1R - 277

AGWMR

12/22/2010

USPS DELIVERY CONFIRMATION # 420 87505 9101 0105 2129 7460 3755 80

December 22, 2010

Mr. Glenn Von Gonten New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: 2010 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE NO. 1R-277 SECTION 35, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

Dear Mr. Von Gonten:

Enclosed is the 2010 Annual Groundwater Monitoring Report for the Former Unocal South Vacuum Unit site located in Lea County, New Mexico (hard copy and compact disk). Chevron Environmental Management Company has been managing the groundwater monitoring activities for the site since their acquisition of Unocal Corporation in 2005.

Please contact me at 432-638-8740, Mr. John MacLeod (Chevron EMC) at 925-842 2477, or Allen Just (Arcadis) at 714-730-9052 Ext. 38 if you have any questions or comments.

Sincerely,

Gilbert J. Van Deventer, REM, PG Trident Environmental – Midland, TX

Attachments

xc: John MacLeod, Chevron EMC (San Ramon CA) Allen Just, Arcadis (Irvine CA) 2010 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE NO. 1R-277 SECTION 36, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

DECEMBER 22, 2010

Prepared For:

Chevron Environmental Management Company 6111 Bollinger Canyon Rd. San Ramon, CA 94583

Prepared By:

P. O. Box 12177 Odessa, Texas 79768

2010 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit NMOCD Case NO. 1R-277 Section 36, Township 18 South, Range 35 East Lea County, New Mexico

Prepared for:

Chevron Environmental Management Company

6111 Bollinger Canyon Road San Ramon, CA 94583

Prepared by:

Trident Environmental P. O. Box 12177 Odessa, Texas 79768 (432) 638-8740 FAX (413) 403-9968

SUBMITTED BY:

Gilbert J. Van Deventer, PG, REM Project Manager

DATE: , Vecentar 22, 2010

TABLE OF CONTENTS

1.0	Executive Summary	1
2.0	Groundwater Sampling Procedures	3
3.0	Groundwater Elevations, Hydraulic Gradient and Flow Direction	3
4.0	Groundwater Quality Conditions	8
5.0	Fate and Transport Modeling Results	12
6.0	Conclusions	13
7.0	Recommendations	14

TABLES

FIGURES

Figure 1	Groundwater Elevation Map	.4
Figure 2	Groundwater Elevation Versus Time Graph	5
Figure 3	Chloride Concentration Map (2010)	.9
Figure 4	TDS Concentration Map (2010)	10
Figure 5	Chloride Concentrations Versus Time (MW-1 through MW-6)	11
Figure 6	TDS Concentrations Versus Time (MW-1 through MW-6)	11

APPENDICES

Appendix A	Laboratory Analytical Reports and Chain-of-Custody Documentation
Appendix B	Monitoring Well Sampling Data Forms
Appendix C	Chloride and TDS Plume Simulations
Appendix D	Description of Fate and Transport Modeling

1.0 Executive Summary

Trident Environmental (Trident) was retained by ARCADIS, on behalf of Chevron Environmental Management Company (Chevron EMC), to perform the 2010 annual groundwater sampling and monitoring operations at the Former Unocal South Vacuum Unit (site), which is located at township 18 south, range 35 east, section 36 in Lea County, New Mexico. Chevron EMC is managing Unocal's environmental liability at the site. This report documents the 2010 annual sampling event performed by Trident at the site on July 13, 2010. This report contains the historical groundwater elevation and analytical data from monitoring wells MW-1 through MW-6. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends indicating an upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the conclusion that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well (permit number L 05339) lies over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 147 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250

Page 1 of 14

mg/L. The same analysis indicates that the TDS plume will travel only 2,300 feet in approximately 84 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.

- Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former saltwater disposal pit.
- Groundwater elevations have steadily decreased at a rate of approximately 0.4 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; with the exception of the 2005 sampling event due to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

Exemplary remedial actions were performed to the source area by Unocal, which include plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2011 annual groundwater monitoring report to OCD in January 2012 to document natural attenuation conditions.

2.0 Groundwater Sampling Procedures

On July 13, 2010, each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 32 gallons of groundwater was purged from the site monitoring wells (3 to 10 gallons per well) using a 3-stage submersible pump which was decontaminated using an Alconox solution and a distilled water rinse between sampling points. Groundwater parameters (pH, temperature, and conductivity) were measured using a Hanna Model 98130 multimeter until a minimum of three wells volumes was purged from each well. Water samples for each monitoring well were collected with a new 2-inch diameter poly bailer and transferred into 1,000 milliliter (ml) plastic containers for laboratory analysis of chloride using EPA Method SM-4500-Cl-C and TDS using EPA Method SM-2541. For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to Lancaster Laboratories (Lancaster, PA) for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Depth to groundwater varies from approximately 49 ft at MW-2 to 70 feet at MW-6 below ground surface. Groundwater elevations are summarized in Table 1. A groundwater gradient map depicting the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3,700 feet above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 87 to 96 feet.

RIDEN'

2010 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit (1R-277)

2010 Annual Groundwater Monitoring Report

Former Unocal South Vacuum Unit (1R0277)

Manitaning	Somulina	Chlorida	TDC	Depth to	Top of Casing	Groundwater
Wonitoring	Sampling			Groundwater	Elevation	Elevation
well	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)
	01/27/1995	1174	2250	59.57	3858.37	3798.80
	05/18/1995	983	2251	61.30	3858.37	3797.07
	08/28/1996	1420	2730	61.57	3858.37	3796.80
	08/13/1997	1400	2800	61.75	3858.37	3796.62
	09/30/1999	1094	2318	62.51	3858.37	3795.86
	06/14/2000	927	2040	62.85	3858.37	3795.52
	06/18/2001	813	1790	63.07	3858.37	3795.30
MW-1	07/11/2002	784	1680	63.28	3858.37	3795.09
141 44 - 1	07/02/2003	715	2090	63.66	3858.37	3794.71
	08/12/2004	628 ·	2050	63.83	3858.37	3794.54
	08/10/2005	774	1830	62.62	3858.37	3795.75
	07/31/2006	860	2010	62.90	3858.37	3795.47
1 1	07/27/2007	732	1790	63.43	3858.37	3794.94
	08/26/2008	895	1960	63.95	3858.37	3794.42
	07/15/2009	852	2300	64.25	3858.37	3794.12
	07/13/2010	934	2590	64.51	<u>3858.37</u>	3793.86
	09/30/1999	298	922	49.51	3841.64	3792.13
	06/14/2000	317	852	49.81	3841.64	3791.83
I	06/18/2001	288	878	50.06	3841.64	3791.58
	07/11/2002	284	808	50.29	3841.64	3791.35
	07/02/2003	268	859	50.63	3841.64	3791.01
MW-2	08/12/2004	451	931	50.81	3841.64	3790.83
	08/10/2005	355	844	49.58	3841.64	3792.06
	07/31/2006	401	922	49.83	3841.64	3791.81
	07/27/2007	430	984	50.33	3841.64	3791.31
	08/26/2008	354	980	50.80	3841.64	3790.84
	07/15/2009	482	1060	51.04	3841.64	3790.60
	07/13/2010	494	1070	51.37	3841.64	3790.27
	09/30/1999	73.6	427	66.74	3864.73	3797.99
	06/14/2000	75.5	433	67.01	3864.73	3797.72
	06/18/2001	86.4	495	67.29	3864.73	3797.44
	07/11/2002	103	509	67.59	3864.73	3797.14
	07/02/2003	98.3	588	67.94	3864.73	3796.79
MW-3	08/12/2004	111	605	68.07	3864.73	3796.66
	08/10/2005	122	533	66.81	3864.73	3797.92
	07/31/2006	141	619	67.21	3864.73	3797.52
	07/27/2007	164	705	67.79	3864.73	3796.94
	08/26/2008	185	592	68.30	3864.73	3796.43
	07/15/2009	199	766	68.50	3864.73	3796.23
	- 07/13/2010 I	207	I 850	I 68.57	3864 73	3706.21

 Table 1

 Summary of Groundwater Sampling Results

TRIDE

Continued on next page

2010 Annual Groundwater Monitoring Report

FRID

Former Unocal South Vacuum Unit (1R0277)

Summary of Groundwater Sampling Results							
Monitorina	Sampling	Chlorida	TDS	Depth to	Top of Casing	Groundwater	
Wontoring				Groundwater	Elevation	Elevation	
weii	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)	
	09/30/1999	1576	2981	60.18	3852.51	3792.33	
	06/14/2000	1500	2910	60.55	3852.51	3791.96	
	06/18/2001	1530	3180	60.78	3852.51	3791.73	
	07/11/2002	1290	2660	60.98	3852.51	3791.53	
	07/02/2003	1250	2610	61.34	3852.51	3791.17	
MANUA	08/12/2004	1130	2480	61.50	3852.51	3791.01	
IVI W -4	08/10/2005	1050	2230	60.25	3852.51	3792.26	
	07/31/2006	926	2030	60.51	3852.51	3792.00	
	07/27/2007	758	1940	61.04	3852.51	3791.47	
	08/26/2008	720	1790	61.55	3852.51	3790.96	
	07/15/2009	632	1780	61.83	3852.51	3790.68	
	07/13/2010	<u>687</u>	1750	62.11	3852.51	3790.40	
	06/14/2000	13.7	274	68.57	3859.84	3791.27	
	06/18/2001	13.6	322	68.80	3859.84	3791.04	
	07/11/2002	15.5	308	68.98	3859.84	3790.86	
	07/02/2003	12.5	359	69.32	3859.84	3790.52	
	08/12/2004	15.3	375	69.46	3859.84	3790.38	
MW-5	08/10/2005	14.9	309	68.15	3859.84	3791.69	
	07/31/2006	13.3	290	68.52	3859.84	3791.32	
	07/27/2007	14.9	296	69.07	3859.84	3790.77	
	08/26/2008	13.6	296	69.61	3859.84	3790.23	
	07/15/2009	13.4	291	69.9 1 /	3859.84	3789.93	
į	07/13/2010	12.6	291	70.19	3859.84	3789.65	
	06/14/2000	48.0	382	70.79	3858.78	3787.99	
	06/18/2001	50.8	431	70.98	3858.78	3787.80	
	07/11/2002	50.0	422	71.26	3858.78	3787.52	
	07/02/2003	46.5	471	71.52	3858.78	3787.26	
	08/12/2004	55.1	410	71.62	3858.78	3787.16	
MW-6	08/10/2005	55.0	391	70.33	3858.78	3788.45	
	07/31/2006	52.4	412	70.64	3858.78	3788.14	
	07/27/2007	• 75.3	516	71.15	3858.78	3787.63	
	08/26/2008	88.5	548	71.61	3858.78	3787.17	
	07/15/2009	81.4	532	71.90	3858.78	3786.88	
	07/13/2010	84.1	545	72.20	3858.78	3786.58	
WOCC:	Standards	250	1000	1			

 Table 1

 Summary of Groundwater Sampling Results

Total Dissolved Soilds (TDS) and chloride concentrations listed in milligrams per liter (mg/L)

Analyses performed by Trace Analysis Inc. (1995-1998), SPL, Inc. (1999-2005), and Lancaster Laboratories (2006-2010). Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

Groundwater flow direction is to the southeast with a gradient of approx. 0.004 ft/ft.

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

4.0 Groundwater Quality Conditions

Groundwater sample analytical results are presented in Table 1 with the WQCC standards shown for comparison. Those constituents that recorded concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in MW-1 (934 mg/L), MW-2 (494 mg/L), and MW-4 (687 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded in MW-1 (2,590 mg/L), MW-2 (1,070 mg/L), and MW-4 (1,750 mg/L). The groundwater samples obtained from upgradient monitoring well MW-3 and downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.

The chloride and TDS concentrations are depicted graphically in Figure 3 and 4, respectively. Graphs depicting historical TDS and chloride concentrations in monitoring wells MW-1 through MW-6 are shown in Figures 5 and 6.

Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have steadily decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. This indicates that encapsulating the former saltwater disposal pit with solidification material in 1995, has eliminated the threat of any continued release from the source.

Monitoring well MW-3 continues to exhibit slight but steady increases in chloride and TDS concentrations since 2000, which suggests a possible offsite source of chlorides and TDS located upgradient (northwest) from the site. Chloride and TDS levels in MW-2, MW-5, and MW-6 have remained relatively consistent with previous years.

2010 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit (1R-277)

Page 11 of 14

5.0 Fate and Transport Modeling Results

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix D.

Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, are shown in the final simulation for each constituent of concern (year 2157 for chloride and year 2094 for TDS, respectively). The center of the chloride plume is approximately 3,400 ft away from the pit and well source in the year 2157. The center of the TDS plume is approximately 2,300 ft away from the pit and well source in the year 2094.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation. The results of the updated fate and transport model are consistent with those determined in previous annual reports.

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have significantly decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends indicating an upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well (permit number L 05339) lies over one-half mile south of the source. Operation of the windmill well has been discontinued due to declining water levels in the area and the shallow depth of the well.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 147 years before concentrations return to levels below the WQCC standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,300 feet in approximately 84 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (dispersion and dilution), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- Groundwater elevations had steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; however during 2005 the groundwater table increased to an elevation similar to the 1999 level. The recent rise may be attributed to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

7.0 Recommendations

Chevron EMC has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described,
- Submit the 2011 annual groundwater monitoring report to OCD in January 2012 to document natural attenuation conditions.

APPENDIX A

Laboratory Analytical Reports

And

Chain-of-Custody Documentation

Holland Pike, PO

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BR1Y / 3354 San Ramon CA 94583

July 16, 2010

Project: Former Unocal South Vacuum Unit, Lea County, NM

Submittal Date: 07/14/2010 Group Number: 1202874 PO Number: 0015061176 Release Number: MACLEOD State of Sample Origin: NM

Client Sample Description MW-1 Grab Water Sample MW-2 Grab Water Sample MW-3 Grab Water Sample MW-4 Grab Water Sample MW-5 Grab Water Sample MW-6 Grab Water Sample Lancaster Labs (LLI) # 6031121 6031122 6031123 6031124 6031125 6031126

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	ARCADIS	Attn: Mark M. Miller
ELECTRONIC COPY TO	ARCADIS	Attn: Allen Just
ELECTRONIC COPY TO	Trident Environmental	Attn: Gilbert Van Deventer
ELECTRONIC COPY TO	ARCADIS	Attn: Dana Koschel
ELECTRONIC COPY TO	ARCADIS	Attn: Sarah Huff
ELECTRONIC COPY TO	ARCADIS	Attn: Robin Simon

Questions? Contact your Client Services Representative Katherine A Klinefelter at (717) 656-2300 Ext. 1566

Respectfully Submitted,

Robert Heisey Senior Specialist

Page 1 of 1

Sample	Description:	MW-1 Grab Water Sample	LLI	Sample	#	WW	6031121
		Former Unocal South Vacuum Unit	LLI	Group	#	120	2874
		Lea County, NM	Acco	ount	#	119	69

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected:	07/13/2010	12:30	by GV		Chevron Environmental Mgmt Co
					6111 Bollinger Canyon Road
Submitted:	07/14/2010	09:20			BR1Y / 3354
Reported:	07/16/2010	16:00			San Ramon CA 94583
Discard:	08/16/2010			•	

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM20	2540	С	mg/l	mg/l	mg/1	
00212	Total Dissolved Solids		n.a.	2,590	77.6	240	. 1
	SM20	4500	Cl C	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)		16887-00-6	934 .	20.0	100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality

ntrol Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	50

.

Page 1 of 1

Sample Description: MW-2 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM

LLI	Sample	#	WW	6031122
LLI	Group	#	120)2874
Acco	ount	#	119	969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected:	07/13/2010 13:00	by GV	Chevron Environmental Mgmt Co
			6111 Bollinger Canyon Road
Submitted:	07/14/2010 09:20		BR1Y / 3354
Reported:	07/16/2010 16:00		San Ramon CA 94583
Discard:	08/16/2010		

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet 0	C hemistry Total Dissolved Sol	SM20 ids	2540	C n.a.	mg∕1 1,070	mg/1 38.8	mg/1 120	1
01124	Chloride (titrimetr	SM20 ic)	4500	C1 C 16887-00-6	mg/1 494	mg/1 8.0	mg/1 40.0	20

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Introl Summary for overall QC performance data and associated samples.

for Summary for overall de performance data and associated samples.

CAT No .	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	20

Page 1 of 1

Sample Description: MW-3 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM

LLI	Sample	#	WW	6031123
LLI	Group	#	120)2874
Acco	ount	#	119	969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected:	07/13/2010 09:55	by GV	Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road
Submitted: Reported: Discard:	07/14/2010 09:20 07/16/2010 16:00 08/16/2010		BR1Y / 3354 San Ramon CA 94583

CAT No .	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Cl 00212	hemistry Total Dissolved Sol	SM20 ids	2540	C .	mg/l 859	mg/1 19.4	mg/l 60.0	1
01124	Chloride (titrimetr	SM20 ic)	4500	C1 C 16887-00-6	mg/1 207	mg/1 4.0	mg/1 20.0	

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality putrol Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	J Trial#	Batch#	Analysis Data and Time	Analyst	Dilution
00212	Total Dissolved Solids	SM2O 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM2O 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	10

Page 1 of 1

Sample	Description:	MW - 4	Gr	rab	Wate	er	Samp	ole
-	-	Forme	er	Unc	ocal	So	outh	Vacuum

Lea County, NM

LLI Sample	#	WW 6031124
LLI Group	#	1202874
Account	#	11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

 Collected: 07/13/2010 11:30
 by GV
 Chevron Environmental Mgmt Co

 Submitted: 07/14/2010 09:20
 BR1Y / 3354

 Reported: 07/16/2010 16:00
 San Ramon CA 94583

 Discard: 08/16/2010
 .

CAT No .	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C 00212	hemistry S Total Dissolved Solic	SM20	2540	C n.a.	mg/1 1.750	mg/1 77.6	mg/l 240	1
01124	S Chloride (titrimetric	SM20 =)	4500	C1 C 16887-00-6	mg/1 687	mg/1 20.0	mg/1 100	50

Unit

General Sample Comments

1

All QC is compliant unless otherwise noted. Please refer to the Quality

ontrol Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	50

Page 1 of 1

Sample Description: MW-5 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM

LLI Sample # WW 6031125 LLI Group # 1202874 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected:	07/13/2010	10:45	by GV	Chevron Environmental Mgmt Co
				6111 Bollinger Canyon Road
Submitted:	07/14/2010	09:20		BR1Y / 3354
Reported:	07/16/2010	16:00		San Ramon CA 94583
Discard:	08/16/2010			

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet 0	Chemistry S Total Dissolved Solid	SM20 ds	2540	C n.a.	mg/1 291	mg/1 9.7	mg/1 / 30.0	1
01124	Chloride (titrimetric	SM20 c)	4500	C1 C 16887-00-6	mg/1 12.6	mg/1 0.80	mg/1 4.0	2

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality ntrol Summary for overall QC performance data and associated samples.

CAT No .	Ànalysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	

Page 1 of 1

Sample Description: MW-6 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM

LLI Sample	#	WW 6031126
LLI Group	#	1202874
Account	#	11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected:	07/13/2010	14:00	by GV	Chevron Environmental Mgmt	Со
				6111 Bollinger Canyon Road	
Submitted:	07/14/2010	09:20		BR1Y / 3354	÷
Reported:	07/16/2010	16:00		San Ramon CA 94583	
Discard:	08/16/2010				

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet ChemistrySM2025400212Total Dissolved Solids	0 C n.a.	mg/1 545	mg/1 9.7	mg/1 30.0	1
SM20 450 01124 Chloride (titrimetric)	0 C1 C 16887-00-6	mg/1 84.1	mg/1 0.80	mg/l 4.0	2

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality ntrol Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	10196021201B	07/15/2010 09:40	Susan E Hibner	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	10196112402A	07/15/2010 14:05	Susan A Engle	2

Group Number: 1202874

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co Reported: 07/16/10 at 04:00 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank MDL**	B1ank <u>L00</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 10196021201B Total Dissolved Solids	Sample numb N.D.	per(s): 60 9.7	31121-6031 30.0	1126 mg/1	100		80-120		
Batch number: 10196112402A Chloride (titrimetric)	Sample numb	per(s): 60	31121-6031	1126	98		95-103		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD MAX	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 10196021201B Total Dissolved Solids	Sample 100	number(s)	: 6031121 62-135	-603112	6 UNSPH	K: P031054 990	BKG: P031972 980	1	9
Batch number: 10196112402A Chloride (titrimetric)	Sample 97	number(s) 96	: 6031121 85-110	-603112 1	6 UNSPH 3	K: →P029530 70.0	BKG: P029530 68.0	3 (1)	5

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

	Ana	lysis Re) D C C	lesi		ήVi	JUO,	nel	ntal	Se	rvic	ies (Chain	ofCl	Usr00	JV V	
A b Lancaster	Acct. #	1969	Eroup#	or Lanc	aster La	borator 1 <mark>4</mark> San	les use o	رم و≦	ell	ć	ب	ŭ	C #	2428	76		
Laboratories		Please print Ins	structio	us on ri	everse s	ide corr	espond v	vith circ	ed num	Jers.)					
								3	Analys	ss Req	uested		For Lab Us	se Only	ç		
Mient Chevron EMC	Acct. 1	÷+			Matrix	-(4		Ē	eserva	tion Co	odes		SCR#:	1210	9		
Project Name/#: [2. ML/ Mnoca] 5 Varus Project Manager: Allen Just (Arcadis	Enclose	#			e Check if S Applicable								Preservati H=HCI N=HNO ₃ S=H ₋ SO.	on Codes T=Thiosul B=NaOH O=Other	fate	(pi s	
Sampler. Gil Van Deventer (Tride Name of state where samples were collected:	N N	#	6	eti	10 Potabl	listno O to	م زلام									L e of samples t (if requeste	_
2 Sample Identification	Date Collected	Time Collected	Grab (Soil	Vater	Dther Total # c	» <u>1</u> 4)	501					Remark	ر م		Temperatur upon receip	
MW-1	01-61-2	1230	1		>											1,9°0	
MW-2	7-13-10	1300	>		>	-											
MW-3	2-13-10	0955	>		>	-											
MW-Y	7-13-10	1130	>		>	_											
NW-S	7-13-10	Shol	>		2												
MW-6	7-13-10	1400)		2				_							-1	
						-							Email	Huran	;. 4	>	
													gilætri.	Jeat-en	1244 Looni A	- Tet	5
						-	-			+							
Turnaround Time Requested (TAT) (please Rush TAT is subject to Lancaster Laboratories app	circle): (Non proval and surc	ngel Rush harge.)		teling	ished t	N.C.	Z		1)(e)		Te Re	all all a	L CA		Date 7/4/.0	Time (9 /v:30	\frown
Uate results are needed: Rush results requested by (please circle): F	Phone Fax	E-mail			ished		X		Dat Ci/A	e Tin ∕:/	e Re	ceived by	5		Date	Time	
E-mail address:			<u>Хіт</u>	Relinqu	ished t) >			Dat	i ⁿ	ne Re	ceived b	2		Date	Time	
B Data Package Options (please circle if required	() ()	SDG Complete	0							\mathbf{n}							
	- RCP	res no		telingu	lished t	:Á				ه ۲	e Be	ceived b			Date	Time	
Type VI (Rew Data Only) Type VI (Rew Data Only)	(IVIO/IVIOUUUU) Jan singkana vak me.i aquired? Yes / .	No car of	ועב	kelingu	lished t		$\left[\right] \cdot$		Dat	- Li Li	e B B B C C C C C C C C C C C C C C C C	ceived by	the de	24	Date 7-74	S ^m	2
Lanca: Copies: White	ster Laboratori e and yellow sh	es, Inc., 2425 Ne iould accompany	w Holl	and Pik les to L	e, Lanca ancaste	ister, P.	A 17601 atories	(717) The pink	656-230 copy st	0 Fax: ould be	(717) 65 retained	6-6766 1 by the cl	ent. Issue	by bept. 210	6042 Mana 22.05	agement	_

.

ŀ

Lancaster Laboratories	
---------------------------	--

Environmental Sample Administration Receipt Documentation Log

Client/Project: <u>Chevron EMC</u>	Shipping Container Sealed YES NO
Date of Receipt:	Custody Seal Present * : YES NO
Time of Receipt: 0920	
Source Code: <u>50-1</u>	Custody seal was intact unless otherwise noted in the discrepancy section
Unpacker Emp. No.: <u>2123</u>	Package: Chilled Not Chilled

			Temperature of	Shipping Conta	iners		
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	9422	1.90	TB	W1	y	L	
2							
3							
4							
5							· · ·
6							

()

Number of Trip Blanks received <u>NOT</u> listed on chain of custody ____

Paperwork Discrepancy/Unpacking Problems:

Sam	ple Administration Inte	ernal Chain of	Custody
Name	Date	Time	Reason for Transfer
firstilled	7-14-10	1050	Unpacking
Annelise H. Orden	-2/14/10	1110	Place in Storage or Entry
			Entry
			Entry

2174.05

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level								
N.D.	none detected	MPN	Most Probable Number								
	Too Numerous To Count	CP Units	cobalt-chloroplatinate units								
, iu	International Units	NIU	nepnelometric turbiality units								
umnos/cm	micromnos/cm	ng	nanogram(s)								
C	degrees Celsius	F									
meq	millequivalents	ID.	pound(s)								
g	gram(s)	kg	Kilogram(s)								
ug	microgram(s)	mg	milligram(s)								
mi 	milliter(s)	1	liter(S)								
m3	cubic meter(s)	u	micromer(s)								
<	less than - The number following t reliably determined using this spe	the sign is the <u>limit of qua</u> cific test.	antitation, the smallest amount of analyte which can be								
>	greater than										
J	estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).										
ppm	parts per million - One ppm is equ aqueous liquids, ppm is usually ta weight very close to a kilogram.	ivalent to one milligram ken to be equivalent to r or gases or vapors, one	per kilogram (mg/kg), or one gram per million grams. For nilligrams per liter (mg/l), because one liter of water has a ppm is equivalent to one microliter of gas per liter of gas.								
ppb	parts per billion										
Dry weight basis	Results printed under this heading concentration to approximate the	g have been adjusted for value present in a simila	moisture content. This increases the analyte weight r sample without moisture. All other results are reported								

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- TIC is a possible aldol-condensation product Α
- в Analyte was also detected in the blank
- С Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- Е Concentration exceeds the calibration range of the instrument
- Ν Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and
- confirmation columns >25%

on an as-received basis.

- Compound was not detected 11
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- В Value is <CRDL, but ≥IDL
- Ε Estimated due to interference
- Μ Duplicate injection precision not met
- Spike sample not within control limits Ν
- Method of standard additions (MSA) used S for calculation
- U Compound was not detected
- Post digestion spike out of control limits W
- Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have guestions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX B

Monitoring Well Sampling Data Form

	RIDENT ENVIRONMENTAL	Ê.	PHYSICAL APPEARANCE AND REMARKS	ar	ar	ar	ar	ar .	ar					
	L !	Stage Pu	н	7.7 Cl€	3.2 Cle	7.6 Cl€	3.1 Cl€	7.5 Cle	7.8 Cle					
		vister 3-5 Oth	nd. /cm	31 7	92 8	2 00	95 8	42 7	82 7	 				
<u>DRM</u>		uper Tv ose sal Fac	D. Co mS	9 3.	3 1.	1	3 2.	ö 8	0 0		 se.			
TA FC		active S harge H D Dispo	s CC	20.	20.	20.	21.	19.	S0.		ater Rin	ints.		
NG DA		Pros m Disch	No. of Well Volume Purgec	4.6	3.2	3.7	3.5	3.5	3.8		tilled W	asureme		
SAMPLI		mp, Type: Direct fro ns	Volume Purged (gal)	4	10	£	5	£	e		x, and Dis	rature mea	S analysis.	
VELL	M M		Calc. Well Vol. (gał)	0.9	3.1	1.4	1.4	1.4	0.8		Alcone	l tempe	and TD	
	Init (1F Init (1F	iled ile Baile rum [Well Factor 2"=.16 4"=.65	0.16	0.16	0.16	0.16	0.16	0.16		f gloves,	vity, and	hloride a	
	Manage acuum L Lea Cou	Hand Bai Disposab On-site D	Water Column Height (ft)	5.49	19.63	8.48	8.89	8.81	5.00		onsists of	conducti	ories for cl	
	outh Va bec 35, I		Total Depth (ft)	70.00	71.00	77.00	71.00	79.00	77.20		nination c	btain pH	Laborato	
	nocal S 35E - S eventer	ETHOD: ETHOD: MATER:	Depth to Water (ft btoc)	64.51	51.37	68.52	62.11	70.19	72.20		decontan	used to o	ancaster	
	Citeviori Former U T18S - R Gil Van D	URGING MI MPLING ME IF PURGE V	Monitoring Well No.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6		Equipment (instrument	I FedEx to L	
	AAME: ATION: PLER:	P SAI THOD O	Time	12:30	13:00	9:55	11:30	10:45	14:00		l iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	el 98130	nples via	
	SITE N SITE N SAM	SPOSAL ME	Date	07/13/10	07/13/10	07/13/10	07/13/10	07/13/10	07/13/10		COMMENT	Hanna Mod	Shipped sar	

•

APPENDIX C

Chloride and TDS Plume Simulations

WinTran Fate & Transport Modeling Results Former Unocal South Vacuum Unit Site

WinTran Fate & Transport Modeling Results

APPENDIX D

S.

Description of Fate and Transport Modeling

And Input/Output Data

Appendix C Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit for a period of about 10 years. A dry hole (State Lea "I" No. 1), adjacent to the former pit, was approved for injection of produced water in 1962, however it was not used for that purpose since it was determined to be impractical; therefore it was later plugged in 1971. A chloride and TDS plume in groundwater continued to migrate southeastwards for the next approximately 29 years after the source input was stopped by encapsulation of the pit in 2000, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map was created using the New Mexico State Plane Coordinates for each monitoring well which were determined by a registered surveyor after installation.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

Appendix C Description of Fate and Transport Modeling

- Hydraulic gradient measured gradient of 0.004 feet/foot from July 13, 2010 site measurements reported by Trident.
- Direction of flow measured direction of approximately S 40° E from July 13, 2010 site measurements reported by Trident.
- Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³. cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 2.7 ft/day, or approximately 1000 ft/yr.
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet reported by Trident. The top elevation for an unconfined aquifer must be greater than the reference head. An elevation of 4,000 feet was assumed.
- Reference head measured unconfined head of 3,795 feet adjacent to the former pit and upgradient well MW-1 from July 13, 2010 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1,500 feet, a value of 150 feet was selected for longitudinal dispersivity. Based on professional judgment, hydrologists commonly assume the longitudinal dispersivity is about one-tenth the length of the plume and 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.

- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.
- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.
- Retardation coefficient this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in July 13, 2010 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (approximately 0.3 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3,700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the Darcy expression: $v = (k \cdot i) / n$ where k is the hydraulic conductivity (1,000 ft/yr), i is the hydraulic gradient (0.004 ft/foot), and n is the effective porosity (0.25). The resultant average velocity is 16 ft/yr.

Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran does not account for vadose zone transport, and the source input is treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

After calibrating the model such that it corresponded to actual 1999 conditions, the model was again run for 11 years (1999 to 2010) at one-year increments after entering in the known concentrations at each monitoring well.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model in 2010. Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Running the model for 147 years in the future (Year 2157) produces a chloride plume center concentration of 250 mg/L (WQCC standard). The center of the chloride plume is approximately 3,400 ft away from the former pit and well source at that time.

Running the model for 84 years in the future (Year 2094) produces a TDS plume center concentration of 1,000 mg/L (WQCC standard). The center of the TDS plume is approximately 2,300 ft away from the pit and well source at that time.

These results support the conclusion that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.

The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III

Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.

Chloride Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 11/12/2010 Time: 14:52:39.00

Input File: 2010_CL.WTR
Map File :

Chloride Concentration Vs. Time

```
Model Entities
```

Number of Wells = 9 MW-1 Center of Well -- x: 716.000000 y: 5281.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 934.000000 = 3793.599226Head at Well Radius MW-2 Center of Well -- x: 1041.670000 y: 4585.770000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 494.000000 = 3790.536632Head at Well Radius MW - 3Center of Well -- x: 694.000000 y: 5954.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 207.000000 Head at Well Radius = 3795.725794MW - 4Center of Well -- x: 1341.000000 y: 4747.000000 Radius = 1.000000 Pumping Rate = 0.000000Concentration of Injected Water = 687.000000 Head at Well Radius = 3790.246945MW-5 Center of Well -- x: 1829.000000 y: 4861.000000 Radius = 1.000000Pumping Rate = 0.000000 Concentration of Injected Water = 12.600000 = 3789.288647Head at Well Radius MW-6 Center of Well -- x: 1948.000000 y: 4058.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 81.100000 Head at Well Radius = 3786.294299 Windmill (L05339) Center of Well -- x: 650.000000 y: 2081.000000 Radius = 1.000000Pumping Rate = 10.000000Concentration of Injected Water = 0.000000 Head at Well Radius = 3783.246027 Inactive Well (L 03945) Center of Well -- x: 4375.000000 y: 3275.550000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 0.000000 Head at Well Radius = 3776.193966

Reference Head = 3795.000000 Defined at -- x: 490.030000 y: 5545.270000

Page 2 of 7

Aquifer Properties

.... Steady-State Flow Model

Permeability..... = 1000.000000 [L/T]
Porosity.... = 0.250000
Elevation of Aquifer Top... = 4000.0000000
Elevation of Aquifer Bottom.= 3700.000000
Uniform Regional Gradient... = 0.004000
Angle of Uniform Gradient... = 310.000000
Recharge..... = 0.000000

.... Transient Transport Model

Longitudinal Dispersivity...= 150.000000 [L] Transverse Dispersivity....= 30.000000 [L] Diffusion Coefficient....= 0.000000 [L2/T] Contaminant half-life....= 1000.000000 [T] Retardation Coefficient....= 1.000000 Upstream Weighting in X....= 0.000000 Upstream Weighting in Y....= 0.000000

.... Time Stepping Information

Number of time steps.....= 1470 Starting time value....= 2010.000000 Initial time step size....= 0.100000 Time step multiplier....= 1.000000 Maximum time step size....= 0.100000 Time stepping scheme....= Central Differencing

.... Simulation Summary

Starting time..... = 2010.000000 Ending time..... = 2157.000000 Number of time steps..... = 1470

(NOTE: following mass balance errors expressed as percent) Transport Mass Balance Error= 0.113227

Peclet Criterion..... = 1.388889 Courant Number..... = 0.005179 Flow Model Type..... = Analytic Element

Head Contour Matrix

Number of nodes in the X-direction = 49 Number of nodes in the Y-direction = 49 Minimum X Coordinate = 0.000000

Minimum Y Coordinate = 0.000000

Maximum X Coordinate = 10000.000000 Maximum Y Coordinate = 6289.062500

Minimum Head = 3733.926594

Direct Chronice Concentration (mg/L) Output from whittan Simulation									
							Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2010	934	494	207	687	12.6	84.1	0	0	0.0
2011	768	559	149	819	-3.9	130	0	0	0.0
2012	662	589	114	885	-13.0	163	0	0	0.0
2013	594	601	93.3	915	-16.8	187	0	0	0.0
2014	544	608	79.8	928	-17.8	207	0 ·	0	0.0
2015	504	611	70.1	932	-17.2	225	0,	0	0.0
2016	471	612	62.7	930	-15.7	241	0	0	0.0
2017	442 ·	612	56.9	924	-13.5	257	0	0	0.0
2018	417	611	52.2	917	-10.9	271	0	0	0.0
2019	394	609	48.2	907	-8.0	285	0	0	0.1
2020	374	606	44.8	897	-4.9	298	0	0	0.1
2021	355	603	41.9	885	-1.7	310	0	0	0.1
2022	337	599	39.3	873	1.6	322	0	0	0.1
2023	321	594	.37.0	860	4.9	333	0	0	0.2
2024	306	589	34.9	846	8.2	343	0	0	0.2
2025	292	583	33.1	833	11.5	354	0	0	0.3
2026	278	577	31.4	819	14.8	363	0	0	0.4
2027	266	571	29.8	804	18.0	373	0	0	0.5
2028	254	563	28.4	790	21.2	381	0	0	0.6
2029	243	556	27.0	775	24.3	390	0	• 0	0.7
2030	232	548	25.8	760	27.3	398	0	0	0.8
2031	222	540	24.6	745	30.2	406	0	0	1.0
2032	213	532	23.5	730	33.1	413	0	0	1.2
2033	204	523	22.5	715	35.8	420	0	0	1.4
2034	195	514	21.5	700	38.5	427	0	0	1.7
2035	187	505	20.6	685	41.0	433	0	0	2.0
2036	179	496	19.7	670	43.5	439	0	0	2.3
2037	172	487	18.9	655	45.8	445	. 0	0	2.7
2038	165	478	18.1	641	48.1	451	0	0	3.1
2039	158	468	17.4	626	50.2	456	- 0	0	3.6
2040	152	459	16.7	612	52.3	460	0	0	4.1
2041	146	450	16.0	598	54.2	465	0	0	4.7
2042	140	440	15.4	584	56.0	469	0	0	5.3
2043	134	431	14.8	570	57.8	473	-0	0.	6.0
2044	129	421	14.2	556	59.4	476	0	. 0	6.8
2045	124	412	13.7	542	60.9	479	0	0	7.6
2046	119	403	13.1	529	62.4	482	0 '	0	8.5
2047	114	<i>3</i> 94	12.6	516	63.7	484	U	U	9.5
2048	110	385	12.1	503	64.9	487	U	U	10.6
2049	106	376	11.7	491	66.l	488	U	0	11.7
2050	102	367	11.2	4/8	6/.I	490	U	U	12.9
2051	97.7	358	10.8	466	08.1	491	U	U	14.2
2052	93.9	350	10.4	454	69.0	492	U	U	15.6
2053	90.3	341	10.0	442	69.7	493	U	U	17.1

	Windmill Insetive Well								End	
x	Inom	MW 1	MW 2	MW 2	NAME A	NAW 5	MW 6	(I_05220)	(I_03045)	Ellu Point
<u> </u>	rear	<u>1VI W - 1</u>	1VI W-2	<u>NIW-5</u>	1VI W -4	70.4	<u>101 W-0</u>	<u>(L 03339)</u>	<u>(L 03943)</u>	18.7
2	055	00.9 92.5	333	9.0	431	70.4	493	0	0	20.4
2	055	80.4	317	9.5 8 Q	419	71.1	493	0	0	20.4
2	057	773	300	8.6	- 308	72.1	492	0 0	0	24.0
2	058	74.4	303	83	387	72.1	492	0	0	24.0 25.9
2	050	71.5	203	8.0	377	72.4	490	Õ	Ő	28.0
2	060	68.8	225	0.0 77	367	73.0	420	Õ	Ő	30.1
2	2061	66.2	200	7.7 7.4	357	73.0	487	Ô	Ő	32.3
2	2062	63.7	278	7.4	347	73.3	485	Õ	0 0	34.7
2	063	61.4	271	68	338	73.3	483	0	Ő	37.1
2	2064	59.0	257	6.6	328	73.3	481	õ	Ő	39.6
2	065	56.8	250	6.3	319	73.3	478	Õ	Ő	42.2
2	2066	54.7	244	6.1	311	73.1	475	Õ	0	44.9
2	2067	52.7	237	5.9	302	73.0	472	Õ	ů 0	47.6
2	068	50.7	231	5.7	294	72.7	469	0	0	50.5
2	2069	48.8	225	5.5	286	72.5	466	0	0	53.4
2	2070	47.0	219	5.3	278	72.2	463	0	0	56.4
2	2071	45.3	213	5.1	270	71.8	459	0	0	59.5
2	2072	43.6	207	4.9	262	71.4	455	0	0	62.7
2	2073	42.0	201	4.7	255	70.9	451	0	0	65.9
2	2074	40.4	196	4.5	248	70.5	447	0	0	69.2
2	2075	38.9	190	4.4	241	70.0	443	0	0	72.6
2	2076	37.5	185	4.2	234	69.4	439	0	0	76.0
2	2077	36.1	180	4.1	227	68.8	434	0	0	79.5
2	2078	34.8	175	3.9	221	68.2	430	0	0	83.0
2	2079	33.5	170	3.8	214	67.6	425	0	0	86.6
2	2080	32.3	165	3.6	208	66.9	420	0	0	90.2
2	2081	31.1	161	3.5	202	66.3	415	0	0	93.9
2	2082	30.0	156	3.4	197	65.6	411	0	0	97.6
2	2083	28.9	152	3.3	191	64.8	406	0	0	101
2	2084	27.8	148	3.1	185	64.1	401	0	0	105
2	2085	26.8	143	3.0	180	63.3	395	0	0	109
2	2086	25.8	139	2.9	175	62.6	390	0	0	113
2	2087	24.9	135	2.8	170	61.8	385	0	0	116
2	2088	24.0	132	2.7	165	61.0	380	0	0	120
2	2089	23.1	128	2.6	160	60.2	375	0	0	124
2	2090	22.3	124	2.5	155	59.4	369	U	U	128
2	2091	21.5	121	2.4	151	58.6	364	0 .	. U	132 -
2	2092	20.7	117	2.3	146	5/./	339	U	U	130
2	2093	20.0	114	2.3	142	50.9 50.0	333	0	U	140
2	2094	19.2	110	2.2	138	50.U	548 242	U A	U	143
2	2093	18.5	107	2.1	134	55.2 54.4	343 227	0	U	14/
2	2090 2007	17.9	104	2.0	130	54:4	222	U O	U O	151
2	:09/	17.2	101	2.0	120	<i>JJ</i> .5	<i>332</i>	U	U	133

.

Windmill Inactive Well								End '		
	Voor	MW 1	MAN 2	MW 2	MANZ A	MW 5	MW 6	$(T \ 05330)$	(1 03045)	Point
_	2008	16.6	08 1	10	122	52 7	327	(L 05559)	<u>(L 03943)</u>	158
	2098	16.0	90.1 05 3	1.7	122	51.8	321	0	0	162
	2099	15.0	93.3	1.8	115	50.9	316	0	0	166
	2100	1/ 0	92.5 80.8	1.7	112	50.9	311	0	0	160
	2101	14.7	871	1.7	108	<u> </u>	306	0	0	173
	2102	13.8	84.6	1.0	105	49.2	300	0	0	177
	2103	13.0	87.1	1.0	105	47.6	295	0	0	180
	2104	12.9	79.7	1.5	99.1	46.7	290	0	0	183
	2105	12.9	773	1.5	96.1	45.9	290	0	0 0	187
	2100	12.4	75.1	1.4	93 3	45.1	280	0	Õ	190
	2107	11.5	72.8	13	90.5	44.7	200	0	0 0	193
	2100	11.5	70.7	1.3	87.8	43.4	270	0	Ő	197
	2110	10.7	68.6	1.5	85.1	42.6	265	ů 0	Ő	200
	2110	10.7	66.6	1.2	82.6	41.8	260	ů	0	200
	2112	10.0	64 6	1.2	80.1	41.0	255	Õ	ů	205
	2112	9.6	62.7	1.1	77 7	40.2	250	Ő	Ő	209
	2113	93	60.8	1.1	75.4	39.4	245	ů	Ő	211
	2115	9.0	59.0	1.0	73.1	38.7	241	Õ	Ő	214
	2116	8.6	57.2	1.0	70.9	37.9	236	Õ	Ő	217
	2117	8.3	55.5	0.9	68.8	37.2	231	Õ	Ő	219
	2118	8.0	53.9	0.9	66.7	36.4	227	0	0	222
	2119	7.8	52.2	0.9	64.7	35.7	222	0	0	224
	2120	7.5	50.7	0.9	62.7	34.9	218	0	0	227
	2121	7.2	49.2	0.8	60.8	34.2	214	0	0	229
	2122	7.0	47.7	0.8	59.0	33.5	209	0	0	231
	2123	6.7	46.2	0.8	57.2	32.8	205	0	0	233
	2124	6.5	44.9	0.7	55.5	32.1	201	0	0	235
	2125	6.2	43.5	0.7	53.8	31.4	197	0	0	237
	2126	6.0	42.2	0.7	52.2	30.8	193	0	0	239
	2127	5.8	40.9	0.7	50.6	30.1	189	0	0	240
	2128	5.6	39.7	0.6	49.0	29.5	185	0	0	242
	2129	5.4	38.5	0.6	47.5	28.8	181	0	0	243
	2130	5.2	37.3	0.6	46.1	28.2	177	0	0	245
	2131	5.0	36.2	0.6	44.7	27.6 [,]	173	0	0	246
	2132	4.9	35.1	0.6	43.3	27.0	169	0	0	247
	2133	4.7	34.0	0.5	42.0	26.4	166	0	0	248
	2134	4.5	33.0	0.5	40.7	25.8	162	0	0	249
	2135	4.4	32.0	0.5	39.5	25.2	159	0	0	250
	2136	4.2	31.0	0.5	38.3	24.6	155	0	0	251
	2137	4.1	30.1	0.5	37.1	24.1	152	0	0	252
	2138	3.9	29.2	0.4	36.0	23.5	148	0	0	253
	2139	3.8	28.3	0.4	34.9	23.0	145	0	0	253
	2140	3.7	27.4	0.4	33.8	22.5	142	0	0	254
	2141	3.5	26.6	0.4	32.8	21.9	139	0	0	254

					.,				
							Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2142	3.4	25.8	0.4	31.8	21.4	135	0	0	254
2143	3.3	25.0	0.4	30.8	20.9	132	0	0	254
2144	3.2	24.2	0.4	29.8	20.4	129	0	0	255
2145	3.1	23.5	0.4	28.9	20.0	126	0	0	255
2146	3.0	22.8	0.3	28.0	19.5	124	0	0	255
2147	2.9	22.1	0.3	27.2	19.0	121	0	0	254
2148	2.8	21.4	0.3	26.3	18.6	118	0	0	254
2149	2.7	20.7	0.3	25.5	18.1	115	0	0	254
2150	2.6	20.1	0.3	24.8	17.7	112	0	0	254
2151	2.5	19.5	0.3	24.0	17.3	110	0	0	253
2152	2.4	18. 9	0.3	23.3	16.9	107	0	0	253
2153	2.3	18.3	0.3	22.5	16.5	105	0	0	252
2154	2.2	17.7	0.3	21.8	16.1	102	0	0	251
2155	2.2	17.2	0.2	21.2	15.7	100	0	0	251
2156	2.1	16.7	0.2	20.5	15.3	97	0	0	250
2157	2.0	16.2	0.2	19.9	14.9	95	0	0	249

WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III

Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.

TDS Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 10/12/110 Time: 17:08:14.00

Input File: TDS 2010.WTR Map File :

TDS Concentrations Vs. Time

```
_____
                                            ______
Number of Wells = 9
    MW-1
       Center of Well -- x: 716.000000 y: 5281.000000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 2590.000000
       Head at Well Radius
                            = 3793.961453
    MW - 2
       Center of Well -- x: 1041.670000 y: 4585.770000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 1070.000000
       Head at Well Radius
                                    = 3790.910784
    MW-3
       Center of Well -- x: 694.000000 y: 5954.000000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 859.000000
       Head at Well Radius
                                    = 3796.080135
    MW-4
       Center of Well -- x: 1341.000000 y: 4747.000000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 1750.000000
       Head at Well Radius
                                   = 3790.622276
    MW-5
       Center of Well -- x: 1829.000000 y: 4861.000000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 291.000000
       Head at Well Radius
                                   = 3789.668020
    MW-6
       Center of Well -- x: 1948.000000 v: 4058.000000
       Radius = 1.000000
       Pumping Rate = 0.000000
       Concentration of Injected Water = 545.000000
       Head at Well Radius
                                    = 3786.685786
    Windmill (L-05339)
       Center of Well -- x: 650.000000 y: 2081.000000
       Radius = 1.000000
       Pumping Rate = 10.000000
       Concentration of Injected Water = 400.000000
                                   = 3783.653608
       Head at Well Radius
    Inactive Well (L 03945)
       Center of Well -- x: 4375.000000 y: 3275.550000
       Radius = 1.000000
       Pumping Rate = 0.000000
                                1
       Concentration of Injected Water = 0.000000
       Head at Well Radius
                                   = 3776.640188
```

Reference Head = 3795.000000 Defined at -- x: 619.470000 y: 5537.180000

_____ Aquifer Properties Steady-State Flow Model Permeability..... = 1000.000000 [L/T] Porosity.....= 0.250000 Elevation of Aquifer Top....= 4000.000000 Elevation of Aquifer Bottom.= 3700.000000 Uniform Regional Gradient...= 0.004000 Angle of Uniform Gradient...= 310.000000 Recharge..... = 0.000000 Transient Transport Model Longitudinal Dispersivity...= 150.000000 [L] Transverse Dispersivity....= 15.000000 [L] Diffusion Coefficient....= 0.000000 [L2/T] Contaminant half-life..... = 1000.000000 [T] · Retardation Coefficient....= 1.000000 Upstream Weighting in X....= 0.000000 Upstream Weighting in Y....= 0.000000 Time Stepping Information Number of time steps..... = 840 Starting time value.....= 2010.000000 Initial time step size....= 0.100000 Time step multiplier..... = 1.000000 Maximum time step size....= 0.100000 Simulation Summary Starting time.....= 2010.000000 Ending time..... = 2094.000000 Number of time steps..... = 840 Flow Mass Balance Error.... = 0.000000 Transport Mass Balance Error= 0.949256 Peclet Criterion..... = 1.388889 Courant Number..... = 0.005046 Flow Model Type..... Finite Element Number of nodes in the X-direction = 49

Time stepping scheme.....= Central Differencing (NOTE: following mass balance errors expressed as percent) Head Contour Matrix Number of nodes in the Y-direction = 49Minimum X Coordinate = 0.000000. Minimum Y Coordinate = 0.000000 Maximum X Coordinate = 10000.000000 Maximum Y Coordinate = 6289.062500

Minimum Head = 3734.916002
				(Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2010	2590	1070	859	1750	291	545	0	0	0.0
2011	2069	1187	623	1996	183	568	0	0	109
2012	1739	1238	476	2123	113	594	0	0	118
2013	1531	1257	388	2180	68.5	621	0	0	127
2014	1384	1264	329	2203	38.4	648	0	0	137
2015	1270	1266	286	2208	17.0	676	0	0	147
2016	1177	1266	254	2202	1.1	703	0	0	158
2017	1098	1264	228	2188	0	730	0	0	170
2018	1030	1261	207	2169	0	757	0	0	182
2019	969	1258	189	2147	0	783	0	0	194
2020	915	1254	174	2123	0	808	0	0	208
2021	866	1249	161	2096	0	833	0	0	221
2022	821	1243	149	2068	0	857	0	0	236
2023	780	1236	139	2038	0	880	0	0	250
2024	741	1229	130	2008	0	902	0	0	266
2025	706	1220	121	1977	0	924	0	0	281
2026	673	1210	114	1945	0	945	0	0	297
2027	642	1200	107.	1913	0	965	0	0	313
2028	613	1188	101	1880	0	985	0	0	330
2029	586	1176	95.4	1847	0	1003	0	0	347
2030	561	1163	90.2	1814	0	1021	0	0	364
2031	536	1149	85.3	1780	0	1038	0	0	381
2032	514	1134	80.8	1747	0	1055	0	0	399
2033	492	1119	76.6	1713	0	1071	0	0	416
2034	472	1103	72.7	1679	· 0	1086	0	0	434
2035	452	1087	69.1	1645	0	1100	0	0	452
2036	434	1070	65.7	1612	0	1113	0	0	469
2037	416	1053	62.5	1578	0	1126	0	0	487
2038	399	1035	59.5	1545	0	1138	0	0	505
2039	384	1017	56.7	1512	0	1149	• 0	0	522
2040	368	999	54.0	1480	0	1160	0	0	539
2041	354	981	51.5	1447	0	1170	0	0	557
2042	340	962	49.2	1415	0	1179	0	0	574
2043	327	944	47.0	1383	0	118/	0	0	591
2044	314	925	44.9	1352	0.9 2.9	1194	0	0	607
2045	302	907	42.9	1321	3.8	1201	0	0	624
2040	291	000 970	41.0	1291 -	0.7	1207	0	0	656
2047	20U 260	010	37.2 27 5	1200	9.0 12 4	1212	0	0	677
2040	209	0J2 822	37.3	1201	12.4	1210	0	0	687
2049 2050	239 250	033 815	33. 3 31 1	1202	19.2	1220	0	0	702
2050	230	707	37.4	11/5	20.7	1223	0	0	703
2031	240	727 780	32.9	1145	20.7	1225	0	0	727
2052	231	760	30.2	1000	25.5 25.0	1227	0	0	746
2055	223	102	JU.2	1020	43.7	1441	v	v	740

Direct TDS Concentration (mg/L) Output from WinTran Simulation

Page 4 of 5

L			nuation	(ing/L)	Juipui	I UIII VVI			- ·
				N / N N / /			Windmill	Inactive Well	End
Year	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-4</u>	<u>MW-5</u>	MW-6	(L 05339)	<u>(L 03945)</u>	Point
2054	215	/45	29.0	1063	28.4	1228	0	0	/60
2055	207	728	27.8	1037	30.9	1227	0	0	773
2056	199	711	26.6	1011	33.2	1226	0	0	786
2057	192	694	25.5	986	35.5	1224	0	0	799
2058	185	677	24.5	961	37.7	1222	0	0	811
2059	178	661	23.5	937	39.8	1219	0 ·	0	823
2060	172	645	22.6	913	41.9	1215	0	0	834
2061	166	630	21.7	890	43.8	1211	0	0	845
2062	160	614	20.8	867	45.7	1206	0	0	855
2063	154	599	20.0	845	47.5	1201	0	0	865
2064	148	584	19.2	823	49.2	1195	0	0	875
2065	143	570	.18.4	802	50.8	1189	0	0	884
2066	138	556	17.7	781	52.4	1183	0	. 0	892
2067	133	542	17.0	760	53.8	1175	0	0	901
2068	128	528	16.4	740	55.2	1168	0	0	908
2069	124	515	15.7	721	56.4	1160	0	0	915
2070	120	501	15.1	702	57.6	1152	0	0	922
2071	115	488	14.6	683	58.7	1143	0	0	928
2072	111	476	14.0	665	59.8	1134	0	0	934
2073	107	464	13.5	647	60.7	1124	0	0	939
2074	104	451	13.0	630	61.6	1114	· 0	0	944
2075	99.9	440	12.5	613	62.4	1104	0	0	948
2076	96.4	428	12.0	597	63.1	1094	0	0	952
2077	93.1	417	11.5	580	63.7	1084	0	0	955
2078	89.8	406	11.1	565	64.3	1073	0	0	958
2079	86.7	395	10.7	549	64.8	1062	0	0	961
2080	83.7	385	10.3	534	65.2	1050	0	0	963
2081	80.8	374	9.9	520	65.6	1039	0	0	964
2082	78.0	364	9.5	506	65.9	1027	0	0	965
2083	75.2	355	9.2	492	66.1	1015	.0	0	966
2084	72.6	345	8.8	478	66.3	1003	0	0	966
2085	70.1	336	8.5	465	66.4	991	0	0	966
2086	67.7	327	8.2	452	66.5	979	0	0	965
2087	65.4	318	7.9	440	66.5	967	0	0	964
2088	63.1	309	7.6	428	66.4	954	0	0	963
2089	60.9	301	7.3	416	66.4	942	0	0	961
2090	58.8	293	7.1	404	66.2	929	0	0	959
2091	56.8	285	6.8	393	66.1	916	0	0	956
2092	54.8	277	6.6	382	65.8	904	0	0	953
2093	53.0	269	6.3	371	65.6	891	Ő	Ő	950
2094	51.1	262	6.1	361	65.3	878	Ŭ 0	Ő	946

Direct TDS Concentration (mg/L) Output from WinTran Simulation