3R - 098

JUN 2010 GWMR

SEP 2011

3R098

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2010 SAMPLING EVENT

CONOCOPHILLIPS COMPANY SHEPHERD & KELSEY NO.IE BLOOMFIELD, NEW MEXICO

OCD # 3RP-98-0 API # - 30-045-24316

Prepared for:

ConocoPhillips

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 9690121.100

September 2010

Groundwater Monitoring Report Shepherd & Kelsey No. 1E, Bloomfield, New Mexico OCD #3RP-98-0

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site History	1
2.0	MET	HODOLOGY AND RESULTS	2
	2.1	Groundwater Sampling Methodology	2
	2.2	Groundwater Sampling Analytical Results	2
3.0	CON	NCLUSIONS	2

FIGURES

- I. Site Location Map
- 2. Site Detail Map
- 3. General Geologic Cross-Section
- 4. Groundwater Contour Map June 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Groundwater Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS COMPANY SHEPHERD & KELSEY NO. IE BLOOMFIELD, NEW MEXICO

I.0 INTRODUCTION

ConocoPhillips Company (ConocoPhillips) retained Tetra Tech, Inc (Tetra Tech) to perform additional site characterization work and quarterly groundwater monitoring at the Shepherd & Kelsey No. IE site in Bloomfield, New Mexico (Site). This report presents the results of a quarterly groundwater monitoring event conducted at the Site by Tetra Tech on June 7, 2010. This sampling event represents the seventh consecutive quarter of groundwater monitoring completed by Tetra Tech at the Site to include all four site monitoring wells.

The Site is located on private land leased by ConocoPhillips near the intersection of New Mexico Highway 64 and County Road 5097 in Bloomfield, NM. The Site consists of a gas production well head with associated equipment and installations, and is surrounded by agricultural land. The geographical location coordinates are 36° 42' 6.8"N and 108° 01' 12.2" W; the location and general features of the Site are presented as **Figure 1** and **Figure 2**, respectively.

I.I Site History

A historical timeline for the Site is presented in **Table I**, and is discussed in more detail below.

Contaminated soil was discovered at the Site during routine maintenance on June 5, 2007. Envirotech Inc. of Farmington, New Mexico (Envirotech) performed soil excavation (Excavation #1, **Figure 2**) at the Site, during which three soil samples were collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH was found to be below the New Mexico Oil Conservation Department (NMOCD) recommended action level. On June 12, 2007 a separate area of TPH soil contamination was discovered. An excavation of the additional area was performed by Envirotech from June 15 through June 18, 2007 (Excavation #2, **Figure 2**). Soil samples taken during the second excavation were found to be above the NMOCD recommended action level for TPH. Groundwater samples collected from the excavation (NMWQCC) groundwater quality standards. Monitor Well MW-1 was installed by Envirotech on September 26, 2007. Soil and groundwater samples collected during drilling were analyzed for TPH and for benzene, toluene, ethylbenzene and total xylenes (BTEX); results were below NMOCD recommended action levels. In November 2007, Envirotech recommended plugging and abandoning MW-1 and a no further action status from NMOCD. However, in April 2008, NMOCD indicated that further investigation was necessary before closure could be granted.

Tetra Tech began quarterly sampling of MW-1 on October 23, 2008. On January 22, 2009, three additional groundwater monitor wells were installed by WDC Exploration and Drilling of Peralta, NM (WDC), under the supervision of Tetra Tech. Monitor Wells MW-2, MW-3, and MW-4 were initially

Quarterly Groundwater Monitoring Report Shepherd & Kelsey No. 1E, Bloomfield, New Mexico OCD #3RP-98-0

sampled on January 30, 2009 and have since been incorporated into the quarterly monitoring schedule with MW-1.

2.0 METHODOLOGY AND RESULTS

Quarterly groundwater sampling was conducted on June 7, 2010. Groundwater samples were collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4. Prior to sampling, depth to groundwater in each well was recorded using a dual interface probe. Results are summarized in **Table 2**.

The casings for all Site monitor wells were surveyed by Tetra Tech in January 2009, with the wellhead assigned an arbitrary reference elevation of 100 feet above mean sea level (amsl). Using this data, it was determined that the groundwater flow direction at the Site is to the south (**Figure 3**).

2.1 Groundwater Sampling Methodology

Monitor Wells MW-1, MW-2, MW-3, and MW-4 were sampled during the June 7, 2010 groundwater monitoring event. Prior to sampling, all monitor wells were purged of at least 3 casing volumes of groundwater using a dedicated 1.5-inch diameter, polyethylene disposable bailer. Groundwater quality parameters were collected using a YSI 556 multi-parameter sonde during each purge. Results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory (SPL) of Houston, Texas. Samples were analyzed for dissolved manganese by EPA Method 6010B; TDS by EPA Method 2540C; and for BTEX by EPA Method 8260B.

2.2 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). A historical summary of groundwater analytical results is provided in **Table 3**. The laboratory analytical report is included as **Appendix B**.

Manganese

The groundwater quality standard for dissolved manganese is 0.2 milligrams per liter (mg/L). Groundwater collected from Monitor Well MW-4 was found to contain dissolved manganese at a concentration of 0.373 mg/L.

• TDS

The groundwater quality standard for TDS is 1000 mg/L. Groundwater collected from Monitor Well MW-4 was found at a concentration of 1300 mg/L.

3.0 CONCLUSIONS

In order to move toward Site closure with NMOCD, continued groundwater quality monitoring is recommended for BTEX and dissolved manganese. Furthermore, Tetra Tech recommends continued

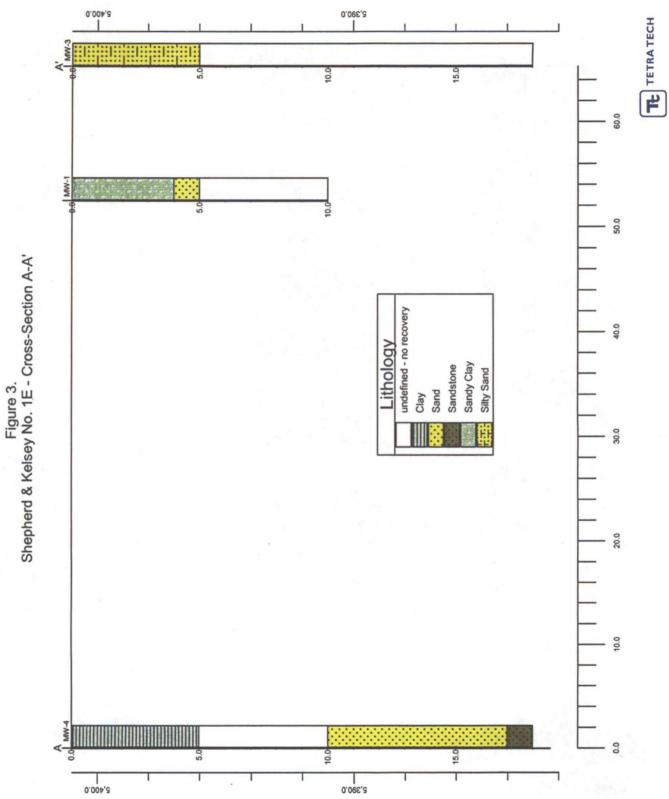
Tetra Tech

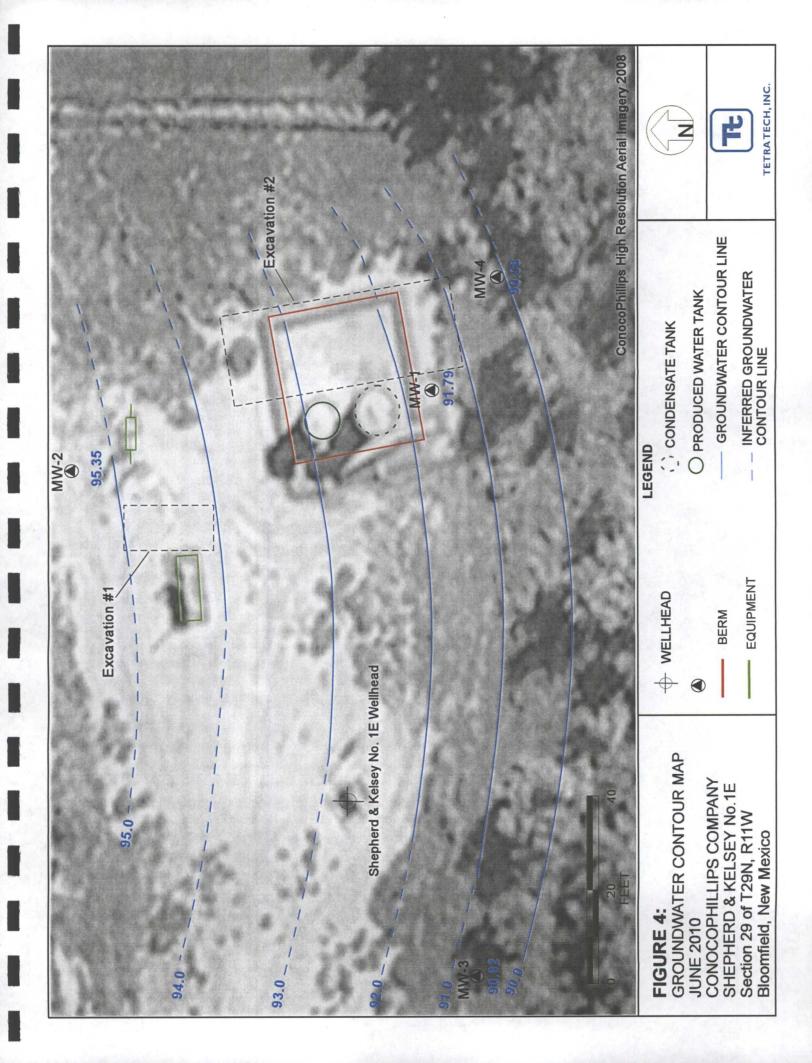
September 2010

Quarterly Groundwater Monitoring Report Shepherd & Kelsey No. 1E, Bloomfield, New Mexico OCD #3RP-98-0

monitoring of total dissolved solids (TDS) to determine if seasonal trends are influencing Site groundwater quality.

The next groundwater monitoring event is scheduled for September 2010. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.


. . ,


FIGURES

. .

•

•

TABLES

Table 1. Site History Timeline - ConocoPhillips Company Shepherd and Kelsey No. 1E

.

	•
DATE	ACTIVITY
5-Jun-07	Hydrocarbon-impacted soil discovered during routine maintenance at the Site. Soil excavation was nerformed at the Site and three soil samples were obtained. Sample results showed total netroleum
	hydrocarbon (TPH) concentrations below the NMOCD regulations of 100 parts per million (ppm)
	Original source of contamination is unknown.
12-Jun-07	A separate area of TPH soil contamination discovered.
June 15-18, 2007	A 50 foot by 20 foot by 4 foot excavation was completed. Soil samples taken from the second
	excavation show TPH at 992 ppm. Water samples obtained show benzene and total xylenes above State of New Mexico drinking water standards.
26-Sep-07	Ground water monitoring well installed to a depth of ten (10) feet below ground surface (bgs) by
	Envirotech Inc. of Farmington, NM (Envirotech). Depth to groundwater recorded at four (4) feet bgs
-	Soil and groundwater samples obtained for TPH, benzene, and benzene, toluene, ethylbenzene and
	total xylenes (BTEX) were below the respective NMOCD regulations of 100 ppm, 10 ppm and 50
	ppm.
Nov-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring
-	well and no further action for the Site (Envirotech, 2007).
Apr-08	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional
	investigation and sampling is necessary for closure consideration during a meeting with Glenn von
	Gonten.
23-Oct-08	1st quarter sampling of MW-1 by Tetra Tech.
Jan-09	Installed additional monitoring wells MW-2, MW-3 and MW-4.
30-Jan-09	2nd quarter sampling of MW-1 by Tetra Tech; initial sampling of MW-2, MW-3, and MW-4.
1-Apr-09	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4.
18-Jun-09	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4.
21-Sep-09	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4. Dissolved metals analysis initated at the Site for metals with elevated <i>total</i> metal concentrations.
14-Dec-09	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4.
31-Mar-10	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4.
7-Jun-10	Quarterly sampling of monitor wells MW-1, MW-2, MW-3, and MW-4.

Tetra Tech, Inc.

1 of 1

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				10/23/2008	4.02	92.51
				1/30/2009	5.7	90.83
		2.5-10.0		4/1/2009	5.9	90.63
MW-1	. 12		96.53	6/18/2009	4.01	92.52
14144-1	. 12			9/21/2009	5.62	90.91
				12/14/2009	5.51	91.02
				3/31/2010	5.72	90.81
				6/7/2010	4.74	91.79
				1/30/2009	5.41	92.64
		3.0 - 18.0	98.05.	4/1/2009	5.78	92.27 [,]
MW-2				6/18/2009	2.50	95.55
	20.30			9/21/2009	4.60	93.45
				12/14/2009	4.99	93.06
				3/31/2010	5.53	92.52
		,		6/7/2010	2.70	95.35
				1/30/2009	5.29	90.31
MW-3			95.60	4/1/2009	5.46	90.14
				6/18/2009	3.64	91.96
	20.10	3.0 - 18.0		9/21/2009	5.25	90.35
				12/14/2009	5.19	90.41
				3/31/2010	5.30	90.30
				6/7/2010	5.52	90.08
MW-4				1/30/2009	6.33	89.90
	20.70			4/1/2009	6.40	89.83
				6/18/2009	5.51	90.72
		3.7 - 18.7	96.23	9/21/2009	6.13	90.10
				12/14/2009	5.91	90.32
				3/31/2010	6.10	90.13
				6/7/2010	5.31	90.92

ft = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to wellhead

Table 3. Groundwater Laboratory Analytical Results • ConocoPhillips Company Shepherd & Kelsey No. 1E

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Sulfate (mg/L)	Aluminum (mg/L)	lron (mg/L)	Manganese (mg/L)	Total Dissolved Solids (mg/L)
	9/26/2007	0.4	0.4	0.5	1.1	AN	NA	NA	NA	AN
	10/23/2008	 5 	< 5	< 5 <	 2 	438	AA	2.59*	0.417*	AN
	1/30/2009	< 5	< 5	< 5	< 5	303	0.658*	1.45*	0.276*	692
	4/1/2009	<5	< 5	< 5	< 5	258	1.19*	1.9*	0.416*	1,340
MW-1	6/18/2009	< 5	< 5	< 5	< 5	NA	0.187*	0.209*	NA**	NA
	9/21/2009	1 >	< 1	< 1	< 2	324	< 0.1	0.0458	0.0356	200
	12/14/2009	1>	1 >	< 1	< 1	AN	NA	NA	0.0539	661
	3/31/2010	<1	< 1	<1	<1	NA	NA	NA	0.0662	697
	6/7/2010	<1	۰ ۲	< 1	< + +	AN	AN	NA	0.0599	778
	1/30/2009	. <5	< 5	< 5	< 5	706	11.3*	22.4*	2.06*	1,130
	4/1/2009	<5	<5	<5	< 5	613	4.39*	11.3*	0.964*	1,420
	6/18/2009	. <5	<5	<5	< 5 <	AN	2.38*	4.01*	NA**	AN
MW-2	9/21/2009	<1	۰ ۲	۰ ۲	<2	421	< 0.1	< 0.02	0.158	740
	12/14/2009	< 1	< 1	<1	<1	NA	NA	NA	0.106	764
	3/31/2010	<1	< 1	<1	<1	NA	NA	NA	0.144	804
j.	6/7/2010	< 1	<1	<1	<1	NA	NA	NA	0.152	826
	1/30/2009	< 5 <	<u> </u>	< 5	< 5 -	427	4.34*	5.77*	0.675*	918
	4/1/2009	< 5	< 5	< 5	< 5	416	1.45*	3.0*	0.615*	1,010
	6/18/2009	< 5 <	< 5 <	< 5	< 5	NA	0.67*	1.57*	NA**	NA
MW-3	9/21/2009	1 >	1 >	1 >	< 2	359	< 0.1	< 0.02	0.115	733
. ==	12/14/2009	<1	1>	<1	<1	AN	NA	NA	0.154	712
	3/31/2010	1 >	<1 <	<1	<1	NA	NA	NA	0.219	898
	6/7/2010	< 1	<1	<1	<1	NA	NA	NA	0.132	. 841
	1/30/2009	< 5	< 5 <	< 5	< 5	539	7.29*	19.4*	16.7*	1,000
	4/1/2009	<u> </u>	< 5	< 5	< 5	512	11.4*	23.4*	3.36*	1,010
	6/18/2009	< 5	< 5	< 5	< 5	NA	0.344*	0.362*	NA**	NA
MW-4	9/21/2009	< 1	< 1	< 1	< 2	472	< 0.1	0.0376	0.286	963
	12/14/2009	1 >	< 1	< 1	<1	NA	NA	NA	0.283	861
	3/31/2010	1 >	< 1	< 1	<1 1	NA	NA	NA	0.336	1000
ļ,	6/7/2010	<1	. < 1	< 1	< 1	NA	NA	NA	0.373	1300
C Grou Stan	NMWQCC Groundwater Quality Standard	10 (hg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	600 (mg/L)	5 (mg/L)	1 (mg/L)	0.2 (mg/L)	1000 (mg/L)
Notes:	-									

MW = monitor well NMWQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** exceed NMWQCC Groundwater Quality Standards VOCs = volatile organic compounds

mg/L = miligrams per liter ug/L = micrograms per liter NA** = not analyzed due to lab error NA = not analyzed NA = not anal

Tetra Tech, Inc.

1 of 1

·

APPENDIX A

TL TETRA	TECH, INC.	• •	WATER	SAMPLING I		M		
Project Name	Shepherd & Kelsey 1	E	· .		Page	1	of	4
act No						~ <		
Site Location	Bloomfield, NM				DP!	536	1.1	、
Site/Well No.	<u>MW-</u> 1	Coded/ Replicate	No.		Date	6	,710) .
Weather	sunny, hot 9	<i>~∂</i> Time Sar) Began	npling (520	-	Time Sampling Completed	2 13	530	
a *			EVACUATIO	ON DATA		•		
Description of	Measuring Point (MP)	Top of Casing						
Height of MP /	Above/Below Land Su	face	· ·	MP Elevation	-			
Total Sounded	Depth of Well Below	MP <u>11.96</u>		Water-Level Ele	vation			
Held	_Depth to Water Below	w мр <u>Äi7</u>	4	Diameter of Cas		<u> </u>		
	Water Column in			Gallons Pumper Prior to Samplin		3.8	<u>5 9a</u>	L
	Gallons per		0.16				\mathcal{O}	
	Gallons in	Well 1,1	5613=	Sampling Pump (feet below land				
Purging Equip	ment Purge pum	p / Bailer)	3,96					· · · · · · · · · · · · · · · · · · ·
	_	\bigcirc	SAMPLING DATA/FI	ELD PARAMETE	RS			
Time	Temperature (°C)	pH	Conductivity (#S/cm ³) TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
1323	14.79	7.53	1,614	<u>~</u>	2,44	22,2	13607	1,5
1524	17,71	7,50	1,009		1,34	13.0	1/2,6	2
1524	14, 19	7,4Le	1.008		h31	12,7	<u> 96,6</u>	3,25
	· · · · · · · · · · · · · · · · · · ·							
			<u> </u>					
Sampling Equ	ipment	Purge Pump/B	ailer					
Constit	uents Sampled		Container Descriptio	<u>n</u>		Pres	ervative	
BTEX		<u>3 40mL \</u>			HCI			
Dissolved Mn	· · · · · · · · · · · · · · · · · · ·	16 oz Pla			None			
TDS		16 oz Pla	istic	1	None	· · · · · · · · · · · · · · · · · · ·		
Remarks	H-D is	Clean	c to slight	die dou	du na	Mr	Ar S	hoen.
Sampling Per	sonnel	istine	Matterns	Z (ass)	e Bron			obsensed
)		
	Gal./ft. 11/4" = 1	0.077	Well Casing 2" = 0.16		5 37	4" = 0.65	:	
1	Gai. π . 1 $\frac{1}{2}$ = (2" = 0.16 2 ½" = 0.24	3" = 3"½ =		4" = 0.65 6" = 1.46		
-	ļ	<u> </u>				· · · ·		ł

R:\Share\Maxim Forms\Field Forms\SK1E Water Sampling Field Forms.xls

TETRA TECH, INC.	WATER SAMPLING FIELD FORM
Project Name Shepherd & Kelsey 1E	Page 2 of 4
ject No.	
Site Location Bloomfield, NM	
Site/Well No. <u>MW-2</u> Coded/ Replicate No.	Date 6/7/0
Weather Suny HA 95° Time Sampling Began	1450 Time Sampling Completed 1505
•	EVACUATION DATA
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP 20.2	Water-Level Elevation
Held Depth to Water Below MP	Diameter of Casing 2"
Wet Water Column in Well 7.5	Gallons Pumpe(/Bailed) Prior to Sampling
	<u>0.16</u>
Gallons in Well2.8	Sampling Pump Intake Setting (feet below land surface)
Purging Equipment Purge pump (Bailer)	3= 8.4
SAMP	LING DATAFIELD PARAMETERS
	uctivity (USrcm ³) TDS (g/L) DO (mg/L) DO % ORP (mV) Volume (gal.)
459 3.00 6.38 1	270 _ 2497 19.9 89.0 4
501 2.50 6.86	1259 - 109 110 72.4 55
503 2,33 6.53	.254 - 1.18 1.7 76.0 6.5
1505 12.04 6.50	<u>, 239 - 113 10,4 69.8 7.0</u>
Sampling Equipment Purge Pump/Bailer	
	ainer Description Preservative
BTEX 3 40mL VOA's	HCI
Dissolved Mn 16 oz Plastic	None
TDS 16 oz Plastic	None
HASIL	a poille as dear and a product
Remarks 12015 Droun (and sittly no shipp a odar observera
Sampling Personnel	HOWS & ("assie Drown)
	Well Casing Volumes
Gal./ft. $1 \frac{14^{\circ}}{14^{\circ}} = 0.077$ 2"	= 0.16 $3'' = 0.37$ $4'' = 0.65$
1 ½" = 0.10 2 ½"	$= 0.24$ $3" \frac{1}{2} = 0.50$ $6" = 1.46$

R:\Share\Maxim Forms\Field Forms\SK1E Water Sampling Field Forms.xls

TETRATECH, INC. WATER	SAMPLING FIELD FORM
Project Name Shepherd & Kelsey 1E	Page <u>3</u> of <u>4</u>
act No.	
Site Location Bloomfield, NM	
Site/Well No. <u>MW-3</u> Coded/ Replicate No. Time Sampling	Date 6/7/10 Time Sampling
Weather SUNNY, hot D Began 15-	25 Completed 1540
,' EVACUAT	ION DATA
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP20.11	Water-Level Elevation
Held Depth to Water Below MP 5.52	Diameter of Casing 7 2"
Wet Water Column in Well 14, 59	Gallons Pumped/Bailed 7.25
Gallons per Foot 0.16	
Gallons in Well 2,33	Sampling Pump Intake Setting (feet below land surface)
	90
SAMPLING RATA/FI	
Time Temperature (°C) pH Conductivity (µS/cm	
15.35 12,82 7,49 1.171	- 1.27 11.8 66.4 5
1537 12.63 7.45 1.156	9 1.2 58,9 6
539 2,38 7.38 1.60	- 1.8 7. 57.8 7
Sampling Equipment Purge Pump/Baller	
Constituents Sampled Container Description	
BTEX 3 40mL VOA's	
Dissolved Mn 16 oz Plastic	None
TDS 16 oz Plastic	None None
Remarks H2O clear slightly clou	dy, no oder or steen observed
Sampling Personnel Christine Thateus (and cassie Brown
Well Casin	ng Volumes
Gal./ft. $1 \frac{1}{2}$ " = 0.077 2" = 0.16) $1 \frac{1}{2}$ " = 0.10 $2 \frac{1}{2}$ " = 0.24	3" = 0.37 $4" = 0.653" \frac{1}{2} = 0.50 6" = 1.46$

.

-

R:\Share\Maxim Forms\Field Forms\SK1E Water Sampling Field Forms.xls

.

Ż

TETRA TECH, INC. WATER SAM	PLING FIELD FORM
Project Name Shepherd & Kelsey 1E	Page4 of4
act No.	
Site Location Bloomfield, NM	
Site/Well No. <u>MW-4</u> Coded/ Replicate No.	Date 6/7/0 Time Sampling 7 1605
Weather SIMMI HOT V Began 1990_	Completed B 1000
EVACUATION D/	
Description of Measuring Point (MP Top of Casing	
Height of MP Above/Below Land Surface MP	Elevation
Total Sounded Depth of Well Below MP 20.37 Wat	er-Level Elevation
	neter of Casing
	ons Pumped/Bailed
Gallons per Foot 0.16	
	ppling Pump Intake Setting t below land surface)
Purging Equipment Purge pump / Baller X3=7.022	
SAMPLING DATA/FIELD P	ARAMETERS
	$\frac{1}{100} \frac{1}{100} \frac{1}$
<u>1567 12.84 7.48 [.64] <</u> 1569 12.35 7.47 1.530	- 2.0 1.8.4 36.6 Sozo - 1.043 12.8 32.3 - 6.5
601 12.35 2.45 1.528 -	- 1.00 9.3 25.7 7.25
Sampling Equipment <u>Purge Pump/Bailer</u>	
Constituents Sampled Container Description	Preservative
BTEX 3 40mL VOA's	HCI
Dissolved Mn 16 oz Plastic	None
TDS 16 oz Plastic	None
HA alchille much have	an order or allow dreamed
Remarks <u>H_2()</u> SIGNHU MURKY DRUN	, VID OUT ON STOPPING
Sampling Personnel Chypothal Mathews 3	Classie Brown
Well Casing Volu	Imes
Gal./ft. 1 ¼" = 0.077 2" = 0.16	3" = 0.37 4" = 0.65
1 ½" = 0.10 2 ½" = 0.24	3" 1/2 = 0.50 6" = 1.46

.

~

R:\Share\Maxim Forms\Field Forms\SK1E Water Sampling Field Forms.xls

·

APPENDIX B

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Workorder: H10060245

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: Shepherd & Kelsey #1E Project Number: Shepherd & Kelsey #1E Site: Bloomfield, New Mexico PO Number: ENFOS NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 18 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis June 24, 2010 Workorder: H10060245 Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: Shepherd & Kelsey #1E Project Number: Shepherd & Kelsey #1E Site: Bloomfield, New Mexico PO Number: ENFOS NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Report ID: H10060245_6125 Printed: 06/24/2010 19:35

Phone: (713) 660-0901 Fax: (713) 660-8975

	Certificate of Analysis
June 24, 2010	Workorder: H10060245
Cassandre Brown	Project: Shepherd & Kelsey #1E
Tetra Tech, Inc. 6121 Indian School Road NE	Project Number: Shepherd & Kelsey #1E
Suite 200 Albuquerque, NM 87110	Site: Bloomfield, New Mexico
	PO Number: ENFOS
	NELAC Cert. No.: T104704205-09-1

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

(Va.

Erica Cardenas, Senior Project Manager

Enclosures

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10060245001	MW-1	Water		6/7/2010 15:30	6/10/2010 09:30
H10060245002	MW-2	Water		6/7/2010 15:05	6/10/2010 09:30
H10060245003	MW-3	Water		6/7/2010 15:40	6/10/2010 09:30
H10060245004	MW-4	Water		6/7/2010 16:05	6/10/2010 09:30
H10060245005	Duplicate	Water	•	6/7/2010 15:35	6/10/2010 09:30
H10060245006	Trip Blank	Water		6/9/2010 07:55	6/10/2010 09:30

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: I	H10060245 : Shepherd & Ke	elsey #1E			Project Nur	nber: She	pherd & Kei	lsey #1E
Lab ID:	H10060245001	Date/Tin	ne Received: 6/10/2	2010 09:30	Matrix:	Water		
Sample ID:	MW-1	Date/Tin	ne Collected: 6/7/20	010 15:30				
WET CHEM	ISTRY					·		
Analysis De	sc: SM 2540 C	Analytical Batches:						
		Batch: 1649 SM 2540 C	on 06/12/2010 12:1	5 by CFS				
	and the second	Results	Boo ed Limit		DF f	Do al ant	Batch Info	ADD REPORTS
Parameters		mg/l Qual	Report Limit	MDL		RegLmt	Prep	
Residue, Fil	terable (TDS)	778	10.0	3.94	1			1649
CP DISSOL	VED METALS							
	sc: SW-846 6010B	Preparation Batches:						
		Batch: 1819 SW-846 30	10A on 06/10/2010	15:00 by R	ý.			
		Analytical Batches:		-				
		Batch: 1456 SW-846.60	10B on 06/18/2010		<u>_</u>			
		Balch, 1450 SVV-040.00	010B.01(00/18/2010	14.57 Dy ED	9			
		Results					Batch Info	rmation
Parameters		mg/l Qual	Report Limit	MDL	DF H	RegLmt	and the residence way to a strain the	Analysis
Manganese		0.0599		0.000300	1		1819	1456
vialigaliese		0.0333	0.00000	0.00,0000	•		1010	1400
VOLATILES								· · · · · · · · · · · · · · · · · · ·
Analysis De:	sc: SW-846 8260B	SW-846 5030Analytical E	Batches:					
		Batch: 2036 SW-846 82	260B on 06/11/2010	15:26 by LKI	-			
		Results		MD	DF 1	S14	Batch Info	100000000000000000000000000000000000000
Parameters		ug/l Qual	Report Limit	MDL	DF F	RegLmt	Prep	Analysis
Benzene		ND	1.0	0.10	1			2036
Ethylbenzen	e	ND	1.0	0.15	1			2036
Toluene		ND	. 1.0	0.29	1			2036
n,p-Xylene	1	ND	1.0	0.18	1			2036
-Xylene		ND	1.0	0.13	1			2036
Kylenes, Tot		ND	1.0	0.13	1			2036
4-Bromofluo	robenzene (S)	103 %	74-125		1			2036

90.5 %

95 %

70-130

82-118

1

1

1,2-Dichloroethane-d4 (S)

Toluene-d8 (S)

2036

2036

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

Lab ID:	H10060245002

Date/Time Received: 6/10/2010 09:30

Matrix: Water

Date/Time Collected: 6/7/2010 15:05

Sample ID: MW-2

WET CHEMISTRY

Analysis Desc: SM 2540 C		lytical Batches: th: 1649 SM 2540 C on Results	06/12/2010 12:15 t	y.CFS		Batch Information
Parameters		mg/l Qual	Report Limit	MDL	DF Re	gLmt Prep Analysis
Residue, Filterable (TDS)	• ·	826	10.0	3.94	1	1649

ICP DISSOLVED METALS

Analysis Desc: SW-846.6010B	Preparation Batches: Batch: 1819 SW-846 3010/	A on 06/10/2010) 15:00 by R_\	/		
	Analytical Batches:					
	Batch: 1456. SW-846 6010	3 on 06/18/2010) 15:21 by EB	G ·····		
	Results				Batch Info	8867882988866686668
Parameters	mg/l Qual	Report Limit	MDL	DF RegLm	nt Prep /	Analysis
Manganese	0.152	0.00500	0.000300	. 1	1819	1456

Analysis Desc: SW-846.8260B	SW-846 5030Analytical Ba	atches:				
	Batch: 2036 SW-846 826	0B on 06/11/2010 1	6:47 by LKL			
Parameters	Results ug/l Qual	Report Limit	MDL	DF I	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		2036
Ethylbenzene	ND	1.0	0.15	1		2036
Toluene	ND	1.0	0.29	1		2036
m,p-Xylene	ND	1.0	0.18	1		2036
o-Xylene	ND ·	1.0	0.13	1		2036
Xylenes, Total	ND	1.0	0.13	1		2036
4-Bromofluorobenzene (S)	106 %	74-125		1		2036
1,2-Dichloroethane-d4 (S)	92.9 %	70-130		1		2036
Toluene-d8 (S)	96.7 %	82-118		່ 1		2036

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060245 : Shepherd & Kel	lsey #1E		Pi	roject Nun	nber: Shep	herd & Kels	ey #1E
Lab ID: H10060245003	Date/Time	e Received: 6/10/20	010 09:30	Matrix:	Water		
Sample ID: MW-3	Date/Time	e Collected: 6/7/201	0 15:40				
WET CHEMISTRY							
Analysis Desc: SM 2540.C	Analytical Batches:						
	Batch: 1649 . SM 2540 C	on 06/12/2010 12:15	by CFS				
Parameters	Results	Report Limit	MDL	DF F	RegLmt	Batch Infor Prep A	N001998622000
	mg/l Qual				(egtint		
Residue, Filterable (TDS)	841	10,0	3.94	1			1649
ICP DISSOLVED METALS							
Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1819. SW-846 301	0A on 06/10/2010 15	5:00 by R_V				
7243	Analytical Batches:						
	Batch: 1456 SW-846 601	0B on 06/18/2010 1	5:28 by EBG				*
	Results					Batch Infor	mation
Parameters	mg/l Qual	Report Limit	MDL	DF F	RegLmt	Prep A	nalysis
Manganese	0.132	0.00500 0	.000300	1	84.000000000000000000000000000000000000	1819	1456
VOLATILES							
Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:					
	Batch: 2036 SW-846 826	0B on 06/11/2010 17	14 by LKL				
	Results					Batch Infor	mation
Parameters	ug/l Qual	Report Limit	MDL	DF F	RegLmt	Prep A	CONCOLOR AND
Benzene	ND	1.0	0.10	1	94	an ala a baya ngangangan ngangangan ng	2036
Ethylbenzene	ND	1.0	0.15	1			2036
Toluene	ND	1.0	0.29	1			2036
m,p-Xylene	ND	1.0	0.18	1			2036

ND

ND

105 %

94.9 %

96 %

0.13

0.13

1

1

1

1

1

1.0

1.0

74-125

70-130

82-118

Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)

2036

2036

2036

2036

2036

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

WET CHEM	IISTRY	i de la companya de l	
Sample ID:	MW-4	Date/Time Collected: 6/7/2010 16:05	
Lab ID:	H10060245004	Date/Time Received: 6/10/2010 09:30 Matrix: Water	
		·	

Analysis Desc: SM 2540 C	Analytical Batches:			10 A 10	
	Batch: 1649 SM 2540 C or	1 06/12/2010 12:15 h	by CFS		
	Results			- X	Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF F	RegLmt Prep Analysis
Residue, Filterable (TDS)	1300	. 10.0	3.94	1	1649

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:					
	Batch: 1819 SW-846 3010A	on 06/10/2010) 15:00 by R_\	1		
	Analytical Batches:					
	Batch: 1456 SW-846 6010B	on 06/18/2010	0 15:34 by EB(3		
	Results				Batch Infor	87X-1977-1978
Parameters	mg/l Qual	Report Limit	MDL	DF Reg	Lmt Prep A	nalysis
Manganese	0.373	0.00500	0.000300	1	1819	1456

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:						
	Batch: 2036 SW-846 8260B on 06/11/2010 17:40 by LKL							
Parameters	Results ug/l Qual	Report Limit	MDL	DF RegLmt	Batch Information Prep Analysis			
Benzene	ND	. 1.0	0.10	1	2036			
Ethylbenzene	ND	1.0	0.15	1	2036			
Toluene	ND	1.0	0.29	1	2036			
m,p-Xylene	ND	1.0	0.18	1	2036			
o-Xylene	ND	1.0	0.13	1	2036			
Xylenes, Total	ND	1.0	0.13	1	2036			
4-Bromofluorobenzene (S)	104 %	74-125		1	2036			
1,2-Dichloroethane-d4 (S)	93 %	70-130		1	2036			
Toluene-d8 (S)	94.1 %	82-118		1	2036			

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

Lab ID: H10060245005 Sample ID: Duplicate

Date/Time Received: 6/10/2010 09:30 Matrix: Water Date/Time Collected: 6/7/2010 15:35

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B	atches:			
	Batch: 2036 SW-846 820	60B on 06/11/2010 1	8:05 by LKL		
Parameters	Results ug/I Qual	Report Limit	MDL	DF RegLmt	Batch Information
Benzene	ND .	1.0	0.10	1	2036
Ethylbenzene	. ND	1.0	0.15	1	2036
Toluene	ND	1.0	0.29	1	2036
m, p- Xylene	ND	1.0	0.18	1	2036
o-Xylene	⁻ ND	- 1.0	0.13	1	2036
Xylenes, Total	ND	. 1.0	0.13	1	2036
4-Bromofluorobenzene (S)	103 %	74-125		1	2036
1,2-Dichloroethane-d4 (S)	93.2 %	70-130		1	2036
Toluene-d8 (S)	94.8 %	82-118		1	2036

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

Lab ID:	H10060245006	Date/Time Received:	6/10/2010 09:30	Matrix:	Water	
Sample ID:	Trip Blank	Date/Time Collected:	6/9/2010 07:55			

Analysis Desc: SW-846 8260B	SW-846 5030Analytical I	Batches:			
	Batch: 2036 SW-846 82	260B on 06/11/2010 1	15:00 by LKI	-	
Parameters	Results ug/l Qual	Report Limit	MDL	DF	Batch Information RegLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2036
Ethylbenzene	ND	1.0	0.15	1	2036
Toluene	. ND	1.0	0.29	- 1	2036
m,p-Xylene	ND	1.0	0.18	1	2036
o-Xylene	ND	1.0	0.13	1	2036
Xylenes, Total	ND	1.0	0.13	1	2036
4-Bromofluorobenzene (S)	103 %	74-125		1	2036
1,2-Dichloroethane-d4 (S)	100 %	70-130		1	2036
Toluene-d8 (S)	94.1 %	82-118		1	2036

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

QUALITY CONTROL DATA

QC Batch: QC Batch Method:	DIGM/1819 SW-846 3010A			nalysis Methore reparation:		/-846 6010B 0/2010 15:00 by	R_V			
Associated Lab Samp	ples: H10060237 H10060241 H10060245 H10060245	1003 H10060 5002 H10060	243001	H1006023 H1006024 H1006024	3002	H10060237004 H10060243003 H10060247001	H100	60241001 60243004 60247002	H10060)241002)245001)247003
METHOD BLANK: 50	0257									
Analysis Date/Time	Analyst: 06/18/2	2010 13:14 EBG								
Parameter	Un	its		Blank Result Qualifi	iers	Reporting Limit				
Manganese	mg	ı/I		ND		0.00500				
LABORATORY CON	TROL SAMPLE: 5	60258								
		50258 5/2010 13:20 EB								
Analysis Date/Time		/2010 13:20 EB	S	Spike Conc.	LCS Result	LCS % Rec		% Rec Limits		
Analysis Date/Time	Analyst: 06/18	/2010 13:20 EB	S C							
Analysis Date/Time A Parameter Manganese	Analyst: 06/18 Units mg/l	/2010 13:20 EB	S C	Conc.	Result	% Rec	00602410	Limits 80-120		
Analysis Date/Time A Parameter Manganese MATRIX SPIKE & MA	Analyst: 06/18 Units mg/I ATRIX SPIKE DUPL	/2010 13:20 EB	5 C	Conc. 0.10	Result	% Rec 101	00602410	Limits 80-120		
Analysis Date/Time A Parameter Manganese MATRIX SPIKE & MA MS Analysis Date/Tim	Analyst: 06/18 Units mg/I ATRIX SPIKE DUPL ne Analyst:	/2010 13:20 EB	32 EBG	Conc. 0.10	Result	% Rec 101	00602410	Limits 80-120		, , , , , , , , , , , , , , , , ,
LABORATORY CON Analysis Date/Time A Parameter Manganese MATRIX SPIKE & MA MS Analysis Date/Tim MSD Analysis Date/T	Analyst: 06/18 Units mg/I ATRIX SPIKE DUPL ne Analyst:	/2010 13:20 EB	32 EBG	50260 MS	Result	% Rec 101	00602410 MSD % Rec	Limits 80-120	RPD	Max RPD

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060245_6125

Printed: 06/24/2010 19:35

Page 11 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060245 : S	hepherd & Kelsey #	1E			<u> </u>	Project N	Number: Sl	hepherd & Kelsey
QC Batch: WET	rs/1649		Analysis	Method: SM	2540 C			
QC Batch Method: SM 2	2540 C							
Associated Lab Samples:	H10060196001 H10060245003	H100602410 H100602450		060241002 060247001	H10060241003 H10060247002		0245001 0247003	H10060245002 H10060247005
METHOD BLANK: 50631			· · · · · · · · · · · · · · · · · · ·					
Analysis Date/Time Analys	st: 06/12/2010 1	2:15 CFS						
Parameter	Units		Blank Result	Qualifiers	Reporting Limit			
Residue, Filterable (TDS)	mg/l		ND		10.0			1
LABORATORY CONTROL	SAMPLE & LCSD:	50632	. 506	633	· · · · · · · · · · · · · · · · · · ·			
LCS Analysis Date/Time A	nalyst: 06/12/2010	12:15 CFS						
LCSD Analysis Date/Time	06/12/2010	12:15 CFS						
Parameter	Units	Spike Conc.	LCS Result	LCSD LCS Result % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD
Residue, Filterable (TDS)	mg/l	200	201.0	199.0 100	99.5	95-107	1.0	10
SAMPLE DUPLICATE: 50	635		Original:	H10060247005			<u> </u>	· · · · · · · · · · · · · · · · · · ·
Parameter	Units	Original Result	DUP Result		Max D RPD	DF		
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	3380	3380	0.	1 . 10	2 2		
SAMPLE DUPLICATE: 50	636		Original:	H10060241001				•
Parameter	Units	Original Result	DUP Result		Max D RPD	DF		
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	2580	2580	0.	1 10	2 2		

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060245_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

QC Batch: MSV/	/2035		Analysis Metho	d: SW-	-846 8260B				
QC Batch Method: SW-8	346 5030		Preparation:	06/1	1/2010 00:00 by	LKL			
Associated Lab Samples:	H10060245001 H10060247001	H10060245002 H10060247002			H10060245004 H10060247004	H10060 H10060		H10060 H10060	
METHOD BLANK: 50773									
Analysis Date/Time Analysi	t: 06/11/2010 12	2:10 LKL							
Parameter	Units		Blank Result Qualifi	ers	Reporting Limit				
Benzene	• ug/l		ND		1.0				
Ethylbenzene			ND		1.0				
Toluene	ug/l ug/l		ND		1.0				
n,p-Xylene	-		ND		1.0				
	ug/l		ND		1.0				
o-Xylene	ug/l					`			
(ylenes, Total	ug/l		ND		1.0				
4-Bromofluorobenzene (S)	%		105		74-125				
1,2-Dichloroethane-d4 (S)	%		95.7		70-130				
Foluene-d8 (S)	%		97.2		82-118				
Analysis Date/Time Analysi	t: 06/11/2010	11:42 LKL	Spike	LCS	LCS		6 Rec		
Analysis Date/Time Analysi Parameter	t: 06/11/2010 Units	11:42 LKL	Conc.	Result	% Rec	l	_imits		
Analysis Date/Time Analysi Parameter Benzene	t: 06/11/2010 Units ug/I	11:42 LKL	Conc. 20	Result 19.4	% Rec 96.9	ا 74	_imits 4-123		
Analysis Date/Time Analysi Parameter Benzene Ethylbenzene	t: 06/11/2010 Units ug/l ug/i	11:42 LKL	Conc. 20 20	Result 19.4 17.7	% Rec 96.9 88.3	1 74 72	_imits 4-123 2-127		
Analysis Date/Time Analysi Parameter Benzene Ethylbenzene Foluene	units Units ug/l ug/l ug/l	11:42 LKL	Conc. 20 20 20	Result 19.4 17.7 18.8	% Rec 96.9 88.3 93.9	1 74 72 74	_imits 4-123 2-127 4-126		
Analysis Date/Time Analysi Parameter Benzene Ethylbenzene foluene n,p-Xylene	t:: 06/11/2010 Units ug/l ug/l ug/l ug/l	11:42 LKL	Conc. 20 20 20 40	Result 19.4 17.7 18.8 36.7	% Rec 96.9 88.3 93.9 91.7	ا 74 72 74	Limits 4-123 2-127 4-126 1-129		
Analysis Date/Time Analysi Parameter Benzene Ethylbenzene Foluene n,p-Xylene p-Xylene	t: 06/11/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l	11:42 LKL	Conc. 20 20 20 40 20	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0	1 74 72 74 7 7 7	Limits 4-123 2-127 4-126 1-129 4-130		
Analysis Date/Time Analysi Parameter Benzene Ethylbenzene Foluene n.p-Xylene p-Xylene Kylenes, Total	t: 06/11/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11:42 LKL	Conc. 20 20 20 40	Result 19.4 17.7 18.8 36.7	% Rec 96.9 88.3 93.9 91.7 92.0 91.8	ا 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130		
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene p-Xylene Kylenes, Total 4-Bromofluorobenzene (S)	t: 06/11/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l ug/l %	11:42 LKL	Conc. 20 20 20 40 20	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104	1 72 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125		
LABORATORY CONTROL Analysis Date/Time Analysi Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	t: 06/11/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11:42 LKL	Conc. 20 20 20 40 20	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0 91.8	ا 72 74 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130		
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene Aylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Foluene-d8 (S)	t:: 06/11/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l % % % %		Conc. 20 20 40 20 60 50776	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4	ا 74 74 74 74 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118		
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene p-Xylene Kylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	t:::::::::::::::::::::::::::::::::::::	: 50775	Conc. 20 20 40 20 60 50776	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4 96.5	ا 74 74 74 74 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118		
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene Sylenes, Total I-Bromofluorobenzene (S) I,2-Dichloroethane-d4 (S) Foluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time Ana	t:::::::::::::::::::::::::::::::::::::	: 50775 1/2010 15:52 LK	Conc. 20 20 40 20 60 50776	Result 19.4 17.7 18.8 36.7 18.4	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4 96.5	ا 74 74 74 74 74 74 74 74 74 74 74 74	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118		Max
Analysis Date/Time Analysi Parameter Benzene Sthylbenzene oluene n,p-Xylene -Xylene Sylenes, Total -Bromofluorobenzene (S) ,2-Dichloroethane-d4 (S) oluene-d8 (S) MATRIX SPIKE & MATRIX MATRIX SPIKE & MATRIX MATRIX SPIKE & MATRIX	t:::::::::::::::::::::::::::::::::::::	: 50775 1/2010 15:52 LK 1/2010 16:22 LK	Conc. 20 20 40 20 60 50776 L ke MS	Result 19.4 17.7 18.8 36.7 18.4 55.08	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4 96.5 Original: H1	1 74 74 74 74 74 74 74 76 82 0060245001	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118	RPD	
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene D-Xylene Kylenes, Total I-Bromofluorobenzene (S) I.2-Dichloroethane-d4 (S) Foluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time Analysis Date/Time Analysis Date/Time A	t:::::::::::::::::::::::::::::::::::::	: 50775 1/2010 15:52 LK 1/2010 16:22 LK Original Spil Result Cor	Conc. 20 20 40 20 60 50776 L ke MS	Result 19.4 17.7 18.8 36.7 18.4 55.08	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4 96.5 Original: H1	1 7 7 7 7 7 7 7 7 8 8 0060245001	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118	RPD 1.3	Max RPD 20
Analysis Date/Time Analysis Parameter Benzene Ethylbenzene Foluene n.p-Xylene o-Xylene Kylenes, Total H-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Foluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time Ana	t:::::::::::::::::::::::::::::::::::::	: 50775 1/2010 15:52 LK 1/2010 16:22 LK Original Spi Result Cor ND	Conc. 20 20 40 20 60 50776 L ke MS ic. Result	Result 19.4 17.7 18.8 36.7 18.4 55.08 MSD Result	% Rec 96.9 88.3 93.9 91.7 92.0 91.8 104 92.4 96.5 Original: H1	1 74 75 74 77 74 76 82 0060245001 0060245001 80 0060245001	Limits 4-123 2-127 4-126 1-129 4-130 1-130 4-125 0-130 2-118 1 % Rec \$ Limit		RPC

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060245_6125

Printed: 06/24/2010 19:35

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060245 : Shepherd & Kelsey #1E Project Number: Shepherd & Kelsey #1E										
MATRIX SPIKE & MATRIX SP		Original:	H10060245001							
MS Analysis Date/Time Analyst: 06/11/2010 15:52 LKL			LKL							
MSD Analysis Date/Time Anal	yst:	06/11/2010 16:22	LKL							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	ND	40	35.7	35.8	89.3	89.6	35-175	0.3	20
o-Xylene	ug/l	ND	20	18.4	18.5	92.1	92.6	35-175	0.6	20
Xylenes, Total	ug/l	ND	60	54.15	54.36	90.2	90.6	35-175	0.4	20
4-Bromofluorobenzene (S)	%	103				107	102	74-125		30
1,2-Dichloroethane-d4 (S)	%	90.5				94.1	93.2	70-130		30
Toluene-d8 (S)	%	95				94.7	94.5	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060245_6125

Printed: 06/24/2010 19:35

Page 14 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
Е	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
N	Recovery outside of control limits
́ D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060245 : Shepherd & Kelsey #1E

Project Number: Shepherd & Kelsey #1E

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060245001	MW-1	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060245002	MW-2	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060245003	MW-3	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060245004	MW-4	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060245001	MW-1	SM 2540 C	WETS/1649	·	
H10060245002	MW-2	SM 2540 C	WETS/1649		
H10060245003	MW-3	SM 2540 C	WETS/1649	•	
H10060245004	MW-4	SM 2540 C	WETS/1649		
H10060245001	MW-1	SW-846 5030	MSV/2035	SW-846 8260B	MSV/2036
H10060245002	MW-2	SW-846 5030	MSV/2035	SW-846 8260B	MSV/2036
H10060245003	MW-3	SW-846 5030	MSV/2035	SW-846 8260B	MSV/2036
H10060245004	MW-4	SW-846 5030	MSV/2035	SW-846 8260B	MSV/2036
H10060245005	Duplicate	SW-846 5030	MSV/2035	`SW-846 8260B	MSV/2036
H10060245006	Trip Blank	SW-846 5030	MSV/2035	SW-846 8260B	MSV/2036

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10060245		Received By	LOG	
Date and Time	06/10/2010 09:30		Carrier Name:	FEDEXS	
Temperature:	2.0°C		Chilled By:	Water Ice	•
1. Shipping container/c	ooler in good condition?			YES	
2. Custody seals intact	on shipping container/cooler?			YES ,	
3. Custody seals intact	on sample bottles?			Not Present	
4. Chain of custody pre	esent?		•	YES	
5. Chain of custody sig	ned when relinquished and received?		· ·	YES	
6. Chain of custody ag	rees with sample labels?			YES	
7. Samples in proper c	ontainer/bottle?			YES	
8. Samples containers	intact?			YES	
9. Sufficient sample vo	lume for indicated test?	·	۰	YES	
10. All samples received	within holding time?			YES	
11. Container/Temp Blan	nk temperature in compliance?	· . •		YES	
12. Water - VQA vials ha	ave zero headspace?			YES	
13. Water - Preservation	checked upon receipt(except VOA*)?			Not Applicable	
,					

*VOA Preservation Checked After Sample Analysis

SPL Representative: Client Name Contacted:

Client Instructions:

Contact Date & Time:

Phone: (713) 660-0901 Fax: (713) 660-8975

Rush TAT requires prior notice 2 Husiness Days 1 Business Day Client/Consultant Remarks: . 3 Business Days ite Location: Site Name: Toject Name/No.: woice Tu: ient Nam ioness: Other ell ax: Contac **18840** Interchange Drive Houston, TX 77054 (713) 660-0901 Requested MUC MW-2 5 X-(11. NW - 2 とのと 53 ۱. ۲ SAMPLE ID 1 TAT Standard Contract Aualysis Request & Chain of Custody Record Ś 121121 5. Relinquished by: Ě Special Reporting Requirements Results: SPL, Inc. 1001 555 19 ŧ DATE Level 3 QC Level 4 QC TX TRRP C LA RECAP 1 1 Ĵ 717 J ? Ś Š 5 3 5 ŋ Ph C いろう 500 いかく 547 252 のとう TIME かん 3 500 Amhassador Caffery Parkway Scott, LA 70583 (337) 237-4775 Laboratory remarks: :5 Fax C comp Email grab date date / dati W=water S=soil O=oil A=air SL=sludge E=encore X=other = 3 6 5 3 5 POF bottle A=amber glass V=vial X=other Ţ P=plastic \mathcal{T} 2 G=glass Cinte Special Detection Limits (specify):) E 1=1 liter 4=402 40=vial 8=802 16=1602 X=0ther size 0 Ś 6 6 7 pres. 1=HCL 2=HNO3 3=H2SO4 X=other H10060245 100 4. Received by: Received by: Number of Containers S \sim Ń N 1 CN. N j, j -51 L 459 Hughes Drive Traverse City, MI 49686 (231) 947-5777 ⊳ < < Mn **Requested Analysis** page Intact? Ice? Temp: 1 20 20 PM review (initial): s 2 × Ċ0 CL 1 ZZ