

REPORTS

YEAR(S): 10-5-11

AMARILLO 921 North Bivins Amarillo, Texas 79107 Phone 806.467.0607 Fax 806.467.0622

AUSTIN 3003 Tom Gary Cove Building C-100 Round Rock, Texas-78664 Phone 512.989.3428 Fax 512.989.3487

MIDLAND 2901 State Highway 349 Midland, Texas 79706 Phone 432.522.2133 Fax 432.522.2180

> SAN ANTONIO 17170 Jordan Road Suite 102 Selma, Texas 78154 Phone 210.579.0235 Fax 210.568.2191

TULSA 9906 East 43rd Street Suite G Tulsa, Oklahoma 74146 Phone 918.742.0871 Fax 918.742.0876

HOBBS 318 East Taylor Street Hobbs, New Mexico 88241 Phone 505.393.4261 Fax 505.393.4658

> TYLER 719 West Front Street Suite 255 Tyler, Texas 75702 Phone 903.531.9971 Fax 903.531.9979

HOUSTON 3233 West 11th Street Suite 400 Houston, Texas 77008 Phone 713.861.0081 Fax 713.868.3208

ENVIRONMENTAL CONSULTING ENGINEERING DRILLING CONSTRUCTION EMERGENCY RESPONSE

> Toll Free: 866.742.0742 www.talonlpe.com

MOBILE DUAL PHASE EXTRACTION REPORTTNM SPS-11 PIPELINE RELEASERECEIVED OCDLEA COUNTY, NEW MEXICOSRS # TNM SPS-112011 DEC - 6 A IO: 42SRS # TNM SPS-112011 DEC - 6 A IO: 42TALON/LPE PROJECT # 700376.101.01

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

TALON/LPE

921 N. BIVINS

AMARILLO, TEXAS 79107

DISTRIBUTION:

COPY 1 - PLAINS MARKETING, L.P. - MIDLAND COPY 2 - PLAINS MARKETING, L.P. - HOUSTON COPY 3 – NMOCD – SANTA FE COPY 4 – NOVA COPY 5 - TALON/LPE

October 5, 2011

RECEIVED OCD

2011 DEC -6 A 10:43

December 2, 2011

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

Plains Pipeline, L.P. Reports for MDPE Events at Seven (7) Remediation Sites in Lea County, NM

Dear Mr. Hansen:

Plains Pipeline, L.P. is pleased to submit the attached reports which provide details regarding the Mobile Dual Phase Extraction (MDPE) events that were conducted at the following sites during September 2011:

HDO 90-23	NMOCD Reference #AP-009
SPS-11	NMOCD Reference #GW-140
Livingston Ridge to Hugh P. Sims	NMOCD Reference #1R-0398
Monument 10	NMOCD Reference #1R-0119
Monument 18	NMOCD Reference #1R-0124
DCP Plant to Lea Station 6-inch #2	NMOCD Reference #1R-2136
DCP Plant to Lea Station 6-inch Sec. 31	NMOCD Reference #1R-2166

Should you have any questions or comments, please contact me at (575) 441-1099.

Sincerely, enn oson

Ason Henry Remediation Coordinator Plains Pipeline, L.P.

Enclosure

TABLE OF CONTENTS

Page

I.	MD	PE SUMMARY REPORT AND WASTE DISPOSITION	i
	Α.	MDPE Results	.1
	В.	Air Quality	.2
	C.	Waste Management and Disposition	.2
II	.SYS	TEM OPERATION DATA AND MASS RECOVERY CALCULATIONS	2
T	able	1	3

i

Attachments:

Section

Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results Attachment 3 - Oxidizer Charts Attachment 4 - Waste Ticket

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted from September 14, 2011 to September 15, 2011 at the TNM SPS-11 Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-SCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed. MW1, 4, 7, & 11 for 12 hours.

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Three influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. All three influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by ASTM method D 1945. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of **59.02 equivalent gallons of PSH (Total)** were removed during the event. The combined volume of PSH was comprised of approximately **12 gallons of PSH (liquid phase)** and approximately **47.02 gallons as off-gas vapor**.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 132.46 SCFM during the event.

A portion of the extracted air flow rates measured is attributable to compressed air, which was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Three influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum concentration in air influent was recorded as 56,496 ppmv for Hydrocarbon Composition. Laboratory analytical results can be found in Attachment 2.

C. Waste Management and Disposition

A cumulative total of 2,977 gallons of fluid were generated during this event. The fluids were temporarily transferred to an on-site storage tank prior to being transported to an authorized disposal facility. A copy of the waste ticket can be found in Attachment 4.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration $(C_mg/l) =$	<u>C ppmv x Mol. wt. in mg(estimated) x 1000 x 0.000001</u>
	0.0821 x Temp (K)
Recovery Rate (lbs/hr) =	(C_mg/l) x 2.2 x (Flowrate) x 60 x 28.32
	1,000,000

Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) =

FID Reading(ppmv) FID Reading at Time of Laboratory Analysis

<u>8.34 lbs</u> gallon water x 0.66 average specific gravity of light crude = . (estimated) 5.5 lbs light crude gallon

	Table 1						
System	Operation	Data	and	Mass	Recovery	Calculations	

Time	Period (hours)	Influent Temp. (°f)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppmv)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (Ibs/hr)	Recovery in Period (Ibs)	Total Recovery (Ibs)
12:30	0.5	89	19	258.57	39	129.72	50000		56496.00	1.00	56496	76.72	37.20	18.60	18.60
13:00	0.5	86	19	258.57	40	131.73	50000	56496.00	56496.00	1.00	56496	77.14	37.99	18.99	37.59
14:00	1	88	19	258.57	41	133.13	50000		56496.00	1.00	56496	76.86	38.25	38.25	75.84
15:00	1	90	19	258.57	40	131.25	50000	-	56496.00	1.00	56496	76.58	37.57	37.57	113.41
16:00	1	88	19	258.57	39	129.84	50000	100-20	33540.00	1.00	33540	35.01	16.99	16.99	130.40
17:00	1	85	19	258.57	40	131.85	50000	1. 1	33540.00	1.00	33540	35.20	17.35	17.35	147.76
18:00	1	82	19	258.57	39	130.55	50000	33540.00	33540.00	1.00	33540	35.40	17.27	17.27	165.03
19:00	1	80	19	258.57	41	134.11	50000		33540.00	1.00	33540	35.53	17.81	17.81	182.84
20:00	1	80	19	258.57	40	132.46	50000	-	33540.00	1.00	33540	35.53	17.59	17.59	200.43
21:00	1	76	19	258.57	40	132.96	50000		25786.00	1.00	25786	28.72	14.28	14.28	214 71
22:00	1	74	19	258.57	41	134.86	50000	-	25786.00	1.00	25786	28.83	14.53	14.53	229.24
23:00	1	70	19	258.57	42	137.01	50000	25786.00	25786.00	1.00	25786	29.05	14.88	14.88	244.12
0:00	1	66	19	258.57	39	132.53	50000		25786.00	1.00	25786	29.27	14.50	14.50	258.62
erages:		81.08	19.00	258.57	40.08	132.46	50000.00	State 2					Total	258.62	
										PSH Mass Re	ecovered in Va	por Phase =		47.02	gallons
															-

FID maximum Concentration = 50,000 PPM

Ex: Conversion from ppmy to mg/L (influent

Ex: Convers	ion from ppmv	to mg/L (int	fluent 1)			
Measured Conc.	Molecular Wt.	Pressure	Gas Constant	Temp.	Temp.	Conc.
(C_ppmv)	(Grams)	(atm)	(atm.liter/K.m ole)	(F)	(K)	(C_mg/l)
56496	33.96502531	1	0.0821	89	304.6666667	76.71522174

Inputs are the green values. Calculated values are yellow. Constants are purple values. Outpus are the blue values.

Liquid-phase Hydrocarbon Recovery

(assumes gasoline product)

 $\prod * r^2 * h = volume$

Gallons removed determined at time of pick up PSH Volume in Gallons= PSH Mass in Pounds= 66

% Total Hydrocarbon to mg/m ³ to ppmv - Influent 1						
Compound	Molecular Weight (g/mol)	% total	=	ppmv		
Methane (CH4)	16.04	3.1505		31505.00		
Ethane (C2H6)	30.07	0.3005		3005.00		
Propane (C3H8)	44.10	0.5833		5833.00		
Iso-Butane (C4H10)	58.12	0.3395		3395.00		
N-Butane (C4H10)	58.12	0.5644		5644.00		
Iso-Pentane (C4H12)	72.15	0.2551		2551.00		
N-Pentane (C5H12)	72.15	0.2615		2615.00		
Hexane+ (C6H14)	86.18	0.1948		1948.00		
			Total	56496.00		

Compound	Molecular Weight (g/mol)	% total	Ξ.	ppmv
Methane (CH4)	16.04	2 7066		27066.00
Ethane (C2H6)	30.07	0.0167		167.00
Propane (C3H8)	44.10	0.0681		681.00
Iso-Butane (C4H10)	58.12	0.0852		852.00
N-Butane (C4H10)	58.12	0.0991		991.00
Iso-Pentane (C4H12)	72.15	0.0769		769.00
N-Pentane (C5H12)	72.15	0.1246		1246.00
Hexane+ (C6H14)	86.18	0.1768		1768.00
			Total	33540.00

% Total Hydrocarbon to mg/m³ to ppmv - Influent 3						
Compound	Molecular Weight (g/mol)	% total	=	ppmv		
Methane (CH4)	16.04	2.0496		20496.00		
Ethane (C2H6)	30.07	0.0033		33.00		
Propane (C3H8)	44 10	0.0283		283.00		
Iso-Butane (C4H10)	58.12	0.1189		1189.00		
N-Butane (C4H10)	58.12	0.0478		478.00		
Iso-Pentane (C4H12)	72.15	0.0595		595.00		
N-Pentane (C5H12)	72 15	0.1025		1025.00		
Hexane+ (C6H14)	86.18	0.1687		1687.00		
			Total	25786.00		

Total Hydrocarbon %=	5.6496
g of Methane (CH4) =	8.94470759
g of Ethane (C2H6) =	1.599411463
g of Propane (C3H8) =	4.553159516
g of Iso-Butane (C4H10) =	3.492590626
g of N-Butane (C4H10) =	5.806239026
g of Iso-Pentane (C4H12) =	3 257835068
g of N-Pentane (C5H12) =	3.339568288
g of Hexane+ (C6H14) =	2.971513735
Calculated MW (Grams)	33.96502531

Total Hydrocarbon %=	3.354
g of Methane (CH4) =	12.94390698
g of Ethane (C2H6) =	0.149722421
g of Propane (C3H8) =	0.895411449
g of Iso-Butane (C4H10) =	1.47639356
g of N-Butane (C4H10) =	1.717260584
g of Iso-Pentane (C4H12) =	1.654244186
g of N-Pentane (C5H12) =	2.680348837
g of Hexane+ (C6H14) =	4.542821705
Calculated MW (Grams)	26.06010972

Molecular Weight Calculations				
Total Hydrocarbon %=	2.5786			
g of Methane (CH4) =	12.74939269			
g of Ethane (C2H6) =	0.03848251			
g of Propane (C3H8) =	0.483995191			
g of Iso-Butane (C4H10) =	2.679930195			
g of N-Butane (C4H10) =	1.077381525			
g of Iso-Pentane (C4H12) =	1.664827814			
g of N-Pentane (C5H12) =	2.867980687			
g of Hexane+ (C6H14) =	5.638162569			
Calculated MW (Grams)	27.20015318			

Total Hydrocarbon Recovery

PSH Mass Recovered in Vapor Phase =

PSH Mass Recovered in Liquid Phase =

12.00 galons TOTAL = 324.62 lbs 59.02 gallons

258.62 47.02

66.00

gallons

lbs

ATTACHMENT 1 MDPE Field Logs

					MDPE FI	LD NOTE	S		. <u></u>
Site Name	:	TNM SPS	-11					Event #:	1
Location:		15 Miles V	V. of Hobb	s, NM				Arrive at site:	9/14/2011 8:00
Date:	·····	9/14-15/20	011			· · · · · · · · · · · · · · · · · · ·			
Job#:		700376.10)1.01		SRS#:	TNM SPS	<u>6-11</u>	Start Vac:	9/14/2011 12:30
Phase:		MDPE			Unit:	1107		Stop Vac:	9/15/2011 0:30
Onsite Per	sonnel:	L. Jaquez	& M. Cogg	gins				Leave Site:	9/15/2011 1:35
			· · · · · · · ·						
					GAUGI	NG DATA			
WELL#		BEFORE			AFTER	· · · · · · · · · · · · · · · · · · ·		COMMEN	NTS
	PSH	GW	PSH-T	PSH	GW_	PSH-T			
MW1	59.56	60.09	0.53	-	59.98				
MW7	51.82	60.49	8.67		59.60				
MVV4	59.57	61.76	2.19	-	60.78				
	60.78	61.//	0.99	-	<u> 61.18</u>				
	-	61.3/	-		NG				
MM	-	60.70	-		NG				r.
		60.25	-	<u> </u>	NG				
	-	62.12	-						
	-	61.90	-					· · · · ·	
1010 10	-	01.00				- <u></u>			
		<u> </u>		-			- <mark>.</mark>		
	<u>-</u>								· · · · ·
								,	·····
-									
				1					
				•					,
		· · · · ·							
								· · · · · · · · · · · · · · · · · · ·	
WASTE:	H2O:	2965		PSH:	12		TOTAL (GAL)	2977	
							· · · · · · · · · · · · · · · · · · ·		
Sample	Name	, Ana	lysis	Date:	Ti	me:	Comments:		
NFLUENT		ASTM	D.1945	9/14/2011	1:	3:00		FID = >5	0K
NFLUENT		ASTM	D 1945	9/14/2011	18	3:00		FID = >5	0K
INFLUENT		ASTM	D 1945	9/14/2011	23	3:00		FID = >5	0K
EFFLUEN	<u>r </u>								
Notes:					- <u>-</u> - · · · · ·				<u></u>
	<u>-</u> <u>-</u>								
						· · · · ·			
				<u>_</u>					

•

.

,

i.

			\mathbb{N}	VAC	(INH2O)		X	X	X	X	X	X	X	X	X	X	X	X	
			MW11	VAC	(INH2O)						. <u> </u>	cted.		(<u> </u>					
	Well Data	COMMENTS:	MW7	VAC PPM	INH20)							ger. No data colle							
			MW4	VAC	(INH2O) (covery through sting							
			- MW1	VAC	(INH2O)							All re							
ELD DATA		EXHAUST	TEMP F			1410	1414	1414	1414	1411	1410	1412	1409	1413	1410	1412	. 1409	1414	
MDPE FI		Propane	Tank	(%-size)	250 Gal.	55	52	48	45	43	40	85	81	78	74	69	. 65	58	
		FID	Composite	(MPA)		>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	>50K	
		Vac	(In.Hg)			19	19	19	19	19	19	19	19	19	19	19	19	19	
	Well Flow	Diff.	Pressure	(INH20)	2" Preso	39	40	41	40	39	40	39	41	40	40	41	42	39	
		Inflent temp	(°f)			89	86	88	06	88	85	82	80	80	76	74	70	66	
		Pressure	(ln. h2O)			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	Total Flow	Diff.	Pressure	(INH20)	6" Pitot	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.2	0.3	0.2	0.2	0.2	
		Infient temp.	(° f)			112	110	110	112	110	110	108	104	100	97	93	06	88	
9/14/2011		SAMPLE	TAKEN		•		*					*					*		
Start Date:		TIME				12:30	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	0:00	

Soil Vacuum Influence Observation Well (EW) MW7 Distance (ft) to EW 83 11:00 19:00

,

1

TNM SPS-11 - 700376.101.01 - SRS# TNM SPS-11 - Event 1 - 12 Hour

ATTACHMENT 2 Laboratory Analytical Results

. .

200 East Sunset Road, Suite 5 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•538•3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

888+598+3443 915+585+3443 432+689+6301 817+201+5260

 1296
 FAX 806 • 794 • 1298

 • 3443
 FAX 915 • 585 • 4944

 • 6301
 FAX 432 • 689 • 6313

 • 5260
 •

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Simon Walshe Talon LPE-Amarillo 921 North Bivins Amarillo, TX, 79107

.

Report Date: September 29, 2011

Work Order: 11091917

Project Location:15 Miles N. Hobbs, New MexicoProject Name:TNM SPS-11Project Number:700376.101.01SRS #:*

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	.i me	Date
Sample	Description	Matrix	Taken	Taken	Received
277796	Influent Air #1	air	2011-09-14	13:00	2011-09-19

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	3
Analytical Report Sample 277796 (Influent Air #1)	4
Appendix	Б
Laboratory Certifications	E C
Standard Flags	تى 1

Page 2 of 5

Case Narrative

Samples for project TNM SPS-11 were received by TraceAnalysis, Inc. on 2011-09-19 and assigned to work order 11091917. Samples for work order 11091917 were received intact at a temperature of 22.6 C.

Samples were analyzed for the following tests using their respective methods.

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 11091917 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: September 29, 2011 700376.101.01 Work Order: 11091917 TNM SPS-11 Page Number: 4 of 5 15 Miles N. Hobbs, New Mexico

Analytical Report

Report Date: September 29, 2011 700376.101.01 Work Order: 11091917 TNM SPS-11 Page Number: 5 of 5 15 Miles N. Hobbs, New Mexico

Appendix

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

	88	-	ndard	ets me	ont fre	aiffere	i em	וח Around T אל	лТ РН												T
/ of /	BioAquatic Testing 5501 Mayes Rd., Ste 1(Carrolton, Texas 750 Tel (972) 242-7750	od No.)	11-50	Á	inilex	EC EC	561 Sat '	Ca, Mg, K , , Fl, S04, NG		< ×	×										
Page_	rt Rd Suite E xas 79922 865-3943 885-3443 88-3443	LYSIS REQUEST Specify Meth	AS#		625	524 570 / 8	9 / 092 9 / 09 9 / 10 9 / 10 10 / 10 10 10 / 10 10 10 10 / 10 10 10 10 10 10 10	21 21 21 21 21 21 21 21 21 21 21 21 21 2								MARKS:				Weight Basis Required RP Report Required ck If Special Reporting its Are Needed	Ę
	e A1 200 East Sunse a3 EI Paso, Te Tel (915) 5 Fax (915) 4 1 (888) 51	ANA (Circle or	6 _H	109 QH	A Cr F	and Cr F	55 2 88 87 2 84 97 2 84 97 2 91 2 91 2 95 2 95 2 95 2 95 2 95 2 95 2 95 2 95	A 8270 / 65 bal Metals Ag 4 A Batals Ag 4 A State A A State A A Semi Vo C P Semi Vo C A Setticid	(q of of of of of of of							AB USE REI	ONLY	A A	dispace, X.I. (NA)		Com
	5002 Basin Street. Suite Midland, Texas 7970 Tei (432) 689-6301 Fax (432) 689-6313		(SE	Ext(CC	AHC 1002 1 954 0 1 95	V 8260	0 \ DE X1002 905 \ 1 \ 905	5H 8012 CE 5H 418 1 / L LEX 8051 / ME		8:00	23:00		 		 		COR 0	INST ^o Ind	COR 0 Hea	OBS 22 . He La	Carrier #
	een Avenue, Suite 9 k, Texas 79424 06) 794-1296 066) 794-1298 006) 794-1298	. 467. 0607	TALONLPE.C	АŃ	-1/			SE ONE ATE	<u> </u>	11. M. 6 X	X 9-14-1	 	 		 	Date: Time:		Date: Time:		Date: Time:	0. C.
	6701.Aberds Lubboc Tel (8) Fax (8 1 (80	Phone #: 806 Fax #:	E-mail: SWASHE @	L AMERIC	Project Name: 77NM SPS	Samplessignature	PRESERV	90H 5805 103 103 103					 			r: Company:		Company:		Company:	n reverse side of C.
	s, Inc.	AMERICAN		DAINS AU			MATRIX	olume / Amo ATER OIL INDGE		Left X	LTR X				 	ie: Received by	8	1e: Received by		ne: Received by	Conditions listed or
	Analysi o@traceanalysis	AINS ALL	V 0777	HENRY		EN MEXICO	<u></u> รุศ	CONTRINE	#			 	 		 	Date: Tin	9.16.11 20.	Date: Tin		-Date: Tin	ement to Terms and
1109191	TraceA email: lat	treek City, Zip)	HSHE	bovel JASUN	10 101	including state): /, HOKBS _ M		FIELD CODE	AIR #	L FIL # 2	AIR*3					Company:	TADNA	Company:		Company:	les constitutes agre-
LAB Order ID #		Company Name: TALONLPE Address: (S	Contact Person: S/M.D.N. W	(if different from a	720.376.	Project Location (i		LAB # (LAB USE)		K. INF.	IVIET			- -		Relinquished by:	in the second second	Relinguished by:		Relinquished by:	Submittal of samp

ļ

Midwest Precision Testing LLC 135 N Price Rd Pampa, TX 79065

The following analytical results were produced using the strictest quality control and most current methods:

COC #: N/A

Lab #: 6960-6962

Quality Control #: 1672

Approved by:

 \mathcal{N}_{i}

Neil Ray

Date: 9/26/11

Midwest Precision Testing LLC 135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #1 Trace: 277796-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 9/14/11 Time: 1:00 pm Sampled By: N/A Analysis Date: 9/26/11 Analysis By: Neil Ray

Lab #: 6960 Quality Control Report: 1672

Gas Composition				
	<u>Mol %</u>	<u>GPM</u>	Vol %	<u>Wt. %</u>
Nitrogen (N2):	86.9545	9,5180	80.2138	82.3781
Carbon Dioxide (CO2):	9.8795	1.6664	14.1365	14.6722
Hydrocarbon Composition	<u>Mol %</u>	<u>GPM</u>	<u>Vol. %</u>	<u>Wt. %</u>
Methane (CH4):	2.2156	0.3762	3.1505	1.1992
Ethane (C2H6):	0.1340	0.0357	0.3005	0.1358
Propane (C3H8):	0.2524	0.0692	0.5833	0.3753
Iso-Butane (C4H10):	0.1237	0.0403	0.3395	0.2425
N-Butanc (C4H10):	0.2134	0.0669	0.5644	0.4182
Iso-Pentane (C5H12):	0.0832	0.0303	. 0.2551	0.2022
N-Pentane (C5H12):	0.0860	0.0310	0.2615	0.2094
Hexane+ (C6H14):	0.0577	0.0249	0.1948	0.1671
Totals.	100.0000	11.8588	100,0000	100.0000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	51.7	Z-Comp. Factor-dry:	0.99939
BTU -water vapor sat.(BTU/ft ³):	52.0	Z-Comp. Factor-water vapor sat.:	0.99368
Specific Gravity -dry:	1.0218	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0206		

Midwest Precision Testing LLC 135 N Price Rd Pampa, TX 79065 ww

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #2 Trace: 277797-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 9/14/11 Time: 6:00 pm Sampled By: N/A Analysis Date: 9/26/11 Analysis By: Neil Ray

Lab #: 6961 Quality Control Report: 1672

Gas Composition				
	Mol %	<u>GPM</u>	Vol %	<u>Wt. %</u>
Nitrogen (N2):	88,4445	9.6804	82.8912	84.3417
Carbon Dioxide (CO2):	9.4616	1.5958	13.7548	14.1442
Hydrocarbon Composition	<u>Mol %</u>	<u>GPM</u>	<u>Vol. %</u>	<u>Wt. %</u>
Methane (CH4):	1.8735	0.3181	2.7066	1.0208
Ethane (C2H6):	0.0073	0.0019	0.0167	0.0075
Propane (C3H8):	0.0290	0.0079	0.0681	0.0434
Iso-Butane (C4H10):	0.0306	0.0100	0.0852	0.0603
N-Butane (C4H10):	0.0369	0.0116	0.0991	0.0728
Iso-Pentane (C5H12):	0.0247	0.0090	0.0769	0.0604
N-Pentane (C5H12):	0.0403	0.0145	0.1246	0.0989
Hexane+ (C6H14):	0.0516	. 0.0223	0.1768	0.1502
Totals	100,0000	11.6715	100.0000	100.0000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	27.2	Z-Comp. Factor-dry:	0.99946
BTU -water vapor sat.(BTU/ft ³):	27.7	Z-Comp. Factor-water vapor sat.:	0.99403
Specific Gravity -dry:	1.0149	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0136		

Midwest Precision Testing LLC 135 N Price Rd Pampa, TX 79065 we

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #3 Trace: 277798-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 9/14/11 Time: 11:00 pm Sampled By: N/A Analysis Date: 9/26/11 Analysis By: Neil Ray

Lab #: 6962 Quality Control Report: 1672

Gas Composition Mol % GPM Vol % Wt. % Nitrogen (N2): 89.4698 9.7924 84.3413 85,4321 Carbon Dioxide (CO2): 8.9454 1.5087 13.0802 13,3901 Hydrocarbon Composition Mol % GPM Wt. % Vol. % 1.4105 2.0496 0.7695 Methane (CH4): 0.2395 Ethane (C2H6): 0.0014 0.0004 0.0033 0.0015 Propane (C3H8): 0.0120 0.0033 0.0283 0.0180 Iso-Butane (C4H10): 0.0424 0.0138 0.1189 0.0837 N-Butane (C4H10): 0.0177 0.0056 0.0478 0.0350 Iso-Pentane (C5H12): 0.0190 0.0069 0.0595 0.0465 N-Pentane (C5H12): 0.0330 0.0119 0.1025 0.0809 Hexane+ (C6H14): 0.0489 0.0211 0.1687 0.1427 100,0000 100.0000 Totals 11.6035 100.0000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	21.1	Z-Comp. Factor-dry:	0.99948
BTU -water vapor sat.(BTU/ft ³):	21.7	Z-Comp. Factor-water vapor sat.:	0.99416
Specific Gravity -dry:	1.0136	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0121		

www.mwptfab.com

Sample Type: Standard Preservative: N/A Sample Container: Industrial Cylinder Sample Id.: DCG Reference Std. 47366AW Sample Temp.: 120° F Analysis Date: 9/26/11 Analysis By: Neil Ray

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography

Quality Control Report#: 1672

RESULTS	ACTUAL	ANALYSIS			
Gas Composition			MDL	RL	% Deviation
	Mol %	<u>Mol %</u>	<u>Mol %</u>	ppm mol	(90-100%)
Nitrogen (N2):	4.926	4.9098	0.0010	10	99.7
Carbon Dioxide (CO2):	1.489	1.4796	0.0010	10	99.4
					· · · · · · · · · · · · · · · · · · ·
			MDL	RL	% Deviation
<u>Hydrocarbon Composition</u>	<u>Mol %</u>	<u>Mol %</u>	<u>Mol %</u>	ppm mol	<u>(90-100%)</u>
Methane (CH4):	69.955	70.2404	0,0001	1	99.6
Ethane (C2H6):	9.138	9.0434	0.0001	1	99.0
Propane (C3H8):	5.947	5.8388	0.0001	J	98.2
Iso-Butane (C4H10):	3.018	2.9734	0.0001	J	98.5
N-Butane (C4H10):	3.021	2.9932	0.0001	1	99.1
Iso-Pentane (C5H12):	1.001	1.0165	0.0001	1	98.4
N-Pentane (C5H12):	1.007	0.9901	0.0001	1	98.3
Hexane+ (C6H14):	0.498	0.5148	0.0001	1	96.6
Totals	100.000	100.000			

Analytical Results

Comments - Additional Data

6

ACTUAL		ANALYSIS	
BTU -dry (BTU/ft3):	1322.3	BTU -dry (BTU/ft ³):	1319.2
BTU -water vapor sat. (BTU/ft3):	3TU -water vapor sat. (BTU/ft3): 1316.6 BTU -water vapor sat. (BTU/ft ³):		1313.5
Specific Gravity -dry:	0.8337	Specific Gravity -dry:	0.8314
Specific Gravity -water vapor sat :	0.8406	Specific Gravity -water vapor sat.:	0.8383
Z-Comp. Factor -dry:	0.99565	Z-Comp. Factor -dry:	0.99568
Z-Comp. Factor -water vapor sat.:	0.98309	Z-Comp. Factor -water vapor sat.:	0.98314

ATTACHMENT 3 Oxidizer Charts

· · ·

TNM SPS-11 - 700376.101.01 - SRS# TNM SPS-11 - Event 1 - 12 Hour

ATTACHMENT 4 Waste Ticket

S. C. C. 35434 ICC MC #259649 TRANSPOINTS FRACTANINS WINCH VRUIKS TRANSPOINTS FRACTANINS WINCH VRUIKS	KING	G CO). 8	5-1/-2		nver City(806) 59 Hobbs (575) 39 Levelland(806) 89 Seminole(432) 75	2-2772 7-6264 7-1705 8-2166
B Proins Pipeine	CONT NUN	IRACT ABEP			_	NUMBER 1639	933
	A I MUN	F E. MBER				DATE ()-15-1)	
J	PEC PURCHAS MUN	D OR SE OHDER 48EB	· · · · · · · · · · · · · · · · · · ·			ONDERED BY	
DELIVERED	<u> </u>						
LOCATION CESSION	<u></u>	<u>sfc.s</u>	-1	WELL RIG N	. OR 10.		
TRUCK OR UNIT NO. 68 CAPACITY AMOUNT HAULED 2.5		START				AM HOUI CHGI PM	75
DESCRIPTION		OHR.	088L.	RAT	E	AMOUNT	
Provide /T		<u> </u>	Hrs.	8Z	00	328	00
Poil Fiuid From tank and took	it		Bbls				
to Disposal 25 BBIS			Bbls				
Tal # 700376 10	1.01		KCL				
SRS # TNP 5RS-11		25	Disp	١	30	32	00
			Disp				
			Helper				
			Tank Min				
		D	ay Rental	:			
		Chart	Recorder				
						360	$ \infty $
FOR OFFICE USE ONLY					ТАХ	24	. 00
				NET	TOTAL	384	00
						Thank Yo	ou
		 (OPEF SRS #	TATOR C	DR DF JM JM	$\frac{1}{10000000000000000000000000000000000$	//