3R - 43-84

MAR 2010 GWMR

07/22/2010

3R084

QUARTERLY GROUNDWATER MONITORING REPORT MARCH 2010 SAMPLING EVENT

FARMINGTON B COM NO. IE NATURAL GAS WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R0084 API # 30-045-24774

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 8690096.100

TABLE OF CONTENTS

1.0	INTRODUCTION	I
	I.I Site History	I
2.0		
	2.I Groundwater Monitoring Methodology	2
	2.2 Groundwater Sampling Analytical Results	2
3.0		
4.0	REFERENCES	3
FIG	GURES	
1.	Site Location Map	
2.	Site Layout Map	
3.	Site Cross-Section	
4.	Groundwater Elevation Contour Map	
5.	BTEX Concentration Map	
6.	B-COM #IE Hydrograph	
TA	BLES	
1.	Site History Timeline	
2.	Groundwater Elevation Summary (May 2005 – December 2009)	
3.	Groundwater Laboratory Analytical Results Summary (February 1998 – December 200	9)

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Laboratory Analytical Report

Appendix C. Historical Analytical Data

QUARTERLY GROUNDWATER MONITORING REPORT DECEMBER 2009 SAMPLING EVENT FARMINGTON B COM NO. IE NATURAL GAS WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on March 29, 2010, at the ConocoPhillips Company Farmington B Com No. IE remediation site in Farmington, New Mexico (Site). This sampling event represents the first quarter of groundwater monitoring at the Site for 2010.

The Site is located on private property in southeast Farmington, New Mexico, near the corner of East Murray Drive and South Carlton Avenue. The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are presented as **Figures I** and **2**, respectively. A generalized cross section of the site is included as **Figure 3**.

I.I Site History

The history of the Site is outlined on **Table I** and discussed in more detail in the following paragraphs.

Conoco Inc., predecessor to ConocoPhillips Company, owned the property and operated the gas well between July 1991 and January 1997. Merrion Oil & Gas Company is the current property owner and well operator. A Phase II Environmental Site Assessment associated with the property transfer was conducted by On Site Technologies, Limited (On Site) in March 1997. Soil hydrocarbon impacts were confirmed north of a production storage tank and west of a separator/dehydrator pit (Figure 2). Impacts were described by On Site as limited to a former unlined pit area with hydrocarbon migration primarily occurring vertically through the soil profile due to the porous and permeable subsurface soils; lateral migration was considered minimal (On Site, 1997). Soil excavation of the two impacted areas occurred in September 1997. A total of 906 cubic yards of impacted soil were removed from two excavation areas. Of the 906 cubic yards, 328 were transported offsite and 578 were screened and placed back into the excavated areas along with clean fill. During backfill activities, approximately 10 gallons of liquid fertilizer was sprayed into both excavations to enhance insitu degradation of residual hydrocarbons (On Site, 1997).

Groundwater Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 were installed at the Site in February and August 1998 under the supervision of On Site. During 1998 and 1999, results from groundwater samples collected from MW-2 through MW-6 did not have BTEX concentrations in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. On Site then requested that groundwater quality monitoring in Monitor Wells MW-2 through MW-6 be discontinued. The request was approved by the New Mexico Energy, Minerals, and Natural Resources Department (NMEMNRD) in a letter to Ms. Shirley Ebert of Conoco Inc. (NMEMNRD, 2000). Although Monitor Wells MW-2 through MW-6 showed no hydrocarbon impacts during 1998 and 1999,

Tetra Tech, Inc. I April 2010

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

light non-aqueous phase liquid (LNAPL) has been present in MW-I since its installation and recovery has been ongoing. Souder Miller and Associates (Souder Miller) placed active and passive skimmers in MW-I in May 2004. The passive skimmer collected a small amount of LNAPL; the active skimmer did not collect any LNAPL. Souder Miller determined that an active skimmer was not a viable method of LNAPL in MW-I and proposed passive skimming or periodic hand bailing for recovery.

Tetra Tech began groundwater quality monitoring at the site in May 2005. Tetra Tech monitors MW-6 in addition to MW-1 since it is down-gradient to MW-1. Most recently, groundwater quality monitoring took place on March 29, 2010. Groundwater elevation measurements were collected from MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6. A thin LNAPL sheen was encountered in MW-1 prior to sampling. Groundwater samples were collected from Monitor Wells MW-1 and MW-6 were shipped to Southern Petroleum Laboratories in Houston, Texas to be analyzed for the presence of BTEX and dissolved iron.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On March 29, 2010, groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on March 2010 monitoring event data, groundwater flow is to the west and is consistent with historic records at this site. The Animas River is approximately ³/₄ miles from the site and flows west.

Groundwater sampling

Monitor wells MW-1 and MW-6 were sampled representing the eighth round of consecutive quarterly groundwater monitoring at the Site. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. Purge water was placed in a Merrion owned waste water storage tank. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260B and dissolved iron according to EPA Method 6010B. Groundwater sampling field forms are included as **Appendix A**.

2.2 Groundwater Sampling Analytical Results

A sheen was encountered in MW-I during the March 2010 sampling event. Groundwater sampling results from MW-I were not found above laboratory detection limits for benzene, toluene or total xylenes. Ethylbenzene was detected at a concentration of 51 micrograms per liter (µg/L); the NMWQCC groundwater quality standard for ethylbenzene is 750 µg/L. Dissolved iron was detected at a concentration of 0.0803 milligrams per liter (mg/L) in MW-I, the NMWQCC groundwater quality standard for iron is 1.0 mg/L. BTEX constituents in MW-6 were not found above laboratory detection limits; and contained a dissolved iron concentration of 0.0200 mg/L. **Table 3** presents the laboratory analytical results. The laboratory analytical reports are included as **Appendix B**, and a BTEX concentration map is included as **Figure 5**. The SMA historical analytical data is attached as **Appendix C**.

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

3.0 CONCLUSIONS

Although hydrocarbon sheen was observed in monitor well MW-I during the monitoring event; BTEX constituents were either below laboratory detection limits or below NMWQCC groundwater quality standards. The last sampling event LNAPL was observed in MW-I was January 2009. However, an LNAPL sheen was intermittently detectable during quarterly groundwater pumping events from 2005 into 2008 and is shown in a hydrograph of groundwater elevations in MW-I and MW-6 (**Figure 6**). Generally, if MW-I does not have an oil absorbent sock a hydrocarbon presence is observed at various times of year seasonally, and at various depths

Groundwater analytical results for Monitor Wells MW-I and MW-6 continue to show BTEX concentrations below NMWQCC groundwater quality standards. Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

4.0 REFERENCES

- New Mexico Energy, Minerals, and Natural Resources Department. (2000). Re: Farmington B Com #1E Well Site. Letter to Ms. Shirley Ebert, Conoco, Inc. December 13, 2000.
- On-Site Technologies, Ltd. (1997). Annual Summary, Pit Closures and Groundwater Impact Updates, State of New Mexico, 1996. Prepared for Conoco Inc., Midland Division. Report dated April 22, 1997. 21 pp.
- On-Site Technologies, Ltd. (1997). Re: Remediation Summary Farmington B Com #1E. . Letter Attn: Mr. Neal Goates, Senior Environmental Specialist, Conoco, Inc. November 26, 1997.

FIGURES

- I. Site Location Map
 - 2. Site Layout Map
- 3. Site Cross-Section
- 4. Groundwater Elevation Contour Map
 - 5. BTEX Concentration Map
 - 6. B-COM #IE Hydrograph


FIGURE 1.

Site Location Map Farmington B Com No.1E Farmington, NM

ConocoPhillips Company B Com #1E Site Location

Section 15, T29N, R13W San Juan County, NM

TETRA TECH, INC.

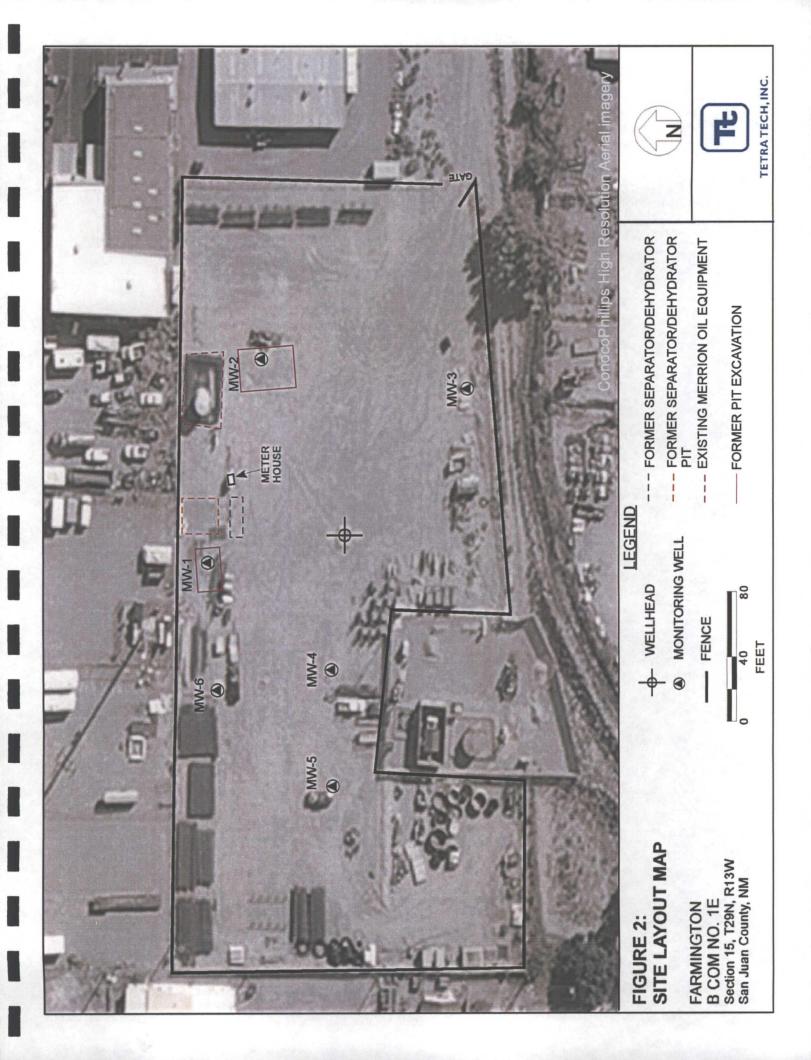
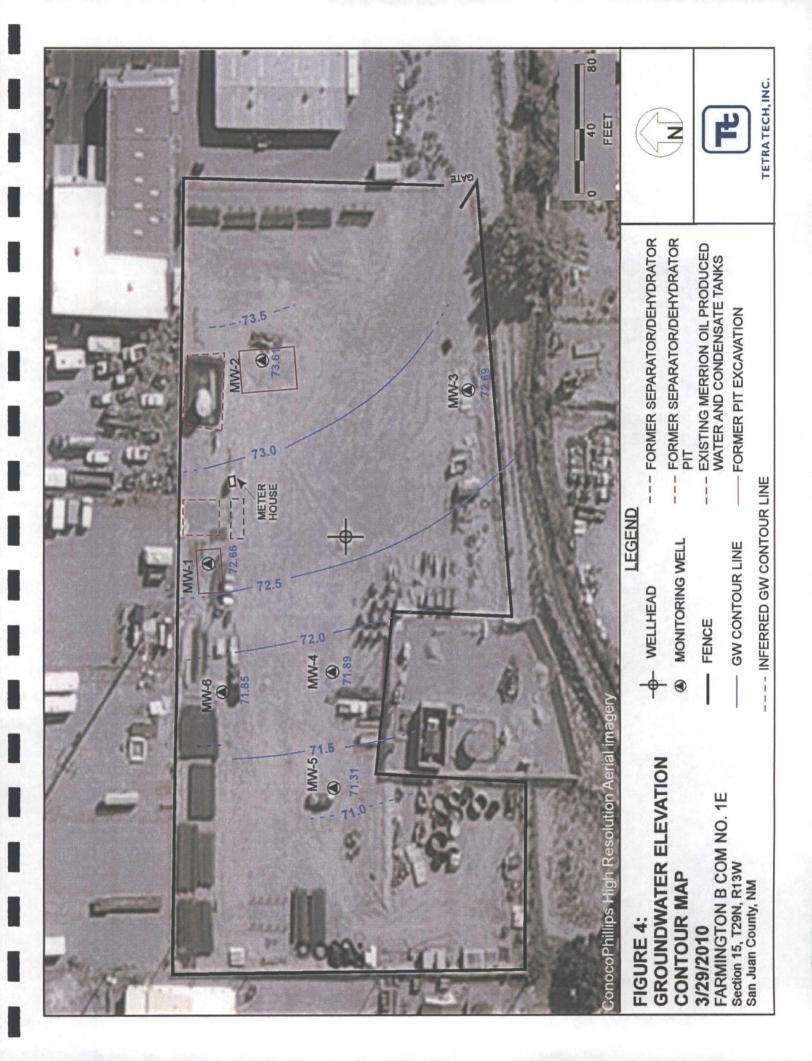


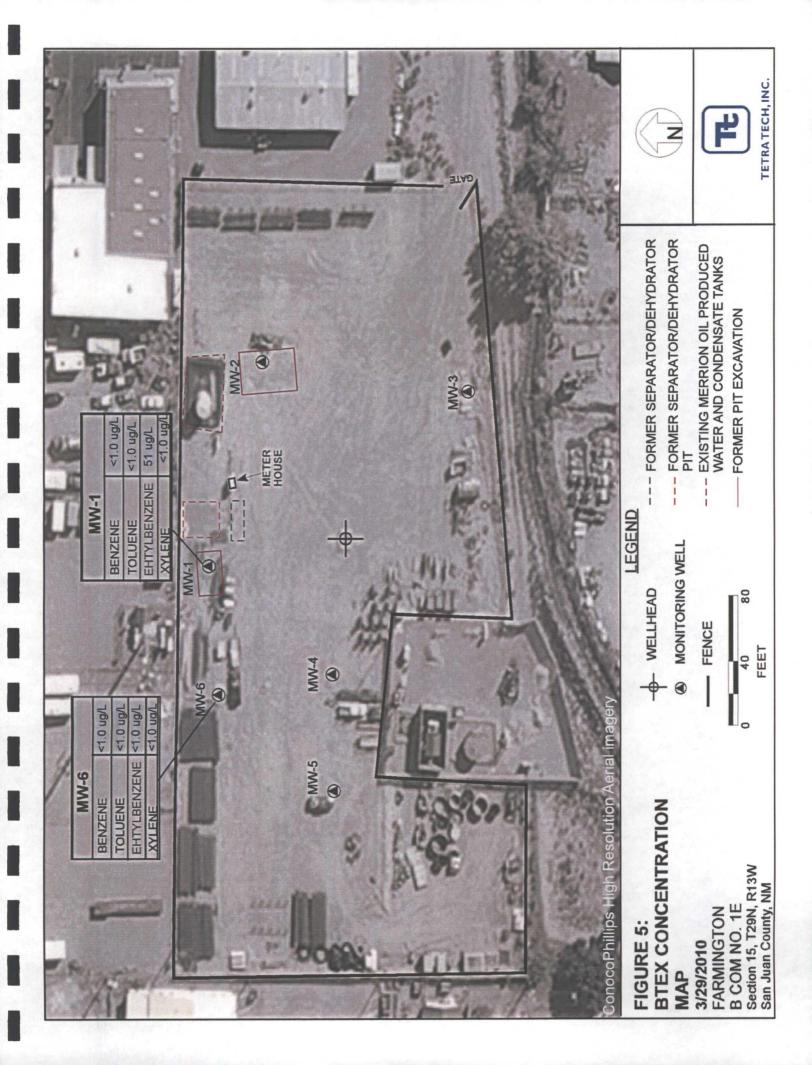
Figure 3.

5/24/2010

TETRA TECH

200.0


150.0


Surface Distance in Feet

75.0

50.0

25.0

01-guA Jan-10 60-Inc Dec-08 FIGURE 6 FARMINGTON B-COM NO. 1E HYDROGRAPH 80-unc 70-voM Date 70-1qA 90-toO Elevation of Product in MW-1 Mar-06 Sep-05 ► MW-1 Elevation ► MW-6 Elevation Feb-05 40-guA 70.00 78.00 74.00 72.00 84.00 82.00 80.00 76.00 Elevation

TABLES

1. Site History Timeline

- 2. Groundwater Elevation Summary (May 2005 October 2009)
- 3. Laboratory Analytical Data Summary (February 1998 October 2009)

Table 1. Site History Timeline - Farmington B Com No. 1E

Date/Time Period	Event/Action	Description				
February 18, 1982	Well Completed	Pioneer Production Corp. completed the Farmington B-COM No. 1E gas production well				
July 1, 1991	Conoco Inc. well purchase	Conoco Inc. purchases wellsite from Mesa Operating Limited Partnership of Amarillo, Texas				
January 1, 1997	Change of ownership	Conoco Inc. sold the property and mineral lease to Merrion Oil & Gas Co.				
March, 1997	Site Assessment	Phase II Environmental Site Assessment is conducted by On Site Technologies. Three test holes advanced with Auger refusal encountered at 7 feet below ground surface (bgs) due to gravel and cobbles. No samples collected. On Site Technologies later excavates four additional test holes ranging in depth from 14 to 19 feet bgs. Soil samples are collected from each excavation. TPH and BTEX contamination is found in the vicinity of a former unlined pit.				
September, 1997	Soil Excavation	On Site Technologies oversees soil excavation of two pits. 906 cubic yards of impacted soil were removed; of which 328 were disposed of offsite and 578 cubic yards were placed back in the pits along with clean fill. Approximately 10 gallons of liquid fertilizer was sprayed into each pit during backfill.				
February and August 1998	Monitor Well Installation	Six monitor wells (MW-1 through MW-6) installed at the site under the supervision of On Site.				
October 29, 2004	Groundwater Removal from Monitor Well MW-1	First removal of groundwater - 160 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
November 1, 2004	Groundwater Removal from Monitor Well MW-1	40 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
December 3, 2004	Groundwater Removal from Monitor Well MW-1	150 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
May 9th and 10th, 2005	Monitor Well Sampling	Tetra Tech begins quarterly monitoring at the site. Groundwater samples collected from monitor wells MW-1 and MW-6. A sheen is noted in MW-1; an oil absorbant sock is placed in the well.				
July 6, 2005	Groundwater Removal from Monitor Well MW-1	138 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
October 19, 2005	Groundwater Removal from Monitor Well MW-1 and Monitor Well Sampling	Groundwater samples collected from monitor wells MW-1 and MW-6. 186 gallons removed from MW-1; a sheen is observed in purge water and oil absorbant sock is replaced.				
February 16, 2006		144 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
May 15, 2006	Groundwater Removal from	152 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
August 2, 2006	Monitor Well MW-1	457 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
November 14, 2006		423 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
November 14, 2006	Monitor Well Sampling	Third sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech				
February 20, 2007		220 gallons removed vacuum truck operated by Riley Industrial Services of Farmington, NM				
May 15, 2007	Groundwater Removal from	364 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
August 21, 2007	Monitor Well MW-1	684 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
November 7, 2007	<u> </u>	651 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
November 7, 2007	Monitor Well Sampling	Fourth sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech				
January 16, 2008	Groundwater Removal from Monitor Well MW-1	149 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
March 18, 2008	Groundwater Removal from Monitor Well MW-1	93 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM				
July 24, 2008	Monitor Well Sampling	Initiation of quarterly sampling for monitor wells MW-1and MW-6				
October 22, 2008	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6				

Table 1. Site History Timeline - Farmington B Com No. 1E

Date/Time Period	Event/Action	Description
January 21, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. Free product found in MW-1; oil absorbent sock placed in the well.
April 1, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1.
June 10, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1.
October 1, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1. First quarter of compliance with all COCs bellow NMWQCC standards.
December 17, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1. Second quarter of compliance with all COCs bellow NMWQCC standards.
March 29, 2010	Monitor Well Sampling	Continutation of quarterly sampling for monitor wells MW-1 and MW-6. A thin hydrocarbon sheen is detected in MW-1.

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)
				5/9/2005	28.30	Sheen	73.07
				7/6/2005	26.50	NA	74.87
				10/19/2005	25.12	Sheen	76.25
				2/16/2006	28.23	NA	73.14
				5/15/2006	27.02	NA	74.35
				8/2/2006	24.37	NA	77.00
				11/14/2006	26.48	Sheen	74.89
				2/20/2007	29.03	Sheen	72.34
				5/15/2007	26.97	NA	74.40
				8/21/2007	25.20	Sheen	76.17
MW-1	34.09	19.09 - 34.09	101.37	11/7/2007	26.30	26.1	75.07
				1/16/2008	29.24	27.88	72.13
				3/18/2008	29.27	29.27	72.10
				7/24/2008	25.73	Sheen	75.64
				10/22/2008	25.35	Sheen	76.02
				1/21/2009	28.25	27.90	73.12
				4/1/2009	29.47	NA	71.90
				6/10/2009	26.75	NA	74.62
				10/1/2009	23.14	NA	78.23
				12/17/2009	26.31	NA	75.06
				3/29/2010	28.71	28.68	72.66
				5/9/2005	27.28	NA	74.29
	i			7/6/2005	25.52	NA	76.05
				10/19/2005	24.30	NA	77.27
				2/16/2006	27.38	NA	74.19
				5/15/2006	25.62	NA	75.95
				8/2/2006	23.51	NA	78.06
				11/14/2006	26.08	NA	75.49
				2/20/2007	28.13	NA	73.44
				5/15/2007	25.86	NA	75.71
	,			8/21/2007	24.45	NA	77.12
MW-2	33.72	18.72 - 33.72	101.57	11/7/2007	25.31	NA	76.26
				1/16/2008	27.27	NA	74.30
				3/18/2008	28.68	NA	72.89
				7/24/2008	24.77	NA .	76.80
				10/22/2008	24.55	NA	77.02
				1/21/2009	27.23	NA NA	74.34
				4/1/2009	28.76	NA	72.81
				6/10/2009	25.76	NA	75.81
				10/1/2009	22.22	NA	79.35
				12/17/2009	25.62	NA	75.95
				3/29/2010	27.96	NA	73.61

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)
				5/9/2005	27.81	NA	74.29
u.				7/6/2005	26.03	NA	76.07
				10/19/2005	25.06	NA	77.04
				2/16/2006	28.57	NA	73.53
				5/15/2006	26.15	NA	75.95
				8/2/2006	23.83	NA	78.27
				11/14/2006	26.75	NA	75.35
				2/20/2007	29.31	NA	72.79
				5/15/2007	26.23	NA	75.87
				8/21/2007	25.00	NA	77.10
MW-3	32.44	17.44 - 32.44	102.1	11/7/2007	26.12	NA	75.98
				1/16/2008	28.46	NA	73.64
				3/18/2008	29.97	NA	72.13
				7/24/2008	25.27	NA	76.83
				10/22/2008	25.35	NA	76.75
				1/21/2009	28.56	NA	73.54
				4/1/2009	30.20	NA	71.90
				6/10/2009	26.55	NA	75.55
				10/1/2009	23.00	NA	79.10
				12/17/2009	26.86	NA	75.24
				3/29/2010	29.41	NA	72.69
- "				5/9/2005	28.73	NA	72.67
				7/6/2005	26.66	NA	74.74
				10/19/2005	25.62	NA	75.78
				2/16/2006	28.91	NA	72.49
				5/15/2006	26.86	NA	74.54
				8/2/2006	24.59	NA	76.81
				11/14/2006	27.02	NA	74.38
				2/20/2007	29.61	NA	71.79
				5/15/2007	27.25	NA	74.15
				8/21/2007	25.56	NA	75.84
MW-4	32.72	17.72 - 32.72	101.4	11/7/2007	26.50	NA	74.90
				1/16/2008	28.55	NA .	72.85
				3/18/2008	29.99	NA	71.41
				7/24/2008	26.02	NA	75.38
				10/22/2008	25.84	NA	75.56
			,	1/21/2009	28.69	NA	72.71
	,			4/1/2009	30.22	NA	71.18
				6/10/2009	27.31	NA	74.09
				10/1/2009	23.80	NA	77.60
				12/17/2009	27.07	NA	74.33
	1			3/29/2010	29.51	NA	71.89

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)
				5/9/2005	28.50	NA	72.02
				7/6/2005	26.32	NA	74.20
				10/19/2005	25.30	NA	75.22
				2/16/2006	28.62	NA	71.90
				5/15/2006	26.55	NA	73.97
				8/2/2006	24.23	NA	76.29
				11/14/2006	27.67	NA	72.85
				2/20/2007	29.34	NA	71.18
				5/15/2007	27.04	NA	73.48
MW-5				8/21/2007	25.21	NA	75.31
	34.09	19.09 - 34.09	100.52	11/7/2007	26.13	NA	74.39
				1/16/2008	28.18	NA	72.34
				3/18/2008	29.65	NA	70.87
				7/24/2008	25.73	NA	74.79
				10/22/2008	25.49	NA	75.03
				1/21/2009	28.38	NA	72.14
				4/1/2009	29.92	NA	70.60
				6/10/2009	27.09	NA	73.43
				10/1/2009	23.50	NA	77.02
				12/17/2009	26.77	NA	73.75
				3/29/2010	29.21	NA	71.31
				5/9/2005	29.94	NA	72.20
				7/6/2005	27.89	NA	74.25
				10/19/2005	26.70	NA	75.44
				2/16/2006	29.85	NA	72.29
			i	5/15/2006	28.11	NA	74.03
				8/2/2006	25.83	NA	76.31
				11/14/2006	27.91	NA	74.23
				2/20/2007	30.52	NA	71.62
				5/15/2007	28.61	NA :	73.53
				8/21/2007	26.67	NA	75.47
MW-6	34.02	19.02 - 34.02	102.14	11/7/2007	27.52	NA	74.62
				1/16/2008	29.43	NA	72.71
				3/18/2008	30.85	· NA	71.29
				7/24/2008	27.26	NA	74.88
				10/22/2008	26.85	NA	75.29
				1/21/2009	29.52	NA	72.62
	•			4/1/2009	31.00	NA	71.14
				6/10/2009	28.44	· NA	73.70
				10/1/2009	24.75	NA	77.39
				12/17/2009	27.90	NA	74.24
				3/29/2010	30.29	NA	71.85

ft. = Feet

TOC = Top of casing

bgs = below ground surface

^{*} Relative Elevation

^{**} Where non-aqueous phase liquid (NAPL) is present, depth to water equals the Top of Casing elevation minus the depth to water, plus the NAPL thickness multiplied by 0.79.

NA - not applicable or not measured.

Table 3. Farmington B Com No.1E Groundwater Laboratory Analytical Results Summary

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Nitrate as N (mg/L)	Sulfate (mg/L)	Iron (mg/L)						
	2/19/1998	210	34	370	2,044	NŞ	NS	NS						
	6/12/1998													
	9/15/1998													
	12/29/1998	350	BDL	420	2,800	NS	NS	NS						
	1/22/2004	·		free p	roduct - not sa	mpled								
	5/9/2005	17	<0.7	74	250	<0.40	77.8	14.9*						
	10/19/2005	34	<1.0	170	1400	0.15	39.9	15*						
	11/14/2006	18	<0.7	190	1600	<0.015	145	8.8*						
	11/7/2007	7	<0.7	120	250	<0.015	38.4	6.4*						
MW-1	7/24/2008	<5.0	<5.0	90	35	<0.5	4.76	17.2*						
	Duplicate	<5.0	<5.0	110	59	NS	NS	NS						
	10/22/2008	<5.0	<5.0	88	165	<0.5	17	21.1*						
	Duplicate	<5.0	<5.0	95	186	NS	NS	NS						
-	1/21/2009			free p	roduct - not sa	mpled								
	4/1/2009	<5.0	<5.0	11	<5.0	NS	NS	5.26*						
	6/10/2009	<5.0	<5.0	96	<5.0	NS	NS	9.8*						
	10/1/2009	1.3	<1.0	58	142	NS	NS	0.233						
	12/17/2009	1.4	<1.0	100	2.8	NS	NS	0.521						
	3/29/2010	<1.0	<1.0	51	<1.0	NS	NS	0.0803						
	9/15/1998	BDL	BDL	BDL	BDL	NS	NS	NS						
	12/29/1998	BDL	BDL	BDL	BDL	NS	NS	NS						
	3/3/1999	BDL	BDL	BDL	BDL	NS	NS	NS						
	6/15/1999	BDL	BDL	BDL	BDL	NS	NS	NS						
	9/15/1999	BDL	0.7	1.1	BDL	NS	NS	NS						
	12/14/1999	BDL	1.8	0.7	1.9	NS	NS	NS						
	1/22/2004	BDL	BDL	BDL	BDL	NS	NS	NS						
	5/9/2005	<0.5	<0.7	<0.8	<0.8	<0.4	97	15.9*						
	10/19/2005	<0.5	<0.7	<0.8	<0.8	5.4	52.6	1.4*						
MW-6	11/14/2006	<0.5	<0.7	<0.8	1	<0.015	159	5.8*						
	1/7/2007	<0.5	<0.7	<0.8	<0.8	<0.015	112	3*						
	7/24/2008	<5.0	<5.0	<5.0	<5.0	<0.5	44.4	28.5*						
	10/22/2008	<5.0	<5.0	<5.0	<5.0	<0.5	43.7	1.77*						
	1/21/2009	<5.0	<5.0	<5.0	<5.0	<0.5	31.1	9.59*						
	4/1/2009	<5.0	<5.0	<5.0	<5.0	NS	NS	16.2*						
	6/10/2009	<5.0	<5.0	<5.0	<5.0	NS	NS	3.86*						
	10/1/2009	<1.0	<1.0	<1.0	<1.0	NS	NS	<0.02						
	12/17/2009	<1.0	<1.0	<1.0	<1.0	NS	NS	0.0511						
	3/29/2010	<1.0	<1.0	<1.0	<1.0	NS ·	NS	<0.0200						
NMWQCC	Standards	10 (μg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	10 (mg/L)	600 (mg/L)	1 (mg/L)						

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) μg/L = micrograms per liter (parts per billion)

NE=Not Established

NS = not sampled

BDL = Below laboratory detection limits

<0.7 = Below laboratory detection limit of 0.7 μg/L

* = Results reported for total ferrous iron, not comparable to NMWQCC standard for dissolved iron

Tetra Tech, Inc.

APPENDIX A GROUNDWATER SAMPLING FIELD FORMS

TŁ	TETRA TECH, INC.
----	------------------

WATER SAMPLING FIELD FORM

Project Name	B Com 1E			Page	1 of2
Project No.					
Site Location	Farmington, NM				
Site/Well No.	MW-1	Coded/ Replicate No. DUP (2) L	30	Date <u>32</u>	9-10
Weather	Simmy bycers	Time Sampling Began	50	Time Sampling Completed	V+20
,	J'~60°O	EVACUATION	I DATA	.	
Description of	Measuring Point (MP)	Top of Casing			
Height of MP	Above/Below Land Surf	ace	MP Elevation	l	
Total Sounded	d Depth of Well Below	MP 34.09	Water-Level	Elevation	
Heid	_ Depth to Water Belov	MP 29.7)	Diameter of G	Casing 2"	
	- Water Column in	$\Gamma \cap \Omega \cap \Omega$	Gallons Pum Prior to Sam		75 gallons
	-	Foot 0.16	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N Slyman
	-	Well . 86 X3		mp Intake Setting and surface)	·
		=05		ind surface)	
Purging Equip	ment Purge pump	/ Bailer X			
Time	Temperature (°C)	SAMPLING DATA/FIELI pH Conductivity (μS	D PARAMETERS /cm³) TDS (g/L)	DO (mg/L) OR	P (mV)
Sampling Equi	ipment	Purge Pump/Bailer			
Constit	uents Sampled	Container Desc	ription	Prese	ervative
втех		3 40mL VOA's	<u> </u>	HCI	
Fe		1 16 oz plastic	·	none	
		vleum		1	. \
Remarks	yellow hyd	readon product o	n probe,	no parameters	s due to
Sampling Pers	sonnel Kuliy B	landard Christs	ne Mathen	<u> </u>	Doga
		Well Casing	g Volumes		
	1				1
	Gal./ft. $1\frac{1}{4}$ " = 0	.077 (2" = 0.16)	3"	= 0.37 4"	= 0.65

_	**
Tŧ	TETRATECH, INC.

WATER SAMPLING FIELD FORM

Project Name	B Com 1E	<u> </u>					<u> </u>		Pag	e	2 of	2
Project No.												
Site Location	Farmingto	on, NM										•
Site/Well No.	MW-6	·	Coded/ Replica	te No.					Date	1-2	9-10	
Weather	Sunnu	breez	Time Sa Began		13	20		ו	Fime Sampli Completed	ng 	133	5_
	·) ~ 60°	·U	EV	ACUAT	ION DAT	Ά.		•			
Description of	Measuring	Point (MP)	Top of Casing	<u> </u>								
Height of MP	Above/Belo	w Land Sur	face				MP Elevation	on _			-,	
Total Sounded	Depth of \	Vell Below I	MP <u>34.0</u>	2		•	Water-Leve	el Eleva	ation			-
Held	_ Depth to	Water Belov	v мр <u>30.</u>	29		_	Diameter of				·	
			Well 2				Gallons Pur Prior to Sar		Bailed	2.2	5 ga	illons
		Gallons per	Foot		0.16	_					O	
		Gallons in	Well	.59	x3				itake Setting urface)			
Purging Equip	ment <u>l</u>	Purge pump			= 10	79						
			SAM				RAMETERS					*\787
Time		ature (°C)	рН 6.84		luctivity	(µS/cm³)	TDS (g/	L)	DO (mg/L)	ORP	(mV)	11.4 27.4
13 33	16	.30	6,84	7	122		.599 ,599		2.32	姜	58	12.4 203
13.59	1	2.33	(0,7)		7.61		1.7-1-1	<u>'</u>		-	D-0	2.20
Sampling Equi	I		Purge Pump/	 Bailer		<u> </u>	<u> </u>			Ш		·
	uents Sami	•	r digo i dijipr		tainer D	escription	n			Preser	vative	
BTEX	aomo odini	<u> </u>	3 40mL		<u> </u>	<u>GGGIIPIIG</u>	<u>-</u>	H	HCI	11000	10010	
Fe	·		1 16 oz					-	one	·· -		
		• • •	"		1.	- 1	102	- م.لا	٠	A _	4	Λ
Remarks	Orm	igeish-	promi	- St	र्देग्गर्रह		1/0 00	XÍN.	or shu	un (<u>Slosev</u>	red_
Sampling Pers	onnel _	Kelly	Blanch	and	2	<u>'Mn's</u>	ine Ma	atte	<u> </u>			
		<u> </u>		\	Vell Ca	sing Vol	umes					
	Gal./ft.	1 1/4" = (2"	= 0.16		3"	= 0.			0.65	
		1 1/2" = ().10	2 ½"	= 0.24	,	3" 1/2	ź = 0.	50	6" =	1.46	l

APPENDIX B LABORATORY ANALYTICAL REPORT

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 13, 2010

Workorder: H10030520

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: B-Com 1E

Project Number: B-Com 1E

Site: Farmington, NM

PO Number: ENFOS#4513176412 NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 15 Pages

Excluding Any Attachments

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 13, 2010

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10030520

Project: B-Com 1E

Project Number: B-Com 1E

Site: Farmington, NM

PO Number: ENFOS#4513176412 NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Report ID: H10030520_6124

Printed: 04/13/2010 17:16

Page 2 of 15

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 13, 2010

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10030520

Project: B-Com 1E

Project Number: B-Com 1E

Site: Farmington, NM

PO Number: ENFOS#4513176412 NELAC Cert. No.: T104704205-09-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10030520001	MW-1	Water		3/29/2010 14:20	3/30/2010 09:15
H10030520002	MW-6	Water		3/29/2010 13:35	3/30/2010 09:15
H10030520003	Duplicate	Water		3/29/2010 14:30	3/30/2010 09:15
H10030520004	Trip Blank	Water		3/29/2010 14:45	3/30/2010 09:15

Page 4 of 15

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID:

H10030520001

Date/Time Received: 3/30/2010 09:15

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 3/29/2010 14:20

ICP DISSOLVED METALS

iron	0.0803	0.0200	0.00640	1		1636	1332
Parameters .	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
The state of the s	Results				119		formation
	Batch: 1332 SW-846 6010E	3 on 04/11/2010	06:11 by EBC	Α,			
	Analytical Batches:						
	Batch: 1636 SW-846 3010	A on 04/05/2010	13:00 by R_\	1			
Analysis Desc: SW-846 6010B	Preparation Batches:		9				

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytica	SW-846 5030Analytical Batches:									
STAN STANSON	Batch: 1717 SW-846										
	Results					Batch Information					
Parameters	ug/I Qua	al Report Limit	MDL	DF	RegLmt	Prep Analysis					
Benzene	ND	1.0	0.10	1		1717					
Ethylbenzene	51	1.0	0.15	1		1717					
Toluene	ND	1.0	0.29	1		1717					
m,p-Xylene	ND	1.0	0.18	1		1717					
o-Xylene	ND	1.0	0.13	1		1717					
Xylenes, Total	ND	1.0	0.13	1		1717					
4-Bromofluorobenzene (S)	105 %	74-125		1		1717					
1,2-Dichloroethane-d4 (S)	102 %	70-130		1		1717					
Toluene-d8 (S)	116 %	82-118		1		1717					

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID:

H10030520002

Date/Time Received: 3/30/2010 09:15

Matrix: \

Water

Sample ID: MW-6

Date/Time Collected: 3/29/2010 13:35

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1636 SW-846 3010	A on 04/05/2010	13:00 by R_\	/			
	Analytical Batches:						
	Batch: 1332 SW-846 6010	B on 04/11/2010	06:34 by EBC	3			
			and the second			5	
Parameters	Results mg/l Qual	Report Limit	MDL	DF	ReaLmt	Prep	ormation Analysis
Iron	ND	0.0200	0.00640	1		1636	1332

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B	atches:							
	Batch: 1717 SW-846 8260B on 04/07/2010 17:45 by LKT								
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis			
Benzene	ND	1.0	0.10	1		1717			
Ethylbenzene	ND	1.0	0.15	1		1717			
Toluene	ND	1.0	0.29	1		1717			
m,p-Xylene	ND	1.0	0.18	1		1717			
o-Xylene	ND	. 1.0	0.13	1		1717			
Xylenes, Total	ND	1.0	0.13	1		1717			
4-Bromofluorobenzene (S)	106 %	74-125		1		1717			
1,2-Dichloroethane-d4 (S)	101 %	70-130		1		1717			
Toluene-d8 (S)	115 %	82-118		1		1717			

Printed: 04/13/2010 17:16

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID:

H10030520003

Date/Time Received: 3/30/2010 09:15

Matrix:

Water

Sample ID: Duplicate

Date/Time Collected: 3/29/2010 14:30

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:								
	Batch: 1717 SW-846 8260B on 04/07/2010 17:16 by LKT									
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis				
Benzene	ND	1.0	0.10	1		1717				
Ethylbenzene	56	1.0	0.15	1		1717				
Toluene	ND	1.0	0.29	1		1717				
m,p-Xylene	ND	1.0	0.18	1		1717				
o-Xylene	ND	1.0	0.13	1		1717				
Xylenes, Total	ND `	1.0	0.13	1		1717				
4-Bromofluorobenzene (S)	109 %	74-125		1		1717				
1,2-Dichloroethane-d4 (S)	102 %	70-130		1		1717				
Toluene-d8 (S)	111 %	82-118		1		1717				

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID:

H10030520004

Date/Time Received: 3/30/2010 09:15

Matrix:

Water

Sample ID: Trip Blank

Date/Time Collected: 3/29/2010 14:45

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches: Batch: 1717: SW-846 8260B on 04/07/2010 16:18 by LKT									
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis				
Benzene	ND	1.0	0.10	1		1717				
Ethylbenzene	ND	1.0	0.15	1		1717				
Toluene	ND	1.0	0.29	1		1717				
m,p-Xylene	ND	1.0	0.18	1		1717				
o-Xylene	ND	1.0	0.13	1		1717				
Xylenes, Total	ND	1.0	0.13	1		1717				
4-Bromofluorobenzene (S)	96 %	74-125		1		1717				
1,2-Dichloroethane-d4 (S)	99.7 %	70-130		1		1717				
Toluene-d8 (S)	117 %	82-118		1		1717				

Report ID: H10030520_6124
Printed: 04/13/2010 17:16

Page 8 of 15

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

QC Batch:

DIGM/1636

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

04/05/2010 13:00 by R_V

Associated Lab Samples:

H10030520001

H10030520002

METHOD BLANK: 37494

Analysis Date/Time Analyst:

04/11/2010 06:00 EBG

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Iron

mg/l

0.0200

LABORATORY CONTROL SAMPLE: 37495

Analysis Date/Time Analyst:

04/11/2010 06:05 EBG

Parameter

Spike

LCS

LCS

% Rec

Units

Conc.

Result

% Rec

Limits

Iron

mg/l

1.0

1.046

105 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 37496

37497

Original: H10030520001

MS Analysis Date/Time Analyst:

04/11/2010 06:17 EBG

MSD Analysis Date/Time Analyst:

04/11/2010 06:22 EBG

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max RPD
Iron	mg/l	0.0803	1.0	1.077	1.092	99.7	101	75-125 1.4	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10030520_6124

Printed: 04/13/2010 17:16

Page 9 of 15

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

QC Batch:

NAC

MSV/1716

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

04/07/2010 00:00 by LKT H10030520004 H

Associated Lab Samples:

H10030520001 H10040042003 H10030520002 H10040042004 H10030520003 H10040042006 H10040042001

H10040042002

METHOD BLANK: 38085

Analysis Date/Time Analyst:

04/07/2010 11:57 LKT

Parameter	Units	Blank Result Qualifiers	Reporting Limit
Benzene	ug/l	ND	1.0
Ethylbenzene	ug/l	ND	1.0
Toluene	ug/l	ND	1.0
m,p-Xylene	ug/l	ND	1.0
o-Xylene	ug/l	ND	1.0
Xylenes, Total	ug/l	ND	1.0
4-Bromofluorobenzene (S)	%	97.4	74-125
1,2-Dichloroethane-d4 (S)	%	103	70-130
Toluene-d8 (S)	%	114	82-118

LABORATORY CONTROL SAMPLE: 38086

Analysis Date/Time Analyst:

04/07/2010 10:56 LKT

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	
Benzene	ug/l	20	18.8	93.9	74-123	
Ethylbenzene	ug/l	20	16.8	83.9	72-127	
Toluene	ug/l	20	17.7	88.3	74-126	
m,p-Xylene	ug/l	40	33.0	82.5	71-129	
o-Xylene	ug/l	20	16.5	82.6	74-130	
Xylenes, Total	ug/l	60	49.53	82.6	71-130	
4-Bromofluorobenzene (S)	%			102	74-125	
1,2-Dichloroethane-d4 (S)	%			103	70-130	
Toluene-d8 (S)	%			109	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38087

38088

Original: H10040042001

MS Analysis Date/Time Analyst:

04/07/2010 14:51 LKT

MSD Analysis Date/Time Analyst:

04/07/2010 15:20 LKT

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	18.4	17.8	92.0	88.9	70-124	3.5	20
Ethylbenzene	ug/l	ND	20	16.8	16.3	84.1	81.7	35-175	2.9	20
Toluene	ug/l	ND	20	17.0	16.7	85.2	83.7	70-131	1.8	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38087

38088

Original: H10040042001

MS Analysis Date/Time Analyst:

04/07/2010 14:51 LKT

MSD Analysis Date/Time Analyst:

04/07/2010 15:20 LKT

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	ND	40	33.1	32.3	82.8	80.8	35-175	2.4	20
o-Xylene	ug/l	ND	20	16.7	16.1	83.3	80.7	35-175	3.1	20
Xylenes, Total	ug/l	ND	60	49.76	48.46	82.9	80.8	35-175	2.6	20
4-Bromofluorobenzene (S)	%	99				104	104	74-125		30
1,2-Dichloroethane-d4 (S)	%	102				101	108	70-130		30
Toluene-d8 (S)	%	114				113	113	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
E	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
N	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10030520 : B-Com 1E

Project Number: B-Com 1E

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10030520001	MW-1	SW-846 3010A	DIGM/1636	SW-846 6010B	ICP/1332
H10030520002	MW-6	SW-846 3010A	DIGM/1636	SW-846 6010B	ICP/1332
H10030520001	MW-1	SW-846 5030	MSV/1716	SW-846 8260B	MSV/1717
H10030520002	MW-6	SW-846 5030	MSV/1716	SW-846 8260B	MSV/1717
H10030520003	Duplicate	SW-846 5030	MSV/1716	SW-846 8260B	MSV/1717
H10030520004	Trip Blank	SW-846 5030	MSV/1716	SW-846 8260B	MSV/1717

Report ID: H10030520_6124

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

Wo	rkOrder:	H10030520	Received By	LOG
Dat	e and Time	03/30/2010 09:15	Carrier Name:	FEDEXS
Ten	nperature:	2.0°C	Chilled By:	Water Ice
1.	Shipping container/cooler	in good condition?		YES
2.	Custody seals intact on s	hipping container/cooler?		YES
3.	Custody seals intact on s	ample bottles?		Not Present
4.	Chain of custody present	?		YES
5.	Chain of custody signed v	when relinquished and received?		YES
6.	Chain of custody agrees	with sample labels?		YES
7.	Samples in proper contain	ner/bottle?		YES
8.	Samples containers intac	1?		YES
9.	Sufficient sample volume	for indicated test?		YES
10.	All samples received with	in holding time?		YES
11.	Container/Temp Blank ter	mperature in compliance?		YES
12.	Water - VOA vials have zo	ero headspace?		YES
13.	Water - Preservation chec	cked upon receipt(except VOA*)?		Not Applicable
	*VOA Preservation Check	ked After Sample Analysis		
	SPI Representative:		Contact Date & Time:	

Report ID: H10030520_6124

Client Name Contacted: Client Instructions:

Phone: (713) 660-0901 Fax: (713) 660-8975

Rush TAT requires prior notice X 19880 Interchange Drive		3 Business Days A Standard That and A Standard The Annual Control of the Control	Contract		₹	Client/Consultant Remarks:	Control of the Contro			Trip Blank	Duolicate	MW-0	mw-6	MW-	(-mw	SAMPLE ID	Sile Location: FAMID(ID) NIT	Sile Name:	Project Name No.: 8-1800 1F	PhonoFax: 515, 237, 8440	michal Mana	Client Name: PTX TeCh (M)	Analysis Request & Chain of Custody Record	The state of the s
	Total Live	Ly Dands	A resel 3 Oc . Twel 4 Oc .	Special Reporting Requirements Results: Pax	nutak antanor before analysis	Laborato	THE RESIDENCE OF THE PROPERTY			Shh! 0/152/6	3/29/10 1430	3/29/10 13:35	3/29/10 13:35	3)29/10 1420	3/29/10 1990 Hab	TIME TIME	773		Email: NUM LATER THEORY	五 五	State MM Zup 87	ROLDING VE	ain of Custody Record	
Sin Ambassador Coffee Parkway		12/10/10/15	TX TRRP LA RECAP	Bran PDF Special Detection Limits (specify):		aboratory remarks:				N V	IN A CA	X IN P III	N M K	XX	1 / W X	P= G= 1=1	olastic glass liter	√ 4=	soil =enc A=am =vial 4oz	O=o fore iber X= 40=	glass other vial	matrix bottle size		
	Defense Antonia	DO A Received hy:	17 Doctor	Detection Limits (specify):			23.5	A NAS	1 3 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 2 X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) \\ \\	8 - -		1=F 3=F	oz 1 IC1 I2SO nber TE	4 X of Co	=HN =oth	O3 er	ner E	pies		にようのいのあるの
WWW WWW	A TABLE TO THE TAB			PM (review (initial):	Ice?) O UY UN	Intact?		3	. 6-10 A			124 V				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4.000 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	t die en viz terte en en		2. (5 v.)		Requested Analysis	jage of	

APPENDIX C HISTORICAL ANALYTICAL DATA

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

07	Total-Xylene	2044.0				2800.0			· · · · · · · · · · · · · · · · · · ·	470.0	171.0	33.3	35.0	119.0	BDL	68.1	36.4	BDL	· · · · · · · · · · · · · · · · · · ·	5.3	2.0	BDL	BDL	BDL	56.0	BDL	BDL	_	620.0
BTEX per EPA 8020 (ppb)	Ethylbenzene	370.0				420			· · · · · · · · · · · · · · · · · · ·	16.0	32.0	39.0	2.1	64	BDL	4.1	1.8	BDL		1.6	5.0	TOB	TICE	TOB	3.1	BDL	BDL	BDL	750.0
BT	Toluene	34.0				TOB	1999		のできない。	5.3	2.7	2.5	9.0	BDL	BDL	BDL	BDL	BDL		1.2	BDL	BDL	BDL	BDL	6.0	9.0	BDL	BDL	0.067
	Benzene	210.0				350.0	ų			2.4	0.8	1.3	BDL	BDL	BDL	BDL	BDL	BDL		6.0	BDL	BDL	TOB	TOB	BDL	BDL	'IQB	BDL	0 01
Remarks		On Site Lab.			in well		Taken		大学 はない 大学 ないない ないのはない	On Site Lab.								lina ba Lab		On Site Lab.								lina ba Lab	· · · · · · · · · · · · · · · · · · ·
Monitor Well		MW#1	in the bailer		free product		Samples	free product	PG.	MW#2										WW#3									- Levels
Sample ID#		9802020-01A	3" of free	product	Not Sampled	9812053-04A	Water	Not Sampled		9802020-02A	9806055-02A	9809035-01A	9812053-05A	9903012-05A	9906055-05A	9909054-05A	9912018-05A	0401011-004A		AE0-0202086	9806055-01A	9809035-02A	9812053-06A	9903012-04A	9906055-04A	9909054-04A	9912018-04A	0401011-0	Action
Sample Date Sample II		2/19/98	6/12/98		9/15/98	12/29/98	No	1/22/04		2/19/98	6/12/98	9/15/98	12/29/98	3/3/99	6/12/88	9/15/99	12/14/99	1/22/04	· · · · · · · · · · · · · · · · · · ·	2/19/98	06/12/98	9/15/98	12/29/98	3/3/99	6/12/88	9/15/99	12/14/99	1/22/04	WOCC

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

BDL BDL BDL BDL BDL 0.7 BDL BDL BDL 0.7 BDL BDL BDL BDL BDL BDL
BDL BDL BDL
BDL
BDL BDL BDL
BDL BDL BDL
BDL 0.8 BDL BDL BDL BDL
BDL BDL BDL BDL 0.7 1.1 BDL 1.8 0.7 BDL BDL BDL
BDL
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.7 1.1 BDL 1.8 0.7 BDL BDL BDL
BDL BDL BDL BDL 0.7 1.1 BDL 1.8 0.7 BDL 1.8 0.7 BDL BDL BDL
BDL 1.8 0.7 BDL BDL BDL BDL
BDL BDL BDL

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

COD			:			
ВОБ	poldu					
lron ppm	Not Sampled	BDL	BDL	BDL	BDL	0.194
Anions		65.1	73.3	67.7	86.8	28.2
Remarks	lina ba Lab					
Monitor Well	MW#1	MW#2	MW#3	MW#4	2#MW	9#MM
Sample ID#		0401011-004	0401011-002	0401011-003	0401011-005	0401011-006
Sample Date	1/22/04	1/22/04	1/22/04	1/22/04	1/22/04	1/22/04