Kuehling, Monica, EMNRD [monica.kuehling@state.nm.us] Sent: Friday, August 31, 2012 7:05 AM To: Robinson, Kelly Subject: RE: Bradenhead and MIT Testing Schedule - Bloomfield Refinery Good morning Kelly, Yes it will. See you on Thursday at 9 a.m. # Monica Kuehling Advanced Compliance Officer New Mexico Oil Conservation Division Aztec New Mexico monica.kuehling@state.nm.us From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com] Sent: Thursday, August 30, 2012 4:24 PM To: Kuehling, Monica, EMNRD Subject: Re: Bradenhead and MIT Testing Schedule - Bloomfield Refinery Good Afternoon Monica, I just talked with the contractor. I have them scheduled to arrive on-site at 9am on Thursday, September 6th. Will that work for you? -Kelly **From**: Kuehling, Monica, EMNRD [mailto:monica.kuehling@state.nm.us] **Sent**: Thursday, August 30, 2012 02:54 PM To: Robinson, Kelly Subject: RE: Bradenhead and MIT Testing Schedule - Bloomfield Refinery Hello Kelly, Right now I am clear on the 6th of September, which is next Thursday. What time would you like to schedule it. Thank you # Monica Kuehling Advanced Compliance Officer New Mexico Oil Conservation Division Aztec New Mexico monica.kuehling@state.nm.us From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com] Sent: Wednesday, August 29, 2012 1:03 PM **To:** Kuehling, Monica, EMNRD **Cc:** Powell, Brandon, EMNRD **Subject:** Bradenhead and MIT Testing Schedule - Bloomfield Refinery ### Good Morning Monica, As you may know, the contractor (Woods Group Pressure Control) with whom I have contracted with in past years to conduct the MIT test on our well at the Bloomfield Refinery has just recently gone out of business. Just recently I have been able to contract with WSI Enterprise, and they informed me that they would be available as early as next week to help conduct the MIT testing at our facility. I wanted to check with you to see if you had availability to next week to witness the MIT, Bradenhead, and High-Pressure Shut-Down test. Depending on your availability, my initial hopes was to schedule this testing to be done Thursday, September 6th, 2012. If this day does not work with your schedule, please let me know of some alternative times that would best work for you. Also, pending approval from Mr. Chavez (OCD – Santa Fe), I have scheduled Tefteller to be on-site on Monday, September 10th to install the memory gauges in the injection well in order to conduct the Annual Fall-Off Test. At this time, the tentative schedule is to install the gauges Monday morning (9/10/2012). Assuming the gauges are installed without a problem and the well operates steadily, we would plan on shutting-in the well Wednesday afternoon (9/12/2012). We will likely keep the well shut-in for at least 10 days. I will confirm the schedule for the MIT testing with the contractor after I confirm with you your availability. As always, I appreciate your time. If there are any questions, please do not hesitate to contact me at your convenience. Sincerely, Kelly R. Robinson Environmental Supervisor ### Western Refining Southwest, Inc. 111 County Road 4990 Bloomfield, NM87413 - (o) 505-632-4166 - (c) 505-801-5616 - (f) 505-632-4024 - (e) kelly.robinson@wnr.com # NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT # MECHANICAL INTEGRITY TEST REPORT | | (TA QR UIC) | | |--|---|--| | Date of Test 9-6-12 | Operator San Law | Laprina API # 30-0 45-2900 2 | | Property Name Disposal | Well #/ | Location: Unit \(\frac{1}{2} \) See \(\frac{1}{2} \) Twn \(\frac{1}{2} \) Rge \(\frac{1}{2} \) | | Land Type: State Federal Private Indian | Well | Type: Water Injection Salt Water Disposal Gas Injection Producing Oil/Gas Pressure obervation | | Temporarily Abandoned Well (Y/N): | TA E | Expires: | | Casing Pres. Bradenhead Pres. Tubing Pres. Int. Casing Pres. Pressured annulus up to 495 | Tbg. SI Pres Tbg. Inj. Pres psi. for 30 | | | REMARKS: DuckerSet 327 | <u> </u> | | | For . 35 | 76-3208 | | | 102ell was un
25 Menutes - E
Just le Munutes | Stated to rese | Stuted-Open clown al
ancheld at 500 lbs | | (Operator Representative) | Witness | (NMOCD) | | (Position) | | Revised 02-11-02 | # NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE 1000 RIO BRAZOS ROAD AZTEC NM 87410 (505) 334-6178 FAX: (505) 334-6170 http://emnrd.state.nm.us/ocd/District III/3distric.htm **BRADENHEAD TEST REPORT** | | copy to above address) | | | |--|--|--|--| | Date of Test 9-6-12 Operator | Location: Unit I Section 27 Township 59 Range 11 | | | | Property Name () S ASA Well No | Location: Unit & Section 27 Township 59 Range // | | | | | | | | | Well Status(Shut-In or Producing) Initial PSI: Tu | bing MoIntermediate //A Casing / DBradenhead O | | | | OPEN BRADENHEAD AND INTERMEDIATE T | TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH | | | | PRESSURE | FLOW CHARACTERISTICS | | | | Testing Bradenhead INTERM BH Int Csg Int Csg | BRADENHEAD INTERMEDIATE | | | | TIME 5 min 2 120 | Steady Flow | | | | 10 min 0 /20 | Surges | | | | 15 min 0 120 | Down to Nothing | | | | 20 min | Nothing | | | | 25 min | Gas | | | | 30 min | Gas & Water | | | | | Water | | | | If bradenhead flowed water, check all of the description | s that apply below: | | | | CLEAR FRESH SALTY | SULFURBLACK | | | | 5 MINUTE SHUT-IN PRESSURE BRADENHEA | | | | | REMARKS: Duff when & Denoc | L. | | | | | | | | | / | | | | | By Adlydellie w | Titness / Oulla Juck ling | | | | (Position) | | | | | E-mail address | | | | Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u> OrderNo.: 1201473 February 10, 2012 Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911 RE: Injection Well 1st Qtr 1-17-12 Dear Kelly Robinson: Hall Environmental Analysis Laboratory received 1 sample(s) on 1/18/2012 for the analyses presented in the following report. There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less
than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts. Quality control data is within laboratory defined or method specified acceptance limits except if noted. If you have any questions regarding these tests results, please feel free to call. Sincerely, Andy Freeman Laboratory Manager Only 4901 Hawkins NE Albuquerque, NM 87109 Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Workorder Sample Summary WO#: 1201473 10-Feb-12 CLIENT: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Lab SampleID | Client Sample ID | Tag No | Date Collected | Date Received | Matrix | |--------------|------------------|--------|----------------------|----------------------|---------| | 1201473-001 | Injection Well | | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous | | 1201473-001 | Injection Well | | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous | | 1201473-001 | Injection Well | | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous | | 1201473-001 | Injection Well | | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous | | 1201473-001 | Injection Well | | 1/17/2012 8:30:00 AM | 1/18/2012 9:40:00 AM | Aqueous | #### **Analytical Report** #### Lab Order 1201473 # Hall Environmental Analysis Laboratory, Inc. Date Reported: 2/10/2012 CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 **Lab ID:** 1201473-001 Client Sample ID: Injection Well Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-------------------------------------|--------|---------|----------|-----|----------------------| | EPA METHOD 300.0: ANIONS | | | | | Analyst: BRM | | Chloride | 710 | 50 | mg/L | 100 | 1/19/2012 5:44:36 AM | | Sulfate | 68 | 5.0 | mg/L | 10 | 1/19/2012 5:27:11 AM | | EPA METHOD 7470: MERCURY | | | | | Analyst: JLF | | Mercury | ND | 0.00020 | mg/L | 1 | 1/19/2012 2:53:50 PM | | EPA 6010B: TOTAL RECOVERABLE | METALS | | | | Analyst: ELS | | Arsenic | ND | 0.020 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Barium | 0.43 | 0.020 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Cadmium | ND | 0.0020 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Çalcium | 120 | 5.0 | mg/L | 5 | 1/24/2012 8:01:20 AM | | Chromium | ND | 0.0060 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Lead | ND | 0.0050 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Magnesium | 26 | 1.0 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Potassium | 10 | 1.0 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Selenium | ND | 0.050 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Silver | ND | 0.0050 | mg/L | 1 | 1/24/2012 7:59:27 AM | | Sodium | 450 | 5.0 | mg/L | 5 | 1/24/2012 8:01:20 AM | | EPA METHOD 8270C: SEMIVOLATII | _ES | | | | Analyst: JDC | | Acenaphthene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Acenaphthylene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Aniline | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Anthracene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Azobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benz(a)anthracene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzo(a)pyrene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzo(b)fluoranthene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzo(g,h,i)perylene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzo(k)fluoranthene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzoic acid | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Benzyl alcohol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Bis(2-chloroethoxy)methane | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Bis(2-chloroethyl)ether | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Bis(2-chloroisopropyl)ether | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Bis(2-ethylhexyl)phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4-Bromophenyl phenyl ether | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Butyl benzyl phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Carbazole | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4-Chloro-3-methylphenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4-Chloroaniline | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Chloronaphthalene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Chlorophenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | Matrix: AQUEOUS ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit #### **Analytical Report** #### Lab Order 1201473 Date Reported: 2/10/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well **Project:** Injection Well 1st Qtr 1-17-12 **Collection Date:** 1/17/2012 8:30:00 AM **Lab ID:** 1201473-001 **Matrix:** AQUEOUS **Received Date:** 1/18/2012 9:40:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|-------|--------------|----|----------------------| | EPA METHOD 8270C: SEMIVOLA | TILES | | | | Analyst: JD(| | 4-Chlorophenyl phenyl ether | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Chrysene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Di-n-butyl phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Di-n-octyl phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Dibenz(a,h)anthracene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Dibenzofuran | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 1,2-Dichlorobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 1,3-Dichlorobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 1,4-Dichlorobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 3,3'-Dichlorobenzidine | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Diethyl phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Dimethyl phthalate | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4-Dichlorophenol | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4-Dimethylphenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4,6-Dinitro-2-methylphenol | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4-Dinitrophenol | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4-Dinitrotoluene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,6-Dinitrotoluene | ND | 10 | μg/ L | 1 | 1/23/2012 7:42:25 PM | | Fluoranthene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Fluorene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Hexachlorobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Hexachlorobutadiene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Hexachlorocyclopentadiene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Hexachloroethane | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Indeno(1,2,3-cd)pyrene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Isophorone | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 1-Methylnaphthalene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Methylnaphthalene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Methylphenol | 26 | 10 | μg/ L | 1 | 1/23/2012 7:42:25 PM | | 3+4-Methylphenol | 31 | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | N-Nitrosodi-n-propylamine | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | N-Nitrosodimethylamine | ND | 10 | μg/ L | 1 | 1/23/2012 7:42:25 PM | | N-Nitrosodiphenylamine | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Naphthalene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Nitroaniline | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 3-Nitroaniline | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4-Nitroaniline | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Nitrobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2-Nitrophenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 4-Nitrophenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Pentachlorophenol | ND | 20 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Phenanthrene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit #### Lab Order 1201473 Date Reported: 2/10/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 Lab ID: 1201473-001 Client Sample ID: Injection Well Collection Date: 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM | Analyses | Result | RL Qu | ial Units | DF | Date Analyzed | |--------------------------------|--------|-----------|-----------|----|----------------------| | EPA METHOD 8270C: SEMIVOLAT | ILES | | | | Analyst: JDC | | Phenol | 14 | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Pyrene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Pyridine | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 1,2,4-Trichlorobenzene | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4,5-Trichlorophenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | 2,4,6-Trichlorophenol | ND | 10 | μg/L | 1 | 1/23/2012 7:42:25 PM | | Surr: 2,4,6-Tribromophenol | 30.1 | 18.1-138 | %REC | 1 | 1/23/2012 7:42:25 PM | | Surr: 2-Fluorobiphenyl | 66.1 | 25.9-101 | %REC | 1 | 1/23/2012 7:42:25 PM | | Surr: 2-Fluorophenol | 25.0 | 12.5-93.2 | %REC | 1 | 1/23/2012 7:42:25 PM | | Surr: 4-Terphenyl-d14 | 41.3 | 29.5-112 | %REC | 1 | 1/23/2012 7:42:25 PM | | Surr: Nitrobenzene-d5 | 69.9 | 20.5-120 | %REC | 1 | 1/23/2012 7:42:25 PM | | Surr: Phenol-d5 | 31.4 | 11.5-73.2 | %REC | 1 | 1/23/2012 7:42:25 PM | | EPA METHOD 8260B:
VOLATILES | | | | | Analyst: JDJ | | Benzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Toluene | 12 | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Ethylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2,4-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,3,5-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2-Dichloroethane (EDC) | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2-Dibromoethane (EDB) | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Naphthalene | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 2-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Acetone | 520 | 100 | μg/L | 10 | 1/20/2012 5:32:49 PM | | Bromobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Bromodichloromethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Bromoform | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Bromomethane | ND | 3.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 2-Butanone | 24 | 10 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Carbon disulfide | 32 | 10 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Carbon Tetrachloride | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Chlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Chloroethane | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Chloroform | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Chloromethane | ND | 3.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 2-Chlorotoluene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 4-Chlorotoluene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | cis-1,2-DCE | ND | 1.0 | µg/L | 1 | 1/20/2012 6:00:49 PM | | cis-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | Matrix: AQUEOUS ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit #### **Analytical Report** #### Lab Order 1201473 Date Reported: 2/10/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well **Project:** Injection Well 1st Qtr 1-17-12 **Collection Date:** 1/17/2012 8:30:00 AM **Lab ID:** 1201473-001 Matrix: AQUEOUS Received Date: 1/18/2012 9:40:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|----------|----------|----|----------------------| | EPA METHOD 8260B: VOLATILES | | | | | Analyst: JD | | Dibromochloromethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Dibromomethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,3-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,4-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Dichlorodifluoromethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,1-Dichloroethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,1-Dichloroethene | ND | 1.0 | µg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2-Dichloropropane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PN | | 1,3-Dichloropropane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 2,2-Dichloropropane | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,1-Dichloropropene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Hexachlorobutadiene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 2-Hexanone | ND | 10 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Isopropylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 4-Isopropyltoluene | ND | 1.0 | µg/L | 1 | 1/20/2012 6:00:49 PM | | 4-Methyl-2-pentanone | ND | 10 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Methylene Chloride | ND | 3.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | n-Butylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 Pf | | n-Propylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 Pf | | sec-Butylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Styrene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | tert-Butylbenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PI | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PI | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PI | | Tetrachloroethene (PCE) | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | trans-1,2-DCE | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | trans-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2,3-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2,4-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,1,1-Trichloroethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,1,2-Trichloroethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Trichloroethene (TCE) | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Trichlorofluoromethane | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | 1,2,3-Trichloropropane | ND | 2.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Vinyl chloride | ND | 1.0 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Xylenes, Total | ND | 1.5 | μg/L | 1 | 1/20/2012 6:00:49 PM | | Surr: 1,2-Dichloroethane-d4 | 75.8 | 70-130 | %REC | 1 | 1/20/2012 6:00:49 PM | | Surr: 4-Bromofluorobenzene | 91.3 | 70-130 | %REC | 1 | 1/20/2012 6:00:49 PM | | Surr: Dibromofluoromethane | 85.0 | 69.8-130 | %REC | 1 | 1/20/2012 6:00:49 PM | | Surr: Toluene-d8 | 84.1 | 70-130 | %REC | 1 | 1/20/2012 6:00:49 PM | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit #### **Analytical Report** #### Lab Order 1201473 Date Reported: 2/10/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 **Lab ID:** 1201473-001 Client Sample ID: Injection Well **Collection Date:** 1/17/2012 8:30:00 AM Received Date: 1/18/2012 9:40:00 AM | Analyses | Result | RL Qua | l Units | DF | Date Analyzed | |---------------------------------|--------|--------|------------|----|----------------------| | EPA 120.1: SPECIFIC CONDUCTANCE | | | | | Analyst: JLF | | Conductivity | 2,700 | 0.010 | µmhos/cm | 1 | 1/18/2012 9:27:42 PM | | SM4500-H+B: PH | | | | | Analyst: JLF | | pН | 7.32 | 1.68 H | pH units | 1 | 1/18/2012 9:27:42 PM | | SM2320B: ALKALINITY | | | | | Analyst: JLF | | Bicarbonate (As CaCO3) | 320 | 20 | mg/L CaCO3 | 1 | 1/18/2012 9:27:42 PM | | Carbonate (As CaCO3) | ND | 2.0 | mg/L CaCO3 | 1 | 1/18/2012 9:27:42 PM | | Total Alkalinity (as CaCO3) | 320 | 20 | mg/L CaCO3 | 1 | 1/18/2012 9:27:42 PM | | SM2540C MOD: TOTAL DISSOLVED SO | OLIDS | | | | Analyst: KS | | Total Dissolved Solids | 1,770 | 200 | mg/L | 1 | 1/20/2012 2:59:00 PM | Matrix: AQUEOUS - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com **Client:** HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120119019 Address: 4901 HAWKINS NE SUITE D **Project Name:** 1201473 ALBUQUERQUE, NM 87109 Attn: ANDY FREEMAN #### **Analytical Results Report** Sample Number 120119019-001 Sampling Date 1/17/2012 Date/Time Received 1/19/2012 1:40 PM Client Sample ID 1201473-001D / INJECTION WELL **Sampling Time** 8:30 AM Matrix Water Sample Location Comments | Parameter | Result | Units | PQL. | Analysis Date | Analyst | Method | Qualifier | |--------------------|--------|----------|------|---------------|---------|-----------|-----------| | Cyanide (reactive) | ND | mg/L | 1 | 1/31/2012 | CRW | SW846 CH7 | | | Flashpoint | >200 | °F | | 2/2/2012 | MAH | EPA 1010 | | | pH | 6.58 | ph Units | | 1/25/2012 | KFG | EPA 150.1 | | | Reactive suffide | 4.80 | mg/L | 1 | 1/25/2012 | ЛТ | SW846 CH7 | | **Authorized Signature** John Coddington, Lab Manager MCL EPA's Maximum Contaminant Level ND Not Detected PQL Practical Quantitation Limit This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted. # Anatek Labs, Inc. 1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 882-9246 - email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Cilent: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120119019 Address: 4901 HAWKINS NE SUITE D Project Name: 1201473 **ALBUQUERQUE, NM 87109** Attn: **ANDY FREEMAN** **Analytical Results Report Quality Control Data** | Parameter | | LCS Result | Units | LCS Spik | n %F | lec | AR %Rec | Pre | p Date | Analysis Date | |--------------------|--------------------|------------|------------------|--------------|-------|-------------|---------|------------|-----------|---------------| | Cyanide (reactive) | | 0.550 | mg/L | 0.5 | | 0.0 | 80-120 | | 31/2012 | 1/31/2012 | | Reactive sulfide | | 0.200 | mg/L | 0.2 | | 0.0 |
70-130 | 1/2 | 25/2012 | 1/25/2012 | | Matrix Spike | | | | | | | | | | | | Sample Number | Parameter | | iample
Result | MS
Result | Units | MS
Spike | %Rec | AR
%Rec | Prep Date | Analysis Dat | | 120119019-001 | Reactive sulfide | • | 4.80 | | mg/L | 4 | 70.0 | 70-130 | 1/25/2012 | 1/25/2012 | | 120119019-001 | Cyanide (reactive) | | ND | 0.451 | mg/L | 0.5 | 90.2 | 80-120 | 1/31/2012 | 1/31/2012 | | Method Blank | | | | | | | | | | | | Parameter | | | Resu | it | Un | lts | PQL | • | Prep Date | Analysis Data | | Cyanide (reactive) | | | ND | | mg/ | L | 0.1 | | 1/31/2012 | 1/31/2012 | | Reactive sulfide | | | ND | | mg/l | kg | 1 | | 1/25/2012 | 1/25/2012 | AR Acceptable Range ND **Not Detected** PQL Practical Quantitation Limit Relative Percentage Difference Comments: Certifications held by Anetek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anetek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095 | Page # | ŧ | |--------|---| |--------|---| # Flashpoint Analysis Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5) | Sample ID | Analyses
Date | Sample | Analyst | Temp - °C | Temp - °F | |---|------------------|--------|----------|---|-----------| | | | Matrix | Initials | | | | 111229018-01 | 12/30/11 | SOIL ; | | | BI°F | | ///222025-ay | 12.30-11 | OL | 21 | | NO | | 111228030 001 | 12-30-4 | 4 | 187 | | ND | | ///222023-04
(//228030-06/
12010539-44) | 1/9/12 | 415 | /5- | | >200 | | 1 -002 | | 5 | } | | Rositenp | | NA -002 | 4 | | V | | >203 | | 1201909-001 | 2-2-242 | 4 | m/4 | | 7340 | | | • | *************************************** | 1, | * | | | | | | | | | | | - 1, | ^{*} SAFETY GLASSES REQUIRED. # PH/Alkalinity SM4500H B / SM2320B Carbonate & Bicarbonate | Quality Control Information | Equivalent I | Equivalent EPA Methods | 150.1 & 310.1 | |---------------------------------|---------------|-------------------------------|----------------------| | Standards | Concentration | Expires | Amount Spiked (mg/L) | | Matrix Spike Solution # M637-04 | 1N | 11/18/2012 | 100 | | | | | | Method QC Requirements: LFB/Blank Every 10 samples MS/MSD Every 20 samples % Recovery AR 90-110% pH 7 within 0.1 pH units Slope 95-102% | bit partiet / (1em | pu Buffer 7 (Velle | pH Buffer 4 (Red) M797-03 | H ₂ SO ₄ | 0.02N H ₂ SO ₄ Titrant | Reagents Solution # | | |--------------------|-------------------------------------|---------------------------|--------------------------------|--|---------------------|--| | | pH Buffer 7 (Yellow) M797-04 | M797-03 | | unt | Solution # | | | BDH,BDH5072-500 | BDH,BDH5046-500 | BDH,BDH5018-500 | Fisher, Lot # 000781 | | | | | AUG 2012 | JAN 2013 | JAN 2013 | 3/1/12 | 61/1/0 | Expires | | Equipment: Controlleue: CA1 10th 00003; pH meter: Orion model 620A 00/838 | | + | | J |) |) |) | + |
 - | + | 4 | + | 6,03 | 8/91 | 12013004001 16.8 6.03 | |-------|----------|------|----------------------|---------------------|---------------------------|---------------------|-------------|----------------|-------|--------------|-------------|------------|-------------|-----------------------| | | | | J |) | 1 | 1 | | / | | | | 6.58 | 7,0 | 120119019-001 19,0 | | | | |) |) |) | 1 | | | | | | 5,95 | | -002 16,7 | | | | | J | 1 | 1 |) | | | | | | 5,81 | | 120120005-001 | | | | |) | |) | • | | | | | | 80.9 | l | -062 16,9 | | | | | 1 | - | } |) | 25 | | | | | 6.02 | 15,4 | 120126018-001 15,4 | | | | | 7.0 | 1.06 | 0.88 | 1 | 100 | | | | | 5,87 | 16,6 | -002 | | | - | | J | 1 |) | - | 25 | _ | | | | 6.68 | | 120120017-001 | | | | | 12,4 | 1.56 | 1,40 | | t | | | | | 5,79 | | -002 169 | | | | | 10,3 | 1.39 | 1,21 | † | | | | _ | | X5.68 | | 120123014-001 /21 | | Pa | | 98,5 | 105,6 | 1 | 10,85 | 3,97 | | | | | | 9,33 | 8,91 | 8,91 05,000- | | je f | | 48.8 | 105,8 | j | 10,58 | 3,95 | | _ | | | | 9,34 | | 120120017-00END 7,5 | | of | | 93,2 | 93,2 | ١ | 787 | 4.02 | | | | | | 2237 | 22年 | LFB | | 3 May | 7/52/1 | | 0 | 1 | | | 160 | 7,08 | 101,3 | 10,00 | | 13,43 4,01 | 22,7 | 3118 | | Init. | Date | % | Alkalinity
(mg/L) | Titrate to 4.2 (mL) | Titrate
to 4.5
(mL) | Titrate to 8.3 (mL) | Sample (mL) | pH 7
Buffer | Slope | pH 10
Cal | pH 4
Cal | PН | Temp
(℃) | Sample | Comments: Alkalinity = mL of titrant x 10 if 100 mL sample was used. N:\Bench Sheets\pH.doc # Sulfide by SM 4500-S' F | | Concentration | Date Made/Expires | |----------------------|---------------|-------------------| | Iodine | 0.025 N | | | HCI | 6 N | | | Starch
Indicator | 1% by weight | 12/31/2009 | | Zinc Acetate 99.9% | 99.9% | | # Quality Control Information - 1. 1 blank per batch, must be < 20 ug/L. - 2. 1 LFB per batch must be +/- 30%. - 3. Iml iodine reacts with 0.4 mg Sulfide | | | | - I NS | 120119019-1 | -81 | - 1250 | - 145 | W2 | 4.82 =M -220121021 | Sample | |--|--|--|-----------|-------------|---------|--------|-------------|-----------------|---------------------|--| | | | | + | 20 = 1 | f | | 1000 m2 | ٢ | 50-1 | Sample
Volume | | | | | 950 | 600 | 25 | 450 | 808 | ash | a5 | lodine amount
(50 uL
increments) | | | | | 380 0.380 | | 20 0.02 | | 260 - 6.700 | 30 - 0.180 | 28 mg = 0.02 mg | Concentration
(ug/sample) | | | | | 7.60 | 4,80 | 0.020 | 081.0 | 0.200 | 3.6×26.7= 103.3 | 0.4×28.7= 11.5 | Concentration (mg/L) | | | | | + | | | | | | 1-25-12 | Date | | | | | + | | | | | | XX. | Initials | Comments_ # Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column) Total Cyanide MS/MSD/LCS Soln: Free Cyanide MS/MSD/LCS Soln: M825-01 Exp: 1/4/2013 M824-05 Exp: 12/28/2012 Method requirements: All QC +/- 10% Equipment: Midi-vap Instrument: ALPCHEM FIA 3000 Absorbance: 570nm | | Sample (D | Matrix | Preserved | Sample
Amount (mL)** | Initial
Multiplier* | Final
Multiplier | Spike Amount
(mL) | WAD?
(check if
yes) | |----|--------------|-----------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------| | 1 | 120124029-1 | WWean | Nall | 50ml | × | | | | | 2 | 30-1 | | | J | | | | | | 3 | | | | | | | | | | 4 | -5 | | _ | | | | | | | 5 | -7 | | | | | A1100 | | | | 6 | -9 | | | | | | | | | 7 | -11 | | | | _ | ** | | | | 8 | 120120025-13 | | | | | | | | | 9 | -14 | | | | | | | | | 10 | | <u></u> | } | 4 | 4 | | | | | 11 | 178119019-1 | reactivem | Natio | Sant | lx_ | | | | | 12 | | | | | 1 | | lul | | | 13 | -lanso | | | | | | | | | 14 | -105 | | | | | | + | | | 15 | -81 | 1 | | | | | | | | 16 | 120124035-3 | ind par | | | | | | | | 17 | _4 | | | <u> </u> | | | | | | 18 | | | | 25ml | ZX | | | | | 19 | 120126018-1 | | | 50mL | (> | | | | | 20 | 19-1 | 4 | + | 1 | + | | | | ^{*} If soils this calculation is taken from cyanide extraction bench sheet. ^{**} If soils, mLs of extract used for distillation. | Extraction Reagents:
methyl red indicator | Reagent #:
A041-03 | Analytical Reagents:
Barbituric Acid | Reagent #:
R038-13 | |--|-----------------------|---|-----------------------| | 18 N H ₂ SO ₄ | A043-08 | Sodium Phosphate | R026-23 | | sulfamic acid | R009-12 | Chloramine-t | R048-09 | | 0.025N NaOH | R014-16 | Pyridine | R043-03 | | 51% MgCl ₂ | A043-06 | | | Distillation Initials/Date Distilled: MW 1/2//12 Analyst Initials/Date Analyzed: Www 1/31/17 File name: T:\DATA1\FLOW4\2012\EPA335.4\013112CN.RST Date: January 31, 2012 Operator: CRW (20131 FIACKEW Cpw 1/31/12 | Peak | Cup | Name | туре | Dil | Wt | Area | Calc. (ppm) | |-----------------|----------|----------------------------------|-------------|--------|----------|--|-------------------------------| | 1 | 2 | Sync | SYNC | | | 1 | 0.076764 | | 2 | ō | Carryover | CO | 1 | | 1 5011022
1 8239 | 0.976764
0.003383 | | 3 | ŏ | Carryover | co | ī | | 1 3828 | 0.003563 | | В | 0 | Baseline | RB | ī | | 1 1088 | 0.001972 | | 5 | 2 | Cal 1.00 ppm | C | ī | | 1 5134414 | 1.000421 | | 6 | 2 | Cal 1.00 ppm | С | 1 | | 1 5113915 | 0.996492 | | 7 | 2 | Cal 1.00 ppm | C | 1 | | 1 5127215 | 0.999041 | | В | 0 | Baseline | RB | 1 | | 1 -833 | 0.001593 | | 9 | 3 | Cal 0.80 ppm | C | 1 | | 1 4098498 | 0.801292 | | 10
11 | 3
3 | Cal 0.80 ppm | C | 1 | | 1 4107172 | | | В | 0 | Cal 0.80 ppm
Baseline | C
RB | 1 | | 1 4110518 | 0.803610 | | 13 | 4 | Cal 0.50 ppm | C | 1 | | 1 -209
1 2527944 | 0.001716
0.497 1 17 | | 14 | 4 | Cal 0.50 ppm | č | i | | 1 2539596 | | | 15 | 4 | Cal 0.50 ppm | Ċ | ī | | 1 2539803 | 0.499424 | | В | 0 | Baseline | RB | ī | | 1 -1513 | 0.001458 | | 17 | 5 | Cal 0.05 ppm | C . | 1 | | 1 229062 | 0.046935 | | 18 | 5 | Cal 0.05 ppm | С | 1 | | 1 235544 | 0.048213 | | 19 | 5 | Cal 0.05 ppm | C | 1 | | 1 237027 | 0.048505 | | В | 0 | Baseline | RB | 1 | | 1 9671 | 0.003666 | | 21
22 | 6 | Cal 0.01 ppm | C | 1 | | 1 44975 | 0.010632 | | 23 | 6
6 | Cal 0.01 ppm
Cal 0.01 ppm | C | 1
1 | | 1 45786 | | | B | ő | Baseline | RB | i | | 1 59215
1 -1438 | 0.013442
0.001473 | | 25 | ĩ | Blank | BLNK | i | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.001473 | | 26 | 7 | ICV 0.25 ppm | CCV | ĩ | | 1 1275398 | 0.252564 | | 27 | 1 | Blank | BLNK | 1 | | 1
5769 | 0.002895 | | В | 0 | Baseline | RB | 1 | | 1 3279 | 0.002404 | | 29 | 8 | †120119013-BL WW | U | 1 | | 1 1888 | 0.002129 | | 30 | 9 | 120119013-006 | U | 1 | | 1 -6289 | | | 31 | 10 | 120119013-006MS | | 1 | | 1 2174078 | 0.428203 | | 32 | 11 | 120119013-006MSI | _ | | 1 | 1 213428 | | | 33 | 12 | 120119013-LCS | Ū | 1 | | 1 2576018 | 0.506468 | | 34
35 | 13
14 | *120120025-003
*120120025-005 | Ü | 1 | | 1 -4267 | 0.000915 | | 36 | 15 | *120120025-003 | U
U | 1 | | 1 -9250
1 -13044 | | | 37 | 16 | *120120025-009 | Ü | 1 | | 1 -4512 | -0.000818
0.000866 | | 38 | 17 | RINSE | Ū | ī | | 1 -1957 | 0.001371 | | В | 0 | Baseline | RB | 1 | | 1 1425 | | | 40 | 1 | Blank | BLNK | 1 | | 1 2624 | 0.002275 | | 41 | 4 | CCV 0.5 ppm | CCV | 1 | | 1 2612191 | 0.513503 | | 42 | 1 | Blank | BLNK | 1 | | 7585 | 0.003254 | | В
44 | 0
18 | Read Baseline #120124030-BL WAD | RB | 1 | | 1 -1396 | | | 45 | | 120124030-BL WAL | ָ
ט | 1 | 1 | 1 121
1 421 | | | 46 | 20 | 120124030-010MS | | i | | 1 2670406 | | | 47 | 21 | 120124030-010MSD | _ | | 1 | 1 271190 | | | 48 | 22 | 120124030-LCS | U | 1 | | 1 2725860 | 0.535599 | | 49 | 23 | •120124030-002 | U | ī | | 1 11499 | | | 50 | 24 | •120124030-004 | ָט | 1 | | 1 12810 | 0.004285 | | 51 | 25 | <120124030-006 | ט | 1 | | 1 6810 | | | 52 | 26 | °120124030-008 | U | 1 | | 1 6000 | | | 53
B | 27
0 | \$120124030-012
Baseline | U | 1 | | 1 3675 | | | 55 | 1 | Blank | RB | 1
1 | | 1 -591 | | | 56 | 4 | CCV 0.5 ppm | BLNK
CCV | 1 | | 1 -8955
1 2577006 | | | 57 | 1 | Blank | BLNK | 1 | | 1 2577006
1 -1352 | | | В | ō | Read Baseline | RB | î | | 1 134 | 0.001490 | | 59 | 28 | 120124029-001 | ט | ī | : | 1 3191 | 0.002387 | | 60 | 29 | *120124030-001 | U | ī | | 1 9504 | 0.003633 | | 61 | 30 | ‡120124030-003 | ט | 1 | | 1 8969 | 0.003527 | | 62 | 31 | 120124030-005 | ם | 1 | ; | 2566 | 0.002263 | | 63 | 32 | (120124030-007 | U | 1 | | 1 3330 | | | 64
65 | 33 | 120124030-009 | U | 1 | | 1 1495 | 0.002052 | | 65
66 | 34
35 | *120124030-011
•120120025-013 | U | 1 | | 1 1423 | 0.002038 | | | J.) | - 120120020-013 | O | Dona | 9 of 13 | 1 5643 | 0.002871 | | | | | | rane | 9 OT 1.5 | | | Page 9 of 13 | Peak | Cup | Name | туре | Dil | Wt | Area | Calc. (ppm) | |------|-----|----------------------|-------|-----|-----|----------|-------------| | | | | | | | | | | 67 | 36 | 120120025-014 | U | 1 | 1 | 6558 | 0.003051 | | 68 | 37 | · 120120021-001 | ט | 1 | 1 | 8193 | 0.003374 | | B | 0 | Baseline | RB | 1 | 1 | 359 | 0.001828 | | 70 | 1 | Blank | BLNK | 1 | 1 | ~712 | 0.001616 | | 71 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 2596031 | 0.510360 | | 72 | 1 | Blank | BLNK | 1 | 1 | -1250 | 0.001510 | | В | 0 | Read Baseline | RB | 1 | 1 | ~1961 | 0.001370 | | 74 | 38 | 120119019-BL | U | 1 | 1 | -2242 | 0.001314 | | 75 | 3.9 | 120119019-001 | U | 1 | 1 | 2777 | 0.002305 | | 76 | 40 | 120119019-001MS | U | 1 | 1 | 2291410 | 0.451068 | | 77 | 41 | 120119019-001MS | י סיי | ; | 1 : | 1 230322 | | | 78 | 42 | 120119019-LCS | U | 1 | 1 | 2799762 | 0.549957 | | 79 | 43 | 120124035-003 | Ü | 1 | 1 | 872 | 0.001929 | | 80 | 44 | £ 120124035-004 | U | 1 | 1 | -1532 | 0.001455 | | 81 | 45 | 120124029-003 | U | 2 | 1 | -2218 | 0.002638 | | 82 | 46 | 4120126018-001 | Ū | 1 | 1 | 40713 | 0.009791 | | 83 | 47 | ¢ 120126019-001 | U | 1 | 1 | 57976 | 0.013197 | | В | 0 | Baseline | RB | 1 | 1 | -4629 | 0.000843 | | 85 | 1 | Blank | BLNK | 1 | 1 | -5813 | 0.000610 | | 86 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 2720732 | 0.534602 | | 87 | 1 | Blank | BLNK | 1 | 1 | -4225 | 0.000923 | | В | ō | Read Baseline | RB | 1 | 1 | 226 | 0.001801 | | Peak | Cup | Flags | |----------|---------------|------------| | | | | | 1 | 2 | | | 2 | 0 | | | 3 | Ó | | | В | 0 | BL | | 5
6 | 2 | | | 6
7 | 2
2 | | | B | 0 | BL | | 9 | 3 | ьп | | 10 | 3 | | | 11 | 3 | | | В | 0 | BL | | 13 | 4 | | | 14 | 4 | | | 15
B | 4
0 | D T | | 17 | 5 | BL
OL | | 18 | 5 | 01 | | 19 | 5 | | | В | 0 | BL | | 21 | 6 | | | 22 | 6 | | | 23
B | 6
0 | OL
BL | | 25 | 1 | מם | | 26 | 7 | | | 27 | 1 | | | В | 0 | BL | | 29 | 8 | | | 30
31 | 9
10 | | | 32 | 11 | | | 33 | 12 | | | 34 | 13 | | | 35 | 14 | LO | | 36 | 15 | LO | | 37 | 16 | | | 38 | 17 | | | B
40 | 0
1 | BL | | 41 | 4 | | | 42 | 1 | | | B | ō | BL | | 44 | 18 | | | | | | File name: T:\DATA1\FLOW4\2012\EPA335.4\013112CN.RST Date: January 31, 2012 Operator: CRW | * | Name | ∋ | | Conc | Area | |---|------|------|-----|----------|----------------| | _ | | | | | | | * | Cal | 1.00 | ppm | 1.000000 | 5134414.000000 | | * | Cal | 1.00 | ppm | 1.000000 | 5113915.000000 | | * | Cal | 1.00 | ppm | 1.000000 | 5127215.000000 | | * | Cal | 0.80 | ppm | 0.800000 | 4098498.500000 | | * | Cal | 0.80 | ppm | 0.800000 | 4107171.750000 | | * | Cal | 0.80 | ppm | 0.800000 | 4110518.500000 | | * | Cal | 0.50 | ppm | 0.500000 | 2527943.750000 | | * | Cal | 0.50 | ppm | 0.500000 | 2539596.250000 | | * | Cal | 0.50 | ppm | 0.500000 | 2539803.000000 | | * | Cal | 0.05 | ppm | 0.050000 | 229061.640625 | | * | Cal | 0.05 | ppm | 0.050000 | 235543.875000 | | * | Cal | 0.05 | ppm | 0.050000 | 237027.312500 | | * | Cal | 0.01 | ppm | 0.010000 | 44975.179688 | | * | Cal | 0.01 | ррш | 0.010000 | 45786.214844 | | * | Cal | 0.01 | ppm | 0.010000 | 59215.167969 | Calib Coef: x=cyy+by+a a: (intercept) 1.7569e-03 b: 1.9736e-07 c: -5.5618e-16 Corr Coef: 0.999985 Carryover: 0.164% No Drift Peaks #### Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R458 PQL RunNo: 458 Prep Date: Analyte Analysis Date: 1/18/2012 Result SPK value SPK Ref Val SeqNo: 13150 %REC Units: mg/L HighLimit **RPDLimit** Qual Chloride Sulfate ND 0.50 ND 0.50 Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions LowLimit Client ID: LCSW Batch ID: R458 RunNo: 458 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13151 Units: mg/L Analyte Chloride **PQL** SPK value SPK Ref Val %REC 94.6 0 LowLimit HighLimit 90 %RPD **RPDLimit** Qual %RPD Result 4.7 110 0.50 5.000 Sulfate 9.7 0.50 10.00 0 96.9 90 110 #### Qualifiers: R Value exceeds Maximum Contaminant Level. */X Е Value above quantitation range Analyte detected below quantitation limits RPD outside accepted recovery limits В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND Reporting Detection Limit RL Page 7 of 21 # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID 5ml rb | SampT | ype: M | BLK | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | * . | |--------------------------------|------------|----------|-----------|-------------|-----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | n ID: R4 | 186 | F | RunNo: 4 | 86 | | | | | | Prep Date: | Analysis D | ate: 1 | /20/2012 | 5 | SeqNo: 1 | 3958 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | , | | | | | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | | 1,2-Dibromoethane (EDB) | ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | | | | | Acetone | ND | 10 | | | | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | Chloroform | ND | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | | | | .,, | | | | | | | | | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: **1201473** 10-Feb-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 | Sample ID 5ml rb | SampT | ype: ME | BLK | TestCode: EPA Method 8260B: VOLATILES | | | | | | | |-----------------------------|------------|-----------------
-----------|---------------------------------------|-----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | 1D: R4 | 86 | F | RunNo: 4 | 86 | | | | | | Prep Date: | Analysis D | ate: 1/ | 20/2012 | Ş | SeqNo: 1 | 3958 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | 2-Hexanone | ND | 10 | | | | | | | | | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 10 | | | | | | | | | | Methylene Chloride | ND | 3.0 | | | | | | | | | | n-Butylbenzene | ND | 1.0 | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | | sec-Butylbenzene | ND | 1.0 | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | | | | | | | | | | Tetrachloroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | | Trichloroethene (TCE) | ND | 1.0 | | | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 7.3 | | 10.00 | | 72.8 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 8.3 | | 10.00 | | 82.8 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 8.0 | | 10.00 | | 80.3 | 69.8 | 130 | | | | | Surr: Toluene-d8 | 8.3 | | 10.00 | | 83.4 | 70 | 130 | | | | | Sample ID 100ng Ics | SampT | ype: LC | :S | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | | | Client ID: LCSW | Batch | n ID: R4 | 86 | F | RunNo: 4 | 86 | | | | | | Prep Date: | Analysis D | ate: 1/ | 20/2012 | (| SeqNo: 1 | 3959 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | 21 | 1.0 | 20.00 | 0 | 106 | 81.1 | 130 | | | | | Toluene | 21 | 1.0 | 20.00 | 0 | 105 | 82.3 | 122 | | | | | Chlorobenzene | 21 | 1.0 | 20.00 | 0 | 105 | 70 | 130 | | | | #### Qualifiers: 1,1-Dichloroethene Trichloroethene (TCE) Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene 23 20 7.3 9.3 1.0 1.0 83.1 67.4 70 70 126 137 130 130 113 99.1 73.3 93.1 RL Reporting Detection Limit 0 0 20.00 20.00 10.00 10.00 Page 9 of 21 ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 | Sample ID 100ng Ics | LCSW Batch ID: R486 Analysis Date: 1/26 Result PQL 3 mofluoromethane 8.0 | s | TestCode: EPA Method 8260B: VOLATILES | | | | | | | | | | |----------------------------|---|--------|---------------------------------------|-------------|----------|------------|-------------|------|----------|------|--|--| | Client ID: LCSW | LCSW Batch ID: R486 | | | | | RunNo: 486 | | | | | | | | Prep Date: | Analysis D | ate: 1 | /20/2012 | S | SeqNo: 1 | 3959 | Units: µg/L | | | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | | | Surr: Dibromofluoromethane | 8.0 | | 10.00 | | 80.4 | 69.8 | 130 | | | | | | | Surr: Toluene-d8 | 9.2 | | 10.00 | | 91.8 | 70 | 130 | | | | | | | Sample ID 100ng Ics | Sampl | ype: LC | S | les | tCode: E | PA Method | 8260B: VOL | ATILES | | | |-----------------------------|------------|---------------|-----------|-------------|----------|-----------|-------------|--------|----------|------| | Client ID: LCSW | Batch | 1D: R4 | 86 | F | RunNo: 4 | 86 | | | | | | Prep Date: | Analysis D | ate: 1/ | 20/2012 | S | SeqNo: 1 | 4361 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | 22 | 1.0 | 20.00 | 0 | 109 | 81.1 | 130 | | | | | Toluene | 22 | 1.0 | 20.00 | 0 | 110 | 82.3 | 122 | | | | | Chlorobenzene | 21 | 1.0 | 20.00 | 0 | 107 | 70 | 130 | | | | | 1,1-Dichloroethene | 23 | 1.0 | 20.00 | 0 | 116 | 83.1 | 126 | | | | | Trichloroethene (TCE) | 21 | 1.0 | 20.00 | 0 | 106 | 67.4 | 137 | | | | | Surr: 1,2-Dichloroethane-d4 | 8.1 | | 10.00 | | 81.1 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.5 | | 10.00 | | 95.2 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 8.3 | | 10.00 | | 82.8 | 69.8 | 130 | | | | | Surr: Toluene-d8 | 9.1 | | 10.00 | | 91.1 | 70 | 130 | | | | | | | | | | | | | | | | | Sample ID b9 | | | Tes | tCode: E | PA Method | 8260B: VOL | ATILES | | | | |--------------------------------|------------|---------------|-----------|-------------|-----------|------------|-------------|-----------------------|----------|------| | Client ID: PBW | Batch | 1D: R4 | 86 | F | RunNo: 4 | 86 | | ATILES %RPD RPDLimit | | | | Prep Date: | Analysis D | ate: 1/ | 20/2012 | 8 | SeqNo: 1 | 5528 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | | | | | | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | | 1,2-Dibromoethane (EDB) | ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | , | | | | Acetone | ND | 10 | | | * | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | #### Qualifiers: - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit Page 10 of 21 ^{*/}X Value exceeds Maximum Contaminant Level. # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID b9 | SampT | ype: Mi | BLK | Tes | tCode: E | PA Method | 8260B: VOL | ATILES | | | |-----------------------------|------------|----------|-----------|-------------|----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | n ID: R4 | 186 | F | RunNo: 4 | 86 | | | | | | Prep Date: | Analysis D |)ate: 1/ | /20/2012 | , | SeqNo: 1 | 5528 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | Chloroform | ND | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | | 2-Hexanone | ND | 10 | | | | | | | | | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | | ND | 10 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 3.0 | | | | | | | | | | Methylene Chloride | ND | 1.0 | | | | | | | | | | n-Butylbenzene | ND | 1.0 | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | | sec-Butylbenzene | | | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND
ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND
ND | 2.0 | | | | | | | | | | Tetrachloroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for
preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID b9 Client ID: PBW | · | ype: ME | | | tCode: E | | 8260B: VOL | ATILES | | | |-----------------------------|------------|---------|-----------|-------------|----------|----------|-------------|--------|----------|------| | Prep Date: | Analysis D | ate: 1/ | 20/2012 | S | SeqNo: 1 | 5528 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Trichloroethene (TCE) | ND | 1.0 | | 22.0 | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 7.8 | | 10.00 | | 77.8 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.3 | | 10.00 | | 92.9 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 8.3 | | 10.00 | | 83.4 | 69.8 | 130 | | | | | Surr: Toluene-d8 | 8.1 | | 10.00 | | 81.4 | 70 | 130 | | | | #### Qualifiers: R RPD outside accepted recovery limits RL Reporting Detection Limit ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID mb-389 | SampTyp | e: MB | BLK | Tes | tCode: El | PA Method | 8270C: Semi | volatiles | | | |-----------------------------|---------------|----------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------| | Client ID: PBW | Batch II | D: 38 9 | • | F | RunNo: 5 | 38 | | | | | | Prep Date: 1/23/2012 | Analysis Date | e: 1/2 | 23/2012 | S | SeqNo: 1 | 5303 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | ND | 10 | | | | | | | | | | Acenaphthylene | ND | 10 | | | | | | | | | | Aniline | ND | 10 | | | | | | | | | | Anthracene | ND | 10 | | | | | | | | | | Azobenzene | ND | 10 | | | | | | | | | | Benz(a)anthracene | ND | 10 | | | | | | | | | | Benzo(a)pyrene | ND | 10 | | | | | | | | | | Benzo(b)fluoranthene | ND | 10 | | | | | | | | | | Benzo(g,h,i)perylene | ND | 10 | | | | | | | | | | Benzo(k)fluoranthene | ND | 10 | | | | | | | | | | Benzoic acid | ND | 20 | | | | | | | | | | Benzyl alcohol | ND | 10 | | | | | | | | | | Bis(2-chloroethoxy)methane | ND | 10 | | | | | | | | | | Bis(2-chloroethyl)ether | ND | 10 | | | | | | | | | | Bis(2-chloroisopropyl)ether | ND | 10 | | | | | | | | | | Bis(2-ethylhexyl)phthalate | ND | 10 | | | | | | | | | | 4-Bromophenyl phenyl ether | ND | 10 | | | | | | | | | | Butyl benzyl phthalate | ND | 10 | | | | | | | | | | Carbazole | ND | 10 | | | | | | | | | | 4-Chloro-3-methylphenol | ND | 10 | | | | | | | | | | 4-Chloroaniline | ND | 10 | | | | | | | | | | 2-Chloronaphthalene | ND | 10 | | | | | | | | | | 2-Chiorophenoi | ND | 10 | | | | | | | | | | 4-Chiorophenyl phenyl ether | ND | 10 | | | | | | | | | | Chrysene | ND | 10 | | | | | | | | | | Di-n-butyl phthalate | ND | 10 | | | | | | | | | | Di-n-octyl phthalate | ND | 10 | | | | | | | | | | Dibenz(a,h)anthracene | ND | 10 | | | | | | | | | | Dibenzofuran | ND | 10 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 10 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 10 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 10 | | | | | | | | | | 3,3´-Dichlorobenzidine | ND | 10 | | | | | | | | | | Diethyl phthalate | ND | 10 | | | | | | | | | | Dimethyl phthalate | ND | 10 | | | | | | | | | | 2,4-Dichlorophenol | ND | 20 | | | | | | | | | | 2,4-Dimethylphenol | ND | 10 | | | | | | | | | | 4,6-Dinitro-2-methylphenol | ND | 20 | | | | | | | | | | 2,4-Dinitrophenol | ND | 20 | | | | | | | | | | 2,4-Dinitrotoluene | ND | 10 | | | | | | | | | | 2,6-Dinitrotoluene | ND | 10 | #### Qualifiers: Page 13 of 21 ^{*/}X Value exceeds Maximum Contaminant Level. Value above quantitation range Analyte detected below quantitation limits RPD outside accepted recovery limits В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: **1201473** 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID mb-389 | SampType | e: MBLK | Tes | tCode: EPA Metho | d 8270C: Semi | volatiles | | | |----------------------------|---------------|---------------------|-------------|---------------------|---------------|-----------|----------|------| | Client ID: PBW | Batch ID |): 389 | F | RunNo: 538 | | | | | | Prep Date: 1/23/2012 | Analysis Date | e: 1/23/2012 | S | SeqNo: 15303 | Units: μg/L | | | | | Analyte | | PQL SPK value | SPK Ref Val | %REC LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Fluoranthene | ND | 10 | | | | | | | | Fluorene | ND | 10 | | | | | | | | Hexachlorobenzene | ND | 10 | | | | | | | | Hexachlorobutadiene | ND | 10 | | | | | | | | Hexachlorocyclopentadiene | ND | 10 | | | | | | | | Hexachloroethane | ND | 10 | | | | | | | | Indeno(1,2,3-cd)pyrene | ND | 10 | | | | | | | | Isophorone | ND | 10 | | | | | | | | 1-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylphenol | ND | 10 | | | | | | | | 3+4-Methylphenol | ND | 10 | | | | | | | | N-Nitrosodi-n-propylamine | ND | 10 | | | | | | | | N-Nitrosodimethylamine | ND | 10 | | | | | | | | N-Nitrosodiphenylamine | ND | 10 | | | | | | | | Naphthalene | ND | 10 | | | | | | | | 2-Nitroaniline | ND | 10 | | | | | | | | 3-Nitroaniline | ND | 10 | | | | | | | | 4-Nitroaniline | ND | 20 | | | | | | | | Nitrobenzene | ND | 10 | | | | | | | | 2-Nitrophenol | ND | 10 | | | | | | | | 4-Nitrophenol | ND | 10 | | | | | | | | Pentachlorophenol | ND | 20 | | | | | | | | Phenanthrene | ND | 10 | | | | | | | | Phenol | ND | 10 | | | | | | | | Pyrene | ND | 10 | | | | | | | | Pyridine | ND | 10 | | | | | | | | 1,2,4-Trichlorobenzene | ND | 10 | | | | | | | | 2,4,5-Trichlorophenol | ND | 10 | | | | | | | | 2,4,6-Trichlorophenol | ND | 10 | | | | | | | | Surr: 2,4,6-Tribromophenol | 140 | 200.0 | | 69.4 18. | | | | | | Surr: 2-Fluorobiphenyl | 75 | 100.0 | | 74.8 25.9 | | | | | | Surr: 2-Fluorophenol | 92 | 200.0 | | 46.0 12. | | | | | | Surr: 4-Terphenyl-d14 | 73 | 100.0 | | 73.2 29. | | | | | | Surr: Nitrobenzene-d5 | 77 | 100.0 | | 76.6 20. | | | | | | Surr: Phenol-d5 | 80 | 200.0 | | 39.9 11. | 73.2 | | | | ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID Ics-389 | SampT | ype: LC | S | Tes | tCode: El | PA Method | 8270C: Semi | volatiles | | | |----------------------------|-------------|----------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------| | Client ID: LCSW | Batch | n ID: 38 | 9 | F | RunNo: 5 | 38 | | | | | | Prep Date: 1/23/2012 | Analysis D | ate: 1/ | 23/2012 | 5 | SeqNo: 1 | 5304 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | 59 | 10 | 100.0 | 0 | 58.6 | 37.7 | 119 | | | | | 4-Chloro-3-methylphenol | 110 | 10 | 200.0 | 0 | 55.3 | 48.8 | 104 | | | | | 2-Chlorophenol | 98 | 10 | 200.0 | 0 | 48.8 | 38.2 | 109 | | | | | 1,4-Dichlorobenzene | 50 | 10 | 100.0 | 0 | 50.3 | 33.7 | 99.1 | | | | | 2,4-Dinitrotoluene | 68 | 10 | 100.0 | 0 | 67.9 | 39.9 | 125 | | | | | N-Nitrosodi-n-propylamine | 65 | 10 | 100.0 | 0 | 65.0 | 43.8 | 95.1 | | | | | 4-Nitrophenol | 61 | 10 | 200.0 | 0 | 30.3 | 21.7 | 68.6 | | | | | Pentachlorophenol | 96 | 20 | 200.0 | 0 | 48.2 | 26.7 | 107 | | | | | Phenol | 66 | 10 | 200.0 | 0 | 33.2 | 23.9 | 65.8 | | | | | Pyrene | 61 | 10 | 100.0 | 0 | 61.0 | 45.7 | 107 | | | | | 1,2,4-Trichlorobenzene | 57 | 10 | 100.0 | 0 | 57.2 | 30.8 | 104 | | | | | Surr: 2,4,6-Tribromophenol | 1 30 | | 200.0 | | 66.0 | 18.1 | 138 | | | | | Surr: 2-Fluorobiphenyl | 72 | | 100.0 | | 72.1 | 25.9 | 101 | | | | | Surr: 2-Fluorophenol | 70 | 1 | 200.0 | | 35.0 | 12.5 | 93.2 | | | | | Surr: 4-Terphenyl-d14 | 67 | | 100.0 | | 67.3 | 29.5 | 112 | | | | | Surr: Nitrobenzene-d5 | 72 | | 100.0 | | 71.8 | 20.5 | 120 | | | | | Surr: Phenol-d5 | 70 | | 200.0 | | 34.9 | 11.5 | 73.2 | | | | | Sample ID Icsd-389 | Sampl | ype: LC | SD | Tes | tCode: El | PA Method | 8270C: Semi | volatiles | | | |----------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------| | Client ID: LCSS02 | Batch | 1D: 38 | 9 | F | RunNo: 5 | 38 | | | | | | Prep Date: 1/23/2012 | Analysis D | ate: 1/ | 23/2012 | S | SeqNo: 1 | 5305 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | 63 | 10 | 100.0 | 0 | 62.6 | 37.7 | 119 | 6.54 | 20 | | | 4-Chloro-3-methylphenol | 130 | 10 | 200.0 | 0 | 62.7 | 48.8 | 104 | 12.6 | 20 | | | 2-Chlorophenol | 90 | 10 | 200.0 | 0 | 44.8 | 38.2 | 109 | 8.56 | 20 | | |
1,4-Dichlorobenzene | 56 | 10 | 100.0 | 0 | 55.8 | 33.7 | 99.1 | 10.4 | 20 | | | 2,4-Dinitrotoluene | 75 | 10 | 100.0 | 0 | 75.0 | 39.9 | 125 | 10.0 | 20 | | | N-Nitrosodi-n-propylamine | 70 | 10 | 100.0 | 0 | 69.7 | 43.8 | 95.1 | 6.98 | 20 | | | 4-Nitrophenol | 46 | 10 | 200.0 | 0 | 23.2 | 21.7 | 68.6 | 26.8 | 20 | R | | Pentachlorophenol | 64 | 20 | 200.0 | 0 | 32.2 | 26.7 | 107 | 39.7 | 20 | R | | Phenol | 66 | 10 | 200.0 | 0 | 33.2 | 23.9 | 65.8 | 0.120 | 20 | | | Pyrene | 65 | 10 | 100.0 | 0 | 65.0 | 45.7 | 107 | 6.41 | 20 | | | 1,2,4-Trichlorobenzene | 59 | 10 | 100.0 | 0 | 58.6 | 30.8 | 104 | 2.28 | 20 | | | Surr: 2,4,6-Tribromophenol | 97 | | 200.0 | | 48.5 | 18.1 | 138 | 0 | 0 | | | Surr: 2-Fluorobiphenyl | 75 | | 100.0 | | 75.2 | 25.9 | 101 | 0 | 0 | | | Surr: 2-Fluorophenol | 59 | | 200.0 | | 29.6 | 12.5 | 93.2 | 0 | 0 | | | Surr: 4-Terphenyl-d14 | 70 | | 100.0 | | 70.0 | 29.5 | 112 | 0 | 0 | | | Surr: Nitrobenzene-d5 | 74 | | 100.0 | | 74.4 | 20.5 | 120 | 0 | 0 | | | Surr: Phenol-d5 | 68 | | 200.0 | | 34.1 | 11.5 | 73.2 | 0 | 0 | | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 Sample ID 1201473-001B DUP SampType: DUP TestCode: EPA 120.1: Specific Conductance Client ID: Injection Well Batch ID: R459 RunNo: 459 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13287 Units: µmhos/cm Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Conductivity 2,700 0.010 %RPD 0.404 20 **Qualifiers:** */X Value exceeds Maximum Contaminant Level. E Value above quantitation range Analyte detected below quantitation limits RPD outside accepted recovery limits R В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RLReporting Detection Limit Page 16 of 21 # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 1st Qtr 1-17-12 Result Sample ID MB-352 SampType: MBLK TestCode: EPA Method 7470: Mercury Client ID: **PBW** Batch ID: 352 RunNo: 468 Prep Date: 1/19/2012 Analysis Date: 1/19/2012 SeqNo: 13837 Units: mg/L HighLimit **RPDLimit** Qual Analyte Mercury ND 0.00020 PQL Sample ID LCS-352 SampType: LCS TestCode: EPA Method 7470: Mercury %RPD %RPD %RPD RunNo: 468 120 Client ID: LCSW Batch ID: 352 Prep Date: 1/19/2012 Analysis Date: 1/19/2012 SeqNo: 13838 %REC 107 LowLimit Units: mg/L HighLimit **RPDLimit** Qual Analyte Mercury SampType: MS **PQL** 0.00020 SPK value SPK Ref Val %REC LowLimit TestCode: EPA Method 7470: Mercury 80 Client ID: Prep Date: 1/19/2012 Prep Date: 1/19/2012 Injection Well Sample ID 1201473-001CMS Sample ID 1201473-001CMSD Injection Well Batch ID: 352 0.005000 SPK value SPK Ref Val 0.005000 0.0001518 RunNo: 468 Units: mg/L Analyte Client ID: Result 0.0053 Analysis Date: 1/19/2012 SeqNo: 13842 0.0045 0.00020 **PQL** SPK value SPK Ref Val %REC LowLimit 86.4 HighLimit 125 **RPDLimit** Qual Mercury SampType: MSD Batch ID: 352 TestCode: EPA Method 7470: Mercury RunNo: 468 75 Units: mg/L Analyte Analysis Date: 1/19/2012 SeqNo: 13843 LowLimit HighLimit %RPD **RPDLimit** Qual Mercury 0.0045 0.00020 SPK value SPK Ref Val 0.005000 0.0001518 %REC 86.3 75 125 0.104 20 #### Qualifiers: Value exceeds Maximum Contaminant Level. */X Value above quantitation range Ε Analyte detected below quantitation limits В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND Page 17 of 21 RPD outside accepted recovery limits Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 | Sample ID MI | B-371 | Samp | Туре: МЕ | BLK | Tes | tCode: E | PA 6010B: | Total Recove | rable Meta | als | | |---------------|-----------|------------|----------|-----------|-------------|----------|-----------|--------------|------------|----------|------| | Client ID: PE | BW | Bato | h ID: 37 | 1 | F | RunNo: 5 | 34 | | | | | | Prep Date: 1 | 1/20/2012 | Analysis [| Date: 1/ | 24/2012 | S | SeqNo: 1 | 5206 | Units: mg/L | | | | | Analyte | | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Arsenic | | ND | 0.020 | | | | | | | | | | Barium | | ND | 0.020 | | | | | | | | | | Cadmium | | ND | 0.0020 | | | | | | | | | | Calcium | | ND | 1.0 | | | | | | | | | | Chromium | | ND | 0.0060 | | | | | | | | | | Lead | | ND | 0.0050 | | | | | | | | | | Magnesium | | ND | 1.0 | | | | | | | | | | Potassium | | ND | 1.0 | | | | | | | | | | Selenium | | ND | 0.050 | | | | | | | | | | Silver | | ND | 0.0050 | | | | | | | | | | Sodium | | ND | 1.0 | | | | | | | | | | Sample ID LCS-37 | 1 Samp | Type: LC | S | Tes | tCode: El | PA 6010B: | Total Recover | able Meta | als | | |--------------------|--------------|-----------------|-----------|-------------|-----------|-----------|---------------|-----------|----------|------| | Client ID: LCSW | Bat | ch ID: 37 | 1 | F | tunNo: 5 | 34 | | | | | | Prep Date: 1/20/20 | 012 Analysis | Date: 1/ | 24/2012 | S | SeqNo: 1 | 5207 | Units: mg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Arsenic | 0.48 | 0.020 | 0.5000 | 0 | 96.7 | 80 | 120 | | | | | Barium | 0.46 | 0.020 | 0.5000 | 0 | 92.2 | 80 | 120 | | | | | Cadmium | 0.46 | 0.0020 | 0.5000 | 0 | 91.6 | 80 | 120 | | | | | Calcium | 50 | 1.0 | 50.00 | 0 | 100 | 80 | 120 | | | | | Chromium | 0.46 | 0.0060 | 0.5000 | 0 | 92.7 | 80 | 120 | | | | | Lead | 0.45 | 0.0050 | 0.5000 | 0 | 90.4 | 80 | 120 | | | | | Magnesium | 51 | 1.0 | 50.00 | 0 | 102 | 80 | 120 | | | | | Potassium | 48 | 1.0 | 50.00 | 0 | 96.9 | 80 | 120 | | | | | Selenium | 0.46 | 0.050 | 0.5000 | 0 | 91.8 | 80 | 120 | | | | | Silver | 0.094 | 0.0050 | 0.1000 | 0 | 94.5 | 80 | 120 | | | | | Sodium | 50 | 1.0 | 50.00 | 0 | 99.4 | 80 | 120 | | | | ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: **1201473** 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 Sample ID 1201473-001b dup SampType: DUP TestCode: SM4500-H+B: pH Client ID: Injection Well Batch ID: R459 RunNo: 459 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13243 Units: pH units HighLimit Analyte Result PQL SPK value SPK Ref Val %REC %REC LowLimit ilits. pri uliits RPDLimit Qual pΗ 7.31 1.68 %RPD 0.137 Н Qualifiers: */X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit Page 19 of 21 #### Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Qual **Client:** Western Refining Southwest, Inc. Project: Injection Well 1st Qtr 1-17-12 Sample ID mb-1 SampType: MBLK TestCode: SIM2320B: Alkalinity Client ID: PBW Batch ID: R459 RunNo: 459 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13288 Units: mg/L CaCO3 HighLimit HighLimit Analyte %RPD Total Alkalinity (as CaCO3) Result SPK value SPK Ref Val %REC LowLimit ND TestCode: SM2320B: Alkalinity Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R459 RunNo: 459 %REC RunNo: 459 Prep Date: **PQL** 20 SeqNo: 13289 Units: mg/L CaCO3 Analyte Analysis Date: 1/18/2012 104 %RPD **RPDLimit** **RPDLimit** Total Alkalinity (as CaCO3) 81 Result Result Result Result 390 81 5.680 94.0 SPK value SPK Ref Val 80.00 Qual Sample ID mb-2 SampType: MBLK TestCode: SM2320B: Alkalinity 88.1 LowLimit Prep Date: Client ID: PBW Batch ID: R459 Analysis Date: 1/18/2012 SeqNo: 13312 SPK value SPK Ref Val %REC LowLimit Units: mg/L CaCO3 Analyte Total Alkalinity (as CaCO3) ND 20 **PQL** HighLimit %RPD **RPDLimit** Qual Sample ID Ics-2 SampType: LCS TestCode: SM2320B: Alkalinity Client ID: LCSW Batch ID: R459 RunNo: 459 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13313 Units: mg/L CaCO3 Analyte Total Alkalinity (as CaCO3) %REC 101 104 %RPD %RPD **RPDLimit** Qual Sample ID 1201473-001b ms SampType: MS **PQL** 20 TestCode: SM2320B: Alkalinity LowLimit 88.1 RunNo: 459 HighLimit HighLimit Prep Date: Client ID: Injection Well Batch ID: R459 88.1 Analysis Date: 1/18/2012 SPK value SPK Ref Val %REC SeqNo: 13315 TestCode: SM2320B: Alkalinity LowLimit Units: mg/L CaCO3 Qual Qual Analyte Total Alkalinity (as CaCO3) 20 PQL 80.00 316.2 SPK value SPK Ref Val 80.00 37.1 Sample ID 1201473-001b msd SampType: MSD Batch ID: R459 PQL 20 RunNo: 459 121 Prep Date: Analysis Date: 1/18/2012 SeqNo: 13316 Units: mg/L CaCO3 Analyte Result SPK value SPK Ref Val LowLimit %RPD **RPDLimit** **RPDLimit** Total Alkalinity (as CaCO3) Client ID: Injection Well 380 80.00 316.2 %REC 81.9 37.1 HighLimit 121 1.30 7.21 # Qualifiers: */X Value exceeds Maximum Contaminant Level. Analyte detected below quantitation limits Value above quantitation range В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Page 20 of 21 R RPD outside accepted recovery limits
Reporting Detection Limit RL #### Hall Environmental Analysis Laboratory, Inc. WO#: 1201473 10-Feb-12 Client: Western Refining Southwest, Inc. Project: Analyte Analyte Injection Well 1st Qtr 1-17-12 Result Result Sample ID MB-349 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: **PBW** Batch ID: 349 RunNo: 491 Prep Date: 1/19/2012 Analysis Date: 1/20/2012 SeqNo: 14052 Units: mg/L HighLimit **RPDLimit** Qual Total Dissolved Solids ND **PQL** 20.0 %RPD Sample ID LCS-349 Client ID: LCSW SampType: LCS RunNo: 491 TestCode: SM2540C MOD: Total Dissolved Solids Prep Date: 1/19/2012 Batch ID: 349 %REC Analysis Date: 1/20/2012 **PQL** SeqNo: 14053 Units: mg/L %RPD Qual 1,000 SPK value SPK Ref Val **RPDLimit** Total Dissolved Solids 1,000 0 100 80 LowLimit HighLimit 120 20.0 SPK value SPK Ref Val %REC #### Qualifiers: */X Value exceeds Maximum Contaminant Level. Value above quantitation range E Analyte detected below quantitation limits Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded Н Not Detected at the Reporting Limit ND Page 21 of 21 RPD outside accepted recovery limits Reporting Detection Limit Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com # Sample Log-In Check List | Clier | nt Name: | Western Refini | ng Southwest, Ir | nc Bloomfield | Work Or | der Nur | nber: | 120147 | 3 | | | |-------------|----------------|--|--------------------|---------------------|------------|--------------|-----------------|--------|---|------------|-----------------| | Logg | jed by: | Anne Thome | 1/ | /18/2012 9:40:00 Al | М | | / | Zu. 1 | Y | | | | Com | pleted By: | Anne Thorne | 1/ | /18/2012 | | | 4 | on I | 2 | | | | COIII | рюша ву. | Alline Hioma | 112 00 | , | | | u | me I | | | | | Revi | iewed By: | K III | 1120 | , | | | | | | | | | Cha | in of Cus | tody | | | | | | | | | | | 1. | Were seals | intact? | | | Yes | [] N | o 🗆 | Not F | Present 🗹 | | | | 2. | Is Chain of (| Custody complete | ? | | Yes | ₩ N | 。 🗆 | Not F | Present 🗌 | | | | 3. | How was the | e sample delivere | d? | | <u>UPS</u> | | | | | | | | Log | In | | | | | | | | | | | | | | present? (see 19. | . for cooler speci | ific information) | Yes | ₩ N | o 🗆 | | na 🗆 | | | | 5. | Was an atte | empt made to cool | the samples? | | Yes | √ N | . 🗆 | | NA \square | | | | 6. | Were all sar | mples received at | a temperature o | f>0°C to 6.0°C | Yes | ₩ N | □ | | na 🗆 | | | | 7. | Sample(s) in | n proper container | r(s)? | | Yes | ⊵] N | . | | | | | | 8. | Sufficient sa | ample volume for i | indicated test(s)? | 7 | Yes | ₽] N | | | | | | | 9. | Are samples | s (except VOA and | d ONG) properly | preserved? | Yes | ☑] N | , \Box | | | | | | 10. | Was preser | vative added to bo | ottles? | | Yes | [] N | v | | NA \square | | | | 11 | is the heads | space in the VOA | viels less than 1 | /4 inch or 6 mm? | Yes | ⊡ 'N | . □ | No VO | A Vials | | | | | | ample containers | | | Yes | | · 🔽 | | | | | | 13. | Does papen | work match bottle
pancies on chain | labels? | | Yes | ⊻] N | . 🗆 | | # of preserved
bottles checke
for pH: | <u>d</u> _ | 2 | | 14. | Are matrices | s correctly identific | ed on Chain of C | Custody? | | ₩ N | | | | (<20/61 | 2 unless noted) | | 15. | Is it clear wi | nat analyses were | requested? | | | ₩ N | | | Adjusted | P | | | | | iding times able to
customer for auth | | | Yes | ₽ N | o ∐ | | Checked | by: | | | Spe | cial Hand | ling (if applic | <u>abie)</u> | | | | | | | | | | 17 . | Was client r | notified of all discr | epancies with thi | is order? | Yes | [] N | - | | NA 🗹 | | , | | | Persor | n Notified: | | Date | | | | - | • | | | | | By Wh | iom: | | Via: | ☐ eMa | | Phone | ☐ Fax | In Perso | n | | | | Regan | | | | | | | | | | | | | | Instructions: | | | | | | | | | | | 18. | Additional re | emarks: | 19. | Cooler Info | rmation | | | | | | | | | | | | Cooler No | o Temp°C C | | Intact Seal No | Seal Da | te | Sign | ed By | | | | | | 1 | 1.8 Go | od Yes | | -, | | | | | | | | Ch | in T | ၂ ၂ ၀ | stod | Chain-of-Custody Record | | Tum-Around Time: | Time: | | | | | _ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | _ | Ź | IATH ENVIRONMENTAL | Č | 2 | 2 | * | _ | | |--------------------------|--------------|------------------|----------------|-----------------------------|--------|-------------------------|----------------------|------------|------------------|---------|-----------------|-------------------------|---------------------------------------|----------|------------------------|---------------------------|-----------------|--------------|------------------------|----------|-----|-------------| | Client Western Refining | est | 3 | 752 | -iviva | | X Standard | _ Rush | اء | |] L | | _ | Ž | | Į | ANALYSIS LABORATORY | | . O | ; | | , ≿ | | | | | | | | | Project Name | | _ | of OTR | | | | WWW | haller | i
Niron | www.hallenvironmental.com | | ,
, |)

 |) | | | | Mailing Address: 450 | Iress. | #50 | | CR 4990 | | Inject | INJECTIONWELL | | 41-17-1 | | 4901 Hawkins NE | Hawk | IN SI | ∀ | nbngr | - Albuquerque, NM 87109 | Σ | 8710 | ō, | | | | | TSloom (reld. | The same | reld. | | 141 | M | Project #: | | | | | Tel. ₹ | Tel. 505-345-3975 | 5-39 | ъ | Fax | 505-345-4107 | 454 | 107 | | | | | | Phone #: 505 | 705 | J | 170 | | | | | | - | | | | | Ana | llysis | Analysis Request | est | | | | | | | email or Fax#: | # | | | | | Project Manager: | ger: | | | | | | di | -1 | טל)
יוגר | | | - 4" | <u> </u> | 1 | | | | QA/QC Package: | age: | | | | | | | | | | | 50 | क | |)S'* | | | | 7, 154 | <u>つ</u> | | | | □ Standard | ٦ | | X Leve | X Level 4 (Full Validation) | ation) | | | | | | | | 48 | | Od; | | | | <i>41.</i> 32 | <u> </u> | _ | _ | | Accreditation
☐ NELAP | E | □ Other | ,
 | | | Sampler: 🖄 | balter | 70 | | | | | | | 30N'E | | | | م
مرار ه | IA ', | 3 | /NL 16 | | □ EDD (Type | 'pe) | | | | | | 20,000 | | | | | | | | DN'I | sepi | | Τ. 1
ΌΔ: | Ļ:// | Q.S | Ŷ | <u>, ,,</u> | | Date Ti | Тіте | Matrix | Sam | Sample Request ID | | Container
Type and # | Preservative
Type | 0) | | EX + MT | EX + WI | orij oM) i i | orij aM) G(| ANG) 01 | eM 8 AЯ:
O,̃Ŧ) enoi | 81 Pestici | √OV) 809 | iməS) 07 | mitebi
interi | C. Hos | | . Brippies | | . 8 c1-71 | 8 | Hab | | Injection Well | | 3-104 | 11/1 | | 7 | | | | | | 7A | 08 | | | <u>a</u> | 1 | 5 | <u></u> | | | | | | _ | | 1-1:42 | Amber | | - | | | | İ | | | | | | | | | 1 | | | | | | _ | | 1-500ml | 1 | | 1 | | | | | | | | | × | | | | | | | | | | | | 1-500m | l. | | 1 | | | × | | | | | | | | × | | T | | | | | | | | 1-350m | 405 cH | | <u>-</u>
l | | | | メ | | | | | | | | _ | [| | | | | | | | 1-500ml | 4403 | | _ | | | | | <u>×</u> | ./ | | | | | | | | | | | | , | | | 1-50ml | HO या | | | | | | | | | - | | | × | | | | | | | | | | | 1-500ml | Zw Acetain | 4 | _ | | | | | | | | | | | | X | | | | | | | | | | | | • | | | | | | | | | | | | | | | | . | | - | | | ٠ | <u> </u> | | | | | | | | | | | | | | | | / | | | | | | | | | | | <u> </u> | | | | | | Date: Time: 7-12 3:00 | | Relinquished by | ed by: | "Laken | | Received by: | |) Date | Time 84 Remarks: | ¥em∂ | ırks: | | | | | | | • | | | | | | Date: Time: | | Relinquished by: | ed by: | | | Received by: | | Date | Time | | | | | , | | | | | | | | | | - H | | odiig solow | witted to Hall | Emilmomental ma | - A | a retto of helperto | votesodal battham | This sange | of this | | 1 | 1 | | 1 | 1 | | 1 | | | | | \neg | Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com April 26, 2012 Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911 RE: Injection Well 2nd Qtr 4-3-12 OrderNo.: 1204158 #### Dear Kelly Robinson: Hall Environmental Analysis Laboratory received 2 sample(s) on 4/4/2012 for the analyses presented in the following report. These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Please don't hesitate to contact HEAL for any additional information or clarifications. Sincerely, Andy Freeman Laboratory Manager andyl 4901 Hawkins NE Albuquerque, NM 87109 Hall Environmental Anclysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Workorder Sample Summary WO#: 1204158 26-Apr-12 CLIENT: Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 | Lab SampleID | Client Sample ID | Tag No | Date Collected | Date Received | Matrix | |--------------|------------------|--------|---------------------|----------------------|---------| | 1204158-001 | Injection Well | | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-001 | Injection Well | | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-001 | Injection Well | | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-001 | Injection Well | | 4/3/2012
1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-001 | Injection Well | | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-001 | Injection Well | | 4/3/2012 1:20:00 PM | 4/4/2012 10:15:00 AM | Aqueous | | 1204158-002 | Trip Blank | | | 4/4/2012 10:15:00 AM | Aqueous | # Lab Order 1204158 Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/26/2012 CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well **Project:** Injection Well 2nd Qtr 4-3-12 **Collection Date:** 4/3/2012 1:20:00 PM **Lab ID:** 1204158-001 Matrix: AQUEOUS Received Date: 4/4/2012 10:15:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-------------------------------------|---------|---------|----------|--------------|-----------------------| | EPA METHOD 300.0: ANIONS | | | | | Analyst: SRM | | Chloride | 850 | 50 | mg/L | 100 | 4/4/2012 4:00:45 PM | | Sulfate | 77 | 5.0 | mg/L | 10 | 4/4/2012 3:48:20 PM | | EPA METHOD 7470: MERCURY | | | | | Analyst: JLF | | Mercury | 0.00038 | 0.00020 | mg/L | 1 | 4/17/2012 10:00:05 AM | | EPA 6010B: TOTAL RECOVERABLE METALS | | | | Analyst: RAG | | | Arsenic | ND | 0.020 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Barium | 0.46 | 0.020 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Cadmium | ND | 0.0020 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Calcium | 110 | 5.0 | mg/L | 5 | 4/12/2012 4:26:24 PM | | Chromium | ND | 0.0060 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Lead | ND | 0.0050 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Magnesium | 35 | 1.0 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Potassium | 15 | 1.0 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Selenium | ND | 0.050 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Silver | ND | 0.0050 | mg/L | 1 | 4/12/2012 4:24:27 PM | | Sodium | 800 | 10 | mg/L | 10 | 4/23/2012 2:38:11 PM | | EPA METHOD 8270C: SEMIVOLATILE | S | | | | Analyst: JDC | | Acenaphthene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Acenaphthylene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Aniline | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Anthracene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Azobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benz(a)anthracene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzo(a)pyrene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzo(b)fluoranthene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzo(g,h,i)perylene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzo(k)fluoranthene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzoic acid | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Benzyl alcohol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Bis(2-chloroethoxy)methane | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Bis(2-chloroethyl)ether | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Bis(2-chloroisopropyl)ether | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Bis(2-ethylhexyl)phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4-Bromophenyl phenyl ether | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Butyl benzyl phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Carbazole | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4-Chloro-3-methylphenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4-Chloroaniline | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Chloronaphthalene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Chlorophenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Lab Order 1204158 Date Reported: 4/26/2012 # Hall Environmental Analysis Laboratory, Inc. **CLIENT:** Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 **Lab ID:** 1204158-001 Client Sample ID: Injection Well Collection Date: 4/3/2012 1:20:00 PM Received Date: 4/4/2012 10:15:00 AM | analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|-------|----------|----|----------------------| | EPA METHOD 8270C: SEMIVOLA | TILES | | | ' | Analyst: JD 0 | | 4-Chlorophenyl phenyl ether | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Chrysene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Di-n-butyl phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Di-n-octyl phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Dibenz(a,h)anthracene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Dibenzofuran | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 1,2-Dichlorobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 1,3-Dichlorobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 1,4-Dichlorobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 3,3'-Dichlorobenzidine | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Diethyl phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Dimethyl phthalate | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4-Dichlorophenol | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4-Dimethylphenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4,6-Dinitro-2-methylphenol | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4-Dinitrophenol | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4-Dinitrotoluene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,6-Dinitrotoluene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Fluoranthene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Fluorene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Hexachlorobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Hexachlorobutadiene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Hexachlorocyclopentadiene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Hexachloroethane | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Indeno(1,2,3-cd)pyrene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Isophorone | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 1-Methylnaphthalene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Methylnaphthalene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Methylphenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 3+4-Methylphenol | 81 | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | N-Nitrosodi-n-propylamine | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | N-Nitrosodimethylamine | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | N-Nitrosodiphenylamine | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Naphthalene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Nitroaniline | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 3-Nitroaniline | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4-Nitroaniline | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Nitrobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2-Nitrophenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 4-Nitrophenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Pentachlorophenol | ND | 100 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Phenanthrene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | Matrix: AQUEOUS - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Lab Order 1204158 Date Reported: 4/26/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 **Lab ID:** 1204158-001 Client Sample ID: Injection Well Collection Date: 4/3/2012 1:20:00 PM Received Date: 4/4/2012 10:15:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |--------------------------------|--------|-----------|--------------|----|---------------------| | EPA METHOD 8270C: SEMIVOLAT | ILES | | | | Analyst: JDC | | Phenol | ND | 50 | μg/ L | 1 | 4/9/2012 8:10:20 PM | | Pyrene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Pyridine | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 1,2,4-Trichlorobenzene | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4,5-Trichlorophenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | 2,4,6-Trichlorophenol | ND | 50 | μg/L | 1 | 4/9/2012 8:10:20 PM | | Surr: 2,4,6-Tribromophenol | 86.3 | 18.1-138 | %REC | 1 | 4/9/2012 8:10:20 PM | | Surr: 2-Fluorobiphenyl | 68.2 | 25.9-101 | %REC | 1 | 4/9/2012 8:10:20 PM | | Surr: 2-Fluorophenol | 56.9 | 12.5-93.2 | %REC | 1 | 4/9/2012 8:10:20 PM | | Surr: 4-Terphenyl-d14 | 74.6 | 29.5-112 | %REC | 1 | 4/9/2012 8:10:20 PM | | Surr: Nitrobenzene-d5 | 73.9 | 20.5-120 | %REC | 1 | 4/9/2012 8:10:20 PM | | Surr: Phenol-d5 | 50.1 | 11.5-73.2 | %REC | 1 | 4/9/2012 8:10:20 PM | | EPA METHOD 8260B: VOLATILES | | | | | Analyst: JDJ | | Benzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Toluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Ethylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2,4-Trimethylbenzene | ND | 1.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | 1,3,5-Trimethylbenzene | ND | 1.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | 1,2-Dichloroethane (EDC) | ND | 1.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | 1,2-Dibromoethane (EDB) | ND | 1.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | Naphthalene | ND | 2.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | 1-Methylnaphthalene | ND | 4.0 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | 2-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Acetone | 78 | 10 | μg/ L | 1 | 4/6/2012 4:13:22 PM | | Bromobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Bromodichloromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Bromoform | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Bromomethane | ND | 3.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 2-Butanone | ND | 10 | μg/L
| 1 | 4/6/2012 4:13:22 PM | | Carbon disulfide | ND | 10 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Carbon Tetrachloride | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Chlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Chloroethane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Chloroform | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Chloromethane | ND | 3.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 2-Chlorotoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 4-Chlorotoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | cis-1,2-DCE | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | cis-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | Matrix: AQUEOUS - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Lab Order 1204158 Date Reported: 4/26/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 **Lab ID:** 1204158-001 Client Sample ID: Injection Well **Collection Date:** 4/3/2012 1:20:00 PM Received Date: 4/4/2012 10:15:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|----------|----------|----|---------------------| | EPA METHOD 8260B: VOLATILES | | | | 1. | Analyst: JDJ | | Dibromochloromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Dibromomethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,3-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,4-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Dichlorodifluoromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1-Dichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1-Dichloroethene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2-Dichloropropane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,3-Dichloropropane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 2,2-Dichloropropane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Hexachlorobutadiene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 2-Hexanone | ND | 10 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Isopropylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 4-Isopropyltoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 4-Methyl-2-pentanone | ND | 10 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Methylene Chloride | ND | 3.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | n-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | n-Propylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | sec-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Styrene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | tert-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Tetrachloroethene (PCE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | trans-1,2-DCE | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | trans-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2,3-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2,4-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1,1-Trichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,1,2-Trichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Trichloroethene (TCE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Trichlorofluoromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | 1,2,3-Trichloropropane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Vinyl chloride | ND | 1.0 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Xylenes, Total | ND | 1.5 | μg/L | 1 | 4/6/2012 4:13:22 PM | | Surr: 1,2-Dichloroethane-d4 | 104 | 70-130 | %REC | 1 | 4/6/2012 4:13:22 PM | | Surr: 4-Bromofluorobenzene | 118 | 70-130 | %REC | 1 | 4/6/2012 4:13:22 PM | | Surr: Dibromofluoromethane | 114 | 69.8-130 | %REC | 1 | 4/6/2012 4:13:22 PM | | Surr: Toluene-d8 | 96.3 | 70-130 | %REC | 1 | 4/6/2012 4:13:22 PM | Matrix: AQUEOUS - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit # Lab Order 1204158 Date Reported: 4/26/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 **Lab ID:** 1204158-001 Client Sample ID: Injection Well **Collection Date:** 4/3/2012 1:20:00 PM **Received Date:** 4/4/2012 10:15:00 AM | Analyses | Result | RL Qual | Units | DF | Date Analyzed | |---------------------------------|--------|---------|------------|----|---------------------| | EPA 120.1: SPECIFIC CONDUCTANCE | | | | | Analyst: JLF | | Conductivity | 2,900 | 0.010 | µmhos/cm | 1 | 4/6/2012 1:58:29 PM | | SM4500-H+B: PH | | | | | Analyst: JLF | | рН | 6.91 | 1.68 H | pH units | 1 | 4/6/2012 1:58:29 PM | | SM2320B: ALKALINITY | | | | | Analyst: JLF | | Bicarbonate (As CaCO3) | 330 | 20 | mg/L CaCO3 | 1 | 4/6/2012 1:58:29 PM | | Carbonate (As CaCO3) | ND | 2.0 | mg/L CaCO3 | 1 | 4/6/2012 1:58:29 PM | | Total Alkalinity (as CaCO3) | 330 | 20 | mg/L CaCO3 | 1 | 4/6/2012 1:58:29 PM | | SM2540C MOD: TOTAL DISSOLVED S | OLIDS | | | | Analyst: KS | | Total Dissolved Solids | 2,120 | 200 | mg/L | 1 | 4/5/2012 5:03:00 PM | Matrix: AQUEOUS - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit Lab Order 1204158 Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/26/2012 **CLIENT:** Western Refining Southwest, Inc. Client Sample ID: Trip Blank **Project:** Injection Well 2nd Qtr 4-3-12 **Collection Date:** **Lab ID:** 1204158-002 Matrix: AQUEOUS Received Date: 4/4/2012 10:15:00 AM | Analyses | Result | RI Ou | al Units | DF | Date Analyzed | |--------------------------------|----------|--------|--------------|-----|---------------------| | EPA METHOD 8260B: VOLATILES | 1/62/11 | TE QII | ai Units | DI. | • | | | | | | | Analyst: JD | | Benzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Toluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Ethylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2,4-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,3,5-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2-Dichloroethane (EDC) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2-Dibromoethane (EDB) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Naphthalene | ND | 2.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 2-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Acetone | ND | 10 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Bromobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Bromodichloromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Bromoform | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Bromomethane | ND | 3.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 2-Butanone | ND | 10 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Carbon disulfide | ND | 10 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Carbon Tetrachloride | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Chlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Chloroethane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Chloroform | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Chloromethane | ND | 3.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 2-Chlorotoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 4-Chlorotoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | cis-1,2-DCE | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | cis-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Dibromochloromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Dibromomethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,3-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,4-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Dichlorodifluoromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1-Dichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1-Dichloroethene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2-Dichloropropane | ND
ND | 1.0 | μg/L
μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,3-Dichloropropane | ND
ND | 1.0 | | 1 | 4/6/2012 4:41:46 PM | | | | | μg/L
ug/L | 1 | | | 2,2-Dichloropropane | ND | 2.0 | μg/L | | 4/6/2012 4:41:46 PM | | 1,1-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Hexachlorobutadiene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 2-Hexanone | ND | 10 | μg/L | 1 | 4/6/2012 4:41:46 PM | Qualifiers: - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S
Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit Page 7 of 20 # Lab Order 1204158 Date Reported: 4/26/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Injection Well 2nd Qtr 4-3-12 **Lab ID:** 1204158-002 Project: Client Sample ID: Trip Blank **Collection Date:** Matrix: AQUEOUS Received Date: 4/4/2012 10:15:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|----------|----------|----|---------------------| | EPA METHOD 8260B: VOLATILES | | | | | Analyst: JD | | Isopropylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 4-Isopropyltoluene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 4-Methyl-2-pentanone | ND | 10 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Methylene Chloride | ND | 3.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | n-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | n-Propylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | sec-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Styrene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | tert-Butylbenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Tetrachloroethene (PCE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | trans-1,2-DCE | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | trans-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2,3-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2,4-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1,1-Trichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,1,2-Trichloroethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Trichloroethene (TCE) | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Trichlorofluoromethane | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | 1,2,3-Trichloropropane | ND | 2.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Vinyl chloride | ND | 1.0 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Xylenes, Total | ND | 1.5 | μg/L | 1 | 4/6/2012 4:41:46 PM | | Surr: 1,2-Dichloroethane-d4 | 103 | 70-130 | %REC | 1 | 4/6/2012 4:41:46 PM | | Surr: 4-Bromofluorobenzene | 105 | 70-130 | %REC | 1 | 4/6/2012 4:41:46 PM | | Surr: Dibromofluoromethane | 117 | 69.8-130 | %REC | 1 | 4/6/2012 4:41:46 PM | | Surr: Toluene-d8 | 103 | 70-130 | %REC | 1 | 4/6/2012 4:41:46 PM | - ${\ensuremath{^{*/}\!X}} \quad \ensuremath{ \ensuremath{^{Value}}} exceeds \ Maximum \ Contaminant \ Level.$ - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit April 23, 2012 #### CASE NARRATIVE Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anatekiabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM Project Tracking No.: 120406030 Anatek Batch: 1204158 Project Summary: One (1) water sample was received on 4/6/2012 for metals (EPA 6020A) analysis. The sample was received in good condition and with the appropriate chain of custody The sample was received at 1.5C. Client Sample ID 1204158-001E / Injection Well 120406030-001 Anatek Sample ID Method/Prep Method SW846 Ch7/EPA 1010/EPA 150.1 #### QA/QC Checks | Parameters | Yes / No | Exceptions / Deviations | |-------------------------------------|----------|-------------------------| | Sample Holding Time Valid? | Υ | NA | | Surrogate Recoveries Valid? | NA | NA | | QC Sample(s) Recoveries Valid? | Y | NA | | Method Blank(s) Valid? | Y | NA | | Tune(s) Valid? | NA | NA | | Internal Standard Responses Valid? | NA | NA | | Initial Calibration Curve(s) Valid? | Υ | NA | | Continuing Calibration(s) Valid? | Υ | NA | | Comments: | Υ | NA | # 1. Holding Time Requirements No problems encountered. ## 2. GC/MS Tune Requirements N/A. #### 3. Calibration Requirements No problems encountered. #### 4. Surrogate Recovery Requirements N/A #### 5. QC Sample (LCS/MS/MSD) Recovery Requirements No problems encountered. #### 6. Method Blank Requirements The method blanks were non-detect (<MDL) for all analytes. No problems encountered. | 7. Internal Standard(s) Response Re | auirements | |-------------------------------------|------------| |-------------------------------------|------------| N/A. #### 8. Comments No problems encountered. I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee. Approved by: Page 2 of 14 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120406030 Address: 4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109** **Project Name:** Date/Time Received 1204158 Attn: ANDY FREEMAN # Analytical Results Report Sample Number 120406030-001 Sampling Date 4/3/2012 4/6/2012 **Client Sample ID** 1204158-001E / INJECTION WELL **Sampling Time** 1:20 PM 10:25 AM **Matrix** Water Sample Location Comments | Parameter | Result | Units | PQL | Analysis Date | Analyst | Method | Qualifier | |--------------------|--------|----------|-----|---------------|---------|-----------|-----------| | Cyanide (reactive) | ND | mg/L | 0.1 | 4/17/2012 | CRW | SW846 CH7 | | | Flashpoint | >200 | °F | | 4/9/2012 | KFG | EPA 1010 | | | pH | 6.58 | ph Units | | 4/11/2012 | KFG | EPA 150.1 | | | Reactive sulfide | 4.07 | mg/L | 1 | 4/9/2012 | ЛТ | SW846 CH7 | | **Authorized Signature** John Coddington, Lab Manager MCL **EPA's Maximum Contaminant Level** ND Not Detected PQL Practical Quantitation Limit This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted. Certifications held by Anstek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C565 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C565; MT:Cert0095 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120406030 Address: 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name: 1204158 Attn: **ANDY FREEMAN** Analytical Results Report Quality Control Data | Lab Control Sample | | | | | | | | | | | |----------------------------------|---------------|--------|--------------|-------|-------|-------|------------|--------|-----------|---------------| | Parameter | LCS Result | Unite | LCS: | Spike | %Rec | AR | %Rec | Prep | Date | Analysis Date | | Cyanide (reactive) | 0.524 | mg/L | _ 0. | 5 | 104.8 | 80 | -120 | 4/17/ | 2012 | 4/17/2012 | | Reactive sulfide | 0.180 | mg/L | _ 0. | 2 | 90.0 | 70 | -130 | 4/9/2 | 2012 | 4/9/2012 | | Matrix Spike | | | | | - | | | | | | | Compale Number - Descriptor | | Sample | MS | 1.114 | _ | MS | 4/ 0 | AR | D D-4 | A | | Sample Number Parameter | | Result | Result | Unit | | Spike | %Rec | %Rec | Prep Date | | | 120406030-001 Reactive sulfide | | 4.07 | 7.33 | mg/ | | 4.07 | 80.1 | 70-130 | 4/9/2012 | | | 120408030-001 Cyanide (reactive) | | ND | 0.484 | mg/ | | 0.5 | 96.8 | 80-120 | 4/17/2012 | 2 4/17/2012 | | Matrix Spike Duplicate | | | | | | | | | | | | Parameter | MSD
Result | Units | MSD
Spike | %R | tec | %RPD | AR
%RP[|) Pre | p Date | Analysis Date | | Cyanide (reactive) | 0.487 | mg/L | 0.5 | 97 | .4 | 0.6 | 0-25 | 4/1 | 7/2012 | 4/17/2012 | | Method Blank | | | | | | | | - | | | | Parameter | | Re | sult | Uı | nits | | PQL | Pı | ep Date | Analysis Date | | Cyanide (reactive) | | 1 | ND | m | g/L | | 0.1 | 4/1 | 7/2012 | 4/17/2012 | | Reactive sulfide | | N | 4D | | ı/kg | | 1 | 4/ | 9/2012 | 4/9/2012 | AR Acceptable Range ND Not Detected PQL RPD Practical Quantitation Limit Relative Percentage Difference Comments: Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com # **Login Report** NM **Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB** Order ID: 120406030 4901 HAWKINS NE SUITE D Order Date: 4/6/2012 **ALBUQUERQUE** 87109 **Contact Name: ANDY FREEMAN** Project Name: 1204158 Comment: Sample #: Samples received in a cooler? Recv'd: Collector: Date Collected: 4/3/2012 Quantity: Matrix: Water Date Received: 4/6/2012 10:25:00 A Yes Comment: | Test | Lab | Method | Due Date | Priority | |------------------|-----|-----------|-----------|---------------------------| | CYANIDE REACTIVE | М | SW846 CH7 | 4/18/2012 | Normai (6-10 Days) | | FLASHPOINT | М | EPA 1010 | 4/18/2012 | <u>Normal (6-10 Days)</u> | | pH | М | EPA 150.1 | 4/18/2012 | Normal (6-10 Days) | | SULFIDE REACTIVE | М | SW846 CH7 | 4/18/2012 | Normal (6-10 Days) | # SAMPLE
CONDITION RECORD | Samples received intact? | Yes | |---|-----| | What is the temperature inside the cooler? | 1.5 | | Samples received with a COC? | Yes | | Samples received within holding time? | Yes | | Are all sample bottles properly preserved? | Yes | | Are VOC samples free of headspace? | N/A | | Is there a trip blank to accompany VOC samples? | N/A | | Labels and chain soree? | Yes | # CHAIN OF CUSTODY RECORD PAGE 1 9 120406 030 HALL Lett 4/18/2012 1st SAMP 4/3/2012 1st RCVD 4/6/2012 1204158 | COMPANY: | Anatek Labs | , Inc. | | -SNOFE | (208) 883-2839 FAX: | (208) 882-9246 | |----------------------|---|---|---|---|--|--| | | | | | ACCOUNT #: | :TVWE | | | | | | | | | | | | | | | | | ANALYTICAL COMMENTS | | | vario | | eous 4/3/ | | RCI, PLEASE PROVIDE LEVEL 4 DATA | PACKAGE | | | | | | | | | | SAU | | | _ | | 0 | | | | | | | | 0 | | | | | - | - ! | | | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | , | | | | | | Æ, Please include ti | he LAB ID and the | CLIENT SA | WPLE ID | on all final reports. | Please e-mail results to inb@hallenvironmen | ults to lab@hallenvironmental.com. Please return all coolers and blue | | | | | | NATEK LABS | RECEIVING LIST | | | Net 10721 | actived By: | | \ | | ` | MITTAL DESIRED: | | Tues | actived By: | Q Q | , RECEN | NED INTACT | TEMP: 1-2 °C | IN DEMAIL ONLINE | | Theory: | sosived By: |
 | NO HE | DSPACE / C | È, | USBONLY | | RUSH | Next BD | NUMBE | R OF COM | ''ıL | A: A: | Attempt to Cook C | | | | <u></u> | | 4 | | The second secon | | | EATE TA PACKAGE, Please include to Date: Date: 444,2112 Time: 1251 PM Badent RUSH | COMPANY: Anstek Lahn Anstek Lahn To The Trace include the LAB ID and the Rush PM Received By: Rush Next BD Rush PM Received By: | MPLE ID Anstek Labs, Inc. BOTTLE TYPE MA Various Aqu | MPLE ID BOTTLE TYPE MATRIX Various AJUSOUS AND TOPE MATRIX AND Time: Labit PM Received By: These Received By: RUSH Next BD NUMBER OF CO. DATE & TIME: 1 | Anatek Labs, Inc. Anount # Account Acco | BOTTLE HATRIX COLLECTION FOR ATRIX ACCOUNT # Warious Aqueous 4/9/2012 1/20/20 PM 3 RCI, PLEASE O | Peak Table: Cyanide File name: T:\DATA1\FLOW4\2012\EPA335.4\041712CN.RST \ File name: T:\DATAl\FLOW4\2012\EPA335.4\U41 Date: Unknown 120417FIAGNR | Date: | Unkr | | |-------|------|-----| | Opera | tor: | CRW | | Perk | Cup | Name | туре | Dil V | 0 t | Area | Calc. (ppm) | |-------------------|----------|----------------------------------|---------|-----------------|---------------|--------------------|----------------------| | -
1 | 2 | Sync | SYNC | 1 | 1 | 7340982 | 0.993448 | | 1 | Õ | Carryover | CO | ī | ī | | 0.004803 | | 3 | 0 | Carryover | CO | 1 | 1 | | 0.001611 | | В | Ö | Baseline | RB | 1 | 1 | | 0.001193 | | 5. | 2: | Cal 1.00 ppm | G. | ĺ | 1 | , | 0.993494 | | 6 | 2 | Cal 1.00 ppm | C | 1 | 1 | | 1.004638 | | 7 | 2 | Cal 1.00 ppm | C | 1 | 1 | | 0.995085 | | В | Ö | Baseline | RB | 1 | 1 | | 0.001501 | | 9 | 3
3 | Cal 0.80 ppm
Cal 0.80 ppm | C | 1
1 | 1
1 | 7 | 0.802074
0.891696 | | 10
11 | 3
3 | Cal 0.80 ppm | C | 1 | 1 | | 0.806603 | | В | 0 | Baseline | RB | ī | ī | | 0.001494 | | 13 | 4 | Cal 0.50 ppm | C | ī | ī | | 0.496022 | | 14 | 4 | Cal 0.50 ppm | C | 1 | 1 | 3657522 | 0.495574 | | 15 | 4 | Cal 0.50 ppm | C | 1 | 1 | | 0.489096 | | B | Ö | Baseline | RB | 1 | 1 | | 0.001306 | | 17 | 5 | Cal 0.05 ppm |
C | 1 | 1 | | 0.045575 | | 18 | 5 | Cal 0.05 ppm
Cal 0.05 ppm | C
C | 1
1 | 1
1 | • | 0.045355
0.042856 | | 19
B | 5
0 | Cal 0.05 ppm Baseline | RB | 1 | 1 | | 0.001119 | | 21 | 6 | Cal 0.01 ppm | C | 1 | ī | | 0.009932 | | 22 | 6 | Cal 0.01 ppm | Ċ | ī | 1 | | 0.010366 | | 23 | 6 | Cal 0.01 ppm | C | ī | 1 | | 0.010060 | | B | 0 | Baseline | RB | 1 | 1 | | 0.001380 | | 2.5 | 1 | Blank | BLNK | 1 | Ľ | | 0.001314 | | 26 | 7 | ICV 0.25 ppm | CCA | 1 | 1 | | 0.250691 | | 27 | 1 | Blank | BLNK | 1 | 1 | | 0.000978 | | В | Ö | Baseline | RB | 1 | 1 | | 0.001194 | | 29
31 | 8
9 ~ | 120406012-BL WW
120406012-001 | Ω
Ω | 1
1 | 1 | | 0.000788
0.001744 | | 31 | 10 | 120406012-001MS | ថ | 1 | 1 | | 0.482538 | | 32 | 11 | 120406012-001MSI | | 1 | - | 1 356790 | | | 33 | | 120406012-LCS | ับ | ı | 1 | | 0.494205 | | 34 | | 120406018-005 | U | 1 | 1 | | 0.001703 | | 35 | 14 | 120406019-001 | U | 1 | 1 | | 0.001820 | | 36 | | 120410036-001 | U | 1 | 1 | | 0.041716 | | 37 | | 120410036-002 | U | 1 | 1 | | 0.001634 | | 38 | | <pre>120410036-004</pre> | Ü | 1
1 | 1 | | 0.004471 | | ∄
4:0 | 0
1 | Baseline
Blank | BLNK | 1 | 1
1 | | 0.001155
0.001338 | | 41 | 4 | CCV 0.5 ppm | CCV | 1 | ์
วั | 3714273 | 0.503244 | | 42 | ı. | Blank | BLNK | $ar{ extbf{i}}$ | i
i | 431 | 0.001263 | | В | 0 | Read Baseline | RB | 1 | | | 0.001394 | | 44 | | 120410036-005 | U | 1
1 | 1
1 | _1573 | 0.000992 | | 45 | | 120410036-006 | Ū | 1 | 1 | | 0.000998 | | 46 | | 120410036-007 | U | 1 | 1 | 2194 | 0.001501 | | 47
48 | | 120410036-008
120410026-001 | Ų | 1 | 1
1 | 28664 | 0.005079 | | 49 | | • 120406005-002 | n
n | 1
1 | <u>.</u>
1 | . 2741
l 237933 | 0.001575
0.033365 | | 50 | | 4 120413009-001 | Ū | i |
1 | . 237933 | 0.001174 | | 51 | | 120413009-002 | Ŭ | 1 | 1 | 385 | 0.001257 | | 52 | | 120413009-003 | Ū | 1 | 1 | 140 | 0.001224 | | 53 | 27 | 120413034-002 | Ú | 1 | 1
1 | 1089 | 0.001352 | | ₽ | Ó | Baseline | RB | 1 | 1 | 1830 | 0.001452 | | 55 | 1 | Blank | BLNK | 1 | 1 | 1672 | 0.001431 | | 5.6 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3719207 | 0.503911 | | 57 | 1 | Blank | BLNK | 1 | 1 | | 0.001443 | | B
5.9 | 0
28 | Read Baseline
120410034-BL S | RB
U | 1
1 | 1 | -73 | 0.001195 | | 5.9
6C | 29 | 120410034-86 5 | Ū | 1 | 1
1 | | 0.001117 | | 61 | 30 | 120410034-001MS | ŭ | 1 | 1 | | 0.001436
0.484519 | | 62 | 31 | 120410034-001MSI | | 1 | _ | 1 362366° | | | 63 | 3,2 | 120410034-LCS | U | 1 | 1 | | 0.502046 | | 64 | 33 | 120410034-002 | ับ | 1 | i | 9088 | 0.002433 | | 65 | 3.4 | 120410034-003 | U | 1 | 1 | . 9813 | 0.002531 | | 66 | 35 | 120410034-004 | U | D = 1 | 1 | | 0.002456 | | | | | | Page 7 | OT 14 | | | | ?eak | Cup | Name | Туре | Dil | Wt | A | rea | Calc. | (ppm) | |------------|------|--------------------------|------|-----|--------|----|--------------------|-------|----------| | 57 | 36 | 120410034-005 | U | | 1 | 1 | 9152 | | 0.002442 | | 58 | .3.7 | 120410034-006 | Ü | | Ĩ. | 1 | 4183 | | 0.001770 | | 3. | Ó | Baseline | RB | • | 1 | 1 | -748 | | 0.001104 | | 10 | 1 | Blank | BLNK | | 1 | 1 | -1817 | | 0.000959 | | 7: | 4 | CCV 0.5 ppm | CCV | | Ĺ | 1 | 3747205 | | 0.507696 | | 12 | 1. | Blank | BLNK | | 1. | 1 | -2994 | | 0.000800 | | 3 | O. | Read Baseline | RB | | 1. | 1 | 1278 | | 0.001378 | | 74 | 3.8 | 120406030-BL R | U. | | 1 | 1 | -3049 | | 0.000793 | | 75 | 39 | 120406030-001 | U | | 1 | 1 | 5701 | | 0.001976 | | 76 | 40 | 120406030-001MS | U | | l. | 1 | 3575297 | | 0.484460 | | 17 | 41 | 120406030-001MSI | ט כ | | 1 | 1 | 3597148 | 5 | 0.487413 | | 7.8 | 42 | 120406030-LCS | Ų | ; | 1 | 1 | 3866508 | | 0.523821 | | 7.9 | 43 | +120406011-001 SI | | | 1 | 1 | 592 | ļ. | 0.002006 | | 3.0 | 44 | 120406011-001MS | _ | | 1 | 1. | 3678616 | | 0.498425 | | 11 | 45 | # 120406011-001MSI | Ü | | 1 | 1 | 3678327 | 1 | 0.498386 | | 3.2 | 46 | 120410034-007 | Ü | ; | ĺ | 1 | 5933 | | 0.002007 | | 13 | 47 | 120410034-008 | Ų. | : | 1 | 1 | 4419 | | 0.001802 | | 3 | 0 | Baseline | RB | | 1. | 1 | 215 | | 0.001234 | | 3.5 | 1 | Blank | BLNK | | Ì. | 1 | -427 | | 0.001147 | | 3.6 | 4 | CCV 0.5 ppm | CCV | • | 1 | 1 | 3741463 | | 0.506919 | | 3.7 | 1 | Blank | BLNK | | 1 | 1 | -1737 | | 0.000970 | | 3. | Q | Read Baseline | RB | | 1. | 1 | 1272 | | 0.001377 | | 19 | 48 | 120406004-BL F | U | | l | 1 | -2388 | | 0.000882 | | 10 | 49 | 120406004-001 | Ü | ; | 1 | 1 | -1760 | | 0.000967 | | 3,1 | 5.0 | 120406004-001MS | Ŭ | : | L | 1 | 3604604 | | 0.488421 | | 32 | 51 | 120406004-001MSL | U | | 1. | 1 | 3904438 | 3 | 0.528948 | | 13 | 52 | 120406004-LCS | U | ; | l | 1 | 3686414 | | 0.499479 | | 14 | 53 | •120405037-001 | U, | | L | 1 | -2654 | | 0.000846 | | ₹ 5 | 54 | • 120416009-001 | U | | L | 1 | -2148 | | 0.000915 | | 36 | 55 | <pre>120416014-001</pre> | U | | L | 1 | -6720 | | 0.000297 | | 37 | 56 | | ប | | L | 1 | ~ 7*727 | | 0.000160 | | 9.8 | 57 | | U | 7 | l
l | 1 | -3664 | | 0.000710 | | 3 | Ю. | Baseline | RB | | | 1 | 1221 | | 0.001370 | | 16 | 1 | Blank | BLNK | | 1 | 1 | 764 | | 0.001308 | | L | 4 | CCV 0.5 ppm | CCV | | ľ | 1 | 3692458 | | 0.500296 | | 102 | 1 | Blank | BLNK | | 1 | 1 | -473 | | 0.001141 | | 3 | O | Read Baseline | RB | .: | 1 | 1 | 1515 | | 0.001410 | | °eak | Cup | Flags | |-----------------------|---------------------------------|-------| | | | | | L | 2 | | | 2 | O . | | | 3 | ·O | | | 3
5
5
7
3 | 0
2
2
2
3
3
3 | BL | | 5 | 2 | | | 5 | 2 | | | 7 | 2 | | | 3 | 0 | BL | | 3 | 3 | | | LO | 3 | | | 11 | 3. | | | 3 | | BL | | 1.3 | 4 | | | L 4 | 4 | | | L 5 | 4 | | | 3 | 0
5
5
0 | BL | | Ļ7 | 5 | | | LB | :5 | | | L9 | 5 | OL | | 3. | 0 | BL | | 21 | 6 | | | 21
22
2; | 6 | OL | | 3. | 6 | | | 3 | , O . | BL | | 25 | 1 | | | 2.6 | 7
1 | | | 27 | 1 | | | 3 | 0 | BL | | 29 | 8 | | | | | | cyanice: Calibration, reak b-105 File name: T:\DATA1\FLOW4\2012\EPA335.4\041712CN.RST Date: Unknown Operator: CRW | * | me | | Conc | Area | |-----|----------|-------------|----------|----------------| | _ | | | | | | * | Cal 1.00 | mqq | 1.000000 | 7341324.500000 | | * | Cal 1.00 | ppm | 1.000000 | 7423772.000000 | | * | Cal 1.00 | ppm | 1.000000 | 7353090.000000 | | * | Cal 0.80 | ppm | 0.800000 | 5925124.500000 | | * | Cal 0.80 | ppm | 0.800000 | 5922325.500000 | | * | Cal 0.80 | mag | 0.800000 | 5958631.000000 | | * | Cal 0.50 | ppm | 0.500000 | 3660840.750000 | | * | Cal 0.50 | ppm | 0.500000 | 3657522.500000 | | .* | Cal 0.50 | ppm | 0.500000 | 3609599.750000 | | * | Cal 0.05 | ppm | 0.050000 | 328263.187500 | | * | Cal 0.05 | ppm | 0.050000 | 326642.125000 | | ;₩. | Cal 0.05 | p pm | 0.050000 | 308151.312500 | | िक | Cal 0.01 | ppm | 0.010000 | 64563.222656 | | * | Cal 0.01 | ppm | 0.010000 | 67778.046875 | | * | Cal 0.01 | ppm | 0.010000 | 65516.265625 | | | | | | | Calib Coef: y=bx+a a: (intercept) -8.9144e+03 b: 7.3984e+06 Corr Coef: 0.999935 Carryover: 0.282% No Drift Peaks # Flashpoint Analysis Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5) | Sample ID | Analyses
Date | Sample
Matrix | Analyst
Initials | Temp - °C | Temp - °F | |----------------|------------------|------------------|---------------------|-----------|---------------------------------------| | 1114 20-111 01 | | | | | (2) (2) | | 111279016-01 | | SOIL : | वर | | 81° F | | 11/222023-ay | · | ULL | 21 | | NO | | 1/1228030.401 | | 4 | 1/40 | | ND | | 120105.38.0.1 | 1/9/12 | 415 | 149 | | >200 | | 1 -0:2 | | 5 | | | Resortano | | 0 -002 | | 5 | 1 | | 2.205 | | 12011909-001 | 2-2-242 | 4 | m/H | | 7946 | | 13012 6011 B | 1.7.12 | i, | E | | 770 | | E | | Ÿ | | | 12-1 | | d 3 | | ly. | E, | | 12: | | 1202100360 | 12/18/12 | 5 buter | Jun- | | 137°F | | 120773045-001 | 3/6/12 | Waterly | hM. | | >200°F | | -002 | | | 10-4 | | >200°F | | 1202 7016 7001 | 3/1/12 | | Res | | 15°F | | 120228006-001 | 3/7/12 | Liquid/5 | 1282 | | 1515 | | 1203 02023-00/ | 3/1/12 | whta14 | حيث | | 14472 | | 120308077-001 | 3/14/12 | Liguill5 | un | | >10005 | | 120308059001 | l° . | Livid 5 | | | 7.00°F | | -054 | | 1,40/5 | | | 1375 | | 1 0313024-09 | | Library 44 | /3 L | | 72007 | | 1292150.59-201 | 3/27/12 | 4/420 | M | | >2008 | | -0.2 | | | | | 7200°F | | -003 | _, 4 | | 4- | | 7200°F | | [20406030-00] | 4/9/12 | 4/H20 | M | | 72000F | | 120418036-001 | | 5/Lignid | ,,, | | | | 120418036-002 | | 5/Lignid | | | · · · · · · · · · · · · · · · · · · · | | | | D D | | 7 | | | | | | ** | | | | | | | | | | | | | <u> </u> | | | | ^{*} SAFETY GLASSES REQUIRED. | | | | | | 1 | | _ | | <u>~</u> | - | | r , | , , | | 74.7 | _ | - | _ | i | 1 | | |-------------------------|--|----------------------|-----------------------|--|------------------------|------------------------|---------------|-----------|--------------|--------------|--------------|---------------------|----------------|---------------|---------------|---------------|----------------|---------------|---|---|----------------------| | | | | | | | . % | | | | | | | | | | | | | | | | | | . 10
20
115% | g/L) | | | | Hydroxdde | | | | | | | | | | | | | | | | | nts: | nk every
Every 2
rery 85- | ked (m | ٥ | | y (mg/L | Bl-
carbonate | | | | | | | | | | | | | | | | | uireme | LFB/Blank every 10
MS/MSD Every 20
% Recovery 85-115% | Amount Spiked (mg/L) | 100 | 88 | Alkalinity (mg/L) | Carbonate | | | | | | | | | | | | | | | | | Method QC Requirements: | | Amc | | sn 0078 | | Total | | | | | | | | | | | | | | | | | Method | 1 0.1 pH u
102% | res | 2012 | del 620A, | (mL) | 4.2 | - | | | / | | | | | | / | | 1 | | | | | | pH 7 within 0.1 pH units
Slope 95-102% | Expires | 11/18/2012 | Orion Mo | Titrant vol to pH (mL) | 4.5 | | | | | |
 | | X | | | | | | | | | | ij | _ | pH Meter | Titrant | 8.3 | | | | | | -> | | / | | | | | | | | | Expires | Jan 2013
Jan 2013
Aug 2012
Oct-12 | Conc. | Z | Contriburette: CAT 10uL, sn 600055 - pH Meter: Orion Model 620A, sn 007858 | | Sample
Vol.
(mL) | がか | 53: h 25. | | | -\ | | | 75m7 | | | | Ty in Sal | | | Analyst | | Solution # | M826-05
M826-04
M827-01
A040-03 | Solution # | M637-04 | T 10uL, sr | | pH 7
Buffer | 2,08 | | | | 7 | | | 1,0,2 | | | | 1 | | | | | Solui | M82
M82
M82
A04 | Solu | M63 | rette: CA | | Slope | 9110 | | | | - | | 1 | 42.00 | | | 1 | } | | | | | | (ed)
silow)
Slue)
Ttrant | | Aution | Contrib | | pH 10
Cal | 10,00 | | | | 1 | | | 00391 | | | | 1 | | | | | Reagent | pH Buffer 4 (Red) pH Buffer 7 (Yellow) pH Buffer 10 (Blue) 0.02N H2SO4 Titrant | Standard | Matrix Spike Solution | | | pH 4
Cal | 4,00 | | | | 7 | | | 4,00 | | | | | | | 11/15 | | | pH
pH B
pH E
pH E
0.02h | | Matrb | | | Hd | 12º01 | 0,70 | <u> </u> | 8,37 | 8,54 | | | 812 | 85% | 66'6 | | 999 | | | /h- | | | | | | | | Temp
(°C) | 0,8) | 9721 | 871 | | 6,5 | 1 | | 8'61 | 20,7 | 7002 | | 307 | | | 7 | | | | | | | | Sample | 100-120905021 | -005
H | 100-07070800 | 700- | 100-04a80x08 | Daya5058-001 | 12040/030-001- | 100-860564071 | 100-060304021 | lac-hegalhazl | 1204116 19-051 | 150-510601011 | | | Analysis Date: 3/14/ | C:\Documents and Settings\krisg\Deaktop\p1+Alk Bench Sheet with Calcs-protection.xls. Printed 3/14/2012 # Sulfide by SM 4500-S' F | | Concentration | Date Made/Expires | |---------------------|---------------|-------------------| | Iodine | 0.025 N | | | HCI | 6N | | | Starch
Indicator | 1% by weight | 12/31/2009 | | Zinc Acetate | 99.9% | | # Quality Control Information - 1. 1 blank per batch, must be < 20 ug/L. - 2. 1 LFB per batch must be +/- 30%. - 3. 1ml iodine reacts with 0.4 mg Sulfide | | | | | | | | T | | بيب | | |--|--|---|----------|-----------|--------------------------|---------------------------------|---|---|---|--| | | | | -1M5 | 1-62.0907 | -82 | .623 | -116 | - IMS | 1-1204-2502 | Sample | | | | | | 49.1 | P | | 1000 | ۴ | 779.1 | Sample
Volume | | | | * | 200 | 205 | 20 | 450 | ash | 454 | 53 | lodine amount
(50 uL
increments) | | | | | | | | 180 0.180 | 180 0.180 | 180 0.190 | 70 - 0.02 | Concentration
(ug/sample) | | | | | 7.33 | 4.07 | 0.02 | 0.180 | | | 0-0387 | Concentration (mg/L) | | | | | ۲ | | | | | - | 4.9.12 | Date | | | | | ٢ | | | | | , | 7 | Initials | | | | | | 360 0.360 | MS + 700 200 0.360 0.360 | MS +1 500 200 0.360 0.360 0.360 | 1 43.1 450 (8) 0.18) 1 43.1 500 000 0.360 1 700 360 0.360 | 120 120 450 180 0.360 0.360 120 120 0.360 | 100 050 050 050 050 050 050 050 050 050 | 25.7. 04.0 096 027 T 534
05.0 0 090 027 T 128
05.0 0 090 027
05.0 0 090 027
05.0 0 090 0 090
05.0 0 090 0 090
05.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Comments 120409 1125R Page 14 of 14 # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions LowLimit Client ID: PBW Batch ID: R1922 Result Result RunNo: 1922 Analysis Date: 4/4/2012 **PQL** SeqNo: 53441 Units: mg/L Prep Date: SPK value SPK Ref Val %REC LowLimit 0 0 HighLimit %RPD **RPDLimit** Qual Analyte Chloride Sulfate ND 0.50 ND 0.50 Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R1922 RunNo: 1922 Analyte Chloride Analysis Date: 4/4/2012 PQL SeqNo: 53442 %REC Units: mg/L **RPDLimit** %RPD HighLimit Qual Sulfate Prep Date: 4.8 0.50 5.000 9.8 0.50 10.00 SPK value SPK Ref Val 95.5 97.6 90 110 90 110 Qualifiers: R */X Value exceeds Maximum Contaminant Level. Е Value above quantitation range Analyte detected below quantitation limits RPD outside accepted recovery limits Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Reporting Detection Limit Page 9 of 20 # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 | Sample ID 5ml rb | SampT | ype: ME | BLK | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | | |--------------------------------|------------|-----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | n ID: R1 | 980 | F | RunNo: 1 | 980 | | | | | | Prep Date: | Analysis D |)ate: 4/ | 6/2012 | S | SeqNo: 5 | 5138 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | | | | | | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | | 1,2-Dibromoethane (EDB) |
ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | | | | | Acetone | ND | 10 | | | | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | | ND | | | | | | | | | | | Chloroform | | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting LimitRL Reporting Detection Limit - Page 10 of 20 # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 | Sample ID 5ml rb | SampTy | /pe: ME | BLK | Tes | Code: E | PA Method | 8260B: VOL | ATILES | | | |-----------------------------|-------------|----------------|-----------|-------------|----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | ID: R1 | 980 | F | lunNo: 1 | 980 | | | | | | Prep Date: | Analysis Da | ate: 4/ | 6/2012 | S | SeqNo: 5 | 5138 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | 2-Hexanone | ND | 10 | | | | | | | | | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 10 | | | | | | | | | | Methylene Chloride | ND | 3.0 | | | | | | | | | | n-Butylbenzene | ND | 1.0 | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | | sec-Butylbenzene | ND | 1.0 | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | | | | | | | | | | Tetrachioroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | | Trichloroethene (TCE) | ND | 1.0 | | | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 10 | | 10.00 | | 104 | 70 | 130 | | | | | Surr: 4-Bromofluoroberizene | 11 | | 10.00 | | 115 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 11 | | 10.00 | | 107 | 69.8 | 130 | | | | | Surr: Toluene-d8 | 8.7 | | 10.00 | | 87.1 | 70 | 130 | | | | | Sample ID 100ng Ics | SampT | SampType: LCS TestCode: EPA Method 8260B: VOLATILES | | | | | | | | | | |-----------------------------|------------|---|-----------|-------------|----------|----------|-------------|------|----------|------|--| | Client ID: LCSW | Batch | n ID: R1 | 980 | F | RunNo: 1 | 980 | | | | | | | Prep Date: | Analysis D |)ate: 4/ | 6/2012 | 5 | SeqNo: 5 | 5139 | Units: µg/L | | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | | Benzene | 19 | 1.0 | 20.00 | 0 | 97.3 | 84.1 | 126 | | | | | | Toluene | 19 | 1.0 | 20.00 | 0 | 97.2 | 80 | 120 | | | | | | Chlorobenzene | 21 | 1.0 | 20.00 | 0 | 104 | 70 | 130 | | | | | | 1,1-Dichloroethene | 20 | 1.0 | 20.00 | 0 | 97.9 | 83 | 130 | | | | | | Trichloroethene (TCE) | 18 | 1.0 | 20.00 | 0 | 90.2 | 76.2 | 119 | | | | | | Surr: 1,2-Dichloroethane-d4 | 9.3 | | 10.00 | | 92.6 | 70 | 130 | | | | | | Surr: 4-Bromofluorobenzene | 13 | | 10.00 | | 127 | 70 | 130 | | | | | #### Qualifiers: - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit Page 11 of 20 ^{*/}X Value exceeds Maximum Contaminant Level. # Hall Environmental Analysis Laboratory, Inc. WO#: **RPDLimit** 1204158 26-Apr-12 Qual Client: Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 Sample ID 100ng lcs SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R1980 RunNo: 1980 Prep Date: Analysis Date: 4/6/2012 SeqNo: 55139 Units: µg/L %RPD | Analyte | Result | PQL | SPK value SPK Ref Val | %REC | LowLimit | HighLimit | |----------------------------|--------|-----|-----------------------|------|----------|-----------| | Surr: Dibromofluoromethane | 10 | | 10.00 | 103 | 69.8 | 130 | | Surr: Toluene-d8 | 9.4 | | 10.00 | 93.5 | 70 | 130 | - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting LimitRL Reporting Detection Limit - Page 12 of 20 ^{*/}X Value exceeds Maximum Contaminant Level. # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 | Sample ID mb-1425 | SampT | ype: ME | BLK | Tes | tCode: El | PA Method | 8270C: Semi | volatiles | | | |-----------------------------|------------|---------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------| | Client ID: PBW | Batch | ID: 14 | 25 | F | RunNo: 1 | 991 | | | | | | Prep Date: 4/9/2012 | Analysis D | ate: 4/ | 9/2012 | 5 | SeqNo: 5 | 5578 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | ND | 10 | | | | | | | | | | Acenaphthylene | ND | 10 | | | | | | | | | | Aniline | ND | 10 | | | | | | | | | | Anthracene | ND | 10 | | | | | | | | | | Azobenzene | ND | 10 | | | | | | | | | | Benz(a)anthracene | ND | 10 | | | | | | | | | | Benzo(a)pyrene | ND | 10 | | | | | | | | | | Benzo(b)fluoranthene | ND | 10 | | | | | | | | | | Benzo(g,h,i)perylene | ND | 10 | | | | | | | | | | Benzo(k)fluoranthene | ND | 10 | | | | | | | | | | Benzoic acid | ND | 20 | | | | | | | | | | Benzyl alcohol | ND | 10 | | | | | | | | | | Bis(2-chloroethoxy)methane | ND | 10 | | | | | | | | | | Bis(2-chloroethyl)ether | ND | 10 | | | | | | | | | | Bis(2-chloroisopropyl)ether | ND | 10 | | | | | | | | | | Bis(2-ethylhexyl)phthalate | ND | 10 | | | | | | | | | | 4-Bromophenyl phenyl ether | ND | 10 | | | | | | | | | | Butyl benzyl phthalate | ND | 10 | | | | | | | | | | Carbazole | ND | 10 | | | | | | | | | | 4-Chloro-3-methylphenol | ND | 10 | | | | | | | | | | 4-Chloroaniline | ND | 10 | | | | | | | | | | 2-Chloronaphthalene | ND | 10 | | | | | | | | | | 2-Chlorophenol | ND | 10 | | | | | | | | | | 4-Chlorophenyl phenyl ether | ND | 10 | | | | | | | | | | Chrysene | ND | 10 | | | | | | | | | | Di-n-butyl phthalate | ND | 10 | | | | | | | | | | Di-n-octyl phthalate | ND | 10 | | | | | | | | | | Dibenz(a,h)anthracene | ND | 10 | | | | | | | | | | Dibenzofuran | ND | 10 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 10 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 10 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 10 | | | | | | | | | | 3,3'-Dichlorobenzidine | ND | 10 | | | | | | | | | | Diethyl phthalate | ND | 10 | | | | | | | | | | Dimethyl phthalate | ND | 10 | | | | | | | | | | 2,4-Dichlorophenol | ND | 20 | | | | | | | | | | 2,4-Dimethylphenol | ND | 10 | | | | | | | | | | 4,6-Dinitro-2-methylphenol | ND | 20 | | | | | | | | | | 2,4-Dinitrophenol | ND | 20 | | | | | | | | | | 2,4-Dinitrotoluene | ND | 10 | | | | | | | | | | 2,6-Dinitrotoluene | ND | 10 | | | | | | | | | | 2,0-Difficiolaerie | טאו | 10 | | | | | | | | | #### Qualifiers: E Value above quantitation range R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Page 13 of 20 RL Reporting Detection Limit ^{*/}X Value exceeds Maximum Contaminant Level. J Analyte detected below quantitation limits # Hall Environmental Analysis Laboratory, Inc. WO#: **1204158** 26-Apr-12 Client: Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 | Sample ID mb-1425 | SampT | ype: MBLK | Tes | tCode: EPA Method
 8270C: Semivolatile | es | | |----------------------------|------------|------------------|---------------|---------------------|---------------------|------------|------| | Client ID: PBW | Batch | ID: 1425 | F | RunNo: 1991 | | | | | Prep Date: 4/9/2012 | Analysis D | ate: 4/9/2012 | 5 | SeqNo: 55578 | Units: µg/L | | | | Analyte | Result | PQL SPK value | e SPK Ref Val | %REC LowLimit | HighLimit %RP | D RPDLimit | Qual | | Fluoranthene | ND | 10 | | | | | | | Fluorene | ND | 10 | | | | | | | Hexachlorobenzene | ND | 10 | | | | | | | Hexachlorobutadiene | ND | 10 | | | | | | | Hexachlorocyclopentadiene | ND | 10 | | | | | | | Hexachloroethane | ND | 10 | | | | | | | Indeno(1,2,3-cd)pyrene | ND | 10 | | | | | | | Isophorone | ND | 10 | | | | | | | 1-Methylnaphthalene | ND | 10 | | | | | | | 2-Methylnaphthalene | ND | 10 | | | | | | | 2-Methylphenol | ND | 10 | | | | | | | 3+4-Methylphenol | ND | 10 | | | | | | | N-Nitrosodi-n-propylamine | ND | 10 | | | | | | | N-Nitrosodimethylamine | ND | 10 | | | | | | | N-Nitrosodiphenylamine | ND | 10 | | | | | | | Naphthalene | ND | 10 | | | | | | | 2-Nitroaniline | ND | 10 | | | | | | | 3-Nitroaniline | ND | 10 | | | | | | | 4-Nitroaniline | ND | 20 | | | | | | | Nitrobenzene | ND | 10 | | | | | | | 2-Nitrophenol | ND | 10 | | | | | | | 4-Nitrophenol | ND | 10 | | | | | | | Pentachlorophenol | ND | 20 | | | | | | | Phenanthrene | ND | 10 | | | | | | | Phenol | ND | 10 | | | | | | | Pyrene | ND | 10 | | | | | | | Pyridine | ND | 10 | | | | | | | 1,2,4-Trichlorobenzene | ND | 10 | | | | | | | 2,4,5-Trichlorophenol | ND | 10 | | | | | | | 2,4,6-Trichlorophenol | ND | 10 | | | | | | | Surr: 2,4,6-Tribromophenol | 180 | 200. | 0 | 92.2 18.1 | 138 | | | | Surr: 2-Fluorobiphenyl | 92 | 100. | 0 | 91.7 25.9 | | | | | Surr: 2-Fluorophenol | 140 | 200. | 0 | 69.0 12.5 | 93.2 | | | | Surr: 4-Terphenyl-d14 | 89 | 100. | 0 | 88.8 29.5 | | | | | Surr: Nitrobenzene-d5 | 95 | 100. | 0 | 95.0 20.5 | | | | | Surr: Phenol-d5 | 110 | 200. | 0 | 55.1 11.5 | 73.2 | | | #### Qualifiers: R RPD outside accepted recovery limits RL Reporting Detection Limit ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Surr: Phenol-d5 Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 110 200.0 Sample ID Ics-1425 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSW Batch ID: 1425 RunNo: 1991 Prep Date: 4/9/2012 Analysis Date: 4/9/2012 SeqNo: 55579 Units: µg/L PQL Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 79 100.0 Acenaphthene 10 0 79.0 37.7 119 4-Chloro-3-methylphenol 170 10 200.0 0 85.8 48.8 104 2-Chlorophenol 170 10 200.0 0 86.6 109 38.2 1,4-Dichlorobenzene 71 10 100.0 0 71.3 33.7 99.1 90 2,4-Dinitrotoluene 10 100.0 0 90.2 39.9 125 N-Nitrosodi-n-propylamine 83 10 100.0 0 83.0 43.8 95.1 4-Nitrophenol 94 10 200.0 0 47.0 21.7 68.6 140 20 200.0 Pentachlorophenol 0 72.0 26.7 107 Phenol 110 10 200.0 0 54.6 23.9 65.8 Pyrene 82 10 100.0 0 81.9 45.7 107 1,2,4-Trichlorobenzene 77 10 100.0 0 77.3 30.8 104 Surr: 2,4,6-Tribromophenol 190 200.0 95.9 18.1 138 Surr: 2-Fluorobiphenyl 85 100.0 85.3 25.9 101 Surr: 2-Fluorophenol 140 200.0 69.8 12.5 93.2 Surr: 4-Terphenyl-d14 86 85.7 100.0 29.5 112 Surr: Nitrobenzene-d5 87 100.0 86.9 20.5 120 55.9 11.5 73.2 | Sample ID Icsd-1425 | SampT | ype: LC | SD | Tes | tCode: E | PA Method | 8270C: Semi | volatiles | | | |----------------------------|------------|---------------|-----------|-------------|----------|-----------|-------------|-----------|----------|------| | Client ID: LCSS02 | Batch | ID: 14 | 25 | F | RunNo: 1 | | | | | | | Prep Date: 4/9/2012 | Analysis D | ate: 4/ | 9/2012 | 8 | SeqNo: 5 | 5580 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | 75 | 10 | 100.0 | 0 | 75.3 | 37.7 | 119 | 4.77 | 20 | | | 4-Chloro-3-methylphenol | 180 | 10 | 200.0 | 0 | 88.5 | 48.8 | 104 | 3.06 | 20 | | | 2-Chlorophenol | 160 | 10 | 200.0 | 0 | 82.2 | 38.2 | 109 | 5.23 | 20 | | | 1,4-Dichlorobenzene | 71 | 10 | 100.0 | 0 | 71.3 | 33.7 | 99.1 | 0.0561 | 20 | | | 2,4-Dinitrotoluene | 91 | 10 | 100.0 | 0 | 91.0 | 39.9 | 125 | 0.795 | 20 | | | N-Nitrosodi-n-propylamine | 82 | 10 | 100.0 | 0 | 82.3 | 43.8 | 95.1 | 0.871 | 20 | | | 4-Nitrophenol | 85 | 10 | 200.0 | 0 | 42.4 | 21.7 | 68.6 | 10.1 | 20 | | | Pentachlorophenol | 150 | 20 | 200.0 | 0 | 73.2 | 26.7 | 107 | 1.57 | 20 | | | Phenol | 110 | 10 | 200.0 | 0 | 52.5 | 23.9 | 65.8 | 3.96 | 20 | | | Pyrene | 82 | 10 | 100.0 | 0 | 82.1 | 45.7 | 107 | 0.317 | 20 | | | 1,2,4-Trichlorobenzene | 81 | 10 | 100.0 | 0 | 80.9 | 30.8 | 104 | 4.57 | 20 | | | Surr: 2,4,6-Tribromophenol | 200 | | 200.0 | | 97.8 | 18.1 | 138 | 0 | 0 | | | Surr: 2-Fluorobiphenyl | 80 | | 100.0 | | 80.2 | 25.9 | 101 | 0 | 0 | | | Surr: 2-Fluorophenol | 130 | | 200.0 | | 66.1 | 12.5 | 93.2 | 0 | 0 | | | Surr: 4-Terphenyl-d14 | 84 | | 100.0 | | 84.2 | 29.5 | 112 | 0 | 0 | | | Surr: Nitrobenzene-d5 | 86 | | 100.0 | | 85.9 | 20.5 | 120 | 0 | 0 | | | Surr: Phenol-d5 | 110 | | 200.0 | | 52.6 | 11.5 | 73.2 | 0 | 0 | | ^{*/}X Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit RL Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 **Client:** Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 Sample ID MB-1543 SampType: MBLK TestCode: EPA Method 7470: Mercury Client ID: PBW Batch ID: 1543 RunNo: 2165 Prep Date: 4/16/2012 Analysis Date: 4/17/2012 SeqNo: 60357 Units: mg/L HighLimit **RPDLimit** Qual Analyte Mercury Result **PQL** ND 0.00020 Sample ID LCS-1543 SampType: LCS TestCode: EPA Method 7470: Mercury Client ID: LCSW Batch ID: 1543 RunNo: 2165 Prep Date: SPK value SPK Ref Val %REC LowLimit Units: mg/L 4/16/2012 Analysis Date: 4/17/2012 SeqNo: 60358 Analyte **RPDLimit** Mercury PQL Result 0.0053 0.00020 SPK value SPK Ref Val 0.005000 %REC LowLimit 105 HighLimit Qual Sample ID LCSD-1543 SampType: LCSD TestCode: EPA Method 7470: Mercury 120 Client ID: LCSS02 Batch ID: 1543 RunNo: 2165 Units: mg/L Prep Date: 4/16/2012 Analysis Date: 4/17/2012 SeqNo: 60359 **RPDLimit** Qual Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.0053 0.00020 0.005000 120 Mercury 107 80 80 1.13 %RPD %RPD 20 Qualifiers: Value exceeds Maximum Contaminant Level. */X Value above quantitation range Analyte detected below quantitation limits Ī RPD outside accepted recovery limits Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded Η ND Not Detected at the Reporting Limit Page 16 of 20 Reporting Detection Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 | Sample ID MB-1477 Client ID: PBW | • | Type: ME | | Tes
F | als | | | | | | |----------------------------------|------------|-----------------|-----------|---------------------|------|----------|-------------|------|----------|------| | Prep Date: 4/11/2012 | Analysis I | Date: 4/ | 12/2012 | SeqNo: 58542 | | 8542 | Units: mg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Arsenic | ND | 0.020 | | | | | | | | | | Barium | ND | 0.020 | | | | | | | | | | Cadmium | ND | 0.0020 | | | | | | | | | | Calcium | ND | 1.0 | | | | | | | | | | Chromium | ND | 0.0060 | | | | | | | | | | Lead | ND | 0.0050 | | | | | | | | | | Magnesium | ND | 1.0 | | | | | | | | | | Potassium | ND | 1.0 | | | | | | | | | | Selenium | ND | 0.050 | | | | | | | | | | Silver | ND | 0.0050 | | | | | | | | | | Sample ID LCS-1477 | Samp | Type: LC | s | Tes | tCode: E | PA 6010B: | B: Total Recoverable Metals | | | | | | | | |----------------------|----------|-----------------|-----------|-------------|-------------|-----------|-----------------------------|------|----------|------|--|--|--|--| | Client ID: LCSW | Bato | h ID: 14 | 77 | F | RunNo: 2113 | | | | | | | | | | | Prep Date: 4/11/2012 | Analysis | Date: 4/ | 12/2012 | S | SeqNo: 5 | 8544 | Units: mg/L | | | | | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | | | | | Arsenic | 0.51 | 0.020 | 0.5000 | 0 | 101 | 80 | 120 | | | | | | | | | Barium | 0.49 | 0.020 | 0.5000 | 0 | 98.1 | 80 | 120 | | | | | | | | | Cadmium | 0.50 | 0.0020 | 0.5000 | 0 | 100 | 80 | 120 | | | | | | | | | Calcium | 51 | 1.0 | 50.00 | 0 | 101 | 80 | 120 | | | | | | | | | Chromium | 0.49 | 0.0060 | 0.5000 | 0.0008200 | 98.2 | 80 | 120 | | | | | | | | | Lead | 0.50 | 0.0050 | 0.5000 | 0 | 99.2 | 80 | 120 | | | | | | | | | Magnesium | 52 | 1.0 | 50.00 | 0 | 103 | 80 | 120 | | | | | | | | | Potassium | 50 | 1.0 | 50.00 | 0 | 100 | 80 | 120 | | | | | | | | | Selenium | 0.51 | 0.050 | 0.5000 | 0 | 103 | 80 | 120 | | | | | | | | | Silver | 0.10 | 0.0050 | 0.1000 | 0 | 102 | 80 | 120 | | | | | | | | | Sample ID LCS-1477 | Samp | Type: LC | SD | TestCode: EPA 6010B: Total Recoverable Metals | | | | | | | | |----------------------|----------|-----------------|-----------|---|-------------|----------|-------------|---------|----------|------|--| | Client ID: LCSS02 | Bato | ch ID: 14 | 77 | F | RunNo: 2113 | | | | | | | | Prep Date: 4/11/2012 | Analysis | Date: 4/ | 12/2012 | \$ | SeqNo: 5 | 8546 |
Units: mg/l | L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | | Arsenic | 0.51 | 0.020 | 0.5000 | 0 | 101 | 80 | 120 | 0.274 | 20 | | | | Barium | 0.49 | 0.020 | 0.5000 | 0 | 98.4 | 80 | 120 | 0.301 | 20 | | | | Cadmium | 0.50 | 0.0020 | 0.5000 | 0 | 99.7 | 80 | 120 | 0.395 | 20 | | | | Calcium | 52 | 1.0 | 50.00 | 0 | 103 | 80 | 120 | 1.73 | 20 | | | | Chromium | 0.49 | 0.0060 | 0.5000 | 0.0008200 | 98.2 | 80 | 120 | 0.00610 | 20 | | | | Lead | 0.50 | 0.0050 | 0.5000 | 0 | 99.4 | 80 | 120 | 0.226 | 20 | | | | Magnesium | 52 | 1.0 | 50.00 | 0 | 104 | 80 | 120 | 0.931 | 20 | | | | Potassium | 50 | 1.0 | 50.00 | 0 | 101 | 80 | 120 | 0.683 | 20 | | | | Selenium | 0.53 | 0.050 | 0.5000 | 0 | 106 | 80 | 120 | 3.31 | 20 | | | | Silver | 0.10 | 0.0050 | 0.1000 | 0 | 102 | 80 | 120 | 0.343 | 20 | | | #### Qualifiers: - */X Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit Page 17 of 20 # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 **Client:** Western Refining Southwest, Inc. Project: Injection Well 2nd Qtr 4-3-12 Sample ID MB-1477 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: **PBW** Batch ID: 1477 RunNo: 2176 %REC LowLimit Prep Date: 4/11/2012 Analysis Date: 4/17/2012 SeqNo: 60600 Units: mg/L HighLimit Qual Analyte Sodium **PQL** Result ND 1.0 TestCode: EPA 6010B: Total Recoverable Metals SPK value SPK Ref Val %RPD Client ID: LCSW Sample ID LCS-1477 SampType: LCS Batch ID: 1477 RunNo: 2176 120 **RPDLimit** Prep Date: 4/11/2012 Result Result SeqNo: 60601 Units: mg/L Analyte Sodium Analysis Date: 4/17/2012 SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Qual Sample ID LCS-1477 SampType: LCSD TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSS02 Prep Date: 4/11/2012 Batch ID: 1477 Analysis Date: 4/17/2012 **PQL** 1.0 RunNo: 2176 SeqNo: 60602 102 Units: mg/L **RPDLimit** Analyte 50.00 50.00 SPK value SPK Ref Val %REC LowLimit 97.7 HighLimit %RPD 4.68 20 Sodium - Analyte detected below quantitation limits - Value above quantitation range - R RPD outside accepted recovery limits - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit Reporting Detection Limit RL - Page 18 of 20 Value exceeds Maximum Contaminant Level. # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 Result Sample ID mb-1 SampType: MBLK TestCode: SM2320B: Alkalinity %REC LowLimit Client ID: PBW Batch ID: R1996 RunNo: 1996 Prep Date: Analysis Date: 4/6/2012 SeqNo: 55665 Units: mg/L CaCO3 Analyte POL Qual **RPDLimit** Total Alkalinity (as CaCO3) ND TestCode: SM2320B: Alkalinity Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R1996 RunNo: 1996 HighLimit Prep Date: Analysis Date: 4/6/2012 Units: mg/L CaCO3 Analyte SeqNo: 55666 Total Alkalinity (as CaCO3) 20 98.6 **RPDLimit** Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit 88.1 %RPD %RPD Qual 79 Result Result 80 ND TestCode: SM2320B: Alkalinity 104 Sample ID mb-1 Client ID: PBW SampType: MBLK RunNo: 1996 Prep Date: Batch ID: R1996 Units: mg/L CaCO3 Analyte Analysis Date: 4/10/2012 SeqNo: 56416 **RPDLimit** Qual Total Alkalinity (as CaCO3) **PQL** 20 80.00 SPK value SPK Ref Val TestCode: SM2320B: Alkalinity Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R1996 **PQL** 20 RunNo: 1996 HighLimit Prep Date: Analysis Date: 4/10/2012 SeaNo: 56417 Units: mg/L CaCO3 Analyte SPK value SPK Ref Val %REC LowLimit %RPD %RPD **RPDLimit** Qual Total Alkalinity (as CaCO3) SPK value SPK Ref Val 80.00 6.880 %REC LowLimit 90.9 88.1 HighLimit 104 Qualifiers: */X Value exceeds Maximum Contaminant Level. Е Value above quantitation range Analyte detected below quantitation limits R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Reporting Detection Limit RL Page 19 of 20 # Hall Environmental Analysis Laboratory, Inc. WO#: 1204158 26-Apr-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 2nd Qtr 4-3-12 Sample ID MB-1382 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: PBW Batch ID: 1382 Result RunNo: 1941 Prep Date: 4/4/2012 Units: mg/L Analyte Analysis Date: 4/5/2012 **PQL** SeqNo: 54076 Qual Total Dissolved Solids ND 20.0 %REC LowLimit %RPD HighLimit **RPDLimit** SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids Client ID: LCSW Sample ID LCS-1382 Batch ID: 1382 RunNo: 1941 Prep Date: 4/4/2012 Analysis Date: 4/5/2012 SeqNo: 54077 Units: mg/L %RPD Qual Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Total Dissolved Solids Result SPK value SPK Ref Val 0 101 1,010 20.0 1,000 120 Qualifiers: Value exceeds Maximum Contaminant Level. */X Е Value above quantitation range Analyte detected below quantitation limits В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit ND Page 20 of 20 R RPD outside accepted recovery limits Reporting Detection Limit RL Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.con # Sample Log-In Check List | Clie | nt Name: | Western Refin | ing Southw | est, Inc Bloq | mfield V | Vork On | der Nu | ımber: ' | 1204158 | | | | |------------------|----------------|---------------------------------------|---------------|------------------|-------------|------------|------------|----------|---------|---|---------|------------------| | Rec | eived by/date | STY |) (| 24/04/ | 12 | | | | | | | | | Logg | ged By: | Ashley Galleg | 08 | 4/4/2012 | 10:15:00 AM | | | * | 7 | | | | | Con | npleted By: | Ashley Galleg | 08 | | 11:46:12 AM | | | * | 7 | | | | | Rev | riewed By: | Lud | | 041 | 0-1/12 | | | | • | | | | | Cha | in of Cust | ody | | | | • | | | , | | | | | 1. | Were seals i | ntact? | | | | Yes | | No 🗆 | Not Pro | esent 🗹 | | | | 2. | Is Chain of C | Sustody complete | e? | | | Yes | V | No 🗔 | Not Pre | esent 🗌 | | | | 3. | How was the | sample delivere | ed? | | | <u>UPS</u> | | | | | | | | <u>Log</u> | <u>In</u> | | | | | | | | | | | | | 4. | Coolers are | present? (see 19 | 9. for cooler | specific infor | mation) | Yes | V | No 🗆 | | NA 🗌 | | | | 5. | Was an atter | mpt made to coo | ol the samp | ies? | | Yes | V | No 🗆 | | na 🗆 | | | | 6. | Were all san | iples received a | t a tempera | ture of >0° C | to 6.0°C | Yes | ✓ N | ₩ 🗆 | | NA 🗆 | | | | 7. | Sample(s) in | proper containe | er(s)? | | | Yes | ✓ N | 4o 🗆 | | | | | | 8. | Sufficient sa | mple volume for | indicated to | est(s)? | | Yes | V | No 🗆 | | | | | | 9. | Are samples | (except VOA ar | nd ONG) pr | operly preserv | ed? | Yes | Y N | lo 🗆 | | | | | | 10. | Was preserv | ative added to b | ottles? | | | Yes | | √ | | NA 🗆 | | | | 11. | VOA vials ha | ve zero headsp | ace? | | | Yes | | lo 🗆 | No VOA | Vials 🗹 | | | | 12. | Were any sa | mple containers | received b | roken? | | Yes | | lo 🗹 | | | | | | | | ork match bottk
pancies on chair | |) | | Yes | ✓ N | 4o 🗆 | bo | of preserved
offices checked
of pH: | 2 | 2 | | 14. | Are matrices | correctly identif | ied on Chai | n of Custody? | , | | | lo 🗆 | | | <2 or x | 2 unless noted) | | 15. | is it clear wh | at analyses wen | e requested | ? | | | | 4o 🗌 | i | Adjusted | ? | | | _ | | ling times able t
customer for aut | | | | Yes | ∠ N | io 🗌 | | Checked | by: | A | | Spe | cial Handl | ing (if applic | :able) | | | | | | | | | - X) | | 17. | Was client n | otified of all disc | repancies v | vith this order? | ? | Yes | | io 🗆 | | NA 🗹 | | \checkmark | | | Person | Notified: | | | Date: | | | | | | | | | | By Who | om: | | | Via: | eMai | I [] | Phone | ☐ Fax | in Persor | 1 | | | | Regard | ing: | | | | | | | | | | | | | Client II | nstructions: | | | | | | | | | | | | 18. | Additional re | marks: | 10 | Cooler Infor | mation | | | | | | | | | | | | ı J . | Cooler No | | Condition | Seal Intact | Seal No | Seal Dat | e | Signe | d By | | | | | | 1 | | ood · | Yes | | | | | | | | | | | ANAL YSTS LABORATORY | www.hallenvironmental.com | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis | | PCB's
FCB's | 1 8082
1 8082 | ON'I | RCRA 8 Me
Anions (F.C
8081 Pestic
8260B (VOA
8270 (Semi- | × | X | × | X | | × | X | X | X | | | | | and the state of t | |-------------------------|--------------------------|---------------------------|---|------------------------------------|----------|------------------|----------------|------------------|--------------|--|--------------------------------|----------------|--------|--------|----------------|-------------|--------------|---|------------|----------|--------|------------------------------|------------------------
--| | | | | 901 H | el. 50 | | | | | | odteM H9T | | | | , | | | | | | | | :S: | | | | | | | 4 | | | | | | | TM + X3T8
TM + X3T8 | | | | | | | | | | |
 | Remarks: | | 111111111111111111111111111111111111111 | | Turn-Around Time: | Standard 🗆 Rush | Project Name: 4-3-12 | Injection Well 2nd are | Project #: | | Project Manager: | · | Bob 4-terry | | Container Preservative Type and # Type | 3-10A HC/ -001 | 1- Liter amber | 1-50ml | 1-50ml | 1-125m H2504 | 1-500m HDO3 | 1-500ml NaOH | | 352 Dml | mg 04 7. | 771 11 | Date Time | Received by: Date Time | contracted in other controlling laboratories. This course as anticon of this | | Chain-of-Custody Record | Client: Western Refining | | Mailing Address: #50 (R 4990 | _ 7 | | email or Fax#: | QA/QC Package: | Accreditation | □ EDD (Type) | Date Time Matrix Sample Request ID | 4.3-12 1:20 H2D INJECTION WELL | | | | | | | - | TRIP BLANK | | | Date: Time: Relinquished by: | Reling | If necessary samples submitted to Hall Environmental manipolarity and to A | Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com August 30, 2012 Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911 RE: Injection Well 3rd Qtr OrderNo.: 1208093 # Dear Kelly Robinson: Hall Environmental Analysis Laboratory received 1 sample(s) on 8/1/2012 for the analyses presented in the following report. These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time. Please don't hesitate to contact HEAL for any additional information or clarifications. Sincerely, Andy Freeman Laboratory Manager andyl 4901 Hawkins NE Albuquerque, NM 87109 # Lab Order 1208093 Date Reported: 8/30/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well Project: Injection Well 3rd Qtr Collection Date: 7/31/2012 1:30:00 PM Lab ID: 1208093-001 Matrix: AQUEOUS Received Date: 8/1/2012 9:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-------------------------------------|--------|---------|--------------|-----|-----------------------| | EPA METHOD 300.0: ANIONS | | | | | Analyst: SRM | | Chloride | 1100 | 50 | mg/L | 100 | 8/2/2012 6:27:10 PM | | Sulfate | 15 | 5.0 | mg/L | 10 | 8/2/2012 6:15:56 PM | | EPA METHOD 7470: MERCURY | | | | | Analyst: DBD | | Mercury | ND | 0.00020 | mg/L | 1 | 8/3/2012 3:03:31 PM | | EPA 6010B: TOTAL RECOVERABLE | METALS | | | | Analyst: JLF | | Arsenic | ND | 0.020 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Barium | 0.39 | 0.020 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Cadmium | ND | 0.0020 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Calcium | 94 | 1.0 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Chromium | ND | 0.0060 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Lead | ND | 0.0050 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Magnesium | 44 | 1.0 | mg/L | 1 | 8/14/2012 9:53:17 AM | | Potassium | 17 | 1.0 | mg/L | 1 | 8/14/2012 9:53:17 AM | | Selenium | ND | 0.050 | mg/L | 1 | 8/14/2012 11:50:46 AM | | Silver | ND | 0.0050 | mg/L | 1 | 8/14/2012 9:53:17 AM | | Sodium | 760 | 10 | mg/L | 10 | 8/14/2012 11:53:30 AM | | EPA METHOD 8270C: SEMIVOLATIL | .ES | | | | Analyst: JDC | | Acenaphthene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Acenaphthylene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Aniline | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Anthracene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Azobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benz(a)anthracene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzo(a)pyrene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzo(b)fluoranthene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzo(g,h,i)perylene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzo(k)fluoranthene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzoic acid | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Benzyl alcohol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Bis(2-chloroethoxy)methane | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Bis(2-chloroethyl)ether | ND | 50 | μg/ L | 1 | 8/7/2012 12:00:44 PM | | Bis(2-chloroisopropyl)ether | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Bis(2-ethylhexyl)phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4-Bromophenyl phenyl ether | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Butyl benzyl phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Carbazole | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4-Chloro-3-methylphenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4-Chloroaniline | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2-Chloronaphthalene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2-Chlorophenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | #### Qualifiers: - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit ND - Reporting Detection Limit - Value exceeds Maximum Contaminant Level. - Ε Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 1 of 18 #### Lab Order 1208093 # Hall Environmental Analysis Laboratory, Inc. Date Reported: 8/30/2012 CLIENT: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr Lab ID: 1208093-001 Client Sample ID: Injection Well Collection Date: 7/31/2012 1:30:00 PM Matrix: AQUEOUS Received Date: 8/1/2012 9:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|-------|----------|----|----------------------| | EPA METHOD 8270C: SEMIVOLA | TILES | | | | Analyst: JD 0 | | 4-Chlorophenyl phenyl ether | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Chrysene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Di-n-butyl phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Di-n-octyl phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Dibenz(a,h)anthracene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Dibenzofuran | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 1,2-Dichlorobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 1,3-Dichlorobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 1,4-Dichlorobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 3,3'-Dichlorobenzidine | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Diethyl phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Dimethyl phthalate | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2,4-Dichlorophenol | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2,4-Dimethylphenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4,6-Dinitro-2-methylphenol | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PN | | 2,4-Dinitrophenol | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PN | | 2,4-Dinitrotoluene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | 2,6-Dinitrotoluene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Fluoranthene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Fluorene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Hexachlorobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Hexachlorobutadiene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Hexachlorocyclopentadiene | ND | 50
 μg/L | 1 | 8/7/2012 12:00:44 PN | | Hexachloroethane | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Indeno(1,2,3-cd)pyrene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Isophorone | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | 1-Methylnaphthalene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2-Methylnaphthalene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2-Methylphenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 3+4-Methylphenol | 140 | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | N-Nitrosodi-n-propylamine | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | N-Nitrosodimethylamine | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | N-Nitrosodiphenylamine | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Naphthalene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | 2-Nitroaniline | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 3-Nitroaniline | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4-Nitroaniline | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Nitrobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2-Nitrophenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 4-Nitrophenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | | Pentachlorophenol | ND | 100 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Phenanthrene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PN | #### Qualifiers: - В Analyte detected in the associated Method Blank - Holding times for preparation or analysis exceeded Η - ND Not Detected at the Reporting Limit - Reporting Detection Limit RL - Value exceeds Maximum Contaminant Level. - E Value above quantitation range - Analyte detected below quantitation limits J - RPD outside accepted recovery limits R Spike Recovery outside accepted recovery limits $\begin{array}{c} \text{Page 2 of 18} \end{array}$ ## Lab Order 1208093 Date Reported: 8/30/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Injection Well 3rd Qtr Lab ID: 1208093-001 **Project:** Client Sample ID: Injection Well **Collection Date:** 7/31/2012 1:30:00 PM Received Date: 8/1/2012 9:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |--------------------------------|----------|-----------|--------------|----|----------------------| | EPA METHOD 8270C: SEMIVOLAT | ILES | | | | Analyst: JDC | | Phenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Pyrene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Pyridine | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 1,2,4-Trichlorobenzene | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2,4,5-Trichlorophenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | 2,4,6-Trichlorophenol | ND | 50 | μg/L | 1 | 8/7/2012 12:00:44 PM | | Surr: 2,4,6-Tribromophenol | 62.9 | 44.2-126 | %REC | 1 | 8/7/2012 12:00:44 PM | | Surr: 2-Fluorobiphenyl | 46.7 | 37-114 | %REC | 1 | 8/7/2012 12:00:44 PM | | Surr: 2-Fluorophenol | 34.6 | 23.4-98 | %REC | 1 | 8/7/2012 12:00:44 PM | | Surr: 4-Terphenyl-d14 | 55.4 | 41.3-116 | %REC | 1 | 8/7/2012 12:00:44 PM | | Surr: Nitrobenzene-d5 | 49.5 | 39.5-118 | %REC | 1 | 8/7/2012 12:00:44 PM | | Surr: Phenol-d5 | 32.3 | 20.9-95.9 | %REC | 1 | 8/7/2012 12:00:44 PM | | EPA METHOD 8260B: VOLATILES | ; | | | | Analyst: JDJ | | Benzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Toluene | 2.6 | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Ethylbenzene | ND | 1.0 | μg/ L | 1 | 8/6/2012 11:46:06 AM | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2,4-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,3,5-Trimethylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2-Dichloroethane (EDC) | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2-Dibromoethane (EDB) | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Naphthalene | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 2-Methylnaphthalene | ND | 4.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Acetone | 590 | 100 | μg/L | 10 | 8/8/2012 10:49:46 AM | | Bromobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Bromodichloromethane | ND | 1.0 | μg/ L | 1 | 8/6/2012 11:46:06 AM | | Bromoform | ND | 1.0 | μg/ L | 1 | 8/6/2012 11:46:06 AM | | Bromomethane | ND | 3.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 2-Butanone | 21 | 10 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Carbon disulfide | ND | 10 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Carbon Tetrachloride | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Chlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Chloroethane | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Chloroform | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Chloromethane | ND | 3.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 2-Chlorotoluene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 4-Chlorotoluene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | cis-1,2-DCE | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | cis-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | Matrix: AQUEOUS - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit ND - Reporting Detection Limit RL - Value exceeds Maximum Contaminant Level. - Ε Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 3 of 18 #### Lab Order 1208093 Date Reported: 8/30/2012 # Hall Environmental Analysis Laboratory, Inc. **CLIENT:** Western Refining Southwest, Inc. Injection Well 3rd Qtr Project: Lab ID: 1208093-001 Client Sample ID: Injection Well Collection Date: 7/31/2012 1:30:00 PM **Received Date: 8/1/2012 9:30:00 AM** | | | - | al Units | DF | Date Analyzed | |-----------------------------|------|--------|----------|----|----------------------| | EPA METHOD 8260B: VOLATILES | | | | | Analyst: JDJ | | Dibromochloromethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Dibromomethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,3-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,4-Dichlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Dichlorodifluoromethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1-Dichloroethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1-Dichloroethene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2-Dichloropropane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,3-Dichloropropane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 2,2-Dichloropropane | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1-Dichloropropene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Hexachlorobutadiene | NĐ | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 2-Hexanone | ND | 10 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Isopropylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 4-Isopropyltoluene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 4-Methyl-2-pentanone | ND | 10 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Methylene Chloride | ND | 3.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | n-Butylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | n-Propylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | sec-Butylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Styrene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | tert-Butylbenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Tetrachloroethene (PCE) | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | trans-1,2-DCE | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | trans-1,3-Dichloropropene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2,3-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2,4-Trichlorobenzene | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1,1-Trichloroethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,1,2-Trichloroethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Trichloroethene (TCE) | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Trichlorofluoromethane | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | 1,2,3-Trichloropropane | ND | 2.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Vinyl chloride | ND | 1.0 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Xylenes, Total | ND | 1.5 | μg/L | 1 | 8/6/2012 11:46:06 AM | | Surr: 1,2-Dichloroethane-d4 | 99.1 | 70-130 | %REC | 1 | 8/6/2012 11:46:06 AM | | Surr: 4-Bromofluorobenzene | 99.1 | 70-130 | %REC | 1 | 8/6/2012 11:46:06 AM | | Surr: Dibromofluoromethane | 105 | 70-130 | %REC | 1 | 8/6/2012 11:46:06 AM | | Surr: Toluene-d8 | 99.7 | 70-130 | %REC | 1 | 8/6/2012 11:46:06 AM | Matrix: AQUEOUS - В Analyte detected in the associated Method Blank - Н Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - Reporting Detection Limit - Value exceeds Maximum Contaminant Level. - Е Value above quantitation range - Analyte detected below quantitation limits J - R RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits $Page\ 4\ of\ 18$ Lab Order 1208093 Date Reported: 8/30/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well Project: Injection Well 3rd Qtr **Collection Date: 7/31/2012 1:30:00 PM** Lab ID: 1208093-001 Received Date: 8/1/2012 9:30:00 AM | Analyses | Result | RL Qua | al Units | DF | Date Analyzed | |-------------------------------|----------|--------|------------|----|----------------------| | EPA 120.1: SPECIFIC CONDUCTAN | ICE | | | | Analyst: DBD | | Conductivity | 4200 | 0.010 | µmhos/cm | 1 | 8/13/2012 1:40:32 PM | | SM4500-H+B: PH | | | | | Analyst: DBD | | pH | 7.95 | 1.68 H | d pH units | 1 | 8/13/2012 1:40:32 PM | | SM2320B: ALKALINITY | | | | | Analyst: DBD | | Bicarbonate (As CaCO3) | 510 | 20 | mg/L
CaCO3 | 1 | 8/13/2012 1:40:32 PM | | Carbonate (As CaCO3) | ND | 2.0 | mg/L CaCO3 | 1 | 8/13/2012 1:40:32 PM | | Total Alkalinity (as CaCO3) | 510 | 20 | mg/L CaCO3 | 1 | 8/13/2012 1:40:32 PM | | SM2540C MOD: TOTAL DISSOLVE | D SOLIDS | | | | Analyst: KS | | Total Dissolved Solids | 2740 | 40.0 | mg/L | 1 | 8/8/2012 8:46:00 AM | Matrix: AQUEOUS - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit ND - Reporting Detection Limit RL - Value exceeds Maximum Contaminant Level. - Е Value above quantitation range - Analyte detected below quantitation limits - R RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 5 of 18 #### CASE NARRATIVE #### August 22, 2012 Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM Project Tracking No.: 1208093 Anatek Batch: 120806003 **Project Summary:** One (1) water sample was received on 8/3/2012 for total reactive cyanide and sulfide, corrosivity, and flashpoint analysis. The sample was received with appropriate chain of custody at 3.0C. Client Sample ID 1208093-001E Injection Well Anatek Sample ID 120806003-001 Method/Prep Method Various #### **QA/QC Checks** | Parameters | Yes / No | Exceptions / Deviations | |-------------------------------------|----------|-------------------------| | Sample Holding Time Valid? | Υ | NA NA | | Surrogate Recoveries Valid? | NA | NA | | QC Sample(s) Recoveries Valid? | Υ | NA | | Method Blank(s) Valid? | Y | NA | | Tune(s) Valid? | NA | NA | | Internal Standard Responses Valid? | NA | NA | | Initial Calibration Curve(s) Valid? | Υ | NA | | Continuing Calibration(s) Valid? | Υ | NA | | Comments: | Υ | NA NA | #### 1. Holding Time Requirements No problems encountered. #### 2. GC/MS Tune Requirements N/A #### 3. Calibration Requirements No problems encountered. #### 4. Surrogate Recovery Requirements N/A. #### 5. QC Sample (LCS/MS/MSD) Recovery Requirements No problems encountered. #### 6. Method Blank Requirements No problems encountered. | 7 | Internal | Standard | el Roenones | Regulrements | |----|----------|----------|-------------|--------------| | 1. | ıntemai | Standard | SI KESDUNSE | Requirements | N/A. #### 8. Comments No problems encountered. I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee. Approved by: Page 2 of 17 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120806003 Address: 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name: 1208093 Attn: ANDY FREEMAN # **Analytical Results Report** Sample Number 120806003-001 Sampling Date 7/31/2012 Date/Time Received 8/3/2012 2:01 PM Client Sample ID 1208093-001E / INJECTION WELL Sampling Time 1:30 PM Matrix Comments Wate Sample Location Comments | Parameter | Result | Units | PQL | Analysis Date | Analyst | Method | Qualifier | |--------------------|--------|----------|-----|---------------|---------|-----------|-----------| | Cyanide (reactive) | ND | mg/L | 0.1 | 8/10/2012 | CRW | SW846 CH7 | | | Flashpoint | >200 | °F | | 8/9/2012 | KFG | EPA 1010 | | | pH | 7.55 | ph Units | | 8/10/2012 | ETL | EPA 150.1 | | | Reactive sulfide | 10.0 | mg/L | 5 | 8/13/2012 | JTT | SW846 CH7 | | **Authorized Signature** John Coddington, Lab Manager MCL EPA's Maximum Contaminant Level ND Not Detected PQL Practical Quantitation Limit This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted. # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 120806003 Address: **4901 HAWKINS NE SUITE D** 1208093 **ALBUQUERQUE, NM 87109** **Project Name:** Attn: **ANDY FREEMAN** # **Analytical Results Report Quality Control Data** | Sample Number Parameter Ref 120806003-001 Reactive sulfide 10 120806003-001 Cyanide (reactive) N | Units
rng/L | LCS Spike | %Rec | | | | | | |--|---------------------|---------------------------------------|-------|-------------|------|------------|-----------|---------------| | Cyanide (reactive) 0.504 Matrix Spike Sample Number Parameter Reactive sulfide 10 120806003-001 Cyanide (reactive) N | _ | | | AR' | %Rec | Prep | Date | Analysis Date | | Matrix Spike Sample Number Parameter Rev. Parameter 120806003-001 Reactive sulfide 10120806003-001 Cyanide (reactive) N | roa/l | 0.2 | 90.0 | 70- | -130 | 8/13/ | 2012 | 8/13/2012 | | Sample Number Parameter Red 120806003-001 Reactive sulfide 10 120806003-001 Cyanide (reactive) N | rng/L | 0.5 | 100.8 | 80 | -120 | 8/10/ | 2012 | 8/10/2012 | | Sample Number Parameter Ref 120806003-001 Reactive sulfide 10 120806003-001 Cyanide (reactive) N | | | | | | | _ | | | 120806003-001 Reactive sulfide 10
120806003-001 Cyanide (reactive) N | nple Mi
sult Res | | ha 6 | MS
Spike | %Rec | AR
%Rec | Prep Date | Analysis Date | | 120806003-001 Cyanide (reactive) N | | | - | 20 | 90.0 | 70-130 | 8/13/2012 | | | | | | | 0.5 | 90.8 | 80-120 | 8/10/2012 | | | Matrix soire illibileate | | | : | | | | | | | Matrix Spike Duplicate MSD | ħ | 18 D | | | AR | | | | | Parameter Result Ui | nlts S | pike %R | tec % | RPD | %RPD |) Pre | p Date | Analysis Date | | Cyanide (reactive) 0.476 m | g/L | 0.5 95 | 5.2 | 4.7 | 0-25 | 8/10 | 0/2012 | 8/10/2012 | | Method Blank | | · · · · · · · · · · · · · · · · · · · | | , , , | | | | | | Parameter | Result | Uı | nits | | PQL | Pn | ep Date | Analysis Date | | Cyanide (reactive) | ND | m | g/L | | 0.1 | | 0/2012 | 8/10/2012 | | Reactive sulfide | ND | | g/kg | | 1 | | 3/2012 | 8/13/2012 | Acceptable Range ND PQL Not Detected Practical Quantitation Limit **RPD** Relative Percentage Difference #### Comments: Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E67893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com # **Login Report** NM **Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB** Order ID: 120806003 4901 HAWKINS NE SUITE D **Order Date:** 8/6/2012 **ALBUQUERQUE** 87109 **Contact Name: ANDY FREEMAN** Project Name: 1208093 Comment: Sample #: 120806003-001 Customer Sample #: 1208093-001E / INJECTION WELL Recy'd: \checkmark Collector: **Date Collected:** 7/31/2012 Quantity: 3 Matrix: Water **Date Received:** 8/3/2012 2:01:00 PM Comment: | Test | Lab | Method | Due Date | Priority | |------------------|-----|-----------|-----------|--------------------| | CYANIDE REACTIVE | М | SW846 CH7 | 8/15/2012 | Normal (6-10 Days) | | FLASHPOINT | М | EPA 1010 | 8/15/2012 | Normal (6-10 Days) | | pН | M | EPA 150.1 | 8/15/2012 | Normai (6-10 Days) | | SULFIDE REACTIVE | М | SW846 CH7 | 8/15/2012 | Normal (6-10 Days) | #### **SAMPLE CONDITION RECORD** | Samples received in a cooler? | Yes | |---|-----| | Samples received intact? | Yes | | What is the temperature inside the cooler? | 3.0 | | Samples received with a COC? | Yes | | Samples received within holding time? | Yes | | Are all sample bottles properly preserved? | Yes | | Are VOC samples free of headspace? | N/A | | is there a trip blank to accompany VOC samples? | N/A | | Labels and chain agree? | Yes | CHAIN OF CUSTODY RECORD PAGE 1 2012 012 | 0/3/20 | 1/31/2012 781 KCVD | 9, 97,81 | |--------|--------------------|----------| | | 754 5040 404 504 | ET CAMO | | 8/15/2 | OUS TANK | 120800 | WEDNEE. WWW.southerner Com- | SUB CONTRATOR: Anatek Labs | COMPANY: Ana | Anatek Labs, Inc. | | PHONE | (208) 883-283 | 2839 | FAX | 3 | (208) 882-9246 | 2-9246 | İ | l | | |---|--------------|-------------------|-------------|--------------------|--|----------|---------------------|-----------|----------------|--------|---|---|-----| | ADDRESS: 1282 Alturas Dr | | | | ACCOUNT # | ! | | EMAIL. | <u> </u> | ! | | | ! | | | CITY, STATE, ZIP: MOSCOW, ID 83843 | | | | | | | | | | | | | | | | | - | | | # CONI | | | • | | | | | | | ITEM SAMPLE CLIENT SAMPLE ID | PLE ID | BOTTLE | MATRIX | COLLECTION
DATE | .WINEB2 | A | ANALYTICAL COMMENTS | CAL (| COMI | MEN | S | | | | 1 1208093-001E Injection Well | | 500HDP€ | Aqueous 7/3 | 11/2012 1:30:00 PM | Aqueous 7/31/2012 1:30:00 PM 3 RCI LEVEL 4 | 70 TE | | | | | | | | | 2 | . ! | | | | o ! | | | -08/02/12 | ۲۱ | !! | | | | | ω | | 197 | ! | | 0 | | , | | | | | | | | 4 | i | - | | | . M. P. | % | | | | | - | | | | 5 | | |
!
! | 1-9-10-10-10-11 | | (| | | į | | | | . ! | | 6 | | . ! | i | | 0 | : | İ | į | I | ! | | | | | 7 | : | | | | •
! | ļ | ! | į. | ; | | | | | | 8 | | | į | | 0 | .İ | j
i | ! | ļ | į | : | | | | 9 | : | | | | 0 | į | į | i | ! | i | ! | | | | 10 | | | | | 0 | :
| | ļ | ļ | 1 | : | ĺ | : | | *************************************** | | | | | | | | | - | | - | l | | | DATE & TIME: 8/5/12 14/64 INSPECTED BY: 87 | NUMBER OF CONTAINERS: 3 SHIPPED VIA: | TAT: Standard RUSH Next PRESERVATIVES: NAOH NaoH | Retinquished By. CUSTODY SEALS PRESENT: | Reimquaked By: Date: Time: Received By: ICE / ICE-PACKS PRESENT: | Date: 0/2/2012 Time: 12:54 PM Received Dy: 14 ABE | ANATEK LABS RECEIVING LIST | | |--|--------------------------------------|--|---|--|---|----------------------------|--| | 7 | * | | C Attempt to Cool ? | OR LAB USE ONLY | T TRANSMITTAL DESIRED: | | | SPECIAL INSTRUCTIONS / COMMENTS. | Page #_ | | |---------|--| |---------|--| # Flashpoint Analysis Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5) | Sample ID | Analyses
Date | Sample
Matrix | Analyst
Initials | Temp - °C | Temp - °F | |----------------------|------------------|------------------|---------------------|--|-----------| | 20727018-01 | 7/30/2012 | 4/ 428 | 13 | | >2-68 C | | 20727029-901
-202 | 8/5/2012 | 5/ Liguid | 121 | | 7200° F | | | | | | | 14506 | | 20206003-021 | 8/9/2012 | 4/ 13.0 | 11/1/200 | | 47.1 | | 20807043-00: | | | 196 | | > 2000/= | | -m2 | | | d | + | < 63° ₽ | | 08080:8-00: | 8/10/2012 | 5/Liquid | 21/1 | | (500F | | 20810057-00 3 | 3/21/2012 | 4/ H30 | Him | | >200% | | | | - V/ 1: 12 L. | 14011/ | | 1200°F | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | ^{*} SAFETY GLASSES REQUIRED. | Analysis Date: 8 | 120610072-201 | - 07 3 | 100-54060 | 1009090021 | 300 | ₽%° | الماد | 5,00 | 2002 |) २०८० जनम् । | 100-1+70808021 | 1200070570001 | 1208 08027 - OS | 100802012-001 | 1505006051 | Sample | | | | | | | | | |------------------|---------------|---------------|-----------|------------|------|-------|-------|------|------|---------------|----------------|---------------|-----------------|---------------|------------|------------------------|---------------------|--|-----------------------|----------------------|---------------------|---------------------|---|-------------------------| | 1 1 | 16.3 | | 20.6 | €.03 | 179 | 16.51 | 17.7 | 16.5 | 18,2 | 18.2 | Υ _ | 720-3 | 12.14 K | ය යි.
දුන් | 14.4) | Temp
(°C) | | | | | | | | | | 7.13
8/16/12 | 15.816 | 92.4 | 2.46 | 7.55 | 6.52 | 6.06 | 6.60 | 7.00 | 20.6 | 7.00
80.£ | 7.32 | 300 | 6.8 | 57.6 | 6.48 | ΡΉ | | | Matri | | 0.021 | E E | PHE | | | | | | | | | | | | | 400 | | | | | 101 | pH 4
Cal | | | Matrix Spike Solution | Standard | O.UZN HZSO4 I ITTAN | pH Buffer 10 (Blue) | pH Buffer 4 (Red)
pH Buffer 7 (Yellow) | Reagent | | | | | | | | | | | | io.55 | | | | | 10.04 | pH 10
Cal | | Contrib | olution | | itrant | Blue) | ed) | | | | | | | | | | | | | 1204 | | | | | 2 191 | Slope | | urette: CA | M637-04 | Solution # | A046-07 | M854-03 | M854-01
M854-02 | Solution # | | | | | | | | | | | | 7.09 | | | | | 7.10 | pH 7
Buffer | | T 10uL, sr | 7-04 | ion# | 3-0/ | 2 6 6 | 2 2 | ion # | | Analyst: | | | | | | | | | | | | | | | | Sample
Vol.
(mL) | | Contriburette: CAT 10uL, sn 600055 - pH Meter: Orion Model 620A, sn 007858 | 1N | Conc. | Apr 2013 | Sep-12 | Sep-13
Dec-13 | Expires | | AST. | | | | | | | | | | : | | | | | | A
8.3 | Titrant | pH Meter | _ | ic. | 2013 | -12 | | Ш | | AT . | | | | | | | | | | | | | | | | B
4.5 | rant vol to pH (mL) | Orion Mo | 11/18/2012 | Expires | | | Slope 95-102% | | | | | | | | | | | | | | | | | | | C
4.2 | (mL) | del 620A, | 2012 | ires | | | Slope 95-102% | Method | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Total | | sn 0078 | | Am | | | | QC Rec | | | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Carbonate | Alkalinit | 58 | 100 | ount Spi | | % Reco | MS/MSL | Method QC Requirements: | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8i-
carbonate | Alkalinity (mg/L | | ŏ | Amount Spiked (mg/L) | | % Recovery 85-115% | MS/MSD Every 20 | nts: | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | Hydraxide | | | | 3/L) | | 115% | õē | | | (| | | | | | | | | | | | | | | | * | | | | | | | | | Page 8 of 17 8-10-12 252 # Sulfide by SM 4500-S' F | | Concentration | Date Made/Expires | |--------------|---------------|-------------------| | Iodine | 0.025 N | | | HCI | 6N | | | Starch | 1% by weight | 12/31/2009 | | Indicator | | | | Zinc Acetate | 99.9% | | # Quality Control Information - 1. 1 blank per batch, must be < 20 ug/L. - 2. 1 LFB per batch must be +/-30%. - 3. 1ml iodine reacts with 0.4 mg Sulfide | .2 | 1-5402 | - \M5 | 80 6003-1 | -2 M:52.7 | 1.75 m 1-810608 | -B€ | -459 | -145 | -3M5 m-52.2 | -3 m: 52.2 | -2 m: 52.4 | 120731034-1 W: 52.0 | Sample | |----------|---------|-----------|-----------|-----------------|------------------|----------|-----------|-----------|-----------------|-----------------|------------------|---------------------|--| | 0,0 | 10.0 | + | 10.0 | 5.0 | 1.0 | + | | 1000 | + | | | 20 mc | Sample
Volume | | 150 | 250 | aak | 250 | 250 | 300 | 23 | 285 | 57 | 900 | 25 | 20 | as | lodine amount
(50 uL
increments) | | 60 0.060 | 000 000 | 280 0.230 | (00).00 | (OD 0.100 | 0.170 | 20 0.000 | 200 0.200 | 180 0.180 | 200 0.200 | 200 0.020 | | 20 mg = 0.000mg | Concentration
(ug/sample) | | 6.00 | 10.0 | 28.0 | 10.0 | 20 X 52.7: 1054 | 120 × 54.1: 6492 | 0.000 | 0.200 | 0 (80 | 4.0 X52.4-205.8 | 0.4 1524 - 2088 | 3.4 XC2.4: 20.86 | 0.4 x520: 70.8 | Concentration (mg/L) | | + | | | | | | | | | | | | 8-13-12 | Date | | + | | | | | | | | | | | | NA NA | Initials | # Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column) Total Cyanide MS/MSD/LCS Soin: Free Cyanide MS/MSD/LCS Soin: M863-03 Exp:7/9/2013 Exp:5/17/2013 M855-02 Method requirements: All QC +/- 10% Equipment: Midi-vap Instrument: ALPCHEM FIA 3000 Absorbance: 570nm | | Sample ID | Matrix | Preserved | Sample
Amount (mL)** | InitiaI
Multiplier* | Final
Multiplier | Spike Amount
(mL) | WAD?
(check if
yes) | |----|---------------|--------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------| | 1 | 120806003-1 | reactive | NuoH | 50ml | [× | | | | | 2 | -lus | | | 1 | | | | | | 2 | -lush | | | 1 | 4 | | | | | 4 | 120807045-1 | | | 10ml | 5.x | | | | | 5 | -7 | 1 | | + | 4. | | | | | 6 | 17.0809018 -1 | rendice scil | | 50ml | 541 | | | | | 7 | -7 | + | | | 52.7 | | | | | 8 | 120806028-1 | in par | | | lyc | | | | | 9 | -2 | 1 | | | | *** | | | | 10 | 17-1 | + | 4 | + | 4 | | | | | 11 | 120803018-3 | wad | MOU | 50m | | | | | | 12 | ->ms | | 1 | 1 | | ··· | | | | 13 | - Zonen | | | | | | | | | 14 | -W | | | | | | | | | 15 | とおし | | | | | | | | | 16 | 120802038-1 | 4 | | | | | | | | | 120807042-6 | dw | | | | | | | | 18 | -bans | | | | | | | | | 19 | Jany (| | | | | | | | | 20 | 43-6 | 4 | + | 1 | 1 | | <u> </u> | | ^{*} If soils this calculation is taken from cyanide extraction bench sheet. ^{**} If soils, mLs of extract used for distillation. | Extraction Reagent | ts: Reagent#: | Analytical Reagents: | |-----------------------|---------------|----------------------| | methyl red indicato | r A051-01 | Barbituric Acid | | 18 N H₂SO₄ | A050-07 | Sodium Phosphate | | sulfamic acid | R009-12 | Chioramine-t | | 0.025N NaOH | R014-16 | Pyridine | | 51% MgCl ₂ | A050-06 | | Distillation Initials/Date Distilled: 8/10/12 // Analyst Initials/Date Analyzed: MW 8/10/12 Reagent #: R038-13 R026-23 R048-09 R043-03 # Total Cyanide by Semi-Automated Colorimetry Method: EPA 335.4\SM-4500-CN-E Distillation Bench Sheet Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column) Total Cyanide MS/MSD/LCS Soln: Free Cyanide MS/MSD/LCS Soln: M863-03 Exp:7/9/2013 M855-02 Exp:5/17/2013 Method requirements: All QC +/- 10% Equipment: Midi-vap Instrument: ALPCHEM FIA 3000 Absorbance: 570nm | | Sample ID Matrix | | Preserved | Sample
Amount (mL)** | Initial
Multiplier* | Final
Multiplier | Spike Amount
(mL) | WAD?
(check if
yes) | |----|----------------------------|---------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------| | 1 | 120731034-1 | reactive soil | Nall1 | Some | 52.0 | | | | | 2 | -lung | | | | | <u>-</u> | Imc | | | 3 | /lunso | | | | + | | | | | 4 | -Us | | | | 1> | | + | | | 5 | 181 | | | | \} | | | | | 6 | -2 | | | | 52.4 | | | | | 7 | -3 | + | | | 52.2 | | | | | 8 | 120801023-1 | ww lph | | | × | | | | | 9 | 7042-1 | | | | | | | | | 10 | 6002-1 | + | + | | + | | | | | 11 | 170807042-7 | NW ppu | NaOlt | Some | 1× | | | | | 12 | - 5 | | 1 | , | | | | | | 13 | - 7ms | | | | | | lud | | | 14 | -3mm | | | | | | | | | 15 | 1 ~11S | | | | | | 4 | | | 16 | -BL | | | | | | | | | 17 | ~4 | | | | | l | | | | 18 | 170803018-3
170806002-2 | | | | | | <u> </u> | | | 19 | 120806001-5 | | | | | | | | | 20 | 120731042- | 1 | | 4 | + | | | | ^{*} If soils this calculation is taken from cyanide extraction bench sheet. ^{**} If soils, mLs of extract used for distillation. |
Extraction Descents | Pageant fo | Analytical Basesanta | Bassant t | |-------------------------------------|------------|----------------------|-----------| | Extraction Reagents: | reagent #: | Analytical Reagents: | Reagent # | | methyl red indicator | A051-01 | Barbituric Acid | R038-13 | | 18 N H ₂ SO ₄ | A050-07 | Sodium Phosphate | R026-23 | | sulfamic acid | R009-12 | Chloramine-t | R048-09 | | 0.025N NaOH | R014-16 | Pyridine | R043-03 | | 51% MgCl ₂ | A050-06 | | | Distillation Initials/Date Distilled: MW 8/9/12 Analyst Initials/Date Analyzed: WWW S/L0/L2 file name: T:\DATA1\FLOW4\2012\EPA335.4\081012CY.RST Date: August 10, 2012 Operator: CRW # 120810 FEACUR MW 8/13/12 | • | | | ` | | | | | |----------|----------|---------------------------------|------------|--------------|--------|----------------|------------------------| | ?eak | Cup | Name | Туре | Dil Wt | A | rea | Calc. (ppm) | | 1 | 2 | Sync | SYNC | 1 |
1 | 6663245 | 0.992821 | | 2 | ō | Carryover | CO | <u>-</u> | ī | 14306 | 0.001362 | | 3 | Ö | Carryover | co | <u> 1</u> | ī | 994 | -0.000623 | | 3 | 0 | Baseline | ŘВ | ī | ī | 3117 | -0.000306 | | ō | 2 | Cal 1.00 ppm | Ç | 1 | 1 | 6700923 | 0.998440 | | วี | 2 | Cal 1,00 ppm | С | 1 | 1 | 6651245 | 0.991032 | | 7 | 2 | Cal 1.00 ppm | С | 1 | 1 | 6511306 | 0.970165 | | 3 | 0 | Baseline | RB | 1 | 1 | -468 | -0.000841 | | } | 3 | Cal 0.80 ppm | С | 1 | 1 | 5479693 | 0.816335 | | LO | 3 | Cal 0.80 ppm | С | 1 | 1 | 5470805 | 0.815010 | | 11 | 3 | Cal 0.80 ppm | С | 1 | 1 | 5483462 | 0.816898 | | 3 | 0 | Baseline | RB | 1 | 1 | 739 | -0.000661 | | l3 | 4 | Cal 0.50 ppm | C | 1 | 1 | 3390538 | 0.504810 | | 14 | 4 | Cal 0.50 ppm | С | 1 | 1 | 3347330 | 0.498367 | | L 5 | 4 | Cal 0.50 ppm | C_ | 1 | 1 | 3366900 | 0.501286 | | 3 | 0 | Baseline | RB | 1 | 1 | 1201 | -0.000592 | | L7 | 5 | Cal 0.05 ppm | C | 1 | 1. | 321394 | 0.047154 | | 1.8 | 5 | Cal 0.05 ppm | C | 1 | 1 | 318560 | 0.046731 | | L9 | 5 | Cal 0.05 ppm | C | 1 | 1 | 323271 | 0.047434 | | 3
21 | 0
6 | Baseline | RB | 1 | 1 | 103 | -0.000756 | | 22 | 6 | Cal 0.01 ppm | C | 1 | . 1 | 68145 | 0.009390 | | 23 | 6 | Cal 0.01 ppm | C | 1 | | 63259 | 0.008662
0.009057 | | 3 | 0 | Cal 0.01 ppm
Baseline | Ç | 1
1 | 1 | 65909 | | | 25 | 1 | Blank | RB
BLNK | 1 | 1
1 | -548
-2549 | -0.000853
-0.001151 | | 26 | 7 | ICV 0.25 ppm | CCA | 1 | ı | 1797901 | 0.267324 | | 37 | í | Blank | BLNK | 1 | i | -1867 | -0.001049 | | 3 | ō | Baseline | RB | ī | ī | -4633 | -0.001462 | | 29 | 8 | 120731034-BL R | Ü | ī | ī | -1626 | -0.001014 | | 30 | 9 | +120731034-001 | Ü | 52 | 1 | -9380 | -0.112826 | | 3.1 | 10 | 120731034-001MS | | 52 | 1 | 3179464 | 24.613474 | | 32 | 11 | 120731034-001MS | | 52 | 1 | 3271429 | | | 33 | 12 | 120731034-LCS | U | . 1 | 1 | 3387101 | 0.504298 | | 34 | 13 | 120731034-002 | Ū | 52.4 | 1 | -3138 | -0.064918 | | 35 | 14 | •120731034-003 | Ü | 52.2 | 1 | 1938 | -0.025165 | | 36 | 15 | 120801023-001 | Ü | 1 | 1 | 1508 | -0.000546 | | 37 | 16 | 120802042-001 | U | 1 | 1 | -4894 | -0.001507 | | 38 | 17 | ·120806002-001 | U | 1 | 1 | -3932 | -0.001357 | | 3 | 0 | Baseline | RB | 1 | 1 | -3990 | -0.001366 | | 10 | 1 | Blank | BLNK | 1 | 1 | -6028 | -0.001670 | | 11 | 4 | CCV 0.5 ppm | ccv | 1 | 1. | 3355048 | 0.499518 | | 12 | 1
0 | Blank | BLNK | 1 | 1 | -5979 | -0.001663 | | 3
14 | 18 | Read Baseline 120802042-BL WW | RB
U | 1
1 | 1
1 | -2215
-4296 | -0.001101
-0.001412 | | 15 | | + 120802042-BL WW | Ü | 1 | 1 | -4296
-3281 | -0.001412 | | 16 | 20 | T120802042-003MS | _ | 1 | 1 | 3155951 | 0.469830 | | 17 | 21 | 120802042-003MS | | 1 | 1 | 3260448 | | | 18 | 22 | 120802042-LCS | Ü | 1 | 1 | 3149826 | 0.468917 | | 19 | 23 | 120802042-002 | บ | ī | 1 | -2211 | -0.001101 | | 50 | 24 | 120802042-004 | U | ī | ī | -2988 | -0.001217 | | 51 | 25 | 120803018 003WA | ₽u | 1 | 1 | -6266 | -0.001705 | | 52 | 26 | • 120806002-002 | U | 1 | 1 | -4862 | -0.001496 | | 53 | 27 | 120731042-001 | Ŭ | 1 | 1 | -2299 | -0.001114 | | 3 | 0 | Baseline | RB | 1 | 1 | 1128 | -0.000603 | | 55 | 1. | Blank | BLNK | 1 | 1 | 2166 | -0.000448 | | 56 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3421294 | 0.509397 | | 57 | 1 | Blank | BLNK | 1 | 1 | 3812 | -0.000203 | | 3 | 0 | Read Baseline | RB | 1 | 1 | 2616 | -0.000381 | | 59 | 28 | 120806003-001 R | | 1 | 1 | 1468 | -0.000552 | | 50 | 29 | 120806003-001MS | | 1 | 1 | 3052389 | 0.454387 | | 51 | 30 | 120806003-001MS | | _1 | _ 1 | 3199691 | | | 52
53 | 31 | 120807045-001 | Ü | 5 | 1 | 5103 | -0.000051 | | 53
54 | 32 | 120807045-002 | U | 5 | 1 | 10059 | 0.003644 | | 54
55 | 33
34 | \$ 120809018-001 R | | 54.1
53.7 | , 1 | 23636 | | | 56 | 34
35 | 120809018-002 | Ü | 52.7
1 | 1 | 11167 | 0.047124 | | 90 | 33 | £120809028-001 | U | 1 | 1 | 8244 | 0.000458 | | Per.k | Cup | Name | Туре | Dil | Wt | Area | Calc. (ppm) | |------------|-----|------------------------|------|-----|-----|-----------|-------------| | 67 | 36 | 120809028-002 | Ü | 1 | 1 | -2027 | -0.001073 | | 68 | 37 | 120809017-001 | U | 1 | 1 | 11843 | 0.000995 | | В | 0 | Baseline | RB | 1 | 1 | -3030 | -0.001223 | | 70 | 1 | Blank | BLNK | 1 | 1 | -5751 | -0.001629 | | 71 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3401767 | 0.506485 | | 72 | 1 | Blank | BLNK | 1 | 1 | -7012 | -0.001817 | | ₿ | 0 | Baseline | RB | 1 | 1 | -2009 | -0.001071 | | 74 | 38 | 4- 120803018-BL | Ü | 1 | 1 | -3946 | -0.001359 | | 75 | 39 | 120803018-003 | Ü | 1 | 1 | -7131 | -0.001834 | | 76 | 40 | 120803018-003MS | Ü | · 1 | 1 | 3109609 | 0.462920 | | 77 | 41 | 120803018-003MSI | ט כ | : | l 1 | 3128768 | 0.465776 | | 78 | 42 | 120803018-LCS | Ü | 1 | 1 | 3439192 | 0.512065 | | 79 | 43 | + 120802038-001 | υ | 1 | 1 | -5414 | -0.001578 | | 30 | 44 | 7120807042-006 N | υ | 1 | 1 | -3586 | -0.001306 | | 9 1 | 45 | 120807042-006MS | U | 1 | 1 | 3198054 | 0.476108 | | 32 | 46 | ↓ 120807042-006MSI | ט כ | : | 1 1 | . 3389696 | 0.504685 | | 33 | 47 | 120807043-006 | υ | 1 | 1 | ~5382 | -0.001574 | | 3 | 0 | Baseline | RB | 1 | 1 | -3961 | ~0.001362 | | 35 | 1 | Blank | BLNK | 1 | 1 | -7342 | -0.001866 | | 36 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3511794 | 0.522892 | | 37 | 1 | Blank | BLNK | 1 | 1 | -7093 | -0.001829 | | 3 | 0 | Read Baseline | RB | 1 | 1 | -1283 | -0.000962 | | Peak | Cup | Flags | |---------------------------------------|---------------------------------------|----------------------------| | 1,
2,
3,
3,
5, | 2
0
0
0
2 | LO
BL | | 5
7
3
9 | 2
2
0 | BL | | 10
11
3
13
14 | 3
3
0
4
4 | BL | | 15
3
17
18 | 4
0
5
5 | BL | | 19
3
21 | 5
0
6 | BL | | 22 | 6
6 | OL | | 3
25
26 | 0
1
7 | BL
LO | | 27
3
29
30
31
32 | 1
0
8
9
10 | TO
PT
TO | | 33
34
35
36
37
38
3 | 12
13
14
15
16
17
0 | LO
LO
LO
LO
LO | | 11
12
3
14 | 4
1
0
18 | LO
BL
LO | | Pe=k | Cup | Flags | |------|-----|----------| | | | | | 45 | 19 | LO | | 46 | 20 | | | 47 | 21 | | | 48 | 22 | | | 49 | 23 | ro | | 50 | 24 | LO | | 51 | 25 | LO | | 52 | 26 | LO · | | 53 | 27 | ľO | | В | O | BL | | 55 | i | LO | | 56 | 4 | | | 57 | i | LO | | В | Ô | BL | | 59 | 2.8 | ro
Pp | | 60 | 29 | 10 | | | 30 | | | 61 | | | | 62 | 31 | FO | | 63 | 32 | | | 64 | 33 | | | 65 | 34 | | | 66 | 35 | | | 67 | 36 | LO | | 68 | 37 | | | ₿ | 0 | BL | | 70 | 1 | LO | | 71 | 4 | | | 72 | 1 | LO | | В | 0 | BL | | 74 | 38 | ГÓ | | 75 | 39 | FO | | 76 | 40 | | | 77 | 41 | | | 78 | 42 | | | 79 | 43 | LO | | 80 | 44 | LO | | 81 | 45 | | | 82 | 46 | | | 83 | 47 | LO | | В | 0 | BL | | 85 | 1 | ro | | 86 | 4 | | | 87 | i | LO | | В | Õ | BL | | _ | • | | File name: T:\DATA1\FLOW4\2012\EPA335.4\081012CY.RST Date: August 10, 2012 Operator: CRW | * | Name | 9 | | Conc | Area | |---|-------|------|-----|----------|----------------| | - | | | | | | | * | Ça1 | 1.00 | ppm | 1.000000 | 6700923.000000 | | * | Ca.1. | 1.00 | ppm | 1.000000 | 6651245.000000 | | * | Cal | 1.00 | ppm | 1.000000 | 6511306.500000 | | 4 | Cal | 0.80 | ppm | 0.800000 | 5479693.000000 | | k | Cal | 0.80 | ppm | 0.800000 | 5470805.000000 | | ŀ | Cal | 0.80 | ppm | 0.800000 | 5483462.500000 | | ٠ | Cal | 0.50 | ppm | 0.500000 | 3390537.500000 | | ٠ | Çal | 0.50 | ppm | 0.500000 | 3347330.250000 | | ٠ | Cal | 0.50 | ppm | 0.500000 | 3366900.000000 | | ۴ | Cal | 0.05 | ppm | 0.050000 | 321394.125000 | | ŀ | Cal | 0.05 | ppm | 0.050000 | 318560.156250 | | ۲ | Cal | 0.05 | ppm | 0.050000 | 323271.312500 | | Ł | Cal | 0.01 | ppm | 0.010000 | 68145.109375 | | k | Cal | 0.01 | mgq | 0.010000 | 63259.187500 | | • | Cal | 0.01 | ppm | 0.010000 | 65909,328125 | Calib Coef: y=bx+a a: (intercept) 5.1708e+03 b: 6.7062e+06 Corr Coef: 0.999645 Carryover: 0.215% No Drift Peaks # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R4626 **PQL** 0.50 0.50 RunNo: 4626 Prep Date: Analysis Date: 8/2/2012 SeqNo: 129896 Units: mg/L Analyte Chloride Sulfate Result ND ND SPK value SPK Ref Val %REC LowLimit HighLimit %RPD %RPD **RPDLimit** Qual Sample ID MB Prep Date: SampType: MBLK TestCode: EPA Method 300.0: Anions LowLimit Client ID: PBW Batch ID: R4626 Analysis Date: 8/2/2012 RunNo: 4626 HighLimit %REC SeqNo: 129948 Units: mg/L **RPDLimit** Qual Analyte Chloride Sulfate Result **PQL** ND SPK value SPK Ref Val 0.50 ND 0.50 Qualifiers: Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded Н Not Detected at the Reporting Limit Reporting Detection Limit RL E Value above quantitation range Analyte detected below quantitation limits J R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 6 of 18 # Hall Environmental Analysis
Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr | Sample ID 5ml rb | SamaT | ype: Mi | OI K | Tee | tCode: E | PA Method | 8260: Volatil | les Short I | iet | | |-----------------------------|------------|-----------------|-------------|---|----------|-----------|---------------|-------------|----------|------| | Sample ID Silli ID | Sampi | ype. wit | SL R | TestCode: EPA Method 8260: Volatiles Short List | | | | | | | | Client ID: PBW | Batch | n ID: R4 | 783 | F | RunNo: 4 | 783 | | | | | | Prep Date: | Analysis D | ate: 8/ | 8/2012 | S | SeqNo: 1 | 34870 | Units: %RE | C | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Surr: 1,2-Dichloroethane-d4 | 9.0 | | 10.00 | | 89.9 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 10 | | 10.00 | | 104 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 9.6 | | 10.00 | | 96.4 | 70 | 130 | | | | | Surr: Toluene-d8 | 9.9 | | 10.00 | | 99.3 | 70 | 130 | | | | #### Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 7 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr | Sample ID 5ml b | SampT | уре: МЕ | BLK | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | | |--------------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | ID: R4 | 693 | F | RunNo: 4 | 693 | | | | | | Prep Date: | Analysis D | ate: 8/ | 6/2012 | 5 | SeqNo: 1 | 31924 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | | | | | · | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | | 1,2-Dibromoethane (EDB) | ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | Chloroform | ND | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | | 2-Hexanone | ND | 10 | | | | | | | | | | Z-mexatione | ND | 10 | | | | | | | | | ## Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 8 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr | Sample ID 5ml b | SampT | уре: МЕ | BLK | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | | |-----------------------------|------------|-----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------| | Client ID: PBW | Batch | 1D: R4 | 693 | R | RunNo: 40 | 693 | | | | | | Prep Date: | Analysis D | ate: 8/ | 6/2012 | S | SeqNo: 1 | 31924 | Units: µg/L | | | ; | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 10 | | | | | | | | | | Methylene Chloride | ND | 3.0 | | | | | | | | | | n-Butylbenzene | ND | 1.0 | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | | sec-Butylbenzene | ND | 1.0 | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | | | | | | | | | | Tetrachloroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | | Trichloroethene (TCE) | ND | 1.0 | | | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 9.5 | | 10.00 | | 94.5 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 8.7 | | 10.00 | | 86.9 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 10 | | 10.00 | | 101 | 70 | 130 | | | | | Surr: Toluene-d8 | 9.4 | | 10.00 | | 94.1 | 70 | 130 | | | | | Sample ID 1208093-001ams | SampT | ype: MS | <u> </u> | Tes | tCode: El | PA Method | 8260B: VOL | ATILES | | | | Client ID: Injection Well | Batch | n ID: R4 | 693 | F | RunNo: 4 | 693 | | | | | | Sample ID 1208093-001ams | SampT | ype: MS | 3 | Tes | tCode: El | | | | | | |-----------------------------|------------|----------------|-----------|-------------|-----------|----------|-------------|------|----------|------| | Client ID: Injection Well | Batch | 1D: R4 | 693 | F | RunNo: 4 | 693 | | | | | | Prep Date: | Analysis D | ate: 8/ | 6/2012 | S | SeqNo: 1 | 31927 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | 18 | 1.0 | 20.00 | 0 | 92.1 | 66.8 | 128 | | | | | Toluene | 23 | 1.0 | 20.00 | 2.589 | 103 | 70 | 130 | | | | | Chlorobenzene | 20 | 1.0 | 20.00 | 0 | 99.0 | 70 | 130 | | | | | 1,1-Dichloroethene | 19 | 1.0 | 20.00 | 0 | 94.4 | 70 | 130 | | | | | Trichloroethene (TCE) | 18 | 1.0 | 20.00 | 0 | 92.3 | 70 | 130 | | | | | Surr: 1,2-Dichloroethane-d4 | 9.9 | | 10.00 | | 99.2 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.2 | | 10.00 | | 91.7 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 9.8 | | 10.00 | | 98.4 | 70 | 130 | | | | #### Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 9 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 **Client:** Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr Sample ID 1208093-001ams SampType: MS TestCode: EPA Method 8260B: VOLATILES Client ID: Injection Well Batch ID: R4693 RunNo: 4693 Prep Date: Analysis Date: 8/6/2012 SeqNo: 131927 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC %RPD **RPDLimit** LowLimit HighLimit Qual Surr: Toluene-d8 9.4 10.00 93.8 130 Sample ID 1208093-001amsd SampType: MSD TestCode: EPA Method 8260B: VOLATILES Client ID: Injection Well Batch ID: R4693 RunNo: 4693 Prep Date: Analysis Date: 8/6/2012 SeqNo: 131928 Units: µg/L Result **PQL** SPK value SPK Ref Val %REC %RPD Analyte LowLimit HighLimit **RPDLimit** Qual Benzene 19 1.0 20.00 96.2 66.8 128 4.44 16.7 Toluene 23 1.0 20.00 2.589 99.8 70 130 2.96 18.7 Chlorobenzene 19 1.0 20.00 96.2 70 130 19.5 n 2.90 1,1-Dichloroethene 21 1.0 20.00 0 105 70 130 11.0 16.7 Trichloroethene (TCE) 18 1.0 20.00 91.2 70 130 1 19 17.5 10 10.00 102 70 Surr: 1,2-Dichloroethane-d4 130 0 0 8.9 70 Surr: 4-Bromofluorobenzene 10.00 89.3 130 0 0 Surr: Dibromofluoromethane 10 10.00 102 70 130 0 0 Surr: Toluene-d8 9.2 10.00 92.0 70 130 0 0 Sample ID 5ml rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: R4783 RunNo: 4783 Analysis Date: 8/8/2012 Prep Date: SeqNo: 134876 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acetone ND 10 10.00 89.9 70 Surr: 1,2-Dichloroethane-d4 9.0 130 Surr. 4-Bromofluorobenzene 10 10.00 104 70 130 70 Surr: Dibromofluoromethane 9.6 10.00
96.4 130 Surr: Toluene-d8 9.9 10.00 99.3 70 130 | Sample ID b13 | SampType: MBLK | | | TestCode: EPA Method 8260B: VOLATILES | | | | | | | |-----------------------------|-----------------|---------|-----------|---------------------------------------|-------------|----------|-------------|------|----------|-----------| | Client ID: PBW | Batch ID: R4783 | | | F | RunNo: 4783 | | | | | | | Prep Date: | Analysis D | ate: 8/ | 9/2012 | S | SeqNo: 1 | 35116 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acetone | ND | 10 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 9.7 | | 10.00 | | 97.1 | 70 | 130 | | | A Company | | Surr: 4-Bromofluorobenzene | 9.9 | | 10.00 | | 99.3 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 10 | | 10.00 | | 100 | 70 | 130 | | | | | Surr: Toluene-d8 | 9.4 | | 10.00 | | 93.8 | 70 | 130 | | | | #### Qualifiers: - В Analyte detected in the associated Method Blank - Н Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - Ε Value above quantitation range - Analyte detected below quantitation limits - R RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 10 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr | Sample ID b17 | SampType: MBLK | | | Tes | TestCode: EPA Method 8260B: VOLATILES | | | | | | |-----------------------------|------------------------|---------|-----------|-------------|---------------------------------------|----------|-------------|------|----------|------| | Client ID: PBW | Batch ID: R4783 | | | F | RunNo: 4 | 783 | | | | | | Prep Date: | Analysis D | ate: 8/ | 9/2012 | 8 | SeqNo: 1 | 35117 | Units: μg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acetone | ND | 10 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 9.2 | | 10.00 | | 91.8 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.0 | | 10.00 | | 89.7 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 9.6 | | 10.00 | | 95.5 | 70 | 130 | | | | | Surr: Toluene-d8 | 10 | | 10.00 | | 101 | 70 | 130 | | | | #### Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 11 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr | Sample ID 5ml rb | SampType: MBLK | | | Tes | tCode: T | CLP Volatil | es by 8260B | | | | |-----------------------------|-----------------|---------|-----------|-------------|----------|-------------|-------------|------|----------|------| | Client ID: PBW | Batch ID: R4783 | | | RunNo: 4783 | | | | | | | | Prep Date: | Analysis D | Date: 8 | /8/2012 | S | eqNo: 1 | 34943 | Units: %RE | С | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Surr: 1,2-Dichloroethane-d4 | 0.0090 | | 0.2000 | | 4.50 | 70 | 130 | | | S | | Surr: 4-Bromofluorobenzene | 0.010 | | 0.2000 | | 5.20 | 73 | 131 | | | S | | Surr: Dibromofluoromethane | 0.0096 | | 0.2000 | | 4.82 | 70 | 130 | | | S | | Surr: Toluene-d8 | 0.0099 | | 0.2000 | | 4.96 | 70 | 130 | | | S | - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits # Hall Environmental Analysis Laboratory, Inc. WO#: 1 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr | Sample ID mb-3177 | SampT | ype: MBLK | TestCode: EPA Method 8270C: Semivolatiles | |-----------------------------|------------|-------------------|--| | Client ID: PBW | | i ID: 3177 | RunNo: 4706 | | Prep Date: 8/3/2012 | Analysis D | ate: 8/7/2012 | SeqNo: 132557 Units: μg/L | | Analyte | Result | PQL SPK value | e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual | | Acenaphthene | ND | 10 | | | Acenaphthylene | ND | 10 | | | Aniline | ND | 10 | | | Anthracene | ND | 10 | | | Azobenzene | ND | 10 | | | Benz(a)anthracene | ND | 10 | | | Benzo(a)pyrene | ND | 10 | | | Benzo(b)fluoranthene | ND | 10 | | | Benzo(g,h,i)perylene | ND | 10 | | | Benzo(k)fluoranthene | ND | 10 | | | Benzoic acid | ND | 20 | | | Benzyl alcohol | ND | 10 | | | Bis(2-chloroethoxy)methane | ND | 10 | | | Bis(2-chloroethyl)ether | ND | 10 | | | Bis(2-chloroisopropyl)ether | ND | 10 | | | Bis(2-ethylhexyl)phthalate | ND | 10 | | | 4-Bromophenyl phenyl ether | ND | 10 | | | Butyl benzyl phthalate | ND | 10 | | | Carbazole | ND | 10 | | | 4-Chioro-3-methylphenol | ND | 10 | | | 4-Chloroaniline | ND | 10 | | | 2-Chloronaphthalene | ND | 10 | | | 2-Chlorophenol | ND | 10 | | | 4-Chlorophenyl phenyl ether | ND | 10 | | | Chrysene | ND | 10 | | | Di-n-butyl phthalate | ND | 10 | | | Di-n-octyl phthalate | ND | 10 | | | Dibenz(a,h)anthracene | ND | 10 | | | Dibenzofuran | ND | 10 | | | 1,2-Dichlorobenzene | ND | 10 | | | 1,3-Dichlorobenzene | ND | 10 | | | 1,4-Dichlorobenzene | ND | 10 | | | 3,3´-Dichlorobenzidine | ND | 10 | | | Diethyl phthalate | ND | 10 | | | Dimethyl phthalate | ND | 10 | | | 2,4-Dichlorophenol | ND | 20 | | | 2,4-Dimethylphenol | ND | 10 | | | 4,6-Dinitro-2-methylphenol | ND | 20 | | | 2,4-Dinitrophenol | ND | 20 | | | 2,4-Dinitrotoluene | ND | 10 | | | 2,6-Dinitrotoluene | ND | 10 | | | 2,0 Dillinotolide lie | 110 | 10 | | #### Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 13 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr | Sample ID mb-3177 | SampTyp | e: MBLK | Tes | tCode: EPA Method | 8270C: Semi | volatiles | | | |----------------------------|---------------|--------------------|-------------|----------------------|-------------|-----------|----------|------| | Client ID: PBW | Batch ID | D: 3177 | F | RunNo: 4706 | | | | | | Prep Date: 8/3/2012 | Analysis Date | e: 8/7/2012 | | SeqNo: 132557 | Units: µg/L | | | | | Analyte | | | SPK Ref Val | %REC LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Fluoranthene | ND | 10 | | | | | | | | Fluorene | ND | 10 | | | | | | | | Hexachlorobenzene | ND | 10 | | | | | | | | Hexachlorobutadiene | ND | 10 | | | | | | | | Hexachlorocyclopentadiene | ND | 10 | | | | | | | | Hexachloroethane | ND | 10 | | | | | | | | Indeno(1,2,3-cd)pyrene | ND | 10 | | | | | | | | Isophorone | ND | 10 | | | | | | | | 1-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylphenol | ND | 10 | | | | | | | | 3+4-Methylphenol | ND | 10 | | | | | | | | N-Nitrosodi-n-propylamine | ND | 10 | | | | | | | | N-Nitrosodimethylamine | ND | 10 | | | | | | | | N-Nitrosodiphenylamine | ND | 10 | | | | | | | | Naphthalene | ND | 10 | | | | | | | | 2-Nitroaniline | ND | 10 | | | | | | | | 3-Nitroaniline | ND | 10 | | | | | | | | 4-Nitroaniline | ND | 20 | | | | | | | | Nitrobenzene | ND | 10 | | | | | | | | 2-Nitrophenol | ND | 10 | | | | | | | | 4-Nitrophenol | ND | 10 | | | | | | | | Pentachiorophenol | ND | 20 | | | | | | | | Phenanthrene | ND | 10 | | | | | | | | Phenol | ND | 10 | | | | | | | | Pyrene | ND | 10 | | | | | | | | Pyridine | ND | 10 | | | | | | | | 1,2,4-Trichlorobenzene | ND | 10 | | | | | | | | 2,4,5-Trichlorophenol | ND | 10 | | | | | | | | 2,4,6-Trichlorophenol | ND | 10 | | | | | | | | Surr: 2,4,6-Tribromophenol | 170 | 200. | 0 | 87.4 44.2 | 126 | | | | | Surr: 2-Fluorobiphenyl | 80 | 100. | 0 | 79.9 37 | 114 | | | | | Surr: 2-Fluorophenol | 110 | 200. | 0 | 56.1 23.4 | 98 | | | | | Surr: 4-Terphenyl-d14 | 83 | 100. | 0 , , | 82.8 41.3 | 116 | | | | | Surr: Nitrobenzene-d5 | 87 | 100. | 0 | 86.8 39.5 | 118 | | | | | Surr: Phenol-d5 | 99 | 200. | | 49.4 20.9 | 95.9 | | | | | | | | | | | | | | #### Qualifiers: - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 14 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Result **Project:** Injection Well 3rd Qtr Sample ID MB-3160 Prep Date: 8/2/2012 SampType: MBLK TestCode: EPA Method 7470: Mercury Client ID: Batch ID: 3160 PQL RunNo: 4640 SPK value SPK Ref Val %REC LowLimit Analysis Date: 8/3/2012 SeqNo: 130457 Units: mg/L HighLimit %RPD **RPDLimit** Qual Analyte Mercury ND 0.00020 #### Qualifiers: - Analyte detected in the associated Method Blank - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit - Reporting Detection Limit - Е Value above quantitation range - Analyte detected below quantitation limits J - R RPD outside accepted recovery limits - Spike Recovery outside accepted recovery
limits Page 15 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr | Sample ID MB-3199 Client ID: PBW | | • | Type: ME
th ID: 31 ! | | | tCode: E | | Total Recoverable Metals | | | | | | | |----------------------------------|----------|------------|---------------------------------------|-----------|-------------|----------|----------|--------------------------|------|----------|------|--|--|--| | Prep Date: | 8/6/2012 | Analysis I | Date: 8/ | 14/2012 | S | SeqNo: 1 | 36952 | Units: mg/L | | | | | | | | Analyte | | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | | | | Arsenic | | ND | 0.020 | | | | | | | | | | | | | Barium | | ND | 0.020 | | | | | | | | | | | | | Cadmium | | ND | 0.0020 | | | | | | | | | | | | | Calcium | | ND | 1.0 | | | | | | | | | | | | | Chromium | | ND | 0.0060 | | | | | | | | | | | | | Lead | | ND | 0.0050 | | | | | | | | | | | | | Magnesium | | ND | 1.0 | | | | | | | | | | | | | Potassium | | ND | 1.0 | | | | | | | | | | | | | Selenium | | ND | 0.050 | | | | | | | | | | | | | Silver | | ND | 0.0050 | | | | | | | | | | | | | Sodium | | ND | 1.0 | | | | | | | | | | | | - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RL Reporting Detection Limit - E Value above quantitation range - J Analyte detected below quantitation limits - R RPD outside accepted recovery limits - S Spike Recovery outside accepted recovery limits # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 3rd Qtr Sample ID mb-1 SampType: MBLK TestCode: SM2320B: Alkalinity LowLimit Client ID: PBW Batch ID: R4833 **PQL** 20 SPK value SPK Ref Val RunNo: 4833 Units: mg/L CaCO3 %RPD Prep Date: Analyte Analysis Date: 8/13/2012 SeqNo: 136497 %REC HighLimit **RPDLimit** Qual Total Alkalinity (as CaCO3) ND Result Qualifiers: В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Reporting Detection Limit E Value above quantitation range J Analyte detected below quantitation limits R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 17 of 18 # Hall Environmental Analysis Laboratory, Inc. WO#: 1208093 30-Aug-12 Client: Western Refining Southwest, Inc. Project: Injection Well 3rd Qtr Sample ID MB-3211 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: PBW Batch ID: 3211 **PQL** RunNo: 4720 Prep Date: 8/6/2012 Result Analyte Analysis Date: 8/8/2012 SeqNo: 132985 %REC LowLimit LowLimit Units: mg/L HighLimit **RPDLimit** Qual Total Dissolved Solids ND 20.0 SampType: MS TestCode: SM2540C MOD: Total Dissolved Solids Client ID: Injection Well Sample ID 1208093-001CMS Batch ID: 3211 PQL 40.0 RunNo: 4720 %REC Prep Date: 8/6/2012 Result 4740 Result 4770 Analyte **Total Dissolved Solids** Analysis Date: 8/8/2012 SeqNo: 132996 100 Units: mg/L HighLimit 120 %RPD **RPDLimit** Qual Qual Sample ID 1208093-001CMSD SampType: MSD TestCode: SM2540C MOD: Total Dissolved Solids %RPD Client ID: Injection Well Batch ID: 3211 RunNo: 4720 Prep Date: 8/6/2012 SeqNo: 132997 Units: mg/L Analyte Analysis Date: 8/8/2012 HighLimit 120 SPK value SPK Ref Val 2742 %REC LowLimit %RPD **RPDLimit** Total Dissolved Solids **PQL** 40.0 2000 2742 SPK value SPK Ref Val SPK value SPK Ref Val 2000 101 80 0.505 20 ## Qualifiers: - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit - Reporting Detection Limit - Value above quantitation range Е - J Analyte detected below quantitation limits - RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 18 of 18 Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com # Sample Log-In Check List | Clie | nt Name: | Western Refining Sou | thwest, Inc Bloomfield | Work Or | der N | Numb | oer. | 1208093 | |------|----------------|--|----------------------------|----------------|------------|------|----------------------|--| | Rec | eived by/date | * KMS | 00/01/12 | | | | | | | Log | ged By: | Lindsay Mangin | 8/1/2012 9:30:00 AM | A | | | 0 | yth y o | | Con | npleted By: | Lindsay Mangin | 8/2/2012 12:55:15 P | M | | | 0 | yndys
yrthys | | Rev | iewed By: | | 08/02/12 | | | | | • | | Cha | in of Cust | tody | , | | | | | | | 1. | Were seals | intact? | | Yes | | No | · ; | Not Present ✓ | | 2. | Is Chain of C | Custody complete? | | Yes | | No | : ; | Not Present | | 3. | How was the | e sample delivered? | | UPS | | | | | | Log | <u>In</u> | | | | | | | | | 4. | Coolers are | present? (see 19. for coo | oler specific information) | Yes | v | No | ; | NA : | | 5. | Was an atte | empt made to cool the sa | mples? | Yes | · V | No | 1 : | NA ! | | 6. | Were all sar | mples received at a temp | erature of >0° C to 6.0°C | Yes | | | | NA ! ! | | 7 | Sample(s) in | n proper container(s)? | | Approve
Yes | | | | | | | | ample volume for indicate | vd taet/e\2 | Yes | | | 1 : | | | ٠. | | s (except VOA and ONG) | | Yes | | | | | | | • | vative added to bottles? | , properly preserved: | Yes | | | ~ | NA : | | 11. | VOA vials h | ave zero headspace? | | Yes | M | No | | No VOA Vials | | 12. | Were any sa | ample containers receive | d broken? | Yes | ! } | Nο | | ! | | 13. | | work match bottle labels?
epancies on chain of cust | | Yes | / | No | | # of preserved
bottles checked
for pH: | | 14. | Are matrice: | s correctly identified on C | Chain of Custody? | Yes | ~ | No | 1 ! | (<2 or >12 unless noted) | | 15. | Is it clear wh | hat analyses were reques | sted? | Yes | | No | i I | Adjusted? | | 16. | | iding times able to be me | | Yes | ~ | No | 1 | | | C | | customer for authorization | on.) | | | | | Checked by: | | | | ling (if applicable) | | | , , | | | | | 17. | Was client r | notified of all discrepancie | es with this order? | Yes | ! ! | No | ; ! | NA I ∕ F | | | Person | Notified: Buck | Date: | : [| | | A PRINT OF THE PARTY | Assault mer deserted | | | By Wh | iom: | Via: | eMa | if : | Pr | one, | Y Fax In Person | | | Regard | Jun | Me-kmp | | | | | | | | Client | Instructions: | sed w/analys | ZV | _ | 1 | | | | 18. | Additional re | emarks: | sed w/analys | HT 0 | 8/0 | 2/(| 2 | | | | | | | | | | | | | 19 | Cooler Info | rmation | | | | | | | | | Castanti | - I = so I o | ا بن ما، بدرما | | | | | 1 | Yes | | ANALYSIS LABORATORY | www.hallenvironme | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis Request | (ro) | o se | SBS (20 P) | HAT + (A) (A) (A) (A) | BEE 480 | BTEX + MT BTEX + MT TPH Method R260B (PNA R310 | | X | X | | | × | X | X | | Daye Time Remarks: | Date Time | |-------------------------|---------------------|----------------------|---|------------------------------------|-----------------------|----------------|----------------|--|---------------------------|--------------|--|-------------------------------|---------------|---------|--------|---------------|---------------|--------------------|----------|--|--|------------------| | Turn-Around Time: | □ Rush | Project Name: 32 OTR | Dion Well | | | | | | | | r Preservative + + + X X X X X X X X X X X X X X X X | 3-10A HCI -COI | 1-liter amber | 1-500m) | 1-50m/ | 1-350m/ H2504 | 1-500m1 Na OH | 1-500m (Zw
ACIATA | | | | | | Chain-of-Custody Record | | <u>d</u> | Mailing Address: #50 CR 4990 | Bloomfleld NM 87413 Pr | Phone #: 505-632-4135 | email or Fax#: | QA/QC Package: | ☐ Standard ★ Level 4 (Full Validation) | Accreditation S: | □ EDD (Type) | Matrix Sample Request ID | 731/2 /:30 H20 INJECTION WELL | | | | | | | 7 | | Date: Time: Relinquished by: 7-31-12 3:80 Reb Knoken | telinquished by: | Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com November 07, 2012 Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911 RE: Injection Well 10-11-12 OrderNo.: 1210682 #### Dear Kelly Robinson: Hall Environmental Analysis Laboratory received 1 sample(s) on 10/12/2012 for the analyses presented in the following report. These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time. Please don't hesitate to contact HEAL for any additional information or clarifications. Sincerely, Andy Freeman Laboratory Manager andyl 4901 Hawkins NE Albuquerque, NM 87109 Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Workorder Sample Summary WO#: 1210682 07-Nov-12 **CLIENT:** Western Refining Southwest, Inc. Project: Injection Well 10-11-12 | Lab SampleID | Client Sample ID | Tag No | Date Collected | Date Received | Matrix | |--------------|------------------|--------|-----------------------|------------------------|---------| | 1210682-001 | Injection Well | | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous | | 1210682-001 | Injection Well | | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous | | 1210682-001 | Injection Well | | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous | | 1210682-001 | Injection Well | | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous | | 1210682-001 | Injection Well | | 10/11/2012 9:00:00 AM | 10/12/2012 10:30:00 AM | Aqueous | # Hall Environmental Analysis Laboratory, Inc. Date Reported: 11/7/2012 **CLIENT:** Western Refining Southwest, Inc. Client Sample ID: Injection Well Injection Well 10-11-12 **Project:** **Collection Date:** 10/11/2012 9:00:00 AM Lab ID: 1210682-001 Matrix: AQUEOUS Received Date: 10/12/2012 10:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-------------------------------|--------|---------|----------|-----|------------------------| | EPA METHOD 300.0: ANIONS | | | | | Analyst: JRR | | Chloride | 1200 | 50 | mg/L | 100 | 10/13/2012 1:23:58 PM | | Sulfate | 37 | 5.0 | mg/L | 10 | 10/13/2012 1:11:34 PM | | EPA METHOD 7470: MERCURY | | | | | Analyst: IDC | | Mercury | \ ND | 0.00020 | mg/L | 1 | 10/30/2012 6:06:43 PM | | EPA 6010B: TOTAL RECOVERABLE | METALS | | | | Analyst: JLF | | Arsenic | ND | 0.020 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Barium | 0.41 | 0.020 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Cadmium | ND | 0.0020 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Calcium | 150 | 5.0 | mg/L | 5 | 10/18/2012 10:54:52 AM | | Chromium | ND | 0.0060 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Lead | ND | 0.0050 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Magnesium | 44 | 1.0 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Potassium | 14 | 1.0 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Selenium | ND | 0.050 | mg/L | 1 | 10/24/2012 2:15:44 PM | | Silver | ND | 0.0050 | mg/L | 1 | 10/18/2012 10:44:05 AM | | Sodium | 670 | 10 | mg/L | 10 | 10/18/2012 11:19:04 AM | | EPA METHOD 8270C: SEMIVOLATIL | _ES | | | | Analyst: JDC | | Acenaphthene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Acenaphthylene | NĐ | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Aniline | NĐ | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Anthracene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Azobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benz(a)anthracene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzo(a)pyrene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzo(b)fluoranthene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzo(g,h,i)perylene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzo(k)fluoranthene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzoic acid | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Benzyl alcohol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Bis(2-chloroethoxy)methane | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Bis(2-chloroethyl)ether | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Bis(2-chloroisopropyl)ether | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Bis(2-ethylhexyl)phthalate | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 4-Bromophenyl phenyl ether | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Butyl benzyl phthalate | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Carbazole | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 4-Chloro-3-methylphenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 4-Chloroaniline | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Chloronaphthalene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Chlorophenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | - Value exceeds Maximum Contaminant Level. - Ε Value above quantitation range - Analyte detected below quantitation limits J - Sample pH greater than 2 - Reporting Detection Limit RL - Analyte detected in the associated Method Blank - Holding times for preparation or analysis exceeded Н - Not Detected at the Reporting Limit ND - RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits 2 of 19 # **Analytical Report** #### Lab Order 1210682 Date Reported: 11/7/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well Project: Injection Well 10-11-12 Collection Date: 10/11/2012 9:00:00 AM Lab ID: 1210682-001 Matrix: AQUEOUS Received Date: 10/12/2012 10:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|-------|--------------|-----|-----------------------| | EPA METHOD 8270C: SEMIVOLA | TILES | | | | Analyst: JDC | | 4-Chlorophenyl phenyl ether | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Chrysene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PN | | Di-n-butyl phthalate | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Di-n-octyl phthalate | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Dibenz(a,h)anthracene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Dibenzofuran | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 1,2-Dichlorobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 1,3-Dichlorobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 1,4-Dichlorobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 3,3'-Dichlorobenzidine | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Diethyl phthalate | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Dimethyl phthalate | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2,4-Dichlorophenol | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2,4-Dimethylphenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 4,6-Dinitro-2-methylphenol | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2,4-Dinitrophenol | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2,4-Dinitrotoluene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2,6-Dinitrotoluene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Fluoranthene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PI | | Fluorene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PI | | Hexachlorobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Hexachlorobutadiene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Hexachlorocyclopentadiene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Hexachloroethane | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Indeno(1,2,3-cd)pyrene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Isophorone | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 1-Methylnaphthalene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Methylnaphthalene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Methylphenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 3+4-Methylphenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | N-Nitrosodi-n-propylamine | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | N-Nitrosodimethylamine | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | N-Nitrosodiphenylamine | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Naphthalene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Nitroaniline | ND | 50 | μg/ L | · 1 | 10/20/2012 7:09:26 PM | | 3-Nitroaniline | ND | 50 | μg/ L | 1 | 10/20/2012 7:09:26 PM | | 4-Nitroaniline | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Nitrobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 2-Nitrophenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | 4-Nitrophenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Pentachlorophenol | ND | 100 | μg/L | 1 | 10/20/2012 7:09:26 PM | | Phenanthrene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - RL Reporting Detection Limit - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - R RPD
outside accepted recovery limits - S Spike Recovery outside accepted recovery limits Page 3 of 19 # Lab Order 1210682 Date Reported: 11/7/2012 # Hall Environmental Analysis Laboratory, Inc. CLIENT: Western Refining Southwest, Inc. Injection Well 10-11-12 Lab ID: 1210682-001 Project: Client Sample ID: Injection Well **Collection Date:** 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM | Analyses | Result | Result RL Qual | | DF | Date Analyzed | | | |--------------------------------|--------|----------------|--------------|-----|---------------------------------------|--|--| | EPA METHOD 8270C: SEMIVOLATII | _ES | | | | Analyst: JDC | | | | Phenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | Pyrene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | Pyridine | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | 1,2,4-Trichlorobenzene | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | 2,4,5-Trichlorophenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | 2,4,6-Trichlorophenol | ND | 50 | μg/L | 1 | 10/20/2012 7:09:26 PM | | | | Surr: 2,4,6-Tribromophenol | 98.5 | 42.9-124 | %REC | 1 | 10/20/2012 7:09:26 PM | | | | Surr: 2-Fluorobiphenyl | 84.5 | 40-108 | %REC | 1 | 10/20/2012 7:09:26 PN | | | | Surr: 2-Fluorophenol | 72.0 | 23.6-94.8 | %REC | 1 | 10/20/2012 7:09:26 PM | | | | Surr: 4-Terphenyl-d14 | 85.9 | 41.9-103 | %REC | 1 | 10/20/2012 7:09:26 PN | | | | Surr: Nitrobenzene-d5 | 100 | 42.6-114 | %REC | 1 | 10/20/2012 7:09:26 PM | | | | Surr: Phenol-d5 | 57.0 | 20.3-74.7 | %REC | 1 | 10/20/2012 7:09:26 PM | | | | EPA METHOD 8260B: VOLATILES | | | | | Analyst: MM | | | | Benzene | ND | 10 | μg/ L | 10 | 10/19/2012 1:17:34 PM | | | | Toluene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Ethylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Methyl tert-butyl ether (MTBE) | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1,2,4-Trimethylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1,3,5-Trimethylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1,2-Dichloroethane (EDC) | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1,2-Dibromoethane (EDB) | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Naphthalene | ND | 20 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1-Methylnaphthalene | ND | 40 | μg/L | 10 | 10/19/2012 1:17:34 PI | | | | 2-Methylnaphthalene | ND | 40 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Acetone | 130 | 100 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Bromobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Bromodichloromethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Bromoform | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Bromomethane | ND | 30 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 2-Butanone | ND | 100 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Carbon disulfide | ND | 100 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Carbon Tetrachloride | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Chlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Chloroethane | ND | 20 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Chloroform | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | Chloromethane | ND | 30 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 2-Chlorotoluene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 4-Chlorotoluene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | cis-1,2-DCE | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PI | | | | cis-1,3-Dichloropropene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | | | 1,2-Dibromo-3-chloropropane | | | F-3- | • - | · · · · · · · · · · · · · · · · · · · | | | Matrix: AQUEOUS - Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - Sample pH greater than 2 - Reporting Detection Limit RL - Analyte detected in the associated Method Blank В - Holding times for preparation or analysis exceeded Н - ND Not Detected at the Reporting Limit - RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 4 of 19 #### **Analytical Report** Lab Order 1210682 Date Reported: 11/7/2012 # Hall Environmental Analysis Laboratory, Inc. **CLIENT:** Western Refining Southwest, Inc. Client Sample ID: Injection Well **Project:** Injection Well 10-11-12 **Collection Date:** 10/11/2012 9:00:00 AM Lab ID: 1210682-001 Matrix: AQUEOUS Received Date: 10/12/2012 10:30:00 AM | Analyses | Result | RL Qu | al Units | DF | Date Analyzed | |-----------------------------|--------|--------|----------|----|-----------------------| | EPA METHOD 8260B: VOLATILES | | | | | Analyst: MMS | | Dibromochloromethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Dibromomethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,2-Dichlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,3-Dichlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,4-Dichlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Dichlorodifluoromethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1-Dichloroethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1-Dichloroethene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,2-Dichloropropane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,3-Dichloropropane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 2,2-Dichloropropane | ND | 20 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1-Dichloropropene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Hexachlorobutadiene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 2-Hexanone | ND | 100 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Isopropylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 4-Isopropyltoluene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 4-Methyl-2-pentanone | ND | 100 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Methylene Chloride | ND | 30 | μg/L | 10 | 10/19/2012 1:17:34 PM | | n-Butylbenzene | ND | 30 | μg/L | 10 | 10/19/2012 1:17:34 PM | | n-Propylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | sec-Butylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Styrene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | tert-Butylbenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1,1,2-Tetrachloroethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1,2,2-Tetrachloroethane | ND | 20 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Tetrachloroethene (PCE) | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | trans-1,2-DCE | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | trans-1,3-Dichloropropene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,2,3-Trichlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,2,4-Trichlorobenzene | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1,1-Trichloroethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,1,2-Trichloroethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Trichloroethene (TCE) | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Trichlorofluoromethane | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | 1,2,3-Trichloropropane | ND | 20 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Vinyl chloride | ND | 10 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Xylenes, Total | ND | 15 | μg/L | 10 | 10/19/2012 1:17:34 PM | | Surr: 1,2-Dichloroethane-d4 | 95.9 | 70-130 | %REC | 10 | 10/19/2012 1:17:34 PM | | Surr: 4-Bromofluorobenzene | 102 | 70-130 | %REC | 10 | 10/19/2012 1:17:34 PM | | Surr: Dibromofluoromethane | 102 | 70-130 | %REC | 10 | 10/19/2012 1:17:34 PM | | Surr: Toluene-d8 | 96.0 | 70-130 | %REC | 10 | 10/19/2012 1:17:34 PM | - Value exceeds Maximum Contaminant Level. - Ε Value above quantitation range - Analyte detected below quantitation limits J - Sample pH greater than 2 - RLReporting Detection Limit - В Analyte detected in the associated Method Blank - Η Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits 5 of 19 #### **Analytical Report** #### Lab Order 1210682 Date Reported: 11/7/2012 # Hall Environmental Analysis Laboratory, Inc. **CLIENT:** Western Refining Southwest, Inc. Injection Well 10-11-12 Project: Lab ID: 1210682-001 Client Sample ID: Injection Well **Collection Date:** 10/11/2012 9:00:00 AM Received Date: 10/12/2012 10:30:00 AM | Analyses | Result | RL Qua | l Units | DF | Date Analyzed | |--------------------------------|--------|--------|------------|----|------------------------| | EPA 120.1: SPECIFIC CONDUCTANO | CE | | | | Analyst: JML | | Conductivity | 4600 | 0.010 | µmhos/cm | 1 | 10/15/2012 12:32:45 PM | | SM4500-H+B: PH | | | | | Analyst: JML | | pН | 7.35 | 1.68 H | pH units | 1 | 10/15/2012 12:32:45 PM | | SM2320B: ALKALINITY | | | | | Analyst: JML | | Bicarbonate (As CaCO3) | 510 | 20 | mg/L CaCO3 | 1 | 10/15/2012 12:32:45 PM | | Carbonate (As CaCO3) | ND | 2.0 | mg/L CaCO3 | 1 | 10/15/2012 12:32:45 PM | | Total Alkalinity (as CaCO3) | 510 | 20 | mg/L CaCO3 | 1 | 10/15/2012 12:32:45 PM | | SM2540C MOD: TOTAL DISSOLVED | SOLIDS | | | | Analyst: KS | | Total Dissolved Solids | 2910 | 100 | mg/L | 1 | 10/16/2012 7:08:00 PM | Matrix: AQUEOUS #### Qualifiers: - Value exceeds Maximum Contaminant Level. - Е Value above quantitation range Reporting Detection Limit - Analyte detected below quantitation limits - Sample pH greater than 2 P RL - Analyte detected in the associated Method Blank В - Holding times for preparation or analysis exceeded Н - Not Detected at the Reporting Limit ND - RPD outside accepted recovery limits - Spike Recovery outside accepted recovery limits Page 6 of 19 #### CASE NARRATIVE #### November 2, 2012 Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 www.anateklabs.com FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM Project Tracking No.: 1210682 Anatek Batch: 121017011 Project Summary: One (1) water sample was received on 10/11/2012 for reactive cyanide, reactive sulfide, pH, and flashpoint analysis. The sample was
received with appropriate chain of custody at 4.5C. Client Sample ID 1210682-001E / Injection Well Anatek Sample ID 121017011-001 Method/Prep Method EPA 1010/150.1/SW 846 CH7 #### **QA/QC Checks** | Parameters | Yes / No | Exceptions / Deviations | |-------------------------------------|----------|-------------------------| | Sample Holding Tirne Valid? | Y | NA | | Surrogate Recoveries Valid? | Υ | NA | | QC Sample(s) Recoveries Valid? | Υ | NA | | Method Blank(s) Valid? | Υ | NA | | Tune(s) Valid? | NA | NA | | Internal Standard Responses Valid? | NA | NA | | Initial Calibration Curve(s) Valid? | Υ | NA | | Continuing Calibration(s) Valid? | Υ | NA | | Comments: | · Y | NA | #### 1. Holding Time Requirements No problems encountered. #### 2. GC/MS Tune Requirements N/A #### 3. Calibration Requirements No problems encountered. #### 4. Surrogate Recovery Requirements N/A. #### 5. QC Sample (LCS/MS/MSD) Recovery Requirements No problems encountered. #### 6. Method Blank Requirements No problems encountered. | 7. I | Internal | Standard(| s) Res | ponse | Require | ements | |------|----------|-----------|--------|-------|---------|--------| |------|----------|-----------|--------|-------|---------|--------| N/A. #### 8. Comments No problems encountered. I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee. Approved by: Page 2 of 16 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 121017011 Address: 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 **Project Name:** 1210682 Attn: ANDY FREEMAN #### Analytical Results Report Sample Number 121017011-001 Sampling Date 10/11/2012 Date/Time Received 10/16/2012 1:05 PM Sampling Time 9:00 AM Cilent Sample ID 1210682-001E / INJECTION WELL Sample Location Matrix Comments | Parameter | Result | Units | PQI. | Analysis Date | Analyst | Method | Qualifier | |--------------------|--------|----------|------|---------------|---------|-----------|-----------| | Cyanide (reactive) | ND | mg/L | 0.1 | 10/22/2012 | CRW | SW846 CH7 | | | Flashpoint | >200 | °F | | 10/25/2012 | KFG | EPA 1010 | | | pH | 7.37 | ph Units | | 10/18/2012 | ETL | EPA 150.1 | | | Reactive sulfide | 6.43 | mg/L | 1 | 10/24/2012 | JΠ | SW846 CH7 | | **Authorized Signature** MCL **EPA's Maximum Contaminant Level** ND Not Detected PQL Practical Quantitation Limit This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted. Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #: 121017011 Address: 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name: 1210682 Attn: ANDY FREEMAN **Analytical Results Report** **Quality Control Data** | Lab Control Sample | | | | | | | | | | | |--|------------------------|------------|---------------|--------------|------|-------------|---------------------|------------------|--------------------------|-----------------------------| | Parameter | LCS Result | t Unite | LCS | Spike | %Rec | AR | %Rec | Prep | Date | Analysis Date | | Reactive sulfide | 0.180 | mg/L | . (| 0.2 | 90.0 | 70 | -130 | 10/24 | /2012 | 10/24/2012 | | Cyanide (reactive) | 0.487 | mg/L | . (| 0.5 | 97.4 | 80 | -120 | 10/22 | 2/2012 | 10/22/2012 | | Lab Control Sample Duplicate | | - | | | | | - | | | | | Parameter | LCSD | Units | LCSD | 0/5 | %RF | | AR | Duam I | >-4- | luahada Data | | Reactive suffice | Result
0.180 | mg/L | Spike
0.2 | %Rec
90.0 | 0.0 | | 6RPD
0-25 | Prep [
10/24/ | | Analysis Date
10/24/2012 | | Matrix Spike | | | | | | | - | | | | | | | Sample | MS | | | MS | | AR | | | | Sample Number Parameter | | Result | Result | Unit | _ | Spike | %Rec | %Rec | Prep Date | - | | 121017011-001 Reactive sulfide
121017011-001 Cyanide (reactive) | | 6.43
ND | 12.9
0.453 | mg/l
mg/l | | 8.03
0.5 | 80.6
90.6 | 70-130 | 10/24/2012
10/22/2012 | | | 121017011-001 Gyanide (leactive) | | 140 | 0.433 | nig/i | | 0.0 | 90.0 | 00-120 | 10/22/2012 | 10/22/2012 | | Matrix Spike Duplicate | | | | | | | | | | | | Parameter | MSD | Units | MSD | %R | 1 | %RPD | AR | . D | n Dete | Analysis Data | | Cyanide (reactive) | Result
0.468 | mg/L | Spike
0.5 | 93. | | 3.3 | %RPD
0-25 | | p Date
22/2012 | Analysis Date
10/22/2012 | | | | | | | | | | | | | | Method Blank | | | | | | | | | | | | Parameter | | Re | sult | Ur | nits | | PQL | Pi | rep Date | Analysis Date | | Cyanide (reactive) | | N | ID | mį | g/L | | 0.1 | 10/ | 22/2012 | 10/22/2012 | | Reactive sulfide | | ٨ | ID | mg | µ/kg | | 1 | 10/ | 24/2012 | 10/24/2012 | AR Acceptable Range ND Not Detected PQL Practical Quantitation Limit RPD Relative Percentage Difference #### Comments: Cartifications held by Anstek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Cartifications held by Anstek Lebs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095 # Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com # Login Report Customer Name: HALL ENVIRONMENTAL ANALYSIS LAB Order ID: 121017011 4901 HAWKINS NE SUITE D Order Date: 10/17/2012 ALBUQUERQUE 87109 NM Contact Name: ANDY FREEMAN Project Name: 1210682 Comment: Sample #: 121017011-001 Customer Sample #: 1210682-001E / INJECTION WELL Recv'd: Collector: Date Collected: 10/11/201 Quantity: Matrix: Water Date Received: 10/16/2012 1:05:00 P Comment: | Test | Lab | Method | Due Date | Priority | |------------------|-----|-----------|------------|--------------------| | CYANIDE REACTIVE | М | SW846 CH7 | 10/26/2012 | Normal (6-10 Days) | | FLASHPOINT | М | EPA 1010 | 10/26/2012 | Normal (6-10 Days) | | рН | М | EPA 150.1 | 10/26/2012 | Normal (6-10 Days) | | SULFIDE REACTIVE | M | SW846 CH7 | 10/26/2012 | Normal (6-10 Days) | #### SAMPLE CONDITION RECORD | Samples received in a cooler? | Yes | |---|-----| | Samples received intact? | Yes | | What is the temperature inside the cooler? | 4.5 | | Samples received with a COC? | Yes | | Samples received within holding time? | Yes | | Are all sample bottles properly preserved? | Yes | | Are VOC samples free of headspace? | N/A | | Is there a trip blank to accompany VOC samples? | N/A | | Labels and chain agree? | Yes | 10/11/201 1st RCVD 1210682 1st SAMP 121017 011 11/11 Due 10/26/2012 10/16/2012 ITEM CITY, STATE, ZIP: Moseow, ID 83843 SUB CONTRATOR: Anatek Labs ADDRESS: 10 9 œ 4 ω 6 Ç 1210682-001E Injection Well SAMPLE 1282 Alturas Dr CLIENT SAMPLE ID COMPANY: Anatek Labs, Inc. 500HDPE BOTTLE TYPE MATRIX Aqueous | 10/11/2012 9:00:00 AM | 3 | RCI | LEVEL 4 COLLECTION DATE PHONE: ACCOUNT #: 0 ō 0 (208) 883-2839 MWBS ANALYTICAL COMMENTS EMAIL: FAX (208) 882-9246 Page 6 of 16 **Volinquished By:** kelinquished By: collinguished By: Please include the LAB ID and the CLIENT SAMPLE ID on all TAT: Standard [] Date: 10/15/2012 Time 3-31 PM RUSH 7 DATE & TIME: 10/16/12 13:05 INSPECTED BY: NUMBER OF CONTAINERS - ANATEK LABS RECEIVING LIST - RECEIVED INTACT TEMP: 7.5 C CUSTODY SEALS PRESENT: NO HEADSPACE ICE / ICE-PACKS PRESENT:_ PRESERVATIVES Nach SHIPPED VIA NaOH volers and blue ice. Thank you TA COSE) REPORT TRANSMITTAL DESIRED. FOR LAB USE ONLY ☐ X Attempt to Cool? ☐ HMAIL ONLINE PECIAL INSTRUCTIONS / COMMENTS | Page | # | |------|---| | TaRC | π | # Flashpoint Analysis Sample Matrix - Soil (1), Sludge (2), Oil (3), Water (4), Other (5) | Sample ID | Analyses
Date | Sample
Matrix | Analyst
Initials | Temp - °C | Temp - °F | | |-----------------------------|--|------------------|---------------------|-----------|--------------|-------------| | 20727018-01 | 7/30/2012 | 4/ 1/20 | /3 | | 7205°F | | | 120727029-001 | 8/5/2012 | 5/ Liquid | 124 | | 1450 F | | | -202 | <u> </u> | 1 | 9- | | 14108 | | | 1232322704 | 5/9/23/2 | -/ 7.5 | 1/2 | | 12 1810 1/2 | | | 25207-575-57 | | | | | 1.63°E | | | -777 | <u> </u> | 5 | سسلت | | 7 65° pm | | | 10000000 00-00 - | 2/10/2012 | 5/ Liquid | 20 | | >200°F | | | 20810057-01 | | 4) 430 | WM | | 122807 | | | | 8/29/2012 | 5/Liquid | hur | | 720002 | | | 120830001-04 | | 4/H20 | 241 | | >200°F | | | | 9/04/2012 | 5/Liquid | Man | • | >200°F | | | 2033104300) | | | | | . < 50° F | | | -207. | | | | | 7200°F | | | ~073 | | | | | 3200°F | . 1) | | -00 ⁴ | L | <u></u> | <u> </u> | | -1050f 1150f | رز :
4/4 | | | 0/04/2012 | 5/Ligard | m | | 850F | 147 | | 21004501-001 | | | <u> </u> | | <640 F | | | | 10/08/2012 | 5/Lignid | M | | 135°F | | | -902 | <u> </u> | 4 | مسكن | | 1500F | | | 21717011-00 | 10/25/2012 | 4 Water | pin | | >200°F | | | | | | | | | | | | | | | | | | | MQ1.2.33 | | | , | <u> </u> | | | | | | | |
 | | | | | | | | | | | 1 | | ^{*} SAFETY GLASSES REQUIRED. # pH - SM4500H+B / Alkalinity SM2320B Equivalent EPA Methods 150.1 & 310.1 | Reagent | Solution # | Expires | Method QC | Method QC Requirements: | |----------------------|------------|----------|--------------------------|-------------------------| | pH Buffer 4 (Red) | M854-01 | Sep-13 | pH 7 within 0.1 pH units | LFB/Blank every 10 | | pH Buffer 7 (Yellow) | M854-02 | Dec-13 | Slope 95-102% | MS/MSD Every 20 | | pH Buffer 10 (Blue) | M854-03 | Sep-12 | r | % Recovery 85-115% | | 0.02N H2SO4 Titrant | A046-07 | Apr 2013 | | 1 | | 007858 | ourette: CAT 10uL, sn 600055 - pH Meter: Orion Model 620A, sn 007858 | 600055 - pH Mete | urette: CAT 10uL, sn | Contrib | |----------------------|--|------------------|----------------------|-----------------------| | 100 | 11/18/2012 | 1N | M637-04 | Matrix Spike Solution | | Amount Spiked (mg/L) | Expires | Conc. | Solution # | Standard | | | | Apr 2013 | A046-07 | 0.02N H2SO4 Titrant | | % Recovery 85-115% | | Sep-12 | M854-03 | pH Buffer 10 (Blue) | | MS/MSD Every 20 | Slope 95-102% | Dec-13 | M854-02 | pH Buffer 7 (Yellow) | | LFB/Blank every 10 | pH 7 within 0.1 pH units | Sep-13 | M854-01 | pH Buffer 4 (Red) | | I | | | | | 1 | | | | | | | | | | | _ | |------------------------|------------------------|---------------|-------|------|--------------|------------|---|---|----------|---|---|---|---|---|---|---| | | % | | | | | | | | | | | | | | | | | } | Hydroxide | | | | | | | | | | | | 0 | 0 | 0 | 0 | | Alkalinity (mg/L) | Bł-
carbonate | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | | | 0 | 0 | 0 | | Alkalini | Carbonate | | 0 | | | | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | | Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 (mL) | C
4.2 | | | | | | | | | | | | | | | | | Titrant vol to pH (mL) | B
4.5 | | | | | | | | | | | | | | | | | Titran | A
8.3 | | | | | | | | | | | | | | | | | | Sample
Vol.
(mL) | | | | | | | | | | | | | | | | | | pH 7
Buffer | 7.iO | | | | | | | | | | | | | | | | | Slope | 101.5 | | | | | | | | | | | | | | | | | pH 10
Cal | | | | | | | | | | | , | | | | | | | pH 4
Cal | 3,95 10.00 | | | | | | | <u> </u> | | | | | | | | | | Hd | 2.53 | 7, Si | 80'2 | 187 | be'01 | | | | | | | | | | | | | Temp
(°C) | 8.he | | | | PE.01 2006 | | | | | | | | | | | | | Sample | 100-810110161 | | | 8
 अछान्। | 100-150016 | | | | | | | | | | | Analysis Date: 10-18-13 Initials 3. Iml iodine reacts with 0.4 mg Sulfide 1. 1 blank per batch, must be < 20 ug/L. 2. 1 LFB per batch must be +/- 30%. 21-12.01 Date 121024H25R Concentration (mg/L) 0.0378 0.345 0.180 0.020 0,0799 0.0383 0.1.0 0.0381 12.86 8350.0 1850,0 0.0379 1250-0 Concentration (mg/sample) 0.020 0.350 0.020 0.180 0.160 ORO.O 0.150 0.020 0,000 0,020 0.020 0.020 0.020 0.160 Date Made/Expires 12/31/2009 lodine amount increments) (50 uL 202 450 anh 450 0 254 5 <u>6</u> 20 b 2 B δ Concentration Sample Volume 425 519 224 226 625 424 24.9 aes 1 725 503 To the state of the same of 1% by weight 0.025 N %6.66 Zinc Acetate Indicator < # > - 653 Lodine Starch -165 - 3 MS .20 Sample 5 0)-19049 5 19. 23016.5 8045-7 2001062-8 13011-Page 9 of 16 Comments # otal Cyanide by Semi-Automated Colorimetry lethod: EPA 335.4\SM-4500-CN-E istillation Bench Sheet Weak Acid Dissociable Cyanide by SM 4500-CN-I (check WAD column) otal Cyanide MS/MSD/LCS Soln: ree Cyanide MS/MSD/LCS Soln: M884-06 Exp:10/15/13 M879-06 Exp:9/10/13 Method requirements: All QC +/- 10% Equipment: Midi-vap Instrument: ALPCHEM FIA 3000 Absorbance: 570nm | Sample ID | Matrix | Preserved | Sample
Amount (mL)** | Initial
Multiplier* | Final
Multiplier | Spike Amount
(mL) | WAD?
(check if
yes) | |-----------------|-----------------------|-----------|-------------------------|------------------------|---------------------|----------------------|---------------------------| | 121011-049-4 | Stil DAM | Nubli | 50ml | 28.8 | 28.8 | | | | Yms | 1 | 1 | 1 | BAMA! | | Int | | | Youse | | | | HOUNT. | | | | | -WS | | | | L/X | \ <i>Y</i> | | | | BC | | | | 1 | <u></u> | | | | -5 | | | | 29.1 | 79.9 | | | | -6 | | | | 30.4 | 30,4 | | | | | | | | 78.9 | 28.9 | | | | 12010018-1 | 1 | | | | | | | | 1/2/01/064-2 | WWPen | + | 1 | (X | X | | | | 1/12/18/18/11-1 | WW fan
Mactin soil | Mubil | 50mi | 27-7 | 27.9 | | | | 2 Juns | | | 11 | | 1 | line | | | 3 - miso | | | | 4 | 4 | | | | 1 -WS | | | | \ <u> </u> | 1× | | | | 5 - M | , | | | 4 | ₹ | | | | 3 25-1 | | | | 28.7 | 28.7 | | | | 7. 26-1 | 1 | | | 17.7 | 17.9 | | | | 3/2/017011-1 | en rective | | | 1× | 1× | | | | 3 /lms | | | | | 1 | lagh | | |) lunge | 1 1 | 4 | 4 | 1 1 | 4 | 1 4 | | ^{*} If soils this calculation is taken from cyanide extraction bench sheet. ^{**} If soils, mLs of extract used for distillation. | Extraction Reagents | : Reagent#: | Analytical Reagents: | Reagent #: | |-----------------------|-------------|----------------------|------------| | methyl red indicator | A051-01 | Barbituric Acid | R038-13 | | 18 N H₂SO₄ | A053-08 | Sodium Phosphate | R026-23 | | sulfamic acid | R009-12 | Chloramine-t | R048-09 | | 0.025N NaOH | R014-16 | Pyridine | R043-03 | | 51% MgCl ₂ | A053-07 | | | stillation Initials/Date Distilled: Mw W/W Analyst Initials/Date Analyzed/MW 10/11/12 I'e name: T:\DATA1\FLOW4\2012\EPA335.4\102212C2.RST ate: October 22, 2012 perator: CRW 121022FIACNEW | eak
 | Cup | Name | Type | Dil Wt | A | rea | Calc. | (ppm) | |---------|----------|--------------------------------|------------|-----------------------------|----------|--------------------|-------|----------------------| | | 2 | Sync | SYNC | 1 |
1 | 6896128 | | 0.985156 | | | 0 | Carryover | CO | 1 | 1 | 16248 | | 0.004798 | | | 0 | Carryover | CO | 1 | 1 | -1347 | | 0.002291 | | | 0 | Baseline | RB | 1 | 1 | -5625 | | 0.001681 | | | 2 | Cal 1.00 ppm | C | 1 | 1 | 7026224 | | 1.003694 | | | 2 | Cal 1.00 ppm | C | 1 | 1 | 6923783 | | 0.989097 | | | 2 | Cal 1.00 ppm | C | 1 | 1 | 7012644 | | 1.001759 | | | 0
3 | Baseline
Cal 0.80 ppm | RB
C | 1
1 | 1 | ~4419 | | 0.001853 | | b | 3 | Cal 0.80 ppm | C | 1 | 1
1 | 5734824
5895692 | | 0.819675
0.842598 | | ī | 3 | Cal 0.80 ppm | C | 1 | 1 | 5926719 | | 0.847019 | | _ | Ö | Baseline | RB | 1 | 1 | 6658 | • | 0.003431 | | 3 | 4 | Cal 0.50 ppm | Ç | ī | ī | 3525813 | | 0.504898 | | 4 | 4 | Cal 0.50 ppm | Ċ | 1 | ī | 3503091 | | 0.501661 | | 5 | 4 | Cal 0.50 ppm | С | 1 | · 1 | 3544872 | | 0.507614 | | | 0 | Baseline | RB | 1 | 1 | 7206 | | 0.003509 | | 7 | 5 | Cal 0.05 ppm | С | 1 | 1 | 330488 | | 0.049576 | | 3 | 5 | Cal 0.05 ppm | C | 1 | 1 | 328535 | | 0.049298 | | 9 | 5 | Cal 0.05 ppm | C | 1 | 1 | 326599 | | 0.049022 | | | 0 | Baseline | RB | 1 . | 1 | 3289 | | 0.002951 | | 1 | 6 | Cal 0.01 ppm | C | 1 | 1 | 67522 | | 0.012104 | | 2 | 6 | Cal 0.01 ppm | C | 1 | 1 | 64335 | | 0.011650 | | 3 | 6
0 | Cal 0.01 ppm | C | 1 | 1 | 71374 | | 0.012653 | | 5 | 1 | Baseline
Blank | RB
BLNK | . 1
1 | 1
1 | 2328
-3589 | | 0.002814 | | 6 | 7 | ICV 0.25 ppm | CCA | 1 | 1 | 1812828 | | 0.001971
0.260804 | | 7 | í | Blank | BLNK | ī | ī | 3475 | | 0.002978 | | | ō | Baseline | RB | ī | ī | 3745 | | 0.003016 | | Э | 8 | 121017039-BL | Ū | _
1 | 1 | 21154 | | 0.005497 | | C | 9 | 121017039-001 | U | 1 | 1 | 577 7 | | 0.003306 | | 1 | 10 | 121017039-001MS | U | 1 | 1 | 2830796 | | 0.405861 | | Š | 11 | 121017039-001MS | υ (| 1 | 1 | 2704044 | 4 | 0.387799 | | 3 | 12 | 121017039-LCS | U | 1 | 1 | 3068466 | | 0.439728 | | 4 | 13 | 121017039-002 | Ū | 1 | 1 | 701 | | 0.002582 | | 5 | 3.4 | 121017039-003 | Ü | 1 | 1 | 10956 | | 0.004044 | | 5 | 15 | 121017039-004 | ט | 1 | 1 | 180 | | 0.002508 | | 7
3 | 16
17 | 121011045-001 | ט
ט | 1 | 1 | 4229 | | 0.003085 | | • | ó | 121011047-001
Baseline | RB | 1
1 | 1
1 | -5655
-2539 | | 0.001677
0.002121 | | Э | 1 | Blank | BLNK | 1 | 1 | -6362 | | 0.002121 | | 1 | 4 | CCV 0.5 ppm | CCV | ī | ī | 3683226 | | 0.527329 | | 2 | 1 | Blank | BLNK | ĩ | 1 | -4448 | | 0.001849 | | | 0 | Read Baseline | RB | 1 | 1 | -2614 | | 0.002110 | | 4 | 18 | 121011044-001 | Ü | 1 | 1 | 8811 | | 0.003738 | | 5 | 19 | 121011046-001 | U | 1 | 1 | 17784 | | 0.005017 | | 5 | 20 | 121012023-001 | Ü | 1 | 1 | 19745 | | 0.005296 | | 7 | 21 | 121012023-002 | U | 1 | 1 | 3578 | | 0.002992 | | 3
9 | 22 | 121016064-001 | U | 1 | 1 | 16321 | | 0.004808 | | 2 | 23
24 | 121016064-002
121016064-003 | U | 1 | 1 | 12962 | | 0.004330 | | 1 | 25 | 121016064-003 | U
U | 1
1 | 1
1 | 24899
7742 | | 0.006031 | | 2 | 26 | 121010004-004 | ט | 1 | 1 | 1065183 | | 0.003586
0.154267 | | 3 | 27 | 121017039-006 | Ü | 1 | i | 259646 | | 0.134207 | | ~ | ó | Baseline | RB | ī | 1 | -4918 | | 0.001782 | | 5 | ĺ | Blank | BLNK | ī | ī | -3462 | | 0.001989 | | 5 | 4 | CCV 0.5 ppm | CCV | ī | ī | 3553014 | | 0.508774 | | 7 | 1 | Blank | BLNK | · 1 | 1 | -1855 | | 0.002218 | | | 0 | Read Baseline | ŘВ | 1 | 1 | 8664 | | 0.003717 | | 9 | 28 | 121011049-BL | U | 1 | 1 | -2062 | | 0.002189 | | 5 | 29 | 121011049-004 | U | 28.8 | 1 | 4978 | | 0.091925 | | 1 | 30 | 121011049-004MS | | 28.8 | 1 | 3504808 | | 14.454871 | | 2 | 31 | 121011049-004MSE | | 28.8 | _ 1 | 3560151 | L | 14.681992 | | 3 | 32 | 121011049-LCS | U | 1 | 1 | 3570142 | | 0.511215 | | 4
5 | 33
34 | 121011049-005
121011049-006 | U
U | 29.9 | 1 | 14327 | | 0.135268 | | 6 | 35 | 121011049-006 | U | ୍ଟିଷ୍ଟ୍ରିଖି 11 of 16 | ; 1
1 | 192177 | | 0.907959 | | 5 | J J | +21011043~00/ | 0 | 2879 | T | 14137 | | 0.129963 | | • | 36 | 121010018-001 | U | 221 | 1 | 57327 | 2.353950 | |---|----|------------------|------|------|---|-----------|-----------| | ì | 37 | 121011064-002 | U | . 1 | 1 | 4561180 | 0.652435 | | | 0 | Baseline | RB | 1 | 1 | 4290 | 0.003094 | |) | 1 | Blank | BLNK | 1 | 1 | -4766 | 0.001803 | | | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3565866 |
0.510606 | | : | 1 | Blank | BLNK | 1 | 1 | -2990 | 0.002057 | | | 0 | Baseline | RB | 1 | 1 | -673 | 0.002387 | | : | 38 | .121018024-BL | U | 1 | 1 | -2068 | 0.002188 | | • | 39 | 121018024-001 | U | 27.9 | 1 | 3977 | 0.085072 | | i | 40 | 121018024-001MS | υ | 27.9 | 1 | 3329258 | 13.305229 | | | 41 | 121018024-001MS | ט ס | 27.9 | | L 3400022 | 13.586565 | | | 42 | · 121018024-LCS | υ | 1 | 1 | 3401070 | 0.487123 | | | 43 | 121018025-001 | ט | 28.7 | 1 | 4755 | 0.090695 | | | 44 | 121018026-001 | Ų | 27.9 | 1 | 25061 | 0.168897 | | | 45 | -121017011-001 | U | 1 | 1 | -6380 | 0.001573 | | | 46 | ·121017011-001MS | Ü | · 1 | 1 | 3158807 | 0.452601 | | | 47 | .121017011-001MS | ט מ | 1 | - | 1 3270089 | 0.468459 | | | 0 | Baseline | RB | 1 | 1 | 2133 | 0.002786 | | | 1 | Blank | BLNK | 1 | 1 | -5834 | 0.001651 | | | 4 | CCV 0.5 ppm | ÇCV | 1 | 1 | 3558024 | 0.509488 | | | 1 | Blank | BLNK | 1 | 1 | 9428 | 0.003826 | | | 0 | Baseline | RB | 1 | 1 | 1524 | 0.002700 | | | 48 | R | U | 1 | 1 | -137 | 0.002463 | | | 49 | R | U | 1 | 1 | 9061 | 0.003774 | | | 50 | R | U | 1 | 1 | 9574 | 0.003847 | | | 51 | 121017039~BL | υ | 1 | 1 | -167 | 0.002459 | | | 52 | 121017039-001 | U | 1 | 1 | 10798 | 0.004021 | | | 53 | 121017039-001MS | U | 1 | 1 | 2855315 | 0.409355 | | | 54 | 121017039-001MS | ט ס | 1 | • | 1 2727674 | 0.391166 | | | 55 | 121017039-LCS | U | 1 | 1 | 3254267 | 0.466204 | | | 56 | R | U | 1 | 1 | 3157 | 0.002932 | | | 57 | R | U | 1 | 1 | 6806 | 0.003452 | | | 0 | Baseline | RB | 1 | 1 | 376 | 0.002536 | | ٥ | 1 | Blank | BLNK | 1 | 1 | -7122 | 0.001468 | | 1 | 4 | CCV 0.5 ppm | CCV | 1 | 1 | 3616182 | 0.517776 | | 2 | 1 | Blank | BLNK | 1 | 1 | -5670 | 0.001675 | | | 0 | Baseline | RB | 1 | 1 | -6489 | 0.001558 | | | | | | | | | | | a k | Cup | Flags | |-----|--|----------| | | 2
0
0
0
2
2
2
0
3
3
3
0
4
4 | BL | | | 2
0
3 | BL
OL | | | 3
3
0
4 | BL | | | 4
0 | BL | | | 5
5
5
5
6
6
0
1
7 | BL | | | 6
6 | OL | | | 0
1
7 | BL | | | 1
0
8 | BL | | ۵ | 9 | | |---|----------------|---------| | 1 | 10 | | | 0
1
2
3
4
5
6 | 11 | | | _
~\ | 12 | | | 4 | 12 | | | 4 | 13 | | | 5 | 14 | | | 6 | 15 | | | 7 | 16 | | | В | 17 | | | U | J. / | | | | 0 | BL | |)
1
2 | 1 | | | 1 | 4 | | | 2 | 1 | | | | õ | BL | | | ** | D.L. | | 4
5
6
7
9
9
1
2
3 | 18 | | | 5 | 19 | | | 6 | 20 | | | 7 | 21 | | | <u>'</u> | 21
22
23 | | | 9 | 22 | | | 9 | 23 | | | C | 24
25 | | | 1 | 25 | | | 2 | 26 | | | 2 | 20 | | | 3 | 27 | | | | 0 | BL | | 5
6
7 | 1. | | | 5 | 4 | | | 7 | | | | , | 1 | | | | 0 | BL | | 9
1
2
3
4
5
6
7
3 | 28 | | | כ | 29 | | | 1 | 30 | | | ÷ | 20 | | | 2 | 31 | | | 3 | 32 | | | 4 | 33 | | | 5 | 34 | | | 5 | 35 | | | 9 | 33 | | | / | 36 | | | 3 | 37 | | | | 0 | BL | | כ | 1 | | | ì | 4 | | | | | | | 2 | 1 | | | | 0 | BL | | 4 | 38 | | | 5 | 39 | | | Ē | 40 | | | 7 | 4.0 | | | , | 41 | | | 3 | 41 | | |) | 43 | | | ר | 44 | | | ĭ | 45 | | | 5
6
7
3
9
0
1
2
3 | 45
46 | | | 2 | 46 | | | 3 | 47 | | | | 47
0 | BL | | 5 | 1 | | | ., | - | | | 5
6
7 | 4 | | | / | 1 | | | | 0 | BĻ | | 9 | 48 | | | 5 | 40 | | | | 49 | | | 1. | 50 | | | 2 | 51 | | | 3 | 52 | | | 4 | 53 | | | = | - A | | | 2 | 54 | | | 6 | 54
55 | | | 9
1
2
3
4
5
6
7 | 56 | | | 3 | 56
57 | | | _ | ٠ <u>,</u> | ът | | _ | 0
1 | BL | | ЭО | 1 | | | | | | TIE Hame: I:\DATAI\ELOW4\ZUIZ\EFA555.4\LUZZIZUZ.KST ace: October 22, 2012 perator: CRW Calib Coef: y∝bx+a a: (intercept) -1.7422e+04 7.0177e+06 Corr Coef: 0.999327 Carryover: 0.236% No Drift Peaks # Hall Environmental Analysis Laboratory, Inc. WO#: **RPDLimit** 1210682 07-Nov-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 10-11-12 Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: **PBW** Batch ID: R6225 RunNo: 6225 Prep Date: Analysis Date: 10/13/2012 SeqNo: 179335 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Chloride Sulfate ND 0.50 ND 0.50 #### Qualifiers: - Value exceeds Maximum Contaminant Level. - Е Value above quantitation range - Analyte detected below quantitation limits - P Sample pH greater than 2 - Analyte detected in the associated Method Blank В - Н Holding times for preparation or analysis exceeded - Not Detected at the Reporting Limit - RPD outside accepted recovery limits Page 7 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 | Sample ID 5ml rb | SampT | уре: МІ | BLK | TestCode: EPA Method 8260B: VOLATILES | | | | | | | |--------------------------------|------------|---------|-----------|---------------------------------------|----------|----------|-------------|------|----------|------| | Client ID: PBW | Batch | ID: R6 | 432 | F | RunNo: 6 | 432 | | | | | | Prep Date: | Analysis D | ate: 10 | 0/19/2012 | S | SeqNo: 1 | 84843 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | | | | | | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | | 1,2-Dibromoethane (EDB) | ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | | | | | Acetone | ND | 10 | | | | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | Chloroform | ND | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | | HEAGUIIOTODULAUICHE | IND | 1.0 | | | | | | | | | #### Qualifiers: - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit RPD outside accepted recovery limits Page 8 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 10-11-12 | Sample ID 5ml rb | SampT | уре: МЕ | BLK | Tes | TestCode: EPA Method 8260B: VOLATILES | | | | | | |-----------------------------|-----------------|---------|-----------|-------------|---------------------------------------|----------|-------------|------|----------|------| | Client ID: PBW | Batch ID: R6432 | | | F | RunNo: 6 | 432 | | | | | | Prep Date: | Analysis D | ate: 10 | /19/2012 | S | SeqNo: 1 | 84843 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | 2-Hexanone | ND | 10 | | | | | | | | | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 10 | | | | | | | | | | Methylene Chloride | ND | 3.0 | | | | | | | | | | n-Butylbenzene | ND | 3.0 | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | | sec-Butylbenzene | ND | 1.0 | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | | | | | | | | | | Tetrachioroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | | Trichloroethene (TCE) | ND | 1.0 | | | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 11 | | 10.00 | | 105 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.5 | | 10.00 | | 95.3 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 10 | | 10.00 | | 103 | 70 | 130 | | | | | Surr: Toluene-d8 | 10 | | 10.00 | | 102 | 70 | 130 | | | | | Sample ID b6 | SampT | ype: ME | BLK | Tes |
tCode: El | | | | | | |--------------------------------|---------------------------|---------------|-----------|-------------|-----------|----------|-------------|------|----------|------| | Client ID: PBW | Batch | 1D: R6 | 432 | F | RunNo: 6 | 432 | | | | | | Prep Date: | Analysis Date: 10/19/2012 | | | 5 | SeqNo: 1 | 84881 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Benzene | ND | 1.0 | | | | | | | | | | Toluene | ND | 1.0 | | | | | | | | | | Ethylbenzene | ND | 1.0 | | | | | | | | | | Methyl tert-butyl ether (MTBE) | ND | 1.0 | | | | | | | | | | 1,2,4-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,3,5-Trimethylbenzene | ND | 1.0 | | | | | | | | | | 1,2-Dichloroethane (EDC) | ND | 1.0 | | | | | | | | | #### Qualifiers: - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - R RPD outside accepted recovery limits Page 9 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 10-11-12 | Sample ID b6 | SampTy | pe: MI | BLK | TestCode: EPA Method 8260B: VOLATILES | | | | | | | |-----------------------------|------------------------|--------|-----------|---------------------------------------|-----------|----------|-------------|------|----------|------| | Client ID: PBW | Batch ID: R6432 | | | F | RunNo: 64 | | | | | | | Prep Date: | Analysis Da | te: 10 | 0/19/2012 | s | SeqNo: 1 | 84881 | Units: µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | 1,2-Dibromoethane (EDB) | ND | 1.0 | | | | | | | | | | Naphthalene | ND | 2.0 | | | | | | | | | | 1-Methylnaphthalene | ND | 4.0 | | | | | | | | | | 2-Methylnaphthalene | ND | 4.0 | | | | | | | | | | Acetone | ND | 10 | | | | | | | | | | Bromobenzene | ND | 1.0 | | | | | | | | | | Bromodichloromethane | ND | 1.0 | | | | | | | | | | Bromoform | ND | 1.0 | | | | | | | | | | Bromomethane | ND | 3.0 | | | | | | | | | | 2-Butanone | ND | 10 | | | | | | | | | | Carbon disulfide | ND | 10 | | | | | | | | | | Carbon Tetrachloride | ND | 1.0 | | | | | | | | | | Chlorobenzene | ND | 1.0 | | | | | | | | | | Chloroethane | ND | 2.0 | | | | | | | | | | Chloroform | ND | 1.0 | | | | | | | | | | Chloromethane | ND | 3.0 | | | | | | | | | | 2-Chlorotoluene | ND | 1.0 | | | | | | | | | | 4-Chlorotoluene | ND | 1.0 | | | | | | | | | | cis-1,2-DCE | ND | 1.0 | | | | | | | | | | cis-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | ND | 2.0 | | | | | | | | | | Dibromochloromethane | ND | 1.0 | | | | | | | | | | Dibromomethane | ND | 1.0 | | | | | | | | | | 1,2-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,3-Dichlorobenzene | ND | 1.0 | | | | | | | | | | 1,4-Dichlorobenzene | ND | 1.0 | | | | | | | | | | Dichlorodifluoromethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethane | ND | 1.0 | | | | | | | | | | 1,1-Dichloroethene | ND | 1.0 | | | | | | | | | | 1,2-Dichloropropane | ND | 1.0 | | | | | | | | | | 1,3-Dichloropropane | ND | 1.0 | | | | | | | | | | 2,2-Dichloropropane | ND | 2.0 | | | | | | | | | | 1,1-Dichloropropene | ND | 1.0 | | | | | | | | | | Hexachlorobutadiene | ND | 1.0 | | | | | | | | | | 2-Hexanone | ND | 10 | | | | | | | | | | Isopropylbenzene | ND | 1.0 | | | | | | | | | | 4-Isopropyltoluene | ND | 1.0 | | | | | | | | | | 4-Methyl-2-pentanone | ND | 1.0 | | | | | | | | | | Methylene Chloride | ND | 3.0 | | | | | | | | | | | | 3.0 | | | | | | | | | | n-Butylbenzene | ND | | | | | | | | | | | n-Propylbenzene | ND | 1.0 | | | | | | | | | #### Qualifiers: - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - R RPD outside accepted recovery limits Page 10 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 | Sample ID b6 | SampT | vpe: ME | BLK TestCode: EPA Method 8260B: VOLATILES | | | | | | | | |-----------------------------|---------------------------------|---------|---|-------------|----------|----------|-------------|------|----------|------| | Client ID: PBW | SampType: MBLK Batch ID: R6432 | | | | RunNo: 6 | | -IIILLO | | | | | Prep Date: | Analysis D | | | | SegNo: 1 | | Units: µg/L | | | | | ricp bate. | Allalysis | ale. It | 11 1312012 | ` | eqivo. I | 04001 | Onits. µg/L | | | | | Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | sec-Butylbenzene | ND | 1.0 | | | | | | | | | | Styrene | ND | 1.0 | | | | | | | | | | tert-Butylbenzene | ND | 1.0 | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | ND | 2.0 | | | | | | | | | | Tetrachioroethene (PCE) | ND | 1.0 | | | | | | | | | | trans-1,2-DCE | ND | 1.0 | | | | | | | | | | trans-1,3-Dichloropropene | ND | 1.0 | | | | | | | | | | 1,2,3-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1.0 | | | | | | | | | | 1,1,1-Trichloroethane | ND | 1.0 | | | | | | | | | | 1,1,2-Trichloroethane | ND | 1.0 | | | | | | | | | | Trichloroethene (TCE) | ND | 1.0 | | | | | | | | | | Trichlorofluoromethane | ND | 1.0 | | | | | | | | | | 1,2,3-Trichloropropane | ND | 2.0 | | | | | | | | | | Vinyl chloride | ND | 1.0 | | | | | | | | | | Xylenes, Total | ND | 1.5 | | | | | | | | | | Surr: 1,2-Dichloroethane-d4 | 9.9 | | 10.00 | | 98.6 | 70 | 130 | | | | | Surr: 4-Bromofluorobenzene | 9.9 | | 10.00 | | 98.6 | 70 | 130 | | | | | Surr: Dibromofluoromethane | 10 | | 10.00 | | 105 | 70 | 130 | | | | | Surr: Toluene-d8 | 10 | | 10.00 | | 101 | 70 | 130 | | | | #### Qualifiers: - Value exceeds Maximum Contaminant Level. - E Value above quantitation range - Analyte detected below quantitation limits - Sample pH greater than 2 - Analyte detected in the associated Method Blank - Holding times for preparation or analysis exceeded RPD outside accepted recovery limits - ND Not Detected at the Reporting Limit # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 | Sample iD mb-4322 | SampTy | /pe: MBLK | TestCode: E | PA Method | 8270C: Semi | volatiles | | | |-----------------------------|-------------|-----------------|------------------|-----------|-------------|-----------|----------|------| | Client ID: PBW | Batch | ID: 4322 | RunNo: 6 | 3287 | | | | | | Prep Date: 10/16/2012 | Analysis Da | ate: 10/16/2012 | SeqNo: 1 | 81174 | Units: µg/L | | | | | Analyte | Result | PQL SPK value | SPK Ref Val %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual | | Acenaphthene | ND | 10 | | | | | | | | Acenaphthylene | ND | 10 | | | | | | | | Aniline | ND | 10 | | | | | | | | Anthracene | ND | 10 | | | | | | | | Azobenzene | ND | 10 | | | | | | | | Benz(a)anthracene | ND | 10 | | | | | | | | Benzo(a)pyrene | ND | 10 | | | | | | | | Benzo(b)fluoranthene | ND | 10 | | | | | | | | Benzo(g,h,i)perylene | ND | 10 | | | | | | | | Benzo(k)fluoranthene | ND | 10 | | | | | | | | Benzoic acid | ND | 20 | | | | | | | | Benzyl alcohol | ND | 10 | | | | | | | | Bis(2-chloroethoxy)methane | ND | 10 | | | | | | | | Bis(2-chloroethyl)ether | ND | 10 | | | | | | | | Bis(2-chloroisopropyl)ether | ND | 10 | | | | | | | | Bis(2-ethylhexyl)phthalate | ND | 10 | | | | | | | | 4-Bromophenyl phenyl ether | ND | 10 | | | | | | | | Butyl benzyl phthalate | ND | 10 | | | | | | | | Carbazole | ND | 10 | | | | | | | | 4-Chloro-3-methylphenol | ND | 10 | | | | | | | | 4-Chloroaniline | ND | 10 | | | | | | | | 2-Chloronaphthalene | ND | 10 | | | | | | | | 2-Chlorophenol | ND | 10 | | | | | | | | 4-Chlorophenyl phenyl ether | ND | 10 | | | | | | | | Chrysene | ND | 10 | | | | | | | | Di-n-butyl phthalate | ND | 10 | | | | | | | | Di-n-octyl phthalate | ND | 10 | | | | | | | | Dibenz(a,h)anthracene | ND | 10 | | | | | | | | Dibenzofuran | ND | 10 | | | | | | | | 1,2-Dichlorobenzene | ND | 10 | | | | | | | | 1,3-Dichlorobenzene | ND | 10 | | | | | | | | 1,4-Dichlorobenzene | ND | 10 | | | | | | | | 3,3´-Dichlorobenzidine | ND | 10 | | | | | | | | Diethyl phthalate | ND | 10 | | | | | | | | Dimethyl phthalate | ND | 10 | | | | | | | | 2,4-Dichlorophenol | ND | 20 | | | | | | | | 2,4-Dimethylphenol | ND | 10 | | | | | | | | 4,6-Dinitro-2-methylphenol | ND | 20 | | | | | | | | 2,4-Dinitrophenol | ND | 20 | | | | | | | | 2,4-Dinitrotoluene | ND | 10 | | | | | | | | 2,6-Dinitrotoluene | ND | 10 | | | | | | | | 2,0-DiniiiOtoluene | ND | 10 | | | | | | | #### $\label{eq:Qualifiers:Qualifiers:} Qualifiers:$ - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit RPD outside accepted recovery limits Page 12 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 | Sample ID mb-4322 | SampTy | e: MBLK | Tes | tCode: EPA Method | 8270C: Semivo | latiles | | | |----------------------------|-------------|----------------|-------------|----------------------|------------------------|---------|----------|------| | Client ID: PBW | Batch I | D: 4322 | F | RunNo: 6287 | | | | | | Prep Date: 10/16/2012
| Analysis Da | te: 10/16/2012 | \$ | SeqNo: 181174 | Units: µg/L | | | | | Analyte | Result | PQL SPK value | SPK Ref Val | %REC LowLimit | HighLimit ⁶ | %RPD | RPDLimit | Qual | | Fluoranthene | ND | 10 | | | | | | | | Fluorene | ND | 10 | | | | | | | | Hexachlorobenzene | ND | 10 | | | | | | | | Hexachlorobutadiene | ND | 10 | | | | | | | | Hexachlorocyclopentadiene | ND | 10 | | | | | | | | Hexachloroethane | ND | 10 | | | | | | | | Indeno(1,2,3-cd)pyrene | ND | 10 | | | | | | | | Isophorone | ND | 10 | | | | | | | | 1-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylnaphthalene | ND | 10 | | | | | | | | 2-Methylphenol | ND | 10 | | | | | | | | 3+4-Methylphenol | ND | 10 | | | | | | | | N-Nitrosodi-n-propylamine | ND | 10 | | | | | | | | N-Nitrosodimethylamine | ND | 10 | | | | | | | | N-Nitrosodiphenylamine | ND | 10 | | | | | | | | Naphthalene | ND | 10 | | | | | | | | 2-Nitroaniline | ND | 10 | | | | | | | | 3-Nitroaniline | ND | 10 | | | | | | | | 4-Nitroaniline | ND | 10 | | | | | | | | Nitrobenzene | ND | 10 | | | | | | | | 2-Nitrophenol | ND | 10 | | | | | | | | 4-Nitrophenol | ND | 10 | | | | | | | | Pentachlorophenol | ND | 20 | | | | | | | | Phenanthrene | ND | 10 | | | | | | | | Phenol | ND | 10 | | | | | | | | Pyrene | ND | 10 | | | | | | | | Pyridine | ND | 10 | | | | | | | | 1,2,4-Trichlorobenzene | ND | 10 | | | | | | | | 2,4,5-Trichlorophenol | ND | 10 | | | | | | | | 2,4,6-Trichlorophenol | ND | 10 | | | | | | | | Surr: 2,4,6-Tribromophenol | 140 | 200.0 | 0 | 71.8 44.2 | 126 | | | | | Surr: 2-Fluorobiphenyl | 86 | 100. | | 86.2 37 | 114 | | | | | Surr: 2-Fluorophenol | 110 | 200. | 0 | 56.3 23.4 | 98 | | | | | Surr: 4-Terphenyl-d14 | 76 | 100. | | 75.8 41.3 | 116 | | | | | Surr: Nitrobenzene-d5 | 98 | 100. | 0 | 97.6 39.5 | 118 | | | | | Surr: Phenol-d5 | 100 | 200. | 0 | 52.2 20.9 | 95.9 | | | | #### Qualifiers: - * Value exceeds Maximum Contaminant Level. - E Value above quantitation range - J Analyte detected below quantitation limits - P Sample pH greater than 2 - B Analyte detected in the associated Method Blank - H Holding times for preparation or analysis exceeded - ND Not Detected at the Reporting Limit - R RPD outside accepted recovery limits Page 13 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 Sample ID 1210682-001c dup SampType: dup TestCode: EPA 120.1: Specific Conductance Client ID: Injection Well Batch ID: R6237 RunNo: 6237 Prep Date: Analysis Date: 10/15/2012 SeqNo: 179731 Units: µmhos/cm Analyte Result **PQL** Qual SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** 0.651 Conductivity 4600 0.010 Qualifiers: Value exceeds Maximum Contaminant Level. E Value above quantitation range Analyte detected below quantitation limits Sample pH greater than 2 Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded Н RPD outside accepted recovery limits ND Not Detected at the Reporting Limit Page 14 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. **Project:** Injection Well 10-11-12 Result Sample ID MB-4546 SampType: mblk TestCode: EPA Method 7470: Mercury Client ID: PBW Batch ID: 4546 RunNo: 6596 SPK value SPK Ref Val %REC LowLimit Prep Date: 10/30/2012 Analysis Date: 10/30/2012 **PQL** SeqNo: 190478 Units: mg/L %RPD HighLimit **RPDLimit** Qual Analyte Mercury ND 0.00020 #### Qualifiers: Value exceeds Maximum Contaminant Level. E Value above quantitation range Analyte detected below quantitation limits Sample pH greater than 2 В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit RPD outside accepted recovery limits Page 15 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. ND ND 0.0050 Project: Silver Sodium Injection Well 10-11-12 Sample ID MB-4329 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: **PBW** Batch ID: 4329 RunNo: 6333 Prep Date: 10/16/2012 Analysis Date: 10/18/2012 SeqNo: 182303 Units: mg/L Analyte **RPDLimit** Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Arsenic ND 0.020 Barium ND 0.020 Cadmium 0.0020 ND Calcium ND 1.0 Chromium ND 0.0060 Lead 0.0050 ND Magnesium ND 1.0 Potassium ND 1.0 Sample ID MB-4329 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 4329 RunNo: 6462 Prep Date: 10/16/2012 Analysis Date: 10/24/2012 SeqNo: 185746 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Selenium ND 0.050 #### Qualifiers: Value exceeds Maximum Contaminant Level. E Value above quantitation range J Analyte detected below quantitation limits P Sample pH greater than 2 B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits Page 16 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 **Client:** Prep Date: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 Sample ID 1210682-001c dup SampType: dup TestCode: SM4500-H+B: pH Client ID: Injection Well Batch ID: R6237 Analysis Date: 10/15/2012 RunNo: 6237 SPK value SPK Ref Val %REC LowLimit SeqNo: 179738 Units: pH units HighLimit %RPD **RPDLimit** Qual Analyte pΗ 7.36 1.68 Result Qualifiers: Value exceeds Maximum Contaminant Level. E Value above quantitation range Analyte detected below quantitation limits Sample pH greater than 2 Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded Н ND Not Detected at the Reporting Limit RPD outside accepted recovery limits Page 17 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 **Client:** Western Refining Southwest, Inc. **Project:** Injection Well 10-11-12 Sample ID mb-1 SampType: mblk TestCode: SM2320B: Alkalinity Client ID: PBW Batch ID: R6237 RunNo: 6237 SeqNo: 179709 Units: mg/L CaCO3 Prep Date: Analyte Analysis Date: 10/15/2012 **PQL** 20 SPK value SPK Ref Val %REC LowLimit %RPD HighLimit **RPDLimit** Qual Total Alkalinity (as CaCO3) ND Result Qualifiers: Value exceeds Maximum Contaminant Level. Ε Value above quantitation range Analyte detected below quantitation limits Sample pH greater than 2 В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit RPD outside accepted recovery limits Page 18 of 19 # Hall Environmental Analysis Laboratory, Inc. WO#: 1210682 07-Nov-12 Client: Western Refining Southwest, Inc. Project: Injection Well 10-11-12 Sample ID MB-4296 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: Batch ID: 4296 RunNo: 6273 Result SPK value SPK Ref Val SeqNo: 180753 HighLimit Prep Date: Analyte 10/15/2012 Analysis Date: 10/16/2012 **PQL** %REC LowLimit Units: mg/L **RPDLimit** Qual Total Dissolved Solids ND 20.0 Sample ID 1210682-001CMS SampType: MS TestCode: SM2540C MOD: Total Dissolved Solids Client ID: Injection Well Batch ID: 4296 RunNo: 6273 120 Prep Date: Analyte 10/15/2012 Analysis Date: 10/16/2012 SeqNo: 180774 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit 103 HighLimit **RPDLimit** Qual Total Dissolved Solids 8040 Result 8000 100 5000 2910 80 Sample ID 1210682-001CMSD SampType: MSD TestCode: SM2540C MOD: Total Dissolved Solids Client ID: Injection Well Batch ID: 4296 RunNo: 6273 Units: mg/L Prep Date: 10/15/2012 Analysis Date: 10/16/2012 SeqNo: 180775 Analyte 120 **RPDLimit** Qual Total Dissolved Solids **PQL** 100 SPK value SPK Ref Val 5000 2910 %REC LowLimit 102 HighLimit 80 %RPD 0.498 %RPD %RPD 20 Qualifiers: Value exceeds Maximum Contaminant Level. Ε Value above quantitation range Analyte detected below quantitation limits Н Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit Page 19 of 19 Sample pH greater than 2 RPD outside accepted recovery limits Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.con # Sample Log-In Check List | Client Name: Western Refining Southwest, Inc,Bloomfield | Work Order Number: 1210682 | |---|---| | Received by/date: // // // // // // // // // // // // // | | | | | | Logged By: Lindsay Mangin 10/12/2012 10:30:00 | | | Completed By: Lindsay Mangin 10/12/2012 2:40:37 F | on or other | | Reviewed By: | 2 | | Chain of Custody | | | 1. Were seals intact? | Yes ☐ No ☐ Not Present 🗹 | | 2. Is Chain of Custody complete? | Yes ☑ No ☐ Not Present ☐ | | 3. How was the sample delivered? | <u>FedEx</u> | | <u>Log In</u> | | | 4. Coolers are present? (see 19. for cooler specific information) | Yes ☑ No ☐ NA ☐ | | | | | 5. Was an attempt made to cool the samples? | Yes 🗹 No 🗌 💮 NA 🗆 | | | | | 6. Were all samples received at a temperature of >0° C to 6.0°C | Yes ☑ No ☐ NA ☐ | | 7 Sample(s) in proper container(s)? | Yes ☑ No □ | | 8 Sufficient sample volume for indicated test(s)? | Yes 🗹 No 🗌 | | 9 Are samples (except VOA and ONG) properly preserved? | Yes ☑ No □ | | 10. Was preservative added to bottles? | Yes 🗌 No 🗹 💮 NA 🗌 | | | [] No [] No (OA (Mat) | | 11. VOA vials have zero headspace? | Yes ☑ No ☑ No VOA Vials ☐
Yes ☐ No ☑ | | 12. Were any sample containers received broken? 13. Does paperwork match bottle labels? | Ves. ✓ No # of preserved | | (Note discrepancies on chain of custody) | bottles checked for pH: | | 14. Are matrices correctly identified on Chain of Custody? | Yes ☑ No ☐ (<) or 12)unless noted) | | 15. Is it clear
what analyses were requested? | Yes ☑ No ☐ Adjusted? | | 16. Were all holding times able to be met?
(If no, notify customer for authorization.) | Yes ☑ No L | | Special Handling (if applicable) | Checked by. 17 () | | 17. Was client notified of all discrepancies with this order? | Yes 🗆 No 🗆 💮 NA 🗹 | | | | | Person Notified: Date: Date: Via: | │
│ eMail | | Regarding: | COPER THORE TEXT THE COOK | | Cilent Instructions: | | | 18, Additional remarks: | J | | | | | | | | 19. Cooler Information | Soni Date Signed Bu | | Cooler No Temp °C Condition Seal Intact Seal No 1 1.3 Good Yes | Seal Date Signed By | | | and was a whole and a supply and the second property and a supply of the rape with 18 | | | ANALYSIS LABORATORY | Ĭ | 4901 Hawkins NE - Albuquerque, NM 87109 | Tel. 505-345-3975 Fax 505-345-4107 | Analysis Request | (†c) | BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) RCRA 8 Metals C. M. M. RCRA 8 Metals C. M. M. RORD (PNA or PAH) | | | | .*. | * | * | X X | × | | <u> </u> | | | | Remarks: | Time: Relinquished by: Date Time | | |-------------------------|-------------------------|---------------|---|------------------------------------|-----------------------|------------------|---|--|---------------------|---------------|--|---------------------------------|---------------|-----|-------|---------------|----------|--|----|--|----------|--|------------------------| | Tum-Around Time: | X Standard 🗆 Rush | Project Name: | INJECTION Well 10-11-12 | Project #: | | Project Manager: | | the state of s | Sampler: AATT A Bab | 12 March 1985 | Container Preservative + + Type and # Type | 3-40A HC1 -001 | 1-liter Amber | 1 | 1-50m | 1-350ml H2504 | | | -{ | | | 10/2/12 +338 | Recalved by: Date Time | | Chain-of-Custody Record | Client: Westrn Refining | | Mailing Address: #50 CR 4990 | Bloomfield, nM 87413 | Phone #: 505-632-4135 | email or Fax#: | QA/QC Package: | ☐ Standard ★ Level 4 (Full Validation) | Accreditation | □ EDD (Type) | Matrix Sample Request ID | Date 12 9:00 Has Injection well | | | | | | | | | | Time: Retinquished by: 12 3:00 (108er) Labor | Date: Relinquished by: | # **Hall Environmental Analysis Laboratory** ## **QUALITY ASSURANCE PLAN** Effective Date: July 2nd, 2012 **Revision 9.5** www.hallenvironmental.com Control Number: 00000120 Approved By: Andy Freeman **Laboratory Manager** Approved By: Quality Assurance/Quality Control Officer ## Approved By: Andy Freeman Date **Organics Technical Director** Approved By: Ian Cameron Date **Inorganics Technical Director** Approved By: Leva Jensen Date **Microbiology Technical Director** # **Table of Contents** | Section | Title | <u>Page</u> | |---------|---|-------------| | 1.0 | Title Page | 1 | | 2.0 | Table of Contents | 3 | | 3.0 | Introduction Purpose of Document Objectives Policies | 6 | | 4.0 | Organization and Responsibility Company Certifications Personnel Laboratory Director Laboratory Manager/ Lead Technical Director Quality Assurance Officer Business/Project Manager Section Managers/Technical Directors Health and Safety/Chemical Hygiene Officer Analyst I-III Laboratory Technician Sample Control Manager Sample Custodians Delegations in the Absence of Key Personnel Personnel Qualifications and Training Organizational Chart | 9 | | 5.0 | Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Chain of Custody Receiving Samples Logging in Samples and Storage Disposal of Samples | 21 | | 6.0 | Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures | 24 | | 7.0 | Calibration Thermometers Refrigerators/Freezers Ovens Analytical/Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents | 29 | |------|---|-----------| | 8.0 | Maintenance | 33 | | 9.0 | Data Integrity | 34 | | 10.0 | Quality Control Internal Quality Control Checks Precision, Accuracy, Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (%R) Confidence Intervals Relative Percent Difference (RPD) Uncertainty Measurements Calibration Calculations Concentration Calculations | 35 | | 11.0 | Data Reduction, Validation, and Reporting Data Reduction Validation Reports and Records | 48 | | 12.0 | Corrective Action | 50 | | 13.0 | Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits Management Reviews Complaints Internal and External Reports | 52 | | 14.0 | References | 55 | This Page was intentionally left blank. #### 3.0 Introduction ## **Purpose of Document** The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced
in an efficient and effective manner. #### **Objectives** The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality. HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20th edition, ASTM methods or state specific methods. HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law. The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement. #### **Policies** Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work. Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity. Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and regulatory requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements. All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence. HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the integrity of the quality system is maintained when changes to the system are planned and implemented. This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL. ## 4.0 Organization and Responsibility #### Company HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the Document Control Logbook), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs. The laboratory is divided into an organic section and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations. #### **Certifications** ORELAP - NELAC Oregon Primary accrediting authority. TCEQ - NELAC Texas Secondary accrediting authority. The Arizona Department of Health Services The New Mexico Drinking Water Bureau The New Mexico Department of Health See the current Document Control Logbook for copies of current licenses and licensed parameters, or refer to our current list of certifications online at www.hallenvironmental.com. In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification. #### Personnel HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills. HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document. All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management. All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in the current Document Control Logbook. ## **Laboratory Director** The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position. ## Laboratory Manager/Lead Technical Director The Laboratory Manager shall exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented. The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data. The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical
director of the laboratory and, in conjunction with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame. In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories. Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff. The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits. The laboratory manager addresses questions or complaints that cannot be answered by the section managers. The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation. ## **Quality Assurance Quality Control Officer** The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports. The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience. The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions. The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing. The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements. The QA/QCO shall be responsible for maintaining and updating this quality manual. ## Project Manager The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort. All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects. It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs. Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position. #### **Technical Directors** Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures. As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position. #### Section Supervisors Section Supervisors are full time members of staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. Section Supervisors report directly to their technical director. A Section Supervisor's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs. ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, Section Supervisors are responsible for upholding the spirit and intent of HEAL's data integrity procedures. Section Supervisors update their Technical Director on the status and needs of their departments and submit all Quality Control documents to their technical director for their review, approval and signature. As section supervisors, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree, or equivalent experience in a scientific or related discipline should fill this position. Health and Safety / Chemical Hygiene Officer Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee. ## Analyst I, II and III Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager. Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff. The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician. The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hired into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of
related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development. #### **Laboratory Technician** A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst. ## **Sample Control Manager** The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution. The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team. This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager. ## **Sample Custodians** Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt. ## Sample Disposal Custodian The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse. This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience. #### Bookkeeper The Bookkeeper is responsible for the preparation of quarterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Bookkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the Laboratory Manager. This position should be filled by someone with a degree in accounting or a minimum of a high school diploma and at least 4 years of directly related experience. #### **Administrative Assistant** The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high school diploma. #### IT Specialist The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience. ## Delegations in the Absence of Key Personnel Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee. In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager. #### **Laboratory Personnel Qualification and Training** All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them. When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See the current Document Control Logbook for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director. IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test. All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and
repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest. New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP). At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder. Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment, or civil/criminal prosecution. Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document. The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible. Quality Assurance Plan 9.5 Effective July 2nd, 2012 #### 5.0 Receipt and Handling of Samples ## Sampling #### **Procedures** HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness. #### **Containers** Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required. #### Preservation If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required. Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements. ## Sample Custody #### Chain-of-Custody Form A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information. There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations. It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at www.hallenvironmental.com. ### Receiving Samples Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manger's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples. ## Logging in Samples and Storage Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis. Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis. All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 °C. Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP. ## **Disposal of Samples** Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their
hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal. Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner. The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP. ### 6.0 Analytical Procedures All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data. When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question. #### **List of Procedures Used** Typically, the procedures used by HEAL are EPA approved methodologies or 20th edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification. #### Methods Utilized at HEAL Drinking Water(DW) Non-Potable Water (NPW) Solids (S) | Methodology | Matrix | Title of Method | |-------------|--------|--| | 120.1 | DW | "Conductance(Specific Conductance, uohms at 25 ° C)" | | 120.1 | NPW | Conductance (Opecinic Conductance, acrimo at 25 °C) | | 180.1 | DW | "Turbidity (Nephelometric)" | | 160.1 | NPW | raibidity (Nephelonietho) | | 200.2 | DW | "Sample Preparation Procedure For Spectrochemical | | 200.2 | NPW | Determination of Total Recoverable Elements" | | | DW | "Determination of Metals and Trace Elements in Water and | | 200.7 | NPW | Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" | | 200.8 | . DW | "Determination of Trace Elements in Waters and Wastes by | | 200.8 | NPW | Inductively Coupled Plasma-Mass Spectrometry." | | 045.4 | DW | "Maroun (Manual Cold Vapor Tophnique)" | | 245.1 | NPW | "Mercury (Manual Cold Vapor Technique)" | | | DW | | | 300 | NPW | "Determination of Inorganic Anions by Ion Chromatography" | | | s | | | 413.2 | NPW
S | "Oil and Grease" | |---------|-----------|--| | | | | | 418.1 | NPW
S | "Petroleum Hydrocarbons (Spectrophotometric, Infrared)" | | 504.1 | DW | "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography" | | 505 | DW | "Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyi (PCB) Products in Water by Microextraction and Gas Chromatography" | | 515.1 | DW | "Determination of Chlorinated Acids in Water by Gas
Chromatography with an Electron Capture Detector" | | 524.2 | DW | "Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry" | | 531.1 | DW | "Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Derivatization" | | 547 | DW | "Determination of Glyphosate in Drinking Water by Direct-
Aqueous Injection HPLC, Post-Column Derivatization, and
Fluorescence Detection" | | 552.1 | DW | "Determination of Haloacetic Acids and Dalapon in Drinking
Water by Ion-Exchange Liquid-Solid Extraction and Gas
Chromatography with an Electron Capture Detector" | | 624 | DW | Appendix A to Part 136 Methods for Organic Chemical
Analysis of Municipal and Industrial Wastewater Method 624-
Purgeables" | | 625 | DW | Appendix A to Part 136 Methods for Organic Chemical
Analysis of Municipal and Industrial Wastewater Method 625-
Base/Neutrals and Acids" | | 1311 | S | "Toxicity Characteristic Leaching Procedure" | | 1311ZHE | S | "Toxicity Characteristic Leaching Procedure" | | 1164A | NPW | "N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry" | | 3005A | NPW | "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy" | | 3010A | s | "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy" | | 3050B | s | "Acid Digestion of Sediment, Sludge, and Soils" | | 3510C | DW
NPW | "Separatory Funnel Liquid-Liquid Extraction" | | | | | | 05.40 | Τ | 140. 11.4 E 1.4 N 1 | |---------------|-----------|---| | 3540 | s | "Soxhlet Extraction" | | 3545 | S | "Pressurized Fluid Extraction(PFE)" | | 3665 | NPW
S | "Sulfuric Acid/Permanganate Cleanup" | | 5030B | NPW | "Purge-and-Trap for Aqueous Samples" | | 5035 | s | "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples" | | 6010B | NPW
S | "Inductively Coupled Plasma-Atomic Emission Spectrometry" | | 6020 | NPW
S | "Inductively Coupled Plasma-Mass Spectrometry" | | 7470A | NPW | "Mercury in Liquid Waste (Manual Cold-Vapor Technique)" | | 7471A | s | "Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)" | | 8021B | NPW
S | "Aromatic and Halogenated Volatiles By Gas
Chromatography Using Photoionization and/or Electrolytic
Conductivity Detectors" | | 8015B | NPW
S | "Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics) | | 8015AZ | s | "C10-C32 Hydrocarbons in Soil-8015AZ" | | 8081A | NPW
S | "Organochlorine Pesticides by Gas Chromatography" | | 8082 | NPW
S | "Polychlorinated Biphenyls (PCBs) by Gas Chromatography" | | 8260B | NPW
S | "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)" | | 8270C | NPW
S | "Semivolatile Organic Compounds by Gas Chromatography/
Mass Spectrometry (GC/MS)" | | 8310 | NPW
S | "Polynuclear Aromatic Hydrocarbons" | | 9045C | s | "Soil and Waste pH" | | 9060 | NPW | "Total Organic Carbon" | | 9067 | NPW
S | "Phenolics (Spectrophotometric, MBTH With Distillation)" | | 9095 | s | Paint Filter | | Walkley/Black | S | FOC/TOC WB | | SM2320 B | DW
NPW | "Alkalinity" | | SM2540 B | NPW | "Total Solids Dried at 103-105° C" | | | | | | | DW | | |------------------|-----------|--| | SM2540 C | NPW | "Total Dissolved Solids Dried at 180° C" | | SM2540 D | NPW | "Total Suspended Solids Dried at 103-105° C" | | SM4500-CL G | DW | "Chlorine (Residual) 4500-CL G. DPD Colorimetric Method" | | SM4500-H+B | DW
NPW | "pH Value" | | SM4500-NH3
C | NPW
S | "4500-NH3" Ammonia | | SM4500-Norg
C | NPW
S | "4500-Norg" Total Kjeldahl Nitrogen (TKN) | | SM5210 B | NPW | "5210 B. 5-day BOD Test" | | SM5310 B | DW | "5310" Total Organic Carbon (TOC) | | 8000B | NPW
S | "Determinative Chromatographic Separations" | | 8000C | NPW
S | "Determinative Chromatographic Separations" | ### **Criteria for Standard Operating Procedures** HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS, are available on desktops throughout the laboratory in the link to administrative SOPs folder. Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible. Each HEAL test method SOP shall include or reference the following topics where applicable: Identification of the test method; Applicable matrix or matrices; Limits of detection and quantitation; Scope and application, including parameters to be analyzed; Summary of the test method; Definitions; Interferences: Safety: Equipment and supplies: Reagents and standards; Sample collection, preservation, shipment and storage; Quality control parameters; Calibration and standardization; Procedure: Data analysis and calculations; Method performance: Pollution prevention: Data assessment and acceptance criteria for quality control measures: Corrective actions for out-of-control data; Contingencies for handling out-of-control or unacceptable data; Waste management; References: and Any tables, diagrams, flowcharts and validation data. #### 7.0 Calibration All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable
analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below. #### **Thermometers** The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure. Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers. ## Refrigerators/Freezers Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination. See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers. #### Ovens The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use. #### **Analytical and Table Top Balances** The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO. Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance. #### Instrument Calibration An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses. The lowest standard in the calibration curve must be at or below the required reporting limit. Refer to the current SOP to determine the minimum requirement for calibration points. Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error. If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves. When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden. Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs. #### pH Meter The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe. ## Other Analytical Instrumentation and Equipment The conductivity probe is calibrated as needed and checked daily when in use. Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use. #### **Standards** All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs. All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date. As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions. #### Reagents HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented. Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent. All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook. HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods. Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week. #### 8.0 Maintenance Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included: Unique Name of the Item or Equipment Manufacturer Type of Instrument Model Number Serial Number Date Received and Date Placed into Service Location of Instrument Condition of Instrument Upon Receipt For routine maintenance, the following information shall be included in the log: Maintenance Date Maintenance Description Maintenance Performed by Initials A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities. Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information. ## 9.0 Data Integrity For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document
Control Logbook for a copy of this agreement. In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern. Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis. All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future. ### 10.0 Quality Control ### **Internal Quality Control Checks** HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty. Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples. When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed. Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%. Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported. A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below. Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates. Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards. Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL. With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider. Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same accredited analyte shall be at least fifteen days apart. Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs. Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction, cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers. Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized. Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures. All
generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight. Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office. Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses. When updating surrogate control limits, all data, regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix. In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits. Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time. ## Precision, Accuracy, Detection Levels #### Precision The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response. RPD = 2 x (Sample Result - Duplicate Result) X 100 (Sample Result + Duplicate Result) Page 38 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 ### Accuracy The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect. Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is: %Recovery = {(concentration* recovered)/(concentration* added)} X 100 HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification. #### **Detection Limit** Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level. HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately IDL: MDL: PQL = 1:5:5. The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise. ^{*}or amount The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula: $$MDL = s * t (99\%),$$ where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials. | Number of Trials | t(99%) | |------------------|--------| | 6 | 3.36 | | 7 | 3.14 | | 8 | 3.00 | | 9 | 2.90 | The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration. Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized. The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis. In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized. ### **Quality Control Parameter Calculations** #### Mean The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values. Average = $$(\Sigma x_i) / n$$ x_i = the value x in the I^{th} trial n = the number of trials ### Standard Deviation The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values x_i . The variance, s^2 , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance. Standard deviation = $$s = \left[\sum (x_1 - average)^2/(n-1)\right]^{\frac{1}{2}}$$ # Percent Recovery (LCS and LCSD) Percent Recovery = (Spike Sample Result) X100 (Spike Added) # Percent Recovery (MS, MSD) Percent Recovery = (Spike Sample Result – Sample Result) X100 (Spike Added) #### **Control Limits** Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s). Upper Control Limit = x + 3sLower Control Limit = x - 3s These control limits approximate a 99% confidence interval around the mean recovery. ### RPD (Relative Percent Difference) Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows: RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result) ### **Uncertainty Measurements** Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the
dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office. Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s). Calculate standard deviation (s) and 95% confidence interval according to the following formulae: $$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$ Where: s = standard deviation x = number in series \bar{x} = calculated mean of series n = number of samples taken 95% confidence = $2 \times s$ Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence = $2 \times s$) is 0.0652. ### **Total Nitrogen** Total nitrogen is calculated as follows: ### **Calibration Calculations** 1. Response Factor or Calibration Factor: $$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$ $CF = (A_x)/(C_x)$ a. Average RF or CF $$RF_{AVE} = \Sigma RF_i / n$$ b. Standard Deviation $s = SQRT \{ [\Sigma (RF_1 - RF_{AVE})^2] / (n-1) \}$ c. Relative Standard Deviation $$RSD = s / RF_{AVE}$$ Page 43 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 #### Where: A_x = Area of the compound C_x = Concentration of the compound A_{is} = Area of the internal standard Cis = Concentration of the internal standard n = number of pairs of data RF_i = Response Factor (or other determined value) RF_{AVE} = Average of all the response factors Σ = the sum of all the individual values ## 2. Linear Regression a. Slope (m) $$\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x}_i \mathbf{y}_i - (\mathbf{n} \Sigma \mathbf{x}_i)^* (\mathbf{n} \Sigma \mathbf{y}_i)) / (\mathbf{n} \Sigma \mathbf{x}_i^2 - (\Sigma \mathbf{x}_i)^2)$$ b. Intercept (b) $$b = y_{AVE} - m^*(x_{AVE})$$ c. Correlation Coefficient (cc) CC (r) ={ $$\Sigma((x_i-x_{ave})^*(y_i-y_{ave}))$$ } / { $SQRT((\Sigma(x_i-x_{ave})^2)^*(\Sigma(y_i-y_{ave})^2))$ } Or CC (r) =[$(\Sigma w * \Sigma wxy) - (\Sigma wx * \Sigma wy)]$ / ($sqrt(([(\Sigma w * \Sigma wx^2) - (\Sigma wx * \Sigma wx)] * [(\Sigma w * \Sigma wy^2) - (\Sigma wy * \Sigma wy)])))]$ d. Coefficient of Determination $$COD(r^2) = CC*CC$$ #### Where: y = Response (Area) Ratio A_x/A_{ls} x = Concentration Ratio C_x/C_{is} m = slope b = intercept n = number of replicate x,y pairs x_i = individual values for independent variable y_i = individual values for dependent variable Σ = the sum of all the individual values x_{ave} = average of the x values $y_{ave} = average of the y values$ w = weighting factor, for equal weighting w=1 ## 3. Quadratic Regression $$v = ax^2 + bx + c$$ ### a. Coefficient of Determination COD $$(r^2) = (\Sigma(y_i - y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i - Y_i)^2]\}) / \Sigma(y_i - y_{ave})^2$$ #### Where: $y = Response (Area) Ratio A_x/A_{is}$ $x = Concentration Ratio C_x/C_{is}$ $a = x^2$ coefficient b = x coefficient c = intercept y_i = individual values for each dependent variable x_i = individual values for each independent variable y_{ave} = average of the y values n = number of pairs of data p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order) $Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$ # b. Coefficients (a,b,c) of a Quadratic Regression $$a = S_{(x2y)}S_{(xx)} - S_{(xy)}S_{(xx2)} / S_{(xx2)}S_{(x2x2)} - [S_{(xx2)}]^2$$ $$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$ $$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$ #### Where: n = number of replicate x,y pairs x = x values y = y values $w = S^{-2} / (\Sigma S^{-2}/n)$ $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$ $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$ $S_{(xx,2)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$ $S_{(x2y)} = (\Sigma x^2 y w) - [(\Sigma x^2 w)^* (\Sigma y w) / n]$ Page 45 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$ Or If unweighted calibration, w=1 S(xx) = (Sx2) - [(Sx)2 / n]S(xy) = (Sxy) - [(Sx)*(Sy) / n]S(xx2) = (Sx3) - [(Sx)*(Sx2) / n]S(x2y) = (Sx2y) - [(Sx2)*(Sy) / n]S(x2x2) = (Sx4) - [(Sx2)2 / n] #### **Concentration Calculations** ### On-Column Concentration for Average RRF Calibration using Internal Standard On-Column Concentration $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$ ### On-Column Concentration for Average CF Calibration using External Standard On-Column Concentration $C_x = (A_x)/(CF_{AVE})$ #### On-Column Concentration for Linear Calibration If determining an external standard, then exclude the A_{ls} and C_{ls} for internal standards On-Column Concentration $C_x = ((Absolute\{[(A_x)/(A_{ls})] - b\})/m) * C_{ls}$ Where: m = slope b = intercept $A_x = Area of the Sample$ Cia = Concentration of the Internal Standard A_{is} = Area of the Internal Standard #### On-Column Concentration for Quadratic Calibration If determining an external standard, then exclude the A_{ls} and C_{ls} for internal standards On-Column Concentration =[(+SQRT(b²-(4*a*(c-y)))-b)/(2*a)] * C_{ls} Where: $a = x^2$ coefficient b = x coefficient c = intercept y = Area Ratio = A_x/A_{is} C_{is} = Concentration of the Internal Standard #### Final Concentration (Wet Weight) Concentration for Extracted Samples = (On-Column Conc)(Dilution)(Final Volume) (Initial Amount)(Injection Volume) Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution) (Purged Amount) #### **Dry Weight Concentration** Dry Weight Concentration = Final Concentration Wet Weight Total Solids #### **Percent Difference** % Difference= Absolute(Continuing Calibration RRF - Average RRF) * 100 Page 46 of 56 Quality Assurance Plan 9.5 Effective July 2nd, 2012 #### Average RRF ### **Percent Drift** % Drift= Absolute(Calculated Concentration - Theoretical Concentration) * 100 Theoretical Concentration #### **Dilution Factor** Dilution Factor =(Volume of Solvent + Solute) / Volume of Solute ### **Relative Retention Time** RRT =RT of Compound / RT of ISTD ### **Breakdown Percent** Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD) -or- <u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde) ### 11.0 Data Reduction, Validation, Reporting, and Record Keeping All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized. #### **Data Reduction** The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation. If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch. See the current Data Validation SOP for details regarding data reduction. #### Validation A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client. If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields. All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise. See the current Data Validation SOP for details regarding data validation. ### Reports and Records All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP. Sample reports are compiled by the
Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy. When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions. After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable. #### 12.0 Corrective Action Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook. The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency: Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.). Assure that proper procedures were followed. Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures. Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise. Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte. Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies. Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur. Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis. A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO. All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO. ### 13.0 Quality Assurance Audits, Reports and Complaints ### Internal/External Systems' Audits, Performance Evaluations, and Compiaints Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method. Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples. With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider. Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to: - Review of staff qualifications, demonstration of capability, and personnel training programs - 2. Storage and handling of reagents, standards, and samples - 3. Standard preparation logbook and LIMS procedures - 4. Extraction logbooks - 5. Raw data logbooks - 6. Analytical logbooks or batch printouts and instrument maintenance logbooks - 7. Data review procedures - 8. Corrective action procedures - 9. Review of data packages, which is performed regularly by the lab manager/QA Officer. The QA/QCO will conduct these audits on an annual basis. ### **Management Reviews** HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of: - 1. the suitability and implementation of policies and procedures - 2. reports from managerial and supervisory personnel - 3. the outcome of recent internal audits - 4. corrective and preventive actions - 5. assessments by external bodies - 6. the results of inter-laboratory comparisons or proficiency tests - 7. changes in volume and type of work - 8. client feed back - 9. complaints - 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training. Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale. ### Complaints Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated. ### Internal and External Reports The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular
activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements. ### 14.0 References (Analytical Protocols Utilized at HEAL) - 1. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992. - 2. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954 - 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group. - 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u> - 5. <u>Handbook of Chemistry and Physics, 62nd Edition</u>, CRC Press, Inc. 1981-1982. - 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992 - 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988 - 8. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures Quality Assurance Fifth Edition</u>, U.S. Environmental Protection Agency, January 2005. - 9. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989 - 10. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989. - 11. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055) - 12. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991 - 13. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9 - 14. <u>Polycyclic Aromatic Hydrocarbons in Water Systems</u>, CRC Press, Inc. - 15. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1 - 16. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006. - 17. Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water. USDA Salinity Laboratory. - 18. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992. - 19. Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988 - 20. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999. - 21. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994. - 22. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.