## Initial

# **Re-Application**

Received: 11/17/2021

This application is placed in file for record. It MAY or MAY NOT have been reviewed to be determined Administratively Complete

## LONQUIST & CO. LLC

PETROLEUM ENERGY ENGINEERS ADVISORS

AUSTIN · HOUSTON · WICHITA · DENVER · CALGARY

November 10, 2021

New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division District IV 1220 South St. Francis Drive Santa Fe, New Mexico 87505 (505) 476-3440

#### **RE:** LONG SHOT SWD #1 AUTHORIZATION TO INJECT

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC ("AEP") Long Shot SWD #1. In addition, Forms C-101 and C-102 have also been included with this package. Notices have been delivered to offset, operators, leaseholders, and the surface owner.

Any questions should be directed towards Advance Energy Partners Hat Mesa LLC's agent Lonquist & Co., LLC.

Regards,

Camore Il Hovey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

(512) 600-1777 ramona@lonquist.com

| RECEIVED:                                                                                    | REVIEWER:                                                                                                                                                                                                          | TYPE:                                                                                                                        | APP NO:                                                                                 |                                                       |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|--|
|                                                                                              |                                                                                                                                                                                                                    | ABOVE THIS TABLE FOR OCD D                                                                                                   | IVISION USE ONLY                                                                        |                                                       |  |
|                                                                                              | NEW MEXICO<br>- Geologic<br>1220 South St. Fro                                                                                                                                                                     | D OIL CONSERV,<br>al & Engineering<br>ancis Drive, Sant                                                                      | ation division<br>g Bureau –<br>a Fe, NM 87505                                          | WIT WANT AND                                          |  |
| T                                                                                            |                                                                                                                                                                                                                    |                                                                                                                              |                                                                                         |                                                       |  |
| 1F                                                                                           | REGULATIONS WHICH REC                                                                                                                                                                                              | QUIRE PROCESSING AT THE                                                                                                      | DIVISION LEVEL IN SANTA FE                                                              | RULES AND                                             |  |
| pplicant: Adv<br>/ell Name: Lo                                                               | vance Energy Partners H<br>ng Shot SWD #1                                                                                                                                                                          | lat Mesa LLC                                                                                                                 | OGRID Numb<br>API:                                                                      | oer: 372417                                           |  |
| ool: SWD; Dev                                                                                | onian-Silurian                                                                                                                                                                                                     |                                                                                                                              | Pool Code: 9                                                                            | 7869                                                  |  |
| SUBMIT ACC                                                                                   | JRATE AND COMPLETE INF                                                                                                                                                                                             | ORMATION REQUI                                                                                                               | RED TO PROCESS THE TYPE                                                                 | OF APPLICATION                                        |  |
| 1) <b>TYPE OF AP</b><br>A. Locatio<br>[                                                      | PLICATION: Check those v<br>on – Spacing Unit – Simulto<br>NSL NSP(PRO                                                                                                                                             | vhich apply for [A<br>aneous Dedicatio<br>DJECT AREA)                                                                        | ]<br>n<br>P(proration unit) SD                                                          |                                                       |  |
| B. Check<br>[1] Cc<br>[11] In                                                                | cone only for [1] or [1]<br>ommingling – Storage – Me<br>DHC CTB PL<br>ection – Disposal – Pressu<br>WFX PMX SV                                                                                                    | easurement<br>C PC C<br>re Increase – Enhe<br>VD IPI E                                                                       | DLS OLM<br>anced Oil Recovery<br>OR PPR                                                 | FOR OCD ONLY                                          |  |
| 2) NOTIFICATI<br>A. Off:<br>B. C. Ap<br>C. Ap<br>D. No<br>E. No<br>F. Sur<br>G. For<br>H. No | ON REQUIRED TO: Check t<br>set operators or lease hold<br>valty, overriding royalty ov<br>plication requires publishe<br>iffication and/or concurre<br>face owner<br>all of the above, proof of<br>notice required | hose which apply<br>ders<br>vners, revenue ov<br>ed notice<br>ent approval by SI<br>ent approval by BI<br>notification or pu | vners<br>.O<br>.M<br>ublication is attached, and                                        | Notice Complete<br>Application<br>Content<br>Complete |  |
| 3) <b>CERTIFICAT</b><br>administrat<br>understanc<br>notification                            | ON: I hereby certify that t<br>ive approval is <b>accurate</b> of<br>I that <b>no action</b> will be tak<br>s are submitted to the Div                                                                             | he information su<br>and <b>complete</b> to<br>en on this applice<br>ision.                                                  | bmitted with this applicat<br>the best of my knowledge<br>ation until the required info | ion for<br>e. I also<br>ormation and                  |  |
|                                                                                              | Note: Statement must be complet                                                                                                                                                                                    | ed by an individual with                                                                                                     | n managerial and/or supervisory co                                                      | ipacity.                                              |  |
|                                                                                              |                                                                                                                                                                                                                    |                                                                                                                              | November 10, 2021                                                                       |                                                       |  |
| amona Hove                                                                                   | y – Agent of Advance Ene                                                                                                                                                                                           | Date                                                                                                                         |                                                                                         |                                                       |  |
| Print or Type Nar                                                                            | ne                                                                                                                                                                                                                 |                                                                                                                              | (512) 600-1777                                                                          |                                                       |  |
| $\square$                                                                                    | VII                                                                                                                                                                                                                |                                                                                                                              | Phone Number                                                                            |                                                       |  |
| Kanno                                                                                        | ne A Thory                                                                                                                                                                                                         | 11 10 11 1000                                                                                                                | ramona@lonquist.com                                                                     |                                                       |  |
| Signature                                                                                    |                                                                                                                                                                                                                    |                                                                                                                              | e-mail Address                                                                          |                                                       |  |

**Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

#### APPLICATION FOR AUTHORIZATION TO INJECT

|        | AFFLICATION FOR AUTHORIZATION TO INJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.     | PURPOSE:       Secondary Recovery       Pressure Maintenance       X       Disposal       Storage         Application qualifies for administrative approval?       X       Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| II.    | OPERATOR: Advance Energy Partners Hat Mesa LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | ADDRESS: 11490 Westheimer Rd., Ste 950, Houston, TX 77077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | CONTACT PARTY: Kem Ramnath PHONE:281-755-8173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| III.   | WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection.<br>Additional sheets may be attached if necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IV.    | Is this an expansion of an existing project?YesNo<br>If yes, give the Division order number authorizing the project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| V.     | Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VI.    | Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.                                                                                                                                                                                                                                                                                                                            |
| VII.   | Attach data on the proposed operation, including:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | <ol> <li>Proposed average and maximum daily rate and volume of fluids to be injected;</li> <li>Whether the system is open or closed;</li> <li>Proposed average and maximum injection pressure;</li> <li>Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,</li> <li>If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).</li> </ol> |
| *VIII. | Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.                                                                                                                                                                                                       |
| IX.    | Describe the proposed stimulation program, if any.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *X.    | Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *XI.   | Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| XII.   | Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.                                                                                                                                                                                                                                                                                                                                                                                |
| XIII.  | Applicants must complete the "Proof of Notice" section on the reverse side of this form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| XIV.   | Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | NAME: <u>Ramona Hovey</u> TITLE: <u>Consulting Engineer – Agent for Advance Energy Partners</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | SIGNATURE:DATE: July 6, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

E-MAIL ADDRESS: <u>ramona@lonquist.com</u> If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. \* Please show the date and circumstances of the earlier submittal:

#### Side 2

#### III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
  - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
  - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
  - (3) A description of the tubing to be used including its size, lining material, and setting depth.
  - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
  - (1) The name of the injection formation and, if applicable, the field or pool name.
  - (2) The injection interval and whether it is perforated or open-hole.
  - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
  - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
  - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

#### XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

#### NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

#### **INJECTION WELL DATA SHEET**

#### OPERATOR: Advance Energy Partners Hat Mesa LLC

#### WELL NAME & NUMBER: Long Shot SWD #1

WELL LOCATION: <u>1,490' FWL 2,100' FSL</u> FOOTAGE LOCATION

#### WELLBORE SCHEMATIC

| K<br>UNIT LETTER                | 2<br>SECTION   | <u>22S</u><br>TOWNSHIP         | <u>33E</u><br>RANGE |
|---------------------------------|----------------|--------------------------------|---------------------|
|                                 | WELL CONSTRUC  | CTION DATA                     |                     |
|                                 | Surface Ca     | asing                          |                     |
| Hole Size: <u>26"</u>           |                | Casing Size: 20"               |                     |
| Cemented with: <u>1,990 sx.</u> |                | or                             | ft <sup>3</sup>     |
| Top of Cement: surface          |                | Method Determined: circulation |                     |
|                                 | Intermediate C | Casing 1                       |                     |
| Hole Size: <u>17.5"</u>         |                | Casing Size: <u>16"</u>        |                     |
| Cemented with: 705 sx.          |                | or                             | ft <sup>3</sup>     |
| Top of Cement: surface          |                | Method Determined: circulation |                     |
|                                 | Intermediate ( | Casing 2                       |                     |
| Hole Size: <u>14.75"</u>        |                | Casing Size: <u>13.375"</u>    |                     |
| Cemented with: <u>680 sx.</u>   |                | or                             | ft <sup>3</sup>     |
| Top of Cement: surface          |                | Method Determined: circulation |                     |
|                                 | Production (   | Casing                         |                     |
| Hole Size: <u>12.250"</u>       |                | Casing Size: <u>9.625"</u>     |                     |
| Cemented with: 2,105 sx.        |                | or                             | $_{ft^3}$           |
| Top of Cement: surface          |                | Method Determined: circulation |                     |

Side 1

#### Liner

Casing Size: 7.625"

Method Determined: calculation

*or* \_\_\_\_\_\_ ft<sup>3</sup>

Top of Cement: <u>11,960'</u>

Total Depth: <u>18,250'</u>

Cemented with: 325 sx.

Hole Size: <u>8.750"</u>

Injection Interval

<u>16,086</u> feet to <u>18,250</u> feet

(Open Hole) – 6-3/4"

#### 1

#### **INJECTION WELL DATA SHEET**

Tubing Size: <u>7", 29 lb/ft, HCP110 EZGO FJ3 from 0' – 11,910' and 5-1/2", 19.8 lb/ft, HCP110 EZGO FJ from 11,910'-16,060'</u> Lining Material: <u>Duoline</u>

Type of Packer: 7-5/8"" X 5-1/2" Permanent Packer with High Temp Elastomer and Full Inconel 925 trim

Packer Setting Depth: 16,060'

Other Type of Tubing/Casing Seal (if applicable):

#### Additional Data

 1. Is this a new well drilled for injection?
 X\_Yes \_\_\_\_No

If no, for what purpose was the well originally drilled?

2. Name of the Injection Formation: Devonian,

3. Name of Field or Pool (if applicable): <u>SWD; Devonian-Silurian 97869</u>\_\_\_\_

4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.

No, new drill.

5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:

| Formation     | Depth   |
|---------------|---------|
| Brushy Canyon | 7,133'  |
| Bone Spring   | 8,775'  |
| Wolfcamp      | 11,960' |
| Strawn        | 13,246' |
| Atoka         | 13,439' |
| Morrow        | 14,147' |



#### Advance Energy Partners Hat Mesa LLC

#### Long Shot SWD #1

#### FORM C-108 Supplemental Information

III. Well Data

A. Wellbore Information

1.

| Well information         |                         |  |  |  |  |
|--------------------------|-------------------------|--|--|--|--|
| Lease Name Long Shot SWD |                         |  |  |  |  |
| Well No.                 | 1                       |  |  |  |  |
| Location                 | S-2 T-22S R-33E         |  |  |  |  |
| <b>Footage Location</b>  | 1490' FWL and 2100' FSL |  |  |  |  |

2.

a. Wellbore Description

|           | Casing Information |                |                |             |                    |  |  |  |
|-----------|--------------------|----------------|----------------|-------------|--------------------|--|--|--|
| Туре      | Surface            | Intermediate 1 | Intermediate 2 | Production  | Liner              |  |  |  |
| OD        | 20"                | 16"            | 13.375"        | 9.625"      | 7.625″             |  |  |  |
| WT        | 0.5″               | 0.495"         | 0.48″          | 0.545″      | 0.500"             |  |  |  |
| ID        | 19.000"            | 15.010"        | 12.415"        | 8.535"      | 6.625″             |  |  |  |
| Drift ID  | 18.812"            | 14.822"        | 12.259"        | 8.379"      | 6.500"             |  |  |  |
| COD       | 21.000"            | 17.000"        | 13.375"        | 10.625"     | 7.625″             |  |  |  |
| Weight    | 106.5 lb/ft        | 84 lb/ft       | 68 lb/ft       | 53.5 lb/ft  | 39 lb/ft           |  |  |  |
| Grade     | J-55 BTC           | J-55 BTC       | L-80 EZ-GO FJ3 | HCP-110 BTC | Q-125 EZ-GO<br>FJ3 |  |  |  |
| Hole Size | 26″                | 17-1/2"        | 14-3/4"        | 12-1/4"     | 8-3/4"             |  |  |  |
| Depth Set | 1,475'             | 3,030'         | 5,020'         | 12,160'     | 11,960'-16,086'    |  |  |  |

#### b. Cementing Program

To address recent concerns of insufficient surface casing cementing jobs in the offsetting region, the installation of this proposed cement program aims to decrease the probability of future migration of fluids due to improper placement of cement and to protect against impact to Underground Sources of Drinking Water (USDW).

The surface hole will be drilled with a 26" bit to 1,475' and set with 20", 106.5 lb/ft, J-55 BTC surface casing. If loss of circulation occurs while drilling, LCM pills of up to 80-100 lbs/bbl will be spotted/circulated as necessary. If circulation is unable to be regained, an open hole thixotropic cement plug will be considered as use for LCM and drilling will resume.

A 20" rigid body centralizer and 20" cementing baskets will be added to the body of the casing in order to ensure proper standoff from the bore hole and minimize cement "fall back" while cementing. A cement slurry followed by a second lead with increased quantities of LCM material thereafter. The remaining details of the cement program can be found below:

| Casing String                   | Surface                 | Intermediate 1          | Intermediate 2          | Production              | Liner       |
|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|
| Load Coment                     |                         | 50-50                   | 50-50                   | 50-50                   | 50-50       |
| Lead Cement                     |                         | POZ/Class H             | POZ/Class H             | POZ/Class H             | POZ/Class H |
| Lead Cement Volume (sacks)      | 1,535                   | 495                     | 435                     | 1905                    | 325         |
| Lead Cement Yield (ft3/sack)    | 1.74                    | 2.5                     | 2.5                     | 2.51                    | 1.31        |
| Tail Cement                     | Class H                 | Class H                 | Class H                 | Class H                 | -           |
| Tail Cement Volume (sacks)      | 455                     | 210                     | 245                     | 200                     | -           |
| Tail Cement Yield<br>(ft3/sack) | 1.35                    | 1.18                    | 1.19                    | 1.19                    | -           |
| Cement Excess                   | 50%/20%                 | 50%/20%                 | 50%/20%                 | 50%/20%                 | 0%          |
| Total Sacks                     | 1,990                   | 705                     | 680                     | 2015                    | 325         |
| тос                             | Surface                 | Surface                 | Surface                 | Surface                 | 11,960'     |
| Method                          | Circulate to<br>Surface | Circulate to<br>Surface | Circulate to<br>Surface | Circulate to<br>Surface | Calculated  |

3. Tubing Description

| Tubing Information |                  |  |  |  |
|--------------------|------------------|--|--|--|
| 00                 | 7.0″             |  |  |  |
| 0                  | 5.5″             |  |  |  |
| \A/T               | 0.408″           |  |  |  |
| VVI                | 0.361"           |  |  |  |
| ID                 | 6.184"           |  |  |  |
|                    | 4.778"           |  |  |  |
|                    | 6.059"           |  |  |  |
|                    | 4.653"           |  |  |  |
|                    | 7.000"           |  |  |  |
| COD                | 5.500"           |  |  |  |
| Woight             | 29 lb/ft         |  |  |  |
| weight             | 19.8 lb/ft       |  |  |  |
| Grado              | HC P110 EZGO FJ3 |  |  |  |
| Grade              | HC P110 EZGO FJ  |  |  |  |
| Donth Sot          | 0-11,910'        |  |  |  |
| Depth Set          | 11,910'-16,060'  |  |  |  |

Tubing will be lined with Duoline.

4. Packer Description

7-5/8" x 5-1/2" TCPC Permanent Packer with High Temp Elastomer and Full Inconel 925 trim

- B. Completion Information
  - 1. Injection Formation: Devonian-Silurian
  - 2. Gross Injection Interval: 16,086'-18,250'

Completion Type: Open Hole, 6-3/4"

- 3. Drilled for injection.
- 4. See the attached wellbore schematic.

5. Oil and Gas Bearing Zones within area of well:

| Formation     | Depth   |
|---------------|---------|
| Brushy Canyon | 7,133'  |
| Bone Spring   | 8,775'  |
| Wolfcamp      | 11,960' |
| Strawn        | 13,246' |
| Atoka         | 13,439' |
| Morrow        | 14,147' |

#### VI. Area of Review

No wells within the area of review penetrate the proposed injection zone.

#### VII. Proposed Operation Data

1. Proposed Daily Rate of Fluids to be Injected:

Average Volume: 65,000 bpd – 75,000 bpd

- 2. Closed System
- 3. Anticipated Injection Pressure:

Average Injection Pressure: 2,200-2,800 PSI (surface pressure) Maximum Injection Pressure: 3,217 PSI (surface pressure)

- 4. The injection fluid is to be locally produced water. It is expected that the source water will predominantly be from the Delaware, Bone Spring, Wolfcamp and Devonian formations. Attached are produced water sample analyses taken from the closest wells that feature samples from the Delaware, Bone Spring, Wolfcamp and Devonian formations.
- 5. The disposal interval is non-productive. No water samples are available from the surrounding area.

#### VIII. Geological Data

Devonian Formation Lithology:

The Devonian formation is a dolomitic ramp carbonate that occurs below the Woodford shale and above the Fusselman formation. Strata found in the Devonian formation include two major groups, the Wristen Buildups and the Thirtyone Deepwater Chert, with the Wristen being more abundant. The Wristen Groups is composed of mixed limestone and dolomites with mudstone to grainstone and boundstone textures. Porosity in the Wristen group is a result of both primary and secondary development. Present are moldic, vugular, karstic (including collapse breccia) features that allow for higher porosities and permeabilities. The Thirtyone Formation contains two end-member reservoir facies, skeletal packstones/grainstones and spiculitic chert, with most of the porosity and permeability found in the coarsely crystalline cherty dolomite. These particular characteristics allow for this formation to be a tremendous Salt Water Disposal horizon.

Fusselman Formation Lithology:

The Silurian/Ordovician Fusselman Formation is stratigraphically below the Wristen Group and is above and separated from the Montoya Formation by the Sylvan Shale. The Sylvan Shale is the lower confining layer for the proposed Long Shot SWD No. 1 well. Fusselman facies include a laminated skeletal wackestone in the upper part and a buildup complex in the lower part composed of ooid and bryozoan grainstones. These grainstones can also be potentially prolific zones for disposal.

A. Injection Zone: Devonian-Silurian Formation

| Formation          | Depth   |
|--------------------|---------|
| Rustler            | 1,446'  |
| Salado             | 1,924'  |
| Capitan Reef       | 3,006′  |
| Delaware           | 4,973'  |
| Brushy Canyon      | 7,133′  |
| Bone Spring        | 8,775′  |
| Wolfcamp           | 11,960' |
| Strawn             | 13,246′ |
| Atoka              | 13,439' |
| Morrow             | 14,147' |
| Mississippian Lime | 15,312' |
| Woodford           | 15,890' |
| Devonian           | 16,086' |
| Fusselman          | 17,317' |
| Montoya            | 18,250' |

B. Underground Sources of Drinking Water

Across the area, fresh water wells are usually drilled at approximately 200-250'. The Rustler is known to exist in this general area and may also be another USDW and will be protected.

IX. Proposed Stimulation Program

20-65,000 gallon 20% HCL acid job

X. Logging and Test Data on the Well

There are no logs or test data on the well. During the process of drilling and completion resistivity, gamma ray, and density logs will be run.

#### XI. Chemical Analysis of Fresh Water Wells

No fresh water wells are located within two miles of the proposed location.

| District I<br>1625 N. French I<br>Phone: (575) 393<br>District II<br>811 S. First St., <i>A</i><br>Phone: (575) 748<br>District III<br>1000 Rio Brazos<br>Phone: (505) 7476<br>L220 S. St. Franc<br>Phone: (505) 476<br>APPL | Dr., Hobbs, NM<br>-6161 Fax: (57.<br>-1283 Fax: (575<br>Road, Aztec, N<br>-6178 Fax: (505<br>is Dr., Santa Fe.<br>-3460 Fax: (505 | 88240<br>5) 393-0720<br>10<br>5) 748-9720<br>M 87410<br>5) 334-6170<br>5) 374-6170<br>5) 476-3462<br><b>DN FOR</b> | PERMIT T                                                                        | Energy                                           | State of No<br>Minerals an<br>Oil Conserva<br>220 South S<br>Santa Fe,<br>RE-ENTEF | ew Mexico<br>d Natural l<br>ation Divisi<br>t. Francis l<br>NM 87505<br>R, DEEPE | Resources<br>on<br>Dr.<br>N. PLUGBAC | □AM                                                                   | Form C-101<br>Revised July 18, 2013 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|-------------------------------------|
| 4. Prop                                                                                                                                                                                                                      | ertu Code                                                                                                                         | ADVA                                                                                                               | <sup>1.</sup> Operator Name a<br>NCE ENERGY PAR<br>11490 WESTHEI<br>HOUSTON, TX | nd Address<br>FNERS HAT MESA<br>MER RD<br>770077 | A Property Name                                                                    | ,                                                                                |                                      | <sup>2</sup> OGRID Number<br>372417<br><sup>3</sup> API Number<br>TBD | No                                  |
| Рюр                                                                                                                                                                                                                          | eny Code                                                                                                                          |                                                                                                                    |                                                                                 | L                                                | LONG SHOT SWD                                                                      |                                                                                  |                                      | 1                                                                     |                                     |
|                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    |                                                                                 | <sup>7.</sup> Su                                 | rface Location                                                                     | ı                                                                                |                                      |                                                                       |                                     |
| UL - Lot                                                                                                                                                                                                                     | Section                                                                                                                           | Township                                                                                                           | Range                                                                           | Lot Idn                                          | Feet from                                                                          | N/S Line                                                                         | Feet From                            | E/W Line                                                              | County                              |
| K                                                                                                                                                                                                                            | 2                                                                                                                                 | 228                                                                                                                | 33E                                                                             |                                                  | 2100                                                                               | S                                                                                | 1490                                 | W                                                                     | LEA                                 |
|                                                                                                                                                                                                                              | -                                                                                                                                 | -                                                                                                                  |                                                                                 | <sup>8.</sup> Propose                            | ed Bottom Hol                                                                      | e Location                                                                       |                                      |                                                                       |                                     |
| UL - Lot                                                                                                                                                                                                                     | Section                                                                                                                           | Township                                                                                                           | Range                                                                           | Lot Idn                                          | Feet from                                                                          | N/S Line                                                                         | Feet From                            | E/W Line                                                              | County                              |
|                                                                                                                                                                                                                              | -                                                                                                                                 | -                                                                                                                  | -                                                                               |                                                  | -                                                                                  | -                                                                                | -                                    | -                                                                     | -                                   |
|                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    |                                                                                 | <sup>9.</sup> Po                                 | ol Information                                                                     | 1                                                                                |                                      |                                                                       |                                     |
| Pool Name                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                    |                                                                                 |                                                  |                                                                                    |                                                                                  |                                      | Pool Code                                                             |                                     |
| SWD; Devonian-Silurian                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                    |                                                                                 |                                                  |                                                                                    |                                                                                  | 97869                                |                                                                       |                                     |
|                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                    |                                                                                 | Addition                                         | al Well Inform                                                                     | nation                                                                           |                                      |                                                                       |                                     |
| <sup>11.</sup> Wo                                                                                                                                                                                                            | rk Type<br>N                                                                                                                      |                                                                                                                    | <sup>12.</sup> Well Type<br>SWD                                                 | 13                                               | <sup>3.</sup> Cable/Rotary<br>R                                                    |                                                                                  | <sup>14.</sup> Lease Type<br>Private | <sup>15.</sup> Groun                                                  | d Level Elevation<br>3,578'         |
| Interview     Interview     Interview       16. Multiple     17. Proposed Depth     18. Formation       N     18,250'     Silurian-Devonian                                                                                  |                                                                                                                                   |                                                                                                                    |                                                                                 |                                                  |                                                                                    | 20.                                                                              | Spud Date<br>ASAP                    |                                                                       |                                     |

We will be using a closed-loop system in lieu of lined pits

Depth to Ground water

200'

#### <sup>21.</sup> Proposed Casing and Cement Program

Distance from nearest fresh water well

1,803'

| Туре           | Hole Size | Casing Size | Casing Weight/ft      | Setting Depth              | Sacks of Cement | Estimated TOC |
|----------------|-----------|-------------|-----------------------|----------------------------|-----------------|---------------|
| Surface        | 26"       | 20"         | 106.5 lb/ft           | 1,475'                     | 1,990           | Surface       |
| Intermediate 1 | 17.5"     | 16"         | 84 lb/ft              | 3,030'                     | 705             | Surface       |
| Intermediate 2 | 14.75"    | 13.375"     | 68 lb/ft              | 5,020'                     | 680             | Surface       |
| Production     | 12.25"    | 9.625"      | 53.5 lb/ft            | 12,160'                    | 2,015           | Surface       |
| Liner          | 8.75"     | 7.625"      | 39 lb/ft              | 11,960'-16,086'            | 325             | 11,960'       |
| Tubing         |           | 7" x 5-1/2" | 29 lb/ft & 19.8 lb/ft | 0'-11,910'/11,910'-16,060' | N/A             |               |

Distance to nearest surface water

>1 mile

#### **Casing/Cement Program: Additional Comments**

See attached schematic.

#### <sup>22.</sup> Proposed Blowout Prevention Program

| Туре                          | Working Pressure | Test Pressure | Manufacturer           |
|-------------------------------|------------------|---------------|------------------------|
| Double Hydrualic/Blinds, Pipe | 10,000 psi       | 15,000 psi    | TBD - Schaffer/Cameron |

| <sup>23.</sup> I hereby certify that the information g of my knowledge and belief.                                        | riven above is true and complete to the best | OIL CONSERVATION DIVISION       |                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|------------------|--|--|
| I further certify that I have complied with 19.15.14.9 (A) NMAC and/or 19.15.14.9 (B) NMAC , if applicable.<br>Signature: |                                              | Approved By:                    |                  |  |  |
|                                                                                                                           |                                              |                                 |                  |  |  |
| Printed name: Ramona Hovey                                                                                                |                                              | Title:                          |                  |  |  |
| Title: Consulting Engineer                                                                                                |                                              | Approved Date:                  | Expiration Date: |  |  |
| E-mail Address: ramona@lonquist.com                                                                                       |                                              |                                 |                  |  |  |
| Date: July 7, 2021                                                                                                        | Phone: 512-600-1777                          | Conditions of Approval Attached |                  |  |  |

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 88210 Phone (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone (505) 334-6176 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals and Natural Resources Department Form C-102 Revised August 4, 2011

Submit one copy to appropriate District Office

OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

□ AMENDED REPORT

| API 1                                | Number  |                                                                                 |                                                                     | Pool Code                                |                           |                   |                                      | Pool Name                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
|--------------------------------------|---------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------|-------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property C                           | ode     |                                                                                 |                                                                     | Property Name Well Nu<br>LONG SHOT SWD 1 |                           |                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                | ımber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |
| OGRID No                             |         |                                                                                 | ADVA                                                                | ANCE EI                                  | <sup>0per:</sup><br>NERGY | ator Nam<br>PARTN | .e<br>IERS HAT MES                   | SA                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elevat<br>357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion<br>8'                                                                                                                                                                                                    |
|                                      |         |                                                                                 |                                                                     |                                          | Surfa                     | ce Loca           | ation                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| UL or lot No.                        | Section | Township                                                                        | Range                                                               | Lot Idn                                  | Feet fro                  | om the            | SOUTH/South line                     | Feet from the                                                                                                                                                                                                                                                                                                                                                                                                                                  | East/West line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | County                                                                                                                                                                                                        |
| K                                    | 2       | 22 S                                                                            | 33 E                                                                |                                          | 21                        | 100               | SOUTH                                | 1490                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEA                                                                                                                                                                                                           |
|                                      |         |                                                                                 | Bottom                                                              | Hole Lo                                  | cation l                  | lf Diffe          | rent From Sur                        | face                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| UL or lot No.                        | Section | Township                                                                        | Range                                                               | Lot Idn                                  | Feet fro                  | om the            | SOUTH/South line                     | Feet from the                                                                                                                                                                                                                                                                                                                                                                                                                                  | East/West line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | County                                                                                                                                                                                                        |
| Dedicated Acres                      | Joint o | or Infill Co                                                                    | onsolidation                                                        | Code Or                                  | der No.                   |                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| NO ALLO                              | WABLE V | WILL BE AN<br>OR A N                                                            | SSIGNED<br>NON-STAN                                                 | TO THIS                                  | COMPLE<br>NIT HAS         | TION U<br>BEEN    | NTIL ALL INTER<br>APPROVED BY 7      | ESTS HAVE BE                                                                                                                                                                                                                                                                                                                                                                                                                                   | EEN CONSOLIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATED                                                                                                                                                                                                          |
| N:520336.1<br>E:782488.7<br>(NAD 83) |         | SURFACE<br>Lat - N 3<br>Long - W 10<br>NMSPCE-N<br>(NAD-<br>(NAD-<br>(NAD-<br>- | LOCATION<br>52.419306*<br>03.546928*<br>517167.4<br>784001.1<br>83) | N:520349.7<br>E:785128.0<br>(NAD 83)     |                           |                   | N:520364.7<br>E:787766.3<br>(NAD 83) | OPERATO<br>I hereby ce<br>contained herei<br>the best of my<br>this organizatio<br>interest or unLiland<br>including<br>location pur<br>owner of such<br>or to a volunta<br>compulsory pool<br>the division.<br>Signature<br>Printed Nam<br>Email Address<br>SURVEYO<br>I hereby certify<br>on this plat we<br>actual surveys<br>supervison and<br>correct to th<br>FEBR<br>Date Surveys<br>Signature &<br>Professional<br>Certificate &<br>Bu | PR CERTIFICAT<br>rtify that the inform<br>in is true and comp.<br>knowledge and belief<br>neither owns a work<br>Eased mineral interess<br>a right to drill this<br>rsuant to a contract<br>a mineral or working<br>ry pooling agreement<br>ing order heretofore<br>e<br>e<br>provide the sell locat<br>a plotted from field<br>made by me or<br>d that the well locat<br>a plotted from field<br>made by me or<br>d that the same is<br>e best of my belie<br>ARY 128102021<br>a sind of<br>Surveyor<br>a sind of | TION<br>vation<br>lete to<br>, and that<br>ting<br>t in the<br>hole<br>well at<br>with an<br>interest,<br>or a<br>entered by<br>Date<br>TION<br>ion shown<br>t notes of<br>under my<br>true and<br>f.<br>7977 |
|                                      |         |                                                                                 |                                                                     | N:515070.8<br>E:785166.9<br>(NAD 83)     |                           |                   | N:515077.<br>E:787806.<br>(NAD 83)   | 6<br>5<br>6<br>6<br>5<br>6<br>6<br>6<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6                                                                                                                                                                                                                                                                                                                                               | 1000' 1500'<br>ALE: 1" = 1000'<br>Num.: 35059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000'N                                                                                                                                                                                                        |



| SECTION 2, TOWNSHIP 22 SOU<br>LEA COUNTY,                                                                                      | UTH, RANGE 33 EAST. N.M.P.M.,<br>NEW MEXICO.   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                |                                                |
|                                                                                                                                |                                                |
| <i>3580.2'</i>                                                                                                                 | 3578.3'                                        |
|                                                                                                                                |                                                |
|                                                                                                                                |                                                |
|                                                                                                                                | 250                                            |
| 250'                                                                                                                           | o 250'                                         |
|                                                                                                                                |                                                |
|                                                                                                                                |                                                |
|                                                                                                                                |                                                |
| 3677.8'                                                                                                                        | 3575 1                                         |
| 37                                                                                                                             |                                                |
|                                                                                                                                | 100 0 100 200 FEET                             |
|                                                                                                                                | ADVANCE ENERGY PARTNERS HAT MESA               |
|                                                                                                                                | REF: LONG SHOT SWD 1 / WELL PAD TOPO           |
|                                                                                                                                | THE LONG SHOT SWD 1 LOCATED 2100' FROM         |
| basin                                                                                                                          | THE SOUTH LINE AND 1490' FROM THE WEST LINE OF |
| Surveys P.O. Box 1786 (575) 393-7316 - Office                                                                                  | SECTION 2, TOWNSHIP 22 SOUTH, RANGE 33 EAST.   |
| focused on excellence 1120 N. West County Rd. (575) 392-2206 - Fax<br>in the oilfield Hobbs, New Mexico 88241 basinsurveys.com | N.M.P.M., LEA COUNTY, NEW MEXICO.              |







### LONG SHOT SWD 1

Located 2100' FSL and 1490' FWL Section 2, Township 22 South, Range 33 East, N.M.P.M., Lea County, New Mexico.



| P.O. 1 | Box  | 178  | 86  |     |     |     |      |
|--------|------|------|-----|-----|-----|-----|------|
| 1120   | Ν.   | Wes  | t i | Со  | unt | y I | Rd.  |
| Hobbs  | s, N | lew  | Ме  | exi | со  | 88  | 241  |
| (575)  | 39   | 3-7  | 31  | 6   | _   | Of  | fice |
| (575)  | 39   | 2-2  | 20  | )6  | _   | Fa  | х    |
| basin  | sur  | /eys | .cc | m   |     |     |      |

| 6 H H H               | H H H                             | 2000                       | 3000                   | 400<br>ਸ ਸ ਸ ਸ |
|-----------------------|-----------------------------------|----------------------------|------------------------|----------------|
|                       | SCAI                              | E: 1" =                    | = 2000'                |                |
| W.O.                  | Number:                           | JG C                       | 35059                  |                |
| Surv                  | ey Date:                          | 2-28                       | 3–2020                 |                |
| YELLO<br>BLUE<br>NATU | OW TINT -<br>TINT - S<br>RAL COLO | - USA<br>STATE L<br>R — FL | LAND<br>AND<br>EE LAND |                |

ADVANCE ENERGY PARTNERS HAT MESA











PROPOSAL#: 210624154130-B



## **CEMENT PROCEDURE & PROPOSAL**

#### **PREPARED FOR:**

Ms. Ramona Hovey EMAIL: ramona@lonquist.com PHONE NUMBER: 512-585-0654

## Advance Energy Partners Long Shot Unit SWD #1

Lea County, NM

#### Service Point

Odessa 1400 S JBS Parkway Odessa, TX 79766 432-888-0413

**Technical Writer** 

Kevin Swikert kevin@wtcementers.com 713-562-0805

#### **WTC Representative**

Jon Reynolds jon@wtcementers.com 432-257-1234

.Disclaimer Notice:

The ability of West Texas Cementers to complete this work is subject to the availability of the raw materials required to complete the job.

This information is presented in good faith, but no warranty is given by and West Texas Cementers LLC assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the Operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is WTC LLC best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of certain tests and procedures which West Texas Cementers LLC can assist in selecting. The Operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the Operator is aware of any conditions whereby a neighboring well or wells might be affected by the treatment proposed herein it is the Operator's responsibility to notify the owner or owners of the well or wells accordingly. Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services. Freedom from infringement of patents of West Texas Cementers LLC or others is not to be inferred.

PRINTED 7/12/2021 11:25

VERSION: v0.28

## Surface



|                             |                   |                 |                  |                | PI       | ROPOSAL#: 210624154130-B |
|-----------------------------|-------------------|-----------------|------------------|----------------|----------|--------------------------|
|                             |                   | WELL            | INFORMAT         | ION            |          |                          |
| MUD                         | D 8.4# Spud Mud   |                 |                  |                |          |                          |
| OPEN HOLE                   | :                 | 26'' OH to 14   | 75               |                |          |                          |
| CASING/INJECTION            |                   | 20'' 106.5# J5  | 55/BTC to 1475   |                |          |                          |
| MD                          |                   | 1475            |                  |                |          |                          |
| EST BHST/BHCT               |                   | 92-F / 85-F     | (0.8-F/100-      | FT)            |          |                          |
| NOTES Standby charges start | after WTC has bee | n on location f | or more than 4-h | rs.            |          |                          |
|                             |                   |                 | VOLUMES          |                |          |                          |
| FLUID NAME                  | LENGTH            | OD              | ID               | XS             | FACTOR   | VOLUME                   |
|                             | (ft)              | (in.)           | (in.)            | (%)            | (bbl/ft) | (bbl)                    |
| Lead                        | 1180              | 26              | 20               | 50%            | 0.4021   | 474.5                    |
| Tail                        | 295               | 26              | 20               | 20%            | 0.3217   | 94.9                     |
| SHOE JOINT                  | 40                | 20              | 19               |                | 0.3507   | 14.0                     |
|                             |                   |                 | FLUIDS           |                |          |                          |
|                             |                   |                 | SPACER           |                |          |                          |
|                             |                   | Fresh           | n Water+Green D  | уе             |          |                          |
| VOLUME                      |                   | 20-bbl          |                  |                |          |                          |
|                             |                   |                 | Lead             |                |          |                          |
|                             | 100%              | Class H+4% Ge   | l+1% CaCl2+0.00  | 5GPS NoFoam V1 | Ą        |                          |
| VOLUME                      |                   | 1535-SX         |                  |                |          | 475.7-bbls               |
| DENSITY                     | 13.5-ppg          |                 |                  |                |          |                          |
| YIELD                       | 1.74-cf/sx        |                 |                  |                |          |                          |
| MIX WATER                   |                   | 9.18-gps        |                  |                |          |                          |
| TOP OF CEMENT               |                   | Surface         |                  |                |          |                          |
| EXCESS                      |                   | 50%             |                  |                |          |                          |

Advance Energy Partners Long Shot Unit SWD #1 Lea County, NM

## Surface



|               |                                                | PROPOSAL#: 210624154130-6 |  |  |  |  |
|---------------|------------------------------------------------|---------------------------|--|--|--|--|
|               | Tail                                           |                           |  |  |  |  |
|               | 100% Class H+1% CaCl2+1% SMS+0.005GPS NoFoam \ | V1A                       |  |  |  |  |
| VOLUME        | 455-SX                                         | 109.4-bbls                |  |  |  |  |
| DENSITY       | 14.8-ppg                                       |                           |  |  |  |  |
| YIELD         | 1.35-cf/sx                                     |                           |  |  |  |  |
| MIX WATER     | 6.39-gps                                       |                           |  |  |  |  |
| TOP OF CEMENT | 1180-ft                                        |                           |  |  |  |  |
| EXCESS        | 20%                                            |                           |  |  |  |  |
|               | DISPLACEMENT                                   |                           |  |  |  |  |
| Displacement  |                                                |                           |  |  |  |  |
| VOLUME        | 503.2-bbl                                      |                           |  |  |  |  |

## **1st Intermediate**



|                       |                           |                  |                  |                  | PI                   | ROPOSAL#: 210624154130-E |  |
|-----------------------|---------------------------|------------------|------------------|------------------|----------------------|--------------------------|--|
|                       |                           | WELL             | INFORMATI        | ION              |                      |                          |  |
| MUD                   | 10# Brine                 |                  |                  |                  |                      |                          |  |
| PREVIOUS PIPE         |                           | 20'' 106.5# C    | SG to 1475       |                  |                      |                          |  |
| OPEN HOLE             |                           | 17.5" OH to 3    | 3030             |                  |                      |                          |  |
| CASING/INJECTION      |                           | 16'' 84# J55/    | BTC to 3030      |                  |                      |                          |  |
| MD                    |                           | 3030             |                  |                  |                      |                          |  |
| EST BHST/BHCT         |                           | 105-F / 94       | -F (0.8-F/100    | -FT)             |                      |                          |  |
| NOTES Standby charges | s start after WTC has bee | en on location f | or more than 4-h | rs.              |                      |                          |  |
|                       |                           |                  |                  |                  |                      |                          |  |
|                       |                           |                  | VOLUMES          |                  |                      |                          |  |
| FLUID NA              | ME LENGTH                 | OD               | ID               | XS               | FACTOR               | VOLUME                   |  |
|                       | (ft)                      | (in.)            | (in.)            | (%)              | (bbl/ft)             | (bbl)                    |  |
| Lead                  | 1475                      | 19               | 16               |                  | 0.1020               | 150.4                    |  |
| Lead                  | 949                       | 17.5             | 16               | 50%              | 0.0732               | 69.5                     |  |
| Tail                  | 606                       | 17.5             | 16               | 20%              | 0.0586               | 35.5                     |  |
| SHOE JOI              | NT 40                     | 16               | 15.01            |                  | 0.2188               | 8.8                      |  |
|                       |                           |                  | FLUIDS           |                  |                      |                          |  |
|                       |                           |                  | SPACER           |                  |                      |                          |  |
|                       |                           | Fresl            | h Water+Green D  | уе               |                      |                          |  |
| VOLUME                |                           | 20-bbl           |                  |                  |                      |                          |  |
|                       |                           |                  | Lead             |                  |                      |                          |  |
| 50% B_Poz+50%         | Class H+10% Gel+5% SA     | LT+0.5% SMS+(    | 0.1% C-20+3PPS G | ilsonite+0.25PPS | Pol-E-Flake+0.005GPS | S NoFoam V1A             |  |
| VOLUME                |                           | 495-SX           |                  |                  |                      | 220.4-bbls               |  |
| DENSITY               |                           | 11.8-ppg         |                  |                  |                      |                          |  |
| YIELD                 |                           | 2.5-cf/sx        |                  |                  |                      |                          |  |
| MIX WATER             |                           | 14.19-gps        |                  |                  |                      |                          |  |
| TOP OF CEMENT         |                           | Surface          |                  |                  |                      |                          |  |
| EXCESS                |                           | 50%              |                  |                  |                      |                          |  |

Advance Energy Partners Long Shot Unit SWD #1 Lea County, NM

## **1st Intermediate**



|               |                                         | PROPOSAL#: 210624154130-B |
|---------------|-----------------------------------------|---------------------------|
|               | Tail                                    |                           |
|               | 100% Class H+0.2% SMS+0.005GPS NoFoam V | 1A                        |
| VOLUME        | 210-SX                                  | 44.1-bbls                 |
| DENSITY       | 15.6-ppg                                |                           |
| YIELD         | 1.18-cf/sx                              |                           |
| MIX WATER     | 5.26-gps                                |                           |
| TOP OF CEMENT | 2424-ft                                 |                           |
| EXCESS        | 20%                                     |                           |
|               | DISPLACEMENT                            |                           |
|               | Displacement                            |                           |
| VOLUME        | 654.4-bbl                               |                           |

## 2nd Intermediate



|                                        |                         |                                  |                                    |                  |                    | PROPOSAL#: 210624154130-E |
|----------------------------------------|-------------------------|----------------------------------|------------------------------------|------------------|--------------------|---------------------------|
|                                        |                         | WELL                             | INFORMATI                          | ON               |                    |                           |
| MUD                                    | D 10# Brine             |                                  |                                    |                  |                    |                           |
| PREVIOUS PIPE                          |                         | 16" 84# CSG t                    | to 3030                            |                  |                    |                           |
| OPEN HOLE                              |                         | 14.75" OH to                     | 5020                               |                  |                    |                           |
| CASING/INJECTION                       |                         | 13.375'' 68# L                   | .80/EZ-GO FJ3 t                    | o 5020           |                    |                           |
| MD                                     |                         | 5020                             |                                    |                  |                    |                           |
| EST BHST/BHCT<br>NOTES Standby charges | start after WTC has bee | 121-F / 105<br>en on location fo | 5-F (0.8-F/10<br>or more than 4-hr | D-FT)<br>s.      |                    |                           |
|                                        |                         |                                  | VOLUMES                            |                  |                    |                           |
| FLUID NA                               | ME LENGTH               | OD                               | ID                                 | XS               | FACTOR             | VOLUME                    |
|                                        | (ft)                    | (in.)                            | (in.)                              | (%)              | (bbl/ft)           | (bbl)                     |
| Lead                                   | 3030                    | 15.01                            | 13.375                             |                  | 0.0451             | 136.6                     |
| Lead                                   | 986                     | 14.75                            | 13.375                             | 50%              | 0.0563             | 55.6                      |
| Tail                                   | 1004                    | 14.75                            | 13.375                             | 20%              | 0.0451             | 45.3                      |
| SHOE JOI                               | NT 40                   | 13.375                           | 12.415                             |                  | 0.1497             | 6.0                       |
|                                        |                         |                                  | FLUIDS                             |                  |                    |                           |
|                                        |                         |                                  | SPACER                             |                  |                    |                           |
|                                        |                         |                                  | Fresh Water                        |                  |                    |                           |
| VOLUME                                 |                         | 20-bbl                           |                                    |                  |                    |                           |
|                                        |                         |                                  | Lead                               |                  |                    |                           |
| 50% B_Poz+50% (                        | Class H+10% Gel+5% SA   | LT+0.5% SMS+0                    | 0.1% C-20+3PPS G                   | ilsonite+0.25PPS | Pol-E-Flake+0.0050 | GPS NoFoam V1A            |
| VOLUME                                 |                         | 435-SX                           |                                    |                  |                    | 193.7-bbls                |
| DENSITY                                |                         | 11.8-ppg                         |                                    |                  |                    |                           |
| YIELD                                  |                         | 2.5-cf/sx                        |                                    |                  |                    |                           |
| MIX WATER                              |                         | 14.19-gps                        |                                    |                  |                    |                           |
| TOP OF CEMENT                          |                         | Surface                          |                                    |                  |                    |                           |
| EXCESS                                 |                         | 50%                              |                                    |                  |                    |                           |

Advance Energy Partners Long Shot Unit SWD #1 Lea County, NM

## 2nd Intermediate



|               |                                                | PROPOSAL#: 210624154130-B |
|---------------|------------------------------------------------|---------------------------|
|               | Tail                                           |                           |
|               | 100% Class H+0.2% SMS+0.1% C-20+0.005GPS NoFoa | m V1A                     |
| VOLUME        | 245-SX                                         | 51.9-bbls                 |
| DENSITY       | 15.6-ppg                                       |                           |
| YIELD         | 1.19-cf/sx                                     |                           |
| MIX WATER     | 5.26-gps                                       |                           |
| TOP OF CEMENT | 4016-ft                                        |                           |
| EXCESS        | 20%                                            |                           |
|               | DISPLACEMENT                                   |                           |
|               | Displacement                                   |                           |
| VOLUME        | 745.6-bbl                                      |                           |

## Production



|               |                    |                          |                   |                   |                   |                      | PROPOSAL#: 210624154130-B |  |  |  |
|---------------|--------------------|--------------------------|-------------------|-------------------|-------------------|----------------------|---------------------------|--|--|--|
|               |                    |                          | WELL              | INFORMATI         | ON                |                      |                           |  |  |  |
| MUD           |                    |                          | 9.2# Cut Br       | ine               |                   |                      |                           |  |  |  |
|               |                    | 13.375'' 68# CSG to 5020 |                   |                   |                   |                      |                           |  |  |  |
| PREVIOUS PIPE |                    |                          |                   |                   |                   |                      |                           |  |  |  |
|               |                    |                          | 12.25" OH to      | 12000             |                   |                      |                           |  |  |  |
| OPEN HOLE     |                    |                          |                   |                   |                   |                      |                           |  |  |  |
|               |                    |                          | 9.625'' 53.5#     | HCP110/BTC to     | 12000             |                      |                           |  |  |  |
| CASING/INJECT |                    |                          |                   |                   |                   |                      |                           |  |  |  |
| MD            |                    |                          | 12000             |                   |                   |                      |                           |  |  |  |
| EST BHST/BHCT |                    |                          | 176-F / 140       | )-F (0.8-F/10     | 0-FT)             |                      |                           |  |  |  |
| NOTES Stand   | by charges start a | fter WTC has bee         | en on location fo | or more than 8-hi | S.                |                      |                           |  |  |  |
| SPACE         |                    | K: 1-PPB R-1300; (       | J.5-PPB Suspend   | dacem 6302; 2.5   | -PPB Soda Ash; 1  | 0-PPB ZoneSeal       |                           |  |  |  |
|               | VOLUMES            |                          |                   |                   |                   |                      |                           |  |  |  |
| FL            | UID NAME           | LENGTH                   | OD                | ID                | XS                | FACTOR               | VOLUME                    |  |  |  |
|               |                    | (ft)                     | (in.)             | (in.)             | (%)               | (bbl/ft)             | (bbl)                     |  |  |  |
|               | Lead               | 5020                     | 12.415            | 9.625             |                   | 0.0597               | 299.8                     |  |  |  |
|               | Lead               | 6405                     | 12.25             | 9.625             | 50%               | 0.0837               | 535.9                     |  |  |  |
|               | Tail               | 575                      | 12.25             | 9.625             | 20%               | 0.0669               | 38.5                      |  |  |  |
| SI            | HOE JOINT          | 40                       | 9.625             | 8.535             |                   | 0.0708               | 2.8                       |  |  |  |
|               |                    |                          |                   | FLUIDS            |                   |                      |                           |  |  |  |
|               |                    |                          |                   | SPACER            |                   |                      |                           |  |  |  |
|               | Fresh V            | Vater+ 2.5PPB Sc         | da Ash +1PPB R    | -1300+0.5PPB Su   | uspendaCem 630    | 2+10PPB Zone Seal    |                           |  |  |  |
|               |                    |                          |                   |                   |                   |                      |                           |  |  |  |
| VOLUME        |                    |                          | 40-bbl            |                   |                   |                      |                           |  |  |  |
| DENSITY       |                    |                          | 8.34-ppg          |                   |                   |                      |                           |  |  |  |
|               |                    |                          |                   | Lead              |                   |                      |                           |  |  |  |
| 50% B_        | Poz+50% Class H+   | -10% Gel+5% SAL          | T+0.5% SMS+0.     | 65% C-20+3PPS (   | Gilsonite+0.25PPS | S Pol-E-Flake+0.005G | PS NoFoam V1A             |  |  |  |
| VOLUME        |                    |                          | 1875-SX           |                   |                   |                      | 838.2-bbls                |  |  |  |
| DENSITY       |                    |                          | 11.8-ppg          |                   |                   |                      |                           |  |  |  |
| YIELD         |                    |                          | 2.51-cf/sx        |                   |                   |                      |                           |  |  |  |
| MIX WATER     |                    |                          | 14.2-gps          |                   |                   |                      |                           |  |  |  |
| TOP OF CEMEN  | Т                  |                          | Surface           |                   |                   |                      |                           |  |  |  |
| EXCESS        |                    |                          | 50%               |                   |                   |                      |                           |  |  |  |

Advance Energy Partners Long Shot Unit SWD #1 Lea County, NM

## Production

|               |                                                                     | dessa, Texas              |
|---------------|---------------------------------------------------------------------|---------------------------|
|               |                                                                     | PROPOSAL#: 210624154130-B |
|               | Tail                                                                |                           |
|               | 100% Class H+0.05% SuspendaCem 6302+0.5% C-20+0.5% C-47B+0.005GPS N | oFoam V1A                 |
| VOLUME        | 200-SX                                                              | 42.4-bbls                 |
| DENSITY       | 15.6-ppg                                                            |                           |
| YIELD         | 1.19-cf/sx                                                          |                           |
| MIX WATER     | 5.22-gps                                                            |                           |
| TOP OF CEMENT | 11425-ft                                                            |                           |
| EXCESS        | 20%                                                                 |                           |
|               | DISPLACEMENT                                                        |                           |
|               | Displacement                                                        |                           |
| VOLUME        | 846.3-bbl                                                           |                           |

## **Drilling Liner**



PROPOSAL#: 210624154130-

|                        |                    | WELL                                                      | INFORMATI        | ON              |                        |                |  |  |
|------------------------|--------------------|-----------------------------------------------------------|------------------|-----------------|------------------------|----------------|--|--|
| MUD 12.5# OBM          |                    |                                                           |                  |                 |                        |                |  |  |
| PREVIOUS PIPE          |                    | 9.625'' 53.5#                                             | CSG to 12000     |                 |                        |                |  |  |
| 8.75" OH to 16298      |                    |                                                           |                  |                 |                        |                |  |  |
| CASING/INJECTION       |                    | 5.5" 20# TBG to 11800; 7.625" 39# Q125/EZ-GO FJ3 to 16298 |                  |                 |                        |                |  |  |
|                        |                    | 16209                                                     |                  |                 |                        |                |  |  |
|                        |                    | 10290<br>211 E / 172 E /0 8 E /100 ET)                    |                  |                 |                        |                |  |  |
|                        |                    | 211-F / 1/2-F (U.8-F/100-F1)                              |                  |                 |                        |                |  |  |
| LINEK TUP 11800        |                    |                                                           |                  |                 |                        |                |  |  |
|                        |                    |                                                           |                  | 5.              |                        |                |  |  |
| VOLUMES                |                    |                                                           |                  |                 |                        |                |  |  |
| FLUID NAME             | LENGTH             | OD                                                        | ID               | XS              | FACTOR                 | VOLUME         |  |  |
|                        | (ft)               | (in.)                                                     | (in.)            | (%)             | (bbl/ft)               | (bbl)          |  |  |
| Tail                   | 200                | 8.535                                                     | 7.625            |                 | 0.0143                 | 2.9            |  |  |
| Tail                   | 4298               | 8.75                                                      | 7.625            | 0%              | 0.0179                 | 76.9           |  |  |
| SHOE JOINT             | 40                 | 7.625                                                     | 6.625            |                 | 0.0426                 | 1.7            |  |  |
|                        |                    |                                                           | FLUIDS           |                 |                        |                |  |  |
|                        |                    |                                                           | SPACER           |                 |                        |                |  |  |
| Wt Spacor 21 22GDB W/a | tor+10000 DobyScri | 16 4220+252 23                                            | DDB Barito+2CDB  | HoloScrub 1210  | 140 SGPR HoloScrub 420 | 15+1000 P 1200 |  |  |
| Wt. Spacer 51.52GPB Wa |                    | 10 4320+232.23                                            | SPPB Baille+20Pb |                 | -0.50PB HOleSci ub 450 | J2+1668 K-1200 |  |  |
| VOLUME                 |                    | 40-bbl                                                    |                  |                 |                        |                |  |  |
| DENSITY 13-ppg         |                    |                                                           |                  |                 |                        |                |  |  |
|                        |                    |                                                           | Tail             |                 |                        |                |  |  |
| 50% B_Poz+50% Cl       | ass H+2% Gel+5% S  | SALT+0.05% Sus                                            | spendaCem 6302-  | +0.75% C-20+0.7 | % C-47B+0.005GPS NoF   | Foam V1A       |  |  |
| VOLUME                 |                    | 350-SX                                                    |                  |                 |                        | 81.7-bbls      |  |  |
| DENSITY                |                    | 14.2-ppg                                                  |                  |                 |                        |                |  |  |
| YIELD                  |                    | 1.31-cf/sx                                                |                  |                 |                        |                |  |  |
| MIX WATER              |                    | 5.91-gps                                                  |                  |                 |                        |                |  |  |
| TOP OF CEMENT          |                    | 11800-ft                                                  |                  |                 |                        |                |  |  |
| EXCESS                 |                    | 0%                                                        |                  |                 |                        |                |  |  |
|                        |                    | DIS                                                       | SPLACEMENT       | -               |                        |                |  |  |
| Brine                  |                    |                                                           |                  |                 |                        |                |  |  |
| VOLUME                 |                    | 190.1-bbl                                                 |                  |                 |                        |                |  |  |
Advance Energy Partners Long Shot Unit SWD #1 Lea County, NM

## **Drilling Liner**



# PROPOSAL#: 210624154130-B DISPLACEMENT Wt. Displacement Spacer 31.32GPB Water+10PPB PolyScrub 4320+252.23PPB Barite+2GPB HoleScrub 4310+0.5GPB HoleScrub 4305+1PPB R-1300 VOLUME 15-bbl DENSITY 13-ppg DISPLACEMENT OBM VOLUME 246.7-bbl

|                      |        | CHEMICAL DESCRIPTIONS                                 |
|----------------------|--------|-------------------------------------------------------|
| <b>CHEMICAL NAME</b> | CODE   | DESCRIPTION                                           |
|                      |        |                                                       |
| B_Poz                | WTC228 | Poz - Fly Ash, Extender                               |
| Class H              | WTC101 | API Cement                                            |
| Class C              | WTC100 | API Cement                                            |
| Ch_Poz               | WTC237 | Poz - Fly Ash, Extender                               |
| ProLite              |        | Blended Based Cement                                  |
| Plexcrete SFA        | WTC129 | Cement Strength Enhancer                              |
| Gel                  | WTC102 | Extender                                              |
| Micro Crystal        | WTC212 | Cement Strength Enhancer                              |
| Micro Shell          | WTC209 | Cement Strength Enhancer                              |
| WTC1                 | WTC250 | Extender                                              |
| Plexcrete STE        | WTC127 | Cement Strength Enhancer                              |
| Gypsum               | WTC111 | Free Water Control, Extender                          |
| CaCl2                | WTC112 | Accelerator                                           |
| SMS                  | WTC115 | Free Water Control, Extender                          |
| SuspendaCem 6302     | WTC005 | Free Water Control, Anti-Settling Agent               |
| R-33                 | WTC243 | Lignosulfonate Retarder                               |
| R-1300               | WTC201 | Low Temperature Retarder                              |
| C-20                 | WTC223 | Lignosulfonate Retarder                               |
| C-37                 | WTC224 | Dispersant, Friction Reducer                          |
| C-47B                | WTC216 | Fluid Loss (polymers/copolymers - 300-F max)          |
| C-17                 | WTC226 | Fluid Loss and Gas Migration Control                  |
| FL-2252              | WTC007 | Fluid Loss for low density slurries.                  |
| EC-10                | WTC120 | Expanding Agent                                       |
| Gas Bond             | WTC126 | Gas Migration Control (Hydrogen Generating)           |
| Gilsonite            | WTC003 | Premium Lost Circulation Material, Free Water Control |
| Kol-Seal             | WTC107 | Lost Circulation Material                             |
| Pol-E-Flake          | WTC106 | Lost Circulation Material                             |
| Web Seal             | WTC133 | Premium Fiber Lost Circulation Material               |
| Zone Seal            | WTC207 | Premium Lost Circulation Material                     |
| NoFoam V1A           | WTC105 | Liquid Defoamer                                       |
| Water                |        | Fresh Water                                           |
| PolyScrub 4320       | WTC232 | Spacer Gelling Agent                                  |
| Barite               | WTC116 | Weighting Agent                                       |
| HoleScrub 4310       | WTC234 | Surfactant                                            |
| HoleScrub 4305       | WTC213 | Surfactant                                            |
| HoleScrub 4308       | WTC215 | Surfactant                                            |
| Soda Ash             | WTC164 | pH Control                                            |
| R-1300               | WTC201 | Low Temperature Retarder                              |
| SuspendaCem 6302     | WTC005 | Free Water Control, Anti-Settling Agent               |
| Sugar                | WTC119 | Retarder                                              |
| Al-1, Acid Inhibitor | WTC015 | Corrosion Inhibitor                                   |
| Plexcide 24L         | WTC166 | Biocide                                               |
| Corplex              | WTC134 | Corrosion Inhibitor                                   |
| Clay Max             | WTC096 | KCL Substitute                                        |
| Zone Seal            | WTC207 | Premium Lost Circulation Material                     |

|           | 0            | 18              | 17  | Ν  | 0  | Ρ           | 16  | N        | 0                | P         | 15           | N             | 0          | P          | <sup>™</sup><br>1.4                                                             | N                 | 0             | Р               | 13              | Ν             | •      | Р               | 18                         | Ν       | 0  | Р             | 17  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
|-----------|--------------|-----------------|-----|----|----|-------------|-----|----------|------------------|-----------|--------------|---------------|------------|------------|---------------------------------------------------------------------------------|-------------------|---------------|-----------------|-----------------|---------------|--------|-----------------|----------------------------|---------|----|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|           |              | <sup>^</sup> 19 | 20  | с  | в  | A           | 21  | с        | в                | A         | 22           | с             | в          | A          |                                                                                 |                   | В             | <sup>A</sup> 23 | 24              | C             | в      | A               | 19                         | с       | в  | A             | 20  | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в           |
| N         |              |                 |     |    |    |             |     |          |                  |           |              |               |            |            |                                                                                 |                   |               | -               |                 |               |        | ш               | L2                         | E       | G  | н             | E   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G           |
|           | G            | н               | E   | F  | G  | Н           | E   | F        | G                | н         | E            | F             | G          | Н          | E                                                                               | F                 | G             | H               |                 | к 🕥           | 6      | 333             | - <b>6</b> - <sup>13</sup> |         |    |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł           |
| К         | J            | I               | L   | К  | L  | ×.          | -   | К        | J                |           | L            | к             | J          | I          |                                                                                 | К                 | J             | 1               |                 |               | J      | Berry           | IS                         | к       | J  |               | t   | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| N         | 0            | Ρ               | М   | N  | 0  | р           | М   | N        | 0                | ₽         | м            | N             | 0          | 62         | М                                                                               | N                 | 0             | Р               |                 |               | 0      | L2              | H                          | N       | •  | P             | M   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| с         | в            | <sup>^</sup> 30 | 29  | с  | в  | A           | 28  | с        | В                | A         | 27           |               |            | 431        | 4329                                                                            | с                 | в             | <sup>A</sup> 26 |                 | C             | В      | <sup>A</sup> 25 |                            | с       | в  | 30            | 29  | Contraction of the second seco | в           |
|           |              | 0               | -   | 1  |    |             |     |          | 6                |           | F            | F             | G          | н          | Dela                                                                            | aware Basi        | n Rd          |                 |                 | . — — – 42542 | G      | н               | L2                         | F       | G  | н             | E   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G           |
| F         | G            | H               | L.  | F  | G  | п           |     | F        |                  |           |              | 42062         | 42.068     |            | 31                                                                              | 987               |               | _               |                 | К             |        |                 |                            |         |    |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| К         | J            | 1               | L   | К  | J  | I           | L   | К        | J                | 1         | L            | N             | 0          |            | Ø                                                                               | к                 |               |                 |                 | N             | J      | 1               | L 3                        | K       | J  | 1             | L   | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9           |
| N         | 0            | Р               | м   | N  | 0  | Ρ           | М   | N        | 0                | Р         | M            | 43180         | •          | P          |                                                                                 | N                 | 0             | <b>-</b>        | ø               | *             | 0      | P               | 43593                      | N       | 0  | P             | M   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| С         | в            | <sup>^</sup> 31 | 32  | с  | В  |             | 33  | с        |                  | A         | 34           | C             |            |            | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 538 c             | B             |                 |                 | ° 🗇           | в      |                 |                            | С       | В  | 31            | 32  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В           |
| F         | G            | н               | E   | F  | G  | н           | E   | F        | G                | 244       | 24437<br>438 | F             | 9<br>45354 | 453        |                                                                                 | E                 | G             |                 | - 47.046 =      | F             | G      | 41856           | L2                         | F       | G  | н             | E   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6           |
|           |              |                 |     |    |    |             | -   |          |                  |           | 42636-       | 42635         | 40192      | - +9£14    |                                                                                 |                   | 2             | 45027           | = = : 47 07 1 = |               |        |                 | 42477                      | к       | J  |               |     | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J           |
| K         | J            |                 |     | K  | J  |             | M   | K N      | 0                |           |              |               | 42 009     | -1         | M                                                                               |                   | 7             | 36844 P         |                 | N             |        | P               | 026                        | 602     |    |               | M   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| N         | 0            | P               | M   | N  | •  | ° 7         | 21S | R 3 3    | E                | 46646     | M            | N             | X-45355-   |            |                                                                                 | 793               |               | 46663 892       | M<br>L4         | ø             | 0      | •3,6            | 0 42150                    | P       | 0  | P T           | 21S | R 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E°          |
| L3        | L2           | 06              | 05  | L3 | L2 | L1 <b>]</b> | 22S | R/3 3    | <b>E</b> 12      | L1        | 03           | L3            | L2         | L1         | - 46696 - 4<br>045448                                                           |                   | L2            | 46664           |                 | L3 <b>2</b>   | 4805   | 01              | Ø<br>14                    | L3      | L2 | ы <b>Т</b>    | 22S | R 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>E</b> 12 |
| F         | G            | н               | E   | F  |    | н           | E   | l<br>I F | G                | н         | Е            | /<br>  F      | G          | н          |                                                                                 |                   | 6699 g        | 45447           |                 | E             | G      | н               | L5                         | F       | G  | н             | Е   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G           |
| к         | J            |                 | L   | ĸ  |    |             |     | к        | l<br>l<br>l<br>l |           |              | к             | J          |            | 1                                                                               |                   |               |                 |                 | ĸ             | 37701  |                 | L 6                        | К       | J  | 1             | L   | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J           |
|           |              |                 |     |    |    |             |     | 1        |                  | P         |              | 1             |            | 1          | =======================================                                         | 02 <sup>.</sup> W | +23 - 46 697- | 4666            | М               |               |        | - 48263 - P     | L7                         | l<br>l  | 0  | P             | м   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| N         | 0            | P<br>A<br>07    |     | N  | 0  | Р \         | 04  |          |                  | 46647     |              | , N           |            |            | 000                                                                             | 0- 467<br>0       |               | 02              | 43891-          |               | -48265 | A 12            |                            | /<br>-/ | -  | 06<br>^<br>07 | 08  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| С         | В            | 07              |     | С  | В  | A           | 09  | с        | в<br>36583       |           |              | c             | В          |            |                                                                                 | c                 | В             | Н               | E               | с             | G      |                 | L2                         | С       | В  |               |     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В           |
| F         | G            | Н               | E   | F  | G  | н           | E   | F        | G                | н         | Е            |               |            | н          | E                                                                               | F                 | G             | 41804           |                 | F             | 33435  |                 | 306                        | F       | G  | н             | E   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G           |
| K         | J            | I               | L   | К  | J  | L           | L   | к        | <b>\</b>         |           | L            |               | J          |            |                                                                                 |                   |               |                 |                 | ĸ             |        |                 | CH                         | К       | J  | 1             | L   | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J           |
| N         | 0            | P               | м   | N  | 0  | P           | M   | N        | 0                | I P       |              | LONG<br>32.41 | SHOT       | 5WD        | ) NO. 1                                                                         | N                 | 0             |                 |                 | N I           | 0      | 1               |                            | N       | 0  | P             | м   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | و           |
|           |              | <sup>A</sup> 18 | 17  |    |    |             | 16  |          | 0133             | -46649    | 15           | 2809          | 96         | <b>U</b> J | 14                                                                              |                   | 0             |                 | 13              |               |        | А<br>А<br>Ц     |                            | c       | в  | 18            | 17  | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в           |
| С         | В            |                 |     | C  | В  | A           |     | C        | В                | H         |              | *             | 8          | A          |                                                                                 |                   | 6             | R               |                 |               |        | R 33            |                            | 2       |    |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| F         | G            | н               | E   | F  | G  | н           | E   | F        | G                |           | E            | <b>``</b> .   | G          | н          | E                                                                               | F                 | G             | н               | E _             | F             | G      | 2 S             | S<br>-2-13                 | F       | G  | Н             | E   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G           |
| 1         | " = 0.       | 6 Mi            | L   | К  | J  | I           | L   | К        | L                |           | L            | К             | J          |            |                                                                                 | к                 | J             | 1               | Ľ               | К             | IJ     | Τ2              | T 2                        | К       | J  | I             | L   | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| ⊢1::<br>0 | 38,00<br>1⁄2 | 0<br>%          | 3⁄4 | 1  | 0  | P           | м   | 2        | 0                |           | м            | N             | 0          | Ρ          | М                                                                               | N                 | 0             | P               | М               | N             | 0      | Р               | L4                         | N       | 0  | Ρ             | М   | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| Ĺ         | /=           | A 10            | 20  |    |    |             | 21  | N        | liles            | • • • • • | 22           | D C           | в          | A          | 23                                                                              | С                 | в             | A               | 24              | с             | В      | A               | 19                         | с       | В  | A             | 20  | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в           |



#### Long Shot SWD No. 1 1-Mile Area of Review List

| API (30-025) | WELL NAME                         | WELL TYPE | STATUS                  | OPERATOR                              | TVD (FT.) | LATITUDE (NAD83 DD) | LONGITUDE (NAD83 DD) | FIELD                                     | DATE DRILLED |
|--------------|-----------------------------------|-----------|-------------------------|---------------------------------------|-----------|---------------------|----------------------|-------------------------------------------|--------------|
| 01793        | PRE-ONGARD WELL #001              | Oil       | Plugged (site released) | PRE-ONGARD WELL OPERATOR              | 3705      | 32.42983630         | -103.54965970        |                                           | 1/1/1900     |
| 41364        | BATTLE #001H                      | Oil       | Active                  | MARATHON OIL PERMIAN LLC              | 11011     | 32.44209290         | -103.55294040        | [97929] WC-025 G-06 S213326D, BONE SPRING | 7/1/2014     |
| 41804        | BEVO 11 FEDERAL #004H             | Oil       | Active                  | COG OPERATING LLC                     | 10914     | 32.40092470         | -103.53752140        | [28432] GRAMA RIDGE, BONE SPRINGS, WEST   | 10/25/2014   |
| 42009        | BATTLE #002H                      | Oil       | Active                  | MARATHON OIL PERMIAN LLC              | 0         | 32.44319920         | -103.55715180        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/16/2015    |
| 43891        | TENDERLOIN FEDERAL COM #004H      | Oil       | Active                  | COG OPERATING LLC                     | 10878     | 32.40078500         | -103.53249700        | [28432] GRAMA RIDGE, BONE SPRINGS, WEST   | 10/1/2017    |
| 43909        | MERCHANT STATE UNIT #503H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 10985     | 32.44226800         | -103.54447700        | [97929] WC-025 G-06 S213326D, BONE SPRING | 9/15/2017    |
| 44896        | MERCHANT STATE UNIT #506H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44225100         | -103.53572500        | [97929] WC-025 G-06 S213326D, BONE SPRING | 7/22/2018    |
| 45027        | MERCHANT STATE UNIT #506Y         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 11044     | 32.44225000         | -103.53563500        | [37870] LEGG, BONE SPRING                 | 7/28/2017    |
| 45084        | MERCHANT STATE UNIT #601H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 12131     | 32.44205900         | -103.55069900        | [97929] WC-025 G-06 S213326D, BONE SPRING | 8/24/2018    |
| 45267        | MERCHANT STATE UNIT #504H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 11,103    | 32.44211900         | -103.53898300        | [97929] WC-025 G-06 S213326D, BONE SPRING | 11/12/2018   |
| 45268        | MERCHANT STATE UNIT #505H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 10,930    | 32.44212000         | -103.53888500        | [97929] WC-025 G-06 S213326D, BONE SPRING | 11/7/2018    |
| 45354        | BATTLE 34 WC FEE #013H            | Oil       | Never Drilled           | MARATHON OIL PERMIAN LLC              | 0         | 32.44123306         | -103.55691655        | [98033] WC-025 G-10 S213328O, WOLFCAMP    | 12/31/9999   |
| 45355        | BATTLE 34 SB FEE #015H            | Oil       | New                     | MARATHON OIL PERMIAN LLC              | 0         | 32.44123651         | -103.55681931        | [97929] WC-025 G-06 S213326D, BONE SPRING | 5/26/2019    |
| 45356        | BATTLE 34 AV FEE #017H            | Oil       | New                     | MARATHON OIL PERMIAN LLC              | 0         | 32.44124336         | -103.55662497        | [97929] WC-025 G-06 S213326D, BONE SPRING | 6/4/2019     |
| 45357        | BATTLE 34 WD FEE #019C            | Oil       | Cancelled               | MARATHON OIL PERMIAN LLC              | 0         | 32.44124005         | -103.55672215        | [98093] WC-025 G-09 S243232M, BONE SPRING | 12/31/9999   |
| 45358        | BATTLE 34 WC FEE #020C            | Oil       | Never Drilled           | MARATHON OIL PERMIAN LLC              | 0         | 32.44124711         | -103.55652791        | [98033] WC-025 G-10 S213328O, WOLFCAMP    | 12/31/9999   |
| 45447        | MERCHANT STATE UNIT #512H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44211500         | -103.53640600        | [97929] WC-025 G-06 S213326D, BONE SPRING | 2/11/2019    |
| 45448        | MERCHANT STATE UNIT #602H         | Oil       | Active                  | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 11,880    | 32.44200000         | -103.54856400        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/16/2019    |
| 45792        | BATTLE 34 AV FEE #025H            | Oil       | New                     | MARATHON OIL PERMIAN LLC              | 0         | 32.44124005         | -103.55672215        | [97929] WC-025 G-06 S213326D, BONE SPRING | 5/31/2019    |
| 46363        | MERCHANT STATE UNIT #551H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44200100         | -103.54869000        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/31/9999   |
| 46662        | MERCHANT STATE UNIT #554H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44225300         | -103.53684900        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/29/2019   |
| 46663        | MERCHANT STATE UNIT #605H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44225300         | -103.53695600        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/31/9999   |
| 46664        | MERCHANT STATE UNIT #606H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44225300         | -103.55674300        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/31/9999   |
| 46695        | MERCHANT STATE UNIT #301H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44200100         | -103.54882100        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/13/2020    |
| 46696        | MERCHANT STATE UNIT #501H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44200100         | -103.54907900        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/10/2020    |
| 46697        | MERCHANT STATE UNIT #511H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199200         | -103.54365500        | [97929] WC-025 G-06 S213326D, BONE SPRING | 3/10/2020    |
| 46698        | MERCHANT STATE UNIT #553H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199100         | -103.54354800        | [97929] WC-025 G-06 S213326D, BONE SPRING | 3/9/2020     |
| 46699        | MERCHANT STATE UNIT #604H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199100         | -103.54344100        | [97929] WC-025 G-06 S213326D, BONE SPRING | 7/10/2020    |
| 46700        | MERCHANT STATE UNIT #509H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44200100         | -103.54895000        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/12/2020    |
| 46701        | MERCHANT STATE UNIT #302H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199700         | -103.54651600        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/31/9999   |
| 46702        | MERCHANT STATE UNIT #510H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199600         | -103.54640900        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/22/2020    |
| 46703        | MERCHANT STATE UNIT #552H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199600         | -103.54630200        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/21/2020    |
| 46704        | MERCHANT STATE UNIT #603H         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199600         | -103.54619500        | [97929] WC-025 G-06 S213326D, BONE SPRING | 1/19/2020    |
| 47046        | LOCO DINERO 36 2L STATE COM #004H | Oil       | New                     | MARSHALL & WINSTON INC                | 0         | 32.44208500         | -103.53349100        | [97929] WC-025 G-06 S213326D, BONE SPRING | 2/23/2021    |
| 47423        | MERCHANT STATE UNIT #604Y         | Oil       | New                     | ADVANCE ENERGY PARTNERS HAT MESA, LLC | 0         | 32.44199100         | -103.54331600        | [97929] WC-025 G-06 S213326D, BONE SPRING | 12/31/9999   |





## Long Shot SWD No.1 1-Mile Offset Operators and Lessees List

| S/T/R        | QQ UNIT LETTER(S)       | OPERATOR                              | MINERAL LESSEES     | MINERAL OWNER | ADDRESS 1                     | ADDRESS 2                  |
|--------------|-------------------------|---------------------------------------|---------------------|---------------|-------------------------------|----------------------------|
| 34/21S/33E   | I,J,N,O,P               | MARATHON OIL PERMIAN LLC              | - ·                 | -             | 5555 San Felipe St.           | Houston, TX 77056          |
| 35/21S/33E   | ENTIRE SECTION          | ADVANCE ENERGY PARTNERS HAT MESA, LLC | -                   | -             | 11490 Westheimer Rd., Ste 950 | Houston, TX 77077          |
| 36/21S/33E   | М                       | MARSHALL & WINSTON INC                | -                   | -             | P.O. Box 50880                | Midland, TX 79710          |
| 01/22S/33E   | D,E,L,M                 | COG OPERATING LLC                     | -                   | -             | 600 W Illinois Ave            | Midland, TX 79701          |
|              | G,J,O                   | -                                     | COG OPERATING LLC   | -             | 600 W ILLINOIS AVE            | MIDLAND TX 797014882       |
| 02/22S/33E   | ENTIRE SECTION          | ADVANCE ENERGY PARTNERS HAT MESA, LLC | -                   | -             | 11490 Westheimer Rd., Ste 950 | Houston, TX 77077          |
|              | A,B,C,F,G,H,I,J,K,N,O,P | -                                     | DEVON ENERGYCO LP   | -             | 333 W SHERIDAN AVE            | OKLAHOMA CITY OK 731025010 |
| 10/T22S/R33E | E,F,G,H,I,J,K,L         | -                                     | FIRST INTL BK OF AZ | -             | PO BOX 1546                   | MESA AZ 85201              |
|              | A,B,C                   | -                                     | CHEVRON USA INC     | -             | 1400 SMITH ST                 | HOUSTON TX 770027327       |
| 11/T22S/R33E | A,H,I,P                 | COG OPERATING LLC                     |                     | -             | 600 W Illinois Ave            | Midland, TX 79701          |
|              | D,E,L                   | -                                     | FIRST INTL BK OF AZ | -             | PO BOX 1546                   | MESA AZ 85201              |
|              | A,B,C,E,G,H,I,J,K       | -                                     | COG OPERATING LLC   | -             | 600 W ILLINOIS AVE            | MIDLAND TX 797014882       |
| 12/22S/33E   | D,E                     | COG OPERATING LLC                     | -                   | -             | 600 W Illinois Ave            | Midland, TX 79701          |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |
|              |                         |                                       |                     |               |                               |                            |

| Offset Produced Water Analysis - Long Shot SWD #1 |            |                  |       |      |        |                        |      |          |            |             |          |               |               |              |                 |             |         |
|---------------------------------------------------|------------|------------------|-------|------|--------|------------------------|------|----------|------------|-------------|----------|---------------|---------------|--------------|-----------------|-------------|---------|
| wellname                                          | api        | section township | range | unit | county | formation              | ph   | tds_mgL  | sodium_mgL | calcium_mgL | iron_mgL | magnesium_mgL | manganese_mgL | chloride_mgL | bicarbonate_mgL | sulfate_mgL | co2_mgL |
| SNAPPING 2 STATE #014H                            | 3001542688 | 2 26S            | 31E   | Ρ    | EDDY   | WOLFCAMP               | 7.3  | 81366.4  | 26319.4    | 2687.4      | 4 26.1   | 326.7         |               | 50281.2      |                 | 399.7       | 100     |
| BELLOQ 2 STATE #002H                              | 3001542895 | 2 235            | 31E   | С    | EDDY   | WOLFCAMP               | 6.8  | 119471.8 | 37359.2    | 5659.1      | 1 22.4   | 746.1         |               | 73172.5      |                 | 1035.5      | 250     |
| BILBREY BASIN 5 STATE COM #001H                   | 3002540987 | 5 225            | 32E   | Ν    | LEA    | BONE SPRING 2ND SAND   | 6.6  | 109780.5 | 35119.1    | 4996.7      | 7 74.6   | 609.4         | 1.33          | 67200        | 97              | 7.5         | 100     |
| GAUCHO UNIT #012H                                 | 3002541564 | 20 225           | 34E   | А    | Lea    | BONE SPRING 2ND SAND   | 7    | 109808.2 | 35202.7    | 5341.4      | 4 30.8   | 755.2         | 0.62          | 66984.9      | 280.6           | 1030        | 320     |
| GAUCHO UNIT #013H                                 | 3002541565 | 20 225           | 34E   | А    | Lea    | BONE SPRING 2ND SAND   | 7.5  | 139904.6 | 46238.1    | 6396.8      | 3 47.2   | 863.7         | 2.1           | 85080.8      | 292.8           | 740         | 550     |
| GAUCHO UNIT #015H                                 | 3002541566 | 5 20 22S         | 34E   | D    | Lea    | BONE SPRING 2ND SAND   | 7.5  | 184420.1 | 55686.4    | 10540.1     | L 47.6   | 1426          | 1.31          | . 115274     | 268.4           | 765         | 770     |
| GAUCHO UNIT #007H                                 | 3002534440 | 17 22S           | 34E   | К    | Lea    | BONE SPRING 2ND SAND   | 6.4  | 151777.7 | 50554.2    | 5768.6      | 5 86.9   | 717.9         | 1.29          | 91600        | 244             | 0           | 200     |
| GAUCHO UNIT #007H                                 | 3002534440 | ) 17 22S         | 34E   | К    | Lea    | BONE SPRING 2ND SAND   | 6.7  |          | 49601      | 21          | 1 0      | 1             | C             | 76000        | 281             | 586         | 352     |
| GAUCHO UNIT #012H                                 | 3002541564 | 20 225           | 34E   | А    | Lea    | BONE SPRING 2ND SAND   | 6.9  |          | 37508      | 4553        | 3 17     | 806           | 0.65          | 68000        | 427             | 97          | 286     |
| GAUCHO UNIT #013H                                 | 3002541565 | 20 225           | 34E   | А    | Lea    | BONE SPRING 2ND SAND   | 7    |          | 47943      | 1788        | 3 4.2    | 408           | 0.11          | . 77000      | 305             | 1600        | 330     |
| GAUCHO UNIT #014H                                 | 3002541571 | 20 225           | 34E   | D    | Lea    | BONE SPRING 2ND SAND   | 6.7  |          | 46477      | 4803        | 3 13     | 800           | 1.3           | 82000        | 220             | 624         | 330     |
| GAUCHO UNIT #007H                                 | 3002534440 | 17 22S           | 34E   | К    | Lea    | BONE SPRING 2ND SAND   | 6.5  | 166697.6 | 53586.1    | 9072        | 47.4     | 981.2         | 1.27          | 101677.1     | 61              | 675         | 350     |
| GAUCHO UNIT #015H                                 | 3002541566 | 5 20 22S         | 34E   | D    | Lea    | BONE SPRING 2ND SAND   | 5.42 | 158146.5 | 50243.6    | 9024        | 42.8     | 1042          | 1.08          | 96378.3      | 231.8           | 710         | 860     |
| GAUCHO UNIT #011H                                 | 3002541184 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 6.8  |          | 43301      | 5338        | 3 0      | 769           | C             | 78300        | 122             | 640         | 120     |
| GAUCHO UNIT #011H                                 | 3002541184 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 7.5  | 156141.2 | 48642.5    | 6969.8      | 3 30.2   | 943.9         | 1.46          | 97977.9      | 305             | 1005        | 470     |
| GAUCHO UNIT #010H                                 | 3002541183 | 3 17 22S         | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 6.4  |          | 46191      | 3712        | 2 0      | 560           | C             | 79230        | 183             | 700         | 100     |
| GAUCHO UNIT #011H                                 | 3002541184 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 6.5  |          | 48879      | 6182        | 2 11     | 802           | 0.12          | 88836        | 122             | 1240        | 70      |
| GAUCHO UNIT #006                                  | 3002534789 | 17 225           | 34E   | Ρ    | Lea    | BONE SPRING 3RD SAND   | 6.8  |          | 32062      | 4909        | 9 163    | 1027          | 2.4           | 61000        | 305             | 16          | 220     |
| GAUCHO UNIT #010H                                 | 3002541183 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 6.8  |          | 29047      | 8190        | 14       | 1367          | 0.41          | 63000        | 207             | 308         | 176     |
| GAUCHO UNIT #011H                                 | 3002541184 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 6.8  |          | 32064      | 8057        | 7 15     | 1472          | 0.58          | 67000        | 183             | 1309        | 220     |
| GAUCHO UNIT #010H                                 | 3002541183 | 17 22S           | 34E   | 0    | Lea    | BONE SPRING 3RD SAND   | 5.58 | 165155.1 | 52757.1    | 9222        | 54.2     | 1040          | 1.44          | 100777.3     | 219.6           | 560         | 600     |
| GAUCHO 21 FEDERAL #002H                           | 3002540626 | 5 21 22S         | 34E   | М    | Lea    | DELAWARE-BRUSHY CANYON | 5.9  | 266467.8 | 71664.2    | 20660.8     | 3 50.2   | 3492.5        | 3.8           | 167562       | 366             | 0           | 400     |
| GAUCHO 21 FEDERAL #002H                           | 3002540626 | 5 21 22S         | 34E   | М    | Lea    | DELAWARE-BRUSHY CANYON | 6.5  |          | 95433      | 33964       | 4 36     | 5149          | 6.9           | 224384       | 366             | 210         | 200     |
| GAUCHO 21 FEDERAL #002H                           | 3002540626 | 5 21 22S         | 34E   | М    | Lea    | DELAWARE-BRUSHY CANYON | 5.8  |          | 70837      | 26020       | 39       | 4726          | 7.7           | 169000       | 37              | 341         | 880     |
| BELL LAKE UNIT #009                               | 3002520261 | 18 235           | 34E   | К    | LEA    | BONE SPRING            |      | 204652   |            |             |          |               |               | 130000       | 512             | 260         |         |
| BELL LAKE UNIT #002                               | 3002508489 | 30 235           | 34E   | Ν    | LEA    | DELAWARE               |      | 52115    |            |             |          |               |               | 32200        | 451             | 529         |         |
| BELL LAKE UNIT #006                               | 3002508483 | 6 235            | 34E   | 0    | LEA    | DEVONIAN               | 7    | 71078    |            |             |          |               |               | 42200        | 500             | 1000        | I       |
| ANTELOPE RIDGE UNIT #003                          | 3002521082 | 34 235           | 34E   | К    | LEA    | DEVONIAN               | 6.9  | 80187    |            |             |          |               |               | 47900        | 476             | 900         | 1       |

## Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated June 23, 2021 and ending with the issue dated June 23, 2021.

Publisher

Sworn and subscribed to before me this 23rd day of June 2021.

ac

**Business Manager** 



This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said LEGALS

LEGAL NOTICE June 23, 2021

Advance Energy Partners Hat Mesa LLC, 11490 Westheimer Rd. Ste 950, Houston, TX 77077, is filling Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division for administrative approval for its salt water disposal well Long Shot SWD No. 1. The proposed well will be located 2100' FSL and 1490' FWL in Section 2, Township 22S, Range 33E in Lea County, New Mexico. Disposal water will be sourced from area production, and will be injected into the Devonian-Silurian formation (determined by offset log analysis) through an open hole completion between a maximum applied for top of 16,086 feet to a maximum depth of 18,250 feet. The maximum surface injection pressure will not exceed 3,217 psi with a rate as limited by pressure. Interested parties opposing the action must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Drive, Santa Fe, New Mexico 87505, within 15 days. Additional information can be obtained from the applicant's agent, Lonquist & Co., LLC, at (512) 600-1777. #36584

67112661

00255463

LONQUIST & CO., LLC 12912 HILL COUNTRY BLVD, STE F200 AUSTIN, TX 78738

PETROLEUM ENERGY Engineers advisors

AUSTIN · HOUSTON · WICHITA · DENVER · CALGARY

## **DETERMINATION AND NOTICE OF AFFECTED PARTIES – NEW MEXICO**

If an operator or mineral lessee has legal acreage or leases within one mile of the proposed salt water disposal well, their contact information is collected for notification purposes. Legal acreage of offset operators is gathered from the New Mexico Oil Conservation District's Permitting website. Minerals leased from the federal government are determined by referencing the Bureau of Land Management's Land and Mineral System Reports database. Minerals leased from the state government are determined by referencing the New Mexico State Land Office's Data Access database. Contact information for the affected parties is then extracted from the reports that were filed with the appropriate regulatory agency. Should any private minerals that are not public information fall within the one-mile radius, a title search was performed to discover the current lessee of those minerals or identifying the mineral owner of the acreage.

Notices were sent for the Long Shot SWD #1 application by mailing them a copy of Form C-108 on 10/18/2021. The individual tracking numbers are attached in the following pages of this application. Receipt of each application will be monitored and presented to the Oil Conservation Division upon request.

Kannone Il Howey

Ramona Hovey Sr. Petroleum Engineer

Project: Advance Energy Partners Hat Mesa LLC Long Shot SWD #1

|                                                | Long Shot SWD #1                                 |                         |              |               |
|------------------------------------------------|--------------------------------------------------|-------------------------|--------------|---------------|
|                                                | Advance Energy Partners Hat Mesa, LL             | C                       |              |               |
| NM OCD                                         | MAILING ADDRESS                                  | TRACKING #              | DATE SHIPPED | DATE RECEIVED |
|                                                | 1625 N FRENCH DR HORRS NM 88240                  | 9314869904300087841507, | 10/18/2021,  | 11/9/2021     |
|                                                | 1025 N. FRENCH DR., HOBBS, NW 86240              | FEDEX 775081081531      | 11/01/21     | 11/9/2021     |
| OIL CONSERVATION DIVISION DISTRICT IV          | 1220 S ST FRANCIS DR, SANTA FE, NM 87505         | 9314869904300087841514  | 10/18/2021   | 10/26/2021    |
| SURFACE LANDOWNER                              | MAILING ADDRESS                                  |                         |              |               |
| Faith Crosby, OGMD/Water, NM State Land Office | 310 Old Santa Fe Trail Santa Fe, NM 87501        | 9314869904300087841521  | 10/18/2021   | 10/25/2021    |
| GOVERNMENT AGENCY                              | MAILING ADDRESS                                  |                         |              |               |
| Bureau of Land Management                      | 620 E Greene Street Carlsbad, NM 88220           | 9314869904300087963636  | 10/18/2021   | 10/25/2021    |
| Faith Crosby, OGMD/Water, NM State Land Office | 310 Old Santa Fe Trail Santa Fe, NM 87501        | 9314869904300087841521  | 10/18/2021   | 10/25/2021    |
| AFFECTED PARTIES                               | MAILING ADDRESS                                  |                         |              |               |
| MARATHON OIL PERMIAN LLC                       | 5555 SAN FELIPE ST., HOUSTON, TX 77056           | 9314869904300087841538  | 10/18/2021   | 10/29/2021    |
| MARSHALL & WINSTON INC.                        | P.O. BOX 50880, MIDLAND, TX 79710                | 9314869904300087841545  | 10/18/2021   | 10/21/2021    |
| COG OPERATING LLC                              | 600 W ILLINOIS AVE, MIDLAND TX 79701-4882        | 9314869904300087841552  | 10/18/2021   | 10/22/2021    |
| DEVON ENERGYCO LP                              | 333 W SHERIDAN AVE, OKLAHOMA CITY, OK 73102-5010 | 9314869904300088069924  | 10/25/2021   | 11/1/2021     |
| WELLS FARGO BANK NA                            | 101 N PHILLIPS AVE, SIOUX FALLS, SD 57104-6738   | 9314869904300088156648  | 10/27/2021   | 11/1/2021     |
| CHEVRON USA INC.                               | 1400 SMITH ST., HOUSTON, TX 77002-7327           | 9314869904300087841583  | 10/18/2021   | 10/29/2021    |
|                                                |                                                  |                         |              |               |
|                                                |                                                  |                         |              |               |

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

OIL CONSERVATION DIVISION DISTRICT II 1625 N. FRENCH DR. HOBBS, NM 88240

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kannone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

#### OIL CONSERVATION DIVISION DISTRICT IV 1220 S ST FRANCIS DR SANTA FE, NM 87505

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kannone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

Faith Crosby OGMD/Water, NM State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87501

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

amore " Hovey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

MARATHON OIL PERMIAN LLC 5555 SAN FELIPE ST. HOUSTON, TX 77056

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

amore & Hovey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

MARSHALL & WINSTON INC. P.O. BOX 50880 MIDLAND, TX 79710

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kannone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

COG OPERATING LLC CONOCOPHILLIP 600 W ILLINOIS AVE MIDLAND TX 79701-4882

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

amore " Hovey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

DEVEON ENERGYCO LP 333 W SHERIDAN AVE OKLAHOMA CITY, OK 73102-5010

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kannone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

WELLS FARGO BANK NA 101 N PHILLIPS AVE SIOUX FALLS, SD 57104-6738

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kamone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON

PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

CHEVRON USA INC. 1400 SMITH ST. HOUSTON, TX 77002-7327

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

amore & Hovey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC

AUSTIN HOUSTON PETROLEUM ENERGY ENGINEERS ADVISORS WICHITA CALGARY

www.lonquist.com

October 18, 2021

#### BUREAU OF LAND MANAGEMENT 620 E GREENE STREET CARLSBAD, NM 88220

#### Subject: Long Shot SWD No. 1 Authorization to Inject -

To Whom It May Concern:

Attached for your review is Form C-108, Application for Authorization to Inject, and its supplemental documents prepared for Advance Energy Partners Hat Mesa LLC's Long Shot SWD No. 1 well. Section XIV of Form C-108 requires that the surface land owner on which the well is located and each leasehold operator within a one-half mile radius of the proposed well location be furnished with the application.

According to the New Mexico Oil Conservation Division, surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date in which this application was mailed to them.

Any questions should be directed towards OWL SWD Operating, LLC's agent, Lonquist & Co., LLC.

Regards,

Kannone Il Howey

Ramona K. Hovey Sr. Petroleum Engineer Lonquist & Co., LLC



#### TRACK ANOTHER SHIPMENT



| 11/10/21, 10:41 AM            | Detailed Tracking    |                                                     |                           |  |  |  |  |  |  |
|-------------------------------|----------------------|-----------------------------------------------------|---------------------------|--|--|--|--|--|--|
| 7:08 AM                       | HOBBS, NM            | At local FedEx facili                               | ty                        |  |  |  |  |  |  |
| Thursday, November 4,<br>2021 |                      |                                                     |                           |  |  |  |  |  |  |
| 11:00 AM                      | HOBBS, NM            | Delay<br>Customer not available or business closed. |                           |  |  |  |  |  |  |
| 9:29 AM                       | HOBBS, NM            | At local FedEx facili                               | ty                        |  |  |  |  |  |  |
| 9:29 AM                       | HOBBS, NM            | On FedEx vehicle fo                                 | r delivery                |  |  |  |  |  |  |
| 8:47 AM                       | HOBBS, NM            | At local FedEx facili                               | ty                        |  |  |  |  |  |  |
| 6:15 AM                       | LUBBOCK, TX          | facility                                            |                           |  |  |  |  |  |  |
| 4:38 AM                       | MEMPHIS, TN          | Departed FedEx hul                                  | 0                         |  |  |  |  |  |  |
| Tuesday, November 2, 2021     |                      |                                                     |                           |  |  |  |  |  |  |
| 6:31 PM                       | MEMPHIS, TN          | Arrived at FedEx hu                                 | b                         |  |  |  |  |  |  |
| Monday, November 1,<br>2021   |                      |                                                     |                           |  |  |  |  |  |  |
| 8:56 PM                       | HOUSTON, TX          | Left FedEx origin fa                                | cility                    |  |  |  |  |  |  |
| 6:42 PM                       | HOUSTON, TX          | Picked up                                           |                           |  |  |  |  |  |  |
| 11:17 AM                      |                      | Shipment information                                | information sent to FedEx |  |  |  |  |  |  |
|                               | Expand History       | $\checkmark$                                        |                           |  |  |  |  |  |  |
| Shipment Facts                |                      |                                                     |                           |  |  |  |  |  |  |
| TRACKING NUMBER               | SERVICE              |                                                     | DOOR TAG NUMBER           |  |  |  |  |  |  |
| 775081081531                  | FedEx 2Day AM        |                                                     | DT106046676015            |  |  |  |  |  |  |
| WEIGHT                        | DELIVERED TO         |                                                     | TOTAL PIECES              |  |  |  |  |  |  |
| 0.5 lbs / 0.23 kgs            | FedEx Location       |                                                     | 1                         |  |  |  |  |  |  |
| TOTAL SHIPMENT WEIGHT         | TERMS                |                                                     | SHIPPER REFERENCE         |  |  |  |  |  |  |
| 0.5 lbs / 0.23 kgs            | Shipper              |                                                     | LE160                     |  |  |  |  |  |  |
| PACKAGING                     | SPECIAL HANDLING SEC | TION                                                | SHIP DATE                 |  |  |  |  |  |  |
| FedEx Envelope                | Deliver Weekday      |                                                     | 11/1/21 🕐                 |  |  |  |  |  |  |
| STANDARD TRANSIT              | ACTUAL DELIVERY      |                                                     |                           |  |  |  |  |  |  |
| 11/3/21 before 1:00 pm 🕐      | 11/9/21 at 11:30 am  |                                                     |                           |  |  |  |  |  |  |

# **USPS Tracking**<sup>®</sup>

## Track Another Package +

## Tracking Number: 9314869904300087841514

Your item was delivered to the front desk, reception area, or mail room at 9:42 am on October 26, 2021 in SANTA FE, NM 87505.

## Solution Desk/Reception/Mail Room

October 26, 2021 at 9:42 am SANTA FE, NM 87505

Get Updates 🗸

| Text & Email Updates      | $\checkmark$ |
|---------------------------|--------------|
| Return Receipt Electronic | $\checkmark$ |
| Tracking History          | $\checkmark$ |
| Product Information       | $\sim$       |

See Less 🔨

Remove X

Feedback

## Tracking Number: 9314869904300087841521

Your item was picked up at a postal facility at 6:32 am on October 25, 2021 in SANTA FE, NM 87501.

## ✓ Delivered, Individual Picked Up at Postal Facility

October 25, 2021 at 6:32 am SANTA FE, NM 87501

Get Updates 🗸

See More 🗸

## Tracking Number: 9314869904300087963636

Your item was delivered to an individual at the address at 3:45 pm on October 25, 2021 in CARLSBAD, NM 88220.

## Solution Delivered, Left with Individual

October 25, 2021 at 3:45 pm CARLSBAD, NM 88220

Get Updates 🗸

See More 🗸

## Tracking Number: 9314869904300087841538

Remove X

Your item was delivered to the front desk, reception area, or mail room at 12:29 pm on October 29, 2021 in HOUSTON, TX 77024.

Remove Kedback

# 𝒮 Delivered, Front Desk/Reception/Mail Room

October 29, 2021 at 12:29 pm HOUSTON, TX 77024

Get Updates 🗸

See More 🗸

## Tracking Number: 9314869904300087841545

Your item has been delivered and is available at a PO Box at 10:02 am on October 21, 2021 in MIDLAND, TX 79705.

## **Or Delivered**, PO Box

October 21, 2021 at 10:02 am MIDLAND, TX 79705

Get Updates 🗸

See More 🗸

## Tracking Number: 9314869904300087841552

Your item was picked up at a postal facility at 8:30 am on October 22, 2021 in MIDLAND, TX 79702.

# ♂ Delivered, Individual Picked Up at Postal Facility

Feedback

Remove X

Remove X

11/3/21, 10:18 AM MIDLAND, TX 79702

#### Get Updates 🗸

See More 🗸

## Tracking Number: 9314869904300088069924

Your item was delivered at 8:45 am on November 1, 2021 in OKLAHOMA CITY, OK 73102.

## **⊘** Delivered

November 1, 2021 at 8:45 am OKLAHOMA CITY, OK 73102

### Get Updates 🗸

See More 🗸

### Tracking Number: 9314869904300088156648

Your item was picked up at a postal facility at 8:49 am on November 1, 2021 in SIOUX FALLS, SD 57104.

## ✓ Delivered, Individual Picked Up at Postal Facility

November 1, 2021 at 8:49 am SIOUX FALLS, SD 57104

Get Updates 🗸

See More 🗸

Feedback

Remove X

Remove X

## Tracking Number: 9314869904300087841583

Your item was delivered at 12:41 pm on October 29, 2021 in HOUSTON, TX 77002.



October 29, 2021 at 12:41 pm HOUSTON, TX 77002

Get Updates 🗸

See More 🗸

## Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs

Remove X

# **ADVANCE ENERGY PARTNERS HAT MESA LLC**

# LONG SHOT SWD #1

# **FSP Analysis**

## Lea Co., NM

Luis Canales Lesly Carter Emily Olson

July 13, 2021

## LONQUIST & CO. LLC

|        | PETROLEUM<br>Engineers | ENERGY<br>Advisors |        |
|--------|------------------------|--------------------|--------|
| A      | USTIN · HOUSTON        |                    | ΓA     |
| DENVER | COLLEGE STATION        | BATON ROUGE • EDI  | MONTON |

PETROLEUM ENERGY ENGINEERS ADVISORS

AUSTIN HOUSTON WICHITA DENVER CALGARY

## **GEOLOGIC AFFIRMATION**

I have examined available geologic and engineering data and have found no evidence of open faults or other hydrologic connection between the disposal interval and underground sources of drinking water.

Emily Olson Geologist July 2, 2021

Project:

Advance Energy Partners Hat Mesa, LLC Long Shot SWD No. 1

## Table of Contents

| 1.0   | OVERVIEW                                                                | 5 |
|-------|-------------------------------------------------------------------------|---|
| 2.0   | KEY ELEMENTS                                                            | 5 |
| 3.0   | Executive Summary                                                       | 5 |
| 4.0   | Geologic Overview                                                       | 9 |
| 5.0   | Geologic Mapping1                                                       | 3 |
| 6.0   | FSP Analysis MODEL 1 – Silurian Devonian Faults - All injectors1        | 8 |
| 7.0   | FSP Analysis MODEL 2 – Silurian Devonian Faults - only Long Shot SWD #1 | 8 |
| 8.0   | FSP Analysis MODELS 3 and 4 – Precambrian Faults4                       | 8 |
| 9.0   | FSP Analysis MODELS 5 and 6 – Basement Faults5                          | 8 |
| 10.0  | FSP Analysis MODELS 7 and 8 – Woodford Faults6                          | 8 |
| 11.0  | FSP Analysis MODELS 9 and 10 – Bone Spring Faults7                      | 8 |
| 12.0  | MODEL 1 FSP Analysis Results                                            | 8 |
| 13.0  | MODEL 2 FSP Analysis Results                                            | 8 |
| 14.0  | MODEL 3 and 4 FSP Analysis Results8                                     | 9 |
| 15.0  | MODEL 5 and 6 FSP Analysis Results9                                     | 0 |
| 16.0  | MODEL 7 and 8 FSP Analysis Results9                                     | 1 |
| 17.0  | MODEL 9 and 10 FSP Analysis Results9                                    | 2 |
| 18.0  | Recorded Seismicity9                                                    | 4 |
| 19.0  | Conclusion9                                                             | 9 |
| Appen | dix 1 - Reservoir Parameters Backup10                                   | 0 |
| Appen | dix 2 - Earthquake Backup                                               | 1 |

## **FIGURES**

| Figure 1 - Proposed location, and FSP analysis AOI.                                               | 6  |
|---------------------------------------------------------------------------------------------------|----|
| Figure 2 - Injection Target: Silurian-Devonian                                                    | 7  |
| Figure 3 - Delaware Basin generalized cross section.                                              | 8  |
| Figure 4 - Index map of West Texas geologic provinces with the location of proposed Long Shot SWD |    |
| (Keller, 1980)                                                                                    | 9  |
| Figure 5 - Stratigraphic column of the Delaware Basin                                             | 10 |
| Figure 6 - Published Regional Cross Section, annotated with key formations (Keller, 1980)         | 11 |
| Figure 7 - Structure Top of Devonian                                                              | 13 |
| Figure 8 - Structure Top of Montoya                                                               | 14 |
| Figure 9 - Cross section index map                                                                | 15 |
| Figure 10 - Structural Cross Section – Strike. Proposed injection interval in green.              | 16 |



| Figure 11 - Structural Cross Section – Dip. Proposed injection interval in green.         | 17 |
|-------------------------------------------------------------------------------------------|----|
| Figure 12 - FSP Analysis Injection Wells                                                  | 19 |
| Figure 13 - FSP injection wells input Model 1                                             | 20 |
| Figure 14 - Silurian Devonian Fault segments (13) used in FSP Analysis Models 1 and 2     | 21 |
| Figure 15 - FSP Fault input for Models 1 and 2                                            | 22 |
| Figure 16 - Local Stress Parameters used (Snee and Zoback, 2018) Models 1 thru 10         | 23 |
| Figure 17 - FSP Stress & Reservoir depth input Models 1 thru 10                           | 24 |
| Figure 18 - Injection Interval (reservoir parameters) FSP Input Models 1 thru 10          | 24 |
| Figure 19 - FSP Model 1 Input: 11 injectors and 13 Silurian Devonian fault segments       | 25 |
| Figure 20 - FSP Geomechanics Tab, Model 1 and 2                                           | 26 |
| Figure 21 - Input for Probabilistic Geomechanics Tab                                      | 27 |
| Figure 22 - FSP Probabilistic Geomechanics Tab, Model 1 and 2                             | 28 |
| Figure 23 - FSP Hydrology Tab Before Proposed Completion                                  | 29 |
| Figure 24 - Model 1 FSP Hydrology Tab                                                     | 30 |
| Figure 25 - Probabilistic Hydrology tab parameters Models 1 - 10                          | 31 |
| Figure 26 - Model 1 Probabilistic Hydrology Tab, before completion                        | 32 |
| Figure 27 - Model 1 Probabilistic Hydrology Tab, 20 years after completion                | 33 |
| Figure 28 - Model 1 Integrated Tab, Initial Conditions before Long Shot Well is completed | 34 |
| Figure 29 - Model 1 Integrated Tab, Initial Conditions                                    | 35 |
| Figure 30 - Model 1 Integrated Tab, 20 years after completion                             | 36 |
| Figure 31 - Model 1 Integrated Tab, 20 years after completion                             | 37 |
| Figure 32 - Model 2 Injector Input                                                        | 38 |
| Figure 33 - Model 2 Inputs Tab                                                            | 39 |
| Figure 34 - Model 2 Hydrology Tab, Initial Conditions                                     | 40 |
| Figure 35 - Model 2 Hydrology Results, 20 years after Completion                          | 41 |
| Figure 36 - Model 2 Probabilistic Hydrology Results Tab, Initial Conditions               | 42 |
| Figure 37 - Model 2 Probabilistic Hydrology Results Tab, 20 years after completion        | 43 |
| Figure 38 - Model 2 Integrated Results Tab, Initial Conditions                            | 44 |
| Figure 39 - Model 2 Integrated Results Tab, Initial Conditions                            | 45 |
| Figure 40 - Model 2 Integrated Results Tab, 20 years after completion                     | 46 |
| Figure 41 - Model 2 Integrated Results Tab, 20 years after completion                     | 47 |
| Figure 42 - FSP Fault input for Models 3 and 4                                            | 48 |
| Figure 43 - Precambrian fault segments (6) used in FSP Analysis Models 3 and 4            | 49 |
| Figure 44 - FSP Model 3 Input: 10 injectors and 6 Precambrian fault segments              | 50 |
| Figure 45 - FSP Model 4 Input: Only injector and 6 Precambrian fault segments             | 51 |
| Figure 46 - FSP Geomechanics Tab, Model 3 and 4                                           | 52 |
| Figure 47 - FSP Probabilistic Geomechanics Tab, Model 3 and 4                             | 53 |
| Figure 48 - Model 3 Integrated Tab, Initial Conditions                                    | 54 |
| Figure 49 - Model 3 Integrated Tab, 20 years after completion                             | 55 |
| Figure 50 - Model 4 Integrated Tab, Initial Conditions                                    | 56 |
| Figure 51 - Model 4 Integrated Tab, 20 years after completion                             | 57 |
| Figure 52 - FSP Fault input for Models 5 and 6                                            | 58 |
| Figure 53 - Basement fault segments (5) used in FSP Analysis Models 5 and 6               | 59 |
| Figure 54 - FSP Model 5 Input: 11 injectors and 5 Basement fault segments                 | 60 |



| Figure 55 - | FSP Model 6 Input: Only injectors and 5 Basement fault segments      | 61 |
|-------------|----------------------------------------------------------------------|----|
| Figure 56 - | FSP Geomechanics Tab, Model 5 and 6                                  | 62 |
| Figure 57 - | FSP Probabilistic Geomechanics Tab, Model 5 and 6.                   | 63 |
| Figure 58 - | Model 5 Integrated Tab, Initial Conditions                           | 64 |
| Figure 59 - | Model 5 Integrated Tab, 20 years after completion                    | 65 |
| Figure 60 - | Model 6 Integrated Tab, Initial Conditions                           | 66 |
| Figure 61 - | Model 6 Integrated Tab, 20 years after completion                    | 67 |
| Figure 62 - | FSP Fault input for Models 7 and 8                                   | 68 |
| Figure 63 - | Woodford fault segments (3) used in FSP Analysis Models 7 and 8      | 69 |
| Figure 64 - | FSP Model 7 Input: 10 injectors and 3 Woodford fault segments        | 70 |
| Figure 65 - | FSP Model 8 Input: Only injector and 3 Woodford fault segments       | 71 |
| Figure 66 - | FSP Geomechanics Tab, Model 7 and 8                                  | 72 |
| Figure 67 - | FSP Probabilistic Geomechanics Tab, Model 7 and 8                    | 73 |
| Figure 68 - | Model 7 Integrated Tab, Initial Conditions                           | 74 |
| Figure 69 - | Model 7 Integrated Tab, 20 years after completion                    | 75 |
| Figure 70 - | Model 8 Integrated Tab, Initial Conditions                           | 76 |
| Figure 71 - | Model 8 Integrated Tab, 20 years after completion                    | 77 |
| Figure 72 - | FSP Fault input for Models 9 and 10                                  | 78 |
| Figure 73 - | Bone Spring fault segments (35) used in FSP Analysis Models 9 and 10 | 79 |
| Figure 74 - | FSP Model 9 Input: 10 injectors and 35 Bone Spring fault segments    | 80 |
| Figure 75 - | FSP Model 10 Input: Only injector and 35 Bone Spring fault segments  | 81 |
| Figure 76 - | FSP Geomechanics Tab, Model 9 and 10                                 | 82 |
| Figure 77 - | FSP Probabilistic Geomechanics Tab, Model 9 and 10.                  | 83 |
| Figure 78 - | Model 9 Integrated Tab, Initial Conditions                           | 84 |
| Figure 79 - | Model 9 Integrated Tab, 20 years after completion                    | 85 |
| Figure 80 - | Model 10 Integrated Tab, Initial Conditions                          | 86 |
| Figure 81 - | Model 10 Integrated Tab, 20 years after completion                   | 87 |
| Figure 82 - | MWTSO reported seismicity                                            | 94 |
| Figure 83 - | USGS Earthquake catalog within Long Shot FSP AOI                     | 95 |
| Figure 84 - | MWTSO Earthquake catalog within Long Shot FSP AOI                    | 96 |
| Figure 85 - | Earthquake Cross section                                             | 97 |

## **TABLES**

| Table 1 - Model 1 FSP Results per fault segment     | 88 |
|-----------------------------------------------------|----|
| Table 2 - Model 2 FSP Results per fault segment     | 88 |
| Table 3 - Model 3 & 4 FSP Results per fault segment |    |
| Table 4 - Model 5 & 6 FSP Results per fault segment | 90 |
| Table 5 - Model 7 & 8 FSP Results per fault segment | 91 |
| Table 6 - Model 9 & 10 FSP Results per fault segmen | 93 |
| Table 7 - Earthquake catalog within AOI             | 98 |



## 1.0 OVERVIEW

The following report by Lonquist & Co. addresses the requested Fault Slip Potential (FSP) analysis on behalf of Advance Energy Partners Hat Mesa LLC for The Long Shot SWD #1 permit request.

## 2.0 KEY ELEMENTS

- 1. Structure maps on the tops of the proposed injection formation, centered on the proposed well location.
- 2. Two structural cross sections annotated with the top proposed injection formation and injection interval: one oriented along the strike of the proposed formation and the other perpendicular to the strike of the proposed formation.
- 3. Maps include an aerial extent greater than a radius of 5.6 miles centered on the proposed Long Shot location.
- 4. FSP modeling using Stanford Center for Induced and Triggered Seismicity (SCITS) software.
  - a. Model Area of Interest (AOI) with radius of 9.08 Km.
  - b. Model input includes known subsurface fault locations with faults segmented to a maximum length of 3 Km.
  - c. Two models run for each known fault (ten models) with year-end at least 20 years into the future (Figure 1).
    - i. First model run includes all permitted injection well volumes (obtained from DrillingInfo) in the AOI plus the proposed injection well
    - ii. Second model run includes only the proposed injection well.

## 3.0 Executive Summary

The location of Long Shot SWD #1, the selected 10 injection wells, and faults in Lea County, New Mexico are shown on Figure 1. Long Shot SWD #1 permit application is targeting the Sildurian - Devonian formations at a measured depth of 16,086' to 18,250' (Figure 2).

The FSP models included utilize Silurian-Devonian, Precambrian, Basement, Woodford, and Bone Spring level fault traces documented by the Texas Bureau of Economic Geology (BEG) Integrated Synthesis of the Permian Basin

http://www.beg.utexas.edu/resprog/permianbasin/gis.htm.

The Bone Spring fault traces cut the highest, in a stratigraphic sense, within the AOI (Figure 3).

Injection fluids will be confined to the Devonian-Fusselman formation which is approximately 1000 ft above basement rock. None of the FSP models run utilizing these fault traces, proposed injection interval reservoir properties, and surrounding fluid injection data, demonstrated evidence these faults would slip.



#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS







| 0' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                       | MARCEN AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rustler @ 1,446'                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Salado @ 1,924'                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Casing Information                                                       |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Capitan Reef Sequence @                                                                                                                                                                                               | 3,006'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | Labol                                                                    | 1                                                                                                      | 2                                                                                               | 3                                                         | 4                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Capitan Reef @ 3,8                                                                                                                                                                                                    | 14'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | Type                                                                     | Surface                                                                                                | Intermediate 1                                                                                  | Intermediate 2                                            | Production                                                                                                                                                                      | Liner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | OD                                                                       | 20"                                                                                                    | 16"                                                                                             | 13-3/8"                                                   | 9-5/8"                                                                                                                                                                          | 7-5/8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delaware @ 4,973'                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | WT                                                                       | 0.500"                                                                                                 | 0.495"                                                                                          | 0.480"                                                    | 0.545"                                                                                                                                                                          | 0.500"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | ID                                                                       | 19.000"                                                                                                | 15.010*                                                                                         | 12 415"                                                   | 8 535"                                                                                                                                                                          | 6.625"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Duite ID                                                                 | 40.0408                                                                                                | 14.000                                                                                          | 10.050                                                    | 0.000                                                                                                                                                                           | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                         | Drift ID                                                                 | 10.012                                                                                                 | 14.022                                                                                          | 12.259                                                    | 8.379                                                                                                                                                                           | 6.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Brushy Canyon @ 7                                                                                                                                                                                                     | ,133'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                         | COD                                                                      | 21.000"                                                                                                | 17.000*                                                                                         | 13.375"                                                   | 10.625"                                                                                                                                                                         | 7.625"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Weight                                                                   | 106.5 lb/ft                                                                                            | 84 lb/ft                                                                                        | 68 lb/ft                                                  | 53.5 lb/ft                                                                                                                                                                      | 39 lb/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pone Spring 60 6 77                                                                                                                                                                                                   | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | Grade                                                                    | J-55 BTC                                                                                               | J-55 BTC                                                                                        | L-80 EZ-GO FJ3                                            | HCP-110 BTC                                                                                                                                                                     | Q-125 EZ-GO FJ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8,500' -<br>9,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bone Spring @ 0,//                                                                                                                                                                                                    | <b>o</b> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | Hole Size                                                                | 26*                                                                                                    | 17-1/2"                                                                                         | 14-3/4"                                                   | 12-1/4"                                                                                                                                                                         | 8-3/4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Depth Set                                                                | 1,475'                                                                                                 | 3,030'                                                                                          | 5,020'                                                    | 12,000'                                                                                                                                                                         | Top: 11,800<br>Bottom: 16,298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | тос                                                                      | Circulate to surface                                                                                   | Circulate to surface                                                                            | Circulate to<br>surface                                   | Circulate to<br>surface                                                                                                                                                         | 11,800'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                         | Volume                                                                   | 1990 sks                                                                                               | 705 sks                                                                                         | 680 sks                                                   | 2075 sks                                                                                                                                                                        | 350 sks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wolfcamp @ 11,968                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | % Excess                                                                 | Lead: 50%<br>Tail: 20%                                                                                 | Lead: 50%<br>Tail: 20%                                                                          | Lead: 50%<br>Tail: 20%                                    | Lead: 50%<br>Tail: 20%                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 | Γ                                                         | Tubing I                                                                                                                                                                        | nformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12,500' -<br>13,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strawn @ 13,246'<br>Atoka @ 13,439'                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           | Tubing I                                                                                                                                                                        | nformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           | Tubing I                                                                                                                                                                        | nformation<br>6<br>7"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                          |                                                                                                        |                                                                                                 | -                                                         | Tubing I<br>Label<br>OD                                                                                                                                                         | 6<br>7"<br>5-1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime (                                                                                                                                       | 2 15.398'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                          |                                                                                                        |                                                                                                 |                                                           | Tubing I<br>Label<br>OD<br>WT                                                                                                                                                   | nformation<br>6<br>7"<br>5-1/2"<br>0.406"<br>0.361"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @                                                                                                                                       | <ul><li>(4) →</li><li>(4) →<!--</th--><th>Packer</th><td>)<br/>16,248'</td><td></td><td></td><td></td><td>Tubing I<br/>Label<br/>OD<br/>WT<br/>ID</td><td>6<br/>7"<br/>5-1/2"<br/>0.408"<br/>0.361"<br/>6.184"<br/>4.778"</td></li></ul>                                                                                                                                                                       | Packer                                                                    | )<br>16,248'                                                             |                                                                                                        |                                                                                                 |                                                           | Tubing I<br>Label<br>OD<br>WT<br>ID                                                                                                                                             | 6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.778"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -<br>16,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'                                                                                           | 2 15.398'<br>5 <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Packer                                                                    | 9 16,248'                                                                |                                                                                                        |                                                                                                 |                                                           | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID                                                                                                                                 | 6<br>7*<br>5-1/2*<br>0.408*<br>0.361*<br>6.184*<br>4.778*<br>6.059*<br>4.653*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -<br>16,000' -<br>16,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime (<br>Woodford @ 16,098'<br>Devonian @ 16,298'                                                                                           | 2 15,398'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Packer @                                                                  | ⊉ 16,248'                                                                | Injecti                                                                                                | on Interval                                                                                     |                                                           | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD                                                                                                                          | nformation<br>6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -<br>16,000' -<br>16,500' -<br>17,000' -<br>17,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29                                                                      | 2 15,398'<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Packer @                                                                  | ) 16,248'                                                                | Injecti<br>16,291<br>Deveni                                                                            | on Interval<br>3' - 18,248'                                                                     |                                                           | Tubing I       Label       OD       WT       ID       Drift ID       COD       Weight                                                                                           | 6           7"           5-1/2"           0.408"           0.361"           6.184"           4.778"           6.059"           4.653"           7.000"           5.500"           29 lbm           19.8 lbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -<br>16,500' -<br>16,500' -<br>17,000' -<br>18,000' -<br>18,000' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime (<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29                                                                      | 2 15.398'<br>5<br>6<br>8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Packer                                                                    | Ø 16,248'                                                                | Injecti<br>16,29<br>Devonian                                                                           | on Interval<br>3' - 18,248'<br>& Fusselmar                                                      |                                                           | Tubing I       Label       OD       WT       ID       Drift ID       COD       Weight       Grade                                                                               | 6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>29 Ibm<br>19.8 Ibm<br>19.8 Ibm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,500' -<br>16,000' -<br>16,500' -<br>17,000' -<br>17,500' -<br>18,000' -<br>18,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime (<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Packer (                                                                  | ∮ 16,248'                                                                | Injecti<br>16,29<br>Devonian                                                                           | on Interval<br>3' - 18,248'<br>& Fusselmar                                                      |                                                           | Tubing I       Label       OD       WT       ID       Drift ID       COD       Weight       Grade       Depth Set                                                               | 6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>6.500"<br>2.9 lb/T<br>19.8 lb/T<br>19.8 lb/T<br>HC P110 EZGO FJ<br>HC P110 EZGO FJ<br>U - 11.750"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12,500' 13,000' 13,500' 14,000' 14,500' 15,500' 15,500' 16,500' 16,500' 17,500' 17,500' 18,000' 18,500' 18,500' 19,000' 19,000'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'                                                  | 2 15,398'<br>5 2 18,<br>6 8'<br>TD @ 18,<br>Base of Fus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Packer @                                                                  | ) 16,248'                                                                | Injecti<br>16,29<br>Devonian                                                                           | on Interval<br>3' - 18,248'<br>& Fusselmar                                                      |                                                           | Tubing I       Label       OD       WT       ID       Drift ID       COD       Weight       Grade       Dopth Set                                                               | nformation<br>6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>29 lbm<br>19.8 lbm<br>HC P110 EZGO FJ3<br>HC P110 EZGO FJ3<br>HC P110 EZGO FJ3<br>HC P110 EZGO FJ3<br>C' - 11.750"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,000 -<br>15,500' -<br>16,500' -<br>17,500' -<br>18,000' -<br>18,500' -<br>19,000' -<br>19,500' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'                                                 | 2 15,398'<br>5<br>6<br>8'<br>TD @ 18,<br>Base of Fus<br>(Verified by logging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Packer (<br>248'<br>selman<br>while drilling)                             | ⊉ 16,248'                                                                | Injecti<br>16,29<br>Devonian                                                                           | on Interval<br>3' - 18,248'<br>& Fusselmar                                                      |                                                           | Label       OD       WT       ID       Drift ID       COD       Weight       Grade       Depth Set       Open Hole                                                              | nformation<br>6<br>7"<br>5-1/2"<br>0.406"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>29 IbM<br>19.8 IbM<br>HC P110 EZGO FJ;<br>HC P110 EZGO FJ;<br>11.750" - 16.248"<br>6-344"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12,500'<br>13,000'<br>13,500'<br>14,000'<br>15,500'<br>15,500'<br>16,000'<br>16,500'<br>17,500'<br>18,000'<br>19,500'<br>19,500'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'                                                 | TD @ 18,<br>Base of Fus<br>(Verified by logging<br>Advance Energy P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 248'<br>selman<br>g while drilling)                                       | 0 16,248'                                                                | Injecti<br>16,29<br>Devonian                                                                           | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot                                            | Unit S                                                    | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole                                                                             | nformation<br>6<br>7 <sup>4</sup><br>5-1/2 <sup>a</sup><br>0.408 <sup>a</sup><br>0.361 <sup>a</sup><br>6.184 <sup>a</sup><br>4.653 <sup>a</sup><br>7.000 <sup>a</sup><br>5.500 <sup>a</sup><br>29 lb/t<br>19.8 lb/t<br>HC P110 EZGO FJ<br>11.750 <sup>a</sup> - 16.248 <sup>a</sup><br>6-34 <sup>a</sup><br>D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,500' -<br>15,500' -<br>16,500' -<br>17,500' -<br>18,500' -<br>18,500' -<br>19,500' -<br>19,500' -<br>LONQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strawn @ 13,246'<br>Aloka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'                                                 | 15,398'<br>5<br>6<br>7<br>7<br>8'<br>TD @ 18,<br>Base of Fus<br>(Verified by logging<br>Advance Energy P<br>Country: USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 248'<br>selman<br>g while drilling)                                       | ) 16,248'<br>State/Pro                                                   | Injecti<br>16,29<br>Devonian<br>Long                                                                   | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot                                            | Unit S                                                    | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole                                                                             | nformation<br>6<br>7"<br>5-1/2"<br>0.406"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>29 Ib/n<br>19.8 Ib/n<br>HC P110 EZGO FJ:<br>11.750"<br>-11.750"<br>6-3/4"<br>D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,500' -<br>15,500' -<br>16,500' -<br>17,500' -<br>17,500' -<br>18,500' -<br>19,000' -<br>19,000' -<br>19,000' -<br>LONQ<br>PETRO<br>EXEMPT<br>AUSTIN-HOLDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime (<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'<br>UIST & CO. LLC<br>LUX EXERT<br>ELERAT STREET | TD @ 18,<br>Base of Fus<br>(Verified by logging<br>Advance Energy P<br>Country: USA<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Packer (<br>Packer (<br>selman<br>y while drilling)                       | 2 16,248'<br>State/Pro<br>Site: 1,4                                      | Injecti<br>16,29:<br>Devonian<br>Long<br>ovince: New<br>90' FWL & 2                                    | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot<br>/ Mexico<br>.100' FSL                   | Unit S                                                    | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole                                                                             | nformation<br>6<br>7"<br>5-1/2"<br>0.406"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>2.9 lb/m<br>19.8 lb/m<br>HC P110 EZGO F/J<br>HC P110 EZGO F/J<br>HC P110 EZGO F/J<br>11,750" - 16,248"<br>6-3/4"<br>D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,500' -<br>15,500' -<br>16,000' -<br>17,500' -<br>17,500' -<br>18,500' -<br>19,500' -<br>19,500' -<br>19,500' -<br>LONQ<br>ELONQ<br>DEVER-COLLEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'<br>UIST & CO. LLC                               | 2 15,398'<br>5 15,398' | Packer (a<br>248'<br>selman<br>p while drilling)<br>Partners Hat Mesa LLC | ) 16,248'<br>State/Pri<br>Site: 1,4<br>Field: Do                         | Injecti<br>16,29<br>Devonian<br>Long<br>ovince: New<br>90' FWL & 2<br>evonian-Silu                     | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot<br>r Mexico<br>,100' FSL<br>ian (Code: 97  | Unit S<br>County<br>Survey:<br>869) Well Ty               | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole<br>WDD NC<br>(Parish: Lea<br>: \$2-T22S-R33)                                | nformation<br>6<br>7*<br>5-1/2*<br>0.408*<br>0.361*<br>6.184*<br>4.778*<br>6.059*<br>4.653*<br>7.000*<br>5.500*<br>2.9 lb/t<br>19.8 lb/t<br>HC P110 EZGO FJ<br>11.750* - 16.248*<br>6-34*<br>D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12,500' -<br>13,000' -<br>13,500' -<br>14,000' -<br>14,500' -<br>15,500' -<br>15,500' -<br>16,000' -<br>16,500' -<br>17,000' -<br>17,500' -<br>18,500' -<br>19,000' -<br>19,500' -<br>LONQ<br>ELENE<br>ELENE<br>ELENE<br>ELENE<br>ELENE<br>ELENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'<br>UIST & CO, LLC                               | 4 J J J J J J J J J J J J J J J J J J J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Packer (a<br>selman<br>y while drilling)<br>Partners Hat Mesa LLC         | 9 16,248'<br>State/Pri<br>Site: 1,4<br>Field: Do                         | Injecti<br>16,291<br>Devonian<br>Long<br>ovince: New<br>90' FWL & 2<br>evonian-Silur<br>No: LE160      | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot<br>( Mexico<br>,100' FSL<br>ian (Code: 97) | Unit S'<br>County,<br>Survey:<br>869) Well Ty<br>Date: 7/ | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole                                                                             | nformation<br>6<br>7"<br>5-1/2"<br>0.406"<br>0.361"<br>6.184"<br>4.778"<br>6.059"<br>4.653"<br>7.000"<br>5.500"<br>29 Ibm<br>19.8 Ibm<br>HC P110 EZGO FX<br>HC P110 EZGO FX |
| 12,500' 13,000' 13,500' 13,500' 14,000' 14,500' 15,500' 15,500' 16,500' 16,500' 17,500' 17,500' 18,500' 19,500' 19,500' 19,500' LONQ PETRO LONQ EXAMPLE: LONQ Texas 12921M: HAUSTIN: | Strawn @ 13,246'<br>Atoka @ 13,439'<br>Morrow @ 14,074'<br>Mississippian Lime @<br>Woodford @ 16,098'<br>Devonian @ 16,298'<br>Fusselman @ 17,29<br>Montoya @ 18,248'<br>UIST & CO. LLC                               | TD @ 18,<br>Base of Fus<br>(Verified by logging<br>Advance Energy P<br>Country: USA<br>Location:<br>API No: NA<br>NMOCD District N<br>Drawn: NJP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 248'<br>selman<br>while drilling)<br>'artners Hat Mesa LLC                | 2 16,248'<br>State/Pro<br>Site: 1,4<br>Field: Do<br>Project I<br>Reviewe | Injecti<br>16,29:<br>Devonian<br>Long<br>ovince: New<br>90' FWL & 2<br>evonian-Silu<br>No: LE160<br>d: | on Interval<br>3' - 18,248'<br>& Fusselmar<br>g Shot<br>Mexico<br>,100' FSL<br>ian (Code: 97    | Unit S<br>County<br>Survey:<br>869) Well Ty<br>Date: 7/   | Tubing I<br>Label<br>OD<br>WT<br>ID<br>Drift ID<br>COD<br>Weight<br>Grade<br>Depth Set<br>Open Hole<br>WDD NC<br>(Parish: Lea<br>S2-T22S-R33<br>pe/Status: SV<br>18/2021<br>ed: | nformation<br>6<br>7"<br>5-1/2"<br>0.408"<br>0.361"<br>6.184"<br>4.653"<br>7.000"<br>5.500"<br>2.9 lb/m<br>19.8 lb/m<br>HC P110 EZGO FJ<br>HC P110 EZGO FJ<br>11,750" - 16,248"<br>6-3/4"<br>D. 1<br>3E<br>VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figure 2 - Injection Target: Silurian-Devonian


#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS



(NM Geological Society Guidebook, 31<sup>st</sup> Field Conference))

Figure 3 - Delaware Basin generalized cross section.



#### 4.0 Geologic Overview

The proposed Long Shot SWD #1 well is located in Lea County, New Mexico on the northern side of the Delaware Basin.



Figure 1. Index map of the study area showing location of the geologic cross-section.





| System                                  | Series               | Group/Formation     | General<br>Lithology                       |
|-----------------------------------------|----------------------|---------------------|--------------------------------------------|
| Tertiary                                |                      | Ogallala            | fluvial and<br>lacustrine clastics         |
| Quality                                 |                      | Fredericksburg      | limestone                                  |
| Cretaceous                              |                      | Paluxy              | sandstone                                  |
| Triassic                                |                      | Dockum              | fluvial-deltaic and<br>lacustrine clastics |
|                                         |                      | Dewey Lake          | sandstone                                  |
|                                         | Ochoan               | Rustler             | salt, anhydrite                            |
|                                         |                      | Salado              | salt                                       |
|                                         |                      | Tansill             | anhydrite                                  |
|                                         |                      | Yates               | sandstone                                  |
| Permian                                 | Guadalupian          | Seven Rivers        | anhydrite                                  |
|                                         |                      | Queen               | sandstone                                  |
|                                         |                      | San Andres-Grayburg | dolomite-sandstone                         |
|                                         | Leonardian           | Clear Fork          | limestone-dolomite                         |
|                                         |                      | Wichita             | milesione oolomine                         |
|                                         | Wolfcampian          | Wolfcamp.           |                                            |
|                                         |                      | CISCO               | shelf limestones,                          |
|                                         |                      | Canyon              | minor shale                                |
| Pennsvlvanian                           |                      | Strawn              |                                            |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      | Atokan              | - h - 1 -                                  |
|                                         |                      | Chester             | snale                                      |
|                                         |                      | Mississippian       | limentary                                  |
| Mississippian                           |                      | Lime                | IImestone                                  |
| 0                                       |                      | Woodford            | shale                                      |
| Devonian                                |                      | Devonian            | limestone                                  |
| Silurian                                |                      | Silurian            | shale, limestone                           |
|                                         |                      | Montoya             | limestone                                  |
| Ordovician                              |                      | Simpson             | shale, limestone                           |
|                                         |                      | Ellenburger         | dolomite                                   |
| PRECA                                   | igneous, metamorphic |                     |                                            |

\*(Bassett and Bentley, 1982)

Figure 5 - Stratigraphic column of the Delaware Basin

The proposed injection interval is in the Devonian Silurian section, indicated by the red arrow on the left.





Figure 3. Geologic cross-section. Numbers refer to wells listed in Table 1.

Figure 6 - Published Regional Cross Section, annotated with key formations (Keller, 1980)

The geologic maps and cross sections which follow are in keeping with these regional studies. The proposed injection interval in the Devonian/Silurian section is proximal to the Silurian Devonian fault traces utilized in this FSP analysis



# LONQUIST & CO. LLC

PETROLEUM ENERGY ENGINEERS ADVISORS

AUSTIN HOUSTON WICHITA DENVER CALGARY

#### **INJECTION INTERVAL CONFINING LAYERS – LONG SHOT SWD NO. 1**

The Devonian-Silurian injection interval for the proposed Long Shot SWD No. 1 is contained by upper and lower confining layers. The upper confining layer is the Woodford Shale, which is approximately 200 feet thick on top of the Devonian Formation. The lower confining layer is the Sylvan Shale equivalent, which serves as a boundary between the Montoya and Fusselman. This shale layer provides a basal region for the injection interval of the Devonian and Fusselman formations. The low permeability nature of both the Woodford and Sylvan Shale equivalent would provide the Devonian and Fusselman formations appropriate confinement for saltwater disposal during the life of the well.

Emily Olson Geologist Lonquist & Co., LLC July 2, 2021

Project: Advance Energy Partners Hat Mesa LLC Long Shot SWD No. 1

# 5.0 Geologic Mapping



Figure 7 - Structure Top of Devonian



#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS







Advance Energy Partners Hat Mesa LLC FSP ANALYSIS



Figure 9 - Cross section index map



#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS



Figure 10 - Structural Cross Section – Strike. Proposed injection interval in green.



Southeast





**Figure 11** - Structural Cross Section – Dip. Proposed injection interval in green.



#### 6.0 FSP Analysis MODEL 1 – Silurian Devonian Faults - All injectors

SCITS software (v 2.0) was used for the Fault Slip Potential (FSP) analysis.

Analysis includes:

- Fluid injection history from DrillingInfo within the 9.08 km AOI.
- Proposed rate (25,000 bpd ) for Long Shot SWD #1.
- Proposed injection interval reservoir parameters and average depth.
- Local stress information, pressure gradients.
- Known fault locations within AOI, with faults segmented to a maximum length of 3 km.

Two FSP models were run, including year-end analysis 20 years into the future.

- <u>Model #1:</u> includes all permitted injection wells in the AOI plus the proposed injection interval (11 wells total).
- <u>Model #2:</u> includes only the proposed injection interval.

In summary, the proposed fluid injection does not significantly increase the risk that these "buried" faults will slip.

**Figure 12** shows the location of existing fluid injection wells and the proposed Long Shot SWD #1 in relation to faults documented within the AOI. The Silurian Devonian fault traces utilized on this models are shown on **Figure 14**.





Figure 12 - FSP Analysis Injection Wells



| 4     |                           |              |                 | Ir       | jection Wells     |                       | _ <b>D</b> X            |  |  |  |  |  |
|-------|---------------------------|--------------|-----------------|----------|-------------------|-----------------------|-------------------------|--|--|--|--|--|
| ⊖ En  | ⊖ Enter Wells Manually    |              |                 |          |                   |                       |                         |  |  |  |  |  |
| ∪ LII |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
| ~ •   |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
| • Lo  | Load vveiis Complete .csv |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           | Ni           | umbor of filo b | oodor li |                   | Load cay File         |                         |  |  |  |  |  |
|       |                           | INC          |                 | eauerii  | nes.              | Load .csv File        |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       | UniqueID/Name             | Easting (km) | Northing (km)   | Year     | Month (1-12)      | InjectionVolume (bbl/ | month)                  |  |  |  |  |  |
| 547   | 0700000                   |              |                 | 0000     | 10                | -                     |                         |  |  |  |  |  |
| 517   | 2730000                   | 628.0959145  | 3588.554212     | 2020     | 10                | 254219                | ^                       |  |  |  |  |  |
| 510   | 2730000                   | 628.0959145  | 3588 554212     | 2020     | 12                | 432940                |                         |  |  |  |  |  |
| 520   | 2730000                   | 628.0959145  | 3588 554212     | 2020     | 1                 | 297650                |                         |  |  |  |  |  |
| 521   | 2730000                   | 628.0959145  | 3588 554212     | 2021     | 2                 | 298945                |                         |  |  |  |  |  |
| 522   | 2730000                   | 628 0959145  | 3588 554212     | 2021     | 3                 | 648991                |                         |  |  |  |  |  |
| 523   | 2730000                   | 628.0959145  | 3588.554212     | 2021     | 4                 | 203376                |                         |  |  |  |  |  |
| 524   | 8150000                   | 630.941771   | 3590.952774     | 2019     | 9                 | 125011                |                         |  |  |  |  |  |
| 525   | 8150000                   | 630.941771   | 3590.952774     | 2019     | 10                | 449982                |                         |  |  |  |  |  |
| 526   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 2                 | 181966                |                         |  |  |  |  |  |
| 527   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 3                 | 433820                |                         |  |  |  |  |  |
| 528   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 4                 | 77477                 |                         |  |  |  |  |  |
| 529   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 5                 | 325951                |                         |  |  |  |  |  |
| 530   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 6                 | 959762                |                         |  |  |  |  |  |
| 531   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 7                 | 984101                |                         |  |  |  |  |  |
| 532   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 8                 | 181966                |                         |  |  |  |  |  |
| 533   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 9                 | 742646                |                         |  |  |  |  |  |
| 534   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 10                | 407779                |                         |  |  |  |  |  |
| 535   | 8150000                   | 630.941771   | 3590.952774     | 2020     | 12                | 730941                |                         |  |  |  |  |  |
| 536   | 8150000                   | 630.941771   | 3590.952774     | 2021     | 1                 | 1348724               |                         |  |  |  |  |  |
| 537   | 8150000                   | 630.941771   | 3590.952774     | 2021     | 2                 | 500828                |                         |  |  |  |  |  |
| 538   | Long Shot SWD #1          | 636.6757294  | 3587.633868     | 2021     | 6                 | 760416                |                         |  |  |  |  |  |
| 539   | Quick Shot SWD #1         | 631.2162739  | 3587.737439     | 2021     | 6                 | 2281250               | ~                       |  |  |  |  |  |
|       |                           |              |                 | _        |                   | • _                   | Accente un te 100 welle |  |  |  |  |  |
| F     | ile Format Help           |              |                 | Ex       | trapolate Injecti | on? ☑                 | Accepts up to 100 wells |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           | L            |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |
|       |                           |              |                 |          |                   |                       |                         |  |  |  |  |  |

# Partial View of 11 Wells

Figure 13 - FSP injection wells input Model 1









|    |              |                | Fault Data   | l         |             | _ |   |
|----|--------------|----------------|--------------|-----------|-------------|---|---|
|    | Number of fa | ults (max 500) |              | 13        |             |   |   |
|    |              |                |              |           |             |   |   |
|    | Friction Co  | efficient mu   |              |           | 0.6         |   |   |
| ۰R | andom Fau    | ts             |              |           |             |   |   |
| ●E | nter Faults  |                |              |           |             |   |   |
|    | X [East km]  | Y [North km]   | Strike [Deg] | Dip [Deg] | Length [km] |   | _ |
| 1  | 640.2213     | 3.5952e+03     | 175.8000     | 85        | 1.6500      |   |   |
| 2  | 643.9094     | 3.5928e+03     | 242.3000     | 85        | 0.5400      |   |   |
| 3  | 643.6721     | 3.5927e+03     | 236          | 85        | 0.4900      |   |   |
| 4  | 643.4697     | 3.5925e+03     | 226.6000     | 85        | 0.2900      |   |   |
| 5  | 643.1975     | 3.5921e+03     | 209.7000     | 85        | 0.6600      |   |   |
| 6  | 642.5454     | 3.5908e+03     | 205.1000     | 85        | 2.2800      |   |   |
| 7  | 641.4563     | 3.5885e+03     | 205.7000     | 85        | 2.7900      |   |   |
| 8  | 640.6189     | 3.5865e+03     | 205          | 85        | 2.6000      |   |   |
| 9  | 639.5913     | 3.5843e+03     | 203.9000     | 85        | 2.3200      |   |   |
| 10 | 638.8172     | 3.5823e+03     | 197.9000     | 85        | 1.9400      |   |   |
| 11 | 638.4536     | 3.5811e+03     | 192.2000     | 85        | 0.7400      |   |   |
| 12 | 638.3140     | 3.5802e+03     | 188          | 85        | 1.1900      |   |   |
| 13 | 638.2104     | 3.5792e+03     | 183.3000     | 85        | 1.0500      |   |   |
|    | Load F       | ile            | Н            | elp       |             |   |   |
|    |              |                | OK           |           |             |   |   |
|    |              |                | UK           |           |             |   |   |

# Silurian Devonian Fault Segments

Figure 15 - FSP Fault input for Models 1 and 2



#### State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity

Jens-Erik Lund Snee<sup>1</sup> and Mark D. Zoback<sup>1</sup> February 2018 THE LEADING EDGE



"The Ad parameter describes the ratio between the principal stress magnitudes using a single, readily interpolated value that ranges smoothly from 0 (the most extensional possible condition of radial normal faulting) to 3 (the most compressive possible condition of radial reverse faulting)." (Snee & Zoback)

Shmax azimuth direction (N75°E) is taken from the mapped Area **4** corresponding to this FSP analysis published by Snee and Zoback. The maximum horizontal stress gradient is derived from the A Phi parameter (0.60) also for Area **4** 

Figure 16 - Local Stress Parameters used (Snee and Zoback, 2018) Models 1 thru 10

Shmax azimuth direction (N075°E) is taken from the mapped Area **4** corresponding to this FSP analysis published by Snee and Zoback (Figure 16). The maximum horizontal stress gradient is derived from the A Phi parameter (0.6) also for Area **4**.

The same stress parameters are used for all models (1 thru 10).



#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS

| Stress Data                                 |       | _ <b>D</b> X |
|---------------------------------------------|-------|--------------|
| Specify All Three Stress Gradients [psi/ft] |       |              |
| ◉ Use A-Phi Model                           |       |              |
| Vertical Stress Gradient [psi/ft]           | 1.1   |              |
| A-Phi Parameter                             | 0.6   |              |
| ☐ Min Horiz Stress Grad Available [psi/ft]  |       |              |
| Max Hor Stress Direction [deg N CW]         | 75    |              |
| Initial Res. Pressure Gradient [psi/ft]     | 0.465 |              |
| Reference Depth for Calculations [ft]       | 17168 |              |
|                                             |       |              |
|                                             |       |              |
| ОК                                          |       |              |

Figure 17 - FSP Stress & Reservoir depth input Models 1 thru 10

The following reservoir parameters were utilized for the AOI as input to FSP models 1 thru 10.

Backup information for these parameters is included in Appendix 1.

| <b>4</b>                         | Hydrology Data |      | <br>) |
|----------------------------------|----------------|------|-------|
| Inter Hydrologic Parameters      |                |      |       |
| ○ Load External Hydrologic Model |                |      |       |
| Aquifer Thickness [ft]           |                | 1542 | ]     |
| Porosity [%]                     |                | 24.4 | ]     |
| Permeability [mD]                |                | 49   | ]     |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  |                |      |       |
|                                  | ОК             |      |       |
|                                  |                |      |       |





# <u>Model 1 – Silurian Devonian</u>



Figure 19 - FSP Model 1 Input: 11 injectors and 13 Silurian Devonian fault segments



<u>Model 1 & 2</u>



Figure 20 - FSP Geomechanics Tab, Model 1 and 2

Demonstrates pore pressure to slip (psi) for each fault segment, direction of SHmax, and a Mohr diagram with frictional slip line shown in red. Faults are colored by their horizontal distance to slip according to the color scale.



| 2                                  | Uniform Distribution bounds |                   | <br>x |
|------------------------------------|-----------------------------|-------------------|-------|
| A-Phi stress model is being used   |                             |                   |       |
| Vertical Stress Grad [1.1 psi/ft]  | [                           | Plus/Minus<br>0.1 |       |
| Initial PP Grad [0.465 psi/ft]     | [                           | 0.01              |       |
| Strike Angles [183.3 degrees]      |                             | 10                |       |
| Dip Angles [85 degrees]            | [                           | 5                 |       |
| Max Horiz. Stress Dir [75 degrees] |                             | 15                |       |
| Friction Coeff Mu [0.6]            | [                           | 0.02              |       |
| A Phi Parameter [0.6]              |                             | 0.05              |       |
|                                    |                             |                   |       |
|                                    |                             |                   |       |
|                                    | ОК                          |                   |       |

Figure 21 - Input for Probabilistic Geomechanics Tab

The FSP program performs a probabilistic Monte Carlo analysis based on user specified variability of input parameters for both Geomechanical and Hydrology calculations.



#### <u>Model 1 & 2</u>



Figure 22 - FSP Probabilistic Geomechanics Tab, Model 1 and 2

Propagates the relative uncertainties through the model, producing a distribution of pore pressures to slip.





#### Model 1 – Initial conditions before Long Shot SWD #1 well is completed

Figure 23 - FSP Hydrology Tab Before Proposed Completion

Demonstrates pressure change as a function of distance from each of the 11 injection wells in Model #1.





# Model 1 - Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 24 - Model 1 FSP Hydrology Tab

Projecting pressure changes away from each injector 20 years after completion.



Probabilistic analysis input utilized for this internal radial flow-based model

| <br>Uniform Distribution bounds                                              |                       | _ <b>D</b> X |
|------------------------------------------------------------------------------|-----------------------|--------------|
| <ul> <li>Probabilistic Hydrology</li> <li>Deterministic Hydrology</li> </ul> |                       |              |
| Aquifer Thickness [1542 ft]                                                  | Plus/Minus:<br>185.04 |              |
| Porosity [24.4 %]                                                            | 2.93                  |              |
| Perm [49 mD]                                                                 | 5.88                  |              |
| fluid density [1000 kg/(m^3)]                                                | 100                   |              |
| dynamic viscosity [0.0008 Pa.s]                                              | 0                     |              |
| Fluid Compressibility [3.6e-10 Pa^-1]                                        | 0                     |              |
| Rock Compressibility [1.08e-09 Pa^-1]                                        | 0                     |              |
|                                                                              | Change Computations?  |              |
| #Hydrologic Iterations=200, change?                                          | 200                   |              |
|                                                                              |                       |              |
|                                                                              |                       |              |
|                                                                              |                       |              |
| OK                                                                           |                       |              |
|                                                                              |                       |              |

Figure 25 - Probabilistic Hydrology tab parameters Models 1 - 10





#### Model 1 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 26 - Model 1 Probabilistic Hydrology Tab, before completion

The Probabilistic Hydrology tabs combine hydrology with the Probabilistic Geomechanical cumulative distribution function (CDF) of the pore pressure to slip.







Figure 27 - Model 1 Probabilistic Hydrology Tab, 20 years after completion

The following integrated tabs show the combined results of probabilistic geomechanics and hydrology models run for all 13 Silurian Devonian fault segments.





# Model 1 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 28 - Model 1 Integrated Tab, Initial Conditions before Long Shot Well is completed

Pore Pressure change (psi) is posted for each fault segment.





#### Model 1 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 29 - Model 1 Integrated Tab, Initial Conditions

Fault Slip Potential for each fault segment is posted in percentage.







Figure 30 - Model 1 Integrated Tab, 20 years after completion

Pore Pressure change (psi) is posted for each fault segment.







Figure 31 - Model 1 Integrated Tab, 20 years after completion

Fault Slip Potential for each fault segment is posted in percentage.



# 7.0 FSP Analysis MODEL 2 – Silurian Devonian Faults - only Long Shot SWD #1

Model #2 only incorporates the proposed Long Shot System completions with proposed rate for Long Shot #1 SWD (maximum injection rate of 25,000 barrels per day = an average of 760,416 barrels per month).

All other parameters remains consistent as Model #1 i.e. faults, stress regime, reservoir, and probabilistic parameters. Below is the only change regarding Model #1 with respect to injector data.

| - |                   |              |                 | I        | njection Wells  |           |                |               | - • ×     |
|---|-------------------|--------------|-----------------|----------|-----------------|-----------|----------------|---------------|-----------|
| 0 | Enter Wells Manua | lly          |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
| ۲ | Load Wells Compl  | ete .csv     |                 |          |                 |           |                |               |           |
|   |                   | I            | Number of file  | header l | lines: 1        |           | Load .csv File | •             |           |
|   | UniqueID/Name     | Easting (km) | ) Northing (km) | Year     | Month (1-12)    | Injection | nVolume (bbl/r | month)        |           |
| 1 | Long Shot SWD #1  | 636.6757294  | 3587.633868     | 2021     | 6               | 760416    |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   | File Format Help  |              |                 | Ex       | trapolate Injec | tion?     | ✓              | Accepts up to | 100 wells |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          | OK              |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |
|   |                   |              |                 |          |                 |           |                |               |           |

Figure 32 - Model 2 Injector Input





# Model 2 - Silurian Devonian

#### Figure 33 - Model 2 Inputs Tab

The following FSP result tabs are for the second model which includes only the proposed injection well.





# Model 2 – Initial conditions before Long Shot SWD #1 well is completed

Figure 34 - Model 2 Hydrology Tab, Initial Conditions





# Model 2 - Conditions in 2041 after Long Shot SWD #1 well is completed.

Figure 35 - Model 2 Hydrology Results, 20 years after Completion





#### Model 2 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 36 - Model 2 Probabilistic Hydrology Results Tab, Initial Conditions







Figure 37 - Model 2 Probabilistic Hydrology Results Tab, 20 years after completion

Only includes proposed injector, held constant at the permitted rate.




# Model 2 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 38 - Model 2 Integrated Results Tab, Initial Conditions





#### Model 2 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 39 - Model 2 Integrated Results Tab, Initial Conditions

Fault Slip Potential for each fault segment is posted in percentage.







Figure 40 - Model 2 Integrated Results Tab, 20 years after completion





# Model 2 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 41 - Model 2 Integrated Results Tab, 20 years after completion

Fault Slip Potential for each fault segment is posted in percentage



### 8.0 FSP Analysis MODELS 3 and 4 – Precambrian Faults

Models #3 and #4 analyze Precambrian fault traces within the AOI, which utilize the same methodology as previous models. Input parameters for stress regime, reservoir, and probabilistic ranges are consistent with Models 1 & 2. Therefore, the following figures (42 to 51) illustrate the Precambrian fault traces used as input, and the FSP results tabs.

Model #3 incorporates all 11 injection wells, whereas Model #4 only uses the planned Long Shot Well completion with proposed maximum injection rate.

| 4                                                        |                                                       |                                                                      |                                                                                  | Fault Data                             | а                                |                                                          | _ |  |  |
|----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------------------|---|--|--|
|                                                          | Number of faults (max 500)<br>Friction Coefficient mu |                                                                      |                                                                                  |                                        | 6                                |                                                          |   |  |  |
| <ul><li>○ Random Faults</li><li>● Enter Faults</li></ul> |                                                       |                                                                      |                                                                                  |                                        |                                  |                                                          |   |  |  |
|                                                          |                                                       | X [East km]                                                          | Y [North km]                                                                     | Strike [Deg]                           | Dip [Deg]                        | Length [km]                                              |   |  |  |
|                                                          | 1<br>2<br>3<br>4<br>5<br>6                            | 640.6165<br>641.3526<br>642.1068<br>642.8523<br>643.5270<br>644.0558 | 3.5948e+03<br>3.5924e+03<br>3.5899e+03<br>3.5875e+03<br>3.5853e+03<br>3.5835e+03 | 163<br>163<br>163<br>163<br>163<br>163 | 85<br>85<br>85<br>85<br>85<br>85 | 2.4868<br>2.5529<br>2.6106<br>2.4939<br>2.1255<br>1.4949 |   |  |  |
|                                                          | Load File                                             |                                                                      |                                                                                  | ŀ                                      | lelp                             |                                                          |   |  |  |
| ОК                                                       |                                                       |                                                                      |                                                                                  |                                        |                                  |                                                          |   |  |  |

Figure 42 - FSP Fault input for Models 3 and 4





Figure 43 - Precambrian fault segments (6) used in FSP Analysis Models 3 and 4



#### Model 3 - Precambrian



Figure 44 - FSP Model 3 Input: 11 injectors and 6 Precambrian fault segments





#### Model 4 - Precambrian

Figure 45 - FSP Model 4 Input: Only injector and 6 Precambrian fault segments



### Model 3 and 4



#### Figure 46 - FSP Geomechanics Tab, Model 3 and 4

Demonstrates pore pressure to slip (psi) for each fault segment, direction of SHmax, and a Mohr diagram with frictional slip line shown in red. Faults are colored by their horizontal distance to slip according to the color scale.



### Model 3 and 4



Figure 47 - FSP Probabilistic Geomechanics Tab, Model 3 and 4

Propagates the relative uncertainties through the model, producing a distribution of pore pressures to slip.



The following page shows the integrated tabs which combined results of probabilistic geomechanics and hydrology models run for all 6 Precambrian fault segments.



### Model 3 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 48 - Model 3 Integrated Tab, Initial Conditions





# Model 3 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 49 - Model 3 Integrated Tab, 20 years after completion.





#### Model 4 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 50 - Model 4 Integrated Tab, Initial Conditions





# Model 4 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 51 - Model 4 Integrated Tab, 20 years after completion



### 9.0 FSP Analysis MODELS 5 and 6 – Basement Faults

Models #5 and #6 analyze Basement fault traces within the AOI, which utilize the same methodology as previous models. Input parameters for stress regime, reservoir, and probabilistic ranges are consistent with Models 1 & 2. Therefore, the following figures (52 to 61) illustrate the Basement fault traces used as input, and the FSP results tabs.

Model #5 incorporates all 11 injection wells, whereas Model #6 only uses the planned Long Shot Well completion with proposed maximum injection rate.

| 4              |     |                                           |                                                  | Fault Data   | a         |             | _ |  |  |
|----------------|-----|-------------------------------------------|--------------------------------------------------|--------------|-----------|-------------|---|--|--|
|                | 0 F | Number of fa<br>Friction Co<br>Random Fau | aults (max 500)<br>pefficient mu<br>I <b>lts</b> | 5            |           |             |   |  |  |
| ● Enter Faults |     |                                           |                                                  |              |           |             |   |  |  |
|                |     | X [East km]                               | Y [North km]                                     | Strike [Deg] | Dip [Deg] | Length [km] |   |  |  |
|                | 1   | 639.5574                                  | 3.5888e+03                                       | 179.1000     | 85        | 2.4877      |   |  |  |
|                | 2   | 639.5851                                  | 3.5864e+03                                       | 179.7000     | 85        | 2.3329      |   |  |  |
|                | 3   | 639.6077                                  | 3.5846e+03                                       | 179.5000     | 85        | 1.3412      |   |  |  |
|                | 4   | 639.4993                                  | 3.5826e+03                                       | 185          | 85        | 2.7464      |   |  |  |
|                | 5   | 639.3163                                  | 3.5801e+03                                       | 184.2000     | 85        | 2.2739      |   |  |  |
|                |     | Load F                                    | Tile                                             |              | lein      |             |   |  |  |
|                |     | Loadi                                     |                                                  |              |           |             |   |  |  |
| ОК             |     |                                           |                                                  |              |           |             |   |  |  |

Figure 52 - FSP Fault input for Models 5 and 6





Figure 53 - Basement fault segments (5) used in FSP Analysis Models 5 and 6



#### Model 5 - Basement



Figure 54 - FSP Model 5 Input: 11 injectors and 5 Basement fault segments





### Model 6 - Basement

Figure 55 - FSP Model 6 Input: Only injector and 5 Basement fault segments



### Model 5 and 6



Figure 56 - FSP Geomechanics Tab, Model 5 and 6

Demonstrates pore pressure to slip (psi) for each fault segment, direction of SHmax, and a Mohr diagram with frictional slip line shown in red. Faults are colored by their horizontal distance to slip according to the color scale.



### Model 5 and 6



**Figure 57** - FSP Probabilistic Geomechanics Tab, Model 5 and 6.

Propagates the relative uncertainties through the model, producing a distribution of pore pressures to slip.



The following integrated tabs show the combined results of probabilistic geomechanics and hydrology models run for all 5 Basement fault segments.



### Model 5 – Initial Conditions before Long Shot SWD#1 well is completed

Figure 58 - Model 5 Integrated Tab, Initial Conditions





# Model 5 – Conditions in 2041 after Long Shot SWD#1 well is completed

Figure 59 - Model 5 Integrated Tab, 20 years after completion





# Model 6 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 60 - Model 6 Integrated Tab, Initial Conditions





# Model 6 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 61 - Model 6 Integrated Tab, 20 years after completion



### 10.0 FSP Analysis MODELS 7 and 8 – Woodford Faults

Models #7 and #8 analyze Woodford fault traces within the AOI, which utilize the same methodology as previous models. Input parameters for stress regime, reservoir, and probabilistic ranges are consistent with Models 1 & 2. Therefore, the following figures (62 to 71) illustrate the Woodford fault traces used as input, and the FSP results tabs.

Model #7 incorporates all 11 injection wells, whereas Model #8 only uses the planned Long Shot Well completion with proposed maximum injection rate.

| -                                                           |                                                       |             |              | Fault Dat    | а         |             | _ |   |  |
|-------------------------------------------------------------|-------------------------------------------------------|-------------|--------------|--------------|-----------|-------------|---|---|--|
|                                                             | Number of faults (max 500)<br>Friction Coefficient mu |             |              | 3<br>0.6     |           |             |   | ] |  |
| <ul> <li>○ Random Faults</li> <li>● Enter Faults</li> </ul> |                                                       |             |              |              |           |             |   |   |  |
|                                                             |                                                       | X [East km] | Y [North km] | Strike [Deg] | Dip [Deg] | Length [km] |   |   |  |
|                                                             | 1                                                     | 639.3562    | 3.5835e+03   | 183.3000     | 85        | 2.2825      |   |   |  |
|                                                             | 2                                                     | 639.2498    | 3.5815e+03   | 183.3000     | 85        | 1.6895      |   |   |  |
|                                                             | 3                                                     | 639.1557    | 3.5798e+03   | 183.3000     | 85        | 1.8446      |   |   |  |
|                                                             |                                                       | Load F      | īle          |              | łelp      |             |   |   |  |
|                                                             |                                                       |             |              |              |           |             |   |   |  |
|                                                             |                                                       |             |              | OK           |           |             |   |   |  |

Figure 62 - FSP Fault input for Models 7 and 8





Figure 63 - Woodford fault segments (3) used in FSP Analysis Models 7 and 8



### Model 7 - Woodford



Figure 64 - FSP Model 7 Input: 11 injectors and 3 Woodford fault segments



~



# Model 8 - Woodford

Figure 65 - FSP Model 8 Input: Only injector and 3 Woodford fault segments







Figure 66 - FSP Geomechanics Tab, Model 7 and 8

Demonstrates pore pressure to slip (psi) for each fault segment, direction of SHmax, and a Mohr diagram with frictional slip line shown in red. Faults are colored by their horizontal distance to slip according to the color scale.



#### Model 7 and 8



Figure 67 - FSP Probabilistic Geomechanics Tab, Model 7 and 8.

Propagates the relative uncertainties through the model, producing a distribution of pore pressures to slip.



The following integrated tabs show the combined results of probabilistic geomechanics and hydrology models run for all 3 Woodford fault segments.



### Model 7 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 68 - Model 7 Integrated Tab, Initial Conditions





# Model 7 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 69 - Model 7 Integrated Tab, 20 years after completion





#### Model 8 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 70 - Model 8 Integrated Tab, Initial Conditions





# Model 8 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 71 - Model 8 Integrated Tab, 20 years after completion



### 11.0 FSP Analysis MODELS 9 and 10 – Bone Spring Faults

Models #9 and #10 analyze Bone Spring fault traces within the AOI, which utilize the same methodology as previous models. Input parameters for stress regime, reservoir, and probabilistic ranges are consistent with Models 1 & 2. Therefore, the following figures (72 to 81) illustrate the Bone Spring fault traces used as input, and the FSP results tabs.

Model #9 incorporates all 11 injection wells, whereas Model #10 only uses the planned Long Shot Well completion with proposed maximum injection rate.

|                | Fault Data |              |                   |              |           |             |   | - | × |  |
|----------------|------------|--------------|-------------------|--------------|-----------|-------------|---|---|---|--|
|                |            |              |                   |              |           |             |   |   |   |  |
|                |            | Number of fa | ults (max 500)    | max 500) 35  |           |             |   |   |   |  |
|                |            |              |                   |              |           |             |   | ] |   |  |
|                |            | Friction Co  | efficient mu      |              |           | 0.6         |   |   |   |  |
|                |            |              |                   |              |           |             |   | 1 |   |  |
| (              | R          | andom Faul   | ts                |              |           |             |   |   |   |  |
| ● Enter Faults |            |              |                   |              |           |             |   |   |   |  |
|                |            |              |                   |              |           |             |   |   |   |  |
|                |            | X [East km]  | Y [North km]      | Strike [Deg] | Dip [Deg] | Length [km] |   |   |   |  |
| -              | 1          | 643.7810     | 3.5927e+03        | 241.3000     | 85        | 0.6108      | ^ |   |   |  |
|                | 2          | 643.3005     | 3.5923e+03        | 211.9000     | 85        | 0.7965      |   |   |   |  |
|                | 3          | 642.9734     | 3.5917e+03        | 204.3000     | 85        | 0.5522      |   |   |   |  |
|                | 4          | 642.7665     | 3.5910e+03        | 194.1000     | 85        | 0.7811      | = |   |   |  |
|                | 5          | 642.2454     | 3.5899e+03        | 210.4000     | 85        | 1.6703      | _ |   |   |  |
|                | 6          | 641.5143     | 3.5889e+03        | 223.9000     | 85        | 0.8782      |   |   |   |  |
|                | 7          | 641.0286     | 3.5884e+03        | 231.7000     | 85        | 0.4721      |   |   |   |  |
|                | 8          | 640.7357     | 3.5882e+03        | 236.5000     | 85        | 1.0153      |   |   |   |  |
|                | 9          | 640.0839     | 3.5877e+03        | 226.5000     | 85        | 0.6233      |   |   |   |  |
|                | 10         | 639.5105     | 3.5872e+03        | 238.7000     | 85        | 0.8210      |   |   |   |  |
|                | 11         | 638.7320     | 3.5868e+03        | 243.1000     | 85        | 0.9593      |   |   |   |  |
|                | 12         | 641.6068     | 3.5888e+03        | 205.3000     | 85        | 0.8639      |   |   |   |  |
|                | 13         | 641.1417     | 3.5876e+03        | 198.5000     | 85        | 1.7476      |   |   |   |  |
|                | 14         | 641.0704     | 3.5871e+03        | 199.6000     | 85        | 0.6497      |   |   |   |  |
|                | 15         | 640.8580     | 3.5864e+03        | 194          | 85        | 0.8595      |   |   |   |  |
|                | 16         | 640 6869     | <u>3 5855e+03</u> | 188          | 85        | 1 0835      | ~ |   |   |  |
|                | Load File  |              |                   | Н            | elp       |             |   |   |   |  |
| L              |            |              |                   |              |           |             |   |   |   |  |
|                | ОК         |              |                   |              |           |             |   |   |   |  |
|                |            |              |                   |              |           |             |   |   |   |  |

Figure 72 - FSP Fault input for Models 9 and 10





Figure 73 - Bone Spring fault segments (35) used in FSP Analysis Models 9 and 10






Figure 74 - FSP Model 9 Input: 11 injectors and 35 Bone Spring fault segments





### Model 10 - Bone Spring

Figure 75 - FSP Model 10 Input: Only injector and 35 Bone Spring fault segments



### Model 9 and 10



Figure 76 - FSP Geomechanics Tab, Model 9 and 10

Demonstrates pore pressure to slip (psi) for each fault segment, direction of SHmax, and a Mohr diagram with frictional slip line shown in red. Faults are colored by their horizontal distance to slip according to the color scale.



### Model 9 and 10



Figure 77 - FSP Probabilistic Geomechanics Tab, Model 9 and 10.

Propagates the relative uncertainties through the model, producing a distribution of pore pressures to slip.



The following integrated tabs show the combined results of probabilistic geomechanics and hydrology models run for all 35 Bone Spring fault segments.



### Model 9 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 78 - Model 9 Integrated Tab, Initial Conditions





## Model 9 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 79 - Model 9 Integrated Tab, 20 years after completion.





## Model 10 – Initial Conditions before Long Shot SWD #1 well is completed

Figure 80 - Model 10 Integrated Tab, Initial Conditions





## Model 10 – Conditions in 2041 after Long Shot SWD #1 well is completed

Figure 81 - Model 10 Integrated Tab, 20 years after completion



| 10    | <u>Model 1</u><br>10 Injection Wells, Long Shot SWD #1 & Silurian Devonian faults |                |          |                |          |  |  |  |
|-------|-----------------------------------------------------------------------------------|----------------|----------|----------------|----------|--|--|--|
| Fault | Pore Pressure to Slip                                                             | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |  |
| 1     | 6375                                                                              | 3              | 0.00     | 31             | 0.00     |  |  |  |
| 2     | 1870                                                                              | 2              | 0.00     | 21             | 0.00     |  |  |  |
| 3     | 1535                                                                              | 2              | 0.00     | 23             | 0.00     |  |  |  |
| 4     | 1326                                                                              | 2              | 0.00     | 24             | 0.00     |  |  |  |
| 5     | 2015                                                                              | 2              | 0.00     | 27             | 0.00     |  |  |  |
| 6     | 2430                                                                              | 2              | 0.00     | 36             | 0.00     |  |  |  |
| 7     | 2371                                                                              | 1              | 0.00     | 55             | 0.00     |  |  |  |
| 8     | 2440                                                                              | 1              | 0.00     | 68             | 0.00     |  |  |  |
| 9     | 2552                                                                              | 1              | 0.00     | 72             | 0.00     |  |  |  |
| 10    | 3239                                                                              | 1              | 0.00     | 62             | 0.00     |  |  |  |
| 11    | 3988                                                                              | 1              | 0.00     | 52             | 0.00     |  |  |  |
| 12    | 4582                                                                              | 1              | 0.00     | 45             | 0.00     |  |  |  |
| 13    | 5273                                                                              | 1              | 0.00     | 36             | 0.00     |  |  |  |

## 12.0 MODEL 1 FSP Analysis Results

Table 1 - Model 1 FSP Results per fault segment

## 13.0 MODEL 2 FSP Analysis Results

|       |                                                                           | Mod | el 2 |    |      |  |  |  |  |
|-------|---------------------------------------------------------------------------|-----|------|----|------|--|--|--|--|
|       | Long Shot SWD #1 & Silurian Devonian faults                               |     |      |    |      |  |  |  |  |
| Fault | ult Pore Pressure to Slip PP Change 2021 FSP 2021 PP Change 2041 FSP 2041 |     |      |    |      |  |  |  |  |
| 1     | 6375                                                                      | 0   | 0.00 | 10 | 0.00 |  |  |  |  |
| 2     | 1870                                                                      | 0   | 0.00 | 8  | 0.00 |  |  |  |  |
| 3     | 1535                                                                      | 0   | 0.00 | 9  | 0.00 |  |  |  |  |
| 4     | 1326                                                                      | 0   | 0.00 | 10 | 0.00 |  |  |  |  |
| 5     | 2015                                                                      | 0   | 0.00 | 11 | 0.00 |  |  |  |  |
| 6     | 2430                                                                      | 0   | 0.00 | 15 | 0.00 |  |  |  |  |
| 7     | 2371                                                                      | 0   | 0.00 | 24 | 0.00 |  |  |  |  |
| 8     | 2440                                                                      | 0   | 0.00 | 30 | 0.00 |  |  |  |  |
| 9     | 2552                                                                      | 0   | 0.00 | 27 | 0.00 |  |  |  |  |
| 10    | 3239                                                                      | 0   | 0.00 | 19 | 0.00 |  |  |  |  |
| 11    | 3988                                                                      | 0   | 0.00 | 15 | 0.00 |  |  |  |  |
| 12    | 4582                                                                      | 0   | 0.00 | 12 | 0.00 |  |  |  |  |
| 13    | 5273                                                                      | 0   | 0.00 | 9  | 0.00 |  |  |  |  |

Table 2 - Model 2 FSP Results per fault segment



|       | <u>Model 3</u><br>10 Injection Wells, Long Shot SWD #1 & Precambrian faults |                |          |                |          |  |  |
|-------|-----------------------------------------------------------------------------|----------------|----------|----------------|----------|--|--|
| Fault | Pore Pressure to Slip                                                       | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |
| 1     | 7455                                                                        | 4              | 0.00     | 32             | 0.00     |  |  |
| 2     | 7455                                                                        | 5              | 0.00     | 41             | 0.00     |  |  |
| 3     | 7455                                                                        | 2              | 0.00     | 43             | 0.00     |  |  |
| 4     | 7455                                                                        | 1              | 0.00     | 39             | 0.00     |  |  |
| 5     | 7455                                                                        | 0              | 0.00     | 30             | 0.00     |  |  |
| 6     | 7455                                                                        | 0              | 0.00     | 22             | 0.00     |  |  |

## 14.0 MODEL 3 and 4 FSP Analysis Results

|       | <u>Model 4</u><br>Long Shot SWD #1 & Precambrian faults |                |          |                |          |  |  |  |
|-------|---------------------------------------------------------|----------------|----------|----------------|----------|--|--|--|
| Fault | Pore Pressure to Slip                                   | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |  |
| 1     | 7455                                                    | 0              | 0.00     | 10             | 0.00     |  |  |  |
| 2     | 7455                                                    | 0              | 0.00     | 15             | 0.00     |  |  |  |
| 3     | 7455                                                    | 0              | 0.00     | 19             | 0.00     |  |  |  |
| 4     | 7455                                                    | 0              | 0.00     | 17             | 0.00     |  |  |  |
| 5     | 5 7455 0 0.00 13 0.00                                   |                |          |                |          |  |  |  |
| 6     | 7455                                                    | 0              | 0.00     | 9              | 0.00     |  |  |  |

Table 3 - Model 3 & 4 FSP Results per fault segment.



## 15.0 MODEL 5 and 6 FSP Analysis Results

|       | Model 5               |                |          |                |          |  |  |  |  |
|-------|-----------------------|----------------|----------|----------------|----------|--|--|--|--|
|       | 10 Injection We       | lls, Long Shot | SWD #1   | & Basement     | faults   |  |  |  |  |
| Fault | Pore Pressure to Slip | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |  |  |
| 1     | 5895                  | 1              | 0.00     | 89             | 0.00     |  |  |  |  |
| 2     | 5806                  | 1              | 0.00     | 89             | 0.00     |  |  |  |  |
| 3     | 5836                  | 1              | 0.00     | 75             | 0.00     |  |  |  |  |
| 4     | 5021                  | 1              | 0.00     | 57             | 0.00     |  |  |  |  |
| 5     | 5139                  | 1              | 0.00     | 37             | 0.00     |  |  |  |  |

|       | <u>Model 6</u><br>Long Shot SWD #1 & Basement faults |                |          |                |          |  |  |  |
|-------|------------------------------------------------------|----------------|----------|----------------|----------|--|--|--|
| Fault | Pore Pressure to Slip                                | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |  |
| 1     | 5895                                                 | 0              | 0.00     | 39             | 0.00     |  |  |  |
| 2     | 5806                                                 | 0              | 0.00     | 39             | 0.00     |  |  |  |
| 3     | 5836                                                 | 0              | 0.00     | 29             | 0.00     |  |  |  |
| 4     | 5021                                                 | 0              | 0.00     | 19             | 0.00     |  |  |  |
| 5     | 5139                                                 | 0              | 0.00     | 11             | 0.00     |  |  |  |

Table 4 - Model 5 & 6 FSP Results per fault segment.



## 16.0 MODEL 7 and 8 FSP Analysis Results

|       | <u>Model 7</u><br>10 Injection Wells, Long Shot SWD #1 & Woodford faults |                |          |                |          |  |  |
|-------|--------------------------------------------------------------------------|----------------|----------|----------------|----------|--|--|
| Fault | Pore Pressure to Slip                                                    | PP Change 2021 | FSP 2021 | PP Change 2041 | FSP 2041 |  |  |
| 1     | 5273                                                                     | 1              | 0.00     | 68             | 0.00     |  |  |
| 2     | <b>2</b> 5273 1 0.00 50 0.00                                             |                |          |                |          |  |  |
| 3     | 5273                                                                     | 1              | 0.00     | 36             | 0.00     |  |  |

| <u>Model 8</u><br>Long Shot SWD #1 & Woodford faults |                                                                            |   |      |    |      |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|---|------|----|------|--|--|--|
| Fault                                                | ault Pore Pressure to Slip PP Change 2021 FSP 2021 PP Change 2041 FSP 2041 |   |      |    |      |  |  |  |
| 1                                                    | 5273                                                                       | 0 | 0.00 | 24 | 0.00 |  |  |  |
| 2                                                    | <b>2</b> 5273 0 0.00 15 0.00                                               |   |      |    |      |  |  |  |
| 3                                                    | 5273                                                                       | 0 | 0.00 | 10 | 0.00 |  |  |  |

Table 5 - Model 7 & 8 FSP Results per fault segment.



|       | 10 Iniection Well     | <u>Mod</u><br>s. Long Shot S | <u>el 9</u><br>SWD #1 8 | & Bone Spring  | g faults |
|-------|-----------------------|------------------------------|-------------------------|----------------|----------|
| Fault | Pore Pressure to Slip | PP Change 2021               | FSP 2021                | PP Change 2041 | FSP 2041 |
| 1     | 1810                  | 2                            | 0.00                    | 22             | 0.00     |
| 2     | 1849                  | 2                            | 0.00                    | 26             | 0.00     |
| 3     | 2511                  | 2                            | 0.00                    | 30             | 0.00     |
| 4     | 3729                  | 2                            | 0.00                    | 33             | 0.00     |
| 5     | 1960                  | 2                            | 0.00                    | 42             | 0.00     |
| 6     | 1342                  | 1                            | 0.00                    | 53             | 0.00     |
| 7     | 1390                  | 1                            | 0.00                    | 62             | 0.00     |
| 8     | 1557                  | 1                            | 0.00                    | 67             | 0.00     |
| 9     | 1326                  | 1                            | 0.00                    | 81             | 0.00     |
| 10    | 1664                  | 1                            | 0.00                    | 94             | 0.00     |
| 11    | 1920                  | 1                            | 0.00                    | 114            | 0.00     |
| 12    | 2410                  | 1                            | 0.00                    | 52             | 0.00     |
| 13    | 3165                  | 1                            | 0.00                    | 61             | 0.00     |
| 14    | 3032                  | 1                            | 0.00                    | 62             | 0.00     |
| 15    | 3743                  | 1                            | 0.00                    | 64             | 0.00     |
| 16    | 4582                  | 1                            | 0.00                    | 63             | 0.00     |
| 17    | 2440                  | 1                            | 0.00                    | 62             | 0.00     |
| 18    | 1624                  | 1                            | 0.00                    | 62             | 0.00     |
| 19    | 2605                  | 1                            | 0.00                    | 61             | 0.00     |
| 20    | 2563                  | 1                            | 0.00                    | 58             | 0.00     |
| 21    | 2410                  | 1                            | 0.00                    | 55             | 0.00     |
| 22    | 2467                  | 1                            | 0.00                    | 51             | 0.00     |
| 23    | 4757                  | 1                            | 0.00                    | 46             | 0.00     |
| 24    | 3743                  | 1                            | 0.00                    | 43             | 0.00     |
| 25    | 6644                  | 1                            | 0.00                    | 39             | 0.00     |
| 26    | 7531                  | 1                            | 0.00                    | 33             | 0.00     |
| 27    | 5421                  | 1                            | 0.00                    | 58             | 0.00     |
| 28    | 4057                  | 1                            | 0.00                    | 52             | 0.00     |
| 29    | 2892                  | 1                            | 0.00                    | 49             | 0.00     |
| 30    | 2040                  | 1                            | 0.00                    | 46             | 0.00     |
| 31    | 1821                  | 1                            | 0.00                    | 44             | 0.00     |
| 32    | 2542                  | 1                            | 0.00                    | 43             | 0.00     |
| 33    | 2573                  | 1                            | 0.00                    | 40             | 0.00     |
| 34    | 4267                  | 1                            | 0.00                    | 37             | 0.00     |
| 35    | 5451                  | 1                            | 0.00                    | 33             | 0.00     |

# 17.0 MODEL 9 and 10 FSP Analysis Results



|       | Long Sh               | <u>Mode</u><br>not SWD #1 & | el <u>10</u><br>Bone Sp | ring faults    |          |
|-------|-----------------------|-----------------------------|-------------------------|----------------|----------|
| Fault | Pore Pressure to Slip | PP Change 2021              | FSP 2021                | PP Change 2041 | FSP 2041 |
| 1     | 1810                  | 0                           | 0.00                    | 9              | 0.00     |
| 2     | 1849                  | 0                           | 0.00                    | 10             | 0.00     |
| 3     | 2511                  | 0                           | 0.00                    | 12             | 0.00     |
| 4     | 3729                  | 0                           | 0.00                    | 14             | 0.00     |
| 5     | 1960                  | 0                           | 0.00                    | 18             | 0.00     |
| 6     | 1342                  | 0                           | 0.00                    | 23             | 0.00     |
| 7     | 1390                  | 0                           | 0.00                    | 27             | 0.00     |
| 8     | 1557                  | 0                           | 0.00                    | 30             | 0.00     |
| 9     | 1326                  | 0                           | 0.00                    | 36             | 0.00     |
| 10    | 1664                  | 0                           | 0.00                    | 42             | 0.00     |
| 11    | 1920                  | 0                           | 0.00                    | 51             | 0.00     |
| 12    | 2410                  | 0                           | 0.00                    | 23             | 0.00     |
| 13    | 3165                  | 0                           | 0.00                    | 27             | 0.00     |
| 14    | 3032                  | 0                           | 0.00                    | 27             | 0.00     |
| 15    | 3743                  | 0                           | 0.00                    | 28             | 0.00     |
| 16    | 4582                  | 0                           | 0.00                    | 26             | 0.00     |
| 17    | 2440                  | 0                           | 0.00                    | 25             | 0.00     |
| 18    | 1624                  | 0                           | 0.00                    | 23             | 0.00     |
| 19    | 2605                  | 0                           | 0.00                    | 22             | 0.00     |
| 20    | 2563                  | 0                           | 0.00                    | 19             | 0.00     |
| 21    | 2410                  | 0                           | 0.00                    | 17             | 0.00     |
| 22    | 2467                  | 0                           | 0.00                    | 15             | 0.00     |
| 23    | 4757                  | 0                           | 0.00                    | 13             | 0.00     |
| 24    | 3743                  | 0                           | 0.00                    | 12             | 0.00     |
| 25    | 6644                  | 0                           | 0.00                    | 10             | 0.00     |
| 26    | 7531                  | 0                           | 0.00                    | 9              | 0.00     |
| 27    | 5421                  | 0                           | 0.00                    | 23             | 0.00     |
| 28    | 4057                  | 0                           | 0.00                    | 19             | 0.00     |
| 29    | 2892                  | 0                           | 0.00                    | 17             | 0.00     |
| 30    | 2040                  | 0                           | 0.00                    | 15             | 0.00     |
| 31    | 1821                  | 0                           | 0.00                    | 14             | 0.00     |
| 32    | 2542                  | 0                           | 0.00                    | 13             | 0.00     |
| 33    | 2573                  | 0                           | 0.00                    | 12             | 0.00     |
| 34    | 4267                  | 0                           | 0.00                    | 10             | 0.00     |
| 35    | 5451                  | 0                           | 0.00                    | 9              | 0.00     |

Table 6 - Model 9 & 10 FSP Results per fault segmen



## 18.0 Recorded Seismicity

Between 1/1/1900 and 6/28/2020 **0 earthquakes** with magnitudes 2 or greater were recorded by **USGS** within the Long Shot FSP AOI.

Between 1/12/2017 and 6/28/2021 **2 earthquakes** with magnitudes 2 or greater were recorded by **MWTSO** within the Long Shot FSP AOI.



Figure 82 - MWTSO reported seismicity



## 0 Earthquakes with magnitude of 2 or greater inside the Long Shot FSP ANALYSIS AREA



Figure 83 - USGS Earthquake catalog within Long Shot FSP AOI



### 2 Earthquakes with magnitude of 2 or greater inside the Long Shot FSP ANALYSIS AREA



Figure 84 - MWTSO Earthquake catalog within Long Shot FSP AOI





Figure 85 - Earthquake Cross section



#### Advance Energy Partners Hat Mesa LLC FSP ANALYSIS

|      | EventID    | Origin Date | Origin Time | Magnitude | Latitude   | Longitude    | Depth of Hypoc<br>to Ground S | ocenter (Rel<br>Surface) |  |
|------|------------|-------------|-------------|-----------|------------|--------------|-------------------------------|--------------------------|--|
|      |            |             |             |           |            |              | Km                            | ft                       |  |
|      | 2020-07-16 |             |             |           |            |              |                               |                          |  |
| Long | 03:37:33.4 | 2020-07-16  | 03:37:33.4  | 2.07      | 32.4658789 | -103.6175113 | 5                             | 16,404                   |  |
| Shot | 2020-06-26 |             |             |           |            |              |                               |                          |  |
|      | 08:26:15.4 | 2020-06-26  | 08:26:15.4  | 2.20      | 32.3698787 | -103.4745195 | -                             | -                        |  |

The following table is a summary of the reported earthquakes with magnitude 2.0 or greater.

#### Table 7 - Earthquake catalog within AOI

The MWTSO recorded seismic events name 2020-06-26 08:26:15.4 does not disclose a depth. The second event within the AOI 5km is 2020-07-16 03:37:33.4 with a depth of hypocenter of 5km.



## 19.0 Conclusion

Ten FSP models were run within Long Shot SWD #1 AOI analyzing the following fault traces.

- Silurian Devonian
- Precambrian
- Basement
- Woodford
- Bone Spring

Two models were run for each set of fault traces, the first included all injectors within the AOI (including the proposed LONG SHOT location) the second model per fault set only includes the proposed SWD well. The reservoir and stress parameters for the proposed Silurian Devonian injection interval do not increase the potential for the faults analyzed to slip.

In our opinion the proposed LONG SHOT SWD #1 injection well does not pose a risk of increasing seismicity within this FSP AOI.



## Appendix 1 - Reservoir Parameters Backup





## Appendix 2 - Earthquake Backup

PETROLEUN

| <b>≪USGS</b>                                                                                                                                                                                                    | Joseph Martin and State                                                                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                          |             |                                      |                                                                                                                |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
| Earthquake Hazards Program                                                                                                                                                                                      | Zanzenzen                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                          |             |                                      | 1                                                                                                              |               |
| er Earthquakes                                                                                                                                                                                                  | Search Earthquake Catalo                                                                                                                                                                                                                                                 | g                                                                                                                                                                                |                                                          |             |                                      | SURFACE LOCATION                                                                                               |               |
| Lahet Earthquakes<br>Earthquake Litts, Mays & Statistics<br>Search Carthquake Catalog<br>Analistics Freds & Institutions<br>Information by Region<br>ANSS Gonzal Decomentation<br>Cartas for Latter Earthquakes | Search results are timeted to 20,000 events. To get URL for a sear<br>1 field<br>2 MASS Commerchannike: Earthquarke Catalog (Com<br>2 Derectored's Commerc. Earthquarkes Catalog (Com<br>3 Derectored's Commerc.<br>3 Significant Earthquarkes Architer<br>Basic Options | with, click the search burller, then oney the URL from the browser address bar.<br>Cell Documentation<br>capper scripts for accessing and using fools for the NEIC's ComCat data |                                                          |             | N,≞17696,1<br>E:782507,5<br>(NAD 83) | Let - N 32.419306'<br>Long - W 103.546928'<br>NMSPCE - V 517167.4<br>  NMSPCE - V 517167.4<br>  (NAD-83)  <br> |               |
| Earthquakes<br>Hazards<br>Data                                                                                                                                                                                  | Magnitude<br>0 25+<br>0 45+                                                                                                                                                                                                                                              | Date & Time<br>Past 7 Days<br>Past 30 Days                                                                                                                                       | Geographic Region  World  Contarminous U.S. <sup>1</sup> |             |                                      |                                                                                                                |               |
| Learn<br>Monitoring                                                                                                                                                                                             | Custom Minimum                                                                                                                                                                                                                                                           | Start (UTC)                                                                                                                                                                      | Custom<br>Worldwide                                      |             |                                      | · · · · ·                                                                                                      | Danian Otatua |
| Research                                                                                                                                                                                                        | 2<br>Masimum                                                                                                                                                                                                                                                             | 1900-06-11 00:00:00<br>End (UTC)                                                                                                                                                 | Snaw Rectangle in Hag                                    | Circle      |                                      |                                                                                                                | Review Status |
| Search                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          | 2021-06-18 23:59:59                                                                                                                                                              |                                                          | Center Lati | tude                                 | Center Longitude                                                                                               | Any Any       |
| Search                                                                                                                                                                                                          | + Advanced Options                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                                                          | 32.419300   | 5                                    | -103.546928                                                                                                    | O Automatic   |
|                                                                                                                                                                                                                 | + Output Options                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                                                          | Outer Radio | us (km)                              |                                                                                                                | O Reviewed    |
|                                                                                                                                                                                                                 | La companya da                                                                                                                                                           |                                                                                                                                                                                  |                                                          |             |                                      |                                                                                                                |               |

# 0 Earthquakes with magnitude of 2 or greater inside the Long Shot FSP ANALYSIS AREA



## 2 Earthquakes with magnitude of 2 or greater inside the Long Shot FSP ANALYSIS AREA





Closest earthquake is (ID 37:33.4) 2020-07-16 03:37:33.4, Lat 32.46, Long -103.618, Mag 2.07 and it's 8.48 km away from Long Shot SWD#1

2<sup>nd</sup> Closest earthquake is (ID 26:15.4) 2020-06-26 08:26:15.4, Lat 32.37, Long -103.475, Mag 2.20 and it's 8.71 km away from Long Shot SWD#1



