

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 **303-595-3331** 303-605-2226 *FAX*

September 1, 2011

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 2nd Quarter 2011 Groundwater Results

DCP Midstream, LP RR Ext. Pipeline Release (AP #55) Unit C, Section 19, Township 20 South, Range 37 East

Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 2nd Quarter 2011 Groundwater Results for the DCP RR Ext. Pipeline Release located in Lea County, New Mexico (Unit C, Section 19, Township 20 South, Range 37 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me swweathers@dcpmidstream.com .

Sincerely

DCP Midstream, LP

Stephen Weathers, PG

Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD)

Environmental Files

RECEIVED UUD
7011 SFP -2 A III: 1.2

August 26, 2011

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of Second Quarter 2011 Groundwater Monitoring Activities

DCP Midstream RR Ext Pipeline Release

Unit C, Section 19 Township 20 South, Range 37 East (AP #55)

Dear Mr. Weathers:

This report summarizes the second quarter 2011 groundwater monitoring activities that were completed at the DCP Midstream (DCP) RR Ext Site (Figure 1). The approximate site coordinates are 32.5624 north, 103.2923 west.

The work was completed on June 22, 2010. The well locations are shown on Figure 2. The well construction information is summarized in Table 1. The fluid levels were measured at each well prior to purging to check for free phase hydrocarbons (FPH) and to calculate the casing volumes. Wells MW-3, MW-4, MW-5, MW-9 and MW-10 contained FPH so they were not purged and sampled.

The remaining 11 wells were first purged to equilibration based on the field parameters of temperature, pH and conductivity using dedicated bailers. They were then sampled for benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA Method SW846 8260B and for chlorides using Method SM 4500 CL C. A field duplicate sample from MW-2 and matrix spike/matrix spike duplicate (MS/MSD) samples from MW-6 were also collected to evaluate quality control. All affected purge water was disposed of at the DCP Linam Ranch facility.

The water gauging data are summarized in Table 2. The water-table elevations for the wells containing FPH were adjusted using the following formula:

 $GWE_{corr} = MGWE + (PT*PD)$: where

- MGWE is the actual measured groundwater elevation;
- PT is the measured free-phase hydrocarbon thickness; and
- PD is the free phase hydrocarbon density (assumed 0.75)

All of the adjusted water-table elevation data are attached. Well hydrographs are plotted on Figure 3 for MW-1 to MW-8. Figure 3 indicates that the water table elevations decreased in wells MW-1, MW-2, MW-6, MW-7 and MW-8 on the north side of the property while increasing in MW-3, MW-4 and MW-5 in the central part of the area. The water table remains elevated relative to its historic readings.

Mr. Stephen Weathers RR Ext August 26, 2011 Page 2

The FPH thickness data for MW-3, MW-4, MW-5, MW-9 and MW-10 are summarized in Table 3 and plotted on Figure 4. The FPH thickness decreased in all wells except MW-10. The FPH level in MW-10 rebounded but the overall thickness appears to be decreasing.

The measured water table elevations from all sixteen wells were used to generate a groundwater contour map (Figure 5). The recently-installed wells provided better definition of the groundwater flow direction and gradient. The groundwater flow direction is to the southeast. This flow direction establishes MW-8, MW-14 and MW-15 as up-gradient wells, MW-13 as a cross-gradient wells, and MW-6, MW-7, MW-11, MW-12 and MW-16 as down-gradient boundary wells. The groundwater gradient appears to be both shallow and consistent across the study area.

The sampling data are summarized in Table 4. The measured field parameters and a copy of the laboratory report are attached. The quality control evaluation data can be summarized as follows:

- The analyses were all completed within the required holding times.
- The method blank results were all within their control limits.
- The blank spike data were all within their control limits.
- The individual sample surrogates results were within the method ranges.
- The matrix spike/matrix spike duplicates for MW-6 were within their control ranges.
- The detected-constituent differences between the MW-1 primary and duplicate samples were all less than 11.7 percent.

The above results indicate that the data are suitable for evaluation for groundwater monitoring purposes.

The New Mexico Water Quality Control Commission (NMWQCC) groundwater standards are included at the top of Table 4. The results can be summarized as follows:

- 1. There is FPH present in MW-3, MW-4, MW-5, MW-9 and MW-10.
- 2. There were no BTEX detections above the method reporting limits in wells MW-6, MW-7, MW-8, MW-11, MW-12 MW-13, MW-14, MW-15 and MW-16.
- 3. Wells MW-1 and MW-2 exceeded the benzene standard but not the toluene, ethylbenzene and xylene standards.

Figure 6 posts the benzene concentrations and locations of the wells that contained FPH for the sampling event. Comparison of these values to the groundwater flow pattern shown in Figure 5 demonstrates that the dissolved phase BTEX plume attenuates to below the both the NMWQCC standards and the method reporting limits before encountering the down-gradient boundary wells.

Mr. Stephen Weathers RR Ext August 26, 2011 Page 3

All of the BTEX data collected for this project are attached to this report. Figure 7 graphs the benzene concentration verses time for wells MW-1 and MW-2. The concentration in MW-1 appears to have substantially declined after the fourth quarter of 2010 even with the rebound exhibited between the first and second 2011 quarters. The concentration in MW-2 has also exhibited a gradual decline since the fourth quarter of 2009.

The chloride data are summarized in Table 5. The chloride concentrations are plotted verses time on Figure 8. The graphs indicate that the chloride values appear to be stabilizing. Figure 9 shows the chlorides concentrations for this event. The concentrations all lie within a narrow range between 290 and 520 mg/l. There is no evidence of a chloride source associated with the DCP pipeline release that triggered this project.

CONCLUSIONS AND RECOMMENDATIONS

AEC concludes that the dissolved-phase BTEX plume boundaries have been delineated. No additional wells need to be installed.

Also, the data suggests that the FPH thickness is decreasing naturally. The current FPH thickness is now below 1.0 feet in four of the five wells making it difficult to removal of substantial volumes of FPH. AEC recommends continued FPH measurement and evaluation on a quarterly basis.

The next sampling event will be completed during the third quarter of 2011. Do not hesitate to contact me if you have any questions or comments on this document.

J

Respectfully Submitted,

AMÉRICAN ENVIRONMENTAL CONSULTING, LLC

Michael H. Stewart, P.E., C.P.G.

Mechael H. Stewart

Principal Engineer

attachments

TABLES

1

Table 1 – Summary of Well Construction at the DCP RR Ext Location

Well	Date Installed	Total Depth (ground)	Sand Interval	Screen Interval (ground)
MW-1	3/08	37.5	16-37.5	17.5-37.5
MW-2	3/08	37.5	16-37.5	17.5-37.5
MW-3	3/08	37.5	16-37.5	17.5-37.5
MW-4	3/08	37.5	16-37.5	17.5-37.5
MW-5	3/08	37.5	16-37.5	17.5-37.5
MW-6	6/08	37.5	16-37.5	17.5-37.5
MW-7	6/08	37.5	16-37.5	17.5-37.5
MW-8	6/08	37.5	16-37.5	17.5-37.5
MW-9	6/10	38	16-38	18-38
MW-10	6/10	38	16-38	18-38
MW-11	6/10	38	16-38	18-38
MW-12	6/10	38	16-38	18-38
MW-13	1/11	40	17.5-40	20-40
MW-14	1/11	41	19-41	21-41
MW-15	1/11	41.3	18-41.3	20.3-40.3
MW-16	1/11	41.4	17.5-41.4	21.4-41.4

Units are feet

All wells are 2-inch diameter
Wells were grouted to the surface with hydrated bentonite pellets and completed with above-ground well protectors

Table 2 - Summary of Second Quarter 2011 Gauging Data

Well	Depth to	Depth to	200020000000000000000000000000000000000	Water Table
	Water	Product	Thickness	Elevation
MW-1	29.16			3505.41
MW-2	29.91			3505.27
MW-3	31.45	31.01	0.44	3505.45
MW-4	30.40	30.01	0.39	3505.09
MW-5	31.14	30.71	0.43	3505.10
MW-6	31.21			3504.95
MW-7	31.95			3505.14
MW-8	30.89			3505.52
MW-9	29.38	28.50	0.88	3505.48
MW-10	29.97	28.60	1.37	3505.27
MW-11	31.10			3505.09
MW-12	29.31			3505.16
MW-13	30.46			3505.62
MW-14	29.59			3505.37
MW-15	29.90			3505.00
MW-16	28.74			3504.94

Units are Feet

Table 3 - Free Phase Hydrocarbon Thickness Summary

* Well	MW-3	MW-4	MW-5	MW-9	MW-10
03/19/08	0.00	0.00	0.00		
06/29/08	0.00	0.00	0.00		
09/17/08	0.00	0.00	0.00		
12/03/08	0.00	0.00	0.00		
05/19/09	0.00	0.00	0.00		
09/23/09	0.00	1.00	0.00		
12/20/09	0.00	1.88	0.00		
03/22/10	0.00	1.71	0.27		
06/30/10	0.94	1.56	1.62	1.33	1.10
09/28/10	0.91	0.58	1.28	1.20	1.60
12/09/10	0.77	1.06	1.07	1.10	1.47
03/30/11	0.48	0.55	0.45	1.03	0.90
06/22/11	0.44	0.39	0.43	0.88	1.37

Units are Feet Blank cell: Well not installed

Table 4 - RR Ext Second Quarter 2011 Groundwater Sampling Results

Well	Benzene	Toluëne	Ethyl- benzene	Total Xylenes	Chlorides
NMWQCC Standards	0.010	0.75	0.75	0.62	250
MW-1	0.0735	<0.01	0.0293	<0.02	467
MW-2	9.21	0.231	0.377	<0.4	370
MW-2 DUP	8.62	0.217	0.393	<0.4	329
MW-6	< 0.001	< 0.002	< 0.002	< 0.004	376
MW-7	< 0.001	< 0.002	< 0.002	< 0.004	390
MW-8	< 0.001	< 0.002	< 0.002	< 0.004	524
MW-11	< 0.001	< 0.002	< 0.002	< 0.004	405
MW-12	< 0.001	< 0.002	< 0.002	< 0.004	497
MW-13	< 0.001	< 0.002	< 0.002	< 0.004	340
MW-14	< 0.001	< 0.002	< 0.002	< 0.004	494
MW-15	< 0.001	< 0.002	< 0.002	< 0.004	297
MW-16	< 0.001	< 0.002	< 0.002	< 0.004	292
Trip Blank	< 0.001	< 0.002	< 0.002	< 0.004	

Units mg/l

NMWQCC Standards New Mexico Water Quality Control Commission Groundwater Standards Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards J: Estimated concentration between the method detection limit and the reporting limit Wells MW-3, MW-4, MW-5, MW-9 and MW-10 contained free phase hydrocarbons and were not sampled

Table 5 - RR Ext Chlorides Groundwater Monitoring Results Summary

Well	9/08	12/08	3/09	5/09	9/09	12/09	3/10
MW-1	507	447	432	462	422	363	800
MW-2	109	NS	114	109	139	199	700
MW-3	363	301	273′	313	363	398	440
MW-4	318	281	229	226	FPH	FPH	FPH
MW-5	373	318	288	363	358	313	FPH
MW-6	363	325	298	308	296	393	700
MW-7	378	348	283	298	273	328	750
MW-8	512	393	472	450	477	472	800

Well	6/10	9/10	12/10	3/11	6/11
MW-1	510	442	448	457	467
MW-2	233	263	278	320	350
MW-3	FPH	FPH	FPH	FPH	FPH
MW-4	FPH	FPH	FPH	FPH	FPH
MW-5	FPH	FPH	FPH	FPH	FPH
MW-6	402	337	359	386	376
MW-7	385	326	345	382	390
MW-8	553	486	533	529	524
MW-9	532*	FPH	FPH	FPH	FPH
MW-10	656*	FPH	FPH	FPH	FPH
MW-11	407	365	383	406	405
MW-12	514	464	501	498	497
MW-13				326	340
MW-14				520	494
MW-15				303	297
MW-16				295	292

Units are mg/l
Duplicate values averaged together
FPH free phase hydrocarbons present
* Collected with FPH in the well but believed to be representative

FIGURES

SUMMARY OF CORRECTED WATER TABLE ELEVATIONS	

DCP RREXT - SUMMARY OF CORRECTED WATER TABLE ELEVATIONS

Well	MW-1	-MW-2	MW-3	MW-4	MW-5	MW-6		MW*8
03/19/08	3504.98	3504.79	3505.02	3504.60	3504.64			
06/29/08	3504.79	3504.64	3504.82	3504.41	3504.46	3504.31	3504.63	3504.94
09/17/08	3504.62	3504.50	3504.64	3504.22	3504.27	3504.15	3504.37	3504.78
12/03/08	3504.92		3504.88	3504.49	3504.50	3504.37	3504.60	3505.02
03/11/09	3505.30	3504.92	3505.06	3504.69	3504.70	3504.58	3504.78	3505.22
05/19/09	3505.02	3504.87	3505.03	3504.63	3504.64	3504.51	3504.72	3505.14
09/23/09	3504.45	3504.30	3504.49		3504.14	3504.01	3504.25	3504.58
12/20/09	3504.32	3504.16	3504.35	3503.88	3503.99	3503.85	3504.11	3504.55
03/22/10	3504.60	3504.42	3504.52	3504.12	3504.14	3504.13	3504.33	3504.76
06/29/10	3504.67	3504.50	3504.66	3504.22	3504.27	3504.21	3504.43	3504.80
09/28/10	3505.07	3504.88	3505.04	3504.65	3504.68	3504.55	3504.74	3505.16
12/09/10	3505.31	3505.13	3505.25	3504.58	3504.62	3504.76	3504.98	3505.43
03/30/11	3505.39	3505.22	3505.35	3504.95	3504.93	3505.14	3505.27	3505.82
06/22/11	3505.41	3505.27	3505.45	3505.09	3505.10	3504.95	3505.14	3505.52

Well	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16
03./30/11	3503.83	3505.12	3505.38	3506.84	3505.59	3505.35	3505.12	3504.07
06/22/11	3505.48	3505.27	3505.09	3505.16	3505.62	3505.37	3505.00	3504.94

Units are feet

Blank cells wells either not installed or not not measured.

SUMMARY OF GROUNDWATER MONITORING DATA

RR EXT BTEX GROUNDWATER MONITORING DATA SUMMARY

Well	Date	Benzene	Toluene	Ethylbenzene	Total Xylenes
NMWQCC Standards					0.62
	12/9/22/1/ / 10094	>>	DOMESTIC TO 1 1/10 ASSESSED	1900-1900-1900-1900-1900-1900-1900-1900	244.3.46b. 44.49 4.4.5. () Settlement () Settleme
MW-1	3/08	1.4	0.948	0.0395	0.128
	6/08	2.75	2.17	0.054	0.232
	9/08	1.1	0.845	0.0375	0.131
Duplicate	9/08	1.22	0.883	0.0506	0.197
*	12/08	0.869	0.581	0.0385	0.0709
	3/09	0.288	0.107	0.0149	0.0395
	5/09	1.38	0.175	0.0705	0.065
	9/09	0.267	0.0332	0.024	0.0078
	12/09	0.819	0.0267	0.088	0.012
	3/10	0.726	0.107	0.0879	0.0278J
Duplicate	3/10	0.431	0.714	0.64	0.201
•	6/10	0.339	0.0329	0.0539	0.0079
Duplicate	6/10	0.353	0.0395	0.0632	0.0088
*	9/10	1.99	0.084	0.0951	0.0219J
	12/10	0.708	0.0099J	0.0796	0.0047J
	3/11	0.0241	0.0136	< 0.01	0.0055 J
	6/11	0.0735	< 0.01	0.0293	< 0.02
MW-2	3/08	8.98	6.58	0.135J	0.765
Duplicate	3/08	10	7	0.156J	0.93
	6/08	24.3	18.5	0.319	2.58
Duplicate	6/08	23.5	19.2	0.309	2.36
***************************************	9/08	21.7	9.79	0.443	4.25
	12/08		Not sampl	led: Remediation a	ctivities
	3/09	23.7	2.34	0.583	1.25
Duplicate	3/09	4.07	1.91	0.268 J	0.49 J
•	5/09	32.7	1.31	0.791	1.69
Duplicate	5/09	30.7	1.43	0.907	2.14
	9/09	29.3	0.771	0.491	0.371J
	12/09	28.5	0.347	0.57	0.177J
Duplicate	12/09	31.8	0.397J	0.829	0.193
	3/10	23.8	0.71	0.529	<1.2
	6/10	22.9	0.39J	0.485	0.128
	9/10	17	0.257J	0.329J	< 0.8
•	9/10	17.7	0.284J	0.353J	<0.8
	12/10	16.9	0.399	0.458	0.0926J
	12/10	17.5	0.556	0.452	0.127J
	3/11	16.6	0.403	0.165 J	0.116 J
Duplicate	3/11	16	0.363	<0.2	<0.2
	6/11	9.21	0.231	0.377	<0.4
Duplicate Notes: Units mg/l	6/11	8.62	0.217	· 0.393	< 0.4

Notes: Units mg

Units mg/l
NMWQCC Standards New Mexico Water Quality Control Commission Groundwater Standards
J qualifiers indicate an estimated concentration between the method detection and method reporting limits.
Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards

RR EXT BTEX GROUNDWATER MONITORING DATA SUMMARY (continued)

NMWQCC:Standards .010/. 0:75/. 0:75/. 0.75/. MW-3 3/08 0.759/. 0.849/. 0.0355/. 0. 6/08 6.18 9.46 0.287 1	Xylenes								
MW-3 3/08 0.759 0.849 0.0355 0. 6/08 6.18 9.46 0.287 1	1.62								
6/08 6.18 9.46 0.287 1									
	0786								
	1.23								
	1.14								
	.158								
).61 l .64								
	0.006								
	2.87								
	2.71								
6/10 Free Phase Hydrocarbons Since Second Quarte									
The Third Live and Second Quality									
MW-4 3/08 0.0102 0.0093 <0.002 0.00	0023J								
6/08 0.0439 0.0256 0.0068 0.	0147								
	.125								
	239J								
	.831								
	1.03								
	Free Phase Hydrocarbons Since Third Quarter 2009								
MW-5 3/08 0.0019J 0.0012J <0.002 <0									
	0.006								
	0.006								
	0.006								
	0.006								
	0.006								
	0045 J								
	0.006								
	0021J								
Free Phase Hydrocarbons Since First Quarter 2010									
).006								
	0.006								
	0.006								
).006								
	0.006								
	0.006								
	0.006								
	0.006								
6/10 <0.001 <0.002 <0.002 <0	0.002								
9/10 <0.001 <0.002 <0.002 <0).004								
12/10 <0.001 <0.002 <0.002 <0	0.004								
3/11 <0.001 <0.002 <0.002 0.00	0084 J								
6/11 <0.001 <0.002 <0.002 <0	0.004								

Notes: Units mg/l, J qualifiers indicate an estimated concentration between the method detection and method reporting limits.

NMWQCC Standards New Mexico Water Quality Control Commission Groundwater Standards

Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards

RR EXT BTEX GROUNDWATER MONITORING DATA SUMMARY (continued)

Well	Date	Benzene	Toluene	Ethylbenzene	Total Xylenes
NMWQCC Standards		.010	0.75	0.75	0.62
MW-7	6/08	<0.002	< 0.002	<0.002	<0.006
	9/08	<0.002	< 0.002	<0.002	< 0.006
	12/08	<0.002	< 0.002	<0.002	<0.006
	3/09	<0.002	< 0.002	<0.002	<0.006
	5/09	<0.002	< 0.002	<0.002	<0.006
	9/09	<0.002	< 0.002	<0.002	< 0.006
	12/09	<0.002	< 0.002	< 0.002	<0.006
	3/10	< 0.002	< 0.002	<0.002	<0.006
	6/10	0.0005J	< 0.002	< 0.002	< 0.006
	9/10	0.00042J	< 0.002	< 0.002	<0.004
	12/10	< 0.002	< 0.002	< 0.002	< 0.006
	3/11	< 0.001	< 0.002	< 0.002	< 0.002
	6/11	< 0.001	< 0.002	< 0.002	<0.004
MW-8	6/08	0.0384	0.0255	0.00049J	0.0016J
	9/08	0.0301	0.0161	< 0.002	0.002 J
	12/08	0.0233	0.011	< 0.002	<0.006
Dup	12/08	0.0122	0.006	< 0.002	< 0.006
	3/09	0.0218	0.0066	< 0.002	< 0.006
	5/09	0.0098	0.0049	< 0.002	<0.006
	9/09	< 0.002	< 0.002	< 0.002	< 0.006
Dup	9/09	<0.4	<0.4	<0.4	<1.2
	12/09	< 0.002	< 0.002	< 0.002	<0.006
	3/10	< 0.002	< 0.002	< 0.002	< 0.006
	6/10	< 0.001	< 0.002	< 0.002	< 0.002
	9/10	<0.001	< 0.002	< 0.002	< 0.004
	12/10	< 0.001	< 0.002	< 0.002	< 0.004
	3/11	< 0.001	< 0.002	< 0.002	< 0.002
	6/11	<0.001	< 0.002	< 0.002	< 0.004
MW-9	Fr	ee Phase H	ydrocarbon	s since June 2010 I	nstallation
MW-10	Fr	ee Phase H	ydrocarbon	s since June 2010 I	nstallation
) (XX 11	6/10	-0.001	-0.000	-0.000	-0.004
MW-11	6/10	<0.001	<0.002	<0.002	<0.004
	9/10	<0.001	<0.002	<0.002	<0.004
	12/10	<0.001	<0.002	<0.002	<0.004
	3/11	<0.001	<0.002	<0.002	<0.002
	6/11	< 0.001	<0.002	<0.002	<0.004
			•		

Units mg/l, J qualifiers indicate an estimated concentration between the method detection and method reporting limits.

NMWQCC Standards New Mexico Water Quality Control Commission Groundwater Standards

Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards

Notes:

RR EXT BTEX GROUNDWATER MONITORING DATA SUMMARY (continued)

Well	Date	Benzene	Toluene	Ethylbenzene	Total Xylenes
NMWQCC Standards		010	0.75	0.75	0.62
MW-12	6/10	< 0.001	< 0.002	<0.002	<0.004
	9/10	< 0.001	≤0.002	<0:002	<0.004
	12/10	< 0.001	<0.002	< 0.002	<0.004
11111	3/11	≤0.001	<0.002	<0.002	≤0.002
	6/11	. ≤0.001	<0.002	≤0.002	<0.004
MW-13	3/11	< 0.001	< 0.002	< 0.002	< 0.002
	6/11	<0.001	< 0.002	< 0.002	<0.004
MW-14	3/11	< 0.001	< 0.002	< 0.002	< 0.002
	6/11	< 0.001	< 0.002	< 0.002	<0.004
MW-15	3/11	< 0.001	< 0.002	<0.002	< 0.002
	6/11	< 0.001	< 0.002	< 0.002	<0.004
MW-16	3/11	< 0.001	< 0.002	< 0.002	< 0.002
	6/11	< 0.001	<0.002	< 0.002	<0.004

Notes: Units mg/l, J qualifiers indicate an estimated concentration between the method detection and method reporting limits.

NMWQCC Standards New Mexico Water Quality Control Commission Groundwater Standards

WELL SAMPLING DATA AND ANALYTICAL LABORATORY REPORT

	CLIENT.		or ivilustre	aiii		WELL ID:	
S	ITE NAME:	E: RR-EXT				DATE:	6/22/2011
PRO	OJECT NO.			_	. ;	SAMPLER:	N. Quevedo
PURGING	METHOD	:	☑ Hand Bai	led 🗌 Pu	mp If Pui	mp, Type:	
SAMPLIN	IG METHO	D :	✓ Dedicated	d Bailer [Direct fr	om Dischar	rge Hose Dther:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATIO	ON METHO	D BEFO	RE SAMPL	ING THE WELL:
☑ Glove	s 🗌 Alcono	x Distill	led Water Ri	nse 🗆 C	ther:		
TOTAL DEPTH OF WELL: 39.56 Feet DEPTH TO WATER: 29.16 Feet HEIGHT OF WATER COLUMN: 10.40 Feet WELL DIAMETER: 2.0 Inch						5.2	Minimum Gallons to purge 3 well volumes
TIME	VOLUME		COND.	рН	DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND REMARKS
	PURGED		m S/cm		mg\L	Turb	PITTOTOLE AFFEATONICE AND REMARKS
	1.6	21.1	1.47	7.70			
	3.2	20.7	1.47	7.66			
	4.8	20.3	1.47	7.66			
-							
		-					
						·	
	4.8	Volume: (g	• •				
	LE NO.:		Sample No.:	MW-1			
	YSES:	BTEX (826	0)				
COMM	MENTS:						

	CLIENT:	: DCP Midstream			_	WELL ID:	MW-2		
s	ITE NAME:			_	DATE:	6/22/2011			
PRO	DJECT NO.			<i></i>	_	SAMPLER:	N. Quevedo		
PURGING	METHOD:	: v		⊔ led _{┌┐} Pu	mp If Pur	np, Type:	- ↑-		
SAMPLIN	G METHO						rge Hose Other:		
FASCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Gloves Alconox Distilled Water Rinse Other:									
DEPTH TO	O WATER: OF WATER		39.91 29.91 10.00 Inch	Feet		5.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP.	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	1.7	22.2	1.11	7.53					
	3.4	21.9	1.11	7.52					
	5.1	21.8	1.10	7.52					
	5.1	Volume: (ga	allons)						
SAMP	LE NO.:	Collected S	Sample No.:	MW-2					
ANAL	YSES:	BTEX (826	0)						
COMM	MENTS:								
		Duplicate s	ample collec	ted					

	CLIENT.		or ivilustie	alli	_	WELL ID.	1VIVV-3
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011
PRO	DJECT NO.				_ ;	SAMPLER:	N. Quevedo
PURGING	METHOD:	: :	Hand Bai	.∟. iled _{┌ Pu}	mp If Pui	mp, Type:	
SAMPLIN	G МЕТНО						ge Hose Other:
SCRIB	EQUIPM	E DECO	NTAMINATI	оі∰метно	D BEFO	RE SAMPLI	NG THE WELL:
Glove	s Alcono	x Distill	ed Water Ri	nse C	Other:		
TOTAL DEPTH OF WELL: 40.03 Feet DEPTH TO WATER: 31.45 Feet HEIGHT OF WATER COLUMN: 8.58 Feet WELL DIAMETER: 2.0 Inch							Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
			·				
	0.0	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	No sample	because	of FPH	
ANAL	YSES:	BTEX (826	0)				
COMM	MENTS:						

	CLIENT:	:DCP Midstream		WELL ID: MW-4		: MW-4			
S	ITE NAME:	: RR-EXT			_	DATE:	6/22/2011		
PRO	OJECT NO.			·	_	SAMPLER:	N. Quevedo		
PURGING	METHOD:		Hand Bai	⊔ led _□ Pu	mp If Pu	mp, Type:			
SAMPLIN	IG METHO						rge Hose Other:		
SCRIE	EQUIPM	E DECO	NTAMINATIO	OI_METHO	DD BEFO	RE SAMPL	ING THE WELL:		
Gloves Alconox Distilled Water Rinse Other:									
TOTAL DEPTH OF WELL: 40.66 Feet DEPTH TO WATER: 30.40 Feet HEIGHT OF WATER COLUMN: 10.26 Feet WELL DIAMETER: 2.0 Inch						5.1	Minimum Gallons to purge 3 well volumes		
	LVOLUME	TEMP	00110		1 50	r	(Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
			l.	-					
		-							
	0.0	Volume: (ga	allons)						
SAMP	LE NO.:	Collected S	ample No.:	No sample	because	of FPH			
ANAL	YSES:	-							
COMN	MENTS:						`		

	CLIENT:	: DCP Midstream		_	WELL ID	:MW-5	
S	ITE NAME:		RR-EXT		-	DATE	:6/22/2011
PRO	OJECT NO.					SAMPLER	: N. Quevedo
PURGINO	METHOD:	_	Hand Bai	⊔ led _□ Pι	ımp If Pui	mp, Type:	
SAMPLIN	G METHOD						rge Hose Other:
SCRIB	EQUIPM	E[] DECO	NTAMINATION	ог_метно	OD BEFO	RE SAMPL	ING THE WELL:
Glove							
TOTAL DEPTH OF WELL: 42.15 Feet DEPTH TO WATER: 30.71 Feet HEIGHT OF WATER COLUMN: 11.44 Feet WELL DIAMETER: 2.0 Inch						5.7	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. m S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
ļ	FUNGED	L C	III S/CIII		myt		KLIVIARIO
							,
			·				

	0.0	Volume: (ga	allons)				
SAMP	LE NO.:	Collected S	ample No.:	No sample	e because	of FPH	
		BTEX (826	0)				
COM	MENTS:						

	CLIENT:	: DCP Midstream		WELL ID: MW-6					
s	ITE NAME:	:RR-EXT			_	DATE	:6/22/2011		
PRO	DJECT NO.				_	SAMPLER	: N. Quevedo		
	METHOD:			⊒ ed _Γ Ρι	ımp If Pur	пр, Туре:			
SAMPLIN	G METHOD			_			rge Hose Other:		
SCRIB	EQUIPMI	ELL DECO	OITAMINATIO	METH	OD BEFOR	RE SAMPL	ING THE WELL:		
Gloves Alconox Distilled Water Rinse Other:									
TOTAL DEPTH OF WELL: DEPTH TO WATER: HEIGHT OF WATER COLUMN: WELL DIAMETER: 2.0 Inch						4.2	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP.	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	1.3	20.4	1.18	7.89					
	2.6	19.8	1.18	7.90					
	3.9	19.3	1.18	7.91					
				, -					
					ļ				
·									
					·				
					ļ ·				
					<u> </u>				
	3.9	Volume: (ga	allons)						
SAMP	LE NO.:	Collected S	Sample No.:	MW-6					
ANAL	YSES:	BTEX (826	0)		1				
COM	MENTS:	Collected s	amples for M	S and MS	D analyse	s			
		·							

	CLIENT:	DCP Midstream		_	WELL ID:	<u>MW-7</u>			
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011		
PRO	DJECT NO.			,	_ :	SAMPLER:	N. Quevedo		
PURGING	METHOD:					mp, Type:	<u> </u>		
SAMPLIN	G METHOD			_			ge Hose Other:		
FASCRIBF EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Glove	s Alcono	x Distill	ed Water Ri	nse C	Other:				
DEPTH TO	O WATER: OF WATER AMETER:	COLUMN: 2.0			4.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	1.3	20.5	1.32	8.12					
	2.6	19.9	1.26	7.89					
	3.9	19.8	1.26	7.88	_				
				-					
		·							
_									
						L <u></u>			
	3.9	Volume: (ga	allons)						
SAMPI	LE NO.:	Collected S	ample No.:	MW-7					
ANAL	YSES:	BTEX (826)	0)						
COMM	MENTS:								

	CLIENT:	DCP Midstream			_	WELL ID:	:MVV-8		
s	ITE NAME:		RR-EXT			DATE:	6/22/2011		
PRO	DJECT NO.				_ :	SAMPLER:	N. Quevedo		
	METHOD:		Hand Bai	⊔ led _□ Pu	ımp lf Pui	mp, Typo:			
	G METHOD) !	Dedicated	Baller	Direct fr	om Discha	rge Hose - Ölher: - :		
ESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Glove	s Alcono		ed Water Ri	nse (Other:		<u> </u>		
TOTAL DEPTH OF WELL: 40.26 Feet DEPTH TO WATER: 30.89 Feet HEIGHT OF WATER COLUMN: 9,37 Feet WELL DIAMETER: 2.0 Inch						4.7	purge 3 well volumes		
r	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED	°C	m S/cm	pН	mg\L	Turb	REMARKS		
1	2.0	21.5	1.54	7.80	1				
	4.0	20.9	1.54	7.80					
1	6.0	20.5	1.54	7.75					
ſ					ļ <u></u>				
ļ 									
						.,			
Þ									
					ļ <u>.</u>				
					ļ				
٠.					<u> </u>				
	5.0	Volume: (g	allons)						
gàmp	LE NO.:	Collected S	lample No.:	MW-B					
ANAL	YSES:	BTEX (826	0)	1					
C <mark>OMN</mark>	MENTS:			·	:		,		
1					<u>'</u>				

	CLIENT:	DC	P Midstre	am	_	WELL ID	:MW-9
s	ITE NAME:		RR-EXT		_	DATE	:6/22/2011
PRO	DJECT NO.				_	SAMPLER	. N. Quevedo
PURGING	METHOD:			ied _□ Pu	mp If Pur	mp, Type:	
SAMPLIN	G METHOD						rge Hose Other:
SCRIB	E QUIPMI	ELT DECO	NTAMINATIO	ог <u>⊢</u> метно	D BEFO	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distill	ed Water Ri	nse C	Other:		<u> </u>
DEPTH TO HEIGHT (O WATER: OF WATER	,	40.00 29.38 10.62 Inch	Feet		5.3	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND
TIVIL	PURGED	°C	m S/cm	PIT	mg\L	Tuib	REMARKS
							<u> </u>
,							
	-					_	
	 -			t			
					:		
						_	
				<u></u>			
	,						
							
<u></u>	0.0	Volume: (ga	allons)		·		
SAMPI	LE NO.:	Collected S	ample No.:	No sample	because	of FPH	···-
ANAL	YSES:	BTEX (826	0)				
COMM	MENTS:						
						-	

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-10
s	ITE NAME:		RR-EXT		_		6/22/2011
PRO	OJECT NO.				_	SAMPLER:	N. Quevedo
PURGING	METHOD:	: 5	Hand Bai	led Pu	ımp If Pur	mp, Type:	N. Quevedo
SAMPLIN	G METHOD):	Dedicate	d Bailer	Direct fr	om Discha	rge Hose Other:
			NTAMINATI ed Water Ri		OD BEFOR	RE SAMPL	ING THE WELL:
DEPTH T	O WATER: OF WATER AMETER:	COLUMN: 2.0		Feet		5.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
		J	•. •		g.=		
						-	
						-	
	,						
						•	
				_			
					,		
	0.0	Volume: (ga	allons)				
SAMP	LE NO.:	Collected S	ample No.:	No sample	because	of FPH	
ANAL	YSES:	BTEX (826	0)	:		•	
COMN	MENTS:						
			-				

	CLIENT:		P Midstre	am	-	WELL ID:	MIVV-11
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011
PRO	DJECT NO.				_ ;	SAMPLER:	N. Quevedo
PURGING	METHOD:		Hand Bai	□ led _□ Pu	mp If Pui	пр, Туре:	
SAMPLIN	G METHO						rge Hose Other:
SCRIB	EQUIPM	ELL DECO	NTAMINATIO	ог_метно	DD BEFO	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distill	ed Water Ri	nse C	Other:		
DEPTH TO HEIGHT (O WATER: OF WATER	COLUMN: 2.0	40.00 31.10 8.90 Inch	Feet		4.5	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.4	21.1	1.21	7.92			
	2.8	20.6	1.320	7.91			
	4.2	19.6	1.320	7.89			
						•	
						!	
_	4.2	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	MW-11			
ANAL	YSES:	BTEX (826	0)				
COMM	MENTS:						

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-12
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011
PRO	DJECT NO.			· · · · · · · · · · · · · · · · · · ·	_	SAMPLER:	N. Quevedo
PURGING	METHOD:	☑	Hand Bai	L led ┌ Pu	mp If Pur	np, Type:	
SAMPLIN	G METHOD						rge Hose Other:
SCRIB	E EQUIPMI	ELL DECO	NTAMINATIO	он⊤метно	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distill	ed Water Ri	nse C	Other:		
DEPTH TO	O WATER: OF WATER		40.00 29.31 10.69 Inch		5.3	Minimum Gallons to purge 3 well volumes	
718.45	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
TIME	PURGED	°C	m S/cm	рН	mg\L	Turb	REMARKS
	1.7	21.1	1.37	7.87			
	3.4	20.5	1.37	7.87			
	5.1	19.9	1.37	7.86			
		,					
				•			
				•			
					i		
	5.1	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	MW-12			
ANAL	YSES:	BTEX (8260	0)				,
COMM	MENTS:						
					•	ý	

	CLIENT:	DC	P Midstre	am	_	WELL ID	:MW-13
S	ITE NAME:		RR-EXT		_	DATE	:6/22/2011
PRO	DJECT NO.	——————————————————————————————————————		{ `	_	SAMPLER	:N. Quevedo
PURGING	METHOD:	Ŭ.	Hand Bai	led Pu	mp If Pun	np, Type:	
SAMPLIN		· 					rge Hose Other:
SCRIB	EQUIPME	DECO	NTAMINATIO	он_метно	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distille	ed Water Rir	nse C	other:		·
DEPTH TO HEIGHT (EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	40.00 30.46 9.54 Inch	Feet Feet Feet		4.8	Minimum Gallons to purge 3 well volumes
	\	TEMP	00110		1 55 1		(Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.6	2031	1.21	7.80			
	3.2	20.5	1.21	7.82			
	4.8	19.9	1.21	7.82			
							•
			_				
	4.8	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	MW-13			
ANAL	YSES:	BTEX (826)	 D)				
COMM	TENTS:						
	•						

	CLIENT:	, DC	P Midstre	am	_	WELL ID	:MW-14
S	ITE NAME:		RR-EXT		_	DATE	:6/22/2011
PRO	DJECT NO.				_	SAMPLER	: N. Quevedo
	METHOD:		Hand Bai	□ led _□ Pu	mp If Pun	np, Type:	
SAMPLIN	G METHOE						rge Hose Other:
F;SCRIB	F-EQUIPMI	EMT DECOI	NTAMINATI	он-метно	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distille	ed Water Rir	nse O	ther:		
DEPTH TO			40.00 29.59 10.41 Inch	Feet		5.2	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.0	20.5	1.29	7.95			
:	4.0	20.5	1.28	7.93			
	6.0	20.3	1.28	7.92			
		•		•			·
							·
							
	6.0	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	MW-14	i,		
ANAL	YSES:	BTEX (826	0)				
COMM	MENTS:						

3 - 18

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-15
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011
PRO	DJECT NO.				_ ;	SAMPLER:	N. Quevedo
PURGING	METHOD:	: 4	Hand Bai	L led _{[□} Pu	mp Įf Pur	np, Type:	
SAMPLIN	G МЕТНО						ge Hose Other:
SCRIB	EQUIPMI	ELL DECO	NTAMINATIO	ог_метно	DD BEFO	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distill	ed Water Rir	nse O	ther:		
DEPTH TO	O WATER: OF WATER	COLUMN:	29.90 10.10	Feet		5.1	_ Minimum Gallons to
WELL DIA	AMETER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP.	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.8	20.9	1.07	7.98			
	3.6	20.3	1.07	7.95			
	5.4	20.5	1.07	7.98			
							·
	5.4	Volume: (ga	allons)				
SAMPI	LE NO.:	Collected S	ample No.:	MW-15			·
ANAL	YSES:	BTEX (826	0)				
COMM	MENTS:	. 				•	

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-16
s	ITE NAME:		RR-EXT		_	DATE:	6/22/2011
PRO	DJECT NO.				_ ;	SAMPLER:	N. Quevedo
	METHOD:			led	mp If Pur	np, Type:	
SAMPLIN	G МЕТНО	· 					rge Hose Other:
SCRIB	EQUIPM	E DECO	NTAMINATIO	октыстно	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s Alcono	x Distill	ed Water Rir	nse O	ther:		
DEPTH TO	O WATER: OF WATER		28.74 11.26	Feet		5.6	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.0	20.8	1.07	7.98			
	4.0	20.9	1.06	7.96			
	6.0	20.4	1.06	7.97			
						,	
				· · · · · · · · · · · · · · · · · · ·			
			İ				
	6.0	Volume: (ga	•				
	1	Collected S	•	MW-16			
	,	BTEX (826	0)				
COMM	MENTS:						
•	·					· · · · · · · · · · · · · · · · · · ·	

Technical Report for

DCP Midstream, LP

AECCOL: DCP RR EXT

RC-GN00 Project-390761103

Accutest Job Number: D24764

Sampling Date: 06/22/11

Report to:

American Environmental Consulting, LLC

mstewart@aecdenver.com

ATTN: Michael Stewart

Total number of pages in report: 46

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Shea Greiner 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Test results relate only to samples analyzed.

1 of 46
ACCUTEST:

John Hamilton

Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Sample Results	6
3.1: D24764-1: MW-1	7
3.2: D24764-2: MW-2	9
3.3: D24764-3: MW-6	11
3.4: D24764-4: MW-7	13
3.5: D24764-5: MW-8	15
3.6: D24764-6: MW-11	17
3.7: D24764-7: MW-12	19
3.8: D24764-8: DUP	21
3.9: D24764-9: TRIP BLANK	23
3.10: D24764-10: MW-13	24
3.11: D24764-11: MW-14	26
3.12: D24764-12: MW-15	28
3.13: D24764-13: MW-16	30
Section 4: Misc. Forms	32
4.1: Chain of Custody	33
Section 5: GC/MS Volatiles - QC Data Summaries	36
5.1: Method Blank Summary	37
5.2: Blank Spike Summary	39
5.3: Matrix Spike/Matrix Spike Duplicate Summary	41
Section 6: General Chemistry - QC Data Summaries	43
6.1: Method Blank and Spike Results Summary	44
6.2: Matrix Spike Results Summary	45
6.3: Matrix Spike Duplicate Results Summary	46

Sample Summary

. J. J

DCP Midstream, LP

AECCOL: DCP RR EXT Project No: RC-GN00 Project-390761103

Job No: D24764

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
D24764-1	06/22/11	11:15 NQ	06/23/11	AQ	Ground Water	MW-1
D24764-2	06/22/11	11:00 NQ	06/23/11	AQ	Ground Water	MW-2
D24764-3	06/22/11	08:30 NQ	06/23/11	AQ	Ground Water	MW-6 =
D24764-3D	06/22/11	08:30 NQ	06/23/11	AQ	Water Dup/MSD	MW=6%
D24764-3M	06/22/11	08:30 NQ	06/23/11	AQ	Water Matrix Spike	MW-6
D24764-4	06/22/11	08:05 NQ	06/23/11	AQ	Ground Water	MW-7
D24764-5	06/22/11	11:35 NQ	06/23/11	AQ	Ground Water	MW-8
D24764-6	06/22/11	08:45 NQ	06/23/11	AQ	Ground Water	MW-11
D24764-7	06/22/11	09:20 NQ	06/23/11	AQ	Ground Water	MW-12
D24764-8	06/22/11	00:00 NQ	06/23/11	AQ	Ground Water	DUP
D24764-9	06/22/11	00:00 NQ	06/23/11	AQ	Ground Water	TRIP BLANK
D24764-10	06/22/11	12:00 NQ	06/23/11	AQ	Ground Water	MW-13
D24764-11	06/22/11	10:35 NQ	06/23/11	AQ	Ground Water	MW-14.

Sample Summary (continued)

DCP Midstream, LP

AECCOL: DCP RR EXT Project No: RC-GN00 Project-390761103

Job No:

D24764

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
D24764-12	06/22/11	10:15 NQ	06/23/11	AQ	Ground Water	MW-15
D24764-13	06/22/11	09:50 NQ	06/23/11	AQ	Ground Water	MW-16

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: DCP Midstream, LP Job No D24764

Site: AECCOL: DCP RR EXT Report Date 6/30/2011 5:09:53 PM

On 06/23/2011, 13 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 5.9 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D24764 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

-	Matrix AQ	Batch ID: V7V392	
. 1	mann my	Baton IB: 171372	

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D24763-4MS, D24763-4MSD were used as the QC samples indicated.

Matrix AQ	Batch ID: V7V393	

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D24764-3MS, D24764-3MSD were used as the QC samples indicated.

Wet Chemistry By Method EPA 300/SW846 9056

Matrix AQ	Batch ID: GP4758	

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D24741-1MS, D24741-1MSD were used as the QC samples for the Chloride analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Section 3

Sample Results	
Report of Analysis	

2

Ву

DC

11.3

Client Sample ID: MW-1

File ID

7V07417.D

Lab Sample ID:

D24764-1

Matrix: Method: Project:

AQ - Ground Water SW846 8260B

AECCOL: DCP RR EXT

DF

5

Date Sampled: Date Received:

Prep Date

n/a

06/22/11 06/23/11

Percent Solids: n/a

Prep Batch n/a

Analytical Batch V7V392

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0:0735 ND 0:0293 ND	0.0050 0.010 0.010 0.020	0.0013 0.0050 0.0025 0.010	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 103% 87%		63-13 68-13 61-13	30%	

Analyzed

06/24/11

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

D24764

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID: D24764-1 Matrix: AQ - Grou

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11 Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chloride 467 10 mg/l 20 06/24/11 10:50 GH EPA 300/SW846 9056

Page 1 of 1

Client Sample ID: MW-2

D24764-2

Lab Sample ID: Matrix:

AQ - Ground Water

Method:

SW846 8260B

Date Sampled:

Date Received:

06/23/11

Percent Solids:

Project:

File ID 7V07418.D DF 100

AECCOL: DCP RR EXT

Analyzed 06/24/11

By DC Prep Date n/a

MDL

Prep Batch n/a

Q

Units

mg/l mg/l mg/l mg/l 06/22/11

Analytical Batch V7V392

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound
71-43-2	Benzene
108-88-3	Toluene
100-41-4	Ethylbenzene
1330-20-7	Xylene (total)

CAS No.	Surrogate	Recoveries
CAS No.	Surrogate	Recoverie

17060-07-0	1,2-Dichloroethane-D4
2037-26-5	Toluene-D8
460-00-4	4-Bromofluorobenzene

Result	RL

0.10	0.025
0.20	0.10
0.20	0.050
0.40	0.20
	0.10 0.20 0.20 0.40

Run#1 Run# 2 Limits

100%	63-130%
100% 102% 85%	68-130%
85%	61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-2 Lab Sample ID:

D24764-2

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte

Result

RL

Units

DF

Analyzed

Method

Chloride

mg/l

20

06/24/11 11:01 GH

EPA 300/SW846 9056

myrig.

Page 1 of 1

Client Sample ID: MW-6 Lab Sample ID:

D24764-3

Matrix: Method: AQ - Ground Water

SW846 8260B

AECCOL: DCP RR EXT

Date Sampled: Date Received:

06/22/11 06/23/11

Percent Solids: n/a

Project:

File ID 7V07430.D DF 1

Analyzed 06/24/11

By DC Prep Date n/a

Prep Batch n/a

Analytical Batch V7V393

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No. Compound

Benzene

71-43-2 108-88-3 Toluene

100-41-4 Ethylbenzene

1330-20-7 Xylene (total)

CAS No. Surrogate Recoveries

1,2-Dichloroethane-D4 17060-07-0

2037-26-5 Toluene-D8 4-Bromofluorobenzene 460-00-4

Result

ND

ND

ND

ND.

RL

MDL

Units

Q

0.0010 0.00025 mg/l

0.0020 0.0010 mg/l 0.00050 mg/l 0.0020

0.0040 0.0020 mg/l

Run#1 Run#2 Limits

87%

63-130% 68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-6 Lab Sample ID: D24764 D24764-3

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte

Chloride

Result

376

RL

] 10

Units

mg/l

DF

20

Analyzed

06/24/11 11:12 GH

Method

EPA 300/SW846 9056

RL = Reporting Limit

By

DC

Buth

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

D24764-4

Matrix: Method:

Project:

AQ - Ground Water

DF

1

File ID

7V07419.D

SW846 8260B AECCOL: DCP RR EXT Date Sampled: Date Received:

06/22/11 06/23/11

n/a

Percent Solids: n/a

Prep Batch Analytical Batch

V7V392

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No. RL MDL Compound Result Units Q

ND.

ND

NĎ

Analyzed

06/24/11

71-43-2 Benzene 108-88-3 Toluene 100-41-4

Ethylbenzene 1330-20-7 Xylene (total)

CAS No. Surrogate Recoveries

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

0.0010

0.00025 mg/l

Prep Date

n/a

0.0020 $0.0010 \, \text{mg/l}$ 0.00200.00050 mg/l 0.0020 0.0040 mg/l

Run# 2 Run# 1 Limits

102% 63-130% 104% 68-130% 88% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID: D24764-4

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chloride 390 10 mg/l 20 06/24/11 11:24 GH EPA 300/SW846 9056

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID:

D24764-5

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8260B

AECCOL: DCP RR EXT

Date Sampled:

06/22/11 06/23/11

Date Received:

Percent Solids:

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** 7V07420.D DC V7V392 Run #1 1 06/24/11 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.

Purgeable Aromatics

Compound Result RL MDL Units Q

71-43-2 Benzene Toluene 108-88-3 100-41-4 Ethylbenzene 1330-20-7

Xylene (total)

CAS No. Surrogate Recoveries

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

ND ...

ND

ND.

ND

0.00025 mg/l 0.0010 0.0020 0.0010 mg/l 0.0020 0.00050 mg/l

0.0020 0.0040 mg/l

Run# 2 Run#1 Limits

100% 102% 86%

63-130% 68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID: D24764-5

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chloride 524 10 mg/l 20 06/24/11 11:57 GH EPA 300/SW846 9056

By

DC

.

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID:

D24764-6

Matrix: Method: AQ - Ground Water

SW846 8260B

Date Sampled: Date Received:

06/22/11 06/23/11

Percent Solids:

Project:

AECCOL: DCP RR EXT

DF

1

Prep Date

n/a

Prep Batch n/a

Analytical Batch V7V393

Run #1 Run #2

Purge Volume

7V07439.D

File ID

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00025 0.0010 0.00050 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 103% 89%		63-13 68-13 61-13	80%	

Analyzed

06/25/11

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID: D24764-6

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11 Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chloride 405 10 mg/l 20 06/24/11 12:08 GH EPA 300/SW846 9056

By

DC

ولاعملن

Page 1 of 1

Client Sample ID: MW-12 Lab Sample ID:

D24764-7

AQ - Ground Water

Date Sampled: Date Received:

06/22/11 06/23/11

Matrix: Method:

SW846 8260B

Project:

Percent Solids: n/a

AECCOL: DCP RR EXT

DF

1

Prep Date

n/a

Prep Batch n/a

Analytical Batch V7V393

Run #1 Run #2

Purge Volume

File ID

7V07440.D

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No. Compound Result RL MDL Units Q

Analyzed

06/25/11

71-43-2 Benzene 108-88-3 Toluene 100-41-4 Ethylbenzene 1330-20-7 Xylene (total)

ND. 0.0010 0.00025 mg/l ND 0.0020 $0.0010 \, \text{mg/l}$ ND 0.0020 0.00050 mg/l 0.0020 mg/l ND 0.0040

Surrogate Recoveries CAS No.

Run#1 Run#2 Limits

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8 460-00-4 4-Bromofluorobenzene

99% 103%

63-130% 68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-12 Lab Sample ID: D24764

D24764-7 Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte Result RLUnits DF Analyzed By Method

Chloride 497 mg/l 20 06/24/11 12:20 GH EPA 300/SW846 9056

Page 1 of 1

Client Sample ID: DUP

Lab Sample ID:

D24764-8

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260B

Date Sampled: Date Received:

06/22/11 06/23/11

Percent Solids: n/a

File ID

DF 100

AECCOL: DCP RR EXT

Analyzed 06/25/11

By DC Prep Date n/a

Prep Batch n/a

Analytical Batch V7V393

Run #1 Run #2

Purge Volume

7V07433.D

Run #1

Run #2

5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	8:62 0:217 0:393 ND	0.10 0.20 0.20 0.40	0.025 0.10 0.050 0.20	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	91% 101% 88%		68-1	30% 30% 30%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: DUP Lab Sample ID: D247

D24764-8

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Project:

AECCOL: DCP RR EXT

Percent Solids: n/a

General Chemistry

Analyte

Result

RL

Units

DF

Analyzed

Ву Method

Chloride

329 10

mg/l

20

06/24/11 12:31 GH

EPA 300/SW846 9056

By

DC

4 37

Page 1 of 1

Client Sample ID: TRIP BLANK

Lab Sample ID:

D24764-9

Matrix: Method: Project:

AQ - Ground Water

SW846 8260B

AECCOL: DCP RR EXT

DF

1

Date Sampled:

06/22/11 06/23/11

Date Received:

Percent Solids:

Prep Date

Prep Batch Analytical Batch V7V393 n/a

Run #1 Run #2

Purge Volume

File ID

7V07438.D

Run #1 5.0 ml

Run #2

CAS No.

Purgeable Aromatics

Result

RL

MDL Units Q

71-43-2 108-88-3

Benzene

Compound

Toluene 100-41-4 Ethylbenzene

1330-20-7

CAS No.

Xylene (total)

Surrogate Recoveries

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 460-00-4

Toluene-D8 4-Bromofluorobenzene

ND

Analyzed

06/25/11

ND

0.0010 0.00025 mg/l 0.0020 0.0010 mg/l

0.0020 0.00050 mg/l 0.0020 mg/l 0.0040

n/a

ND × Run#1

95%

103%

87%

ND ...

Run#2 Limits

63-130%

68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-13

Lab Sample ID:

D24764-10

Matrix: Method: AQ - Ground Water

SW846 8260B

Date Sampled:

06/22/11

Date Received:

06/23/11

Percent Solids: n/a

Project: AECCOL: DCP RR EXT

Run #1

File ID 7V07434.D DF 1

Analyzed 06/25/11

By DC Prep Date n/a

Prep Batch n/a

Analytical Batch

V7V393

Page 1 of 1

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

Purgeable Aromatics

CAS No. Compound Result

ND

ND.

ND

RL

0.0010

0.0020

0.0020

0.0040

Units

mg/l

0.00025 mg/l

0.00050 mg/l 0.0020

Q

71-43-2

Benzene

108-88-3 Toluene

100-41-4 Ethylbenzene

1330-20-7

CAS No.

Xylene (total)

ND Run#1

87%

Run# 2 Limits

MDL

0.0010

17060-07-0

1,2-Dichloroethane-D4

Surrogate Recoveries

2037-26-5

Toluene-D8

460-00-4

4-Bromofluorobenzene

91% 100%

63-130%

68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-13

Lab Sample ID:

D24764-10

Matrix:

Project:

AQ - Ground Water

Date Sampled:

06/22/11 06/23/11

Date Received:

Percent Solids: n/a

General Chemistry

Analyte'

Result

AECCOL: DCP RR EXT

RL

Units

mg/l

DF

Analyzed

Method By

Chloride

340 10

20

06/24/11 12:42 GH

EPA 300/SW846 9056

Client Sample ID: MW-14 Lab Sample ID:

D24764-11

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260B

Date Sampled:

06/22/11 06/23/11

Date Received:

Percent Solids: n/a

Project: AECCOL: DCP RR EXT

File ID Run #1 7V07435.D

Analyzed 06/25/11

By DC Prep Date n/a

Prep Batch n/a

Q

Analytical Batch V7V393

Page 1 of 1

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No. Compound

71-43-2 Benzene 108-88-3 **Toluene**

100-41-4 Ethylbenzene

1330-20-7 Xylene (total)

CAS No. Surrogate Recoveries

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene Result

RL

MDL Units

ND 0.0010 0.00025 mg/l ND 0.0020 $0.0010 \, \text{mg/l}$ ND

0.0020 0.00050 mg/lND 0.0040 $0.0020 \, \text{mg/l}$

Run#1

Run#2 Limits

94% 101% 88%

63-130% 68-130% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ľ

1270

Client Sample ID: MW-14

Lab Sample ID:

D24764-11

Matrix:

AQ - Ground Water

AECCOL: DCP RR EXT

Date Sampled:

06/22/11 06/23/11

Percent Solids: n/a

Date Received:

General Chemistry

Analyte

Chloride

Project:

Result

RL

Units

mg/l

DF

20

Analyzed

06/24/11 12:53 GH

Method By

EPA 300/SW846 9056

RL = Reporting Limit

Client Sample ID: MW-15

Lab Sample ID:

D24764-12

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

AECCOL: DCP RR EXT

Date Sampled: Date Received:

06/22/11 06/23/11

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch V7V393 Run #1 7V07436.D 1 06/25/11 DC n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No. Compound Result RL MDL Units Q

71-43-2 Benzene 0.00100.00025 mg/l ND 108-88-3 **Toluene** ND 0.0020 0.0010mg/l 100-41-4 Ethylbenzene ND 0.0020 0.00050 mg/l 1330-20-7 ND 0.0040 0.0020 Xylene (total) mg/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

17060-07-0 1,2-Dichloroethane-D4 93%

63-130% 2037-26-5 Toluene-D8 68-130% 460-00-4 4-Bromofluorobenzene 87% 61-130%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-15

Lab Sample ID:

D24764-12

Matrix:

AQ - Ground Water

Date Sampled: 06/22/11

Date Received: 06/23/11

Percent Solids: n/a

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte

Result

RL

Units

mg/l

DF

Analyzed

Method Ву

Chloride

20

06/24/11 13:04 GH

EPA 300/SW846 9056

Page 1 of 1

Report of Analysis

Client Sample ID: MW-16

Lab Sample ID:

D24764-13

Matrix: Method: AQ - Ground Water

SW846 8260B

Project:

AECCOL: DCP RR EXT

Date Sampled:

06/22/11 06/23/11

Date Received:

Percent Solids: n/a

Ву Analytical Batch File ID DF Analyzed Prep Date Prep Batch Run #1 7V07437.D 06/25/11 DC V7V393 1 n/a n/a

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00025 0.0010 0.00050 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 101% 86%		63-13 68-13 61-13	30%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-16

Lab Sample ID:

D24764-13

Matrix:

AQ - Ground Water

Date Sampled:

06/22/11 Date Received: 06/23/11

Percent Solids:

Project:

AECCOL: DCP RR EXT

General Chemistry

Analyte

Result

RL

Units

DF

Analyzed

Ву Method

Chloride

292 10

mg/l

20

06/24/11 13:16 GH

EPA 300/SW846 9056

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

BACC	UTEST
1.	LABORATORISE

		CHAIN OF CUSTODY PAGE / OF ?								:															
	ACCUTES			4036 Young	a Eald Sum		P.4 CO						ſ	FED-EX	Tracking	7 **				Bottle C	rder Contr	rol #			
L	LARORATORU				3-425-602	FAX.	303-425-6 am	6854		•			- 1	l .	t Quote #					Accules			24	71	04
學學	Client / Reporting Information	THE PERSON NAMED IN	福油库住业		Informa	ation			Tina.		Mb.			PRE	Req	uestec	Anah	ysis (:	see TE	STC	ODE sh	neet)	F I	飅	Matrix Codes
Compan	ny Namo	Project Name	DCP RR EXT									_						I	,	<u>Γ</u>		,			
	erican Environmental Consulting																	. 1							DW - Drinking Water GW - Ground Water
Street A		Street			SCACUSE)	Problem of the Property of the	enaldise.	eld (Ent	स्कर् _ग श्चर	Hillip. H	朝朝	1100	機能性	ı l				()		, 1	1 1	. 1	1	. !	WW - Water SW - Surface Water
6885	5 S. Marshall Street Suite 3						on (If diffe	erent fr	rom Re	port to				ı l	(1			ı J	ı J	į l	ll			l	SO-Soll
City		City		State	1	ny Name													ı		1 [i	ı	SL- Sludge SED-Sediment
Little Project (leton CO 80128	- Constant of			Street A	Midstre)am							1 /		_		i I		1 1					OI - Oil
-		Project #				Box 4870	0						- 1			for V8260BTX		ıl		, }	1			- 1	LIQ - Other Liquid AIR - Air
Phone #	hael Stewart mstewart@aecdenver.com	Cilent Purchase	Project - 39076	1103	City								-	. !				ıl			1 1		1		SOL - Other Solid WP - Wips
	- -805-1718	Chair rows	0100. #		1	land Ot	R 97208	4070					Ì			82		. 1				I	. 1		FB-Field Blank
	r(s) Name(s)	Project Manager	r		Attention		81200	-40/0				—	\dashv	ارا	1 1	2		1 1	. 1	. 1	1 1	- 1	1	ľ	EB-Equipment Blank RB- Rinse Blank
		1			Stove	• Weather	s SWWea	others:	Mdcorr	detrar	m.co	111)		۱۳۱				. 1						- 1	TB-Trip Blank
		7	L	Collection				T		of prese				١٣١		S		, 1			1 1	ı		Ļ	
Accuriesi Semple S	Field ID / Point of Collection	MEOH/DI VI2I#	Date	Time	Sampled by	Matrix	# of bottles	. ₽	F SOS	H2SO4 NONE	CH Water	MECH	FROM	V8260BTX	CHL	MS/MSD									LAB USE ONLY
	MW-1		922/4	1115	NQ	GW	4	3	廿	1		I	\Box	х	x									\Box	01
	MW-2			(100	NQ	GW	4	3	\top	1	П	Т	\prod	х	х										02
	MW-6			830	1	GW	4	3	$\forall \exists$	1	Ħ	十	\forall	х	х		63								
	MW-7			805		GW	4	3	\blacksquare	1		I	\Box	х	х										04
	MW-8			1135	\prod	GW	4	3	\prod	1	П	I	\coprod	х	х									\Box	05
	MW-11			845	\coprod	GW	4	3	Ш	1	П	\perp	\coprod	Х	X			لــــا						\perp	60
	MW-12			920	\coprod	GW	4	3	П	1	Ц	1		Х	X										07
	DUP	'	<u> </u>	0	Щ_	GW	4	3	Ш	1	Ц	┵	Ш	х	X				\Box					_	U 8
	MW-6 MS/MSD	J'	U	830	V	GW	6	6			Ш	\perp	\perp	اا	<u> </u>	x		<u>. </u>					ـــــــــــــــــــــــــــــــــــــــ	\perp	03 ms/517
	Trip Blank			0			1	П	\Box	\perp	П	\bot	П	х										\Box	0.9
	MW-13		6/22/11	1200	NR	GW	4	3	Ш	1	Ц	\perp	Ш	х	х				\Box				\dashv		10
	MW-14		6/22/11	1035	Ma	GW	4	3	Ш	1	Ш	\perp	Ш	x	х		11								
	Tumaround Time (Business days)		SECTION AND SECTION ASSESSMENT	本は品味用時					erable tr			_				制制	Comments / Special Instructions						ACT PROPERTY OF		
	Std. 15 Business Days	Approved By (Accu	utest PM): / Date:				ciai "A" (i				-			quired	1		Email results to Steve Weathers								
	Std. 10 Businees Days 5 Day RUSH						cial "B" (i	Level 2	2)		-		ma to	State		Ema	II res	uits i	O OLE	ive vi	veau ic	818			
	☐3 Day Emergency					COMMBN				_	-	ort by ort by f	-		1										
	2 Day Emergency					GOMINS.	,,,					Form			— I										
	1 Day Emergency				-		Commen	cial "A"	'= Resu	_	-				1										
ī	X STD 8 business Days per contract				1		Commen																		
	rgency & Rush T/A data available V/A Lablink				1	-12000	Commerc.								- vlas d	-12			—,	i de de la constanta	irranenia	of Tedania	or handens	ranetti	SJUDING NORTH STEEL STEEL
Relin	Bata Time	7	Received By:			I >	n time ee		quished quished		ossession, including courier delivery. Date Time Received By														
1 /6	Blueralo G/23/	/U HOO	Jaco	800A	v16	2311	1 116			2															
Relling	quished by Sampler Date Time:		Received By					Relin	quished	Ву:						\neg	Date Tin	150:	Received By:						

D24764: Chain of Custody

Page 1 of 3

A	$\supset \subset$	ЭL	JT	E	S	Т.
		. 1. 4		ιдт	OB.	ıes

CHAIN OF CUSTODY

PAGE 2 OF 2

	IACCUTE		4036 Youngfield Street, Wheat Ridge, CO 80033				FED-EX Tracking #					Bottle Order Control #													
Ш	LABORA	TOBLES			gfield Stree 3-425-6021				13					Accuses	Quote	#				Accute	# dot ta	-:-	-	, 1 -	77.7
HESPIRION .		1099 Michigal Discours	in a constituent of the			accutested	ດຕາ			W 11172		77 57								<u></u>		كك		4	164
	Client / Reporting Information	BLATT BEVORE		Project	Informa	tion	Halland.	Çiri	們認用		部署			Heist	Req	vested	Anai	ysis (see T	EST C	ODE:	sheet)		也相信	Matrix Codes
Compar	ny Name	Project Name.	DCP RR EXT													1			i						DW - Drinking Water
Am	erican Environmental Consulting] .				i			ł		l		GW - Ground Water
Street A	uddres8	Street			Signatur	allies et al	ic P. Buc	183	排門中	in this st	おおけば	色色	書作を基	4				l			1	İ	1		WW - Water SW - Surface Water
	5 S. Marshall Street Suite 3			State			on (If diffe	erant	from F	tepo	rt to)			1		}		l		ļ					SO-Soil
City		City		State	Company	y Name Midstre								1		1 '		1	1	1	1	ì	ì		SL- Studge SED-Sediment
	leton CO 80128 Contact	Project#			Street Ac		:am			_				-		١				1		1			Oi - Oil LIQ - Other Liquid
1 '		'				30x 4870	0							1		for V8260BTX		Ì			1	1			AIR - Air
Phone i	hael Stewart mstewart@aecdenver	Client Purchase	Project - 390761	103	City									1							1	İ]		SOL - Other Solid WP - Wipe
	-605-1718				1	land Of	R 97208	407						l		826			ı	i	1		1		FB-Field Blank
	er(s) Name(s)	Project Manager			Attention		07200	-401	<u> </u>	_	_			l٠		2	ŀ			i		['			EB-Equipment Blank RB- Rinse Blank
	•				Stave	Weather	s SWWes	ther	effider	mide	traam.	com		ΙŒ						1	ĺ		1	i	TB-Trip Blank
			L	Collection			<u> </u>				preserv		lies	jö		S			l	1	l	'			
	Į	1	(!	l		l '	l	П	ا جا	٠	{ ا ا	1	器	V8260BTX	<u></u>	MS/MSD		l	Į .	l	l		l		
Remple 6	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled	Matrix	# cf bottle:	₹	₹ \$0¥	ğ	Ž Ž	\$ §	[젊	>	동	Įξ		1	1			1			LAB USE ONLY
	MW-15		G/22/11	1015	NR	GW	4	3		1	1	Ť	-	x	x										12
	MW-16		6/12/11	950	160	GW	4	3	П	Т	1.	1	П	x	х							\sqcap			13
		_	070-70		1		Ť	H	 	+	╀	+	Н	÷	- -	├-		\vdash	\vdash	\vdash	-	╁	\vdash	H	٠,
					\vdash		 -	Н	⊢⊢	╀	├	+	Н-			 			ļ	├		↓ —	<u> </u>		
					$\perp \perp$			Ш	Ш	⊥_			Ш												16
			, ,	ı	1 1			11	11					l					ļ	1	1				/
					\Box	\Box		П	П	T	П	Τ	П	\Box				T		1	T-				
-				<u> </u>	-			Ħ	\vdash	+	\vdash	+	1	\vdash					1	t	T	†			
		-			_	-	 	H	H	+	H	+	\vdash	\vdash				-	-	 	-	 		_	
<u> </u>					\vdash		├	Н	ҥ	+-	H	+-	╌	 			-	-	╁	\vdash		+-	-	-	
					 	<u> </u>	ऻ	H	⊬	+	₩	+	₩	├	_			 	├-	┢	├	├ ─'	-		
				<u> </u>	1	<u> </u>	ــــــ	Ц	╙	_	Н	4_	Ц.	<u> </u>		L_		<u> </u>	 	ļ		└	 		
					<u> </u>			Ш			Ш	<u> </u>			_			<u> </u>	<u> </u>	<u> </u>			L		
								П	i I	1				l :				L	l	İ]	<u> </u>	L		
福福		建	地震學出來	自由,不是自由,	伊哈斯爾山	=	Data	Deliv	verable	info	matio	n		非常即 求	Mill I	附制師		經濟館	Com	ments	Speci	al Instru	tions	中華。其	いた。温度は高齢の場合
	Std. 15 Business Days	Approved By (Accu	utest PM). / Date:				ciai "A" (i						orms R			L									
	Std. 10 Business Days						cial "B" (i	Leve!	2)		_		orms to			Ema	II res	uits	to St	eve V	veati	iers			
	S Day RUSH 3 Day Emergency					COMMEN					X R	-	by Fax			1									
	[2 Day Emergency				l믐'	JOHNBA	14				씀				_	\vdash									
	1 Day Emergency				1		Commerc	cial "A	A" = Re	sults															
l i	X STD 5 business Days per contract				1		Commerc					Summ	ary												
Eme	ergency & Rush T/A data available VIA Lablin				1		Commerci									<u> </u>				Tagasain	Gel Plate	con out	al Ritalia	5°Colling	Daniel Black Company
Service Contract			mple Custody mu						es chai Inquishe			SSIO	ı, inclu	ding co	uriof d		Date Ti	me:		Receive		Walk Shirter	RESIDENCE	ie Riese	sirringan, ka Sile.
1	Wille olu	Outo Time: G(2-3/11 (1.00	المدو	A OD	DW.	6/2	3)11		11											2					
	nquished by Sampler	Data Time	Received By:	-				Reil	inquishe	ed By							Data Ti	mė.		Receiv	ed By:				
Relin	quished by:	Date Time*	Received By-	-				Cust	nody Se	al #	+1	7	\ \ \	Intact		Preserv	ed wher	e applic	able]*		09.60	,	Cooler	Temp 5 9

D24764: Chain of Custody Page 2 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: D2476	4	Clie	nt: AMEF	RICAN E	NV. C	ONSUL	TING ,	Immediate Client Serv	ices Actio	n Red	quired:	No
Date / Time Received: 6/23/2	011 11:0	00.00 AM	_ N	o. Coole	ers:	1	<u> </u>	Client Service Acti	ion Requir	ed at	Login:	No
Project: DCP RR EXT							Airbill #'s:	HD				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact Cooler Temperature	<u>N</u>	4. Smpll	C Present: Dates/Time		Y or ☑ ☑	<u>N</u>	Sample labels p Container labelin		Y	or	<u>N</u>	
1. Temp criteria achieved: 2. Cooler temp venfication: 3. Cooler media Quality Control Preservation	Infare	d gun (bag)	 N/A				Sample Integrity 1. Sample recvd wi 2. All containers ac 3. Condition of sam	ithin HT: counted for:	<u>Y</u>	or	<u>N</u>	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4 VOCs headspace free:							Sample Integrity 1 Analysis reques 2 Bottles received	r - Instructions	<u>Y</u>		N	_N/A
Comments							Compositing instruct Filtering instruct	structions clear:				Ø
Accutest Laboratories V (303) 425-6021							gfield Street 425-6854			t Ridge,		

D24764: Chain of Custody

Page 3 of 3

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: D24764

Account:

DCPMCODN DCP Midstream, LP

Project:

AECCOL: DCP RR EXT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V7V392-MB	7V07405.D	1	06/24/11	DC	n/a	n/a	V7V392

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-1, D24764-2, D24764-4, D24764-5

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	1.0 2.0 2.0 4.0	0.25 0.50 1.0 2.0	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limits	}	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	91% 101% 87%	63-130 68-130 61-130	1%	

Method Blank Summary

Job Number: D24764

Account:

DCPMCODN DCP Midstream, LP

Project:

AECCOL: DCP RR EXT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V7V393-MB	7V07428.D	1	06/24/11	DC	n/a	n/a	V7V393
			•				

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-3, D24764-6, D24764-7, D24764-8, D24764-9, D24764-10, D24764-11, D24764-12, D24764-13

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	1.0 2.0 2.0 4.0	0.25 0.50 1.0 2.0	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits			
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	86% 101% 87%	63-130 68-130 61-130	%		•

Project:

AECCOL: DCP RR EXT

Sample	File ID	DF	Analyzed 06/24/11	By	Prep Date	Prep Batch	Analytical Batch
V7V392-BS	7V07406.D	1		DC	n/a	n/a	V7V392

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-1, D24764-2, D24764-4, D24764-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4	Benzene Ethylbenzene	50 50	51.1 55.5	102 111	70-130 70-130
108-88-3 1330-20-7	Toluene	50 100	49.8 105	100	70-140 55-134
1330-20-7	Xylene (total)	100	105	105	33-134
CAS No.	Surrogate Recoveries	BSP	Li	mits	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	87% 101% 98%	68	-130% -130% -130%	

Blank Spike Summary Job Number: D24764

Account:

DCPMCODN DCP Midstream, LP

Project:

AECCOL: DCP RR EXT

							
Sample V7V393-BS	File ID 7V07429.D	DF 1	Analyzed 06/24/11	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V7V393

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-3, D24764-6, D24764-7, D24764-8, D24764-9, D24764-10, D24764-11, D24764-12, D24764-13

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	50 50 50 100	50.6 53.6 49.3 101	101 107 99 101	70-130 70-130 70-140 55-134
CAS No.	Surrogate Recoveries	BSP	Liı	nits	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	89% 104% 99%	68	-130% -130% -130%	

Matrix Spike/Matrix Spike Duplicate Summary Job Number: D24764 Account: DCPMCODN DCP Midstream, LP

Page 1 of 1

Project:

AECCOL: DCP RR EXT

Sample	File ID	1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D24763-4MS	7V07409.D		06/24/11	DC	n/a	n/a	V7V392
D24763-4MSD	7V07410.D		06/24/11	DC	n/a	n/a	V7V392
D24763-4	7V07408.D		06/24/11	DC	n/a	n/a	V7V392

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-1, D24764-2, D24764-4, D24764-5

CAS No.	Compound	D24763-4 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	50 50 50 100	52.2 57.6 51.0 107	104 115 102 107	51.5 56.5 50.0 107	103 113 100 107	1 2 2 0	59-132/30 68-130/30 56-142/30 36-146/30
CAS No.	Surrogate Recoveries	MS	MSD	D2	4763-4	Limits			
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	90% 103% 101%	90% 103% 101%	939 102 889	%	63-1309 68-1309 61-1309	6		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: D24764 Account: DCPMCODN DCP Midstream, LP

Project:

AECCOL: DCP RR EXT

D24704-5 7V07450.D 1 00/24/11 DC 11/a 11/a V7V595	Sample D24764-3MS D24764-3MSD D24764-3	File ID 7V07431.D 7V07432.D 7V07430.D	DF 1 1	Analyzed 06/24/11 06/25/11 06/24/11	By DC DC DC	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V7V393 V7V393 V7V393
---	---	--	--------------	--	----------------------	--------------------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260B

D24764-3, D24764-6, D24764-7, D24764-8, D24764-9, D24764-10, D24764-11, D24764-12, D24764-13

CAS No.	Compound	D24764-3 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	50 50 50 100	51.9 55.5 50.2 104	104 111 100 104	52.9 56.7 51.1 107	106 113 102 107	2 2 2 3	59-132/30 68-130/30 56-142/30 36-146/30
CAS No.	Surrogate Recoveries	MS	MSD	D2	4764-3	Limits			
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	87% 102% 97%	87% 101% 97%	879 100 879	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	63-1309 68-1309 61-1309	%		

General Chemistry

6

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D24764 Account: DCPMCODN - DCP Midstream, LP Project: AECCOL: DCP RR EXT

Analyte	Batch ID	RL	MB Result Ur	nits	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP4758/GN10225	0.50	:0.0 mg	g/l	20	21.4	107.0	3 90-110%

Associated Samples: Batch GP4758: D24764-1, D24764-11, D24764-12, D24764-13, D24764-2, D24764-3, D24764-4, D24764-5, D24764-6, D24764-7, D24764-8

(*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D24764
Account: DCPMCODN - DCP Midstream, LP
Project: AECCOL: DCP RR EXT

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP4758/GN10225	D24741-1	mg/l	2.3	10	13.1	108.0	80-120%

Associated Samples: Batch GP4758: D24764-1, D24764-10, D24764-11, D24764-12, D24764-13, D24764-2, D24764-3, D24764-4, D24764-5, D24764-6, D24764-7, D24764-8

- (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D24764 Account: DCPMCODN - DCP Midstream, LP Project: AECCOL: DCP RR EXT

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chloride	GP4758/GN10225	D24741-1	mg/l	2.3	10	13.2	0.8	20%

Associated Samples:

Batch GP4758: D24764-1, D24764-10, D24764-11, D24764-12, D24764-13, D24764-2, D24764-3, D24764-4, D24764-5, D24764-6, D24764-7, D24764-8

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

