HIP - __128___

GENERAL CORRESPONDENCE

YEAR(S): 2013 to Present

Jones, Brad A., EMNRD

From:

White, James <JAGWHITE@eprod.com> Monday, December 30, 2013 8:34 AM

Sent: To:

Jones, Brad A., EMNRD

Cc:

Bates, Ricky; 'Leland ''Luke'' Davis (luke1d@msn.com)'; Seale, Runell; Heap, James;

Thompson, Roger; Anderson, Don; Theresa Ancell; Eileen L. Shannon

(EShannon@kleinfelder.com); Barbara Everett; Sartor, Rodney; White, James

Subject:

FW: WEP III, Segment 7 - Analytical Results

Attachments:

Segment 7_post hydro test.pdf

Brad,

Please find attached post-hydrostatic test analyticals for WEP III, Segment 7. Manganese is recorded at 0.25 mg/L and the regulatory limit is 0.20 mg/L. From what I can tell, Mn is the sole constituent that is out of limits of 20.6.2.3103 and background analytical. Enterprise is hauling Segment 7 hydrotest water to an NMOCD-approved disposal facility.

Happy New Year and hope you had a good Christmas, Jimmy

From: Theresa Ancell [mailto:tancell@hrlcomp.com]
Sent: Saturday, December 28, 2013 11:00 AM

To: White, James

Subject: Segment 7 - Analytical Results

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1312810

December 27, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505

TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 2 sample(s) on 12/17/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/27/2013

CLIENT: HRL Compliance Solutions Client Sample 1D: Seg. 7 post hydro test Project: Enterprise WEP III Water Sampling Collection Date: 12/17/2013 9:30:00 AM

Received Date: 12/17/2013 3:10:00 PM Lab ID: 1312810-001 Matrix: AQUEOUS

Package	Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
### Analyst: SCC Aroclor 1016	EPA METHOD 8011/504.1: EDB					Analy	st: LRW
Aroclor 1016 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Aroclor 1221 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Aroclor 1232 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Aroclor 1242 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Aroclor 1248 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Aroclor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 109 Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 109 EPA METHOD 8310: PAHS	1,2-Dibromoethane	ND	0.010	μg/L	1	12/18/2013 7:00:15 F	PM 10868
Aroclor 1016 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1221 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1232 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1242 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1248 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1250 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 109/4 Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 109/4 EPA METHOD 8310: PAHS T 2 2.6-113 %REC 1 12/21/2013 10:27:04 PM 109/4 Abapathalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 109/4 1-Meth	EPA METHOD 8082: PCB'S					Analy	st: SCC
Arcolor 1221 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1232 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1242 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1248 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1250 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 2.0 μg/L 1 12/21/2013 10:27:04 PM 1094 Arcolor 1260 ND 2.0 μg/L 1 12/21/2013 10:28:17 PM 1094 Arcolor 1260 ND 2.0 μg/L		ND	1.0	ug/l	1	12/21/2013 10:27:04	PM 10908
Aroclor 1232 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1090 Aroclor 1242 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1090 Aroclor 1248 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1090 Aroclor 1254 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1090 Aroclor 1260 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1090 EPA METHOD 8310: PAHS Analyst: SCC Naphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 μg/L 1				. •	•		
Aroclor 1242 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1248 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1254 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/4 Aroclor 1250 ND 1.0 μg/L 1 12/21/2013 10:27:04 PM 109/2 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 109/2 EPA METHOD 8310: PAHS Naphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 109/2 1-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 109/2 2-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 109/2 Acenaphthene ND 2.5 μg/L 1 12/22/2013 10:08:17 PM 109/2 Acenaphthene ND 5.0 μg/L 1 12/22/2013 10:08:17 PM 109/2 Fluoranthene ND 0.80 μg/L 1 12/22/2013 10:08:17 PM 109/2 <							
Aroclor 1248 ND 1.0 µg/L 1 12/21/2013 10:27:04 PM 109/ Aroclor 1254 ND 1.0 µg/L 1 12/21/2013 10:27:04 PM 109/ Aroclor 1260 ND 1.0 µg/L 1 12/21/2013 10:27:04 PM 109/ Surr: Decachiorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 109/ Surr: Tetrachioro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 109/ Surr: Tetrachioro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 109/ Surr: Tetrachioro-m-xylene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 109/ 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 109/ 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 109/ Acenaphthylene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 109/ Acenaphthylene ND 2.5 µg/L 1 12/22/2013 10:08:17 PM 109/ Acenaphthene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 109/ Acenaphthene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 109/ Phenanthrene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 109/ Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 109/ Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 109/ Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 109/ Benz/(a)anthracene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 109/ Benz/(a)anthracene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benz/(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(b)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(b)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyrene ND 0.02 µg/L 1 12/22/2013 10:08:17 PM 109/ Benzo(a)pyre							
Aroclor 1254 ND 1.0 µg/L 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 71.2 22.6-113 %REC 1 12/21/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070							
Aroclor 1260 ND 1.0 µg/L 1 12/21/2013 10:27:04 PM 1090 Surr: Decachlorobiphenyl 82.8 17-123 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22:6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22:6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22:6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22:6-113 %REC 1 12/21/2013 10:27:04 PM 1090 Surr: Tetrachloro-m-xylene 71.2 22:6-113 %REC 1 12/21/2013 10:08:17 PM 1090 Surris PM				. •	1	12/21/2013 10:27:04	PM 10908
Surr: Decachlorobiphenyl Surr: Tetrachloro-m-xylene 71,2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1096 Surr: Tetrachloro-m-xylene 71,2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1096 PEPA METHOD 8310: PAHS Surri Tetrachloro-m-xylene ND					1	12/21/2013 10:27:04	PM 10908
Surr: Tetrachloro-m-xylene 71.2 22.6-113 %REC 1 12/21/2013 10:27:04 PM 1090 EPA METHOD 8310: PAHS Naphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>					1		
EPPA METHOD 8310: PAHS Naphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Phrancene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a	· •				1		
Naphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 1-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)phrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.070 µg/L <td>·</td> <td></td> <td></td> <td></td> <td></td> <td>Analy</td> <td>st: SCC</td>	·					Analy	st: SCC
1-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 2-Methylnaphthalene ND 2.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 μg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 0.80 μg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.05 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)pyrene ND 0.55 μg/L 5 12/19/2013 12:04:31 AM R15 Benzo(b)pyrene ND 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Benzo(b)pyrene ND 0.50 mg/L 5 12/19/2013 12:04:31 AM R15		ND	2.0	ua/l	1	-	
2-Methylnaphthalene ND 2.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthylene ND 2.5 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Benz(a)anthracene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Benz(a)anthracene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.10 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)h)anthracene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L	•			· -			
Acenaphthylene ND 2.5 µg/L 1 12/22/2013 10:08:17 PM 1090 Acenaphthene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Fluorene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)anthracene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.010 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070	•			. •	-		
Acenaphthene ND 5.0 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.20 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.20 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.10 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene Pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene	· ·			· -	•		
Fluorene ND 0.80 µg/L 1 12/22/2013 10:08:17 PM 1090 Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.20 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.20 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.10 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene	· · ·	_			-		
Phenanthrene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 Fluoranthene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 µg/L 1 12/22/2013 10:08:17 PM 1090 Benz(a)anthracene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.10 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a,h,a)nthracene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(e)pyrene ND	•			· -			
Anthracene ND 0.60 µg/L 1 12/22/2013 10:08:17 PM 1090 PJ							
Fluoranthene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Benz(a)anthracene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.20 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.10 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS TAnalyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/201				-			
Pyrene ND 0.30 μg/L 1 12/22/2013 10:08:17 PM 1090 Benz(a)anthracene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.20 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)filuoranthene ND 0.10 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRF 5 12/19/2013 12:04:31 AM R15 Chloride 37							
Benz(a)anthracene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Chrysene ND 0.20 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.10 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 µg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 µg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 µg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate				. •	•		
Chrysene ND 0.20 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(b)fluoranthene ND 0.10 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L					•		
Benzo(b)fluoranthene ND 0.10 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRE Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L	, ,						
Benzo(k)fluoranthene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150				_	-		
Benzo(a)pyrene ND 0.070 μg/L 1 12/22/2013 10:08:17 PM 1090 Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150	, ,			. •			
Dibenz(a,h)anthracene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150	` '						
Benzo(g,h,i)perylene ND 0.12 μg/L 1 12/22/2013 10:08:17 PM 1090 Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150	· · · ·						
Indeno(1,2,3-cd)pyrene ND 0.25 μg/L 1 12/22/2013 10:08:17 PM 1090 Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 PM 10					•		
Surr: Benzo(e)pyrene 48.1 24.5-139 %REC 1 12/22/2013 10:08:17 PM 1090 EPA METHOD 300.0: ANIONS Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R150 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R150 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R150							
EPA METHOD 300.0: ANIONS Analyst: JRR Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R15 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R15							
Fluoride 0.99 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R15 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R15						Analy	st: JRR
Chloride 37 2.5 mg/L 5 12/19/2013 12:04:31 AM R15 Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R15		0.99	0.50	ma/l	5	-	
Nitrogen, Nitrate (As N) 3.8 0.50 mg/L 5 12/19/2013 12:04:31 AM R15 Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R15				-	-		
Sulfate 86 2.5 mg/L 5 12/19/2013 12:04:31 AM R15				-			
				-	-		
EPA METHOD 200.7: DISSOLVED METALS Analyst: JLF							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Not Detected at the Reporting Limit Page 1 of 24 Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1312810

Date Reported: 12/27/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Seg. 7 post hydro test

Project: Enterprise WEP III Water Sampling

Collection Date: 12/17/2013 9:30:00 AM

Lab ID: 1312810-001

Matrix: AQUEOUS

Received Date: 12/17/2013 3:10:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED	METALS				Analys	st: JLF
Aluminum	ND	0.020	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Barium	0.046	0.0020	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Boron	0.16	0.040	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Cadmium	ND	0.0020	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Chromium	ND	0.0060	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Cobalt	ND	0.0060	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Copper	ND	0.0060	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Iron	0.25	0.020	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Lead	ND	0.0050	mg/L	1	12/19/2013 12:46:58 F	PM R15612
Manganese	0.25	0.0020	* mg/L	1	12/18/2013 12:56:33 F	PM R15576
Molybdenum	ND	0.0080	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Nickel	ND	0.010	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Silver	ND	0.0050	mg/L	1	12/18/2013 12:56:33 F	PM R15576
Zinc	0.023	0.010	mg/L	1	12/18/2013 12:56:33 F	PM R15576
EPA 200.8: DISSOLVED METALS					Analys	st: DBD
Arsenic	ND	0.0010	mg/L	1	12/18/2013 1:34:31 PI	M R15580
Selenium	0.0039	0.0010	mg/L	1	12/18/2013 1:34:31 PI	M R15580
Uranium	0.0028	0.0010	mg/L	1	12/18/2013 1:34:31 PI	M R15580
EPA METHOD 245.1: MERCURY					Analys	st: TES
Mercury	ND	0.00020	mg/L	1	12/23/2013 4:03:02 PI	M 10951
EPA METHOD 8260B: VOLATILES					Analys	st: DJF
Benzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PI	M R15623
Toluene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PI	M R15623
Ethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PI	M R15623
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	12/19/2013 7:15:51 PI	M R15623
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	M R15623
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	M R15623
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	/I R15623
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	M R15623
Naphthalene	ND	2.0	μg/L	1	12/19/2013 7:15:51 PM	/ R15623
1-Methylnaphthalene	ND	4.0	μg/L	1	12/19/2013 7:15:51 PM	/ R15623
2-Methylnaphthalene	ND	4.0	μg/L	1	12/19/2013 7:15:51 PM	/I R15623
Acetone	ND	10	μg/L	1	12/19/2013 7:15:51 PM	/ R15623
Bromobenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	/ R15623
Bromodichloromethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	
Bromoform	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	
Bromomethane	ND	3.0	μg/L	1	12/19/2013 7:15:51 PM	
2-Butanone	ND	10	μg/L	1	12/19/2013 7:15:51 PM	M R15623

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

- PI Panartina Detaction Limit
- RL Reporting Detection Limit

Lab Order 1312810

Date Reported: 12/27/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Seg. 7 post hydro test

Project: Enterprise WEP III Water Sampling

Collection Date: 12/17/2013 9:30:00 AM

Lab ID: 1312810-001 Matrix: AQUEOUS Received Date: 12/17/2013 3:10:00 PM

Analyses	Result	RL C	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst:	DJF
Carbon disulfide	ND	10	μg/L	1	12/19/2013 7:15:51 PM	R1562
Carbon Tetrachloride	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Chlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Chloroethane	ND	2.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Chloroform	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Chloromethane	ND	3.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
2-Chlorotoluene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
4-Chlorotoluene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
cis-1,2-DCE	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Dibromochloromethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Dibromomethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,2-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,3-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,4-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Dichlorodifluoromethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,1-Dichloroethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,1-Dichloroethene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,2-Dichloropropane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,3-Dichloropropane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
2,2-Dichloropropane	ND	2.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
1,1-Dichloropropene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R1562
Hexachlorobutadiene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
2-Hexanone	ND	10	μg/L	1	12/19/2013 7:15:51 PM	R15623
Isopropylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
4-Isopropyltoluene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
4-Methyl-2-pentanone	ND	10	μg/L	1	12/19/2013 7:15:51 PM	R15623
Methylene Chloride	ND	3.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
n-Butylbenzene	ND	3.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
n-Propylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
sec-Butylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
Styrene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
tert-Butylbenzene	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
trans-1,2-DCE	ND	1.0	μg/L	1	12/19/2013 7:15:51 PM	R15623
trans-1,3-Dichloropropene	ND	1.0	µg/∟	1	12/19/2013 7:15:51 PM	R15623

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 3 of 24
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1312810

Date Reported: 12/27/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Seg. 7 post hydro test

Project: Enterprise WEP III Water Sampling

Collection Date: 12/17/2013 9:30:00 AM

Lab ID: 1312810-001

Matrix: AQUEOUS

Received Date: 12/17/2013 3:10:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
1,1,1-Trichloroethane	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
1,1,2-Trichloroethane	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
Trichloroethene (TCE)	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
Trichlorofluoromethane	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
1,2,3-Trichloropropane	ND	2.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
Vinyl chloride	ND	1.0		μg/L	1	12/19/2013 7:15:51 PM	R15623
Xylenes, Total	ND	1.5		μg/L	1	12/19/2013 7:15:51 PM	R15623
Surr: 1,2-Dichloroethane-d4	88.7	70-130		%REC	1	12/19/2013 7:15:51 PM	R15623
Surr: 4-Bromofluorobenzene	85.8	70-130		%REC	1	12/19/2013 7:15:51 PM	R15623
Surr: Dibromofluoromethane	90.5	70-130		%REC	1	12/19/2013 7:15:51 PM	R15623
Surr: Toluene-d8	97.4	70-130		%REC	1	12/19/2013 7:15:51 PM	R15623
TOTAL PHENOLICS BY SW-846 9067						Analyst:	SCC
Phenolics, Total Recoverable	ND	2.5		μg/L	1	12/19/2013	10893
SM4500-H+B: PH						Analyst:	SRM
рH	7.77	1.68	Н	pH units	1	12/19/2013 2:16:10 PM	R15632
SM2540C MOD: TOTAL DISSOLVED SO	LIDS					Analyst:	KS
Total Dissolved Solids	394	40.0		mg/L	1	12/23/2013 6:23:00 PM	10930

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 24

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Lab Order 1312810

Date Reported: 12/27/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling Collection Date:

Lab ID: 1312810-002 Matrix: TRIP BLANK Received Date: 12/17/2013 3:10:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analyst	LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	12/18/2013 7:55:17 PM	10868
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
Toluene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
Ethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	
Naphthalene	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	
1-Methylnaphthalene	ND	4.0	μg/L	1	12/19/2013 7:47:49 PM	
2-Methylnaphthalene	ND	4.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Acetone	ND	10	μg/L	1	12/19/2013 7:47:49 PM	R15623
Bromobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Bromodichloromethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Bromoform	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Bromomethane	ND	3.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
2-Butanone	ND	10	μg/L	1	12/19/2013 7:47:49 PM	R15623
Carbon disulfide	ND	10	μg/L	1	12/19/2013 7:47:49 PM	R15623
Carbon Tetrachloride	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Chlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Chloroethane	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Chloroform	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Chloromethane	ND	3.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
2-Chlorotoluene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
4-Chlorotoluene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
cis-1,2-DCE	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Dibromochloromethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Dibromomethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,3-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,4-Dichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Dichlorodifluoromethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1-Dichloroethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1-Dichloroethene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2-Dichloropropane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDIimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1312810

Date Reported: 12/27/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: TRIP BLANK

Project: Enter

Enterprise WEP III Water Sampling

Collection Date:

Lab ID:

1312810-002

Matrix: TRIP BLANK

Received Date: 12/17/2013 3:10:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,3-Dichloropropane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
2,2-Dichloropropane	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1-Dichloropropene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Hexachlorobutadiene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
2-Hexanone	ND	10	μg/L	1	12/19/2013 7:47:49 PM	R15623
Isopropylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
4-Isopropyltoluene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
4-Methyl-2-pentanone	ND	10	μg/L	1	12/19/2013 7:47:49 PM	R15623
Methylene Chloride	ND	3.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
n-Butylbenzene	ND	3.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
n-Propylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
sec-Butylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Styrene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
tert-Butylbenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
trans-1,2-DCE	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1,1-Trichloroethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,1,2-Trichloroethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Trichloroethene (TCE)	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Trichlorofluoromethane	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
1,2,3-Trichloropropane	ND	2.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Vinyl chloride	ND	1.0	μg/L	1	12/19/2013 7:47:49 PM	R15623
Xylenes, Total	ND	1.5	μg/L	1	12/19/2013 7:47:49 PM	R15623
Surr: 1,2-Dichloroethane-d4	97.6	70-130	%REC	1	12/19/2013 7:47:49 PM	R15623
Surr: 4-Bromofluorobenzene	81.1	70-130	%REC	1	12/19/2013 7:47:49 PM	R15623
Surr: Dibromofluoromethane	96.9	70-130	%REC	1	12/19/2013 7:47:49 PM	R15623
Surr: Toluene-d8	102	70-130	%REC	1	12/19/2013 7:47:49 PM	R15623

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

131219044

Address:

4901 HAWKINS NE SUITE D

Project Name:

1312810

Addition.

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

131219044-001

Sampling Date

12/17/2013

Date/Time Received 12/19/2013 1:25 PM

Client Sample ID

1312810-0011 / SEG. 7 POST

Sampling Time

9:30 AM

HYDRO TEST

Matrix

Water

Comments

Parameter	Result	Units	PQL_	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/L	0.01	12/23/2013	ETL	EPA 335.4	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND PQL

Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/soild results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87883; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095

Hall Environmental Analysis Laboratory, Inc.

WO#: 13

1312810 27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB	SampType: MBLK			Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	s	
Client ID: PBW	Batch ID: R15576			F	RunNo: 1	5576				
Prep Date:	Analysis I	Date: 12	2/18/2013	8	SeqNo: 4	48293	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020								
Barium	ND	0.0020								
Boron	ND	0.040								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Cobalt	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Manganese	ND	0.0020								
Molybdenum	ND	0.0080								
Nickel	ND	0.010								
Silver	ND	0.0050								
Zinc	ND	0.010								

Sample ID LCS	Samp	Type: LC	s	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: LCSW	Bate	ch ID: R1	5576	F	RunNo: 1	5576					
Prep Date:	Analysis	Date: 12	2/18/2013	8	SeqNo: 4	48294	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit _	%RPD	RPDLimit	Qual	
Aluminum	0.55	0.020	0.5000	0	110	85	115				
Barium	0.50	0.0020	0.5000	0	100	85	115				
Boron	0.52	0.040	0.5000	0	103	85	115				
Cadmium	0.51	0.0020	0.5000	0	101	85	115				
Chromium	0.52	0.0060	0.5000	0	104	85	115				
Cobalt	0.49	0.0060	0.5000	0	98.9	85	115				
Copper	0.49	0.0060	0.5000	0	98.1	85	115				
Iron	0.54	0.020	0.5000	0	107	85	115				
Manganese	0.52	0.0020	0.5000	0	104	85	115				
Molybdenum	0.51	0.0080	0.5000	0	102	85	115				
Nickel	0.49	0.010	0.5000	0	98.2	85	115				
Silver	0.10	0.0050	0.1000	0	101	85	115				
Zinc	0.49	0.010	0.5000	0	98.8	85	115				

Sample ID 13	311866-001EMS	Samp [*]	Type: MS	3	TestCode: EPA Method 200.7: Dissolved Metals							
Client ID: Ba	atchQC	Batc	h ID: R1	5576	R	tunNo: 1	5576					
Prep Date:		Analysis [Date: 12	2/18/2013	S	eqNo: 4	48296	Units: mg/L	•			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Boron		0.67	0.040	0.5000	0.1238	110	70	130				
Cobalt		0.49	0.0060	0.5000	0	98.9	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID	1311866-001EMSD	Samp	Type: MS	SD	Tes	tCode: El	PA Method	200.7: Disso	lved Meta	ls	
Client ID:	BatchQC	Batc	h ID: R1	5576	F	RunNo: 1	5576				
Prep Date:		Analysis [Date: 12	2/18/2013	S	SeqNo: 4	48297	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Boron		0.66	0.040	0.5000	0.1238	108	70	130	1.70	20	
Cobalt		0.48	0.0060	0.5000	0	96.7	70	130	2.22	20	

Sample ID MB	SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals
Client ID: PBW	Batch ID: R15612	RunNo: 15612
Prep Date:	Analysis Date: 12/19/2013	SeqNo: 449740 Units: mg/L
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Lead	ND 0.0050	

Sample ID LCS	SampType: L	cs	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: LCSW	Batch ID: F	15612	F	RunNo: 1	5612					
Prep Date:	Analysis Date:	12/19/2013	S	eqNo: 4	49741	Units: mg/L				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Lead	0.51 0.005	0.5000	0	101	85	115				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 8 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project:	Enterpris	e WEP II	Water	Sampling							
Sample ID	LCS	Samp	Type: LC	s	Tes	tCode: E	PA 200.8: [Dissolved Met	als		
Client ID:	LCSW	Bato	h ID: R1	5580	F	RunNo: 1	15580				
Prep Date:		Analysis	Date: 12	2/18/2013	5	SeqNo: 4	148397	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.026	0.0010	0.02500	0	105	85	115			
Selenium		0.026	0.0010	0.02500	0	103	85	115			
Uranium		0.026	0.0010	0.02500	0	105	85	115			
Sample ID	мв	Samp	Туре: М	BLK	Tes	tCode: E	PA 200.8: [Dissolved Met	tals		
Client ID:	PBW	Bato	h ID: R1	5580	F	RunNo: 1	15580				
Prep Date:		Analysis	Date: 12	2/18/2013	5	SeqNo: 4	148398	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.0010								
Selenium		ND	0.0010								
Uranium		ND	0.0010								
Sample ID	1312810-001GMS	Samp	Type: MS	3	Tes	tCode: E	PA 200.8: [Dissolved Met	tals		
Client ID:	Seg. 7 post hydro	te Bato	h ID: R1	5580	F	RunNo: 1	15580				
Prep Date:		Analysis	Date: 12	2/18/2013	\$	SeqNo: 4	148849	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.026	0.0010		0.0004105	103	70	130			
Selenium		0.029	0.0010	0.02500	0.003938	99.5	70	130			
Uranium		0.028	0.0010	0.02500	0.002848	102	70	130			
Sample ID	LCS	Samp	Type: LC	s	Tes	tCode: E	PA 200.8: [Dissolved Met	tals		
Client ID:	LCSW	Bato	h ID: R1	5580	F	RunNo: 1	15580				
Prep Date:		Analysis	Date: 12	2/18/2013	\$	SeqNo: 4	148851	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.026	0.0010	0.02500	0	104	85	115			
Selenium		0.026	0.0010	0.02500	0	106	85	115			
Uranium		0.026	0.0010	0.02500	0	103	85	115			
Sample ID	MB	Samp	Type: ME	BLK	Tes	tCode: E	PA 200.8: [Dissolved Met	als		
	PBW	Bato	h ID: R1	5580	F	RunNo: 1	15580				
Client ID:			Data: 44	2/40/2042	5	SeqNo: 4	148852	Units: mg/L			
Client ID: Prep Date:		Analysis I	Date: 12	2/10/2013							
		Analysis Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Arsenic		Result	PQL 0.0010			%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date:		Result	PQL			%REC	LowLimit_	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 9 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10951

SampType: MBLK

TestCode: EPA Method 245.1: Mercury

Client ID:

PBW

Batch ID: 10951

PQL

RunNo: 15753

Prep Date: 12/23/2013

SeqNo: 454785

Units: mg/L

%RPD

%RPD

Analyte

Client ID:

Analysis Date: 12/23/2013

Result

SPK value SPK Ref Val %REC LowLimit

HighLimit

RPDLimit

Qual

Mercury

ND 0.00020

Sample ID LCS-10951

SampType: LCS Batch ID: 10951 TestCode: EPA Method 245.1: Mercury RunNo: 15753

Prep Date: 12/23/2013

LCSW

Analysis Date: 12/23/2013

Units: mg/L

Analyte

SeqNo: 454786

RPDLimit Qual

Result **PQL** 0.0052 0.00020

SPK value SPK Ref Val %REC 103

HighLimit LowLimit 80

Mercury

Sample ID 1312785-007BMS

SampType: MS

TestCode: EPA Method 245.1: Mercury

120

Client ID: **BatchQC** Batch ID: 10951

RunNo: 15753

Prep Date: 12/23/2013

Analysis Date: 12/23/2013

SeqNo: 454792

Units: mg/L

%RPD

Analyte

PQL

HighLimit

Qual

Mercury

0.0049 0.00020

SPK value SPK Ref Val %REC LowLimit 0.005000 0.0001573

0.005000

94.0

125

RPDLimit

Sample ID 1312785-007BMSD

SampType: MSD

TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC

Batch ID: 10951

RunNo: 15753

Prep Date: 12/23/2013

Analysis Date: 12/23/2013

SeqNo: 454793

Units: mg/L

Analyte

%RPD

Qual

Mercury

PQL SPK value SPK Ref Val %REC 0.0049 0.00020 0.005000 0.0001573

94.4

LowLimit 75

HighLimit 125

0.401

RPDLimit 20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- 1 Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded

Sample pH greater than 2 for VOA and TOC only.

- ND Not Detected at the Reporting Limit
- RLReporting Detection Limit

P

- - Page 10 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

HRL Compliance Solutions

Enterprise WEP III Water Sampling

Project:	Enterpris	e WEP III									
Sample ID	A6	SampT	ype: CC	V_6	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID:	BatchQC	Batch	ID: R1	5603	F	RunNo: 1	5603				
Prep Date:		Analysis D	ate: 12	2/18/2013	5	SeqNo: 4	49312	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		2.4	0.10	2.400	0	100	90	110			
Chloride		12	0.50	12.00	0	101	90	110			
Nitrogen, Nitra	te (As N)	7.8	0.10	7.200	0	108	90	110			
Sulfate		31	0.50	30.00	0	103	90	110			
Sample ID	МВ	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	300.0: Anions	S		
Client ID:	PBW	Batch	ID: R1	5603	F	RunNo: 1	5603				
Prep Date:		Analysis D	ate: 12	2/18/2013	S	SeqNo: 4	49314	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		ND	0.10								
Chloride		ND	0.50								
Nitrogen, Nitra	te (As N)	ND	0.10								
Sulfate		ND	0.50								
Sample ID	LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	300.0: Anions	\$		
Client ID:	LCSW	Batch	ID: R1	5603	F	RunNo: 1	5603				
Prep Date:		Analysis Da	ate: 12	2/18/2013	S	SeqNo: 4	49315	Units: mg/L			
Prep Date: Analyte		Analysis Da	ete: 12		SPK Ref Val	SeqNo: 4	49315 LowLimit	HighLimit	%RPD	RPDLimit	Qual
'				SPK value 0.5000	SPK Ref Val	•	LowLimit 90	HighLimit	%RPD	RPDLimit	Qual
Analyte		0.50 4.7	PQL 0.10 0.50	SPK value 0.5000 5.000	SPK Ref Val 0 0	%REC 101 93.5	LowLimit 90 90	HighLimit 110 110	%RPD	RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra	te (As N)	Result 0.50 4.7 2.5	PQL 0.10 0.50 0.10	SPK value 0.5000 5.000 2.500	SPK Ref Val 0 0 0	%REC 101 93.5 99.0	90 90 90	HighLimit 110 110 110	%RPD	RPDLimit	Qual
Analyte Fluoride Chloride	te (As N)	0.50 4.7	PQL 0.10 0.50	SPK value 0.5000 5.000	SPK Ref Val 0 0	%REC 101 93.5	LowLimit 90 90	HighLimit 110 110	%RPD	RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate	te (As N) 1312857-001AMS	Result 0.50 4.7 2.5	PQL 0.10 0.50 0.10 0.50	9.5000 5.000 2.500 10.00	SPK Ref Val 0 0 0 0	%REC 101 93.5 99.0 95.6	90 90 90 90 90	HighLimit 110 110 110		RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate		Result 0.50 4.7 2.5 9.6 SampTy	PQL 0.10 0.50 0.10 0.50	SPK value 0.5000 5.000 2.500 10.00	SPK Ref Val 0 0 0 0 0	%REC 101 93.5 99.0 95.6	90 90 90 90 90	HighLimit 110 110 110 110		RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID	1312857-001AMS	Result 0.50 4.7 2.5 9.6 SampTy	PQL 0.10 0.50 0.10 0.50 v/pe: MS	SPK value 0.5000 5.000 2.500 10.00	SPK Ref Val 0 0 0 0 Test	%REC 101 93.5 99.0 95.6	90 90 90 90 90 PA Method	HighLimit 110 110 110 110		RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID:	1312857-001AMS	Result 0.50 4.7 2.5 9.6 SampTy Batch	PQL 0.10 0.50 0.10 0.50 v/pe: MS	SPK value 0.5000 5.000 2.500 10.00 3 5603 2/18/2013	SPK Ref Val 0 0 0 0 Test	%REC 101 93.5 99.0 95.6 tCode: El	90 90 90 90 90 PA Method	HighLimit 110 110 110 110 110		RPDLimit RPDLimit	Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID: Prep Date:	1312857-001AMS	Result 0.50 4.7 2.5 9.6 SampTy Batch Analysis Da	PQL 0.10 0.50 0.10 0.50 //pe: MS ID: R1	SPK value 0.5000 5.000 2.500 10.00 3 5603 2/18/2013	SPK Ref Val 0 0 0 0 Test	%REC 101 93.5 99.0 95.6 tCode: EI	90 90 90 90 90 PA Method 5603 49317	HighLimit 110 110 110 110 110 300.0: Anions	3		
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID: Prep Date: Analyte Fluoride	1312857-001AMS	Result 0.50 4.7 2.5 9.6 SampTy Batch Analysis Da Result 0.92	PQL 0.10 0.50 0.10 0.50 //pe: MS ID: R1 ate: 12 PQL 0.10	SPK value 0.5000 5.000 2.500 10.00 3 5603 2/18/2013 SPK value 0.5000	SPK Ref Val 0 0 0 0 Test S SPK Ref Val 0	%REC 101 93.5 99.0 95.6 tCode: EI RunNo: 1: SeqNo: 4- %REC 185	90 90 90 90 90 PA Method 5603 49317 LowLimit 76.4	HighLimit 110 110 110 110 300.0: Anions Units: mg/L HighLimit	%RPD		Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID: Prep Date: Analyte Fluoride	1312857-001AMS BatchQC	Result 0.50 4.7 2.5 9.6 SampTy Batch Analysis Da Result 0.92 SampTy	PQL 0.10 0.50 0.10 0.50 //pe: MS ID: R1 ate: 12 PQL 0.10	SPK value 0.5000 5.000 2.500 10.00 5.5603 2/18/2013 SPK value 0.5000	SPK Ref Val 0 0 0 0 Test SPK Ref Val 0 Test	%REC 101 93.5 99.0 95.6 tCode: EI RunNo: 1: SeqNo: 4- %REC 185	90 90 90 PA Method 5603 LowLimit 76.4	HighLimit 110 110 110 110 300.0: Anions Units: mg/L HighLimit 109	%RPD		Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID: Prep Date: Analyte Fluoride Sample ID	1312857-001AMS BatchQC 1312857-001AMSI	Result 0.50 4.7 2.5 9.6 SampTy Batch Analysis Da Result 0.92 SampTy	PQL 0.10 0.50 0.10 0.50 //pe: MS ID: R1 ate: 12 PQL 0.10 //pe: MS	SPK value 0.5000 5.000 2.500 10.00 3. 5603 2/18/2013 SPK value 0.5000 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	SPK Ref Val 0 0 0 0 Test S SPK Ref Val 0 Test	%REC 101 93.5 99.0 95.6 tCode: El RunNo: 1 SeqNo: 4 %REC 185	90 90 90 90 90 PA Method 5603 49317 LowLimit 76.4 PA Method	HighLimit 110 110 110 110 300.0: Anions Units: mg/L HighLimit 109	%RPD		Qual
Analyte Fluoride Chloride Nitrogen, Nitra Sulfate Sample ID Client ID: Prep Date: Analyte Fluoride Sample ID Client ID:	1312857-001AMS BatchQC 1312857-001AMSI	Result 0.50 4.7 2.5 9.6 SampTy Batch Analysis Da Result 0.92 Company SampTy Batch	PQL 0.10 0.50 0.10 0.50 //pe: MS ID: R1 ate: 12 PQL 0.10 //pe: MS	SPK value 0.5000 5.000 2.500 10.00 3. 5603 2/18/2013 SPK value 0.5000 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	SPK Ref Val 0 0 0 0 Test S SPK Ref Val 0 Test	%REC 101 93.5 99.0 95.6 tCode: El RunNo: 1: 6eqNo: 4: %REC 185 tCode: El	90 90 90 90 90 PA Method 5603 49317 LowLimit 76.4 PA Method	HighLimit 110 110 110 110 110 300.0: Anions Units: mg/L HighLimit 109 300.0: Anions	%RPD		Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID A4	SampT	ype: CC	V_4	Tes	tCode: El	PA Method	s			
Client ID: BatchQC	Batch	n ID: R1	5603							
Prep Date:	Analysis D	ate: 12	2/18/2013	S	SeqNo: 4	49324	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.0	0.10	1.000	0	99.6	90	110			
Chloride	4.7	0.50	5.000	0	93.2	90	110			
Nitrogen, Nitrate (As N)	2.9	0.10	3.000	0	98.0	90	110			
Sulfate	12	0.50	12.50	0	94.5	90	110			

Sample 1D 1312823-001BMS	Samp	Гуре: М	3	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batc	h ID: R1	5603	F	RunNo: 1	5603				
Prep Date:	Analysis E	Date: 12	2/18/2013	S	SeqNo: 4	49331	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.92	0.10	0.5000	0.4554	93.8	76.4	109			
Chloride	7.9	0.50	5.000	3.026	96.7	90.1	116			
Nitrogen, Nitrate (As N)	3.0	0.10	2.500	0.5309	101	93.8	111			

Sample ID 1312823-001B	MSD SampT	уре: М \$	SD	Test	Code: El	;				
Client ID: BatchQC	Batch	1D: R1	5603	R	tunNo: 1	5603				
Prep Date:	Analysis D	ate: 12	2/18/2013	S	eqNo: 4	49332	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.04	0.40	0.5000	0.4554						
	0.94	0.10	0.5000	0.4554	96.1	76.4	109	1.25	20	
Chloride	7.9	0.10	5.000	0.4554 3.026	96.1 96.5	76.4 90.1	109 116	1.25 0.131	20 20	

Sample ID A5	SampT	ype: CC	V_5	Tes	tCode: El	PA Method	5			
Client ID: BatchQC	Batch	Batch ID: R15603 RunNo: 15603								
Prep Date:	Analysis D	ate: 12	2/18/2013	S	SeqNo: 4	49336	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.6	0.10	1.600	0	99.1	90	110			
Chloride	7.8	0.50	8.000	0	97.1	90	110			
Nitrogen, Nitrate (As N)	5.0	0.10	4.800	0	103	90	110			
Sulfate	20	0.50	20.00	0	98.5	90	110			

Sample ID A6	SampType: CCV_6 TestCode: EPA Method 300.0: Anions									
Client ID: BatchQC	Batch	ID: R1	5603	F	RunNo: 1	5603				
Prep Date:	Analysis D	ate: 12	2/18/2013	S	SeqNo: 4	49348	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.5	0.10	2.400	0	102	90	110			
Chloride	12	0.50	12.00	0	102	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project: Enterp	rise WEP III	Water	Sampling							
Sample ID A6	SampT	ype: CC	V_6	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batcl	n ID: R1	5603	F	RunNo: 1	5603				
Prep Date:	Analysis D)ate: 12	2/18/2013	\$	SeqNo: 4	49348	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrate (As N)	7.8	0.10	7.200	0	109	90	110			
Sulfate	31	0.50	30.00	0	103	90	110			
Sample ID A4	SampT	ype: CC	V_4	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batcl	1D: R1	5603	F	RunNo: 1	5603				
Prep Date:	Analysis D)ate: 12	2/19/2013	8	SeqNo: 4	49360	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.0	0.10	1.000	0	99.7	90	110			
Chloride	4.7	0.50	5.000	0	93.6	90	1 1 0			
Nitrogen, Nitrate (As N)	3.0	0.10	3.000	0	98.4	90	110			
Sulfate	12	0.50	12.50	0	95.1	90	110			
Sample ID A5	SampT	ype: CC	V_5	Tes	tCode: El	PA Method	300.0: Anion	s		
Sample ID A5 Client ID: BatchQC	•	ype: CC	_		tCode: El		300.0: Anion	s		
	•	n ID: R1	5603	F		5603	300.0: Anion			
Client ID: BatchQC Prep Date: Analyte	Batch	n ID: R1	5603 2/19/2013	F	RunNo: 1	5603			RPDLimit	Qual
Client ID: BatchQC Prep Date:	Batch Analysis D	n ID: R1 ate: 12	5603 2/19/2013	F	RunNo: 1 SeqNo: 4	5603 49372	Units: mg/L		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte	Batch Analysis D Result	n ID: R1 Pate: 12	5603 2/19/2013 SPK value	SPK Ref Val	RunNo: 1 SeqNo: 4 %REC	5603 49372 LowLimit	Units: mg/L HighLimit		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride	Batch Analysis D Result 1.6	PQL 0.10	5603 2/19/2013 SPK value 1.600	SPK Ref Val	RunNo: 1 SeqNo: 4 %REC 100	5603 49372 LowLimit 90	Units: mg/L HighLimit		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride	Analysis D Result 1.6 7.7	PQL 0.10 0.50	5603 2/19/2013 SPK value 1.600 8.000	SPK Ref Val 0 0	RunNo: 1 SeqNo: 4 %REC 100 96.7	5603 49372 LowLimit 90 90	Units: mg/L HighLimit 110 110		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N)	Batch Analysis D Result 1.6 7.7 4.9 20	PQL 0.10 0.50 0.10	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00	SPK Ref Val 0 0 0 0	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2	5603 49372 LowLimit 90 90 90	Units: mg/L HighLimit 110 110	%RPD	RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate	Batch Analysis D Result 1.6 7.7 4.9 20 SampT	PQL 0.10 0.50 0.50	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00	SPK Ref Val 0 0 0 0 Tes	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2	5603 49372 LowLimit 90 90 90 90	Units: mg/L HighLimit 110 110 110	%RPD	RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate Sample ID A6	Batch Analysis D Result 1.6 7.7 4.9 20 SampT	PQL 0.10 0.50 0.10 0.50 0.10 0.50	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00	SPK Ref Val 0 0 0 0 Tes	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2 tCode: El	5603 49372 LowLimit 90 90 90 90 PA Method	Units: mg/L HighLimit 110 110 110	%RPD	RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate Sample ID A6 Client ID: BatchQC Prep Date: Analyte	Batch Analysis D Result 1.6 7.7 4.9 20 SampT Batch	PQL 0.10 0.50 0.10 0.50 0.10 0.50	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00 EV_6 5603 2/19/2013	SPK Ref Val 0 0 0 0 Tes	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2 tCode: El	5603 49372 LowLimit 90 90 90 90 PA Method	Units: mg/L HighLimit 110 110 110 110 300.0: Anions	%RPD	RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate Sample ID A6 Client ID: BatchQC Prep Date:	Batch Analysis D Result 1.6 7.7 4.9 20 SampT Batch Analysis D	PQL 0.10 0.50 0.10 0.50 0.1D: R1 D: R1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00 EV_6 5603 2/19/2013	SPK Ref Val 0 0 0 0 Tes	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2 tCode: El	5603 49372 LowLimit 90 90 90 90 PA Method 5603 49384	Units: mg/L HighLimit 110 110 110 110 300.0: Anion:	%RPD		
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate Sample ID A6 Client ID: BatchQC Prep Date: Analyte	Batch Analysis D Result 1.6 7.7 4.9 20 SampT Batch Analysis D Result	PQL 0.10 0.50 0.10 0.50 0.1D: R1 D:	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00 EV_6 5603 2/19/2013 SPK value	SPK Ref Val 0 0 0 0 Tes F SPK Ref Val	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2 tCode: El RunNo: 1 SeqNo: 4 %REC	5603 49372 LowLimit 90 90 90 90 PA Method 5603 49384 LowLimit	Units: mg/L HighLimit 110 110 110 300.0: Anion: Units: mg/L HighLimit	%RPD		
Client ID: BatchQC Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrate (As N) Sulfate Sample ID A6 Client ID: BatchQC Prep Date: Analyte Fluoride	Batch Analysis D Result 1.6 7.7 4.9 20 SampT Batch Analysis D Result 2.4	PQL 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.1	5603 2/19/2013 SPK value 1.600 8.000 4.800 20.00 EV_6 5603 2/19/2013 SPK value 2.400	SPK Ref Val 0 0 0 0 Tes SPK Ref Val 0	RunNo: 1 SeqNo: 4 %REC 100 96.7 103 98.2 tCode: Ell RunNo: 1 SeqNo: 4 %REC 102	5603 49372 LowLimit 90 90 90 90 PA Method 5603 49384 LowLimit 90	Units: mg/L HighLimit 110 110 110 300.0: Anion: Units: mg/L HighLimit 110	%RPD		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 13 of 24
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10868

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW

Batch ID: 10868

POL

RunNo: 15596

Prep Date: 12/18/2013

Analysis Date: 12/18/2013

SeqNo: 449514

Units: µg/L

RPDLimit

Analyte

Result

Result

Result

0.10

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

Qual

1,2-Dibromoethane

ND 0.010

Sample ID LCS-10868

SampType: LCS

TestCode: EPA Method 8011/504.1; EDB

Client ID:

LCSW

Batch ID: 10868

RunNo: 15596

130

Prep Date: 12/18/2013

Analysis Date: 12/18/2013

SeqNo: 449515

Units: µg/L

Analyte

PQL

SPK value SPK Ref Val %REC

HighLimit LowLimit

RPDLimit

1,2-Dibromoethane

0.1000 0.010

102

%RPD

Qual

Sample ID 1312810-001BMS

SampType: MS

TestCode: EPA Method 8011/504.1: EDB

Client ID:

Seg. 7 post hydro te

Batch ID: 10868

RunNo: 15596

Prep Date: 12/18/2013

Analysis Date: 12/18/2013

SeqNo: 449572

Units: µg/L

Analyte

PQL

SPK value SPK Ref Val

%REC LowLimit HighLimit

RPDLimit Qual

1,2-Dibromoethane

0.13 0.010 SampType: MSD 0.1000

131

TestCode: EPA Method 8011/504.1: EDB

149

Client ID: Seg. 7 post hydro te

RunNo: 15596

Units: µg/L

Analyte

Prep Date: 12/18/2013

Sample ID 1312810-001BMSD

Batch ID: 10868

Analysis Date: 12/18/2013

SeqNo: 449573

52

Qual

1,2-Dibromoethane

Result 0.12 **PQL** 0.010

SPK value SPK Ref Val %REC LowLimit 0.1000

117

HighLimit 149 %RPD 11.3

%RPD

RPDLimit

Qualifiers:

Value exceeds Maximum Contaminant Level

E Value above quantitation range

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only. Reporting Detection Limit RL

Page 14 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

110,000.	Litterpris	C WEI III	vv ater	oumpring .							-
Sample ID MB-1	10908	SampT	уре: М	BLK	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: PBW	Ī	Batch	ID: 10	908	F	RunNo: 1	5670				
Prep Date: 12/	19/2013	Analysis D	ate: 12	2/21/2013		SeqNo: 4	51850	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		ND	1.0								
Aroclor 1221		ND	1.0								
Aroclor 1232		ND	1.0								
Aroclor 1242		ND	1.0								
Aroclor 1248		ND	1.0								
Aroclor 1254		ND	1.0								
Aroclor 1260		ND	1.0								
Surr: Decachlorobip	henyl	2.2		2.500		86.4	17	123			
Surr: Tetrachloro-m	-xylene	2.1		2.500		84.4	22.6	113	****		
Sample ID LCS-	-10908	SampT	ype: LC	s	Tes	tCode: E	PA Method	8082: PCB's		-	
Client ID: LCS	W	Batch	ID: 10	908	F	RunNo: 1	5670				
Prep Date: 12/	19/2013	Analysis D	ate: 12	2/21/2013		SeqNo: 4	51852	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		4.0	1.0	5.000	0	80.4	18.6	134			
Aroclor 1260		4.9	1.0	5.000	0	97.0	35.7	137			
Surr: Decachlorobip	henyl	2.2		2.500		86.8	17	123			
Surr: Tetrachloro-m	-xylene	2.1		2.500		84.4	22.6	113			
Sample ID 1312	810-001D M S	SampT	ype: MS	5	Tes	tCode: E	PA Method	8082: PCB's	- '''		
Client ID: Seg.	7 post hydro	te Batch	ID: 10	908	F	RunNo: 1	5670				
Prep Date: 12/	19/2013	Analysis D	ate: 12	2/21/2013	(SeqNo: 4	51858	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		3.1	1.0	5.000	0	61.6	70	130			S
Aroclor 1260		3.9	1.0	5.000	0	78.6	61.1	129			
Surr: Decachlorobip	henyl	1.9		2.500		77.2	17	123			
Surr: Tetrachloro-m	-xylene	1.6		2.500		65.6	22.6	113			
Sample ID 1312	810-001DMS	D SampT	уре: М\$	SD	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: Seg.	7 post hydro	te Batch	ID: 10	908	F	RunNo: 1	5670				
Prep Date: 12/1	19/2013	Analysis D	ate: 12	2/21/2013	\$	SeqNo: 4	51859	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		3.3	1.0	5.000	0	66.4	70	130	7.50	20	S
Aroclor 1260		4.3	1.0	5.000	0	85.1	61.1	129	7.96	12.9	

Qualifiers:

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

* Value exceeds Maximum Contaminant Level.

2.1

1.8

2.500

2.500

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

17

22.6

123

113

0

0

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

83.6

70.4

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 15 of 24

0

0

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml rb	SampT	ype: MBLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R15623	F	RunNo: 1	5623				
Prep Date:	Analysis D	ate: 12/19/2013	8	SeqNo: 4	50291	Units: µg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0		"					
Toluene	ND	1.0							
Ethylbenzene	ND	1.0							
Methyl tert-butyl ether (MTBE)	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane	ND	2.0							
Chloroform	ND	1.0							
Chloromethane	ND	3.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							

Qualifiers:

1,3-Dichloropropane

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

ND

ND

1.0

2.0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 16 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml rb	SampT	ype: Mi	BLK	TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	1D: R1	5623	R	tunNo: 1	5623							
Prep Date:	Analysis D	ate: 12	2/19/2013	s	eqNo: 4	50291	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
1,1-Dichloropropene	ND	1.0											
Hexachlorobutadiene	ND	1.0											
2-Hexanone	ND	10											
Isopropylbenzene	ND	1.0											
4-Isopropyttoluene	ND	1.0											
4-Methyl-2-pentanone	ND	10											
Methylene Chloride	ND	3.0											
n-Butylbenzene	ND	3.0											
n-Propylbenzene	ND	1.0											
sec-Butylbenzene	ND	1.0											
Styrene	ND	1.0											
tert-Butylbenzene	ND	1.0											
1,1,1,2-Tetrachloroethane	ND	1.0											
1,1,2,2-Tetrachloroethane	ND	2.0											
Tetrachloroethene (PCE)	ND	1.0											
trans-1,2-DCE	ND	1.0											
trans-1,3-Dichloropropene	ND	1.0											
1,2,3-Trichlorobenzene	ND	1.0											
1,2,4-Trichlorobenzene	ND	1.0											
1,1,1-Trichloroethane	ND	1.0											
1,1,2-Trichloroethane	ND	1.0											
Trichloroethene (TCE)	ND	1.0											
Trichlorofluoromethane	ND	1.0											
1,2,3-Trichloropropane	ND	2.0											
Viriyl chloride	ND	1.0											
Xylenes, Total	ND	1.5											
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.5	70	130						
Surr: 4-Bromofluorobenzene	8.2		10.00		82.0	70	130						
Surr: Dibromofluoromethane	9.6		10.00		95.5	70	130						
Surr: Toluene-d8	10		10.00		101	70	130						

Sample ID 100nglcs,	200ngacac SampT	S	TestCode: EPA Method 8260B: VOLATILES								
Client ID: LCSW	Batch	1D: R1	5623	F	RunNo: 1	5623					
Prep Date:	Analysis D	ate: 12	2/19/2013	S	SeqNo: 4	50295	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	103	70	130				
Toluene	21	1.0	20.00	0	104	82.2	124				
Chlorobenzene	19 1.0 20.00			0	97.0	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 100nglcs,200nga	acac SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES							
Client ID: LCSW	Batch	ID: R1	5623	F	RunNo: 1	5623					
Prep Date:	Analysis D	ate: 12	2/19/2013	8	SeqNo: 4	50295	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	25	1.0	20.00	0	126	83.5	155				
Trichloroethene (TCE)	18	1.0	20.00	0	89.3	70	130				
Surr: 1,2-Dichloroethane-d4	9.6		10.00		95.6	70	130				
Surr: 4-Bromofluorobenzene	8.3		10.00		82.8	70	130				
Surr: Dibromofluoromethane 8.3 10.0			10.00		83.3	70	130				
Surr: Toluene-d8 10 10.00					103	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 18 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10909	Samp1	Гуре: МВ	LK	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: PBW	Batcl	h ID: 10 9	909	F	RunNo: 1	5674				
Prep Date: 12/19/2013	Analysis E	Date: 12	/22/2013	S	SeqNo: 4	51947	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
Acenaphthylene	ND	2.5								
Acenaphthene	ND	5.0								
Fluorene	ND	0.80								
Phenanthrene	ND	0.60								
Anthracene	ND	0.60								
Fluoranthene	ND	0.30								
Pyrene	ND	0.30								
Benz(a)anthracene	ND	0.070								
Chrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
Benzo(k)fluoranthene	ND	0.070								
Benzo(a)pyrene	ND	0.070								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.12								
Indeno(1,2,3-cd)pyrene	ND	0.25								
Surr: Benzo(e)pyrene	28		20.00		138	24.5	139			· ==

Samp1	Гуре: LC	E LCS TestCode: EPA Method 8310: PAHs											
Batcl	h ID: 10	909	F	RunNo: 1	5674								
Analysis E	Date: 12	2/22/2013	8	SeqNo: 4	51949	Units: µg/L							
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
42	2.0	80.00	0	53.0	43.8	96.9							
35	2.0	80.20	0	43.9	41.3	87.3							
32	2.0	80.00	0	40.3	36.6	89.6							
46	2.5	80.20	0	57.7	43.6	103							
36	5.0	80.00	0	44.9	42.4	87.6							
3.8	0.80	8.020	0	47.0	40.5	93.6							
2.3	0.60	4.020	0	57.5	43.9	111							
2.3	0.60	4.020	0	56.7	44.3	103							
4.7	0.30	8.020	0	58.9	43.5	109							
4.8	0.30	8.020	0	60.0	32.6	103							
0.47	0.070	0.8020	0	58.6	43	114							
2.2	0.20	4.020	0	55.5	40.2	100							
0.53	0.10	1.002	0	52.9	44.4	118							
0.30	0.070	0.5000	0	60.0	41.5	120							
	Batci Analysis I Result 42 35 32 46 36 3.8 2.3 2.3 4.7 4.8 0.47 2.2 0.53	Batch ID: 10 Analysis Date: 12 Result PQL 42 2.0 35 2.0 32 2.0 46 2.5 36 5.0 3.8 0.80 2.3 0.60 2.3 0.60 4.7 0.30 4.8 0.30 0.47 0.070 2.2 0.20 0.53 0.10	Result PQL SPK value 42 2.0 80.00 35 2.0 80.20 32 2.0 80.00 46 2.5 80.20 36 5.0 80.00 3.8 0.80 8.020 2.3 0.60 4.020 4.7 0.30 8.020 4.8 0.30 8.020 0.47 0.070 0.8020 2.2 0.20 4.020 0.53 0.10 1.002	Batch ID: 10909 Feature Batch ID: 12/22/2013 Result PQL SPK value SPK Ref Val 42 2.0 80.00 0 35 2.0 80.20 0 32 2.0 80.00 0 46 2.5 80.20 0 36 5.0 80.00 0 3.8 0.80 8.020 0 2.3 0.60 4.020 0 4.7 0.30 8.020 0 4.8 0.30 8.020 0 0.47 0.070 0.8020 0 2.2 0.20 4.020 0 0.53 0.10 1.002 0	Batch ID: 10909 RunNo: 18 Analysis Date: 12/22/2013 SeqNo: 48 Result PQL SPK value SPK Ref Val %REC 42 2.0 80.00 0 53.0 35 2.0 80.00 0 43.9 32 2.0 80.00 0 40.3 46 2.5 80.20 0 57.7 36 5.0 80.00 0 44.9 3.8 0.80 8.020 0 47.0 2.3 0.60 4.020 0 57.5 2.3 0.60 4.020 0 56.7 4.7 0.30 8.020 0 58.9 4.8 0.30 8.020 0 58.6 2.2 0.20 4.020 0 55.5 0.53 0.10 1.002 0 55.5	Batch ID: 10909 RunNo: 15674 Analysis Date: 12/22/2013 SeqNo: 451949 Result PQL SPK value SPK Ref Val %REC LowLimit 42 2.0 80.00 0 53.0 43.8 35 2.0 80.20 0 43.9 41.3 32 2.0 80.00 0 40.3 36.6 46 2.5 80.20 0 57.7 43.6 36 5.0 80.00 0 44.9 42.4 3.8 0.80 8.020 0 47.0 40.5 2.3 0.60 4.020 0 57.5 43.9 2.3 0.60 4.020 0 56.7 44.3 4.7 0.30 8.020 0 58.9 43.5 4.8 0.30 8.020 0 58.6 43 2.2 0.20 4.020 0 58.6 43 2.2	Batch ID: 10909 RunNo: 15674 Analysis Date: 12/22/2013 SeqNo: 451949 Units: µg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 42 2.0 80.00 0 53.0 43.8 96.9 35 2.0 80.20 0 43.9 41.3 87.3 32 2.0 80.00 0 40.3 36.6 89.6 46 2.5 80.20 0 57.7 43.6 103 36 5.0 80.00 0 44.9 42.4 87.6 3.8 0.80 8.020 0 47.0 40.5 93.6 2.3 0.60 4.020 0 57.5 43.9 111 2.3 0.60 4.020 0 56.7 44.3 103 4.7 0.30 8.020 0 58.9 43.5 109 4.8 0.30 8.02	Batch ID: 10909 RunNo: 15674 Analysis Date: 12/22/2013 SeqNo: 451949 Units: μg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 42 2.0 80.00 0 53.0 43.8 96.9 35 2.0 80.20 0 43.9 41.3 87.3 32 2.0 80.00 0 40.3 36.6 89.6 46 2.5 80.20 0 57.7 43.6 103 36 5.0 80.00 0 44.9 42.4 87.6 3.8 0.80 8.020 0 47.0 40.5 93.6 2.3 0.60 4.020 0 57.5 43.9 111 2.3 0.60 4.020 0 56.7 44.3 103 4.7 0.30 8.020 0 58.9 43.5 109 4.8 0.3	Batch ID: 10909 RunNo: 15674 Analysis Date: 12/22/2013 SeqNo: 451949 Units: µg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 42 2.0 80.00 0 53.0 43.8 96.9 35 2.0 80.20 0 43.9 41.3 87.3 32 2.0 80.00 0 40.3 36.6 89.6 46 2.5 80.20 0 57.7 43.6 103 36 5.0 80.00 0 44.9 42.4 87.6 3.8 0.80 8.020 0 47.0 40.5 93.6 2.3 0.60 4.020 0 57.5 43.9 111 2.3 0.60 4.020 0 56.7 44.3 103 4.7 0.30 8.020 0 58.9 43.5 109 4.8 <				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

RPDLimit

%RPD

1312810

27-Dec-13

Qual

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID	LCS-10909
011	

SampType: LCS

TestCode: EPA Method 8310: PAHs

Client ID: LCSW

Batch ID: 10909

RunNo: 15674

Analysis Date: 12/22/2013 Prep Date: 12/19/2013

SeqNo: 451949 Units: µg/L

1 '	•				•		. •	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	
Benzo(a)pyrene	0.30	0.070	0.5020	0	59.8	34.5	118	
Dibenz(a,h)anthracene	0.60	0.12	1.002	0	59.9	38.3	107	
Benzo(g,h,i)perylene	0.57	0.12	1.000	0	57.0	38.4	110	
Indeno(1,2,3-cd)pyrene	1.3	0.25	2.004	0	66.4	42.4	113	
Sur: Renzo(e)nyrene	15		20.00		76.8	24.5	139	

Sample ID 1312810-001DMS

SampType: MS

TestCode: EPA Method 8310: PAHs

Client ID: Seg. 7 post hydro te

Batch ID: 10909

RunNo: 15674

Prep Date: 12/19/2013	Analysis [Date: 12	2/22/2013	s	SeqNo: 4	51955	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	42	2.0	80.00	0	52.1	70	130			S
1-Methylnaphthalene	36	2.0	80.20	0	44.6	70	130			S
2-Methylnaphthalene	32	2.0	80.00	0	40.2	70	130			S
Acenaphthylene	48	2.5	80.20	0	59.6	70	130			S
Acenaphthene	37	5.0	80.00	0	46.8	70	130			S
Fluorene	4.1	0.80	8.020	0	51.4	70	130			S
Phenanthrene	2.6	0.60	4.020	0	63.4	70	130			S
Anthracene	2.5	0.60	4.020	0	60.9	70	130			S
Fluoranthene	5.0	0.30	8.020	0	62.1	70	130			S
Pyrene	4.8	0.30	8.020	0	60.3	70	130			S
Benz(a)anthracene	0.49	0.070	0.8020	0	61.1	70	130			S
Chrysene	2.4	0.20	4.020	0	59.5	70	130			S
Benzo(b)fluoranthene	0.59	0.10	1.002	0	58.9	70	130			S
Benzo(k)fluoranthene	0.32	0.070	0.5000	0	64.0	70	130			S
Вепго(а)ругепе	0.31	0.070	0.5020	0	61.8	70	130			s
Dibenz(a,h)anthracene	0.63	0.12	1.002	0	62.9	70	130			S
Benzo(g,h,i)perylene	0.58	0.12	1.000	0	58.0	70	130			S
Indeno(1,2,3-od)pyrene	1.3	0.25	2.004	0	65.9	70	130			S
Surr: Benzo(e)pyrene	12		20.00		60.8	24.5	139			

Sample ID 1312810-001DMS	D SampT	уре: М \$	SD	TestCode: EPA Method 8310: PAHs							
Client ID: Seg. 7 post hydro	te Batch	n ID: 10	909	F	RunNo: 1	5674					
Prep Date: 12/19/2013	Analysis D	ate: 12	2/22/2013	S	SeqNo: 4	51956	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Naphthalene	36	2.0	80.00	0	45.4	70	130	13.8	20	S	
1-Methylnaphthalene	34	2.0	80.20	0	42.8	70	130	4.14	20	S	
2-Methylnaphthalene	33	2.0	80.00	0	40.8	70	130	1.48	20	S	
Acenaphthylene	41	2.5	80.20	0	51.6	70	130	14.3	20	S	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1312810-001DMSD SampType: MSD TestCode: EPA Method 8310: PAHs													
Client ID: Seg. 7 post hydro	te Batcl	h ID: 10 :	909	RunNo: 15674									
Prep Date: 12/19/2013	Analysis E	Date: 12	2/22/2013	5	SeqNo: 4	51956	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Acenaphthene	36	5.0	80.00	0	45.2	70	130	3.59	20	S			
Fluorene	3.9	0.80	8.020	0	48.1	70	130	6.52	20	S			
Phenanthrene	2.2	0.60	4.020	0	54.5	70	130	15.2	20	S			
Anthracene	2.1	0.60	4.020	0	53.0	70	130	14.0	20	S			
Fluoranthene	4.3	0.30	8.020	0	53.6	70	130	14.7	20	S			
Pyrene	4.1	0.30	8.020	0	51.6	70	130	15.6	20	s			
Benz(a)anthracene	0.42	0.070	0.8020	0	52.4	70	130	15.4	20	S			
Chrysene	2.0	0.20	4.020	0	50.2	70	130	16.8	20	S			
Benzo(b)fluoranthene	0.50	0.10	1.002	0	49.9	70	130	16.5	20	S			
Benzo(k)fluoranthene	0.27	0.070	0.5000	0	54.0	70	130	16.9	20	S			
Benzo(a)pyrene	0.26	0.070	0.5020	0	51.8	70	130	17.5	20	S			
Dibenz(a,h)anthracene							130	17.2	20	S			
Benzo(g,h,i)perylene	0	49.0	70	130	16.8	20	S						
Indeno(1,2,3-cd)pyrene	0 56.9 70 13				14.6	20	S						
Surr: Benzo(e)pyrene	10 20.00				51.5	24.5	139	0					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10893

SampType: MBLK

TestCode: Total Phenolics by SW-846 9067

Client ID: **PBW**

Batch ID: 10893

RunNo: 15599

Prep Date: 12/19/2013

Analysis Date: 12/19/2013

SeqNo: 449235

Units: µg/L

Qual

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit**

Qual

Phenolics, Total Recoverable

ND

Sample ID LCS-10893

SampType: LCS

Analysis Date: 12/19/2013

PQL

TestCode: Total Phenolics by SW-846 9067

Client ID: LCSW Prep Date: 12/19/2013

Batch ID: 10893

Result

RunNo: 15599 SeqNo: 449236

Units: µg/L

%RPD

Qual

Analyte Phenolics, Total Recoverable

23

%REC SPK value SPK Ref Val LowLimit

HighLimit 135

RPDLimit

Sample ID LCSD-10893

SampType: LCSD

TestCode: Total Phenolics by SW-846 9067

Client ID: LCSS02 Prep Date: 12/19/2013

Batch ID: 10893 Analysis Date: 12/19/2013

RunNo: 15599 SeqNo: 449248

Units: µg/L

RPDLimit 21.4

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 22 Phenolics, Total Recoverable 2.5 20.00 O 110 73.7 135 5.63

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only. Reporting Detection Limit

P

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1312810

27-Dec-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1312813-001B DUP

SampType: DUP

TestCode: SM4500-H+B: pH

Client ID: **BatchQC** Batch ID: R15632

RunNo: 15632

Prep Date:

Analysis Date: 12/19/2013

SeqNo: 450697

Units: pH units

Analyte

Result **PQL** SPK value SPK Ref Val %REC LowLimit

HighLimit

RPDLimit %RPD

Qual

pΗ

7.55 1.68

TestCode: SM4500-H+B: pH

Client ID: Prep Date:

Sample ID 1312887-004D dup **BatchQC**

Batch ID: R15632 Analysis Date: 12/19/2013

PQL

SampType: DUP

RunNo: 15632 SeqNo: 450711

Units: pH units

Analyte

SPK value SPK Ref Val

%REC LowLimit HighLimit

%RPD **RPDLimit** Qual

pΗ

8.71 1.68

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Sample pH greater than 2 for VOA and TOC only.

ND Not Detected at the Reporting Limit Page 23 of 24

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1312810

27-Dec-13

Client:

HRL Compliance Solutions

Result

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10930

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 10930

RunNo: 15696

Prep Date: 12/22/2013

Analysis Date: 12/23/2013

Analyte

PQL

SeqNo: 452471

Units: mg/L HighLimit

RPDLimit

Qual

Total Dissolved Solids

ND 20.0

Sample ID LCS-10930

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW

Batch ID: 10930

RunNo: 15696

Prep Date:

12/22/2013

Analysis Date: 12/23/2013

SeqNo: 452472

Units: mg/L HighLimit

Qual

Analyte Total Dissolved Solids

Result

PQL 1010 20.0

SPK value SPK Ref Val 1000

101

%REC

RPDLimit

Sample ID 1312838-006DMS

SampType: MS

SPK value SPK Ref Val %REC LowLimit

TestCode: SM2540C MOD: Total Dissolved Solids

LowLimit

80

%RPD

%RPD

Client ID:

BatchQC

Batch ID: 10930

RunNo: 15696

Prep Date:

12/22/2013

Analysis Date: 12/23/2013

SeqNo: 452492

Units: mg/L

Analyte

PQL

SPK value SPK Ref Val

%REC LowLimit HighLimit 120 **RPDLimit**

Qual

Total Dissolved Solids

1300

20.0 SampType: MSD 284.0

TestCode: SM2540C MOD: Total Dissolved Solids

101

%RPD

Sample ID 1312838-006DMSD Client ID: BatchQC

Batch ID: 10930

Result

RunNo: 15696

80

Units: mg/L

0.309

Prep Date: 12/22/2013

Analysis Date: 12/23/2013

1000

1000

SeqNo: 452493

LowLimit

HighLimit

%RPD

RPDLimit

Page 24 of 24

Analyte

Total Dissolved Solids

Result

1290

PQL

20.0

SPK value SPK Ref Val

284.0

%REC 101

80

120

Qual 5

R

S

Value exceeds Maximum Contaminant Level.

RSD is greater than RSDlimit 0

В Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

P

Reporting Detection Limit

Qualifiers:

E Value above quantitation range

Analyte detected below quantitation limits

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

Sample pH greater than 2 for VOA and TOC only.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPLIANCE SOL. Work Order Num	nber: 1312810		RcptNo:	
Received by/date: 1Z 17 13	-			
Logged By: Lindsay Mangin 12/17/2013 3:10:0	0 PM	of the things		
Completed By: Lindsay Mangin 12/17/2013 3:38(4	4 PM	Andy Allego		
Reviewed By: 12 18	13			
Chain of Custody		* 251		
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?	Yes 🗹	No 🗆	Not Present	
3. How was the sample delivered?	Client			
<u>Log In</u>				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗀	na 🗆	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗌	No 🗹	na 🗆	
	s were collected the		chilled.	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗀	•	
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?	Yes	No 🗹	NA 🗆	
10.VOA vials have zero headspace?	Yes 🗹	No 🗆	No VOA Vials	
11. Were any sample containers received broken?	Yes	No ☑ [
11,			# of preserved bottles checked	
12.Does paperwork match bottle labels?	Yes 🗹	No 🗆	for pH:	
(Note discrepancies on chain of custody)	_			>12 unless noted)
13, Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 📙	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗹	No 🗔	Charlend by:	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No LJ	Checked by:	
Special Handling (if applicable)				
16, Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified: Da	nte:			
By Whom: Vie	Line of the contract of the co	Phone Fax	in Person	
Regarding:				
Client Instructions:				
17. Additional remarks:		LIV SHILLING	The second secon	
18. Cooler Information				
Cooler No Temp % Condition Seal Intact Seal No	Seal Date	Signed By	,	
1 9.3 Good Not Present		0.000		

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O*) EO)	(Gas o	HqT (1.8 (1.8 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4	(GR des	BTEX + MTI BTEX + MTI BTEX + MTI BO15B TPH (Methororororororororororororororororororor	X						Remarks:		f necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	□ Standard X Rush	Name: E	WEP III - water sampling	#	13110.6	Project Manager:	Kay Lambert	Sampler: Jim Hughes	emperature:	Container Preservative HEALING. Type and # Type STZS10	various VArious	-002					Received by The Time 12/11/13 15:11	Received by: Date Time	tracted to other accredited laboratories. This serves as notice of this
Chain-of-Custody Record			Mailing Address: 2385 FU2 Rd.	5	2	comp. com	QA/QC Package:	□ Other		Matrix Sample Request ID	12-17-13 9:30 SW Sea, 7 post hydro test	Trip Blank					Date: Time: Relinquished by:	Time: Reinquished by:	If necessary, samples submitted to Hall Environmental may be subcon

Jones, Brad A., EMNRD

From: White, James <JAGWHITE@eprod.com>
Sent: Tuesday, December 17, 2013 1:25 PM

To: Jones, Brad A., EMNRD

Cc: Bates, Ricky; 'Leland "Luke" Davis (luke1d@msn.com)'; Seale, Runell; Anderson, Don;

Sartor, Rodney; Theresa Ancell; Eileen L. Shannon (EShannon@kleinfelder.com); Barbara

Everett; Nolan, Shiver; Mendez, Brenda; Heap, James; Thompson, Roger; White, James

Subject: HIP-128, WEP III, Segment 7

Brad,

Public notice is currently underway for HIP-128 which covers a proposed surface discharge or haul for WEP III, Segment 7. Pipeline construction crews have reached a point where they are ready to dispose of hydrotest water by the end of this week. Therefore, Enterprise is no longer pursuing discharge of hydrotest water to the ground under HIP-128 for Segment 7. Enterprise will be hauling hydrotest water to a disposal well listed in WEP III, Segment 7 NOI.

Thank you, Jimmy

James G. "Jimmy" White Enterprise Products Operating LLC Direct 713-381-1785 Mobile 713-392-2458 jagwhite@eprod.com

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Governor

David Martin
Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary Jami Bailey, Division Director Oil Conservation Division

November 19, 2013

Ms. Shiver Nolan Enterprise Products Operating LLC P.O. Box 4324 Houston, Texas 77210

Re: Hydrostatic Test Discharge Permit

Permit: HIP-128

Enterprise Products Operating, LLC Western Expansion Pipeline III, Segment 7

Location: Unit M of Section 23, Township 14 South, Range 35 East, NMPM,

Lea County, New Mexico

Dear Ms. Nolan:

The New Mexico Oil Conservation Division (OCD) has received Enterprise Products Operating LLC's (Enterprise) notice of intent, dated October 22, 2013 and received by OCD on October 29, 2013, for authorization to discharge approximately 710,000 gallons of wastewater generated from a hydrostatic test of a new 16-inch diameter natural gas gathering system transmission pipeline approximately 25.7 miles (135,696 feet) long, located approximately 9.75 miles north of Lovington, New Mexico. The proposed discharge/collection /retention location is within Enterprise's pipeline easement right-of-way and adjacent private property, located within Unit M of Section 23, Township 14 South, Range 35 East, NMPM, Lea County, New Mexico. The submittal provided the required information in order to deem the application "administratively" complete. OCD approves the Lovington Leader Newspaper as the newspaper of general circulation for the published notice and the discharge and/or collection location (within Enterprise's pipeline easement right-of-way and adjacent private property) and the post office in Lovington, New Mexico as proposed posting locations.

Therefore, the July 2006 New Mexico Water Quality Control Commission (WQCC) regulations notice requirements (20.6.2.3108 NMAC) must be satisfied and demonstrated to the OCD. The hydrostatic test discharge event shall not be initiated until Enterprise's and OCD's notice periods pass, the permit is issued, and the additional permit fee is paid, if applicable.

Enterprise Products Operating LLC

Permit: HIP-128 November 19, 2013

Page 2 of 2

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,

Brad A. Jones

Environmental Engineer

BAJ/baj

cc: OCD District I Office, Hobbs

Mr. Jim Heap, Enterprise Products Operating, LLC, Midland, TX 79701

Jones, Brad A., EMNRD

From: Barbara Everett <BEverett@kleinfelder.com>

Sent: Monday, November 18, 2013 3:46 PM

To: Jones, Brad A., EMNRD

Cc: Jimmy White, Enterprise; Eileen Shannon; Katie Knights

Subject: WEPIII Segment 7 NOI Additional Information

Attachments: Powell Water Rights.pdf

Brad:

Please find attached the additional water right information that you requested for the Segment 7 NOI. The attachment includes the NM OSE's water right's information for the land under current Ben Powell ownership and the Lea County Assessor's records that indicate land parcel ownership and corresponding water rights.

Barbara Everett
Program Manager
Kleinfelder West, Inc.
beverett@kleinfelder.com
505-344-7373 office
505-280-1079 cell

Lea County

GIS INTERNET REPORT

Page 1 of 2

Assessment Information

OWNER NUMBER: 34346 **UPC CODE:** 4000343460001

PARCEL NUMBER: 4000343460001

Owner:	POWELL, BEN
Mailing Address:	BOX 96 MC DONALD NM 88262
Property Address:	

William To	and the state of t
Name:	
Unit:	
Block	
Lot:	

upation i king up the landing his

320.00 AC BEING E2 *1987-FARMERS HOME ADMINISTRATION* 2/29/08-LEASED TO BEN POWELL LIVESTOCK ON #5415 4/13/10-POWELL, MARVIN E & JEANETTE TRUST 9/20/10 -WATER RIGHTS - 14-14S-35E - L-235 & 235 ENLGD - 210.77 AC - B1695 P392

Risk.	Tener inchineit	On and the factor of the facto	The state of the s
Taxable Value:	22892	Deed Book:	1674
Exempt Value:	0	Deed Page:	698
Net Value	22892	District:	010
Livestock Value:	0	Section:	14
Manufactured Home Value:	0	Township:	14
Personal Property:	0	Range:	35
Land Value:	64227	Date Filed:	20100413
Improvement Value:	4449	Most Current Tax:	\$632.28
Full Value:	68676	Year Recorded:	

Lea County

GIS INTERNET REPORT

Page 2 of 2

没有是两颗 粒。"	В	uilding Information	
Year Built:	1975	Number of Stories:	1.
Basement SQFT:	0	First Floor SQFT:	1
Second Floor SQFT:	0		

Lea County

GIS INTERNET REPORT

Page 1 of 2

Assessment Information

OWNER NUMBER:	34346	UPC CODE:	4000343460002

PARCEL NUMBER: 4000343460002

Owner:	POWELL, BEN
Mailing Address:	BOX 96 MC DONALD NM 88262
Property Address:	

The state of the s	
Name:	
Unit:	
Block	
Lot:	

640.00 AC ALL *1987-FARMERS HOME ADMINISTRATION* 4/13/10-POWELL, MARVIN E & JEANETTE POWELL 9/20/10 -WATER RIGHTS - 23-14S-35E - L-697 & 697 FORMB - 348.51 AC - B1695 P392

Constitution Section 19	‱. [™] Ωther l	highation 23 most ar	Septiment of the second
Taxable Value:	22892	Deed Book:	1674
Exempt Value:	0	Deed Page:	698
Net Value	22892	District:	010
Livestock Value:	0	Section:	23
Manufactured Home Value:	0	Township:	14
Personal Property:	0	Range:	35
Land Value:	64227	Date Filed:	20100413
Improvement Value:	4449	Most Current Tax:	\$632.28
Full Value:	68676	Year Recorded:	

Lea County

GIS INTERNET REPORT

Page 2 of 2

3.10° 110° 170° 186° 1	Building In	formation	
Year Built:	0	Number of Stories:	1.
Basement SQFT:	0	First Floor SQFT:	769
Second Floor SQFT:	0		

Trigon St, CLEAN OUT AND CASE

(This form to be executed in triplicate)

WELL RECORD

Street or P. O.,L.	I N & TO N	City and State NEW ME	(CP
1. Well location and des	scription: TheBHALLEW (aballow or artesian)	well is located in	
	etion		
	el, feet; diameter o		
	ompletion,69	,	_
and completed	JAN. 31 , 1954; name	of drilling contractor C.	. ALDREDG
Bex 379	; Address, Levin	STON, N. MEX-Driller's L	icense No
2. Principal Water-beari			
Depth in From	Feet To Thickness .	Description of Water-bearing	Formation
No. 1 94	110 16	GOOD WATER SA	ND
No. 2	118 8	QUICK SAND	
No. 3			
No. 4			
No. 6			
No. 5 3. Casing Record: Diameter Pounds in Inches per ft. W&L	Threads Depth of Casing or Linguist Top Bottom	1	Prom Partoratio
3. Casing Record: Diameter Pounds in hubse per rk.	0	None.	
3. Casing Record: Diameter Powning in holes per R.	011	d, give location:	
3. Casing Record: Diameter Penning in Inches per fi. 14. Watt	replaces old well to be abandone Township , Rang	d, give location: ¼, e ; name and addres	, 4, so of plugging cor
3. Casing Record: Diameter Penning in Inches per fi. 14. Watt	replaces old well to be abandone , Township , Rang	d, give location: ¼, e ; name and addres	, 4, so of plugging cor
3. Casing Record: Diameter Penning in Inches per fi. 14. Watt	replaces old well to be abandone Township , Rang	d, give location: ¼, e ; name and addres	, 4, so of plugging cor

 \mathfrak{D}_{7}

Depth	in feet	Thickness in feet					
Prem In feet		in feet	Description of Fernation				
94	110	. 16	GOOD WATER SAND				
110	118	8	QUICK SAND				
110	119		VOICE CARD				
							
			ę				
		•	.,				
			• •				
	-	-					
				;			
				*1			
				· · ·			
				F13-			
	and the		p. Dec. Sec. on	.04.			
		<i>.9</i>		**			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

6.0. aldredge
Licensed Well Driller

Instructions By Mrs 6.0 aldredge

This form shall be executed, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strata and on all formations encountered should be as complete and accurate as possible.

Form WR-23

STATE ENGINEER OFFICE

FIELD ENGR. LOG WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section	1			(A) Own	er of well	K. S.	head		
	T		\neg	Street and	l Number	Rt.I	Bex 25		
1									HOW MOX.
			\neg	Well was	drilled ur	der Pern	nit No. 4 -	698	and is located in th
			_	4	M.E. ₁₄	H.E.	of Section	Twp	140 Rge. 35 L.
				(B) Drill	ing Contro 1 Number	ector	2.0. Alai	redite L	icense No. NJ. 79
			\dashv	City	LOVING t	• 4,		State	sew Mex.
				Drilling v	was comm	enc ed	May II		19 64
L	Plat of 640	acres)		Drilling w	vas comple	ted	18 18 I		19.64
Elevation	on at top	of casing i	n fee	t above se	a leveL		Total de	epth of well	105
State w	hether we	ell is shall	ow o	r artesian.	Shaller	<u></u>	Depth to w	ater upon com	pletion 9111.
Section	2			PRIN	CIPAL WA	TER-BEAR	ING STRATA		
No.	Depth	in Feet	Th	ickness in Feet		De	scription of Wate	er-Bearing Form	ation
1	61		├		F4 1				
	80	80 90		19 0		t water			
3	90	105		15		lok sa	r sand		
4	-	-07	-	•/	- qu				
5									
Section	3		<u>' </u>		RECOR	D OF CAS	ing	W	
Dia	Pounds	Threa	ıds.	Dej			1	Pe	erforations
in.	ft.	in		Тор	Bottom	Feet	Type Shoe	From	То
16	Cenes	eter p	ipe			45.	long in	top of wel	.
		-							
	+							-	
Section	4			RECOR	D OF MUD	DING AN	D CEMENTING		
Dept	h in Feet	Diame Hole in		Tons Clay	No. Sac			Methods Used	i
	1	1	6				2 88048	of crillin	g mud used
									to held
							quick se	and back	
	_!	<u> </u>							
Section	5				PLUGG	ING REC	ORD		
									No
				Tons of R					e
	g approved							gs were placed	as follows:
		3 ·				Γ	Depth of F	lug	
				Basin Sup	ervisor	No.		To No.	of Sacks Used
	FOR US	OF STAT	K EN	GINEER OF	NLY		<u> </u>		
_		II ISBULS		·					
Date	Received	Unairion	121-21-	V					
	8: 50	MA 85 M	เกา	1961		-			
						ļ			
File No	. L - 1	698			_Use	m.	Locatio	n No. /4.3 5	.14.220

Section 6

LOG OF WELL

Depth	in Feet	Thickness		
From	To	in Feet	Color	Type of Material Encountered
Ų	1	1	Brewn	Tep soil
I	25	24	white	Clickie reck
25	61	36	Brown	Dry send
61	80	19	Brown	light water said
80	90	10	Light Brown	Good water sand
90	105	15	Bod	Juick sand
-				

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Co.O. aldredge
Well Driller

FIELD ENGR. LOG

(This form to be executed in triplicate)

١.	A /I	C١	1	R	С	\sim	\cap	D	
v	w	-1		ĸ	_		. ,	ĸ	L

			WELL RE	COPD	OTE E.	
			AA FEE IVE	L-i	235 AND 235 EI 197 AND L-698	
e of Re	celptA	ue. 9, 1954	<u> </u>	Permit	No. S.2	
Name (of permittee,	HERMAN A. F	PROPET & R	BERT F. ANDERSON		
et or P	. o. 5 A.	B. BADGETT	Bex 544	Sity and State LOVINGTO	NEW MEXICO	
Well lo	cation and de	scription: The!	HALLOW well	s located in NE	4, SW 1	
				Range 35 EAST		
				f hole, 16 inches; total		
				ing was commenced Aug.		
				e of drilling contractor C Q.		
			LUVINGTO	NEW MEX Poriller's Licens	e No	
Princip	al Water-bear Depth to	•	Thickness	Description of Water-bearing	r Warmation	
	Prom	To	A INCREMENT	Palaculosas of Asres-serve	• • • • • • • • • • • • • • • • • • • •	
lo. 1	60	72	12	LIGHT WATER SAME	, .	
0. 2	72	80	8	FAIR WATER SAND		
o. 3	80	92	18	GOOD WATER SAND	SAND	
0. 1						
	92 Record:	110		GAICK SYND		
Casing .			of Casing or Uner	Feet of Casing Type of Shoe	Perforation From To	
Casing .	Record:	Threads Depth o	of Casing or Uner	Peet of	From To	
Casing .	Record:	Threads Depth o	of Casing or Uner	Feet of Casing Type of Shoe	From To	
Casing .	Record:	Threads Depth o	of Casing or Uner	Feet of Casing Type of Shoe	From To	
Casing .	Record:	Threads Depth o	of Casing or Uner	Feet of Casing Type of Shoe	From To	
Casing ameter inches	Record: Pounds per st.	Thresds per inch Top	of Casing or Liner Bottom	Peet of Casing Type of Shoe	From To	
Casing lameter inches	Record: Pounds per st.	Thresds per inch Top	of Casing or Liner Bottom	Feet of Casing Type of Shoe	From To	
Casing ;	Record: Pounds per ft.	Threads Depth of per Inch Top	of Casing or Liner Bottom	Peet of Casing Type of Shoe	From To	
Casing ameter inches	Record: Pounds per ft.	Threads Depth of per Inch Top	of Casing or Liner Bottom	Feet of Casing Type of Shoe	From To	
Casing ameter inches	Record: Pounds per ft.	Threads Depth of per Inch Top	of Casing or Liner Bottom	Feet of Casing Type of Shoe	From 10	
ameter inches	Record: Pounds per ft.	Thresds Depth of Port Inch Top	to be abandoned	Feet of Casing Type of Shoe	From To	
ameter inches	Record: Possás per st.	Threads Depth of per Inch Top	to be abandoned, Range	Peet of Casing Type of Shoe Type of Shoe give location: %,	From To	
ameter inches	Record: Possás per st.	Threads Depth of per Inch Top	to be abandoned, Range	Feet of Casing Type of Shoe Type of Shoe give location:	From To	
ameter inches	Record: Pounds per st. e construction plugging	Threads Depth of per Inch Top	to be abandoned	Peet of Casing Type of Shoe Type of Shoe give location:	From To	

1-235 t 235 Elg. 1-697 t 698 Comb-5-2 les.

OFFICE GROUND WATER SUPERVISOR ROSWELL, NEW MEXICO

14.35.14.232 08

5. Log of Well:

Denth	Dopth in Foot Thickness in feet				
From	20	in feet	Description of Fernantion		
. •:	1		SOIL		
	20	19	LINE ROCK		
20	30	10	CALIGNIE ROCK		
30	34	4	CRYSTALIZES SAND		
34	50	16	DRY SAND		
50	\$3	3	CRYSTALIZED SAND		
53	60	7	DRY SAND		
60	72	8	LIGHT WATER SAND		
72	80	8	FAIR Mano Water Sano		
80	92	12	GOOD WATER SAND		
92	110	10	QUICK SAMB		
		. 1			
		-			
	l .				

The undersigned hereby certifies that, to the hest of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Instructions

This form shall be executed, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strata and on all formations encountered should be as complete and accurate as possible.

ACKNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

I hereby acknowledge receipt of Check No. 690679 dated 7/18/13
or cash received on $10/28/13$ in the amount of \$ 700.00
from KLEINFELDER WEST, INC.
for $H/P-128$
Submitted by: $BRAD$ $SONES$ Date: $10/29/13$
Submitted to ASD by: LUPE SHERMAN Date: 10/29/13
Received in ASD by: Date:
Filing Fee New Facility: Renewal:
Modification Other \sqrt{PERMIT} FEE
Organization Code 521.07 Applicable FY 14
To be deposited in the Water Quality Management Fund.
Full Payment or Annual Increment

RTMENT - ALBUQUERQUE FIELD OFFICE DAILY CHECK RECEIPT LOG PROGRAM: ** *********************************									ı					
Y GHECK RECEI										Amount				90
ICE DAIL KAMOUNT OF CHECK	\$ 700.00							\$ 700.00		Sub Acct				2329029000
HIELD OFF PROGRAM! ACCOUNT									AL SHEET	Share Acct	496402	496402	496402	
BUQUERQUE	690679								EVENUE TRANSMITTAL SHEE T	Dept.	23200	28501	22600	232900
AENT FAI PATE OF CHECKY	61/81/6								REVENU	Fund	34000	40000	99100	34100
* NEW MEXICO ENVIRONMENT DEPARTMENT SALBUQUERQUE FIELD OFFICE DAILY CHECK RECEIPT LOG DATE: WALK RECEIVED IN Y MAIL NAME ON CHECK CHECK - TORDER# OF CHECK DEPOSITED DEPOS										Description	Liquid Waste	Water Recreation Facilities	Food Permit Fees	ОТНЕК
N MEXIC	>													
DATE WA	10/28/13							TOTAL						

OCD

2013 OCT 29 A 9:07

October 22, 2013

VIA Fed Ex

Mr. Brad Jones New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 St. Francis Drive Santa Fe, NM 87505

Dear Mr. Jones:

RE: Enterprise Products Operating LLC

Submittal of Notice of Intent to Discharge Hydrostatic Test Water

Western Expansion Pipeline III, Segment 7

Lea County, New Mexico

Enterprise Products Operating LLC (Enterprise) will be constructing Segment 7 of the Western Expansion Pipeline III as an expansion to their natural gas gathering system. Please find enclosed an application for authorization to discharge hydrostatic test water following hydrostatic testing of the new pipeline. The enclosed application includes the requested revisions to the unofficial draft that was submitted on October 3, 2013.

Because of unforeseen delays in BLM & BIA permitting, we are having to adjust our original schedule of where we are working within our overall project, and as such, this application is now inside the preferred 90-day window, whereas our original schedule would have allowed for a full 90-day review.

Thank you for your assistance with this request. If you have any questions or require additional information, please feel free to call Enterprise's environmental consultant, Ms. Eileen Shannon, 505.307.0722, or myself at 713.392.2458.

Sincerely,

James G. White

Sr. Environmental Scientist

In n. Wife

cc: James Heap, Enterprise

Shiver Nolan, Enterprise

October 21, 2013 Project No.: 134288

Mr. Brad Jones New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 St. Francis Drive Santa Fe, NM 87505

SUBJECT: Submittal of a Notice of Intent to Perform Hydrostatic Test

WEP III – Segment 7 Lea County, New Mexico

Dear Mr. Jones:

On behalf of Enterprise Products Operating LLC (Enterprise), Kleinfelder West, Inc. (Kleinfelder) is submitting this Notice of Intent (NOI) for a hydrostatic test to be conducted on Segment 7 of Enterprise's Western Expansion Pipeline III (WEP III).

Kleinfelder has included the required information for the NOI as stated in the "Guidelines for Hydrostatic Test Dewatering" dated January 11, 2007. Attached to this NOI are the following:

- Background Information;
- Notice of Intent Plan;
- Figure 1 New Enterprise Pipeline, WEP III Segment 7;
- Figure 2 New Enterprise Pipeline, WEP III Segment 7 Discharge Location;
- Figure 3 Dissipation and Discharge System;
- Appendix A Certification of Siting Criteria;
- Appendix B Water Feature, Water Well Information and Floodplain Information;
- Appendix C Area Mine Information;
- Appendix D Geology;
- Appendix E Area Landownership and Permission from Landowners;
- Appendix F Public Notice;
- Appendix G Electro-Coagulation Process Information; and
- Appendix H Powell Wells Analytical Data.

A check totaling \$700 made out to the New Mexico Water Quality Management Fund is included with this NOI for the \$100 filing fee and the \$600 permit fee.

Kleinfelder prepared this NOI in a manner consistent with the level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. The information provided in this document is based on our understanding of the information provided by Enterprise.

Should you have any questions, please feel free to contact Eileen Shannon (Kleinfelder) at 505.344.7373 or Jimmy White (Enterprise) at 713.392.2458.

Respectfully submitted,

fell Henounder

KLEINFELDER WEST, INC.

Reviewed by:

Jill Hernandez Staff Engineer Eileen L. Shannon, PG Project Manager

Edeen & Shannon

cc: James White, Enterprise Products Operating LLC, PO Box 4324, Houston, TX 77210

Background Information

- The U.S. Department of Transportation (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA) requires periodic pressurized tests on all DOT-regulated pipelines and all newly installed pipelines to verify the integrity and safety of pipeline systems. Because the pipeline is part of a natural gas gathering system, waste water generated during hydrostatic testing is classified as RCRA-exempt waste water and does not require management as a RCRA waste or disposal at a RCRA-approved facility;
- The Enterprise Western Expansion Pipeline (WEP) III line is a new, welded, steel 16-inch diameter pipeline. Segment 7 of the WEP III pipeline is 25.7 miles or 135,696 feet long (Figure 1);
- The pipeline is part of a gathering system that transports natural gas from the Piceance and San Juan Basins to processing facilities located in Hobbs, New Mexico and Houston, Texas;
- The source water for the hydrostatic testing is the Powell Wells #1 and #2 (Powell wells). The location of the Powell wells is shown on Figure 1;
- Placement of water into the southern portion of Segment 7 (MP 21.2 to MP 33.7) is scheduled to start on approximately November 25, 2013 (Figure 1). Water will be added to the pipeline at approximately MP 33.7. After the testing of this section of the pipeline is complete, the water will be held in that portion of the pipeline until the construction of the northern portion of Segment 7 is completed. The northern section (MP 33.7 to MP 46.9) will then be tested.
- Upon completion of test, the water will be analyzed for water quality (discussed in item j).
 Provided that the test water meets the requirements NMAC 20.6.3013, it will be
 discharged to the ground surface within the Enterprise right-of-way and onto the
 adjacent property at MP 33.7. Approximately 710,000 gallons are expected to be
 discharged to the ground surface on or around December 3, 2013.
- Per NMAC 20.6.2.3108, a sample of the public notice is included in Appendix F; and
- Per NMAC 20.6.2.3108, public notice will be made in English by the following methods:
 - 1. A 2 feet by 3 feet in size sign will be posted at the discharge location;
 - 2. Written notice will be posted at the Lovington, New Mexico post office;
 - 3. Written notice of the discharge by mail to all owners of record for properties adjacent to where the discharge site is located;
 - 4. The notice will be sent by certified mail, return receipt requested, to the owner of the discharge site; and
 - 5. A synopsis of the notice will be published in a display ad at least three inches by four inches in size in *The Lovington Daily Newspaper*. Public notice is published every Tuesday, Thursday, and Saturday, and the paper requires the information 2 days prior to publication before noon.

Notice of Intent Plan

On behalf of Enterprise, Kleinfelder is submitting this NOI plan as outlined in NMOCD Guidance document, "Guidelines for Hydrostatic Test Dewatering," (revised January 11, 2007). The NOI plan includes the following items:

Item a. Name and address of the proposed discharger:

Legally Responsible Party Mr. Leonard W. Mallett, Group Sr. VP, Engineering

POC: Ms. Shiver Nolan, Sr. Compliance Administrator

P.O. Box 4324

Houston, Texas 77210

713.381.6595

Local Representative Mr. Jim Heap

Enterprise Products Operating LLC 1031 Andrews Highway, Suite 320

Midland, TX 79701

432.686.5404

Item b. Location of the discharge, including a street address, if available, and sufficient information to locate the facility with respect to surrounding landmarks:

Water from the hydrostatic testing will be discharged in the central portion of WEP III Segment 7 near mile post (MP) 33.7 in Lea County. The discharge area will occur:

- in the pipeline ROW in an area approximately 125 feet wide by 322 feet long (approximately 40,250 square feet); and
- in the adjacent property northeast of the ROW in an area approximately 33,810 square feet in size. Landowner permission to discharge to the ground surface is included in Appendix E.

The location of the pipeline to be hydrostatically tested and the discharge location are shown on Figures 1 and 2.

The location of the hydrostatic discharge area is approximately 9.75 miles north of Lovington, New Mexico. Directions to the discharge site from Lovington, New Mexico are:

- From the intersection of US-83 and US-82;
- Head north on US-82 for 3 miles;
- Exit onto NM-206 N/Tatum Highway and continue north for 6.6 miles;
- Turn west on County Road 107/E. Hester Road for 2 miles;
- Turn north on County Road 103/Reed Road for 1 mile;
- Turn west on County Road 108/Hilburn Road for 2 miles;
- Turn north on County Road 109/Kidd Road and continue for 394 feet;
- The discharge area will be on the right/east.

The approximate coordinates for the discharge area location are: Latitude 33.083873, Longitude -103.386186.

Item c. Legal description of the discharge location:

The discharge location is located:

- In the SW/4; SW/4; Section 23, Township 14 South, Range 35 East (Figure 1).
- The latitude and longitude coordinates are included in *Item b*.

Item d. Maps (site-specific and regional) indicating the location of the pipelines to be tested:

- Figure 1 Regional map showing topography, the pipeline section undergoing testing, and the hydrostatic test water discharge location.
- Figure 2 Site-specific aerial map showing the hydrostatic test water discharge area.

Site-specific topographic maps are provided in the appendices.

Item e. A demonstration of compliance to the following siting criteria or justification for any exceptions:

Shapefiles were downloaded from various electronic sources and were included in a Geographic Information System (GIS) database for preparation of this NOI. The maps generated from this database were reviewed September 5, 2013. Detailed references for the various shape files are included in the Reference section. Source information is provided on the individual figures.

i. Within 200 feet of a watercourse, lakebed, sinkhole, or playa lake;

No watercourses; lakebeds, sinkholes, or playa lakes were observed within 200 feet of the discharge area during the site visit (Appendix A). A search of watercourses, lakebeds, sinkholes and playa lakes in the vicinity of the discharge area was completed by reviewing a topographic map and using the GIS database. No watercourses, lakebeds, sinkholes, or playa lakes were indicated during the topographic and database reviews. A copy of the site specific topographic map is included in Appendix B, Figure B-1.

ii. Within an existing wellhead protection area or 100-year floodplain;

No springs were identified on the topographic map within 1,000 feet of the discharge area (Figure B-1, Appendix B) and no springs were observed during the site inspection (Appendix A).

The New Mexico Office of the State Engineer (OSE) and Go-Tech websites were reviewed for water supply wells located in the vicinity of the discharge area. No water supply wells were identified within 1,000 of the discharge area during the database review (Figure B-2 in Appendix B) nor during the site inspection (Appendix A).

The discharge area has not been mapped by the Federal Emergency Management Administration (Figure B-3 in Appendix B). Based on a topographic map review and the site inspection, the discharge area does not appear to be located in a floodplain.

iii. Within, or within 500 feet of, a wetland;

No wetlands were observed during the site inspection (Appendix A). A topographic map provided by the U.S. Fish and Wildlife Service National Wetlands Inventory database was reviewed for wetlands in the vicinity of the discharge area. Wetlands were not indicated in or within 500 feet of the perimeter of the discharge area. A copy of the site specific topographic map is included in Appendix B, Figure B-1.

iv. Within the area overlying a subsurface mine; or

A map generated from the New Mexico Mining and Minerals Division GIS database was reviewed for active mines. No active mines were located at or in the vicinity of the proposed discharge area (Figure C-1 in Appendix C). Mr. Mike Tompson, with the New Mexico Abandoned Mine Lands Program, was contacted on August 12, 2013 to assess the presence of abandoned subsurface mines in the vicinity of the proposed discharge area. According to Mr. Tompson, he has no record of abandoned subsurface mines near the proposed discharge area (Appendix C).

v. Within 500 feet from the nearest permanent residence, school, hospital, institution or church.

No permanent residences, school, hospital, institution or church were noted on aerial photographs of the area (Figure 2), nor were they noted during the site visit (Appendix A).

Item f. A brief description of the activities that produce the discharge;

Pressure testing with water, also known as hydrostatic testing, is one of the tools pipeline operators use to verify pipeline integrity. The purpose of hydrostatic testing of a pipeline is to determine the extent to which potential defects might threaten the pipeline's ability to sustain maximum allowable operation pressure. Because this is new piping, previous contents of the pipe do not need to be cleared. Segment 7 will be tested in two sections. Test water will be introduced into the first section to be tested. The pipeline will then be pressurized to a pressure higher than maximum operating pressure for approximately eight hours. After that section is tested, that test section will be de-pressurized and needed volume of water will be pushed into the next section for re-use in testing. If leaks or breaks occur, that section of pipeline is repaired or replaced, then re-tested.

Once the testing is complete, the water will be discharged into the dissipation and discharge structure.

Item g. The method and location for collection and retention of fluids and solids;

Because the piping is new, solids are not anticipated to be produced as a result of the hydrostatic testing. Once hydrostatic testing has been completed in all sections, a sample will be collected from the pipe at the discharge location (MP 33.7). The water will be tested for water quality as described in *item j*. Water will be held in the pipe until the test results are received and approved. Once approval to discharge has been received, the test water will be allowed to flow onto approximately 40,250 square feet of the ROW and onto approximately 33,810 square feet of the adjacent property to the northeast.

Item h. A brief description of best management practices to be implemented to contain the discharge onsite and to control erosion;

Non-woven geotextile fabric will be installed beneath the dissipation structure to prevent scouring. Hay bales will be used to control erosion as the water is discharged from the pipeline at a rate of approximately 1,500 gallons per minute (gpm) into the hydrostatic waste water dissipation and discharge system. A connector pipe is attached to the end of the pipeline and to a baffle "T" located within the dissipation structure. Pipeline water will gradually be released from the dissipation structure at a low flow rate onto the area described in *item g*. The dissipation and discharge structure will be built to maintain the proper flow rate to avoid scouring the landscape. A diagram and description of the hydrostatic waste water dissipation and discharge system is depicted on Figure 3.

Item i. A request for approval of an alternative treatment, use, and/or discharge location (other than the original discharge site), if necessary;

No alternate discharge sites are proposed for this segment.

If hydrostatic test water analytical results exceed the standards of NMAC 20.6.2.3103, the test water will be treated using an electro-coagulation cleaning process and a separate filtering system. This process is described in Appendix G.

After the electro-coagulation process is completed, the water will be tested again as described in Appendix G. If it still does not meet the standards of NMAC 20.6.2.3103, the water will be hauled and disposed of as described in *item k*.

Item j. A proposed hydrostatic test wastewater sampling plan;

Enterprise requests that it not be required to test for Radium 226/228. The Powell wells, were sampled on June 6, 2013, and had the following radium analytical results in picocuries per liter (pCi/L):

WATER WELL SAMPLED	RADIUM 226 CONCENTRATION (pCi/L)	RADIUM 228 CONCENTRATION (pCi/L)
Powell Well #1	0.738 ± 0.586	0.355 ± 0.289
Powell Well #2	0.159 ± 0.363	0.284 ± 0.295

These radium analytical results are below the 30 pCi/L standard required in NMAC 20.6.2.3103. The laboratory analytical reports are included in Appendix H.

Prior to discharge, Enterprise will collect a sample of the test water from the discharge location (MP 33.7) and have it analyzed using the following methods.

SAMPLING PLAN FOR COMPLIANCE WITH NMAC 20.6.3103 (A), (B), (C)							
ANALYTES	METHOD	BOTTLE TYPE/PRESERVATIVE					
Volatile Organics	8260B	3 x 40 ml VOA's / HCI					
Ethlylene dibromide	504.1	2 x 40 ml VOA's / Na ₂ S ₂ 0 ₃					
Polychlorinated Biphenols	8082	2 x liter amber / unpreserved					
Polynuclear Aromatic Hydrocarbons	8310	1 x liter amber / unpreserved					
Phenois	9067	1 x liter amber / H ₂ S0 ₄					
	300.0	1 x 500 ml plastic / unpreserved					
Anions, TDS, pH	SM 2540C SM 4500-H+B	1 x 125 ml plastic / H ₂ S04					
Mercury	245.1	1 x 500 ml plastic / HN0 ₃					
Dissolved Metals	200.7 / 200.8	1 x 125 ml plastic + filter & syringe / HNO ₃					
Total Cyanide	335.4	1 x 500 ml plastic amber / NaOH					

Once the results have been received, they will be forwarded to the NMOCD. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water in accordance with the approved discharge permit.

Item k. A proposed method of disposal of fluids and solids after test completion, including closure of any pits, in case the water generated from test exceeds the standards as set forth in Subsections A, B, and C of the 20.6.2.3103 NMAC (the New Mexico Water Quality Control Commission Regulations);

As described in Appendix G, if the test water still exceeds discharge requirements after the electro-coagulation process, the water will be transported from the project site in DOT-approved tanker trucks by NMOCD-approved haulers to one of the following waste water disposal facilities:

- Basin Disposal, Inc. (API 30-045-26862, Disposal Well No. 1: IPI-149-0) in Aztec, New Mexico:
- Agua Moss, LLC (Permit # UIC-I-005) on Crouch Mesa, in Bloomfield New Mexico; or
- Gandy Marley, Inc. (Permit # NM1-19-0) on Highway 380 between Tatum and Roswell, New Mexico.

The water will be transported by one or more of the following NMOCD-approved haulers:

- Dawn Trucking Co. (C133-31);
- M&R Trucking, Inc. (C133-399);
- Three Rivers Trucking, Inc. (C133-335); or
- Triple S Trucking Co., Inc. (C133-372).

Any solids generated using the electro-coagulation process will be disposed of at one of the following NMOCD-approved commercial solid waste management facilities:

- Gandy Marley Inc., in Chaves County (Permit No. 19);
- Lea Land Inc. in Lea County (Permit No. 24); or

R360 Permian Basin LLC (formerly Controlled Recovery Inc.) in Lea County (Permit No. 6).

C-138 manifest forms will be prepared and provided with all liquid and solid waste that is hauled for disposal.

Item I. A brief description of the expected quality and volume of the discharge;

The volume of the hydrostatic test water expected to be discharged is approximately 710,000 gallons. Source water used for the hydrostatic test will be water obtained from the Powell wells. Laboratory analytical data collected from the Powell wells on June 6, 2013 are included in Appendix H. Constituent concentrations in the Powell wells are all below the NMAC 20.6.2.3103 standards. New piping will be tested, which should not impact the quality of the water being discharged.

Item m. Geological characteristics of the subsurface at the proposed discharge site;

Information regarding the soil characteristics was obtained from the United States Department of Agriculture (USDA) soil survey (USDA, 1974). Based on that information, the site is located in the Northwest Shelf region of the Permian Basin which extends across the northern portion of Lea County, New Mexico and west Texas. The Northwest Shelf includes shelf edge reefs and shelf carbonates of the Dewey Lake Redbeds Formation of the Chinle Group and the Rustler, and Salado Formations of the Ochoan Series (SEPM Strata, 2013 and Murchison, 2010).

Soils in the area are dominated by Kimbrough-Lea and Portales-Stegall-Lea surface soils comprised of gravelly and loamy soils (USDA, 1974). The soils were formed in eolian and alluvial deposits over indurated caliche. The indurated caliche overlies the Tertiary Ogallala Formation, as indicated by "To" on Figure D-1, Appendix D. The Ogallala Formation is comprised of relatively stabilized wind-blown sand overlying and petrocalcic soils of the southern High Plains. The Ogallala Formation overlies Triassic sandstone, siltstone, and shale, which overlies the Permian Dewey Lake Redbeds, consisting of silt and shale (New Mexico State Highway Department, 1971-1972). Karst was identified in the area on maps prepared from The United States Geologic Survey and Bureau of Land Management GIS dataset, Figure D-2 (Appendix D). In addition, an area of potential karst was observed approximately 300 feet to the southwest of the proposed discharge area during the site visit.

Item n. The depth to and total dissolved solids concentration of the ground water most likely to be affected by the discharge; and

Water in the region is found within the sands and gravels of the Ogallala Formation (USDA, 1974). Saturated sediments are generally less than 25 feet in thickness in the northern portion of Lea County (USDA, 1974).

Based on data obtained from the OSE and Go-Tech websites, accessed on September 9, 2013, one domestic well (L 04453), three livestock wells (L 05325, L 05324, and L 06537), and two wells associated with oil and gas production (L 07629 and L 06599) are located within 0.8 miles of the proposed discharge area. According to the OSE and Go-Tech websites, the depth to water ranges from approximately 48 to 90 feet below ground surface. Total dissolved solids (TDS) concentrations were not provided in the OSE and Go-Tech databases. Regionally, the waters within the Tertiary deposits in Lea County range from 254 to 1,157 milligrams per liter (mg/L) (Nye, 1930).

Item o. Identification of landowners at and adjacent to, the discharge and collection/retention site:

The landowner of record for the property at the discharge location is:

Map Parcel ID	Lea County Parcel ID	Property Owner
A	4000343460001, 4000343460002	Ben Powell Box 96 McDonald, NM 88262

Signed permission from the landowner to discharge onto his private property northeast of the ROW is included in Appendix E.

The landowners of record for properties adjacent to the property where the discharge will occur are:

Map Parcel ID	Lea County Parcel ID	Property Owner
В	4000602520019	Key Family Limited Partnership PO Box 355 Lovington, NM 88260
С	4000601300002	Zachary Neil Zimmerman PO Box 397 Lovington, NM 88260
D	4000343130001	Sandra Ponder Joy 17421 E. State Hwy 22 Cranfills Gap, TX 76637
E	4000352330001	Marlin J. Wiggins Box 601 Lovington, NM 88260
F	4000346510001	McWhorter Ranch Route 2, Box 120 Lovington, NM 88260
G	No Parcel ID	State of New Mexico – Barbee McWhorter State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87501
Н	4000352840001	Jim P. Wolfe 3405 Whittingslow Rd. Greenwood, AR 72936
	4000347460001	Larry E. Denning P.O. Box B McDonald, NM 88262
J	4000346690001	Ruby Hannie Crosby Ranch – RT 1 El Dorado, TX 76936
К	4000352710001	Patsy I. Whitley Route 2, Box 48BE Lovington, NM 88260
L	4000344830001	Shannon Kizer Box 56 Pep, NM 88126

Figure E-1 illustrates the parcel locations discussed above.

References

Go-Tech, New Mexico Water database (NM WAIDS, accessed September 9, 2013, http://octane.nmt.edu/waterquality/data/gwatersearch.aspx.

Office of the State Engineer (OSE) database search accessed in September 9, 2013, http://nmwrrs.ose.state.nm.us/nmwrrs/index.html.

Murchison, 2010. "Geographic Footprint" 2010.

New Mexico State Highway Department, Geology Section, Materials and Testing Laboratory, Design Division and U.S. Department of Transportation, Federal Highway Administration, 1971-1972.

Nye, S. Spencer, Department of the State Engineer, State of New Mexico, Herbert W. Yeo, State Engineer, United States Geological Survey, 1930, Shallow Ground-Water Supplies in Northern Lea County, New Mexico, Bulletin No. 2, 113 pages.

SEPM Strata, 2013. "The Geology of the Upper Permian – Permian Basin", February 13, 2013.

United States Department of Agriculture, Soil Conservation Service and New Mexico Agricultural Experiment Station, 1974, "Soil Survey, Lea County, New Mexico", January 1974.

GIS References - Segment 7

NM Topographic 7.5' quadrangle maps (Segment 7)

Frier Ranch
 Alston Ranch
 Tatum South
 Prairieview NW
 Fort Ranch
 Hillburn City
 Buckeye NE,
 Lovington NW
 Fort Ranch
 Hillburn City SW
 Humble City NW

Basemap for inset on Figure 1

- - ESRI World Street Map. Sources: ESRI, DeLorme, NAVTEQ, TomTom, USGS, Intermap, iPC, NRCAN, ESRI Japan, METI, ESRI China (Hong Kong), ESRI (Thailand)

Aerial imagery on Figure 2, Segment 7

- ESRI World Imagery; ESRI DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community. Date of image: 10/26/2010

State and County boundaries

- ESRI Street Map North America dated August 17, 2010

Cities and Towns: Urban areas

- *TIGER urban areas 2010 (tl 2010 35 place10.shp) 2010 Census data
- ESRI Street Map North America dated August 17, 2010

PLSS

- *BLM GIS dataset dated June 3, 2013

Surface waters (streams and water bodies)

*National Hydrography Dataset, USGS, GIS dataset downloaded May 4, 2011

 134288.3-ALB13RP007
 Page 11 of 12
 October 21, 2013

 Copyright 2013 Kleinfelder
 Rev. 0

Wetlands

*National Wetlands Inventory, USF&WS, GIS dataset downloaded May 4, 2011

OSE Wells

- *New Mexico Office of the State Engineer, Excel spreadsheet dated July 2011
- Unable to find the USGS wells listed on the PRRC references sheet

Floodplains, Segment 7

- *S_FLD_HAZ_LN downloaded from New Mexico Resource Geographic Information System Program, http://rgis.unm.edu/ GIS shapefile downloaded June 5, 2013

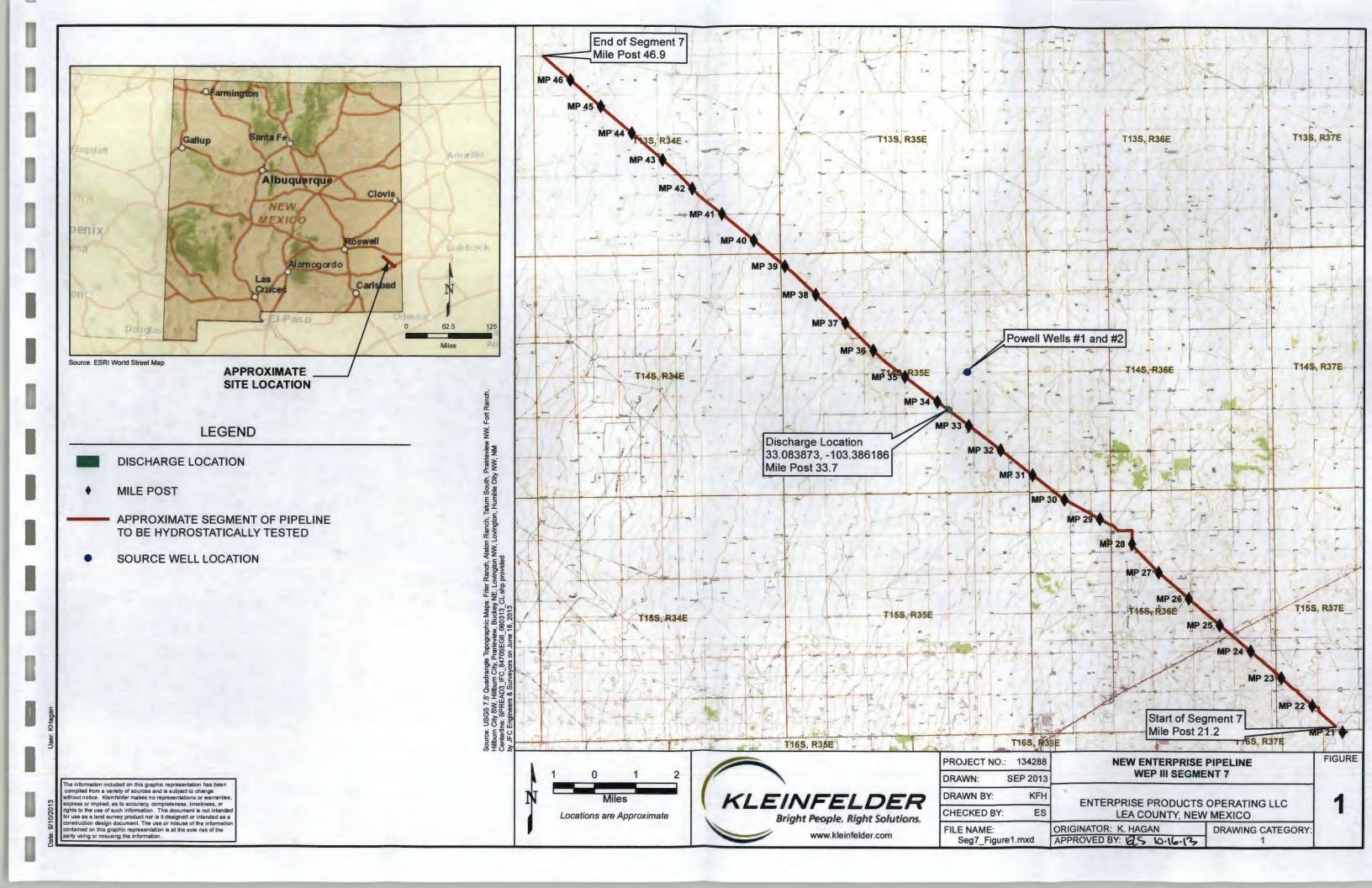
Mines

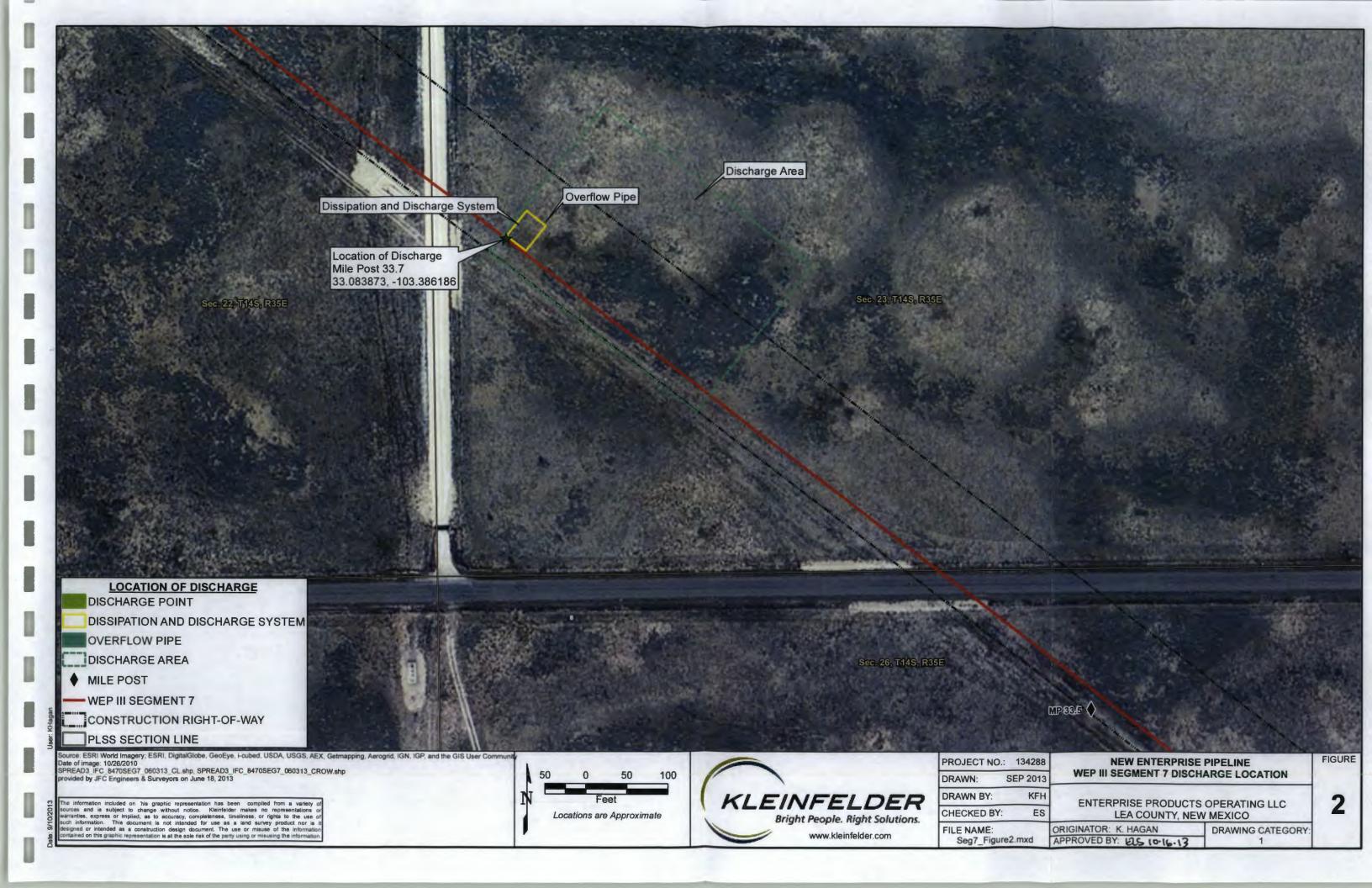
- New Mexico Mining and Minerals Division, February 2012
- *Coal mine permit boundaries shapefile from RGIS, downloaded June 17, 2013
- Potash areas from BLM Carlsbad Field Office basemap, downloaded May 8, 2012

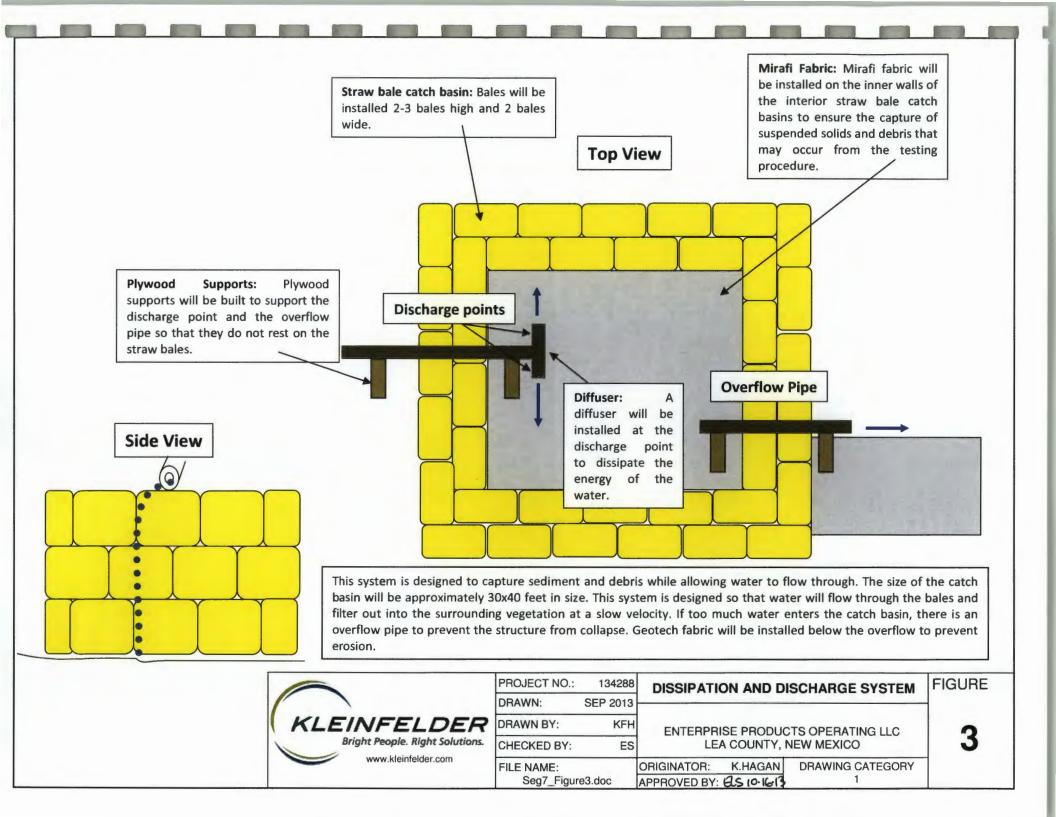
Geology

- USGS OFR 2005-21351. Stoeser, D.B., G.N. Green, L.C. Morath, W.D. Heran, A.B. Wilson, D.W. Moore, and B.S. Van Gosen, 2005. Preliminary Integrated Geologic Map Databases for the United States; Central States: Montana, Wyoming, Colorado, New Mexico, Kansas, Oklahoma, Texas, Missouri, Arkansas, and Louisiana, The State of New Mexico. U.S. Geological Survey Open-File Report 2005-21351
- USGS Fault and Fold Database, GIS shapefiles downloaded November 3, 2010
- BLM Carlsbad Field Office GIS Basemap GIS dataset downloaded on May 8, 2012

Karst


- *USGS OF 2004-1352. Tobin, Bret D., and David J. Weary, 2004. Digital Engineering Aspects of Karst Map: A GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Engineering aspects of karst: U.S. Geological Survey, National Atlas of the United States of America, scale 1:7,500,000. U.S. Geological Survey Open-File Report 2004-1352
- BLM Carlsbad Field Office GIS Basemap, Caves potential GIS shapefile downloaded on May 8, 2012
- BLM NM GIS dataset, Karst potential, GIS shapefile provided by BLM on April 3, 2012


Land Ownership


- BLM NM GIS dataset downloaded June 3, 2013

*same source as used on Pit Rule Petroleum Recovery Research Center database (PRRC) http://ford.nmt.edu/prrc MF/index5.html

FIGURES

APPENDIX A Certification of Siting Criteria

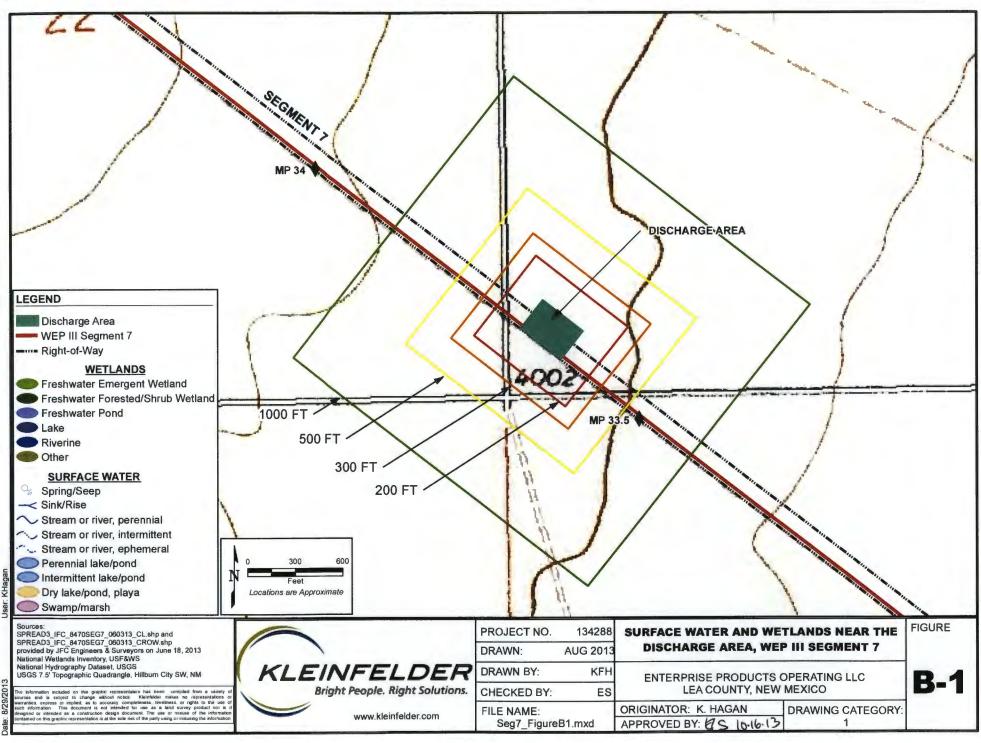
have performed a site visit to look for the presence of the items described below and have confirmed that evidence of these items was not observe within the specified distance from the discharge location. The discharge location is in the SE/4 of Section 34, Township 6 South, Range 26 East in Lincoln County, NM (see Figure 2).	d
1. Within 200 feet of a watercourse, lakebed, sinkhole or playa lake;	
 Within an existing wellhead protection area (200 feet from a private, domestic fresh water well or spring used by less than five households for domestic or stock watering purposes or 1,000 feet from any other fresh water well or spring); 	
3. Within a surface expression of a subsurface mining operation or karst feature;	
4. Within, or within 500 feet of, a wetland; or	
5. Within 500 feet from the nearest permanent residence, school, hospital, institutio or church.	n

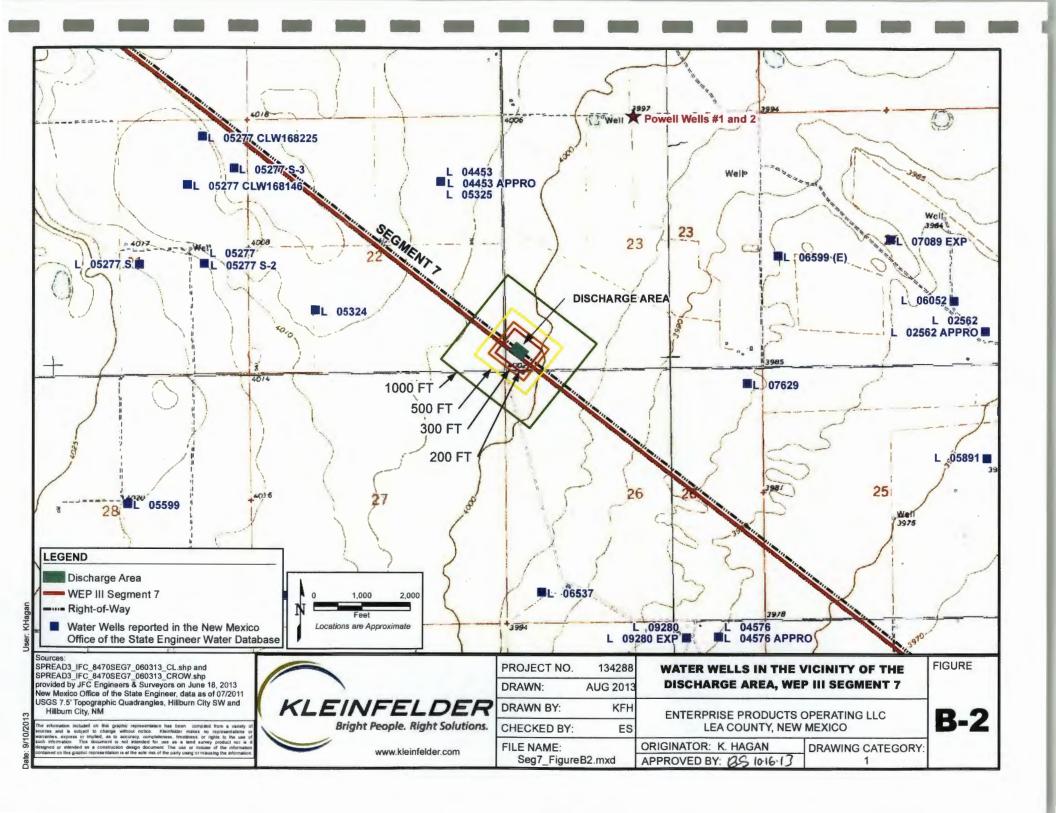
On behalf of Enterprise Products, I state that the above information is complete and true to the

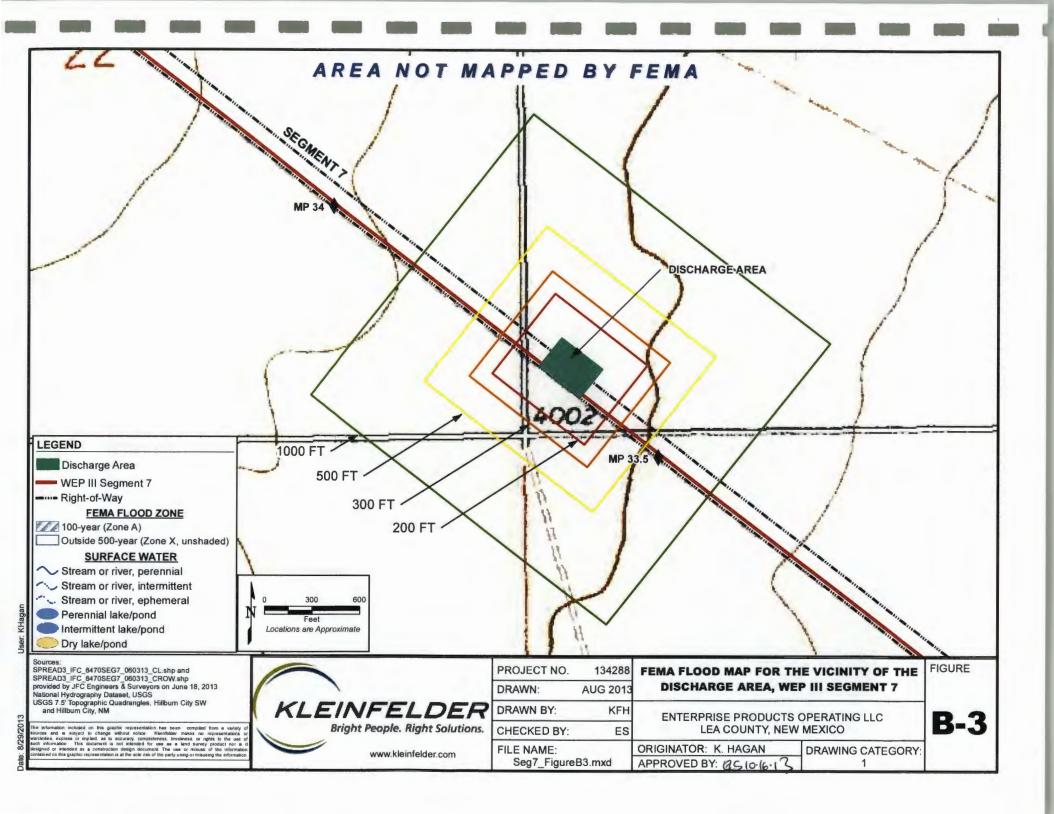
Signature

best of my knowledge.

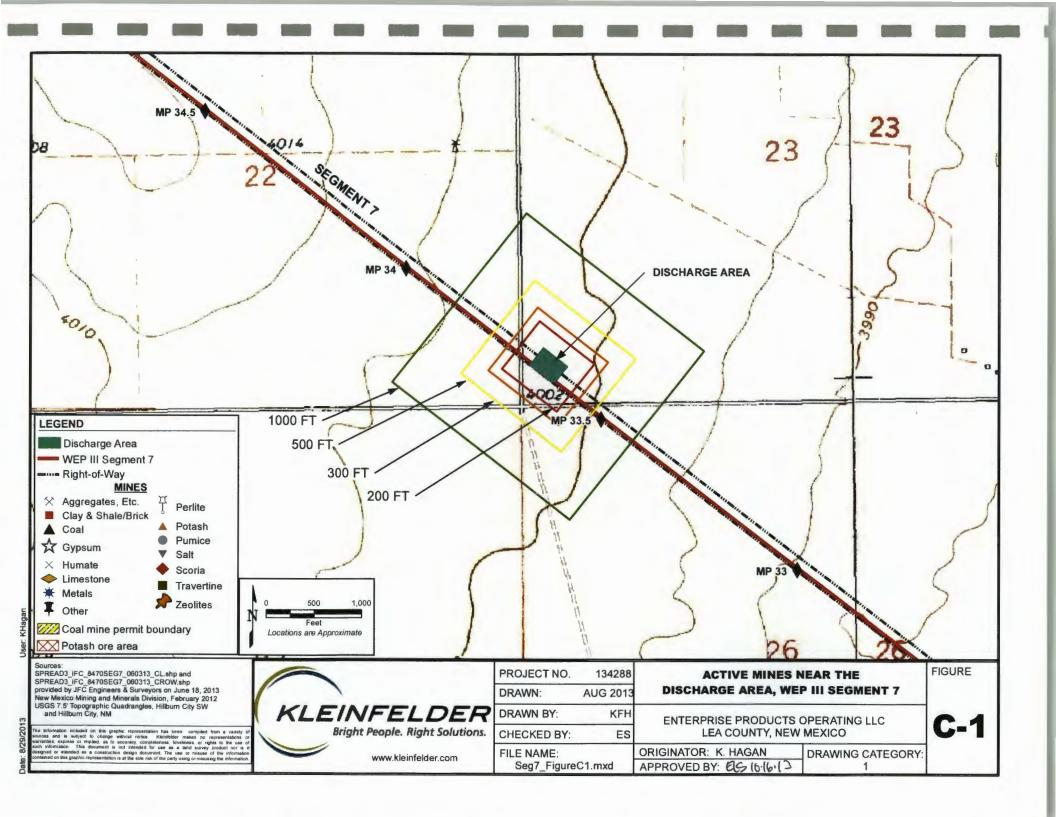
_5/30/2013 Date of Site Visit


Environmental Scientist


1 Dun Wester


Title:

APPENDIX B


Water Feature, Water Well Information and Floodplain Information

APPENDIX C Area Mine Information

Melissa Cote

From:

Tompson, Mike, EMNRD < Mike.Tompson@state.nm.us>

Sent:

Wednesday, August 14, 2013 11:18 AM

To:

Melissa Cote

Cc:

Kretzmann, John, EMNRD

Subject:

RE: Mines in the Vicinity of Hydrostatic Testing (Segment 7)

Melissa,

We have no record of abandoned mines in these sections either.

Again, please let me know if you have any questions.

Mike

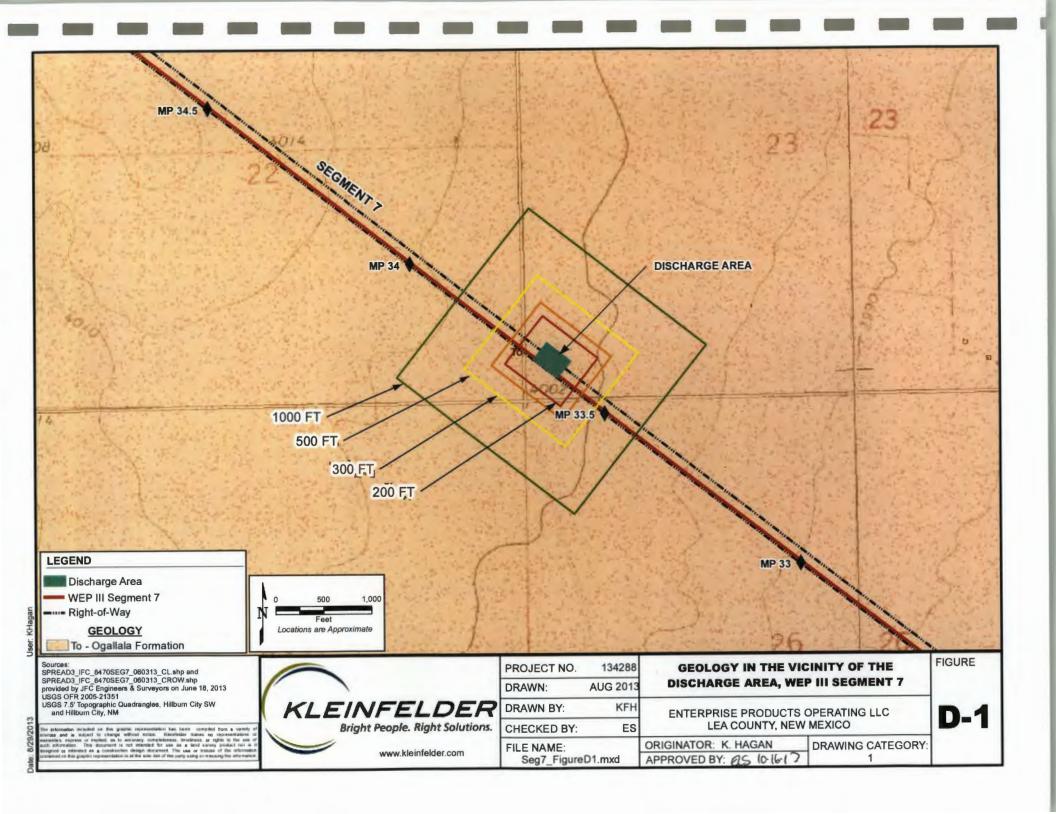
From: Melissa Cote [mailto:MCote@kleinfelder.com]

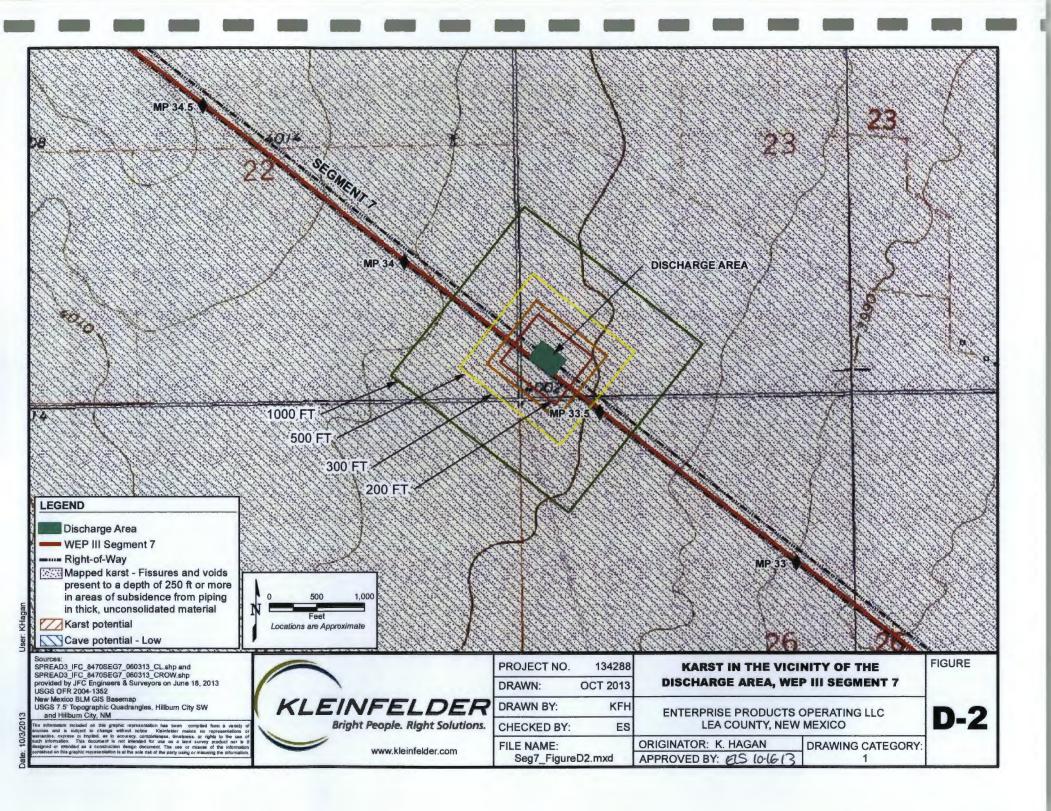
Sent: Monday, August 12, 2013 12:28 PM

To: Kretzmann, John, EMNRD

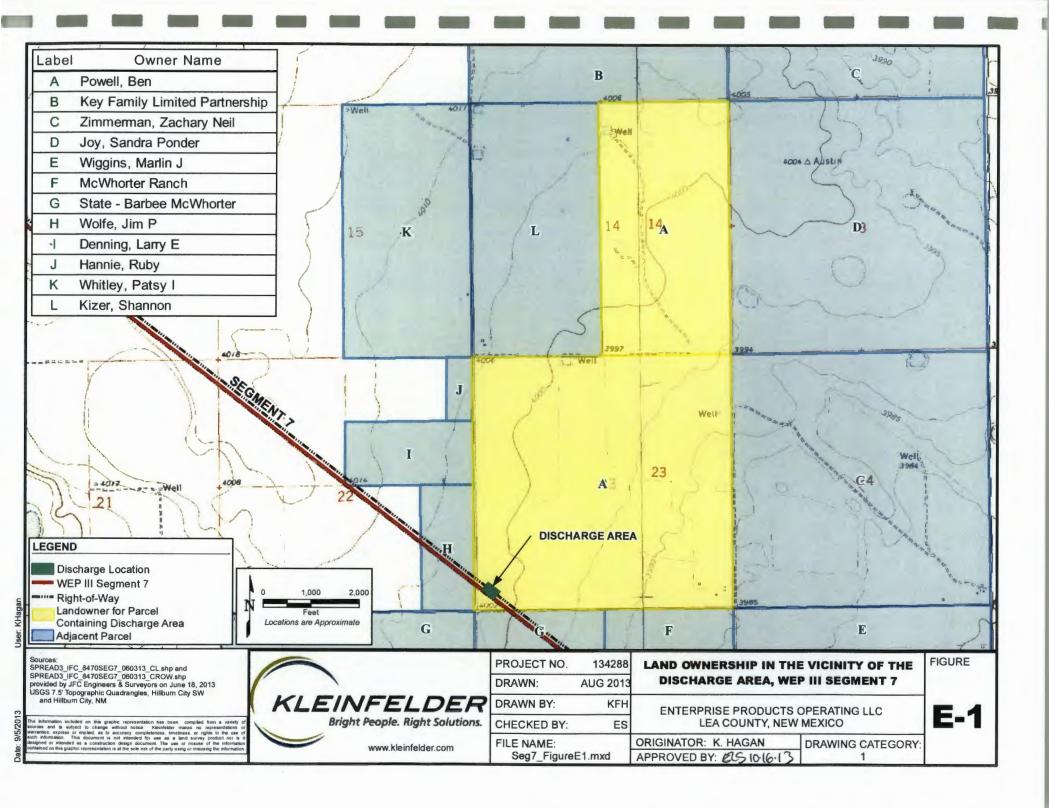
Subject: Mines in the Vicinity of Hydrostatic Testing (Segment 7)

Hi John,


I am working on the permitting for segment 7 of the Enterprise pipeline. The discharge site for this segment is located in:


• Section 22 and 23 of Township 14 South, Range 35 East.

Would you be able to tell us if there are any mines in these areas?


Thank you,

Melissa Cote Kleinfelder 505-344-7373 9019 Washington St. NE Bldg. A Albuquerque, NM 87113

APPENDIX E Area Landownership and Permission from Landowners

August 23, 2013

VIA HAND DELIVERY or CERTIFIED MAIL

Ben & Elizabeth Powell PO Box 96 McDonald, NM 88262

RE:

Proposed Hydrostatic Water Discharge Site MAPL – WEP III Project, 16 & 20 Inch Line

Tract Number: NM-LEA-42 Lea County, New Mexico

Dear Mr. & Mrs. Powell,

Mid-America Pipeline Company, LLC, a Delaware limited liability company ("MAPL"), operated by Enterprise Products Operating LLC, a Texas limited liability company (collectively referred to as "Enterprise") proposes to hydrostatically test approximately 24.9 miles (consisting of 2 sections – the longest being approximately 69,782 ft.) of its new 16-inch pipeline in Lea County, New Mexico. Enterprise proposes to use approximately 710,000 gallons (total) of well water from Mr. Ben Powell's Well.

Upon completion of the test, Enterprise plans to discharge approximately 710,000 gallons of test water onto the permanent easement and temporary construction easement (collectively referred to as "Easements") located on the property of **Ben & Elizabeth Powell** (hereinafter referred to as "Landowner"). Landowner understands that water may not be contained within Easements and may flow out onto Landowner's property and hereby grants permission to Enterprise for such activity. Water will be discharged through a hay bale filtering structure at a rate of approximately 1,500 gallons per minute. All test water will be tested and discharged in compliance with guidelines of the New Mexico Oil Conservation Division (NMOCD) Hydrostatic Discharge Permit. Discharge is currently scheduled to begin on or about November 13, 2013 and will take approximately 8 hours to complete.

A hydrostatic water discharge permit from New Mexico Oil Conservation Division is required to discharge hydrostatic test water. NMOCD application requires permission from Landowner to discharge and/or flow hydrostatic test water onto Landowner's property. Landowner permission must be acquired before application can be submitted to NMOCD. Acquisition of permit takes approximately 90 days.

Should you have questions or require additional information, please feel free to contact me in writing at Mid-America Pipeline Company, LLC 4815 Hawkins NE Suite C-3, Albuquerque, New Mexico 87109 or by telephone at 505-345-0721.

Sincerely,

Enterprise Products Operating LLC

Contract Right of Way Agent

Steve Lockwood

Representing Enterprise Products Operating LLC

Your signature indicates your approval to discharge and/or flow hydrostatic test water onto your property.			
Landowner(s):			
Ben Powell	Dated: 23 day of AnsusT , 2013		
Elizabeth Powell	Dated: 23 day of August, 2013		
Witness: But Int	Dated: 23 rd day of August, 2013		

APPENDIX F Public Notice

PUBLIC NOTICE

The United States Department of Transportation (USDOT) requires periodic pressurized tests on all USDOT-regulated pipelines. Enterprise Products Operating LLC (Enterprise) hereby gives notice that the following discharge permit application has been submitted to the New Mexico Oil Conservation Division (NMOCD) in accordance with Subsection B, C, E, and F of 20.6.2.3108 New Mexico Administrative Code. The local Enterprise mailing address is: Enterprise Products Operating LLC, 1031 Andrews Highway, Suite 320, Midland, TX 79701.

The purpose of hydrostatic (testing with water) pipeline testing is to determine the extent to which potential defects might threaten the pipeline's ability to sustain maximum allowable operation pressure. The pipeline will be filled with water, and then pressurized to a pressure higher than the standard operating pressure for a specified duration of time.

Enterprise has submitted an application for hydrostatic test water discharge that will occur on the pipeline right-of-way (ROW) and onto the adjacent property to the northeast of the ROW at latitude 33.083873°, longitude -103.386186° in Lea County, New Mexico. The location of the discharge is approximately 9.75 miles north of Lovington, New Mexico. To reach the discharge location from the intersection of US-83 and US-82 in Lovington: head north on US-82 for 3 miles; exit onto NM-206 N/Tatum Highway and continue north for 6.6 miles; turn west on County Road 107/E. Hester Road for 2 miles; turn north on County Road 103/Reed Road for 1 mile; turn west on County Road 108/Hilburn Road for 2 miles; turn north on County Road 109/Kidd Road and continue for 394 feet; and the discharge area will be on the right. The hydrostatic test is scheduled for November 25, 2013 with discharge of the test water scheduled for December 3, 2013.

The new piping, called the Western Expansion Pipeline (WEP) III Segment 7, will be hydrostatically tested. Up to 710,000 gallons of well water obtained from the Powell Wells #1 and #2 and will be piped to the new pipeline. Once the test has been completed, and prior to discharge, Enterprise will collect and analyze a sample of the water obtained from the end section of the pipeline. The sample will be analyzed for water quality. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water in accordance with the approved discharge permit. If discharge to the ground surface is approved, the water will be released from a pipeline and discharged to the dissipation and discharge system and allowed to flow onto ground surface within the ROW and onto the adjacent property north of the ROW (approved by landowner).

If test water exceeds discharge requirements, it will first be treated using electro-coagulation to remove constituents that exceed the discharge requirements. 400-barrel storage tanks will temporarily hold the treated water while a post-treatment sample is collected and submitted for laboratory analysis. The analytical results will be sent to NMOCD for approval and upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water in accordance with the approved discharge permit.

If the concentrations in the water still exceed discharge requirements after the treatment process, it will be transported from the project site in DOT-approved tanker trucks by an NMOCD-approved hauler to an NMOCD-approved waste water disposal facility.

The shallowest groundwater likely to be affected by a leak or accidental discharge is found at depths of 48 to 90 feet below grade. Total dissolved solids concentration of approximately 450

milligrams per kilogram is representative of the shallow aquifer in the discharge area. Water in the Powell wells is considered to be the background water standard for the discharge site and the surrounding area.

The notice of intent and discharge plan outlines how produced water and waste will be properly managed, including handling, storage, and final disposition. The plan also includes procedures for the proper management of leaks, accidental discharges, and spills to protect the waters of the State of New Mexico.

For additional information, to be placed on a specific mailing list for future notices, or to submit comments please contact:

Brad Jones, Environmental Engineer
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
Phone: 505.476.3487

The NM Energy, Minerals and Natural Resources Department will accept comments and statements of interest regarding this hydrostatic test and will provide future notices for this pipeline upon request.

AVISO PUBLICO

El Departamento de Transporte de los Estados Unidos (United States Department of Transportation, USDOT) requiere hacer pruebas (presurizadas) periódicamente en toda tubería regulada por USDOT. La compañía Enterprise Products Operating, LLC (Enterprise) da aviso por este medio que la siguiente aplicación de permiso de descarga ha sido sometida al New Mexico Oil Conservation Division (NMOCD) de acuerdo con las Sub-Sección B, C, E, y F del Código Administrativo de Nuevo México (New Mexico Administrative Code, NMAC, 20.6.2.3108). La dirección de correo local de la compañía Enterprise es: Enterprise Products Operating LLC, 1031 Andrews Highway, Suite 320, Midland, Texas 79701.

El propósito de la prueba hidro-estática (prueba con agua) en la tubería es para evaluar el potencial de defectos que puedan afectar la habilidad de la tubería de sostener la máxima presión de operación permisible. La tubería será llenada con agua, y luego presurizada a una presión mayor a la presión de operación estándar por un periodo de tiempo especificado.

Enterprise ha sometido una aplicación para descargar agua de pruebas hidro-estática que ocurrirá en el área de la servidumbre de paso y sobre la propiedad adyacente hacia el noreste a una latitud de 33.083873°, y una longitud de -103.386186° en el Condado Lea, Nuevo México. El lugar de la descarga está aproximadamente a 9.75 millas al norte de Lovington, Nuevo México. Para llegar al sitio de la descarga desde la intersección de US-83 y US-82 en Lovington: ir hacia el norte sobre US-82 por 3 millas; salir sobre NM-206 N/Tatum Highway y continuar norte por 6.6 millas; dar vuelta hacia el oeste sobre County Road 107/E. Hester Road por 2 millas; dar vuelta hacia el norte sobre County Road 109/Kidd Road y continuar por 394 pies; y el área de descarga estará sobre la derecha. La prueba hidro-estática está programada para Noviembre 25, 2013 con la descarga del agua de prueba programada para Diciembre 3, 2013.

La nueva tubería, llamada Western Expansion Pipeline (WEP) III, Segmento 7, será probada hidro-estáticamente. Hasta 710,000 galones de agua de pozo obtenida de los Pozos Powell #1 y #2, y por medio de una tubería será transportada a dentro de la tubería nueva. Una vez que la prueba se haya completado, y antes de la descarga, Enterprise obtendrá y analizara una muestra de agua obtenida del extremo de la sección de tubería. La muestra será analizada para evaluar la calidad del agua. Una vez que se reciban los resultados, los resultados serán mandados a NMOCD. Al NMOCD concurrir que el agua de descarga cumple con los estándares de calidad de agua de NMAC 20.6.2.3103, Enterprise descargara el agua de acuerdo con el permiso de descarga aprobado. Si descarga en la superficie del suelo es aprobado, el agua será desalojada de una tubería y el agua de prueba será descargada al sistema de descarga y permitida fluir sobre la superficie del suelo en el área de la servidumbre de paso de la tubería y sobre propiedad adyacente hacia el norte (aprobado por el dueño de la propiedad).

Si el agua de prueba excede los requisitos de descarga, será primero tratada usando electrocoagulación para remover componentes que excedan los requisitos de descarga. 400-barriles usados como tanques de almacén temporalmente guardaran el agua tratada hasta que las muestras de después de tratamiento sean obtenidas y sometidas para análisis de laboratorio. Los resultados analíticos serán enviados a NMOCD para ser aprobados y cuando NMOCD concurra que el agua de descarga tiene los estándares de calidad de agua de NMAC 20.6.2.3103; Enterprise descargara el agua de acuerdo con el permiso de descarga aprobado. Si después de este proceso de tratamiento, agua todavía excede los requisitos de descarga, será transportada del sitio del proyecto en camiones-pipa aprobados por el departamento de transporte por un transportista aprobado por NMOCD a un lugar aprobado por NMOCD para deshacerse del agua de prueba.

El nivel freático menos profundo que posiblemente pueda ser afectado por una fuga o descarga accidental se encuentra a profundidades de 48 a 90 pies debajo de la superficie. Concentración total de solidos disueltos de aproximadamente 450 miligramos por kilogramo es representativo del nivel freático en el área de descarga. Agua en los Pozos Powell es considerada ser el estándar de fondo para el sitio de descarga y sus alrededores.

El aviso de intención y el plan de descarga resume como el agua que se produzca será manejada, incluyendo su guardado y el proceso final para deshacerse del agua. El plan también incluye procesos para el manejo apropiado de fugas, descargas accidentales, y derrames para proteger las aguas del Estado de Nuevo México (New Mexico).

Para información adicional, ser puesto en una lista de correo específica a este proyecto para avisos futuros, o para someter comentarios, favor de contactar:

Brad Jones, Environmental Engineer
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
Teléfono: 505.476.3487

El Departamento de NM de Energia, Minerales y Recursos Naturales (NM Energy, Minerales and Natural Resources Department) aceptará comentarios al respecto de esta prueba hidroestática y proporcionará avisos futuros para esta tubería en base a petición.

APPENDIX G Electro-Coagulation Process Information

Post-Hydrostatic Test Water On-Site Electrocoagulation Treatment

Introduction

The electro-coagulation (EC) process uses an electrical current to coagulate organic constituents and suspended solids in water. The coagulated organics have the ability to adsorb ionic constituents which makes it possible to separate out the flocculent with the majority of suspended organics and some of the ionic constituents removed. (ITRC, 2013).

At this site, it will be used to treat hydrostatic test water after the completion of testing and prior to discharge onto the ground surface.

EC Process

Water will be transferred from the pipeline with a pump and hose into two 21,000-gallon holding tanks to allow for consistent volumes to feed supply pumps. The water will be pumped from the holding tanks to the water treatment system tank. The hydrostatic test water will be treated with a zero toxicity bio-polymer and will be run through a quad filtration vessel containing 80, 5-micron filtration socks. Material Data Safety Sheets for the chemicals/additives used are attached. The water will then be pumped through a series of holding tanks and filtering systems, and then pumped with hoses and pipes into the water storage tanks. An illustration of the secondary containment areas, EC treatment system, and the storage tanks is provided as Figure G-1. A detailed schematic of the EC treatment and filtration system setup is provided as Figure G-2.

As the water is processed through the treatment vessel, the system is continuously monitored for water pressure, pH, nephelometric turbidity units (NTU), flow rate and residual bio-fouling to ensure system is operating within specifications. As filtration sacks are expended, the system is transferred to the secondary filtration system while maintenance is performed on the primary system. Treated water will be discharged by hose into approximately 43 interconnected, 400-barrel storage tanks. The water will be held in the storage tanks until analytical testing is conducted. Processing of the water through the EC system is anticipated to take approximately 6 days. All processing will occur within secondary containment and will occur in the pipeline ROW.

Post-treatment Sampling

One composite water sample will be collected from the end of the EC treatment process for purposes of discharge approval. The sample will be a composite sample collected from the following intervals/tanks: 1,000 gallons (1st tank); 178,000 gallons (11th tank); 370,000 gallons (22nd tank); 590,000 gallons (35th tank); and 706,000 gallons (43rd tank). The sample will be submitted for laboratory analysis, as described in item j. Analytical testing results are anticipated to be received within approximately 4 days.

Once the results have been received, they will be forwarded to the NMOCD. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water as described in *item h*.

If the results do not meet the required water quality standards, the water will pumped from the storage tanks into water trucks, using a hose or temporary piping. Transportation and disposal of the water is described in *item k*.

Any solids generated during the EC process will be managed as described in item k.

Best management practices

Secondary containment will be designed to hold 1 1/3 of the total volume of the 43 water storage tanks. It will be comprised of hay or dirt berms approximately 4 feet high with plastic lining the bottom of the containment area and draped over the sides of the containment. The approximate dimensions of the containment are 253 feet long by 125 feet wide.

Each individual vessel of the EC treatment system will have its own secondary containment. The storage tanks and EC treatment system will be contained within a single containment area located in the ROW.

If the test water needs to be transferred to water trucks for disposal, drip pans will be placed under hose connections and valves to prevent leaks from reaching the ground surface. Valves will be present on the water tanks and at various transfer areas to stop the flow of water if needed. Personnel will be present during transfer operations to close valves in case of leaks. Personnel will be located in the surrounding area to conduct pipeline construction and maintenance activities and can help prevent vandalism to the water tanks. Visual inspections will be conducted while the hydrostatic test water is stored in the storage tanks to ensure the absence of leaks and damage due to vandalism.

Approximately five 42-gallon drums will be used to store the spent filtration socks. The drums will be sealed and will be left inside the secondary containment area, until the EC process is complete and the solids are transported off site for disposal.

TimelineThe anticipated timeline if post treatment water is approved for discharge to the ground surface:

	Activity	Duration	Cumulative Days
1	Tested water in pipeline does not meet standards for discharge to the ground surface	0	0
2	Secondary containment constructed and tanks placed inside. IDW mobilizes to site and sets up system	7	7
3	Treatment of water through EC system	6	13
4	Collection and analysis of post – treatment water samples	4	17
5	EC system removed	1	18
6	Discharge approved by NMOCD	1	19
7	Test water discharged to ground surface and drummed solids removed from disposal area	2	21
8	Empty storage tanks removed and secondary containment dismantled	7	28

The anticipated timeline if post treated water needs to be hauled off for disposal:

	Activity	Duration	Cumulative Days
1	Tested water in pipeline does not meet standards for discharge to the ground surface	0	0
2	Secondary containment constructed and tanks placed inside. IDW mobilizes to site and sets up system	7	7
3	Treatment of water through EC system	6	13
4	Collection and analysis of post – treatment water samples	4	17

5	EC system removed	1	18
6	Test water cannot be discharged	0	18
7	Test water is transferred into water trucks and hauled offsite for disposal. Drummed solids removed for disposal	3	21
8	Empty storage tanks removed and secondary containment dismantled	7	28

Closure Plan

Upon completion of the treatment, the EC system will be removed from the site. Once the water in the storage tanks has been removed, the storage tanks will be dismantled and removed from the site. The drummed solids will be removed for disposal and the secondary containment will be dismantled. The site will be returned to preconstruction contours, as was present prior to hydrostatic test discharge.

References

Interstate Technology Regulatory Council (ITRC), 2013, Technology Overview as Part of a Web-based Technical and Regulatory Guidance, Electrocoagulation, http://www.itrcweb.org/miningwaste-guidance/to_electrocoagulation.htm.

Date: 7/24/2012 Revision: 00

Material Safety Data Sheet

HaloKlear: DBP-2100

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name:

HaloSource, Inc.

Corporate Address:

1631 220th St. SE, Suite 100, Bothell, WA 98021 (425) 881-6464 (Monday-Friday, 8AM-5PM PDT)

Manufacturer's Telephone: **Emergency Telephone (24 Hours):**

800-424-9300 CHEMTREC (Domestic, North America)

703-527-3887 CHEMTREC (International, collect calls accepted)

Material/Trade/Product Name:

HaloKlear: DBP-2100

Synonyms: **Chemical Name:** Poly X Socks

Proprietary Proprietary

Chemical Formula: CAS No.:

Proprietary

EPA Registration #:

Not applicable

Product Use:

Flocculant

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	COMPONENT	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	Trade Secret	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Off-white to tan, odorless powder.

May cause irritation to eyes and respiratory tract. May cause drying or chapping or skin.

WARNING! Can contain sufficient fines to cause a combustible dust explosion. Product will burn when in contact with a flame. See Section 5 Fire Fighting Measures for more information.

POTENTIAL HEALTH EFFECTS

EYE: Dry powder may cause foreign body irritation in some individuals.

SKIN: Prolonged contact with the dry powder may cause drying or chapping.

HaloKlear: DBP-2100 Page Number: 2 of 6

INHALATION: Hygroscopic properties of the product can form a paste or gel in the airway. Inhalation of dust may cause respiratory tract irritation. Excessive inhalation of dust may cause coughing and sneezing.

INGESTION: Not toxic if swallowed (less than a mouthful) based on available information.

CHRONIC EXPOSURE/CARCINOGENICITY: None of the components present in this material at concentrations of equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as a carcinogen.

AGGRAVATION OF PRE-EXISTING CONDITIONS: None known.

POTENTIAL ENVIRONMENTAL EFFECTS: Contains no substances known to be hazardous to the environment.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (if applicable), flush with water for 15 minutes. Call a physician.

SKIN CONTACT: Cleansing the skin after exposure is advisable.

INHALATION: If large amounts are inhaled, remove to fresh air and consult a physician.

INGESTION: Consult a physician if necessary.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not applicable UPPER FLAMMABLE LIMIT: Not available

FLAMMABLITY CLASS (OSHA): Not applicable

AUTOIGNITION TEMPERATURE: Not available LOWER FLAMMABLE LIMIT: Not available

FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Combustible dust which can contain sufficient fines to cause a combustible dust explosion.

HAZARDOUS COMBUSTION PRODUCTS: Carbon dioxide, carbon monoxide.

EXTINGUISHING MEDIA: Water, dry chemical, carbon dioxide.

PROTECTION OF FIREFIGHTERS: Treat as a "Class A" fire. Product will burn when in contact with a flame. Self extinguishers when ignition source is removed. Tends to smolder. As in any fire, wear self-contained breathing apparatus pressure-demand, and full protective gear.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

ENVIRONMENTAL PRECAUTIONS: None known.

METHODS FOR CLEANING UP: Wet material on walking surfaces will be extremely slipper. Avoid dust formation. Use equipment designed specifically for combustible dust. Take precautionary measures against static discharges.

HaloKlear: DBP-2100 Page Number: 3 of 6

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Avoid dust formation. Provide appropriate exhaust ventilation in places where dust is formed.

FIRE PREVENTION: Product may form combustible dust-air mixtures. Keep away from heat, flames, sparks, and other ignition sources. Avoid emptying package in or near flammable vapors. Static charges may cause flash fire.

SPECIAL HANDLING REQUIREMENTS: Remove material from eyes, skin and clothing.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: No special containment needed.

STORAGE ROOM RECOMMENDATIONS: Store in a cool, dry, well-ventilated area away from direct heat.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry place. Keep container closed when not in use; keep out of the reach of children.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: Provide natural or mechanical ventilation to control exposure levels below airborne exposure limits in this section.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: This product does not cause significant eye irritation or eye toxicity requiring special protection. Where there is significant potential for eye contact, wear chemical goggles and have eye flushing equipment available.

SKIN PROTECTION: Although this product does not present a significant skin concern, minimizes skin contamination by following good industrial practice.

HAND PROTECTION: Chemical resistant gloves are recommended to minimize potential irritation from handling.

RESPIRATORY PROTECTION: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use. Respirator use is not required for this product.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

	PERMISS	IBLE EXPOSURE LIMITS	
INGREDIENT	OSHA	WISHA	ACGIH (TLV)

HaloKlear: DBP-2100 Page Number: 4 of 6

CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL
Not Applicable	Not	Not	Not	Not	Not	Not
Not Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off white to tan

PHYSICAL FORM: Solid, powder

MELTING POINT: Not known

pH: Approximately neutral (1% solution) VAPOR DENSITY: Not known

SOLUBILITY IN WATER: Fully soluble

SHAPE: Powder **ODOR:** Odorless

VAPOR PRESSURE: Not known **BOILING POINT:** Not known FREEZING POINT: Not known

SPECIFIC GRAVITY OR DENSITY: Not known

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a quaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable under recommended storage conditions

CONDITIONS TO AVOID: Avoid dust formation

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents

HAZARDOUS DECOMPOSITION PRODUCTS: Carbon monoxide, carbon dioxide

HAZARDOUS POLYMERIZATION: Will not occur

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (rat): >5,000 mg/kg

DERMAL LD₅₀ (rabbit): Not available

DERMAL LD₅₀ (rat): Not available

SKIN IRRITATION: Non-irritating (rabbit)

EYE IRRITATION: Non-irritating (rabbit)

SKIN SENSITIZATION: No skin allergy observed in gui8nea pig following repeated skin exposure

ADDITIONAL INFORMATION: The dry powder may cause foreign body irritation in some individuals. Prolonged contact with the dry powder may cause drying or chapping of the skin. Excessive inhalation of dust may be annoying and can mechanically impede respiration. Due to the hygroscopic properties, they can form a paste or gel in the airway.

SECTION 12: ECOLOGICAL INFORMATION

HaloKlear: DBP-2100 Page Number: 5 of 6

ECOTOXICITY: Contains no substances known to be hazardous to the environment or not degradable in waste water

treatment plants.

MOBILITY: Not available

PERSISTENCE AND DEGRADABILITY: This product is biodegradable.

BIOACCUMULATIVE POTENTIAL: Inherently biodegradable.

ADDITIONAL INFORMATION:

- 96 Hour Acute Survival
 - Rainbow Trout: LC₅₀ 491 mg/L, LC₂₅ 347 mg/L
 - Fathead Minnow: LC₅₀ 1110 mg/L, LC₂₅ 678 mg/L
- 7-Day Chronic Survival and Growth
 - Rainbow Trout: LC₅₀ 510 mg/L, LC₂₅ 390 mg/L
 - Fathead Minnow: LC₅₀ 605 mg/L, LC₂₅ 443 mg/L
 - Ceriodaphnia Dubia: LC₅₀ 352 mg/L, LC₂₅ 289 mg/L
- Rainbow Trout (Biomass): LC₅₀ 386 mg/L, LC₂₅ 262 mg/L
- Fathead Minnow (Biomass): LC₅₀ 505 mg/L, LC₂₅ 256 mg/L

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it does not meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:

Not Regulated

Hazard Class:

Not Regulated

Identification Number (UN Number): Not Regulated

Packing Group (PG):

Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Component(s) listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

HaloKlear: DBP-2100 Page Number: 6 of 6

CHEMICAL NAME	TPQ	RQ
Not applicable	Not applicable	Not applicable

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	YES	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager

Date: 9/27/2011 Revision: 00

Material Safety Data Sheet

HaloKlear: Gel-Floc

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name:

HaloSource, Inc.

Corporate Address:

1631 220th St. SE, Suite 100, Bothell, WA 98021 (425) 881-6464 (Monday-Friday, 8AM-5PM PDT)

Manufacturer's Telephone: Emergency Telephone (24 Hours):

800-424-9300 CHEMTREC (Domestic, North America)

703-527-3887 CHEMTREC (International, collect calls accepted)

Material/Trade/Product Name:

HaloKlear: Gel-Floc MB

Synonyms: Chemical Name:

Chitosan Lactate
Chitosan, 2-hydroxypropanoate (salt)

Chemical Formula:

Not available 66267-50-3

CAS No.: Product Use:

Flocculates soil contamination in storm water.

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	HAZARDOUS INGREDIENT (S)	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	85 – 95	YES
Trade Secret	Trade Secret	15 – 5	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

A fine, off-white powder with no odor.

This material/product may cause eye or skin irritation.

POTENTIAL HEALTH EFFECTS

EYE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision.

SKIN: Possible skin irritation or rash.

INHALATION: May aggravate pre-existing respiratory conditions or allergies. It may accumulate on linings of the nose and lungs resulting in dryness & coughing.

INGESTION: While it is not likely to be hazardous by ingestion, it may start dissolving and form a film on mucous membranes.

HaloKlear: Gel-Floc Page Number: 2 of 6

CHRONIC EXPOSURE/CARCINOGENICITY: Not known.

SIGNS AND SYMPTOMS OF OVEREXPOSURE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision. Skin irritation. It may accumulate on linings of the nose and lungs resulting in dryness & coughing. May start dissolving and form a film on mucous membranes.

AGGRAVATION OF PRE-EXISTING CONDITIONS: May aggravate pre-existing respiratory conditions or allergies.

<u>POTENTIAL ENVIRONMENTAL EFFECTS</u>: Avoid water if material is spilled; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (when applicable) and flush eyes with water for 15 minutes. Get medical attention if irritation persists.

SKIN CONTACT: Wash with soap and water. Get medical attention if irritation develops or persists.

INHALATION: If exposed to excessive levels of dust, remove to fresh air and get medical attention if cough or other symptoms develop.

INGESTION: Never give anything by mouth to an unconscious person. If swallowed, do not induce vomiting. Give large quantities of water. If available give several glasses of milk. Call a physician or poison control center immediately.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not available

UPPER FLAMMABLE LIMIT: Not available

FLAMMABLITY CLASS (OSHA): Not applicable

AUTOIGNITION TEMPERATURE: Not available **LOWER FLAMMABLE LIMIT:** Not available

FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Keep away from oxidizing agents and avoid open flames. Product may ignite at temperatures in excess of 400°F. Depending on moisture content and particle size, airborne dust of Chitosan lactate might explode in the presence of an ignition source. It is comparable to flour and wood dust.

HAZARDOUS COMBUSTION PRODUCTS: None known

EXTINGUISHING MEDIA: Water spray, CO₂ (carbon dioxide), foam or dry chemical.

PROTECTION OF FIREFIGHTERS: Do not enter confined fire space without full bunker gear (helmet with face shield, bunker coat, gloves and rubber boots), including a positive pressure NIOSH approved self-contained breathing apparatus. Water may be used to keep fire-exposed containers cool until fire is out.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

HaloKlear: Gel-Floc Page Number: 3 of 6

ENVIRONMENTAL PRECAUTIONS: AVOID WATER; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

METHODS FOR CLEANING UP: The material may be vacuumed or collected for recovery or disposal.

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Use with adequate ventilation.

FIRE PREVENTION: No special requirements.

SPECIAL HANDLING REQUIREMENTS: None.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: Keep container closed when not in use.

STORAGE ROOM RECOMMENDATIONS: Store in cool, dry areas and away from incompatible substances.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry areas and away from incompatible substances.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: No special ventilation is required. None required under normal conditions of use.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: For operations where eye contact can occur, wear safety glasses.

SKIN PROTECTION: For operations where skin contact can occur, wear impervious rubber or neoprene apron.

HAND PROTECTION: For operations where hand contact can occur, wear impervious rubber or neoprene gloves.

RESPIRATORY PROTECTION: If dust is generated, a dust mask may be needed. A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS							
INGREDIENT	EDIENT OSHA WISHA ACGIH (TLV)						
CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL	

HaloKlear: Gel-Floc Page Number: 4 of 6

Not Applicable	Not	Not	Not	Not	Not	Not
Not Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off-white.

SHAPE: Fine powder.

PHYSICAL FORM: Fine powder.

ODOR: None

pH: Not available

VAPOR PRESSURE: Not available BOILING POINT: Not available

VAPOR DENSITY: Not available MELTING POINT: Not available

FREEZING POINT: Not available

SOLUBILITY IN WATER: Soluble

SPECIFIC GRAVITY OR DENSITY: Not available

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable.

CONDITIONS TO AVOID: None known.

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS: None known.

HAZARDOUS POLYMERIZATION: Not known.

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (mice): >10g/kg

DERMAL LD₅₀ (rabbit): Not available.

SKIN IRRITATION: Not available.

EYE IRRITATION: Not available.

SKIN SENSITIZATION: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 12: ECOLOGICAL INFORMATION

ECOTOXICITY (in water):

Acute Toxicity

- Daphnia: LC50 135 mg/L
- Daphnia: LC25 Not Calculable
- Fathead Minnows: LC50 22.8 mg/L
- Fathead Minnows: LC25 16.9 mg/L

HaloKlear: Gel-Floc Page Number: 5 of 6

Rainbow Trout: LC50 – 6.4 mg/L
 Rainbow Trout: LC25 – 4.4 mg/L

Chronic Toxicity

Rainbow Trout: LC50 (survival) – 5.3 mg/L, 7 days

- Rainbow Trout: LC25 (survival) 4.8 mg/L, 7 days
- Rainbow Trout: EC25 (biomass) 3.5 mg/L, 7 days
- Fathead Minnows: LC50 (survival) 25.4 mg/L, 7 days
- Fathead Minnows: LC25 (survival) Not Calculable
- Fathead Minnows: EC25 (biomass) 13.9 mg/L, 7 days

MOBILITY: Not available.

PERSISTENCE AND DEGRADABILITY: Not available.

BIOACCUMULATIVE POTENTIAL: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:

Not Regulated

Hazard Class:

Not Regulated

Identification Number (UN Number):

Not Regulated

Packing Group (PG):

Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

CHEMICAL NAME	TPQ	RQ

HaloKlear: Gel-Floc Page Number: 6 of 6

|--|

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	NO	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

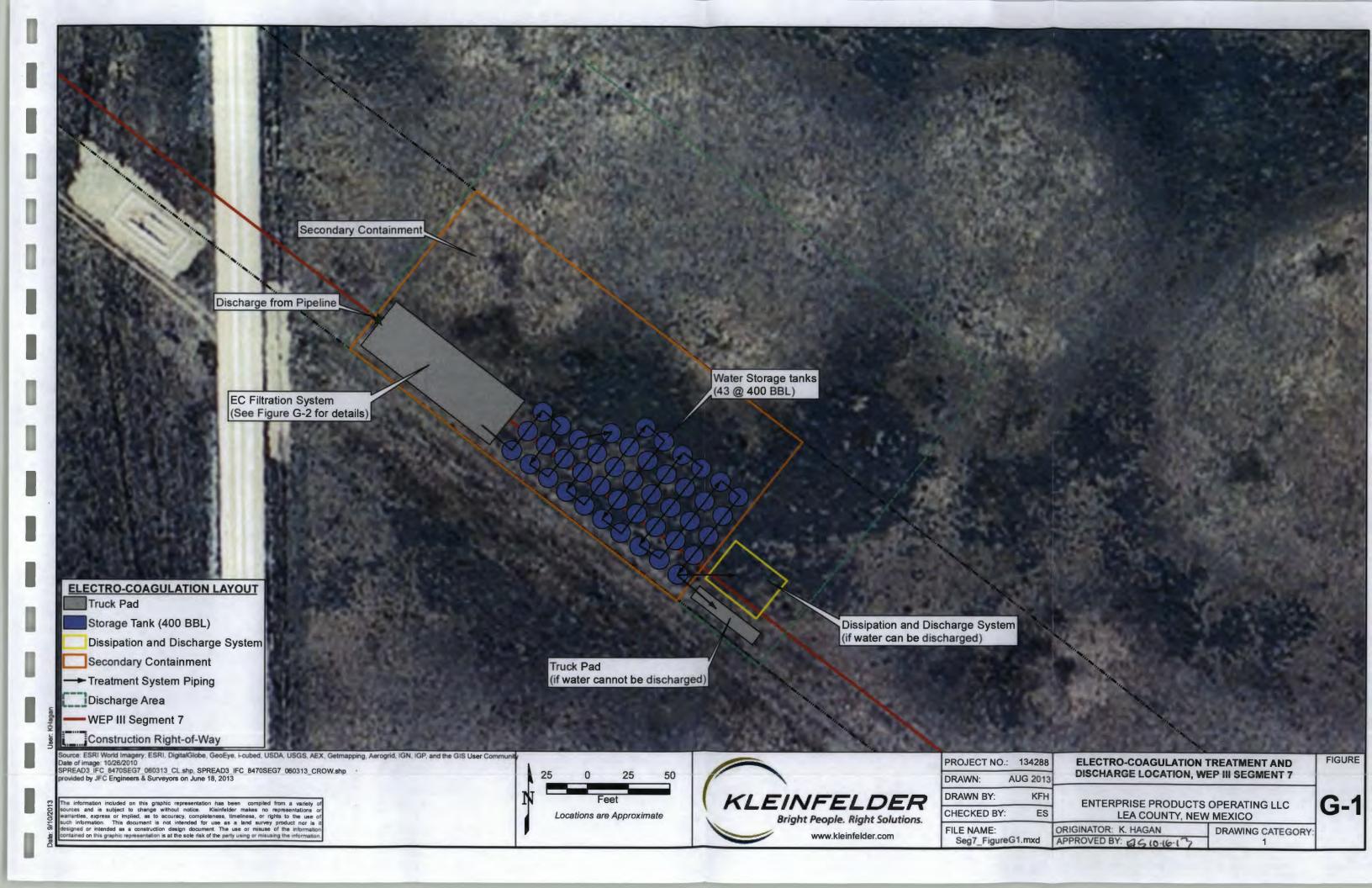
CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

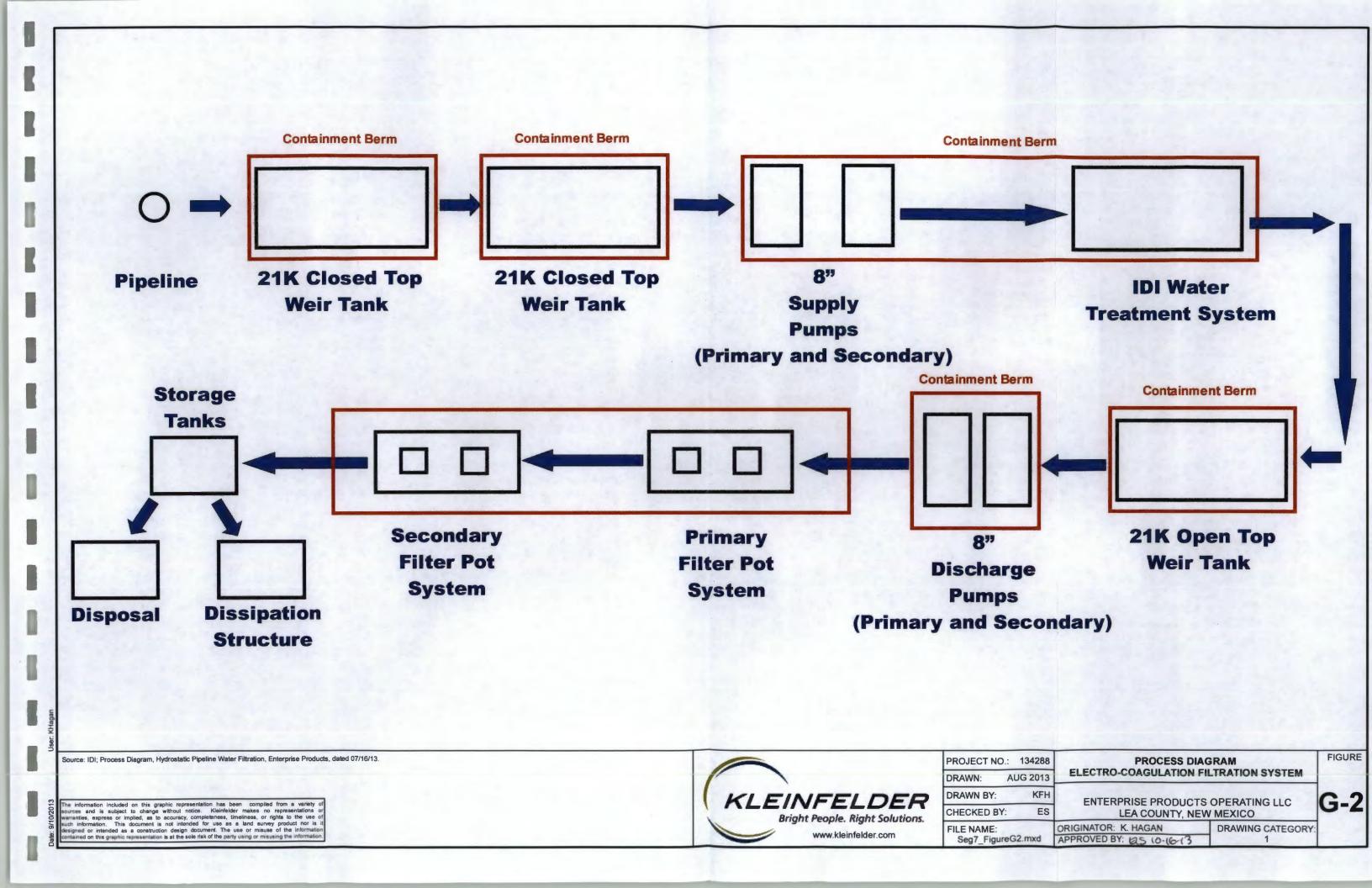
CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:


MSDS sections(s) changed since last revision of document:


None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager

APPENDIX H Powell Wells Analytical Data

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 22, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505 TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling OrderNo.: 1306307

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 1 sample(s) on 6/7/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1306307

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Powell Well #1

Project: Enterprise WEP III Water Sampling **Collection Date:** 6/6/2013 9:15:00 AM

Lab ID: 1306307-001 Matrix: AQUEOUS Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analys	: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	6/11/2013 6:02:47 PM	7866
EPA METHOD 8082: PCB'S					Analys	: SCC
Aroclor 1016	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1221	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1232	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1242	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1248	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1254	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Aroclor 1260	ND	1.0	μg/L	1	6/19/2013 6:44:47 PM	7871
Surr: Decachlorobiphenyl	113	23.9-124	%REC	1	6/19/2013 6:44:47 PM	7871
Surr: Tetrachloro-m-xylene	84.8	28.1-139	%REC	1	6/19/2013 6:44:47 PM	7871
EPA METHOD 8310: PAHS					Analys	: SCC
Naphthalene	ND	2.0	μg/L	1	6/21/2013 11:51:46 AM	1 7872
1-Methylnaphthalene	ND	2.0	μg/L	1	6/21/2013 11:51:46 AM	1 7872
2-Methylnaphthalene	ND	2.0	μg/L	1	6/21/2013 11:51:46 AM	7872
Acenaphthylene	ND	2.5	μg/L	1	6/21/2013 11:51:46 AM	7872
Acenaphthene	ND	5.0	μg/L	1	6/21/2013 11:51:46 AM	7872
Fluorene	ND	0.80	μg/L	1	6/21/2013 11:51:46 AM	7872
Phenanthrene	ND	0.60	μg/L	1	6/21/2013 11:51:46 AM	1 7872
Anthracene	ND	0.60	μg/L	1	6/21/2013 11:51:46 AM	1 7872
Fluoranthene	ND	0.30	μg/L	1	6/21/2013 11:51:46 AM	1 7872
Pyrene	ND	0.30	μg/L	1	6/21/2013 11:51:46 AM	1 7872
Benz(a)anthracene	ND	0.070	μg/L	1	6/21/2013 11:51:46 AM	1 7872
Chrysene	ND	0.20	μg/L	1	6/21/2013 11:51:46 AM	7872
Benzo(b)fluoranthene	ND	0.10	μg/L	1	6/21/2013 11:51:46 AM	7872
Benzo(k)fluoranthene	ND	0.070	μg/L	1	6/21/2013 11:51:46 AM	7872
Benzo(a)pyrene	ND	0.070	µg/L	1	6/21/2013 11:51:46 AM	7872
Dibenz(a,h)anthracene	ND	0.12	µg/L	1	6/21/2013 11:51:46 AM	
Benzo(g,h,i)perylene	ND	0.12	μg/L	1	6/21/2013 11:51:46 AM	7872
Indeno(1,2,3-cd)pyrene	ND	0.080	μg/L	1	6/21/2013 11:51:46 AN	
Surr: Benzo(e)pyrene	75.0	43.2-113	%REC	1	6/21/2013 11:51:46 AN	1 7872
EPA METHOD 300.0: ANIONS					Analys	t: JRR
Fluoride	1.1	0.10	mg/L	1	6/7/2013 4:56:52 PM	R1118
Chloride	34	10	mg/L	20	6/7/2013 5:34:06 PM	R1118
Nitrogen, Nitrate (As N)	4.5	0.10	mg/L	1	6/7/2013 4:56:52 PM	R1118
Sulfate	83	10	mg/L	20	6/7/2013 5:34:06 PM	R1118
EPA METHOD 200.7: DISSOLVED M	ETALS				Analys	t: JLF
Aluminum	ND	0.020	mg/L	1	6/10/2013 6:11:22 PM	R1120

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit D.
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1306307

Received Date: 6/7/2013 9:34:00 AM

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions Client Sample ID: Powell Well #1

Enterprise WEP III Water Sampling **Collection Date:** 6/6/2013 9:15:00 AM Project: Matrix: AQUEOUS

Analyses	Result	RL Qu	al Units	DF D	ate Analyzed	Batch
EPA METHOD 200.7: DISSOLVED I	METALS				Analyst	: JLF
Barium	0.057	0.0020	mg/L	1 6	6/10/2013 6:11:22 PM	R11208
Boron	0.14	0.040	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Cadmium	ND	0.0020	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Chromium	ND	0.0060	mg/L	1 6	6/10/2013 6:11:22 PM	R11208
Cobalt	ND	0.0060	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Copper	ND	0.0060	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Iron	ND	0.020	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Lead	ND	0.0050	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Manganese	ND	0.0020	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Molybdenum	ND	0.0080	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Nickel	ND	0.010	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Silver	ND	0.0050	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
Zinc	0.022	0.010	mg/L	1 6	5/10/2013 6:11:22 PM	R11208
EPA 200.8: DISSOLVED METALS					Analyst	DBD
Arsenic	0.0080	0.0010	mg/L	1 6	5/26/2013 3:57:08 PM	R11577
Selenium	0.0050	0.0010	mg/L	1 6	5/26/2013 3:57:08 PM	R11577
Uranium	0.0030	0.0010	mg/L	1 6	5/26/2013 3:57:08 PM	R11577
EPA METHOD 245.1: MERCURY					Analyst	: IDC
Mercury	ND	0.00020	mg/L	1 6	6/18/2013 11:31:32 AM	7958
EPA METHOD 8260B: VOLATILES	}				Analyst	: cws
Benzene	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
Toluene	ND	1.0	μg/L	1 6	5/8/2013 9:28:27 AM	R11159
Ethylbenzene	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
Naphthalene	ND	2.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
1-Methylnaphthalene	ND	4.0	μg/L	1 6	5/8/2013 9:28:27 AM	R11159
2-Methylnaphthalene	ND	4.0	μg/L	1 6	6/8/2013 9:28:27 AM	R11159
Acetone	ND	10	μg/L	1 (5/8/2013 9:28:27 AM	R11159
Bromobenzene	ND	1.0	μg/L	1 6	5/8/2013 9:28:27 AM	R11159
Bromodichloromethane	ND	1.0	μg/L	1 6	5/8/2013 9:28:27 AM	R11159
Bromoform	ND	1.0	μg/L		5/8/2013 9:28:27 AM	R11159
Bromomethane	ND	3.0	μg/L	1 (6/8/2013 9:28:27 AM	R11159
2-Butanone	ND	10	μg/L	1 (6/8/2013 9:28:27 AM	R11159
Carbon disulfide	ND	10	μg/L		6/8/2013 9:28:27 A M	R11159
Carbon Tetrachloride	ND	1.0	μg/L	1 (6/8/2013 9:28:27 AM	R11159

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1306307-001

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - Page 2 of 24
- Sample pH greater than 2 for VOA and TOC only. Р
- Reporting Detection Limit

Lab Order 1306307

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Powell Well #1

Project: Enterprise WEP III Water Sampling

Collection Date: 6/6/2013 9:15:00 AM

Lab ID: 1306307-001

Matrix: AQUEOUS Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CWS
Chlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
Chloroethane	ND	2.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
Chloroform	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
Chloromethane	ND	3.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
2-Chlorotoluene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
4-Chlorotoluene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
cis-1,2-DCE	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
Dibromochloromethane	ND	1.0	µg/L	1	6/8/2013 9:28:27 AM	R1115
Dibromomethane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
1,2-Dichlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
1,3-Dichlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,4-Dichlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
Dichlorodifluoromethane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,1-Dichloroethane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,1-Dichloroethene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,2-Dichloropropane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
1,3-Dichloropropane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
2,2-Dichloropropane	ND	2.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,1-Dichloropropene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
Hexachlorobutadiene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
2-Hexanone	ND	10	μg/L	1	6/8/2013 9:28:27 AM	R111
Isopropylbenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
4-Isopropyltoluene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
4-Methyl-2-pentanone	ND	10	μg/L	1	6/8/2013 9:28:27 AM	R111
Methylene Chloride	ND	3.0	μg/L	1	6/8/2013 9:28:27 AM	R111
n-Butylbenzene	ND	3.0	μg/L	1	6/8/2013 9:28:27 AM	R111
n-Propylbenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
sec-Butylbenzene	ND	1.0	µg/L	1	6/8/2013 9:28:27 AM	R111
Styrene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
tert-Butylbenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	6/8/2013 9:28:27 AM	R111
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
trans-1,2-DCE	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R111
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	6/8/2013 9:28:27 AM	R111
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115
1,1,1-Trichloroethane	ND	1.0	μg/L	1	6/8/2013 9:28:27 AM	R1115

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- NO NAME OF THE PROPERTY OF THE
 - ND Not Detected at the Reporting Limit Page 3 of 24 P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1306307

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Powell Well #1

Project: Enterprise WEP III Water Sampling Collection Date: 6/6/2013 9:15:00 AM

1306307-001 Lab ID:

Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst: CW			
1,1,2-Trichloroethane	ND	1.0		μg/L	1	6/8/2013 9:28:27 AM	R11159	
Trichloroethene (TCE)	ND	1.0		µg/L	1	6/8/2013 9:28:27 AM	R11159	
Trichlorofluoromethane	ND	1.0		μg/L	1	6/8/2013 9:28:27 AM	R11159	
1,2,3-Trichloropropane	ND	2.0		μg/L	1	6/8/2013 9:28:27 AM	R11159	
Vinyl chloride	ND	1.0		μg/L	1	6/8/2013 9:28:27 AM	R11159	
Xylenes, Total	ND	1.5		μg/L	1	6/8/2013 9:28:27 AM	R11159	
Surr: 1,2-Dichloroethane-d4	99.3	70-130		%REC	1	6/8/2013 9:28:27 AM	R11159	
Surr: 4-Bromofluorobenzene	94.5	69.5-130		%REC	1	6/8/2013 9:28:27 AM	R11159	
Surr: Dibromofluoromethane	101	70-130		%REC	1	6/8/2013 9:28:27 AM	R11159	
Surr: Toluene-d8	99.0	70-130		%REC	1	6/8/2013 9:28:27 AM	R11159	
TOTAL PHENOLICS BY SW-846 9067						Analys	t: SCC	
Phenolics, Total Recoverable	ND	2.5		μg/L	1	6/13/2013	7895	
SM4500-H+B: PH					Analyst: JML			
pH	7.74	1.68	Н	pH units	1	6/7/2013 5:39:31 PM	R11179	
SM2540C MOD: TOTAL DISSOLVED S					Analys	t: KS		
Total Dissolved Solids	435	20.0		mg/L	1	6/12/2013 6:12:00 PM	7859	

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 24 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130611042

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109**

Project Name:

1306307

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

130611042-001

Sampling Date

6/6/2013

Date/Time Received 6/11/2013 12:10 PM

Client Sample ID

1306307-0011 / POWELL WELL #1

Sampling Time 9:15 AM

Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifler
Cyanide	ND	mg/L	0.01	6/17/2013	CRW	EPA 335,4	

Authorized Signature

MCL

EPA's Maximum Contaminant Level

ND **PQL** Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project:

1306307

Pace Project No.:

3096381

Sample: 1306307-001H Powell Well

Lab ID: 3096381001

Collected: 06/06/13 09:15 Received: 06/11/13 09:15 Matrix: Water

FVVO.	Oile ib.	Campie Type.				
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.738 ± 0.586 (0.762)	pCi/L	06/18/13 12:26	13982-63-3	
Radium-228	EPA 904.0	0.355 ± 0.289 (0.573)	pCi/L	06/19/13 11:49	15262-20-1	

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL DATA

Project:

1306307

Pace Project No.:

3096381

QC Batch:

RADC/16132

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

3096381001

METHOD BLANK: 594497

Matrix: Water

Associated Lab Samples:

3096381001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-228

 $0.309 \pm 0.287 \quad (0.587)$

pCl/L

06/19/13 11:47

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:

1306307

Pace Project No.:

3096381

QC Batch:

RADC/16119

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

METHOD BLANK: 593760

Parameter

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

3096381001

3096381001

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-226

 $-0.206 \pm 0.462 \quad (0.980)$

pCi/L

06/18/13 11:04

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Tall Environmental Analysis Laboratory, Inc.

WO#: 1306307

22-Jul-13

Client: HRL Compliance Solutions

roject: Enterprise WEP III Water Sampling

Sample ID	1306305-001IMS	Samp	Type: MS	3	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID:	BatchQC	Bato	h ID: R1	1208	R	tunNo: 1	1208				
rep Date:		Analysis	Date: 6/	10/2013	S	eqNo: 3	16871	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
n		0.51	0.020	0.5000	0	102	70	130		•	
anganese		0.52	0.0020	0.5000	0.01757	100	70	130			

Sample ID 1306305-001IMSD TestCode: EPA Method 200.7: Dissolved Metals SampType: MSD Client ID: **BatchQC** Batch ID: R11208 RunNo: 11208 Prep Date: Analysis Date: 6/10/2013 SeqNo: 316872 Units: mg/L PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual \nalyte Result SPK value SPK Ref Val 0.51 0.020 0.5000 102 70 130 0.189 20 99.7 70 130 0.649 20 0.52 0.0020 0.5000 0.01757 Manganese

Sample ID MB SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

| Client ID: PBW Batch ID: R11208 RunNo: 11208

Prep Date: Analysis Date: 6/10/2013 SeqNo: 316891 Units: mg/L

%RPD **RPDLimit** \nalyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit Qual ND 0.020 Aluminum ND 0.0020 arium ND 0.040 oron Cadmium ND 0.0020 Chromium ND 0.0060 0.0060 obalt ND ND 0.0060 opper Iron ND 0.020 ND 0.0050 ead anganese ND 0.0020 0.0080 ND Molybdenum \'ickel ND 0.010 ilver ND 0.0050 ND 0.010 /inc

Sample ID LCS	Samp	Type: LC	s	TestCode: EPA Method 200.7: Dissolved Metals								
Client ID: LCSW	Bato	th ID: R1	1208	F	lunNo: 1							
Prep Date:	Analysis I	Date: 6 /	10/2013	S	SeqNo: 316892			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Äluminum	0.55	0.020	0.5000	0	111	85	115					
Barium	0.49	0.0020	0.5000	0	97.5	85	115					
oron	0.49	0.040	0.5000	0	97.3	85	115					
_admium	0.49	0.0020	0.5000	0	98.4	85	115					
Chromium	0.51	0.0060	0.5000	0	102	85	115					

Jualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 5 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#: 1

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID LCS	Samp	Type: LC	s	Tes	TestCode: EPA Method 200.7: Dissolved Metals							
Client ID: LCSW	Bato	th ID: R1	1208	F	RunNo: 1	1208						
rep Date:	Analysis Date: 6/10/2013			\$	SeqNo: 3	16892	Units: mg/L	-				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
obalt	0.48	0.0060	0.5000	0	96.4	85	115					
_ opper	0.48	0.0060	0.5000	0	97.0	85	115					
Iron	0.50	0.020	0.5000	0	100	85	115					
ad	0.49	0.0050	0.5000	0	98.1	85	115					
anganese	0.51	0.0020	0.5000	0	101	85	115					
Molybdenum	0.49	0.0080	0.5000	0	97.8	85	115					
Nickel	0.50	0.010	0.5000	0	100	85	115					
iver	0.10	0.0050	0.1000	0	103	85	115					
∠inc	0.48	0.010	0.5000	0	96.4	85	115					

Jualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 24

Hall Environmental Analysis Laboratory, Inc.

ND

ND

0.0010

0.0010

WO#: 1306307

22-Jul-13

HRL Compliance Solutions Client:

Enterprise WEP III Water Sampling 'roject:

Sample ID LCS	SampType: LCS	TestCode: EPA 200.8: Dissolved Metals
Client ID: LCSW	Batch ID: R11577	RunNo: 11577
Prep Date:	Analysis Date: 6/26/2013	SeqNo: 328123 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
rsenic	0.025 0.0010 0.02500	0 98.0 85 115
Lelenium	0.024 0.0010 0.02500	0 97.4 85 115
Jranium	0.025 0.0010 0.02500	0 98.7 85 115
Sample ID LCS	SampType: LCS	TestCode: EPA 200.8: Dissolved Metals
Client ID: LCSW	Batch ID: R11577	RunNo: 11577
Prep Date:	Analysis Date: 6/26/2013	SeqNo: 328124 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Arsenic	0.025 0.0010 0.02500	0 99.7 85 115
elenium	0.025 0.0010 0.02500	0 99.6 85 115
ranium	0.026 0.0010 0.02500	0 103 85 115
Sample ID MB	SampType: MBLK	TestCode: EPA 200.8: Dissolved Metals
Client ID: PBW	Batch ID: R11577	RunNo: 11577
Prep Date:	Analysis Date: 6/26/2013	SeqNo: 328125 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
rsenic	ND 0.0010	

Sample ID MB	Samp	SampType: MBLK			tCode: El	PA 200.8:	Dissolved Me	tals					
Client ID: PBW	Bato	h ID: R1	1577	RunNo: 11577									
Prep Date:	Analysis I	Analysis Date: 6/26/2013			SeqNo: 328126			Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
\rsenic	ND	0.0010											
Selenium	ND	0.0010											
Jranium	ND	0.0010											

Sample ID	1306586-002AMS	Samp	Type: MS	3	Tes	tCode: El	PA 200.8:	Dissolved Me	tals		
Client ID:	BatchQC	Bato	h ID: R1	1577	F	RunNo: 1	1577				
Prep Date:		Analysis I	Date: 6/	26/2013		SeqNo: 3	29350	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.027	0.0010	0.02500	0.0003280	105	70	130			
Selenium		0.030	0.0010	0.02500	0.001294	114	70	130			

Qualifiers:

Selenium

Uranium

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 7 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:	Enterprise	npliance S e WEP III	Water S	Sampling							
Sample ID	1306587-006AMS	Samp	Type: MS		Tes	tCode: El	PA 200.8: [Dissolved Me	tals		
lient ID:	BatchQC	Bato	h ID: R1	1577	F	RunNo: 1	1577				
rep Date:		Analysis I	Date: 6/	26/2013	S	SeqNo: 3	29354	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
senic		0.024	0.0010	0.02500	0.003941	82.1	70	130			
Sample ID	1306587-006AMS) Samp	Type: MS	iD.	Tes	tCode: El	PA 200.8: [Dissolved Me	tals		
lient ID:	BatchQC	Bato	h ID: R1	1577	F	lunNo: 1	1577				
'rep Date:		Analysis I	Date: 6/	26/2013	S	SeqNo: 3	29355	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
senic		0.024	0.0010	0.02500	0.003941	80.7	70	130	1.41	20	
Sample ID	1306597-001EMS	Samp	Type: MS		Tes	Code: El	PA 200.8: [Dissolved Me	tals		
lient ID:	BatchQC	Bato	h ID: R1	1577	F	RunNo: 1	1577				
'rep Date:		Analysis I	Date: 6/	26/2013	S	SeqNo: 3	29369	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
senic		0.029	0.0010	0.02500	0.002526	106	70	130			
∍lenium		0.044	0.0010	0.02500	0.01861	100	70	130			
Sample ID	1306597-001EMS	Samp	Type: MS	D	Tes	tCode: El	PA 200.8: [Dissolved Me	tals		
Client ID:	BatchQC	Bato	ch ID: R1	1577	F	RunNo: 1	1577				
lient ID: Prep Date:		Bato Analysis				RunNo: 1 SeqNo: 3		Units: mg/L			
				26/2013				Units: mg/L	%RPD	RPDLimit	Qual
Prep Date:		Analysis Result 0.029	PQL 0.0010	26/2013	S	%REC 105	29370 LowLimit 70	•	%RPD 1.55	20	Qual
Prep Date: nalyte senic		Analysis Result	Date: 6/	26/2013 SPK value	SPK Ref Val	SeqNo: 3	29370 LowLimit	HighLimit	%RPD		Qual
Prep Date: nalyte senic Selenium		Result 0.029 0.042	PQL 0.0010	26/2013 SPK value 0.02500 0.02500	SPK Ref Val 0.002526 0.01861	%REC 105 95.3	29370 LowLimit 70 70	HighLimit	%RPD 1.55 2.71	20	Qual
Prep Date: nalyte senic Selenium Sample ID		Result 0.029 0.042 Samp	PQL 0.0010 0.0010	26/2013 SPK value 0.02500 0.02500	SPK Ref Val 0.002526 0.01861	%REC 105 95.3	29370 LowLimit 70 70 PA 200.8: [HighLimit 130 130	%RPD 1.55 2.71	20	Qual
Prep Date: nalyte senic Selenium Sample ID	1306710-004AMS BatchQC	Result 0.029 0.042 Samp	PQL 0.0010 0.0010 Type: MS	26/2013 SPK value 0.02500 0.02500	SPK Ref Val 0.002526 0.01861 Tes	%REC 105 95.3 tCode: El	29370 LowLimit 70 70 PA 200.8: [HighLimit 130 130	%RPD 1.55 2.71 tals	20	Qual
Prep Date: nalyte senic Selenium Sample ID Client ID:	1306710-004AMS BatchQC	Result 0.029 0.042 Samp	PQL 0.0010 0.0010 Type: MS ch ID: R1	26/2013 SPK value 0.02500 0.02500 3.1577 26/2013	SPK Ref Val 0.002526 0.01861 Tes	%REC 105 95.3 tCode: El RunNo: 1	29370 LowLimit 70 70 PA 200.8: [1577 29377	HighLimit 130 130 Dissolved Me	%RPD 1.55 2.71 tals	20	Qual
Prep Date: nalyte senic Selenium Sample ID Client ID: Prep Date:	1306710-004AMS BatchQC	Result 0.029 0.042 Samp Batc	PQL 0.0010 0.0010 Type: MS ch ID: R1	26/2013 SPK value 0.02500 0.02500 3. 1577 26/2013 SPK value	SPK Ref Val 0.002526 0.01861 Tes	%REC 105 95.3 tCode: El RunNo: 1	29370 LowLimit 70 70 PA 200.8: [1577 29377	HighLimit 130 130 Dissolved Me Units: mg/L	%RPD 1.55 2.71 tals	20 20	
Prep Date: \text{vnalyte} \text{senic} Selenium Sample ID Client ID: Prep Date: \text{vnalyte}	1306710-004AMS BatchQC	Result 0.029 0.042 Samp Bato Analysis Result 0.027	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/	26/2013 SPK value 0.02500 0.02500 3. 1577 26/2013 SPK value 0.02500	SPK Ref Val 0.002526 0.01861 Tes F SPK Ref Val 0.003581	ReqNo: 3: **REC 105 95.3 **Code: El RunNo: 1* **GeqNo: 3: **REC 92.3	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70	HighLimit 130 130 Dissolved Me Units: mg/L HighLimit	%RPD 1.55 2.71 tals	20 20	
Prep Date: unalyte senic Selenium Sample ID: Prep Date: Analyte Arsenic Sample ID	1306710-004AMS BatchQC	Result 0.029 0.042 Samp Batc Analysis Result 0.027	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/ PQL 0.0010	26/2013 SPK value 0.02500 0.02500 3.1577 26/2013 SPK value 0.02500 S	SPK Ref Val 0.002526 0.01861 Tes SPK Ref Val 0.003581	ReqNo: 3: **REC 105 95.3 **Code: El RunNo: 1* **GeqNo: 3: **REC 92.3	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70 PA 200.8: [HighLimit 130 130 Dissolved Me Units: mg/L HighLimit 130	%RPD 1.55 2.71 tals	20 20	
Prep Date: \text{vnalyte} \text{senic} \text{Selenium} \text{Sample ID} \text{Client ID:} \text{"rep Date:} \text{vnalyte} \text{vsenic} \text{Sample ID} \text{Client ID:}	1306710-004AMS BatchQC LCS LCSW	Result 0.029 0.042 Samp Batc Analysis Result 0.027	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/ PQL 0.0010 Type: LC	26/2013 SPK value 0.02500 0.02500 3 1577 26/2013 SPK value 0.02500 S 1577	SPK Ref Val 0.002526 0.01861 Tes SPK Ref Val 0.003581	%REC 105 95.3 tCode: El RunNo: 1 SeqNo: 3 %REC 92.3	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70 PA 200.8: [1577	HighLimit 130 130 Dissolved Me Units: mg/L HighLimit 130	%RPD 1.55 2.71 tals %RPD	20 20	
Prep Date: \text{vnalyte} \text{senic} \text{Selenium} \text{Sample ID} \text{Client ID:} \text{Prep Date:} \text{Analyte} \text{Arsenic} \text{Sample ID} \text{Client ID:}	1306710-004AMS BatchQC LCS LCSW	Result 0.029 0.042 Samp Batc Analysis Result 0.027 Samp Batc	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/ PQL 0.0010 Type: LC	26/2013 SPK value 0.02500 0.02500 3 1577 26/2013 SPK value 0.02500 S 1577 26/2013	SPK Ref Val 0.002526 0.01861 Tes SPK Ref Val 0.003581	REC 105 95.3 COde: El RunNo: 1 ReqNo: 3 REC 92.3 COde: El RunNo: 1	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70 PA 200.8: [1577	HighLimit 130 130 Dissolved Me Units: mg/L HighLimit 130 Dissolved Me	%RPD 1.55 2.71 tals %RPD	20 20	
Prep Date: \text{vnalyte} \text{senic} Selenium Sample ID: Prep Date: \text{vnalyte} \text{Analyte} Client ID: Prep Date: Prep Date:	1306710-004AMS BatchQC LCS LCSW	Result 0.029 0.042 Samp Batc Analysis Result 0.027 Samp Batc Analysis	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/ PQL 0.0010 Type: LC ch ID: R1 Date: 6/	26/2013 SPK value 0.02500 0.02500 3 1577 26/2013 SPK value 0.02500 S 1577 26/2013	SPK Ref Val 0.002526 0.01861 Tes SPK Ref Val 0.003581	REC 105 95.3 CCode: El RunNo: 1 SeqNo: 3 %REC 92.3 CCode: El RunNo: 1 SeqNo: 3 %REC 96.9	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70 PA 200.8: [1577 29379	HighLimit 130 130 Dissolved Me Units: mg/L HighLimit 130 Dissolved Me Units: mg/L HighLimit 115	%RPD 1.55 2.71 tals %RPD	20 20 RPDLimit	Qual
Prep Date: \text{vnalyte} \text{senic} Selenium Sample ID: \text{Prep Date:} \text{vnalyte} \text{Analyte} Client ID: \text{Prep Date:} \text{Analyte} \text{Analyte} \text{Analyte} \text{Analyte}	1306710-004AMS BatchQC LCS LCSW	Result 0.029 0.042 Samp Bato Analysis Result 0.027 Samp Bato Analysis Result Result	PQL 0.0010 0.0010 Type: MS ch ID: R1 Date: 6/ PQL 0.0010 Type: LC ch ID: R1 Date: 6/	26/2013 SPK value 0.02500 0.02500 3 1577 26/2013 SPK value 0.02500 S 1577 26/2013 SPK value	SPK Ref Val 0.002526 0.01861 Tes SPK Ref Val 0.003581 Tes SPK Ref Val	REC 105 95.3 COde: El RunNo: 1 SeqNo: 3 COde: El RunNo: 1 CODE: RunNo: 3 %REC	29370 LowLimit 70 70 PA 200.8: [1577 29377 LowLimit 70 PA 200.8: [1577 29379 LowLimit	HighLimit 130 130 Dissolved Me Units: mg/L HighLimit 130 Dissolved Me Units: mg/L HighLimit	%RPD 1.55 2.71 tals %RPD	20 20 RPDLimit	Qual

ualifiers:

- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit RPD outside accepted recovery limits
- Value exceeds Maximum Contaminant Level.
- Н Holding times for preparation or analysis exceeded

Analyte detected in the associated Method Blank

- ND Not Detected at the Reporting Limit
- Page 8 of 24
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

Result

roject:

Enterprise WEP III Water Sampling

Sample ID MB

SampType: MBLK

TestCode: EPA 200.8: Dissolved Metals

Client ID: PBW

Batch ID: R11577

PQL

SPK value SPK Ref Val

RunNo: 11577

rep Date:

%RPD

Analyte

Analysis Date: 6/26/2013

SeqNo: 329380

%REC LowLimit

Units: mg/L HighLimit

RPDLimit

Qual

senic əlenium Uranium

ND 0.0010 ND 0.0010 ND 0.0010

)ualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Page 9 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

Result

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7958

SampType: MBLK

TestCode: EPA Method 245.1: Mercury

LowLimit

lient ID: PBW Batch ID: 7958

RunNo: 11368

%REC

'rep Date: 6/17/2013 Analysis Date: 6/18/2013

SPK value SPK Ref Val

SeqNo: 321212

Units: mg/L

HighLimit

%RPD

RPDLimit Qual

Analyte ercury

ND 0.00020

Sample ID LCS-7958

SampType: LCS

TestCode: EPA Method 245.1: Mercury

Hient ID: LCSW

Batch ID: 7958

RunNo: 11368

rep Date: 6/17/2013 Analysis Date: 6/18/2013

SeqNo: 321213

Units: mg/L HighLimit

120

Analyte ercury

Result **PQL** SPK value SPK Ref Val

0.005000

0.005000

%REC 97.5

LowLimit 80 %RPD **RPDLimit**

Qual

Sample ID 1306581-001BMS

SampType: MS

0.0049 0.00020

Result

0.0045

TestCode: EPA Method 245.1: Mercury

lient ID: **BatchQC** Batch ID: 7958

RunNo: 11368

SeqNo: 321238

Units: mg/L

Analyte

rep Date:

6/17/2013

Analysis Date: 6/18/2013 **PQL** SPK value SPK Ref Val

0.00020

%REC LowLimit

90.4

HighLimit

RPDLimit Qual

ercury

SampType: MSD

TestCode: EPA Method 245.1: Mercury

125

125

Client ID:

Sample ID 1306581-001BMSD **BatchQC**

Batch ID: 7958

RunNo: 11368

rep Date:

6/17/2013

Analysis Date: 6/18/2013

SeqNo: 321239

Units: mg/L HighLimit

RPDLimit Qual

Analyte arcury

SPK value SPK Ref Val **PQL** Result 0.0044 0.00020 0.005000

88.1

0

%REC

LowLimit 75 %RPD

%RPD

2.60

20

ualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits

- В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- RLReporting Detection Limit
- Analyte detected in the associated Method Blank

Sample pH greater than 2 for VOA and TOC only.

- Page 10 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:		WEP III V									
Sample ID I	MB	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID	PBW	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis Da	ate: 6/	7/2013	5	SeqNo: 3	16488	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luoride		ND	0.10								
hloride		ND	0.50								
Vitrogen, N trate	(As N)	ND	0.10								
`ulfate		ND	0.50								
Sample ID I	LCS	SampTy	pe: LC	s	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: I	LCSW	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis Da	ate: 6/	7/2013	\$	SeqNo: 3	16489	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luoride		0.49	0.10	0.5000	0	97.3	90	110			
hloride		4.7	0.50	5.000	0	93.8	90	110			
Nitrogen, N trate	(As N)	2.4	0.10	2.500	0	98.0	90	110			
Sulfate		9.5	0.50	10.00	0	95.3	90	110			
Sample D	1306307-001EMS	SampTy	pe: MS	3	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	Powell Well #1	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis Da	ate: 6/	7/2013	;	SeqNo: 3	16513	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		1.6	0.10	0.5000	1.094	105	76.9	114			
litrogen, Nitrate	(As N)	7.2	0.10	2.500	4.486	109	93	113			
Sample D	1306307-001EMSE) SampTy	/pe: MS	SD.	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	Powell Well #1	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis Da	ate: 6/	7/2013		SeqNo: 3	16514	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luoride		1.6	0.10	0.5000	1.094	105	76.9	114	0.0741	20	
. litrogen, Nitrate	(As N)	7.2	0.10	2.500	4.486	109	93	113	0.173	20	
Sample ID	1306305-001DMS	SampTy	pe: MS	3	Tes	tCode: El	PA Method	300.0: Anions	\$		
Client ID:	BatchQC	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis Da	ate: 6/	7/2013		SeqNo: 3	16517	Units: mg/L			
Analyte	94.0	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luoride		0.90	0.10	0.5000	0.3803	105	76.9	114			
Chloride		12	0.50	5.000	6.816	108	89.9	119			
ulfate		22	0.50	10.00	11.68	104	90.1	116			
unate		22	0.50	10.00	11.00	104	30.1	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 24

'Iall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID 1306305-001DM	SD Sam	Type: MS	SD	Tes						
Client ID: BatchQC	Bat	ch ID: R1	1189	F	RunNo: 1	1189				
'rep Date:	Analysis	Date: 6/	7/2013	8	SeqNo: 3	16518	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
uoride	0.90	0.10	0.5000	0.3803	105	76.9	114	0.0442	20	
nloride	12	0.50	5.000	6.816	108	89.9	119	0.214	20	
ulfate	22	0.50	10.00	11.68	104	90.1	116	0.253	20	

)ualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 12 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

Result

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7866

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID:

PBW

Batch ID: 7866

RunNo: 11217

SeqNo: 317313

Units: µg/L

Analyte

Prep Date: 6/11/2013

Analysis Date: 6/11/2013

SPK value SPK Ref Val %REC LowLimit

HighLimit %RPD

RPDLimit Qual

2-Dibromoethane

PQL 0.010

ND

Sample ID LCS-7866 Client ID: LCSW

SampType: LCS Batch ID: 7866

RunNo: 11217

TestCode: EPA Method 8011/504.1: EDB

Prep Date: 6/11/2013

Analysis Date: 6/11/2013

SeqNo: 317326

98.0

Units: µg/L

130

136

%RPD

Analyte 2-Dibromoethane

Result PQL 0.098 0.010 0.1000

SPK value SPK Ref Val

SPK value SPK Ref Val

SPK value SPK Ref Val

0.01600

0.01600

%REC LowLimit

HighLimit

RPDLimit

Qual

Sample ID 1306394-001BMS **BatchQC**

SampType: MS

Result

0.11

Result

0.12

Batch ID: 7866

TestCode: EPA Method 8011/504.1: EDB

RunNo: 11217

Units: µg/L

Analyte 2-Dibromoethane

Client ID:

orep Date: 6/11/2013

Analysis Date: 6/11/2013 **PQL**

0.010

0.1000

0.1000

%REC

SeqNo: 317412

I owl imit

HighLimit

%RPD **RPDLimit**

Qual

Sample ID 1306394-001BMSD

SampType: MSD

98.0

TestCode: EPA Method 8011/504.1: EDB

Client ID:

2-Dibromoethane

BatchQC

Batch ID: 7866

RunNo: 11217

%REC

101

53

Units: µg/L

Qual

Prep Date: 6/11/2013 Analyte

Analysis Date: 6/11/2013 **PQL**

0.010

SeqNo: 317413

53

LowLimit

HighLimit

136

%RPD 2.60 **RPDLimit** 20

Page 13 of 24

)ualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits I

RSD is greater than RSDlimit 0

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Sample pH greater than 2 for VOA and TOC only.

ND Not Detected at the Reporting Limit

Reporting Detection Limit RL

RPD outside accepted recovery limits

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client: H

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7871	SampTyp	e: MB	LK	Tes	Code: El	PA Method	8082: PCB's			
Client ID: PBW	Batch I	D: 787	'1	R	lunNo: 1	1395				
² rep Date: 6/11/2013	Analysis Dat	te: 6/1	19/2013	S	SeqNo: 322149					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
roclor 1016	ND	1.0								
roclor 1221	ND	1.0								
Aroclor 1232	ND	1.0								
oclor 1242	ND	1.0								
rocior 1248	ND	1.0								
Aroclor 1254	ND	1.0								
^roclor 1260	ND	1.0								
Surr: Decachlorobiphenyl	2.3		2.500		90.8	23.9	124			
Surr: Tetrachloro-m-xylene	2.0		2.500		78.0	28.1	139			
Sample ID LCS-7871	SampTyp	SampType: LCS			TestCode: EPA Method 8082: PCB's					
Client ID: LCSW	Batch I	D. 787	71	F	RunNo: 1	1395				

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-							
Client ID: LCSW	Batch	ID: 78	71	F	RunNo: 1	1395				
Prep Date: 6/11/2013	Analysis D	ate: 6/	19/2013	8	SeqNo: 3	22955	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	5.5	1.0	5.000	0	111	32.3	121			
Aroclor 1260	3.9	1.0	5.000	0	78.6	34	128			
Surr: Decachlorobiphenyl	2.0		2.500		79.6	23.9	124			
Surr: Tetrachloro-m-xylene	1.6		2.500		63.6	28.1	139			

Sample ID LCSD-7871	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: LCSS02	Batch	ID: 78	71	F	RunNo: 1	1395				
Prep Date: 6/11/2013	Analysis D	ate: 6/	19/2013	5	SeqNo: 3	22969	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
roclor 1016	5.4	1.0	5.000	0	108	32.3	121	2.60	29.9	
Aroclor 1260	4.2	1.0	5.000	0	84.7	34	128	7.45	25.9	
Surr: Decachlorobiphenyl	2.1		2.500		84.4	23.9	124	0	0	
Surr: Tetrachloro-m-xylene	1.7		2.500		67.2	28.1	139	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 14 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID 5ml rb	SampT	ype: ME	BLK	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R1	1159	R	unNo: 1	1159				
Prep Date:	Analysis D	ate: 6/	7/2013	S	eqNo: 3	15563	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
enzene	ND	1.0								
. oluene	ND	1.0								
Ethylbenzene	ND	1.0								
'ethyl tert-butyl ether (MTBE)	ND	1.0								
2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1 2-Dichloroethane (EDC)	ND	1.0								
,2-Dibromoethane (EDB)	ND	1.0								
vaphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
-Methylnaphthalene	ND	4.0								
cetone	ND	10								
Bromobenzene	ND	1.0								
romodichloromethane	ND	1.0								
romoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
arbon disulfide	ND	10								
Jarbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
hloroethane	ND	2.0								
hloroform	ND	1.0								
Chloromethane	ND	3.0								
² -Chlorotoluene	ND	1.0								
-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
,2-Dibromo-3-chloropropane	ND	2.0								
ibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
,2-Dichlorobenzene	ND	1.0								
,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
,1-Dichloroethane	ND	1.0								
ر,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
,3-Dichloropropane	ND	1.0								
,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 15 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

'roject:

Enterprise WEP III Water Sampling

Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R1	1159	F	tunNo: 1	1159				
⊃rep Date:	Analysis D	ate: 6/	7/2013	S	eqNo: 3	15563	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
exachlorobutadiene	ND	1.0								
-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
Isopropyltoluene	ND	1.0								
-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
ert-Butylbenzene	ND	1.0								
,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
ans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
,2,4-Trichlorobenzene	ND	1.0								
.,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
richloroethene (TCE)	ND	1.0								
richlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
(ylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.1	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.3	69.5	130			
Surr: Dibromofluoromethane	10		10.00		105	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R1	1159	F	tunNo: 1	1159				
Prep Date:	Analysis D	ate: 6/	7/2013	S	eqNo: 3	15565	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
3enzene	20	1.0	20.00	0	102	70	130			
Toluene	22	1.0	20.00	0	109	80	120			
Chlorobenzene	20	1.0	20.00	0	99.9	70	130			
,1-Dichloroethene	19	1.0	20.00	0	97.2	85.8	133			
Trichloroethene (TCE)	20	1.0	20.00	0	98.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 16 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Client ID: PBW

Enterprise WEP III Water Sampling

Batch ID: R11159

Sample ID 100ng Ics	SampTy	/pe: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R1	1159	F	RunNo: 1	1159				
Prep Date:	Analysis Da	ate: 6/	7/2013	\$	SeqNo: 3	15565	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.0	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		94.1	69.5	130			
Surr: Dibromofluoromethane	9.9		10.00		99.4	70	130			
Surr: Toluene-d8	10		10.00		104	70	130			
Sample ID rb2	SampTy	pe: ME	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		

RunNo: 11159

⊃rep Date:	Analysis D	oate: 6/	7/2013	s	SeqNo: 3	16066	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
enzene	ND	1.0								
oluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
,2,4-Trimethylbenzene	ND	1.0								
,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
,2-Dibromoethane (EDB)	ND	1.0								
^l aphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
^-Methylnaphthalene	ND	4.0								
cetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
romoform	ND	1.0								
_romomethane	ND	3.0								
2-Butanone	ND	10								
`arbon disulfide	ND	10								
arbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
∩hloroethane	ND	2.0								
hloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
-Chlorotoluene	ND	1.0								
is-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
,2-Dibromo-3-chloropropane	ND	2.0								
)ibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 17 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID rb2	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R1	1159	F	RunNo: 1	1159				
rep Date:	Analysis D	ate: 6/	7/2013	S	SeqNo: 3	16066	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Dichlorobenzene	ND	1.0								
,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
chlorodifluoromethane	ND	1.0								
1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1 2-Dichloropropane	ND	1.0								
3-Dichloropropane	ND	1.0								
∠,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
exachlorobutadiene	ND	1.0								
Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
¹ Isopropyltoluene	ND	1.0								
Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
-Propylbenzene	ND	1.0								
್ರಾಂ-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
rt-Butylbenzene	ND	1.0								
,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0							•	
ans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
' '										
,2,4-Trichlorobenzene ,1,1-Trichloroethane	ND ND	1.0								
* *	ND	1.0								
1,1,2-Trichloroethane		1.0								
richloroethene (TCE)	ND	1.0								
richlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
ylenes, Total	ND	1.5			60.0	70	400			
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.2	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		94.0	69.5	130			
Surr: Dibromofluoromethane	9.9		10.00		99.5	70	130			
Surr: Toluene-d8	9.7		10.00		97.3	70	130			

)ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 18 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#: **1306307**

22-Jul-13

Client: HRL Compliance Solutions

'roject: Enterprise WEP III Water Sampling

Sample ID 100ng Ics ii	•	ype: LC			tCode: El	ATILES				
Client ID: LCSW	Batch	1 ID: R1	1159	۲	Run N o: 1	1159				
⊇rep Date: I	Analysis D)ate: 6/	7/2013	S	SeqNo: 3	16068	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
enzene	21	1.0	20.00	0	105	70	130			
. oluene	22	1.0	20.00	0	111	80	120			
Chlorobenzene	21	1.0	20.00	0	103	70	130			
1-Dichloroethene	19	1.0	20.00	0	93.8	85.8	133			
richloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		94.1	69.5	130			
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID 1306277-001a ms	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	1D: R1	1159	F	RunNo: 1	1159				
Prep Date:	Analysis D	ate: 6/	8/2013	8	SeqNo: 3	16071	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
benzene	22	1.0	20.00	0	108	70	130		., ,	
Toluene	22	1.0	20.00	0	109	68.5	128			
hlorobenzene	20	1.0	20.00	0	99.9	70	130			
,1-Dichloroethene	20	1.0	20.00	0	97.9	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	104	61.3	102			S
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	8.8		10.00		88.3	69.5	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			

Sample ID 1306277-001a msc	s SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	ID: R1	1159	F	Run N o: 1	1159				
Prep Date:	Analysis D	ate: 6/	8/2013	S	SeqNo: 3	16072	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	109	70	130	0.751	20	
oluene	21	1.0	20.00	0	103	68.5	128	5.77	20	
Chlorobenzene	19	1.0	20.00	0	97.2	70	130	2.70	20	
1,1-Dichloroethene	20	1.0	20.00	0	102	70	130	3.96	20	
'richloroethene (TCE)	20	1.0	20.00	0	102	61.3	102	1.67	20	S
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	69.5	130	0	0	
Surr: Dibromofluoromethane	11		10.00		106	70	130	0	0	
Surr: Toluene-d8	10		10.00		100	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 19 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7872	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: PBW	Batch	1D: 78	72	F	RunNo: 1	1451				
rep Date: 6/11/2013	Analysis D)ate: 6/	21/2013	S	SeqNo: 3	23659	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
aphthalene	ND	2.0								
. Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
enaphthylene	ND	2.5								
cenaphthene	ND	5.0								
Fluorene	ND	0.80								
Dhenanthrene Dhenanthrene	ND	0.60								
nthracene	ND	0.60								
riuoranthene	ND	0.30								
Pyrene	ND	0.30								
enz(a)anthracene	ND	0.070								
hrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
= enzo(k)fluoranthene	ND	0.070								
enzo(a)pyrene	ND	0.070								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.12								
deno(1,2,3-cd)pyrene	ND	0.080								
Surr: Benzo(e)pyrene	12		20.00		58.3	43.2	113			

Sample ID LCS-7872	SampT	ype: LC	s	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batcl	n ID: 78	72	F	RunNo: 1	1451				
Prep Date: 6/11/2013	Analysis D)ate: 6/	21/2013	S	SeqNo: 3	23663	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
aphthalene	57	2.0	80.00	0	71.6	50.3	86.5			
1-Methylnaphthalene	45	2.0	80.20	0	56.2	50.3	91.6			
-Methylnaphthalene	42	2.0	80.00	0	52.8	48.2	94.9			
cenaphthylene	60	2.5	80.20	0	74.6	53.2	93.7			
Acenaphthene	46	5.0	80.00	0	58.0	51.6	95.9			
⁻ luorene	4.7	0.80	8.020	0	58.1	31.9	97.4			
henanthrene	3.3	0.60	4.020	0	82.8	52.7	90.3			
Anthracene	3.0	0.60	4.020	0	73.4	49.9	88.1			
Fluoranthene	6.4	0.30	8.020	0	79.9	51.4	94.4			
yrene	4.3	0.30	8.020	0	54.1	47.7	89.5			
enz(a)anthracene	0.66	0.070	0.8020	0	82.3	34.2	108			
Chrysene	2.8	0.20	4.020	0	69.4	32.9	96.8			
enzo(b)fluoranthene	0.89	0.10	1.002	0	88.8	55.9	103			
enzo(k)fluoranthene	0.43	0.070	0.5000	0	86.0	57.9	108			
Benzo(a)pyrene	0.43	0.070	0.5020	0	85.7	55.6	107			

)ualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 20 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

	-									
Sample ID LCS-7872	SampT	ype: LC	S	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batch	n ID: 78	72	F	RunNo: 1	1451				
rep Date: 6/11/2013	Analysis D)ate: 6/	21/2013	\$	SeqNo: 3	23663	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
benz(a,h)anthracene	0.76	0.12	1.002	0	75.8	57.9	104			
_ ənzo(g,h,i)perylene	0.76	0.12	1.000	0	76.0	57.2	105			
Indeno(1,2,3-cd)pyrene	1.5	0.080	2.004	0	74.4	53.5	102			
Surr: Benzo(e)pyrene	22		20.00		109	43.2	113			

)ualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

'roject:

Enterprise WEP III Water Sampling

- Enterp	The Water Sampling			
Sample ID MB-7895	SampType: MBLK	TestCode: Total Phenol	ics by SW-846 9067	
Client ID: PBW	Batch ID: 7895	RunNo: 11270		
^o rep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318394	Units: µg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
henolics, Total Recoverable	ND 2.5			
Sample ID LCS-7895	SampType: LCS	TestCode: Total Phenol	ics by SW-846 9067	
Client ID: LCSW	Batch ID: 7895	RunNo: 11270		
Prep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318395	Units: µg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
henolics, Total Recoverable	22 2.5 20.00	0 112 81.1	120	
Sample ID LCSD-7895	SampType: LCSD	TestCode: Total Phenol	ics by SW-846 9067	
Client ID: LCSS02	Batch ID: 7895	RunNo: 11270		
Prep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318409	Units: µg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
henolics, Total Recoverable	21 2.5 20.00	0 103 81.1	120 8.69	20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306307

22-Jul-13

Client:

HRL Compliance Solutions

Result

Result

7.07

'roject:

Enterprise WEP III Water Sampling

Sample ID 1306305-001d dup

Sample ID 1306330-004c dup

SampType: dup

TestCode: SM4500-H+B: pH

Client ID: **BatchQC** Batch ID: R11179

RunNo: 11179

%REC

⊃rep Date:

Analysis Date: 6/7/2013

SeqNo: 316207

Units: pH units

HighLimit

RPDLimit Qual

Analyte Η

7.83

SampType: dup

TestCode: SM4500-H+B: pH

LowLimit

Client ID: **BatchQC** Batch ID: R11179

PQL

1.68

SPK value SPK Ref Val

RunNo: 11179

Units: pH units

Prep Date:

Analysis Date: 6/7/2013

SeqNo: 316217

Analyte

PQL 1.68 SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit**

%RPD

Н

Qual

Н

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

O RSD is greater than RSDlimit

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 23 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1306307

22-Jul-13

Client: **HRL Compliance Solutions**

Enterprise WEP III Water Sampling 'roject:

Sample ID MB-7859 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 7859 RunNo: 11260

Prep Date: 6/11/2013 Analysis Date: 6/12/2013 SeqNo: 318163 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

otal Dissolved Solids ND 20.0

Sample ID LCS-7859 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 7859 RunNo: 11260

Prep Date: 6/11/2013 Analysis Date: 6/12/2013 SeqNo: 318164 Units: mg/L

Result **PQL** SPK value SPK Ref Val %REC LowLimit **HighLimit** %RPD **RPDLimit** Qual Analyte

1030 otal Dissolved Solids 20.0 1000 103

Sample ID 1306305-001DMS SampType: MS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **BatchQC** Batch ID: 7859 RunNo: 11260

Prep Date: 6/11/2013 Analysis Date: 6/12/2013 SeqNo: 318166 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

otal Dissolved Solids 1220 20.0 1000 190.0 103 120

Sample ID 1306305-001DMSD SampType: MSD TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **BatchQC** Batch ID: 7859 RunNo: 11260

Prep Date: 6/11/2013 Analysis Date: 6/12/2013 SeqNo: 318167 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 'otal Dissolved Solids 1220 20.0 1000 190.0 103 80 120 0.328

Qualifiers:

0

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPI	LIANCE SOL Wo	ork Order Number:	1306307		RcptNo:	1
Received by/date: MG	_ alo7/1.	3				
Logged By: Michelle G	arcia 6/7/2	013 9:34:00 AM		Minule Go	un	
Completed By: Michelle G	arcia 6/7/2	013 9:57:30 AM		- Міни Ср - Міни Ср		
Reviewed By:	06	M7/13		' 7		
Chain of Custody	00	My				
1. Custody seals intact on sa	ample bottles?		Yes	No 🗆	Not Present ✓	
2. Is Chain of Custody comp	lete?		Yes 🛂	No 🗆	Not Present	
3. How was the sample deliv	ered?		Client			
Log In						
4. Was an attempt made to	cool the samples?		Yes 🗹	No 🗆	na 🗆	
5. Were all samples received	d at a temperature of >0	0° C to 6.0°C	Yes 🗹	No 🗀	NA \square	
6. Sample(s) in proper conta	ainer(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume	for indicated test(s)?		Yes 🗹	No 🗆		
8. Are samples (except VOA	and ONG) properly pres	served?	Yes 🗹	No 🗌		
9. Was preservative added t	o bottles?		Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero head	space?		Yes 🗹	No 🗆	No VOA Vials	
11, Were any sample contain	ers received broken?		Yes	No 🗹	# of preserved	<u> </u>
12.Does paperwork match be (Note discrepancies on ch			Yes 🗹	No 🗆	bottles checked for pH:	>12\unless noted)
13. Are matrices correctly ide	• ,	ody?	Yes 🗹	No 🗆	Adjusted	.00.
14. Is it clear what analyses w			Yes 🗹	No 🗆		N
15. Were all holding times ab (If no, notify customer for			Yes 🗹	No 🗌	Checked by:	
Special Handling (if app	olicable)					
16. Was client notified of all d	iscrepancies with this or	der?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:		Date:				
By Whom:		Via:	eMail	Phone 🗌 Fax	☐ In Person	
Regarding:				a data and or an inter-		
Client Instructions:						
17. Additional remarks:						
18. Cooler Information Cooler No Temp °C 1 1.0	Condition Seal Int Good Not Prese		Seal Date	Signed By		

HALL ENVIDONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	Albuquerque, NM 87109	Fax 505-345-4107	Analysis Request			808 \ 2 (A	OV-i	ACRA 8 May (F,C) Anions (F,C) 8081 Pestic 8260B (VO) 8270 (Sem	X			ha ha				
	ANA	www.ha	4901 Hawkins NE -	Tel. 505-345-3975		(ƙjuc	(Gss (H9T + G \ OS (1.81)	9 po y po (GI	TEX + MT TEX + MT TPH 80155 Meth Meth TE8) 8'HAC	-						Remarks:	
Turn-Around Time:	© Standard □ Rush	Project Name:	inator Samoles	Project #:	13-116.2	Project Manager:	Kay Lambert	Sampler: Guyne h Jestermen	s emperatore		Vocine Kee Continue -201		-				Received by: Received by: Charle Time Date Time	
Chain-of-Custody Record	1,3		Mailing Address: 2385 F' Rd.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	07h2 - 27n - 940	ax#: fance 11@ helcomp. cour	Package: □ Level 4 (Full Validation)	tation	(Type)	Time Matrix Sample Request ID							Time: Relinquished by: Op. 34 Ph. E. Martin Time: Relinquished by:	
Ü	Client:		Mailing	(Januar	Phone #:	email or	QA/QC Package:	Accreditation INVELAP	√ EDD (Type)	Date	6/1/3/	+) 7/13 Date:	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

July 22, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505

TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

OrderNo.: 1306310

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 1 sample(s) on 6/7/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Received Date: 6/7/2013 9:34:00 AM

Lab Order 1306310

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions Client Sample ID: Powell Well #2

Enterprise WEP III Water Sampling Collection Date: 6/6/2013 10:03:00 AM **Project:** Matrix: AQUEOUS

Analyses Result **RL Qual Units DF** Date Analyzed Batch EPA METHOD 8011/504.1: EDB Analyst: LRW 1,2-Dibromoethane ND 0.010 6/11/2013 6:45:02 PM 7866 μg/L **EPA METHOD 8082: PCB'S** Analyst: SCC Aroclor 1016 ND 1.0 μg/L 6/19/2013 8:14:59 PM 7871 Aroclor 1221 ND 1.0 µg/L 6/19/2013 8:14:59 PM 7871 Aroclor 1232 ND 1.0 μg/L 1 6/19/2013 8:14:59 PM 7871 Aroclor 1242 ND 1.0 μg/L 6/19/2013 8:14:59 PM 7871 Aroclor 1248 ND 1.0 µg/L 1 6/19/2013 8:14:59 PM 7871 Aroclor 1254 ND 1.0 µg/L 1 6/19/2013 8:14:59 PM 7871 ND Aroclor 1260 1.0 µg/L 1 6/19/2013 8:14:59 PM 7871 Surr: Decachlorobiphenyl 98.0 23.9-124 %REC 1 6/19/2013 8:14:59 PM 7871 Surr: Tetrachloro-m-xylene 84.8 28.1-139 %REC 6/19/2013 8:14:59 PM 7871 **EPA METHOD 8310: PAHS** Analyst: SCC Naphthalene ND 2.0 µg/L 1 6/21/2013 12:50:21 PM 7872 1-Methylnaphthalene ND 2.0 1 6/21/2013 12:50:21 PM 7872 µg/L 2-Methylnaphthalene ND 2.0 µg/L 1 6/21/2013 12:50:21 PM 7872 Acenaphthylene ND 2.5 μg/L 1 6/21/2013 12:50:21 PM 7872 Acenaphthene ND 5.0 µg/L 6/21/2013 12:50:21 PM 7872 Fluorene ND 0.80 µg/L 1 6/21/2013 12:50:21 PM 7872 Phenanthrene ND 0.60 µg/L 1 6/21/2013 12:50:21 PM 7872 ND Anthracene 0.60 1 6/21/2013 12:50:21 PM 7872 μg/L Fluoranthene ND 0.30 µg/L 1 6/21/2013 12:50:21 PM 7872 Pyrene ND 0.30 µg/L 1 6/21/2013 12:50:21 PM 7872 Benz(a)anthracene ND 0.070 µg/L 1 6/21/2013 12:50:21 PM 7872 Chrysene ND 0.20 6/21/2013 12:50:21 PM 7872 µg/L 1 Benzo(b)fluoranthene ND 0.10 µg/L 1 6/21/2013 12:50:21 PM 7872 Benzo(k)fluoranthene ND 0.070 1 6/21/2013 12:50:21 PM 7872 μg/L Benzo(a)pyrene ND 0.070 µg/L 1 6/21/2013 12:50:21 PM 7872 Dibenz(a,h)anthracene ND 0.12 6/21/2013 12:50:21 PM 7872 µg/L 1 ND Benzo(g,h,i)perylene 0.12 μg/L 1 6/21/2013 12:50:21 PM 7872 ND Indeno(1,2,3-cd)pyrene 0.080 µg/L 1 6/21/2013 12:50:21 PM 7872 Surr: Benzo(e)pyrene 62.7 43.2-113 %REC 1 6/21/2013 12:50:21 PM 7872 **EPA METHOD 300.0: ANIONS** Analyst: JRR Fluoride 0.10 6/7/2013 1:13:30 PM 1.3 mg/L 1 R11189 Chloride 37 10 mg/L 20 6/7/2013 1:25:55 PM R11189 Nitrogen, Nitrate (As N) 3.6 0.10 mg/L 6/7/2013 1:13:30 PM R11189 Sulfate 88 10 mg/L 6/7/2013 1:25:55 PM R11189 **EPA METHOD 200.7: DISSOLVED METALS** Analyst: JLF

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0.020

ND

Qualifiers:

Aluminum

Lab ID:

1306310-001

- Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND Page 1 of 24 Sample pH greater than 2 for VOA and TOC only.

6/10/2013 6:21:28 PM

R11208

Reporting Detection Limit

mg/L

Analytical Report

Lab Order 1306310

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Powell Well #2

Project: Enterprise WEP III Water Sampling

Collection Date: 6/6/2013 10:03:00 AM

Lab ID:

1306310-001

Matrix: AQUEOUS

Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED	METALS				Analyst	: JLF
Barium	0.073	0.0020	mg/L	1	6/10/2013 6:21:28 PM	R11208
Boron	0.15	0.040	mg/L	1	6/10/2013 6:21:28 PM	R11208
Cadmium	ND	0.0020	mg/L	1	6/10/2013 6:21:28 PM	R11208
Chromium	ND	0.0060	mg/L	1	6/10/2013 6:21:28 PM	R1120
Cobalt	ND	0.0060	mg/L	1	6/10/2013 6:21:28 PM	R1120
Copper	ND	0.0060	mg/L	1	6/10/2013 6:21:28 PM	R11208
Iron	ND	0.020	mg/L	1	6/10/2013 6:21:28 PM	R1120
Lead	0.0067	0.0050	mg/L	1	6/10/2013 6:21:28 PM	R1120
Manganese	ND	0.0020	mg/L	1	6/10/2013 6:21:28 PM	R1120
Molybdenum	ND	0.0080	mg/L	1	6/10/2013 6:21:28 PM	R1120
Nickel	ND	0.010	mg/L	1	6/10/2013 6:21:28 PM	R1120
Silver	ND	0.0050	mg/L	1	6/10/2013 6:21:28 PM	R11208
Zinc	0.022	0.010	mg/L	1	6/10/2013 6:21:28 PM	R1120
EPA 200.8: DISSOLVED METALS					Analyst	DBD
Arsenic	0.0071	0.0010	mg/L	1	6/26/2013 4:07:50 PM	R1157
Selenium	0.0053	0.0010	mg/L	1	6/26/2013 4:07:50 PM	R1157
Uranium	0.0037	0.0010	mg/L	1	6/26/2013 4:07:50 PM	R1157
EPA METHOD 245.1: MERCURY					Analyst	IDC
Mercury	ND	0.00020	mg/L	1	6/18/2013 11:35:09 AM	7958
EPA METHOD 8260B: VOLATILES	5				Analyst	cws
Benzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Toluene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Ethylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	. 1	6/8/2013 10:54:16 AM	R11159
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Naphthalene	ND	2.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1-Methylnaphthalene	ND	4.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
2-Methylnaphthalene	ND	4.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Acetone	ND	10	μg/L	1	6/8/2013 10:54:16 AM	R1115
Bromobenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Bromodichloromethane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Bromoform	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Bromomethane	ND	3.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
2-Butanone	ND	10	μg/L	1	6/8/2013 10:54:16 AM	R1115
Carbon disulfide	ND	10	μg/L	1	6/8/2013 10:54:16 AM	R1115
Carbon Tetrachloride	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Bounding Limit
- ND Not Detected at the Reporting Limit Page 2 of 24 P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Analytical Report

Lab Order 1306310

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Powell Well #2

Project: Enterprise WEP III Water Sampling Collection Date: 6/6/2013 10:03:00 AM

1306310-001 Lab ID:

Matrix: AQUEOUS

Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	cws
Chlorobenzene	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
Chloroethane	ND	2.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Chloroform	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Chloromethane	ND	3.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
2-Chlorotoluene	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
4-Chlorotoluene	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
cis-1,2-DCE	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
Dibromochloromethane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Dibromomethane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,2-Dichlorobenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,3-Dichlorobenzene	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
1,4-Dichlorobenzene	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
Dichlorodifluoromethane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,1-Dichloroethane	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R11159
1,1-Dichloroethene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,2-Dichloropropane	ND	1.0	µg/L	1	6/8/2013 10:54:16 AM	R1115
1,3-Dichloropropane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
2,2-Dichloropropane	ND	2.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,1-Dichloropropene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
Hexachlorobutadiene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
2-Hexanone	ND	10	μg/L	1	6/8/2013 10:54:16 AM	R1115
Isopropylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
4-isopropyltoluene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
4-Methyl-2-pentanone	ND	10	μg/L	1	6/8/2013 10:54:16 AM	R11159
Methylene Chloride	ND	3.0	µg/L	1	6/8/2013 10:54:16 AM	R1115
n-Butylbenzene	ND	3.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
n-Propylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
sec-Butylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Styrene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
tert-Butylbenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
trans-1,2-DCE	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R1115
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	6/8/2013 10:54:16 AM	R11159
1,1,1-Trichloroethane	ND	1.0	μg/L μg/L	1	6/8/2013 10:54:16 AM	R11159

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDIimit O
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit Page 3 of 24 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Analytical Report

Lab Order 1306310

Date Reported: 7/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample 1D: Powell Well #2

Enterprise WEP III Water Sampling **Project:**

Collection Date: 6/6/2013 10:03:00 AM

Lab ID: 1306310-001 Received Date: 6/7/2013 9:34:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES	_					Analyst	cws
1,1,2-Trichloroethane	ND	1.0		μg/L	1	6/8/2013 10:54:16 AM	R11159
Trichloroethene (TCE)	ND	1.0		μg/L	1	6/8/2013 10:54:16 AM	R11159
Trichlorofluoromethane	ND	1.0		μg/L	1	6/8/2013 10:54:16 AM	R11159
1,2,3-Trichloropropane	ND	2.0		μg/L	1	6/8/2013 10:54:16 AM	R11159
Vinyl chloride	ND	1.0		μg/L	1	6/8/2013 10:54:16 AM	R11159
Xylenes, Total	ND	1.5		μg/L	1	6/8/2013 10:54:16 AM	R11159
Surr: 1,2-Dichloroethane-d4	94.5	70-130		%REC	1	6/8/2013 10:54:16 AM	R11159
Surr: 4-Bromofluorobenzene	94.9	69.5-130		%REC	1	6/8/2013 10:54:16 AM	R11159
Surr: Dibromofluoromethane	99.1	70-130		%REC	1	6/8/2013 10:54:16 AM	R11159
Surr: Toluene-d8	104	70-130		%REC	1	6/8/2013 10:54:16 AM	R11159
TOTAL PHENOLICS BY SW-846 9067						Analyst	: SCC
Phenolics, Total Recoverable	ND	2.5		μg/L	1	6/13/2013	7895
SM4500-H+B: PH						Analyst	: JML
рН	7.76	1.68	Н	pH units	1	6/7/2013 5:48:32 PM	R11179
SM2540C MOD: TOTAL DISSOLVED SO	DLIDS					Analyst	: KS
Total Dissolved Solids	457	20.0		mg/L	1	6/12/2013 6:12:00 PM	7859

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 24
- Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130611045

Address:

4901 HAWKINS NE SUITE D **ALBUQUERQUE, NM 87109**

Project Name:

1306310

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

130611045-001

Sampling Date

6/6/2013

Date/Time Received 6/11/2013 12:10 PM

Client Sample ID

1306310-0011 / POWELL WELL #2

Sampling Time 10:03 AM

Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/L	0.01	6/17/2013	CRW	EPA 335.4	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E67893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095

Wednesday, June 19, 2013

ANALYTICAL RESULTS

Project:

1306310

Pace Project No.:

3096382

Sample: 1306310-001H Powell Well

Lab ID: 3096382001

Collected: 06/06/13 10:03 Received: 06/11/13 09:15

PWS:

Site ID:

Sample Type:

Method **Parameters**

Act ± Unc (MDC)

Units

Analyzed CAS No. 06/18/13 12:39 13982-63-3 Qual

Radium-226 Radium-228 EPA 903.1 EPA 904.0 0.159 ± 0.363 (0.585) 0.284 ± 0.295 (0.612) pCi/L pCi/L

06/19/13 11:49 15262-20-1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1306310

Pace Project No.:

3096382

QC Batch:

RADC/16132

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

3096382001

Matrix: Water

METHOD BLANK: 594497

Parameter

Associated Lab Samples:

3096382001

Act ± Unc (MDC)

Units

Analyzed


Qualiflers

Radium-228

 0.309 ± 0.287 (0.587)

pCi/L

06/19/13 11:47

QUALITY CONTROL DATA

Project:

1306310

Pace Project No.:

3096382

QC Batch:

RADC/16119

Analysis Method:

EPA 903.1

QC Batch Method: EPA

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

3096382001

Matrix: Water

Associated Lab Samples:

METHOD BLANK: 593760

Parameter

3096382001

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-226

 $-0.206 \pm 0.462 \quad (0.980)$

pCi/L

06/18/13 11:04

Hall Environmental Analysis Laboratory, Inc.

WO#: 1306310

22-Jul-13

Client:

HRL Compliance Solutions

'roject:	Enterprise	WEP II	Water S	Sampling							
Sample ID	1306305-001IMS	Samp	Type: MS	_ 	Tes	tCode: E	PA Method	200.7: Dissoi	ved Meta	ls	
Client ID:	BatchQC	Bato	h ID: R1	1208	F	RunNo: 1	1208				
Prep Date:		Analysis I				SeqNo: 3	16871	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	High L imit	%RPD	RPDLimit	Qual
on.		0.51	0.020	0.5000	0	102	70	130			
1anganese		0.52	0.0020	0.5000	0.01757	100	70	130			
Sample ID	1306305-001IMSD	Samp	Type: MS	D	Tes	tCode: E	PA Method	200.7: Dissol	ved Meta	ls	
Client ID:	BatchQC	Bato	h ID: R1	1208	F	RunNo: 1	1208				
Prep Date:		Analysis	Date: 6/	10/2013	5	SeqNo: 3	16872	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
on		0.51	0.020	0.5000	0	102	70	130	0.189	20	
Manganese		0.52	0.0020	0.5000	0.01757	99.7	70	130	0.649	20	
Sample ID	МВ	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	200.7: Dissol	ved Meta	ls	
Client ID:	PBW	Bato	h ID: R1	1208	F	RunNo: 1	1208				
Prep Date:		Analysis I	Date: 6/	10/2013		SeqNo: 3	16891	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		ND	0.020								
Barium		ND	0.0020								
3oron		ND	0.040								
Cadmium		ND	0.0020								
Chromium		ND	0.0060								
Cobalt		ND	0.0060								
Copper		ND	0.0060								
ron		ND	0.020								
.ead		ND	0.0050								
/langanese		ND	0.0020								
/lolybdenum		ND	0.0080								
lickel		ND	0.010								
Silver		ND	0.0050								
inc.		ND	0.010								
Sample ID	LCS	Samp	Type: LC	S	Tes	tCode: E	PA Method	200.7: Dissol	ved Meta	ls	
Client ID:	LCSW	Bato	h ID: R1	1208	F	Run N o: 1	1208				
Prep Date:		Analysis	Date: 6/	10/2013	;	SeqNo: 3	16892	Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		0.55	0.020	0.5000	0	111	85	115			
Barium		0.49	0.0020	0.5000	0	97.5	85	115			
3oron		0.49	0.040	0.5000	0	97.3	85	115			

Qualifiers:

Cadmium

Chromium

Value exceeds Maximum Contaminant Level.

0.49

0.51

0.0020

0.0060

0.5000

0.5000

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

85

85

115

115

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

98.4

102

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

0

0

Page 5 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#: 1306310

22-Jul-13

Client:

HRL Compliance Solutions

Enterprise WEP III Water Sampling roject:

Sample ID LCS	Samp	Type: LC	s	Tes	estCode: EPA Method 200.7: Dissolved Metals							
Client ID: LCSW	Bato	h ID: R1	1208	F	RunNo: 1	1208						
⊃rep Date:	Analysis I	Date: 6/	10/2013	S	SeqNo: 3	16892	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
obalt	0.48	0.0060	0.5000	0	96.4	85	115					
opper	0.48	0.0060	0.5000	0	97.0	85	115					
Iron	0.50	0.020	0.5000	0	100	85	115					
ead	0.49	0.0050	0.5000	0	98.1	85	115					
langanese	0.51	0.0020	0.5000	0	101	85	115					
Molybdenum	0.49	0.0080	0.5000	0	97.8	85	115					
Nickel	0.50	0.010	0.5000	0	100	85	115					
ilver	0.10	0.0050	0.1000	0	103	85	115					
∠inc	0.48	0.010	0.5000	0	96.4	85	115					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

Page 6 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

'roject:	Enterprise	•									
Sample ID	LCS	Samp	Type: L0	s	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID:	LCSW	Bato	ch ID: R	11577	F	RunNo: 1	1577				
^o rep Date:		Analysis	Date: 6	/26/2013	5	SeqNo: 3	28123	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
rsenic		0.025	0.0010	0.02500	0	98.0	85	115			
elenium		0.024	0.0010	0.02500	0	97.4	85	115			
Jranium		0.025	0.0010	0.02500	0	98.7	85	115			
Sample ID	LCS	Samp	Type: LO	cs	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID:	LCSW	Bato	ch ID: R	11577	F	RunNo: 1	1577				
⊃rep Date:		Analysis	Date: 6	/26/2013	8	SeqNo: 3	28124	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
rsenic		0.025	0.0010	0.02500	0	99.7	85	115			
elenium		0.025	0.0010	0.02500	0	99.6	85	115			
ranium		0.026	0.0010	0.02500	0	103	85	115			
Sample ID	МВ	Samp	Туре: М	BLK	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID:	PBW	Bato	ch ID: R	11577	F	RunNo: 1	1577				
Prep Date:		Analysis	Date: 6	/26/2013	\$	SeqNo: 3	28125	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
rsenic		ND	0.0010	-							
Selenium		ND	0.0010								
Jranium		ND	0.0010								
Sample ID	MB	Samp	Туре: М	BLK	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID:	PBW	Bato	ch ID: R	11577	F	RunNo: 1	1577				
Prep Date:		Analysis	Data: C	(00/0040	_		20420	Unito: ma/l			
		Allalysis	Date. 6	/26/2013	\$	SeqNo: 3	28126	Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	•		HighLimit	%RPD	RPDLimit	Qual
Analyte Arsenic						•			%RPD	RPDLimit	Qual
	· · · · · · · · · · · · · · · · · · ·	Result	PQL			•			%RPD	RPDLimit	Qual
Arsenic Gelenium		Result	PQL 0.0010			•			%RPD	RPDLimit	Qual
Arsenic Gelenium Granium	1306586-002AMS	Result ND ND ND	PQL 0.0010 0.0010	SPK value	SPK Ref Val	%REC	LowLimit			RPDLimit	Qual
Arsenic Jelenium Jranium Sample ID	1306586-002AMS BatchQC	Result ND ND ND	PQL 0.0010 0.0010 0.0010	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit		RPDLimit	Qual
Arsenic Gelenium Dranium Sample ID		Result ND ND ND	PQL 0.0010 0.0010 0.0010 Type: M	SPK value	SPK Ref Val	%REC	LowLimit PA 200.8: [HighLimit		RPDLimit	Qual
Arsenic Selenium Sample ID Client ID:		Result ND ND ND Samp	PQL 0.0010 0.0010 0.0010 Type: M	SPK value S 11577 /26/2013	SPK Ref Val	%REC tCode: El RunNo: 1 SeqNo: 3	LowLimit PA 200.8: [HighLimit		RPDLimit	Qual

Dualifiers:

Selenium

* Value exceeds Maximum Contaminant Level.

0.030

0.0010

0.02500 0.001294

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

70

130

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

114

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 7 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#:

1306310 22-Jul-13

Qual

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID	1306587-006AMS
Client ID:	BatchQC
⊃rep Date:	

SampType: MS

TestCode: EPA 200.8: Dissolved Metals

Batch iD: R11577 Analysis Date: 6/26/2013 RunNo: 11577

Analyte rsenic

Sample ID 1306587-006AMSD

Result POL

SampType: MSD

SeqNo: 329354

Units: mg/L

%RPD

SPK value SPK Ref Val %REC LowLimit HighLimit 0.024 0.0010 0.02500 0.003941 82.1 70 130

Client ID: **BatchQC**

Batch ID: R11577

TestCode: EPA 200.8: Dissolved Metals RunNo: 11577

Prep Date: Analysis Date: 6/26/2013 SeqNo: 329355

Units: mg/L

RPDLimit PQL SPK value SPK Ref Val %REC I owl imit HighLimit %RPD Analyte Result 0.003941 130 1.41 20 0.024 0.0010 0.02500 80.7 rsenic

Sample ID 1306597-001EMS

SampType: MS

TestCode: EPA 200.8: Dissolved Metals

Qual

RPDLimit

Client ID: **BatchQC**

Batch ID: R11577

RunNo: 11577

Prep Date:

Analysis Date: 6/26/2013

SeqNo: 329369

Units: mg/L

Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Analyte 0.029 0.0010 0.02500 0.002526 106 70 130 rsenic

elenium

RPDLimit Qual

70 130 0.044 0.0010 0.02500 0.01861 100

Sample ID 1306597-001EMSD

SampType: MSD

TestCode: EPA 200.8: Dissolved Metals

Client ID: **BatchQC**

Batch ID: R11577 Analysis Date: 6/26/2013 RunNo: 11577

Units: mg/L

Analyte rsenic

SPK value SPK Ref Val POL 0.02500

SeqNo: 329370 %REC LowLimit

RPDLimit Qual

Selenium

Prep Date:

0.0010 0.0010

0.002526 0.02500 0.01861 105

HighLimit %RPD 130 1.55 20

20

SampType: MS

95.3 TestCode: EPA 200.8: Dissolved Metals

130 2.71

%RPD

Sample ID 1306710-004AMS

Batch ID: R11577

RunNo: 11577

70

70

Prep Date:

Client ID:

BatchQC

Analysis Date: 6/26/2013

SeaNo: 329377

Units: ma/L

Analyte

Result

PQL SPK value SPK Ref Val 0.0010

%REC

RPDLimit Qual

Qual

Arsenic

0.02500 0.003581 92.3

LowLimit HighLimit 70

RPDLimit

0.027

Result

0.029

0.042

130

Sample ID LCS

SampType: LCS

TestCode: EPA 200.8: Dissolved Metals

Client ID:

Batch ID: R11577

RunNo: 11577

LCSW Prep Date: Analyte Arsenic

Analysis Date: 6/26/2013

0.0010

LowLimit

Units: mg/L

elenium

Result **PQL** 0.024 0.0010

0.026

0

0

0

SeqNo: 329379

Iranium

0.024 0.0010

SPK value SPK Ref Val 0.02500

0.02500

0.02500

%REC

96.9

96.2

105

85

85

85

HighLimit %RPD 115

115

115

R

- **Jualifiers:**
- Е Value above quantitation range
- Analyte detected below quantitation limits

RPD outside accepted recovery limits

- Value exceeds Maximum Contaminant Level.
- RSD is greater than RSDlimit 0
- Sample pH greater than 2 for VOA and TOC only. p
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η Not Detected at the Reporting Limit ND
- Reporting Detection Limit

Page 8 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

Result

ND

roject:

Enterprise WEP III Water Sampling

Sample ID MB

SampType: MBLK

TestCode: EPA 200.8: Dissolved Metals

LowLimit

∃lient ID: PBW Batch ID: R11577

PQL

0.0010

RunNo: 11577

rep Date:

Analysis Date: 6/26/2013

SeqNo: 329380

SPK value SPK Ref Val %REC

Units: mg/L

HighLimit

%RPD

RPDLimit Qual

Analyte senic lenium

Uranium

ND 0.0010 ND 0.0010

ualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 9 of 24

'Iall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

TestCode: EPA Method 245.1: Mercury Sample ID MB-7958 SampType: MBLK RunNo: 11368 Client ID: PBW Batch ID: 7958 rep Date: 6/17/2013 Analysis Date: 6/18/2013 SeqNo: 321212 Units: mg/L **RPDLimit** Qual SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Analyte PQL ercury ND 0.00020 TestCode: EPA Method 245.1: Mercury Sample ID LCS-7958 SampType: LCS Client ID: Batch ID: 7958 RunNo: 11368 LCSW Analysis Date: SeqNo: 321213 Units: mg/L rep Date: 6/17/2013 6/18/2013 %RPD **RPDLimit** PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual Analyte Result 0.0049 97.5 80 120 ercury 0.00020 0.005000

TestCode: EPA Method 245.1: Mercury SampType: MS Sample ID 1306581-001BMS Batch ID: 7958 RunNo: 11368 Client ID: **BatchQC** SeqNo: 321238 Units: mg/L rep Date: 6/17/2013 Analysis Date: 6/18/2013 %RPD **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Analyte Result 90.4 75 125 ercury 0.0045 0.00020 0.005000

TestCode: EPA Method 245.1: Mercury Sample ID 1306581-001BMSD SampType: MSD RunNo: 11368 Client ID: **BatchQC** Batch ID: 7958 6/17/2013 Analysis Date: 6/18/2013 SeqNo: 321239 Units: mg/L Prep Date: SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte **PQL** 125 20 0.0044 0.00020 0.005000 88.1 75 2.60 ercury

ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 10 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#: 1306310

22-Jul-13

Client: HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID MB	SampT	Type: ME	BLK	Tes	tCode: El	PA Method	300.0: Anions	3		
lient ID: PBW	Batcl	h ID: R1	1189	F	RunNo: 1	1189				
'rep Date:	Analysis D	Date: 6/	7/2013	S	SeqNo: 3	16488	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ıoride	ND	0.10		·						
nloride	ND	0.50								
Nitrogen, Nitrate (As N)	ND	0.10								
ilfate	ND	0.50								
Sample ID LCS	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	300.0: Anion	3		
Client ID: LCSW	Batc	h ID: R1	1189	F	RunNo: 1	1189				
'rep Date:	Analysis E	Date: 6/	7/2013	\$	SeqNo: 3	16489	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Joride	0.49	0.10	0.5000	0	97.3	90	110			
aloride	4.7	0.50	5.000	0	93.8	90	110			
Nitrogen, Nitrate (As N)	2.4	0.10	2.500	0	98.0	90	110			
Sulfate	9.5	0.50	10.00	0	95.3	90	110			
Sample ID 1306307-001EMS	Samp [*]	Гуре: М	<u> </u>	Tes	tCode: E	PA Method	300.0: Anion	5		
74111pie ID 1300301-001EINO										
Client ID: BatchQC	Batc	h ID: R1	1189	F	Run N o: 1	1189				

Client ID: BatchQC	Batch	וD: R1	1189	F	1189						
rep Date:	Analysis D)ate: 6/	7/2013	9	SeqNo: 3	16513	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	1.6	0.10	0.5000	1.094	105	76.9	114				
trogen, Nitrate (As N)	7.2	0.10	2.500	4.486	109	93	113				

Sample ID 1	1306307-001EMSD	SampTyp	e: M\$	SD	Tes	tCode: El						
Client ID: E	3atchQC	Batch II): R1	1189	F	RunNo: 1	1189					
.³rep Date:		Analysis Date	e: 6/	7/2013	S	SeqNo: 3	16514	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
uoride		1.6	0.10	0.5000	1.094	105	76.9	114	0.0741	20		
vitrogen, Nitrate	(As N)	7.2	0.10	2.500	4.486	109	93	113	0.173	20		

Sample ID	1306305-001DMS	SampT	ype: MS	6	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	BatchQC	Batch	ID: R1	1189	F	RunNo: 1	1189				
Prep Date:		Analysis D	ate: 6/	7/2013	S	SeqNo: 3	16517	Units: mg/L			
∖nalyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
uoride		0.90	0.10	0.5000	0.3803	105	76.9	114			
Chloride		12	0.50	5.000	6.816	108	89.9	119			
ulfate		22	0.50	10.00	11.68	104	90.1	116			

ualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 11 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID 1306305-001DMSD SampType: MSD

TestCode: EPA Method 300.0: Anions

lient ID: **BatchQC** Batch ID: R11189

RunNo: 11189

rep Date:

Analysis Date: 6/7/2013

SeqNo: 316518

Units: mg/L

1 Op Bato.	,,		.,								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
ioride	0.90	0.10	0.5000	0.3803	105	76.9	114	0.0442	20		
lorde	12	0.50	5.000	6.816	108	89.9	119	0.214	20		
Sulfate	22	0.50	10.00	11.68	104	90.1	116	0.253	20		

dualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 12 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7866

SampType: MBLK

lient ID: **PBW** Batch ID: 7866

RunNo: 11217

%REC

'rep Date: 6/11/2013

SeqNo: 317313

Units: µg/L

Analyte

Analysis Date: 6/11/2013

TestCode: EPA Method 8011/504.1: EDB

HighLimit

RPDLimit Qual

?-Dibromoethane

ND 0.010

PQL

TestCode: EPA Method 8011/504.1: EDB

%RPD

Sample ID LCS-7866

LCSW

Sample ID 1306394-001BMS

6/11/2013

SampType: LCS

RunNo: 11217

rep Date: 6/11/2013 Batch ID: 7866

Result

Result

Analyte

Client ID:

Analysis Date: 6/11/2013 **PQL**

SeqNo: 317326

Units: µg/L

2-Dibromoethane

0.098 0.010 SPK value SPK Ref Val %REC

SPK value SPK Ref Val

LowLimit

HighLimit

70

RPDLimit

0.1000

98.0

%RPD 130

Qual

0.11

Result

0.12

SampType: MS

TestCode: EPA Method 8011/504.1: EDB

136

Client ID: **BatchQC**

Batch ID: 7866

0.1000

RunNo: 11217

Analyte

rep Date:

Result

Analysis Date: 6/11/2013

SPK value SPK Ref Val %REC

0.01600

0.01600

SeqNo: 317412

98.0

Units: µg/L HighLimit

RPDLimit Qual

2-Dibromoethane

PQL

0.010

TestCode: EPA Method 8011/504.1: EDB

Sample ID 1306394-001BMSD Client ID:

2-Dibromoethane

BatchQC

SampType: MSD Batch ID: 7866

RunNo: 11217

HighLimit

PQL

0.010

0.1000

SPK value SPK Ref Val

101

Units: µg/L

Analyte

rep Date: 6/11/2013 Analysis Date: 6/11/2013

SeqNo: 317413 %REC

53

LowLimit

LowLimit

136

%RPD

2.60

%RPD

RPDLimit

20

Qual

ualifiers:

R

Value exceeds Maximum Contaminant Level.

Analyte detected below quantitation limits

Е Value above quantitation range

RPD outside accepted recovery limits

0 RSD is greater than RSDlimit

ND

Η Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

RLReporting Detection Limit

Analyte detected in the associated Method Blank

Page 13 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

'roject: En	terprise WEP III Water	Sampling							
Sample ID MB-7871	SampType: N	IBLK	Test	:Code: El	PA Method	8082: PCB's			
Client ID: PBW	Batch ID: 7	871	R	un N o: 1	1395				
³ rep Date: 6/11/2013	Analysis Date:	5/19/2013	s	eqNo: 3	22149	Units: µg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
roclor 1016	ND 1.0)							
roclor 1221	ND 1.0)							
Aroclor 1232	ND 1.0)							
roclor 1242	ND 1.6)							
roclor 1248	ND 1.0)							
Aroclor 1254	ND 1.0)							
Aroclor 1260	ND 1.9)							
Surr: Decachlorobiphenyl	2.3	2.500		90.8	23.9	124			
Surr: Tetrachloro-m-xylene	2.0	2.500		78.0	28.1	139			
Sample ID LCS-7871	SampType: L	cs	Test	Code: El	PA Method	8082: PCB's		·	
Client ID: LCSW	Batch ID: 7	871	R	lunNo: 1	1395				
Prep Date: 6/11/2013	Analysis Date:	6/19/2013	S	SeqNo: 3	22955	Units: µg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	5.5 1.	5.000	0	111	32.3	121			
Aroclor 1260	3.9 1.	5.000	0	78.6	34	128			
Surr: Decachlorobiphenyl	2.0	2.500		79.6	23.9	124			
Surr: Tetrachioro-m-xylene	1.6	2.500		63.6	28.1	139			
Sample ID LCSD-787	1 SampType: L	.CSD	Test	tCode: El	PA Method	8082: PCB's			
Client ID: LCSS02	Batch ID: 7	871	R	RunNo: 1	1395				
J									
Prep Date: 6/11/2013	Analysis Date:	6/19/2013	S	SeqNo: 3	22969	Units: µg/L			
	Analysis Date: Result PQL		SPK Ref Val	SeqNo: 3 %REC	22969 LowLimit	Units: µg/L HighLimit	%RPD	RPDLimit	Qual
Prep Date: 6/11/2013	ŕ	SPK value				, •	%RPD 2.60	RPDLimit 29.9	Qual
Prep Date: 6/11/2013 Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit			Qual
Prep Date: 6/11/2013 Analyte roclor 1016	Result PQL 5.4 1.	SPK value	SPK Ref Val 0 0	%REC	LowLimit 32.3	HighLimit	2.60	29.9	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit О
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only. P
- RLReporting Detection Limit

Page 14 of 24

'Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID 5mi rb	SampT	уре: М В	LK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	ID: R1	1159	R	lunNo: 1	1159				
, [⊃] rep Date:	Analysis D	ate: 6/	7/2013	S	SeqNo: 3	15563	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
enzene	ND	1.0								
oluene	ND	1.0								
Ethylbenzene	ND	1.0								
'ethyl tert-butyl ether (MTBE)	ND	1.0								
2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1.2-Dichloroethane (EDC)	ND	1.0								
2-Dibromoethane (EDB)	ND	1.0								
, aphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
-Methylnaphthalene	ND	4.0								
cetone	ND	10								
Bromobenzene	ND	1.0								
Promodichloromethane	ND	1.0								
romoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
arbon disulfide	ND	10								
arbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
hloroethane	ND	2.0								
hloroform	ND	1.0								
Chloromethane	ND	3.0								
² -Chlorotoluene	ND	1.0								
-Chlorotoluene	ND	1.0								
uis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
,2-Dibromo-3-chloropropane	ND	2.0								
ibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
¹ ,2-Dichlorobenzene	ND	1.0								
,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
,1-Dichloroethane	ND	1.0								
.,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
,3-Dichloropropane	ND	1.0								
,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

)ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 15 of 24

Iall Environmental Analysis Laboratory, Inc.

WO#: 1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID 5ml rb	SampT	уре: М Е	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	ID: R1	1159	R	tunNo: 1	1159				
rep Date:	Analysis D	ate: 6/	7/2013	S	eqNo: 3	15563	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
exachlorobutadiene	ND	1.0								
Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
Isopropyltoluene	ND	1.0								
Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
Propylbenzene	ND	1.0								
ಾec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
rt-Butylbenzene	ND	1.0								
1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
ans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
2,4-Trichlorobenzene	ND	1.0								
.,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
ichloroethene (TCE)	ND	1.0								
richlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
ylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.1	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.3	69.5	130			
Surr: Dibromofluoromethane	10		10.00		105	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID 100ng Ics	SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES							
Client ID: LCSW	Batch	ID: R1	1159	F	RunNo: 1	1159					
Prep Date:	Analysis D	ate: 6/	7/2013	8	SeqNo: 3	15565	Units: µg/L				
₹nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
enzene	20	1.0	20.00	0	102	70	130				
Toluene	22	1.0	20.00	0	109	80	120				
^hlorobenzene	20	1.0	20.00	0	99.9	70	130				
.1-Dichloroethene	19	1.0	20.00	0	97.2	85.8	133				
Trichloroethene (TCE)	20	1.0	20.00	0	98.6	70	130				

ualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Page 16 of 24

Tall Environmental Analysis Laboratory, Inc.

SampType: MBLK

Batch ID: R11159

WO#: 1306310

22-Jul-13

Client: HRL Compliance Solutions

Sample ID rb2

PBW

Client ID:

roject: Enterprise WEP III Water Sampling

Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R11159 RunNo: 11159 rep Date: Analysis Date: 6/7/2013 SeqNo: 315565 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 10.00 98.0 70 130 Surr: 1,2-Dichloroethane-d4 9.8 94.1 69.5 130 9.4 10.00 Surr: 4-Bromofluorobenzene 70 130 9.9 10.00 99.4 Surr: Dibromofluoromethane 104 70 130 10 10.00 Surr: Toluene-d8

TestCode: EPA Method 8260B: VOLATILES

RunNo: 11159

² rep Date:	Analysis D	ate: 6/	7/2013	S	SeqNo: 3	16066	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
- enzene	ND	1.0								
oluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
2,4-Trimethylbenzene	ND	1.0								
,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
2-Dibromoethane (EDB)	ND	1.0								
aphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
[↑] Methylnaphthalene	ND	4.0								
cetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
romoform	ND	1.0								
_romomethane	ND	3.0								
2-Butanone	ND	10								
arbon disulfide	ND	10								
arbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
hloroform	ND	1.0								
∪hloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
Chlorotoluene	ND	1.0								
s-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
2-Dibromo-3-chloropropane	ND	2.0								
ibromochloromethane	ND	1.0								

ualifiers:

Dibromomethane

* Value exceeds Maximum Contaminant Level.

ND

1.0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310 22-Jul-13

Client:

HRL Compliance Solutions

'roject:

Enterprise WEP III Water Sampling

Sample ID rb2	SampTy	pe: M	BLK	TestCode: EPA Method 8260B: VOLATILES										
Client ID: PBW	Batch	ID: R1	1159	F	RunNo: 1	1159								
Prep Date:	Analysis Da	ate: 6/	7/2013	\$	SeqNo: 3	16066	Units: µg/L							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
.2-Dichlorobenzene	ND	1.0												
,3-Dichlorobenzene	ND	1.0												
,4-Dichlorobenzene	ND	1.0												
ichlorodifluoromethane	ND	1.0												
.1-Dichloroethane	ND	1.0												
,1-Dichloroethene	ND	1.0												
.2-Dichloropropane	ND	1.0												
,3-Dichloropropane	ND	1.0												
,2-Dichloropropane	ND	2.0												
,1-Dichloropropene	ND	1.0												
exachlorobutadiene	ND	1.0												
-Hexanone	ND	10												
sopropylbenzene	ND	1.0												
-Isopropyltoluene	ND	1.0												
-Methyl-2-pentanone	ND	10												
Methylene Chloride	ND	3.0												
n-Butylbenzene	ND	3.0												
-Propylbenzene	ND	1.0												
.ec-Butylbenzene	ND	1.0												
Styrene	ND	1.0												
:rt-Butylbenzene	ND	1.0												
,1,1,2-Tetrachloroethane	ND	1.0												
,1,2,2-Tetrachloroethane	ND	2.0												
etrachloroethene (PCE)	ND	1.0												
ans-1,2-DCE	ND	1.0												
rans-1,3-Dichloropropene	ND	1.0												
,2,3-Trichlorobenzene	ND	1.0												
,2,4-Trichlorobenzene	ND	1.0												
,1,1-Trichloroethane	ND	1.0												
1,1,2-Trichloroethane	ND	1.0												
richloroethene (TCE)	ND	1.0												
richlorofluoromethane	ND	1.0												
,2,3-Trichloropropane	ND	2.0												
/inyl chloride	ND	1.0												
ylenes, Total	ND	1.5												
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.2	70	130							
Surr: 4-Bromofluorobenzene	9.4		10.00		94.0	69.5	130							
Surr: Dibromofluoromethane	9.9		10.00		99.5	70	130							
Surr: Toluene-d8	9.7		10.00		97.3	70	130							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 18 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client: HRL Compliance Solutions

roject: Enterprise WEP III Water Sampling

Sample ID 100ng Ics ii	SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES										
Client ID: LCSW	Batch	n ID: R1	1159	F	RunNo: 1									
rep Date:	Analysis D)ate: 6/	7/2013	S	SeqNo: 3	16068	Units: µg/L							
Analyte	Result	PQL	L SPK value SPK Ref V		%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
enzene	21	1.0	20.00	0	105	70	130							
pluene	22	1.0	20.00	0	111	80	120							
Chlorobenzene	21	1.0	20.00	0	103	70	130							
1-Dichloroethene	19	1.0	20.00	0	93.8	85.8	133							
ichloroethene (TCE)	21	1.0	20.00	0	103	70	130							
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130							
Surr: 4-Bromofluorobenzene	9.4		10.00		94.1	69.5	130							
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130							
Surr: Toluene-d8	10		10.00		102	70	130							

3ample ID 1306277-001a ms	SampT	ype: MS	5	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: BatchQC	Batch	ID: R1	1159	F	RunNo: 1						
Prep Date:	Analysis D	ate: 6/	8/2013	S	SeqNo: 3	16071	Units: µg/L				
\nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
penzene	22	1.0	20.00	0	108	70	130				
Toluene	22	1.0	20.00	0	109	68.5	128				
hlorobenzene	20	1.0	20.00	0	99.9	70	130				
1-Dichloroethene	20	1.0	20.00	0	97.9	70	130				
Trichloroethene (TCE)	21	1.0	20.00	0	104	61.3	102			S	
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130				
Surr: 4-Bromofluorobenzene	8.8		10.00		88.3	69.5	130				
Surr: Dibromofluoromethane	10		10.00		101	70	130				
Surr: Toluene-d8	10		10.00		101	70	130				

Sample ID 1306277-001a msc	ype: MS	SD	TestCode: EPA Method 8260B: VOLATILES										
Client ID: BatchQC	Batch	ID: R1	1159	R	lunNo: 1	1159							
^o rep Date:	Analysis D	ate: 6/	8/2013	S	SeqNo: 3	16072	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	22	1.0	20.00	0	109	70	130	0.751	20				
oluene	21 1.0 20.00			0	103 68.5		128 5.77		20				
_ hlorobenzene	19	19 1.0 20.00		0	97.2	70	130	2.70	20				
1,1-Dichloroethene	20 1.0 20.00		0	102	70	130	3.96	20					
richloroethene (TCE)	20	1.0	20.00	0	102	61.3	102	1.67	20	S			
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130	0	0				
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	69.5	130	0	0				
Surr: Dibromofluoromethane	11 10.00			106 70		130	0	0					
Surr: Toluene-d8	10		10.00		100	70	130	0	0				

ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 19 of 24

Tall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7872	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8310: PAHs					
Client ID: PBW	Batcl	n ID: 787	72	F	RunNo: 1	1451						
Prep Date: 6/11/2013	Analysis E	Date: 6/	21/2013	5	SeqNo: 3	23659	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
aphthalene	ND	2.0	•									
Methylnaphthalene	ND	2.0										
2-Methylnaphthalene	ND	2.0										
enaphthylene	ND	2.5										
cenaphthene	ND	5.0										
luorene	ND	0.80										
Phenanthrene	ND	0.60										
nthracene	ND	0.60										
uoranthene	ND	0.30										
Pyrene	ND	0.30										
enz(a)anthracene	ND	0.070										
nrysene	ND	0.20										
Benzo(b)fluoranthene	ND	0.10										
enzo(k)fluoranthene	ND	0.070										
enzo(a)pyrene	ND	0.070										
Dibenz(a,h)anthracene	ND	0.12										
Benzo(g,h,i)perylene	ND	0.12										
deno(1,2,3-cd)pyrene	ND	0.080										
Surr: Benzo(e)pyrene	12		20.00		58.3	43.2	113					

Sample ID LCS-7872	Samp1	Type: LC	S	Tes								
Client ID: LCSW	Batcl	h ID: 78	72	F	RunNo: 1	1451						
Prep Date: 6/11/2013	Analysis D)ate: 6/	21/2013	8	SeqNo: 3	23663	Units: µg/L					
∖nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
.aphthalene	57	2.0	80.00	0	71.6	50.3	86.5					
1-Methylnaphthalene	45	2.0	80.20	0	56.2	50.3	91.6					
Methylnaphthalene	42	2.0	80.00	0	52.8	48.2	94.9					
cenaphthylene	60	2.5	80.20	0	74.6	53.2	93.7					
Acenaphthene	46	5.0	80.00	0	58.0	51.6	95.9					
⁼ luorene	4.7	0.80	8.020	0	58.1	31.9	97.4					
nenanthrene	3.3	0.60	4.020	0	82.8	52.7	90.3					
anthracene	3.0	0.60	4.020	0	73.4	49.9	88.1					
Fluoranthene	6.4	0.30	8.020	0	79.9	51.4	94.4					
yrene	4.3	0.30	8.020	0	54.1	47.7	89.5					
enz(a)anthracene	0.66	0.070	0.8020	0	82.3	34.2	108					
Chrysene	2.8	0.20	4.020	0	69.4	32.9	96.8					
enzo(b)fluoranthene	0.89	0.10	1.002	0	88.8	55.9	103					
enzo(k)fluoranthene	0.43	0.43 0.070 0		0	86.0	57.9	108					
Benzo(a)pyrene	0.43 0.070 0.5020		0	0 85.7 55.6								
·												

ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

roject:

Enterprise WEP III Water Sampling

Sample ID LCS-7872	SampT	ype: LC	s	Tes	tCode: El	PA Method				
Client ID: LCSW	Batcl	h ID: 78	72	F	RunNo: 1	1451				
³ rep Date: 6/11/2013	Analysis D	Date: 6/	21/2013	8	SeqNo: 3	23663	Units: µg/L			
Analyte	Result PQL SPK		SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual	
ibenz(a,h)anthracene	0.76	0.12	1.002	0	75.8	57.9	104			
enzo(g,h,i)perylene	0.76	0.12	1.000	0	76.0	57.2	105			
ndeno(1,2,3-cd)pyrene	1.5	0.080	2.004	0	74.4	53.5	102			
Surr: Benzo(e)pyrene	22		20.00		109	43.2	113			

ualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

'roject: En	terprise WEP III Water Sampling							
Sample ID MB-7895	SampType: MBLK	TestCode: Total Phenolics by SW-846 9067						
Client ID: PBW	Batch ID: 7895	RunNo: 11270						
⊃rep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318394 Units: µg/L						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLin	nit Qual					
henolics, Total Recoverable	ND 2.5							
Sample ID LCS-7895	SampType: LCS	TestCode: Total Phenolics by SW-846 9067						
Client ID: LCSW	Batch ID: 7895	RunNo: 11270						
Prep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318395 Units: µg/L						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLin	nit Qual					
henolics, Total Recoverable	22 2.5 20.00	0 112 81.1 120						
Sample ID LCSD-789	SampType: LCSD	TestCode: Total Phenolics by SW-846 9067						
Client ID: LCSS02	Batch ID: 7895	RunNo: 11270						
Prep Date: 6/13/2013	Analysis Date: 6/13/2013	SeqNo: 318409 Units: µg/L						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLin	nit Qual					
henolics. Total Recoverable	21 2.5 20.00	0 103 81.1 120 8.69 2	20					

)ualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

'roject:

Enterprise WEP III Water Sampling

Sample ID 1306305-001d dup

Sample ID 1306330-004c dup

SampType: dup

TestCode: SM4500-H+B: pH

Client ID: **BatchQC** Batch ID: R11179

RunNo: 11179

Prep Date:

Analysis Date: 6/7/2013

%REC

Units: pH units

SeqNo: 316207

HighLimit

RPDLimit Qual Н

Analyte H

Result 7.83 1.68

Result

7.07

SampType: dup

TestCode: SM4500-H+B: pH

LowLimit

Client ID: **BatchQC** Batch ID: R11179

PQL

SPK value SPK Ref Val

RunNo: 11179

SeqNo: 316217

Units: pH units

Prep Date:

Analysis Date: 6/7/2013

Analyte

PQL 1.68 SPK value SPK Ref Val %REC LowLimit HighLimit %RPD

%RPD

RPDLimit

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit O

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit RL

Page 23 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1306310

22-Jul-13

Client:

HRL Compliance Solutions

Result

roject:

Enterprise WEP III Water Sampling

Sample ID MB-7859

SampType: MBLK

SPK value SPK Ref Val

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 7859

RunNo: 11260

⊃rep Date:

6/11/2013

Analysis Date: 6/12/2013

SeqNo: 318163

Units: mg/L

Analyte

PQL

%REC LowLimit

HighLimit

RPDLimit Qual

otal Dissolved Solids

ND 20.0

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID LCS-7859

Client ID: LCSW SampType: LCS

RunNo: 11260

orep Date:

Batch ID: 7859

Units: mg/L

6/11/2013

Analysis Date: 6/12/2013

SeqNo: 318164

80

LowLimit

80

Qual

Analyte otal Dissolved Solids

Result **PQL** 1030 20.0

SPK value SPK Ref Val 1000

SPK value SPK Ref Val

1000

1000

190.0

190.0

%REC LowLimit 103

HighLimit

RPDLimit

TestCode: SM2540C MOD: Total Dissolved Solids

120

%RPD

%RPD

%RPD

Sample ID 1306305-001DMS

SampType: MS

RunNo: 11260

120

120

Client ID: Prep Date:

BatchQC

Batch ID: 7859

PQL

20.0

6/11/2013 Analysis Date: 6/12/2013 Result

1220

1220

SeqNo: 318166 %REC

Units: mg/L HighLimit

RPDLimit Qual

Qual

Analyte otal Dissolved Solids

SampType: MSD

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

BatchQC

Batch ID: 7859

RunNo: 11260

103

Prep Date: 6/11/2013

Sample ID 1306305-001DMSD

SeqNo: 318167

103

Units: mg/L

RPDLimit

Analyte

otal Dissolved Solids

Analysis Date: 6/12/2013 Result PQL SPK value SPK Ref Val

20.0

%REC

LowLimit HighLimit

80

%RPD

0.328

5

)ualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- Reporting Detection Limit

RL

- Sample pH greater than 2 for VOA and TOC only.
- Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPLIANCE SOL Work Order Number: 1306310 RcptNo: 1 Received by/date: Michelle Garcia Logged By: 6/7/2013 9:34:00 AM 6/7/2013 10:14:26 AM Completed By: Michelie Garcia Reviewed By: Chain of Custody No \square Not Present Yes 🗌 1 Custody seals intact on sample bottles? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Client Log In Yes 🗸 No 🗀 NA \square 4. Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C No 🗆 Yes 🗸 Sample(s) in proper container(s)? 7. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗆 No 🗆 8. Are samples (except VOA and ONG) properly preserved? Yes 🗸 NA 🗔 Yes 🗌 No 🗹 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 🗌 10.VOA vials have zero headspace? Yes 🗆 No 🗹 11. Were any sample containers received broken? # of preserved bottles checked 12. Does paperwork match bottle labels? Yes V No 🗌 for pH: noted) (Note discrepancies on chain of custody) Adjusted Yes 🗹 No 🗌 13. Are matrices correctly identified on Chain of Custody? Yes V No 🗌 14. Is it clear what analyses were requested? No 🗔 Yes 🗸 Checked by: 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 16. Was client notified of all discrepancies with this order? No 🗆 NA 🔽 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1.0 Good Not Present

HALL ENVIRONMENTAL	ANALYSIS LABORATORY							(N 10	۸)	Air Bubbles												al report.
<u>Σ</u>	Š		4901 Hawkins NE - Albuquerque, NM 87109	22			-	F5:7	7	20M	X								\Box			analytica
Z	; ŏ	COM	₩Z	505-345-4107	st			(A		ime2) 0728			 		 	\dashv	_	_	\dashv	\dashv		o the
2	! 5	ntal.	ue, l	5-34	Request			2000 / 6		OV) 80628					_	_	\dashv	-+	\dashv			otated
5	S	nme	nerq		s Re					D,7) anoinA bitse9 1808						\dashv	-	_	\dashv			early n
Z	S	ınvirc	Albuc	Fax	Analysis	-	3 00			RCRA 8 Me							\dashv	\dashv	\dashv			ll be c
_		www.hallenvironmental.com		75	An	-	(SWIS			1£8) a'HA¶						_	_	_	+			data w
3	Ż	*	IN SI	5-39			7	(1.40	g po	EDB (Wetho				- :			1		1			racted
1	. <		awki	Tel. 505-345-3975				(ř.81	† Þ¢	TPH (Metho												p-cont
			01 H	əl. 50						83108 H9T											isi	Anvs
			49	Ĭ						TM + X3T8							_				Remarks:	ibility.
						(1	208) s'	# TMB	8E	TM + X3T8						_		_	_		Re	- sood si
.e.	□ Rush	Vame: WEP III	Samolina)	1,0,2		rambert	har Weterwan	101	Preservative Type	100- migro/205										Date Time Out Date Time	ited laboratories. This serves as notice of the
Turn-Around Time:	E Standard	Project N	Water 5		131	Project Manager:	1200	Sampler: 🤇 รูบผ	Sample fremper	Container Pro Type and #	1/ar-1006										Received by: Received by:	ontracted to other accred
Chain-of-Custody Record	Client: HRI Constance Solutions Inc.		Mailing Address: 2385 F 1/2 (d)	35	Phone #: 926 - 467 - 5440	email or Fax#: fance / @ ladcomp, Cois	QA/QC Package: Id Standard □ Level 4 (Full Validation)	□ Other	(VEDD (Type)	Time Matrix Sample Request ID	10:03 5 W Pavel 1, Jell #2										bate: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other according laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
J	Client:		Mailing	3	Phone	email	QA/QC Packs	Accreditation R NELAP	VEDE	Date	0/9/9	-		į							Date: Date:	