3R - 173

QUARTERLY GWMR

04/28/2011

3 K 1 4 36121 Indian School Rd. NE Suite 200
Albuquerque, NM 87110
(505) 237-8440

April 29, 2011

Mr. Glenn von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, New Mexico 87505

RE: ConocoPhillips Company Flora Vista No. I Site, Flora Vista, New Mexico. December 2010

Quarterly Groundwater Monitoring Reports

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced document as compiled by Tetra Tech, Inc., for these Farmington area sites.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Kelly E. Blanchard

Enclosures (1)

Cc: Brandon Powell, NMOCD, Aztec, NM Terry Lauck, ConocoPhillips RM&R MEULIVED OCD

DECEMBER 2010 QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY

FLORA VISTA NO. I NATURAL GAS PRODUCTION SITE FLORA VISTA, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R173 API No. 30-045-20073

Prepared for:

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE, Suite 200

Albuquerque, NM 87110 Tetra Tech Project No. 114-690130

April 2011

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	I.I Site Background	I
2.0	METHODOLOGY AND RESULTS	2
	2.I Groundwater Sampling Methodology	2
	2.2 Groundwater Sampling Analytical Results	2
3.0	CONCLUSIONS	3
FIG	GURES	
1.	Site Location Map	
2.	Site Layout Map	
3.	Generalized Geologic Cross Section	
4.	Groundwater Elevation Contour Map – December 2010	
5.	Benzene Concentration Contour Map – December 2010	

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data June 2003 through December 2010
- 3. Groundwater Analytical Results Summary June 2003 through December 2010

APPENDICES

Appendix A. December 2010 Quarterly Groundwater Sampling Field Forms

Appendix B. December 2010 Groundwater Laboratory Analytical Report

PLORA VISTA NO. I GAS PRODUCTION SITE FLORA VISTA, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of the quarterly groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) on December 14, 2010 at the Flora Vista No. I natural gas production well site (Site), operated by Burlington Resources Oil & Gas Company LP (Burlington), a wholly-owned subsidiary of ConocoPhillips Company (**Figure 1**). The Site is located on private property in Unit Letter F, Section 22, Township 30N, Range 12W, of San Juan County, New Mexico. The Site consists of a gas production well and associated equipment and installations. A detailed Site layout map is provided as **Figure 2**.

1.1 Site Background

A previous operator removed an earthen dehydrator pit from service in March 1994. A large volume of hydrocarbon-impacted soil was subsequently excavated in April 1994 and again in November 1995. A pit closure report was submitted to NMOCD in August 1996, by El Paso Field Services. NMOCD issued a letter to El Paso Field Services on January 24, 1997 approving pit closure and remediation.

Burlington encountered hydrocarbon-impacted soil at the during a production facility resetting activity in early 2003. Burlington subsequently directed the excavation of approximately 9,443 cubic yards of soil in an attempt to remove all of the hydrocarbon-impacted soil. Groundwater was observed in the bottom of the excavation at approximately 25 feet below the ground surface. Field screening was conducted during excavation to determine extent of impacted soil. To enhance the remediation of the remaining amounts of residual hydrocarbon contamination in the excavated area, approximately 80 barrels (bbls) of a potassium permanganate oxidizer solution was sprayed on the soil.

In September 2003, Envirotech installed a groundwater monitoring well (MW-I) slightly downgradient from the center of the excavation (**Figure 2**). Subsequent monitoring during September 2003 included analyses for benzene, toluene, ethylbenzene, and total xylenes (BTEX), as well as total petroleum hydrocarbons (TPH). Groundwater analyses indicated the presence of benzene and total xylenes above regulatory standards. Monitor Wells MW-2, MW-3, and MW-4 were installed at the site in August 2008 in response to an April 2008 request from the New Mexico Oil Conservation Division (NMOCD) for site characterization and enhanced laboratory

Tetra Tech, Inc. 1 April 28, 2011

analyses. A generalized geologic cross section was prepared using boring logs from the August 2008 monitoring well installation and is presented as **Figure 3**. The Flora Vista No. I site history is summarized in **Table 1**.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Sampling Methodology

Groundwater Elevation Measurements

On December 14, 2010, groundwater elevation measurements were collected from Monitor Wells MW-1, MW-3, and MW-4 using a dual interface probe. At the time of the site visit, the owner of the property was storing a large amount of fill dirt over MW-2. Tetra Tech did not collect a groundwater elevation measurement from Monitor Well MW-2 due to the fill dirt. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on December 2010 monitoring event data, groundwater flow is to the southwest and is consistent with historical records at this site.

Groundwater sampling

Approximately three well volumes were purged from Monitor Wells MW-1, MW-3, and MW-4 with a dedicated polyethylene 1.5-inch disposable bailer; or were bailed dry and allowed sufficient time to re-charge prior to sampling. Purge water was placed in the onsite produced water tank (**Figure 2**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX by Environmental Protection Agency (EPA) Method 8260B, dissolved iron and manganese by EPA Method 6010B, and sulfate by EPA method 300.0. The samples collected for analysis of dissolved metals were placed in unpreserved containers supplied by the laboratory. These samples were both filtered and preserved by laboratory personnel prior to analysis. Tetra Tech groundwater sampling field forms are included as **Appendix A**.

2.2 Groundwater Sampling Analytical Results

Groundwater samples collected from Monitor Well MW-3 did not exceed laboratory detection limits for any of the constituents sampled. Groundwater collected from Monitor Wells MW-1 and MW-4 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standards for the following constituents:

Benzene – The NMWQCC standard for benzene is 10 micrograms per liter (μg/L). The
concentration of benzene found in the groundwater sample collected from MW-1 was
3,200 μg/L. The groundwater sample collected from MW-4, the down-gradient well,
contained a concentration of benzene at 130 μg/L.

- **Xylenes** The NMWQCC standard for total xylenes is 620 μg/L. The concentration of xylenes found in the groundwater sample collected from MW-1 was 5,301.6 μg/L. The groundwater sample collected from MW-4 contained a concentration of 899 μg/L.
- **Dissolved Iron** The NMWQCC standard for dissolved iron is 1 μg/L. The concentration of dissolved iron found in the groundwater sample collected from MW-1 was 4.13 μg/L. The groundwater sample collected from MW-4 contained a concentration of 1.75 μg/L.
- Dissolved Manganese The NMWQCC standard for dissolved manganese is 0.2 μg/L.
 The concentration of dissolved manganese found in the groundwater sample collected from MW-I was 0.888 μg/L. The groundwater sample collected from MW-4 contained a concentration of 4.69 μg/L.

A summary of the historical groundwater laboratory analytical results is presented as **Table 3**. The December 2010 laboratory analytical report is included as **Appendix B**.

3.0 CONCLUSIONS

Groundwater samples collected from MW-I and MW-4 have consistently exceeded NMWQCC groundwater quality standards for benzene, dissolved iron and dissolved manganese constituents from October 2008 through December 2010. Groundwater samples from MW-I have also historically exceeded NMWQCC groundwater quality standards for xylenes. Based on the historical groundwater quality data, groundwater samples collected from MW-2 and MW-3 have never exceeded NMWQCC groundwater quality standards for BTEX constituents.

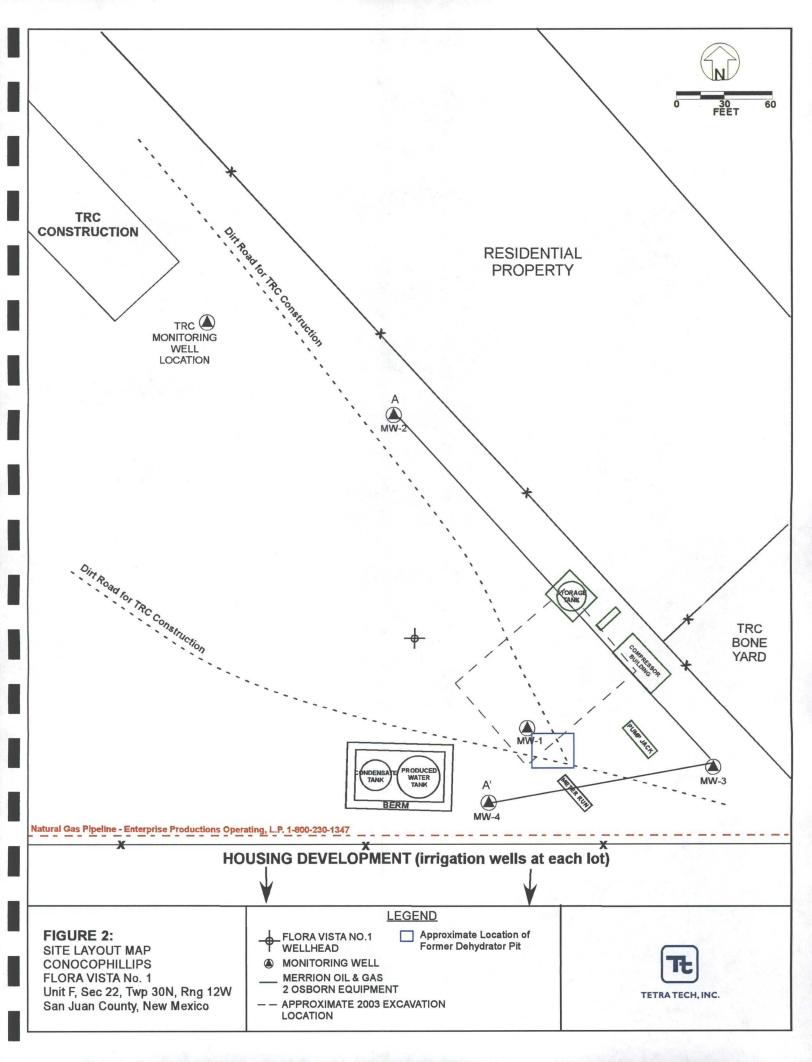
Tetra Tech recommends the continuation of quarterly sampling of MW-1, MW-2, MW-3, and MW-4 in order to monitor ongoing natural attenuation at the site. The next sampling event will take place in March 2010. Tetra Tech will collect samples for BTEX, dissolved iron, and dissolved manganese. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

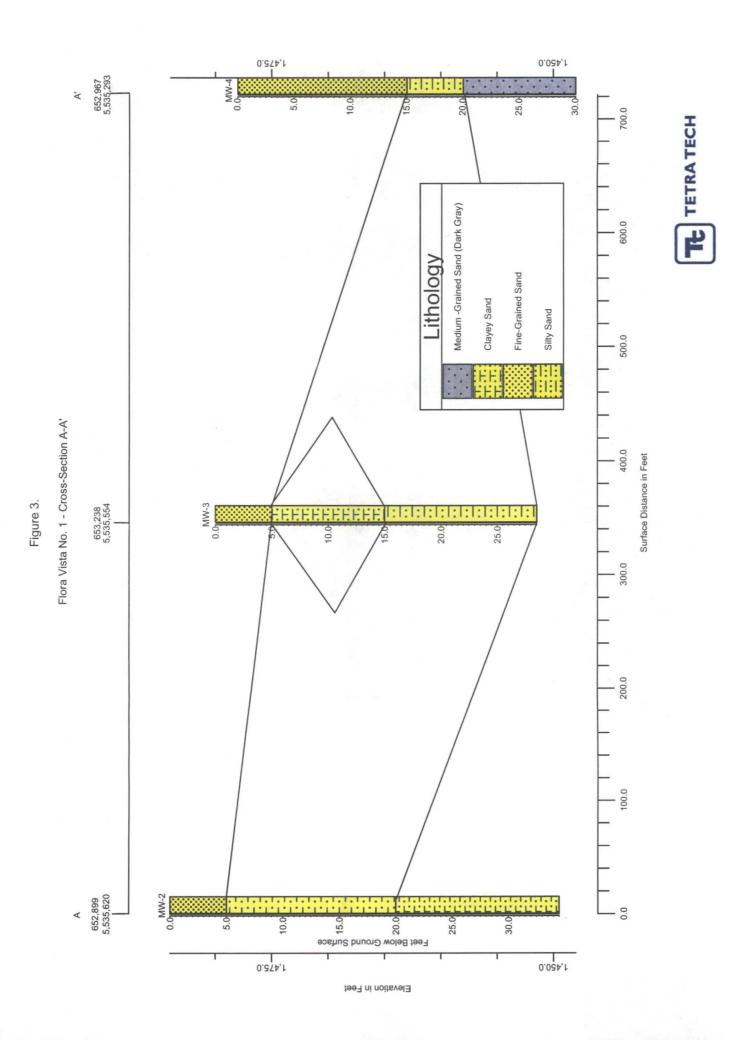
FIGURES

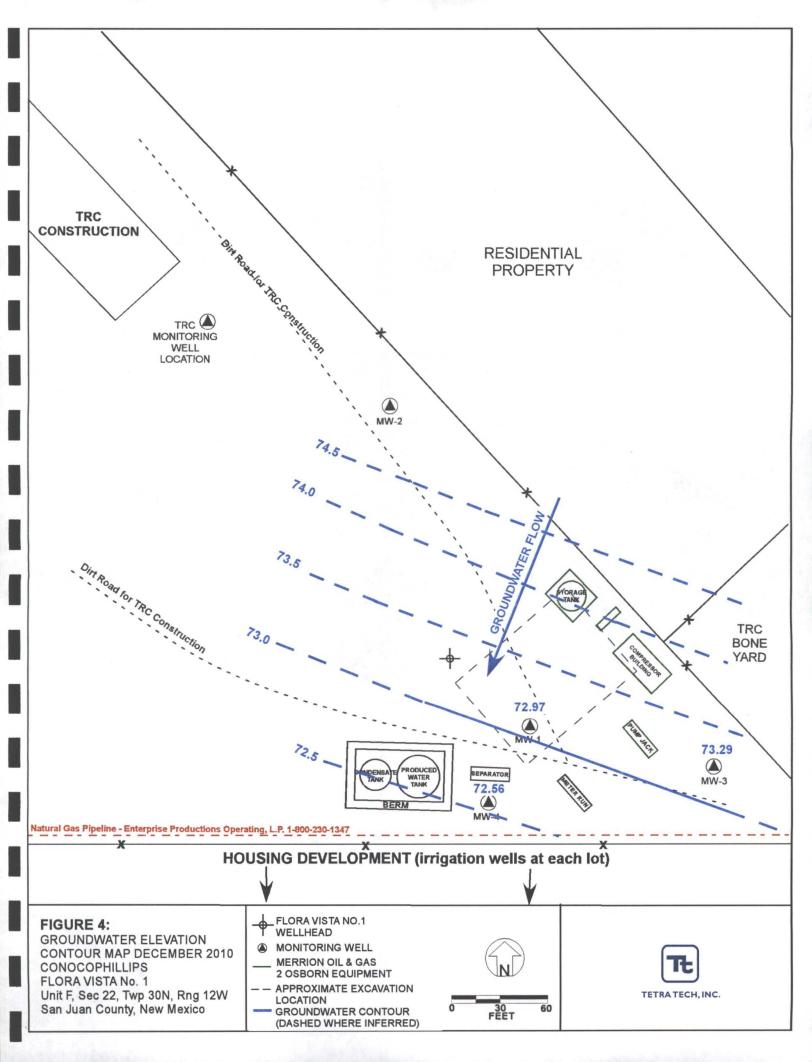
- I. Site Location Map
 - 2. Site Layout Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Contour Map
- 5. Benzene Concentration Contour Map

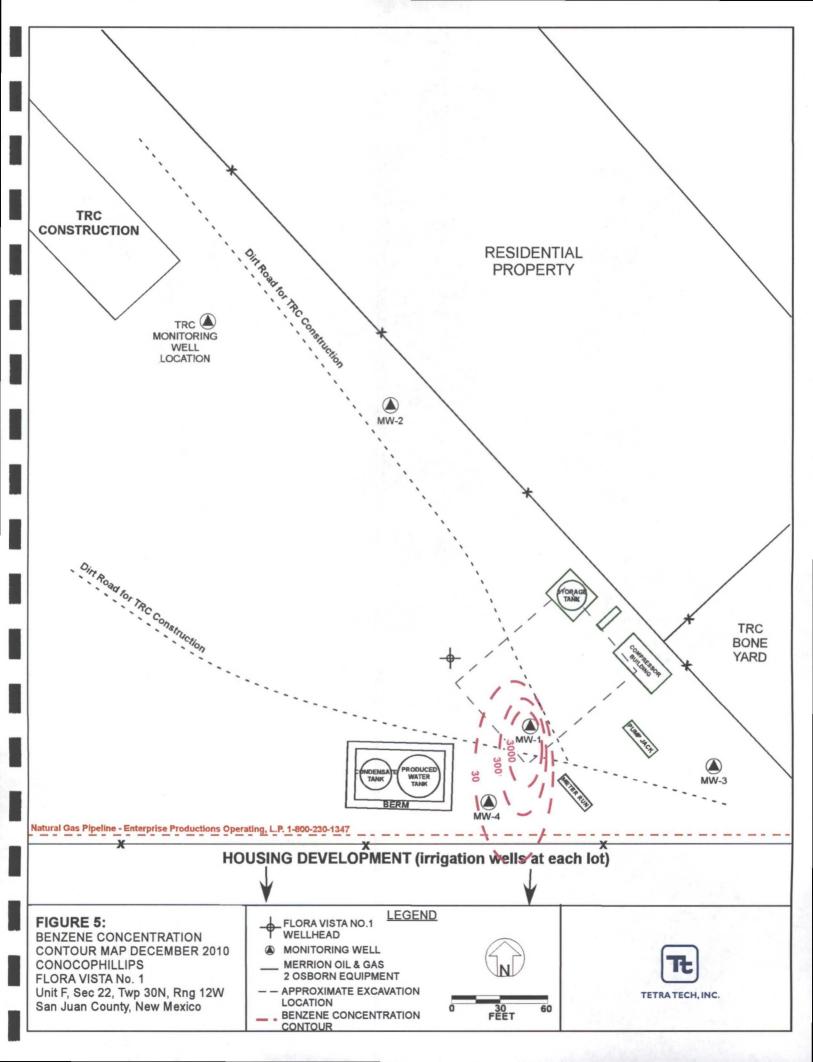
FIGURE 1

Site Location Map ConocoPhillips Flora Vista No. 1 Flora Vista, NM




Approximate ConocoPhillips Flora Vista No. 1 Site location





TETRA TECH, INC.

TABLES

I. Site History Table

2. Monitoring Well Specifications and Groundwater Elevations

3. Groundwater Analytical Summary

Date/Time Period	Event/Action	Description/Comments
November 28, 1995	Pit Closure Activities	Philip Environmental excavated and removed approximatley 850 cubic yards of soil from the area where the Flora Vista No. 1 dehydrator pit was located. Excavation activities were stopped in the north and west directions due to the positions of the compressor and meter run equipment.
July and August 1996	Submital of Pit Closure	El Paso Field Services submits Pit Closure Reports to the New Mexico Oil Conservation Division outlining the excavation and clsoure of the dehydrator pit at the site.
January 24, 1997	Pit Closure Approval	El Paso Field Sservices receives approval of pit closure from the New Mexico Oil Conservation Division.
June and July 2003	Initial Site Assessment	Historical petroleum contaminated soil discovered during a production facility resetting activity. Environmental investigation began with the excavation of approximately 4,986 cubic yards of impacted soil and 4,446 cubic yards of clean soil. Groundwater was encountered at approximately 25 feet below the ground surface. The impacted soil was taken to a commercial landfill facility located on Crouch Mesa in Farmington, New Mexico. Approximately 80 bbls of potassium permanganate was sprayed on the soils to breakdown any minor amounts of residual petroleum contaminants. The excavation area was backfilled with clean soil.
September 2, 2003 September of 2003	Groundwater Monitoring Well Installation Quarterly Groundwater	One ground water Monitoring Well, MW-1, was installed slightly down-gradient from the center of the soil excavation by Envirotech. Total depth of well is 26 feet.
through December 13, 2006	Quarterly groundwater monitoring of MW-1 for analysis of BTEX constituents. MW-1 remained above standards for benzene, ethylbenzene, and total xylenes.	
March 31, 2006	Site Transfer	ConocoPhillips Company completes acquisition of Burlington Resources.
March 2007 through January 2008	Consultant Change and Groundwater Monitoring	After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington New Mexico to Tetra Tech of Albuquerque. Tetra Tech began sampling the Flora Vista site quarterly in March of 2007. Four consecutive quarters of goundwater sampling were conducted at the Flora Vista site. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents during all sampling events. MW-1 remained above standards for benzen, ethylbenzene, and total xylenes.
March 28, 2008	Reporting	Annual report for 2007 is submitted to the Oil Conservation Division of NM Energy, Minerals, and Resources Department (OCD).
April 1, 2008	Additional Monitoring Requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater Monitoring	Groundwater monitoring of MW-1. One sample and a duplicate were collected. Benzene and Xylenes are above NMWQCC standards.
August 12 and 13, 2008	Groundwater Monitoring Well Installation and Groundwater Monitoring	Three additional groundwater Monitoring Wells, MW-2, MW-3 and MW-4 were installed by WDC and overseen by Tetra Tech. MW-2 was installed upgradient of MW-1. Both MW-3 and MW-4 were installed downgradient of MW-1. Soil samples were collected from just above the groundwater interface for each boring location and sent to Southern Petroleum Laboratory for a baseline soil analysis. All wells were developed by purging approximately 80 gallons of fluid using a surge block and hand bailer/purge pump.
October 21, 2008 Groundwater Monitoring sampling to include all for including major ions, total organic compounds (VOC organics. There were 3 c		Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitoring wells on site. A baseline suite was completed including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. There were 3 constituents that returned results above NMWQCC limits, Benzene (MW-1 and MW-4), Total Xylenes (MW-1), and Sulfate (MW-1).
January 28, 2009	Groundwater Monitoring	Tetra Tech conducted fourth quarter 2008 groundwater monitoring at the site for BTEX constituents in all four monitoring wells. Benzene (MW-1 and MW-4), Ethylbenzene (MW-1) and Xylenes (MW-1) were above NMWQCC standards.
March 1, 2009	Initiate Annual Sampling	The Flora Vista No. 1 site is put on an annual monitoring schedule. The next sampling event is scheduled for September 2009.
September 30, 2009	Groundwater Monitoring	Tetra Tech conducted 2009 annual groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.

Table 1. Site History Timeline - ConocoPhillips Flora Vista No. 1

Date/Time Period	Event/Action	Description/Comments
December 16, 2009	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a private domestic irrigation well located to the south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
May 14, 2010	Initiate Quarterly Sampling	The Flora Vista No. 1 site is put on a semi-annual monitoring schedule. Private domestic irrigation well sampling is also to be included in semi-annual sampling events.
June 10, 2010	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a second private down-gradient domestic irrigation well to be sampled for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
June 10 and 11, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.
September 27, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron and manganese (MW-1 and MW-4) were above NMWQCC standards.
December 14, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron and manganese (MW-1 and MW-4) were above NMWQCC standards.

Table 2. Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Flora Vista No.1

Well ID	Total Depth (ft bgs)	Surface Elevation, Top of Casing* (ft)	Screen Interval (ft)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level (ft BMF
				6/20/2003	standing	94.38
				9/23/2003	17.03	77.35
				12/16/2003	20.11	74.27
				3/16/2004	23.69	70.69
				6/21/2004	19.92	74.46
				9/30/2004	16.82	. 77.56
				12/13/2004	20.40	73.98
				3/22/2005	24.32	70.06
	·			6/22/2005		-
				10/24/2005		- '
				12/13/2005	21.24	73.14
				3/22/2006	24.75	69.63
MW-1	26.02	94.38	11.02 - 26.02	6/22/2006	20.48	73.9
				10/20/2006	19.13	75.25
				12/13/2006	21.24	73.14
				11/9/2007	19.71	· 74.67
				1/15/2008	NM	NA NA
				3/19/2008	24.35	70.03
				7/23/2008	19.89	74.49
				10/21/2008	19.48	74.9
				1/28/2009	23.96	70.42
				9/30/2009	18.16	76.22
				6/10/2010	21.64	72.74
				9/27/2010	19.31	75.07
				12/14/2010	21.41	72.97
				10/21/2008	20.71	76.39
•				1/28/2009	22.75	74.35
	•			9/30/2009	18.83	78.27
MW-2	31.35	97.1	12.35 - 27.35	6/11/2010	22.09	75.01
				9/27/2010	20.12	76.98
				12/14/2010	NM	NM
				10/21/2008	17.92	74.98
				1/28/2009	21.53	71.37
·~ ++	~ ~			9/30/2009	16.43	76.47
MW-3	30.87	92.9	11.87 - 26.87	6/10/2010	19.71	73.19
: *			11.87 - 20.87	9/27/2010	17.81	75.09
•		'		12/14/2010	19.61	73.29
				10/21/2008	18.06	75.54
				1/28/2009	24.55	69.05
				9/30/2009	17.89	75.71
MW-4	30.42	93.6	11.42-26.42	6/10/2010	21.02	72.58
		. !		9/27/2010	18.93	74.67
				12/14/2010	21.04	72.56

^{*}Casing elevations are based on an arbitrary 100 ft relative surface elevation set at the gas well head

TOC = Top of casing

NM = Not measured

NA = Not applicable

bgs = below ground surface

BMP = below measuring point

ft = Feet

Table 3. Groundwater Analytical Results Summary - ConocoPhillips Flora Vista No. 1 🐄

WelliD	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Sulfate (μg/L)	Dissolved fron (μg/L)	Dissolved Manganese (µg/L)
	6/20/2003	1700	300	490	5090	Ν	NA	ΝΑ
	9/23/2003	7500	20	099	9220	NA	AN.	ΝΑ
	12/16/2003	7930	10	1180	864	NA	NA	, VN
	3/16/2004	6860	n	1160	8470	NA	ΝΑ	NA
'	6/21/2004	4140	n	430	3120	NA	NA.	ΝΑ
	9/30/2004	0806	30	1410	0866	AN	ΑN	ΨN
	12/13/2004	8520	ם	1340	9390	ΝΑ	ΑN	Ϋ́
	3/22/2005	4550	n	850	5950	NA	NA	ΨN
	6/22/2005	1	21.88	1	ŀ	NA	ΥN	Ϋ́
	10/24/2005	0629	n	1010	7416	NA	NA	VΝ
I	12/13/2005	6170	n	1010	7570	NA	NA	VΝ
;	3/22/2006	3580	'n	022	5840	NA	NA	NA
	6/22/2006	3100	n	200	3500	NA	NA	VΝ
MW-1	10/20/2006	0099	10	1220	8910	NA	NA	ΨN
I	12/13/2006	4230	10	1090	8130	NA	. VN	ΨN
	3/27/2007	2370	7	504	3749	NA	NA	۷N
	6/25/2007	2870	140	510	3890	NA	NA	VΝ
	11/9/2007	2600	< 0.7	910	6800	NA	NA	ΨN
	1/15/2008	4200	< 0.7	068	2200	NA	NA.	ΨN
	3/19/2008	2700	< 5.0	290	4700	ΝA	NA	٧N
	7/23/2008	2000	< 5.0	380	1400	NA .	NA	٧N
	10/21/2008	4500	< 5.0	089	5300	NA	NA	ΨN
	1/28/2009	4000	< 5.0	880	8700	NA	NA	۷N
·	9/30/2009	4200	1.6	930	5100	11.7	2.08	1.09
	6/10/2010	1700	1.2	330	066	22	0.126	1.28
!	9/27/2010	3200	2	530	4201.6	1.8	7.73	1.19
	12/14/2010	3200	1.2	620	5301.6	1.03	4.13	888'0
Wacc	NMWQCC Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	(ח/Grl) 009	1 (µg/L)	0.2 (µg/L)

Explanation

NMWQCC = New Mexico Water Quality Control Commission

µg/L = micrograms per liter (parts per billion)

<0.5 = Below laboratory detection limit in ug/L

Bold = concentrations that exceed the NMWQCC limits

NA = Not analyzed

Table 3. Groundwater Analytical Results Summary - ConocoPhillips Flora Vista No. 1

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Sulfate (μg/L)	Dissolved Iron (μg/L)	Dissolved Manganese (μg/L)
	10/21/2008	< 0.5	< 0.5	< 0.5	< 0.5	115	.0.656*	0.248*
	1/28/2009	< 0.5	< 0.5	< 0.5	< 0.5	Q	ND	ON
. WW.2	9/30/2009	< 0.5	< 0.5	< 0.5	< 0.5	123	0.0223	< 0.00500
	6/11/2010	< 1.0	< 1.0	< 1.0	< 1.0	156	< 0.0200	< 0.00500
	9/27/2010	< 1.0	< 1.0	< 1.0	< 1.0	179	< 0.0200	< 0.00500
	12/14/2010		No	Not Measured - Well was covered by TRC Construction	was covered by	TRC Construc	tion	
	10/21/2008	< 0.5	< 0.5	< 0.5	< 0.5	63	0.739*	0.0867*
	1/28/2009	< 0.5	< 0.5	< 0.5	< 0.5	QN	ND	ND
MW-3	9/30/2009	< 0.5	< 0.5	< 0.5	< 0.5	144	0.0543	< 0.00500
	6/10/2010	< 0.5	< 1.0	< 1.0	< 1.0	122	0.0425	< 0.00500
	9/27/2010	< 1.0	< 1.0	< 1.0	< 1.0	170	< 0.0200	< 0.00500
	12/14/2010	< 1.0	< 1.0	< 1.0	< 1.0	142	< 0.0200	< 0.00500
	10/21/2008	39	< 0.5	31	180	90.1	8.4*	4.16*
	1/28/2009	099	< 0.5	64	583	QN	ON	ND
MW-4	9/30/2009	340	< 0.5	54	572	48.9	0.148	4.48
	6/10/2010	140	< 1.0	27	252	53.3	0.0566	4.65
	9/27/2010	33	< 1.0	41	274	92.5	1.22	4.34
	12/14/2010	130	< 1.0	93	899	67.5	1.75	4.69
NMWQCC	NMWQCC Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	(hg/) 009	1 (µg/L)	0.2 (µg/L)

3/29/2011

Explanation

NMWQCC = New Mexico Water Quality Control Commission

µg/L = micrograms per liter (parts per billion)

<0.5 = Below laboratory detection limit in ug/L

Bold = concentrations that exceed the NMWQCC limits

NA = Not analyzed

* = Results reported for total metals analysis, results can not be compared to NMWQCC Standards for dissolved metals

APPENDIX A

GROUNDWATER SAMPLING FIELD FORMS

Tt	TETRA TECH, INC.
----	------------------

Project Name	Flora Vista No. 1				Page	1	of	4
ct No.	- NAL901	73	·					
Site Location	Flora Vista, NM					- 1 1		
Site/Well No.	MW-1	Coded/ Replicate N		·	Date	2/14/18	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Weather 2	Somy cool	Time Sampl Began	ing 1400		Time Sampling Completed	IAIC)	
•	(00)(1		EVACUATIO	N DATA				•
Description of	Measuring Point (MP)	Top of Casing			 -			
Height of MP	Above/Below Land Surfa	ce		MP Elevation			·····	
Total Sounded	Depth of Well Below M	P 26.02	<u> </u>	Water-Level Elev	ation		· · · · · ·	
Held Depth to Water Below MP Diameter of Casing 2"								· .
Wet Water Column in Well A. 101 Gallons Pumped/Bailed Prior to Sampling Pumped/Bailed Pumped/Bailed								
Gallons per Foot 0.16 Sampling Pump Intake Setting								
Gallons in Well (feet below land surface)								
Purging Equip	ment Purge pump /	Bailer	Mily					
l Santaga al estados			IELING DATA/FIEL					
Time	Temperature (°C)		onductivity (μS/cm³)	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
1404	10.01	1.80	1,60	0.507	1100	10.7	-1309	1,5
	1000				11 (00.2	1000	<u> (2),(</u>	1,70
Sampling Equi	pment	Purge Pump/Baile			·			
<u>Consti</u>	tuents Sampled	<u>C</u>	ontainer Description	1		Presen	<u>vative</u>	
BTEX		3 40mL VO	A's		HCI			
dissol	red Fel Mu	, leo	& Plash		_Non	و	_	
- SUNC	refe	_ We	02 0	astic	NC	me_		
Remarks	Hao is	arail w	oith hydr	oralion c	doc			
Sampling Pers	onnel Christine Math	news, Cassie Brov	vn .					
			Well Casing \	/olumes			·	
1	Gal./ft. 11/4" = 0).077 2"			0.37	4" = 0.65		
	1 1/2" = 0).10 23	/ ₂ " = 0.24	3" 1/2 = ().50	6" = 1.46		

TŁ	TETRATECH, INC.
----	-----------------

Project Name	Flora Vista No. 1		·	Page_	2	of	4
∌ct No.	11469017	3	<u> </u>				
Site Location	Flora Vista, NM			•	_		
Site/Well No.	MW-2	Coded/ Replicate No. Time Sampling		Date	2.14	10	
Weather	JUMN, COOL	Began		Completed _			
	uo^o	EVACUAT	TION DATA				
Description of	Measuring Point (MP) Top	of Casing					
Height of MP	Above/Below Land Surface		MP Elevatio	n			
Total Sounded	d Depth of Well Below MP	31.35	Water-Level	Elevation			71 . (1.44.7372
Held	Depth to Water Below Mi	P	Diameter of	Casing 2"			<u>-:-</u>
Wet	Water Column in We		Gallons Pun Prior to Sam	•	ed/Bailed	-	
	Gallons per Foo	ot 0.16	Sampling Pu	ump Intoko			
	Gallons in We		(feet below l				
Purging Equip	ment Purge pump / Bail	er					اد به سره سره
a na mantina a		SAMPLING DATA/F					and the second decision of the second
Time Time	Temperature (°C)	⊈pH * ≦≛* Conductivity (μS/	cm³) TDS (g/L) DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
							
<u> </u>			.				THE RESIDENCE OF STREET
Sampling Equ	ipment Pur	ge Pump/Bailer					September 1
Const	ituents Sampled	Container Descri	otion		Preser	vative	المادية المادي المادية المادية المادي
BTEX		3 40mL VOA's		HCI			Company of the Compan
	· · · · · · · · · · · · · · · · · · ·			•			e de la composición del composición de la compos
*							·
Remarks	Well is	Conved wl	Sund-	ill dirt			
Sampling Pers	sonnel Christine Mathew	s, Cassie Brown		-		•	
		Well Casi	ng Volumes				1
	Gal./ft. 1 ¼" = 0.07		3"	= 0.37	4" = 0.65		
	1 14" = 0 10	2 16" = 0.24	3" 1%	= 0.50	6" = 146		I

TE TETRATECH, I	NC.
-----------------	-----

Project Name	Flora Vista No. 1				Page	3	of	4
i ⊯ct No.	11/41/9017	73				•		
Site Location	Flora Vista, NM						•	
Site/Well No.	MW-3	Coded/ Replicate N Time Samp		·	Date Time Sampling	2/14	D	
Weather	70MW, 6001	Began	1742		Completed	170	<u> </u>	
	500		EVACUATIO	N DATA		•		
Description of	Measuring Point (MP)	Top of Casing						
Height of MP	Above/Below Land Surfa	ce	· · · · · · · · · · · · · · · · · · ·	MP Elevation				
Total Sounded	Depth of Well Below MI	P 30.87		Water-Level Ele	vation			255km m. 200-
Held	Depth to Water Below	NMP 19.4		Diameter of Cas				,
Wet	_ Water Column in	Well 1	10	Gallons Pumped Prior to Sampling		oed/Bailed)	
·	Gallons per Gallons in		0.16 X Z =	Sampling Pump (feet below land			(50°	<u> </u>
Purging Equip	ment Purge pump /	Bailer (5.	4)					F=- \$
l .		SA	MPLING DATA/FIEL	D PARAMETERS				
-S-e: Time 73	Temperature (°C)	pH C	Conductivity (µS/cm3		DQ (mg/L)	DO %	ORP (mV)	Volume (gal.)
442	(4,93	-430	310	0.319	2,89	28.7	-107.7	9,25
124	14.95	720	290	0.317	2.01	29.9	-87.4	2,25
1798	11.75	1124	501	0.35	5,45	116	-/64	30
		<u></u>						
Sampling Equi	ipment	Purge Pump/Bail	er)				:	~
Consti	tuents Sampled	***************************************	Container Description	<u>n</u>		<u>Prese</u>	rvative	12.45.15
BTEX		3 40mL VC)A's		HCI •			
dissalu Bar	ed un Fe	110	og phat	5'2	N	<u> </u>	·	·
Remarks	Mois	s white	Brunky	NO 00	bron	Sheen	detech	id
Sampling Pers	connel Christine Math	news, Cassie Bro	wn			······		
	<u>.</u>		Well Casing '	/olumes	······································	······································	· · · · · · · · · · · ·	Ī
	Gal./ft. 1½" = 0	0.077 2			0.37	4" = 0.65		
	1½" = 0		1/2" = 0.24	3" 1/2 =		6" = 1.46		İ

Tŧ	TETRATECH, INC.
----	-----------------

Project Name _F	Flora Vista No. 1			1	Page	4	of	4
≱ct No.	114690173	3						
Site Location F	Flora Vista, NM						•	
Site/Well No. No. 1	MW-4		. •	3 M=	Date	2/14	110	. <u> </u>
Weather 2	271114, (OD)	Time Samplir Began	19120			14	10	
,	50%		EVACUATION	DATA				
Description of M	Site Location Flore Viste, NM Site Aveal No. MW-4 Coded/ Replicate No. MW-9 Pale 12 14 D Time Sampling 12 Completed 14 D Time Sampling Completed 14 D Time Sampling Completed 14 D EVACUATION DATA Description of Measuring Point (MP) Top of Casing Height of MP Above/Below Land Surface MP Elevation Cotal Sounded Depth of Well Below MP 30.42 Water-Level Elevation Vet Water Column in Well 33 Gallons Pumped/Bailed Prior to Sampling Pumped/Bailed Prior to Sampling Pumped/Bailed Prior to Sampling Pumped/Bailed Prior to Sampling Pumped/Bailed (feet below land surface) Purging Equipment Purge pump / Bailer Application Top (got.) DO (mg/L) DO % ORP (mV) Volume (gal.) 15.33 9.04 53.7 9.04 53.7 9.04 53.7 9.04 53.7 9.04 53.7 9.04 12.9 1.00 9.7 75. 9.0 9.2 9.4 9.0 1.2 9.1 1.0 1.0 -2.10.0 9.7 75. 9.0 9.2 9.4 9.0 1.2 9.1 1.0 1.0 -2.10.0 9.7 75. 9.0 9.2 9.4 9.0 1.2 9.1 1.0 1.0 -2.10.0 9.7 75. 9.0 9.2 9.4 9.0 1.2 9.1 1.0 1.0 0.2 9.7 9.4 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0							
Height of MP Ab	oove/Below Land Surface			MP Elevation				
Total Sounded D	Depth of Well Below MP	30.42		Water-Level Elev	ration			The of a mag
Held	Depth to Water Below MI	210	4	Diameter of Casi	ng <u>2"</u>			·
Wet	Water Column in We	19.38	· 			ed/Bailed)	
_	Gallons in We	15/3				4,5	2	
<u> </u>								
Time:								Volume (gal.)
		<u></u>						3.75
`-					1.24	12.4	- 207.4	4.0
							·	and the second s
6		1	<u> </u>	<u> </u>	-	·.		<u> </u>
		ge Pump/Bailer						<u> </u>
	ents Sampled				ЦСІ	Prese	ervative	and the second of the second o
dissour	d FA/Mu	3 4011L VOA	- 1/1		1	9		-, , ,
22	P C	- Ne	Oe Th	312	No	210		
Remarks	nnel Christine Mathew	ack; e	30tyl	heen 3.	strong	hyd	M)Ca,	Apon ador
ľ			Well Casing V	olumes	·			
,	Gal./ft. 1 1/4" = 0.07		= 0.16	3" = ().3 7	4" = 0.65	5	
	1 1/2" = 0.10	21/2	$s^n = 0.24$	3" ½ = ().50	6" = 1.46	3	

APPENDIX B
LABORATORY ANALYTICAL REPORT

Kelly Blanchard

Suite 200

NM 87110-

Albuquerque

ph. (505) 237-8440

6121 Indian School Road, N.E.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

10120585

Report To: Tetra Tech, Inc.

fax:

Site:

COP Flora Vista

Flora Vista, NM

Site Address:

Project Name:

PO Number:

State:

New Mexico

State Cert, No.:

Date Reported:

12/27/2010

This Report Contains A Total Of 16 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: 10120585

COP Flora Vista Project Name: Site: Flora Vista, NM Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E.

Suite 200 PO Number: **Albuquerque**

New Mexico State: NM 87110-State Cert. No.:

ph (505) 237-8440 **Date Reported:** 12/27/2010

I. SAMPLE RECEIPT:

Report To:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg/kg-dry " or "

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

a Cardinas

10120585 Page 1 12/27/2010

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

10120585

Report To:

Fax To:

Tetra Tech, Inc.

Kelly Blanchard

6121 Indian School Road, N.E.

Suite 200 Albuquerque

NM:

87110-

ph (505) 237-8440

fax: (505) 881-3283

PO Number:

Site Address:

Project Name:

State:

Site:

New Mexico

COP Flora Vista

Flora Vista, NM

State Cert. No.:

Date Reported: 12/27/2010

-	Client Sample	ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	4.7	* *	10120585-01	Water	12/14/2010 14:10	12/17/2010 9:05:00 AM	303442	
MW-3	÷ ; ' '		10120585-02	Water	12/14/2010 14:50	12/17/2010 9:05:00 AM	303442	
MW-4			10120585-03	Water	12/14/2010 14:40	12/17/2010 9:05:00 AM	303442	
Duplicate	14 - 14 - 14 - 15 - 15 - 15 - 15 - 15 -	i agrecije i sta	10120585-04	Water	12/14/2010 0:00	12/17/2010 9:05:00 AM	303442	, 📑
Trip Blank			10120585-05	Water	12/15/2010 0:00	12/17/2010 9:05:00 AM	303442	

a Cardinas

12/27/2010

Date

Erica Cardenas

Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. **Laboratory Director**

> Ted Yen Quality Assurance Officer

> > 10120585 Page 2 12/27/2010 12:17:56 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-1

Collected: 12/14/2010 14:10

SPL Sample ID:

10120585-01

	Site:	Flora	Vista,	NM
--	-------	-------	--------	----

Analyses/Method	Result QUAL	Rep.Limit	Dil	l. Factor	Date Ana	lyzed	Analyst	Seq.#
ION CHROMATOGRAPHY	:		MCL		E300.0	Un	its: mg/L	
Sulfate	1.03	0.5		1	12/18/10	13:02	ESK	5677677
METALS BY METHOD 6010B, [DISSOLVED		MCL	SI	V6010B	Ųn	its: mg/L	
Iron	4.13	0.02		1	12/22/10	0:02	EG	5680491
Manganese	0.888	0.005		1	12/22/10	0:02	EG	5680491

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3005A	12/17/2010 12:45	M W	1.00

OLATILE ORGANICS BY M	ETHOD 8260B				MCL		SW8260B	Units: ug/L	
Benzene	3200			50		50	12/23/10	19:27 LU_L	5683560
Ethylbenzene	620			50		50	12/23/10	19:27 LU_L	5683560
Toluene	1.2			1		1	12/22/10	20:25 LU_L	5683393
m,p-Xylene	5300			100		50	12/23/10	19:27 LU_L	5683560
o-Xylene	1.6			1		1	12/22/10	20:25 LU_L	5683393
Xylenes,Total	5301.6	·		50		50	12/23/10	19:27 LÜ_L	5683560
Surr: 1,2-Dichloroethane-d4	86.3		%	70-130		50	12/23/10	19:27 LU_L	5683560
Surr: 1,2-Dichloroethane-d4	77.8	. •	%	70-130		1	12/22/10	20:25 LU_L	5683393
Surr: 4-Bromofluorobenzene	99.1		%	74-125		50	12/23/10	19:27 LU_L	5683560
Surr: 4-Bromofluorobenzene	94.9		%	74-125		1	12/22/10	20:25 LU_L	5683393
Surr: Toluene-d8	. 97.6		%	82-118		50	12/23/10	19:27 LU_L	5683560
Surr: Toluene-d8	95.5		%	82-118		1.	12/22/10	20:25 LU_L	5683393

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Manganese

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

12/22/10 0:08 EG

5680492

Client Sample ID MW-3 Collected: 12/14/2010 14:50 SPL Sample ID: 10120585-02

		Site: Flor	a Vista, N	IM .			
Analyses/Method	Result QUAL	Rep.Limit	Di	l. Facto	r Date Anal	lyzed Analyst	Seq.#
ION CHROMATOGRAPHY			MCL		E300.0	Units: mg/L	
Sulfate	142	5		-10	12/18/10	7:23 ESK	5677668
METALS BY METHOD 6010B, D	DISSOLVED		MCL	S	W6010B	Units: mg/L	
Iron	ND	0.02		1	12/22/10	0:08 EG	5680492

0.005

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3005A	12/17/2010 12:45	M_W	1.00

ND

OLATILE ORGA	NICS BY METH	OD 8260B			MCL		SW8260B	Units: ug/L	•
Benzene		ND		1		1	. 12/22/10	19:56 LU_L	5683392
Ethylbenzene		ND.		. 1		1	12/22/10	19:56 LU_L	5683392
Toluene		ND		1		1	12/22/10	19:56 LU_L	5683392
m,p-Xylene		ND		2		1	12/22/10	19:56 LU_L	5683392
o-Xylene		ND	•	1		1	12/22/10	19:56 LU_L	5683392
Xylenes,Total		ND		1		1	12/22/10	19:56 LU_L	5683392
Surr: 1,2-Dichlor	oethane-d4	- 78.0	%	70-130		1	12/22/10	19:56 LU_L	5683392
Surr: 4-Bromoflu	orobenzene	93.7	%	74-125		1	12/22/10	19:56 LU_L	5683392
Surr: Toluene-d8	3	. 95.7	%	82-118		1	12/22/10	19:56 LU_L	5683392

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10120585 Page 4 12/27/2010 12:18:04 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-4 Collected: 12/14/2010 14:40 SPL Sample ID: 10120585-03

Site: F	ora	Vista.	NM
---------	-----	--------	----

								
Analyses/Method	Result	QUAL	Rep.Limit	, D	il. Factor	Date Ana	lyzed Analyst	Seq.#
ION CHROMATOGRAPHY			<u>}</u>	MCL		E300.0	Units: mg/L	
Sulfate	67.6		5		10	12/18/10	7:39 ESK	5677669
METALS BY METHOD 6010B, I	DISSOLVED			MCL	SV	V6010B	Units: mg/L	
Iron	1.75		0.02		1	12/22/10	0:14 EG	5680493
Manganese	4.69		0.005		1	12/22/10	0:14 EG	5680493

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3005A	12/17/2010 12:45	M_W	1.00

OLATILE ORGANICS BY METHOL	8260B			MCL		SW8260B	Units: ug/L	
Benzene	130		1		1 ·	12/23/10	17:14 LU_L	5683559
Ethylbenzene	93		1		1	12/23/10	17:14 LU_L	5683559
Toluene	ND		1		1	12/23/10	17:14 LU_L	5683559
m,p-Xylene	870		10		-5	12/23/10	15:55 LU_L	5683556
o-Xylene :	29		1		1	12/23/10	17:14 LU_L	5683559
Xylenes,Total	899		5		5	12/23/10	15:55 LU_L	5683556
Surr: 1,2-Dichloroethane-d4	84.1	%	70-130		5	12/23/10	15:55 LU_L	5683556
Surr: 1,2-Dichloroethane-d4	84.9	%	70-130		1	12/23/10	17:14 LU_L	5683559
Surr: 4-Bromofluorobenzene	105	%	74-125		5	12/23/10	15:55 LU_L	5683556
Surr: 4-Bromofluorobenzene	105	%	74-125		1	12/23/10	17:14 LU_L	5683559
Surr: Toluene-d8	103	%	82-118	4	5	12/23/10	15:55 LU_L	5683556
Surr: Toluene-d8	92.2	%	82-118		1	12/23/10	17:14 LU_L	5683559

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10120585 Page 5 12/27/2010 12:18:04 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID Duplicate Collected: 12/14/2010 0:00 SPL Sample ID: 10120585-04

Site: Flora Vista, NM

			0.1		a vista, itiii				
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Facto	r Date Anal	yzed	Analyst	Seq.#
VOLATILE ORGANICS BY MET	HOD 8260B				MCL. S	W8260B	Un	its: ug/L	
Benzene	130			1	1	12/23/10	16:48	LU_L	5683558
Ethylbenzene	87			1	1	12/23/10	16:48	LU_L	5683558
Toluene	ND			1	1	12/23/10	16:48	LU_L	5683558
m,p-Xylene	840			10	. 5	12/23/10	16:21	LU_L	5683557
o-Xylene	27			1	1	12/23/10	16:48	LU_L	5683558
Xylenes,Total	867			5	5	12/23/10	16:21	LU_L	5683557
Surr: 1,2-Dichloroethane-d4	77.6		%	70-130	5	12/23/10	16:21	LU_L	5683557
Surr: 1,2-Dichloroethane-d4	82.5		%	70-130	1	12/23/10	16:48	LU_L	5683558
Surr: 4-Bromofluorobenzene	109	٠.	%	74-125	5	12/23/10	16:21	LU_L	5683557
Surr: 4-Bromofluorobenzene	104		%	74-125	· 1	12/23/10	16:48	LU_L	5683558
Surr: Toluene-d8	105		%	82-118	5	12/23/10	16:21	LU_L	5683557
Surr: Toluene-d8	96.1		%	82-118	1	12/23/10	16:48	LU_L	5683558

Qualifiers:

ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10120585 Page 6 12/27/2010 12:18:04 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID Trip Blank Collected: 12/15/2010 0:00 SPL Sample ID: 10120585-05

Site: Flora Vista, NM

<u></u> _			0.10.			
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B			MCL SI	W8260B Units	s: ug/L
Benzene	ND		. 1	1	12/22/10 19:04 LU	J_L 5683391
Ethylbenzene	ND		1	1	12/22/10 19:04 LU	J_L 5683391
Toluene	ND		1	1	12/22/10 19:04 LU	J_L 5683391
m,p-Xylene	ND		2	. 1	12/22/10 19:04 LU	J_L 5683391
o-Xylene	ND		1	+ 1 ₹	12/22/10 19:04 LU	J_L 5683391
Xylenes,Total	ND		1	1	12/22/10 19:04 LU	J_L 5683391
Surr: 1,2-Dichloroethane-d4	91.3		% 70-130	1	12/22/10 19:04 LU	J_L 5683391
Surr: 4-Bromofluorobenzene	91.9		% 74-125	1	12/22/10 19:04 LL	J_L 5683391
Surr: Toluene-d8	94.9		% 82-118	1	12/22/10 19:04 LU	J_L 5683391

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10120585 Page 7 12/27/2010 12:18:05 PM

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis:

RunID:

Metals by Method 6010B, Dissolved

Method: SW6010B

WorkOrder:

10120585

Lab Batch ID:

103991

Method Blank

ICP2_101221C-5680478

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

101 2_1012210-3000470

12/21/2010 22:43

Analyst: EG

10120585-01B

MW-1

Preparation Date:

12/17/2010 12:45

Prep By: M

Method SW3005A

10120585-02B

MW-3

10120585-03B

MW-4

Analyte	Result	Rep Limit
Iron	ND	0.02
Manganese	ND	0.005

Laboratory Control Sample (LCS)

RunID:

ICP2_101221C-5680479

'9 Units:

mg/L

Analysis Date:

Preparation Date:

12/21/2010 22:49 12/17/2010 12:45 Analyst: EG Prep By: M_

M_ Method SW3005A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Iron	1.000	0.9892	98.92	. 80	120
Manganese	0.1000	0.09500	95.00	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

10120587-03

RunID:

ICP2_101221C-5680481

Units:

mg/L

Analysis Date:

12/21/2010 23:01

Analyst: EG

Preparation Date:

12/17/2010 12:45

Prep By: M

Method SW3005A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
iron	0.2229	1	1.129	90.61	1	1.163	94.01	2.967	20	75	125
Manganese	8.643	0.1	8.779	N/C	0.1	8.936	N/C	N/C	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 9

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

12/27/2010 12:18:06 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis:

Analysis Date:

Volatile Organics by Method 8260B

Method:

SW8260B

12/22/2010 11:54

WorkOrder:

Samples in Analytical Batch:

10120585

Lab Batch ID:

R313326

Method Blank

RuniD: K 101222D-5683387

Units: Analyst:

ug/L LU L

Lab Sample ID

Client Sample ID

10120585-01A 10120585-02A

MW-1 MW-3

10120585-05A

Trip Blank

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	89.2	70-130
Surr: 4-Bromofluorobenzene	90.4	74-125
Surr: Toluene-d8	96.3	82-118

Laboratory Control Sample (LCS)

RunID:

K_101222D-5683386

Units:

ug/L

Analysis Date:

12/22/2010 11:29

Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	20.7	103	74	123
Ethylbenzene	20.0	21.0	105	72	127
Toluene	20.0	20.6	103	74	126
m,p-Xylene	40.0	42.6	106	71	129
o-Xylene	20.0	20.9	104	74	130
Xylenes,Total	60.0	63.5	106	71	130
Surr: 1,2-Dichloroethane-d4	50.0	47.6	95.1	70	130
Surr: 4-Bromofluorobenzene	50.0	48	96.1	74	125
Surr: Toluene-d8	50.0	48.6	97.3	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

10120584-01

RunID: Analysis Date: K_101222D-5683389

Units:

ug/L

12/22/2010 15:56

Analyst:

LU L

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 10

QC results presented on the QC Summary Report have been rounded: RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

12/27/2010 12:18:06 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis:

Volatile Organics by Method 8260B

WorkOrder:

10120585

Method: SW8260B			Ŷ				Lab Batch IC): R3	13326		
Analyte.	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	20.5	103	20	20.2	101	1.75	22	70	124
Ethylbenzene	ND	20	20.8	104	20	21.3	107	2.47	20	76	122
Toluene	ND	20	20.1	101	20	20.7	104	2.92	24	80	117
m,p-Xylene	ND	40	40.4	101	40	41.1	103	1.51	20	69	127
o-Xylene	ND	. 20	20.4	102	20	20.3	102	0.221	20	84	114
Xylenes,Total :	ND	60	60.8	. 101	60	61.4	102	0.931	20	69	127
Surr: 1,2-Dichloroethane-d4	" ND	50	40.6	81.2	50	41.1	82.1	1.15	30	70	130
Surr: 4-Bromofluorobenzene	ND	50	48.6	97.1	50	48.1	96.3	0.887	30	74	125
Surr: Toluene-d8	ND	50	47.7	95.5	50	48.6	97.2	1.78	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 11

12/27/2010 12:18:06 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis:

Volatile Organics by Method 8260B

Method:

RunID:

Analysis Date:

SW8260B

12/23/2010 11:55

Samples in Analytical Batch:

WorkOrder:

10120585

Lab Batch ID:

R313332

Method Blank

MSDVOA3_101223A-5683548

Units: Analyst: ug/L LU_L

Lab Sample ID

Client Sample ID

10120585-01A

MW-1

10120585-03A

MW-4

10120585-04A

Duplicate

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
Xylenes, Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	86.4	70-130
Surr: 4-Bromofluorobenzene	99.1	74-125
Surr: Toluene-d8	104.5	82-118

Laboratory Control Sample (LCS)

RunID:

MSDVOA3_101223A-56835 Units:

ug/L

Analysis Date:

12/23/2010 11:02

Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	20.2	101	74	123
Ethylbenzene	20.0	20.1	101	72	127
Toluene	20.0	18.5	92.6	74	126
m,p-Xylene	40.0	40.7	102	· 71	129
o-Xylene	20.0	20.1	100	74	130
Xylenes,Total	60.0	60.8	101	71	130
Surr: 1,2-Dichloroethane-d4	50.0	42.6	85.2	70	130
Surr: 4-Bromofluorobenzene	50.0	51.5	103	74	125
Surr: Toluene-d8	50.0	46.7	93.5	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

10120587-01

RunID:

MSDVOA3_101223A-56835 Units:

ug/L

Analysis Date:

12/23/2010 13:15

Analyst:

LU_L

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 12

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

12/27/2010 12:18:07 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

10120585

Lab Batch ID:

R313332

Analyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD	Low Limit	High Limit
		Added			Added				Limit		
Benzene	ND	20	19.1	95.6	20	18.8	94.0	1.77	22	70	124
Ethylbenzene	ND	20	18.2	91.1	20	19.0	94.9	4.09	20	76	122
Toluene	ND	20	16.9	84.6	20	18.1	90.3	6.53	24	80	117
m,p-Xylene	ND	40	37.5	93.7	40	38.8	97.0	3.49	20	69	127
o-Xylene	ND	20	18.6	93.1	20	18.7	93.5	0.466	20	84	114
Xylenes,Total	· ND	. 60	56.1	93.5	60	57.5	95.9	2.49	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	46.2	92.4	50	43.0	85.9	7.26	30	70	130
Surr: 4-Bromofluorobenzene	. ND	50	52.8	106	50	54.3	109	2.77	30	74	125
Surr: Toluene-d8	ND	50	, 47.7	95.5	50	49.8	99.7	4.31	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected in The Associated Method Blank

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve D - Recovery Unreportable due to Dilution

MI - Matrix Interference

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

12/27/2010 12:18:07 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Flora Vista

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

WorkOrder:

10120585

Lab Batch ID:

R313006

Method Blank

Units: mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

12/17/2010 22:31

IC1 101217C-5677650

Analyst:

ESK 10120585-01C MW-1

10120585-02C

MW-3

10120585-03C

1	U	1	2	υ	5	t

MW-4

Analyte	Result	Rep Limit
Sulfate	ND	0.50

Laboratory Control Sample (LCS)

RunID:

IC1_101217C-5677651

Units:

mg/L

Analysis Date:

12/17/2010 22:47

Analyst: **ESK**

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Sulfate	10.00	10.01	100.1	90	110

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

10120585-01

RunID:

IC1_101217C-5677678

Units:

mg/L

Analysis Date:

12/18/2010 13:18

Analyst: **ESK**

12.7	Analyte	 Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Sulfate		 1.034	5	6.318	105.7	5	6.137	102.1	2.906	15	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10120585 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

12/27/2010 12:18:07 PM

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

	·	1		
Workorder:	10120585		Received By:	Т_В
Date and Time Received:	12/17/2010 9:05:00 AM		Carrier name:	Fedex-Standard Overnight
Temperature:	3.5°C		Chilled by:	Water Ice
1. Shipping container/co	poler in good condition?	Yes 🗹	No 🗆	Not Present
2. Custody seals intact	on shippping container/cooler?	Yes 🗹	No 🗆	Not Present
3. Custody seals intact	on sample bottles?	Yes 🗌	No 🗆	Not Present
4. Chain of custody pres	sent?	Yes 🗹	No 🗀 ·	
5. Chain of custody sign	ned when relinquished and received?	Yes 🗹	No 🗆	
6. Chain of custody agree	ees with sample labels?	Yes 🗹	No 🗌	
7. Samples in proper co	ntainer/bottle?	Yes 🗹	No 🗌	
8. Sample containers in	tact?	Yes 🗹	No 🗆	
9. Sufficient sample vol	ume for indicated test?	Yes 🔽	No 🗌	
10. All samples received	within holding time?	Yes 🗹	No 🗌	
	k temperature in compliance? 950/4.0, 2084/3.5, 2062/4.0, 2073/4.0	Yes 🗹	No 🗌	
12. Water - VOA vials hav	e zero headspace?	Yes 🗹	No 🗌 VOA	Vials Not Present
13. Water - Preservation o	checked upon receipt (except VOA*)?	Yes	No 🗌	Not Applicable
*VOA Preservation Ch	necked After Sample Analysis			
SPL Representati	ve:	Contact Date &	Time:	
Client Name Contact	ed:			
Non Conformance Issues:				
Client Instructions:		i .		

PM review (initial): zz TT Traverse City, MI 49686 (231) 947-5777 C 303442 THE REAL PROPERTY. Requested Analysis A A 1 1 Intact? Ice? Temp: page. 6. Beceived by Labor 3 1354010 Email M PDF D Special Detection Limits (specify): SFL WUTKOTUEL ING. 2. Received by: 4. Received by: pres. 2 zo8=8 Z09[=9] size (times) 500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775 V=Vial C=glass P=plastic TX TRRP LA RECAP 90 /Day W=water SL=sludge grab Email: Yolly blandadd Atalaku Laboratory remarks: comp Fax Standard QC Level 3 QC Level 4 QC 410 450 1460 1440 TIME 148 Special Reporting Requirements Results: 410 1410 Analysis Request & Chain of Custody Record 12:14:10 12:14:10 12-14-10 12-14-10 るとなり 1211410 8-410 240 12-14-10 12-14-10 DATE Please THE BOTTON WEELS O LOD 1. Rolifiquished by Sq 5. Relinquished by: 3. Relinquished by SPL, Inc. 42 Houston, TX 77054 (713) 660-0901 21-2440 Blanchard 1 8880 Interchange Drive Contract Standard Rush TAT requires prior notice SAMPLE ID Requested TAT 455 VW-2 M S-4 2 Business Days スラン $M\omega$ -3 1 Business Day 3 Business Days Project Name/No. Client Contact: Z M Site Name: T Site Location: Client Name: Phone/Fax: Invoice To: Other Address:

SPI, Workorder No. 303443	10 (305 65 page 2 of	hottle size pres. Reque	ial ial	et g 0=v 0=v	amb ([si.	X=X 1=7 1009 1=40 100 100 100 100 100 100 100 100 100 1	10= 31 10=	lite lite lite lite	D=I I=I 8=8 8=8	X 1/ P P M 1 X X	X J S S S A N	-	X W V 40 41 2 X				boratory remarks: Intact? Language Intact? Language Ice? Language Temp:	Email PDF Special Detection Limits (specify): PM review (initial):	3CAP L	date date lipe 2. Received by:	date time 4. Received by:	date time 6. Received by Laboratory:
	SPL, Inc. Analysis Request & Chain of Custody Record	Client Name: Total RCM 1/1/C	Address: CILL INGIAN STAND IZO # 200 Cin WHILD IN CIN CIN CIN CIN CIN CIN CIN CIN CIN	" 685-237-8440	not: Kolly Elanchard Email: Kolly, blanchard	Project Nameno: FOTO VISTO NO.	The Mary	E FORVISA DI	Invoice 10: THE THE SAMPLE ID DATE TIME C	MW-4	W10-4	01.71.70	12.15.10				Client/Consultant Remarks: Refalls @ Laborator	Requested TAT Special Reporting Requirements Results: Fax	Level 4 QC	2 Business Days Standard 1. Relinguished by Sampter:	3. Relinquished by:	Other 5. Relinquished by: Bush TAT requires prior police