1R - 85

Annual GW Mon. Report

Year:
2011

Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
bjarguijo@basinenv.com

Office: (575) 396-2378

Fax: (575) 396-1429

APR 2 2012

2011 ANNUAL MONITORING REPORT

Oil Conservation Division 1220 S. St. Francis Drive Santa Fc, NM 87505

RED BYRD #1

Unit Letter "H" (SENE), Section 1, Township 20 South, Range 36 East Latitude 32° 36' 10.15" North, Longitude 103° 18' 00.35" West Lea County, New Mexico

Plains SRS Number: TNM Red Byrd #1 NMOCD Reference Number: 1RP-0085

Prepared for:

Plains Marketing, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By:

Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2012

Ben J. Arguijo Project Manager

RECEIVED

March, 29, 2012

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 APR 2 2012

Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

Re:

Plains All American – 2011 Annual Monitoring Reports

5 Sites in Lea County, New Mexico 1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	AP-96 (1R-838)	Section 06, T17S, R37E, Lea County
Red Byrd #1	1R-0085	Section 01, T20S, R36E, Lea County
DCP Plant to Lea Sta. 6" #2	1R-2136	Section 31, T20S, R37E, Lea County
DCP Plant to Lea Sta. 6" Sec.31	1R-2166	Section 31, T20S, R37E, Lea County
14" Vac to Jal Legacy	1R-2162	Section 25, T22S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Service Technologies, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American. I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely,

√ason Henry

Remediation Coordinator

Plains All American

CC: Geoff Leking, NMOCD, Hobbs, NM

Enclosures

TABLE OF CONTENTS

·
INTRODUCTION
SITE DESCRIPTION AND BACKGROUND INFORMATION
FIELD ACTIVITIES
LABORATORY RESULTS
SUMMARY
ANTICIPATED ACTIONS
LIMITATIONS
DISTRIBUTION
FIGURES
Figure 1 – Site Location Map
Figure 2A – Inferred Groundwater Gradient Map – 1Q2011
Figure 2B – Inferred Groundwater Gradient Map – 2Q2011
Figure 2C – Inferred Groundwater Gradient Map – 3Q2011 Figure 2D – Inferred Groundwater Gradient Map – 4Q2011
rigure 2D – interred Groundwater Gradient Wap – 4Q2011
Figure 3A – Groundwater Concentration & Inferred PSH Extent Map – May 2011
Figure 3B – Groundwater Concentration & Inferred PSH Extent Map – November 2011
TABLES
Table 1 – 2011 Groundwater Elevation Data
Table 2 – 2011 Concentrations of Benzene & BTEX in Groundwater
Table 3 – Concentrations of Semi-Volatile Compounds in Groundwater
APPENDICES

Appendix A – Laboratory Analytical Reports
Appendix B - Release Notification and Corrective Action (Form C-141)

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Pipeline, LP (Plains), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2011 only. For reference, a "Site Location Map" is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2011 to assess the levels and extent of dissolved phase constituents and Phase-Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 feet were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The site is located approximately four (4) miles southwest of the town of Monument, New Mexico. The legal description of the site is Unit Letter "H" (SENE), Section 1, Township 20 South, Range 36 East. The geographic coordinates of the site are 32° 36′ 10.15″ North latitude and 103° 18′ 00.35″ West longitude.

In January 2000, evidence of a historical release was discovered by the landowner, Mr. Red Byrd, and brought to the attention of Enron Oil Trading and Transportation (EOTT), who acquired the pipeline from Texas New Mexico Pipeline Company in 1999. On January 1, 2009, Basin assumed oversight of groundwater daily operations, sampling, and reporting at the release site.

Approximately 8,900 cubic yards (cy) of impacted soil was excavated, shredded, and blended with nutrients. Approximately 3,700 cy of the impacted soil was transported to Plains Lea Station Landfarm (Discharge Permit #GW-351) to be used as berm material. On completion of excavation activities, confirmation soil samples were collected from the excavation and stockpiles. Review of laboratory analytical results indicated soil samples collected from the excavation were less than NMOCD regulatory standards. The excavation was backfilled with the blended soil, approximately 3,500 cubic yards of topsoil was transported to the site, and the area was contoured to topographic grade.

At the Red Byrd #1 site, two areas of hydrocarbon impact related to the Plains pipeline have been identified as Red Byrd #1 and Red Byrd Ranch Historical. The first area of impact (Red Byrd #1) is the subject of this Annual Monitoring Report and is centered on and around monitor well MW-1. The second area of impact (Red Byrd Ranch Historical – 1R 1299) related to the Plains pipeline is centered on monitor well MW-12. The soil issues at the Red Byrd #1 and Red Byrd Ranch Historical sites have been have been remediated, and groundwater monitoring and sampling are ongoing. For the purpose of groundwater monitoring, the remaining activities at the site are conducted at Red Byrd #1.

On November 17, 2008, Plains assigned excavation oversight of the Red Byrd Ranch Historical release site to Basin. On December 10, 2008, Basin resumed excavation activities at the release site, and on September 9, 2009, backfilling and restoration activities at the Red Byrd Ranch Historical release site were completed.

During sampling conducted in the first quarter of 2009, additional groundwater samples were collected from each of the nineteen (19) on-site monitor wells and analyzed for concentrations of chloride and total dissolved solids (TDS). The analytical results indicated elevated TDS concentrations, in excess of 10,000 mg/L, were present in fifteen (15) monitor wells. Monitor wells located up-gradient of the Red Byrd #1 and Red Byrd Ranch Historical releases exhibited elevated TDS concentrations, as well as the monitor wells associated with the release(s). Based on the up-gradient position of the monitor wells containing elevated TDS and the presence of numerous (20-plus) pipelines in the area, abandoned pits located northwest and south of the releases, numerous facility and drilling pads, production wells, a refinery and a chemical plant all within one half mile of the release site, there are multiple potential responsible parties contributing to the contaminant plume. The New Mexico Water Quality Control Commission (NMWQCC) regulations state groundwater exhibiting TDS concentrations in excess of 10,000 mg/L is not abatable.

On September 9, 2009, Plains requested NMOCD approval to plug and abandon monitor wells exhibiting TDS concentrations exceeding 10,000 mg/L (MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-13, MW-14, MW-15, MW-16, and MW-19). Plains requested monitor wells associated with the ongoing groundwater issues at the Red Byrd Ranch Historical release (MW-6, MW-7, MW-11, MW-12, MW-17, and MW-18) be placed on a semi-annual sampling schedule to monitor the Red Byrd Ranch Historical PSH plume.

On October 2, 2009, Plains received NMOCD approval to reduce the sampling frequency for monitor wells MW-6, MW-7, MW-11, MW-12, MW-16, MW-17, MW-18, and MW-19 to a semi-annual schedule, and plug and abandon monitor wells MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-13, MW-14, and MW-15.

In October 2009, a Red Byrd Ranch Historical Remediation Summary and Soil Closure Request was submitted to the NMOCD Santa Fe Office. On December 9, 2009, Plains received correspondence from the NMOCD Santa Fe Office, indicating the report was accepted and no further soil remediation was required at the site.

On October 29, 2009, monitor wells MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-13, MW-14, and MW-15 were plugged and abandoned by a State of New Mexico licensed water well driller, as approved by the NMOCD. Following the plugging activities, plugging reports were submitted to the NMOCD Santa Fe Office.

Currently, eight (8) monitor wells (MW-6, MW-7, MW-11, MW-12, MW-16, MW-17, MW-18, and MW-19) are located on the Red Byrd #1 site. Monitor wells MW-6, MW-7, MW-11, MW-16, MW-17, MW-18, and MW-19 are gauged quarterly and sampled on a semi-annual schedule. Monitor well MW-12 is gauged weekly but not sampled due to the presence of PSH.

FIELD ACTIVITIES

Product Recovery Efforts

A measurable thickness of PSH was detected in monitor well MW-12 during the initial site investigation. Basin began manual, weekly gauging and recovery of PSH from MW-12 in January 2009. Approximately 221 gallons (5.3 barrels) of PSH has been recovered from MW-12 since recovery operations began in 2009, and approximately 66.5 gallons (1.6 barrels) of PSH was recovered from MW-12 during the 2011 reporting period. The average PSH thickness measured in MW-12 during the reporting period was 0.77 feet, and the maximum PSH thickness was 2.10 feet on November 22, 2011. All recovered fluids are disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

A Mobile Dual-Phase Extraction (MDPE) event was conducted on July 19 - 20, 2011, by Talon LPE. Approximately 11.19 equivalent gallons (0.3 barrels) of PSH were removed during the event.

Groundwater Monitoring

The on-site monitor wells were gauged and sampled on May 11 and November 10, 2011. During these semi-annual sampling events, the monitoring wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos pump. Groundwater was allowed to recharge, and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

Yearly monitoring events for polyaromatic hydrocarbons (PAH) were conducted on December 16 and December 21, 2011. Based on sampling criteria provided by the NMOCD, only monitor wells MW-16, MW-18, and MW-19 were subject to PAH monitoring during the 2011 calendar year.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from measurements collected during each quarter of 2011, are depicted in Figures 2A through 2D. The "Groundwater Gradient Map" from the most recent gauging event (Figure 2D, November 10, 2011) indicates a general gradient of approximately 0.0024 feet/foot to the southeast as measured between groundwater monitor wells MW-18 and MW-19.

On November 10, 2011, the corrected groundwater elevation ranged between 3,530.66 and 3,534.27 feet above mean sea level in monitor wells MW-11 and MW-18, respectively. The "2011 Groundwater Elevation Data" is provided as Table 1.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the semi-annual sampling events (May and November 2011) were delivered to Xenco Laboratories in Odessa, Texas, for

determination of benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. A summary of benzene and BTEX constituent concentrations is presented in Table 2, "2011 Concentrations of Benzene & BTEX in Groundwater". Laboratory analytical reports are provided as Appendix A. "Groundwater Concentration & Inferred PSH Extent" maps are provided as Figures 2A and 2B.

For the purposes of this annual monitoring report, laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC). However, it should be noted that, due to the TDS concentrations in the groundwater, the closure criteria for this site is not based on the standards noted above, but on the absence of PSH.

Monitor well MW-2 was plugged on November 9, 2006. Monitor wells MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-13, MW-14, and MW-15 were plugged and abandoned on October 29, 2009.

Monitor well MW-6

Laboratory analytical results indicated benzene concentrations ranged from 0.0541 mg/L in November 2011 to 0.200 mg/L in May 2011. Toluene concentrations ranged from 0.0197 mg/L in November 2011 to 0.295 mg/L in May 2011. Ethylbenzene concentrations ranged from less than the laboratory method detection limit (MDL) in May 2011 to 0.0110 mg/L in November 2011. Total xylene concentrations ranged from 0.0187 mg/L in November 2011 to 0.108 mg/L in May 2011. Benzene concentrations exceeded NMOCD regulatory standards in both the May and November 2011 sampling events. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

Monitor well MW-7

Laboratory analytical results indicated benzene concentrations ranged less than the laboratory MDL in November 2011 to 0.00165 mg/L in May 2011. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in both the May and November 2011 sampling events. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

Monitor well MW-11

Laboratory analytical results indicated benzene concentrations ranged from 0.0371 mg/L in May 2011 to 0.0460 mg/L in November 2011. Toluene concentrations ranged from less than the laboratory MDL in May 2011 to 0.0108 mg/L in November 2011. Ethylbenzene concentrations ranged from 0.0159 mg/L in May 2011 to 0.0256 mg/L in November 2011. Total xylene concentrations ranged from 0.00745 mg/L in May 2011 to 0.0381 mg/L in November 2011. Benzene concentrations exceeded NMOCD regulatory standards in both the May and November 2011 sampling events. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

Monitor well MW-12

Monitor well MW-12 was not sampled during the 2011 reporting period due to the presence of PSH in the monitor well.

Monitor well MW-16

Laboratory analytical results indicated benzene concentrations ranged from 0.00159 mg/L in November 2011 to 0.0349 mg/L in May 2011. Toluene concentrations were less than the laboratory MDL in both the May and November 2011 sampling events. Ethylbenzene concentrations ranged from 0.00197 mg/L in November 2011 to 0.0336 mg/L in May 2011. Total xylene concentrations ranged from less than the laboratory MDL in November 2011 to 0.0213 mg/L in May 2011. Benzene concentrations exceeded NMOCD regulatory standards in May 2011. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 16, 2011.

Monitor well MW-17

Laboratory analytical results indicated benzene concentrations ranged from 0.0189 mg/L in November 2011 to 0.0693 mg/L in May 2011. Toluene concentrations were less than the laboratory MDL in both the May and November 2011 sampling events. Ethylbenzene concentrations ranged from 0.00197 mg/L in November 2011 to 0.0336 mg/L in May 2011. Total xylene concentrations ranged from less than the laboratory MDL in November 2011 to 0.0213 in May 2011. Benzene concentrations exceeded NMOCD regulatory standards in both the May and November 2011 sampling events. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

Monitor well MW-18

Laboratory analytical results indicated benzene concentrations ranged from 0.00431 mg/L in November 2011 to 0.0134 mg/L in May 2011. Toluene concentrations ranged from 0.00985 mg/L in November 2011 to 0.0184 mg/L in May 2011. Ethylbenzene concentrations ranged from 0.0269 mg/L in November 2011 to 0.0541 mg/L in May 2011. Total xylene concentrations ranged 0.0405 mg/L in November 2011 to 0.0417 mg/L in May 2011. Benzene concentrations exceeded NMOCD regulatory standards in May 2011. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 21, 2011.

Monitor well MW-19

Laboratory analytical results indicated benzene concentrations ranged from 0.00106 mg/L in November 2011 to 0.00359 mg/L in May 2011. Toluene concentrations were less than the appropriate laboratory MDL in both the May and November 2011 sampling events. Ethylbenzene concentrations ranged from less than the laboratory MDL in November 2011 to 0.0100 mg/L in May 2011. Total xylene concentrations ranged from less than the laboratory MDL in November 2011 to 0.00562 mg/L in May 2011. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards in both the May and November 2011 sampling events.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 16, 2011.

SUMMARY

This report presents the results of monitoring activities for the 2011 annual monitoring period. Currently, there are eight (8) groundwater monitor wells (MW-6, MW-7, MW-11, MW-12, MW-16, MW-17, MW-18, and MW-19) on-site.

On October 29, 2009, monitor wells MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-13, MW-14 and MW-15 were plugged and abandoned by a State of New Mexico licensed water well driller, as approved by the NMOCD. Following the plugging activities, plugging reports were submitted to the NMOCD Santa Fe Office. Monitor well MW-2 had previously been abandoned on November 9, 2006.

The "Groundwater Gradient Map" from the most recent gauging event (Figure 2D, November 12, 2011) indicates a general gradient of approximately 0.01 feet/foot to the southeast as measured between groundwater monitor wells MW-18 and MW-19.

A measurable thickness of PSH was detected in monitor well MW-12 during the initial site investigation and throughout the 2011 reporting period. Basin began manual, weekly gauging and recovery of PSH from MW-12 in January 2009. Approximately 221 gallons (5.3 barrels) of PSH has been recovered from MW-12 since recovery operations began in 2009, and approximately 66.5 gallons (1.6 barrels) of PSH was recovered from MW-12 during the 2011 reporting period. A total of 11.19 equivalent gallons (0.3 barrels) of PSH was recovered by Mobile Dual-Phase Extraction. The average PSH thickness measured in MW-12 during the reporting period was 0.77 feet, and the maximum PSH thickness was 2.10 feet on November 22, 2011.

Review of laboratory analytical results generated from analysis of the groundwater samples collected during the 2011 reporting period indicates benzene concentrations were above NMOCD regulatory standards in three (3) of the eight (8) on-site monitor wells during the November 2011 sampling event.

ANTICIPATED ACTIONS

PSH recovery from monitor well MW-12 will continue on a weekly schedule. All fluids recovered from MW-12 will be disposed of at an NMOCD-permitted disposal facility.

Monitor wells MW-6, MW-7, MW-11, MW-12, and MW-16 through MW-19 will be monitored and sampled semi-annually. A yearly PAH monitoring event will be conducted at monitor wells MW-16, MW-18, and MW-19 during the 2012 calendar year.

Results from the 2012 sampling events will be reported in the 2011 *Annual Monitoring Report*, which will be submitted to the NMOCD by April 1, 2013.

LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains Marketing, LP.

DISTRIBUTION

Copy 1: Edward Hansen

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us

Copy 2: Geoff Leking

New Mexico Oil Conservation Division

1625 N. French Drive

Hobbs, New Mexico 88240 GeoffreyR.Leking@state.nm.us

Copy 3: Jeff Dann

Plains Marketing, L.P.

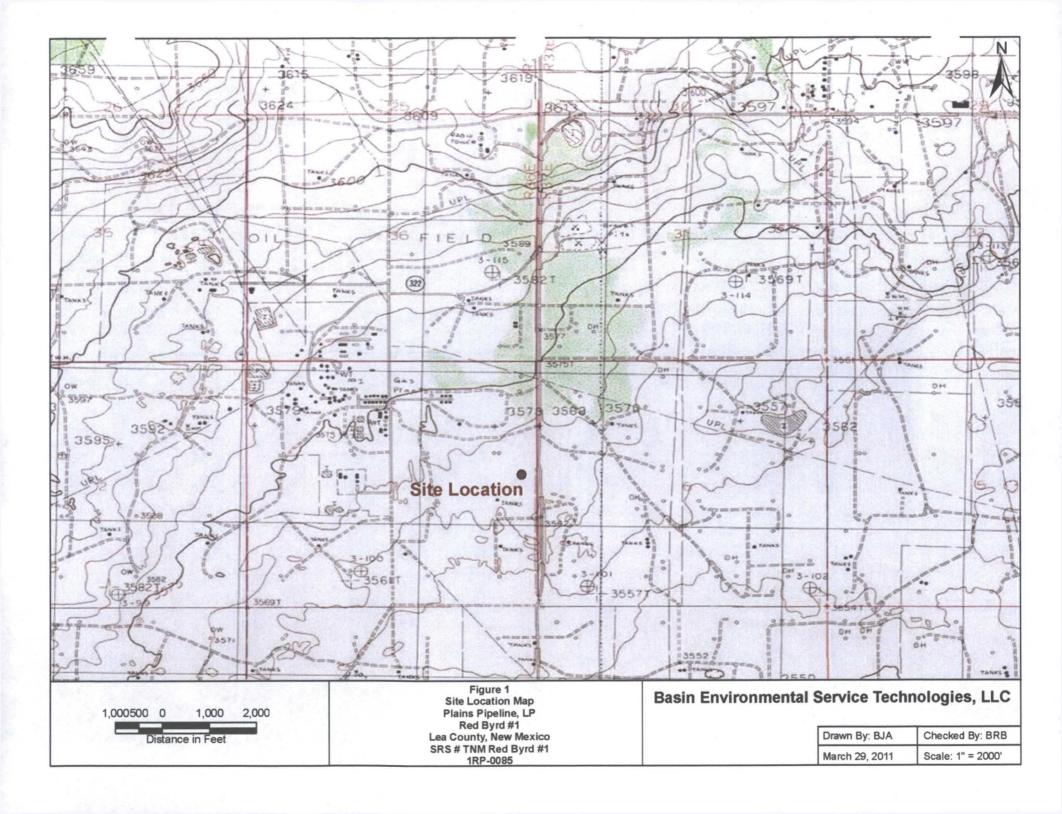
333 Clay Street Suite 1600

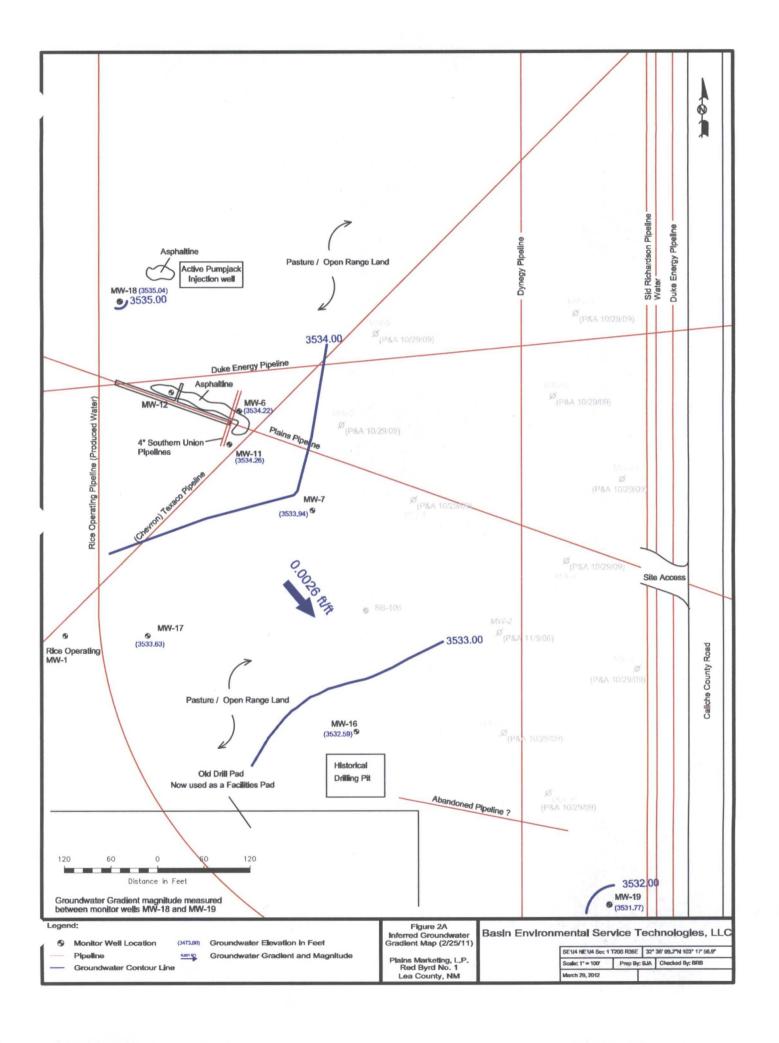
Houston, Texas 77002 jpdann@paalp.com

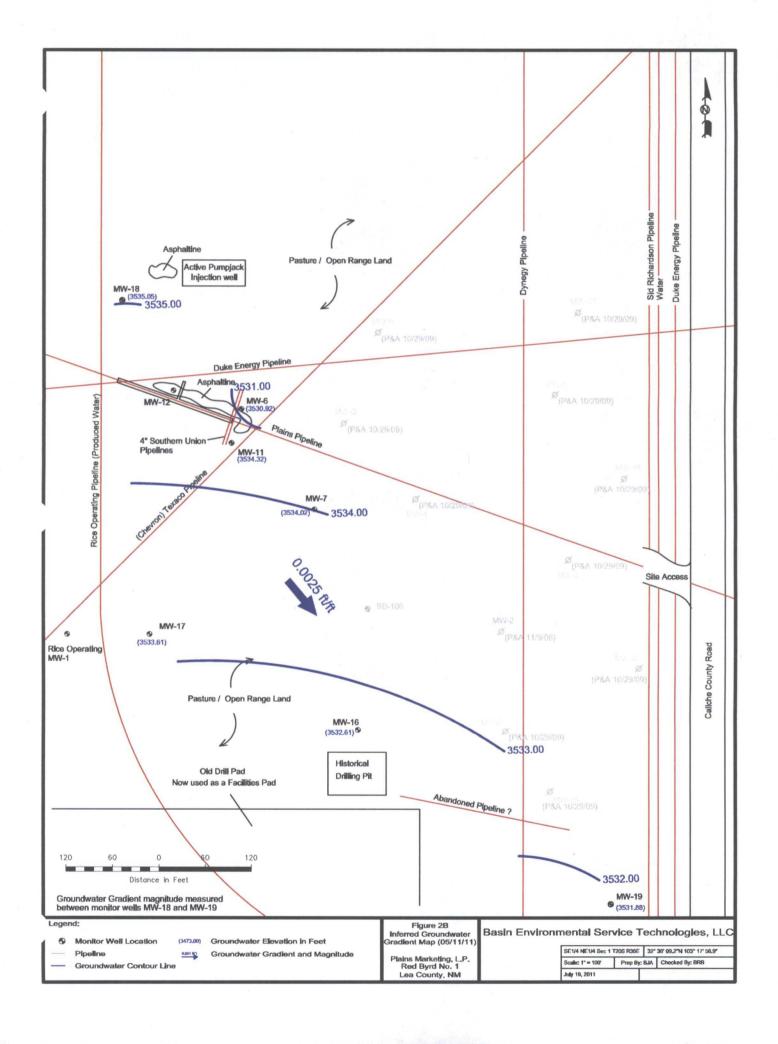
Copy 4: Jason Henry

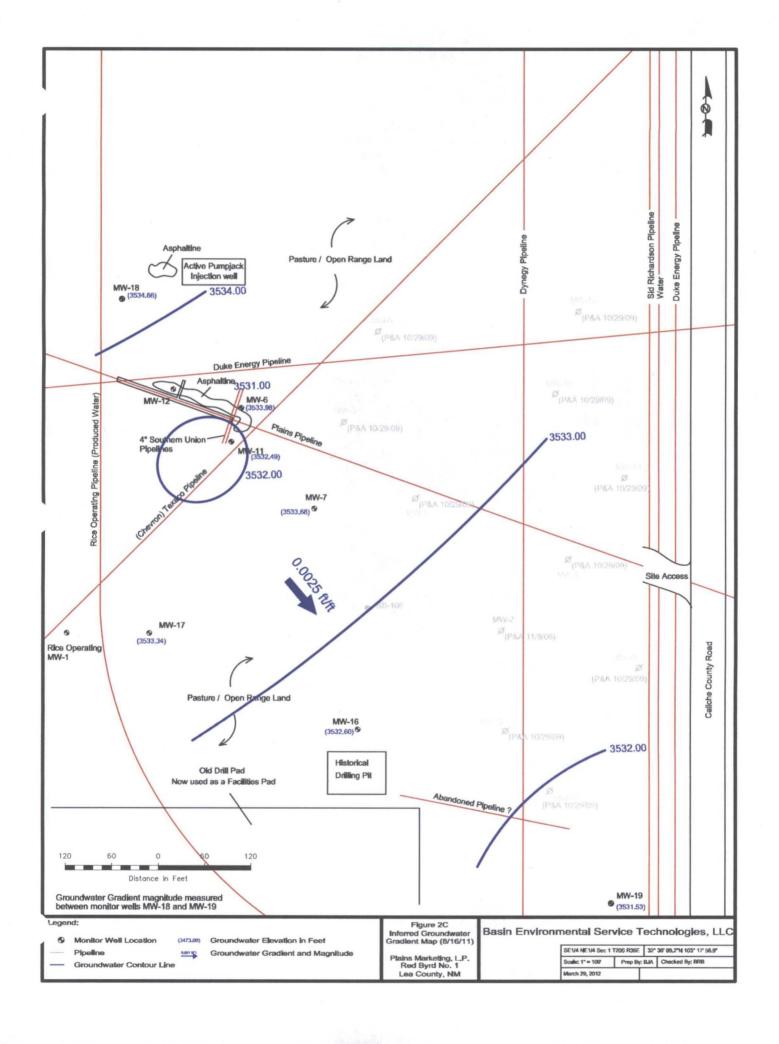
Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323

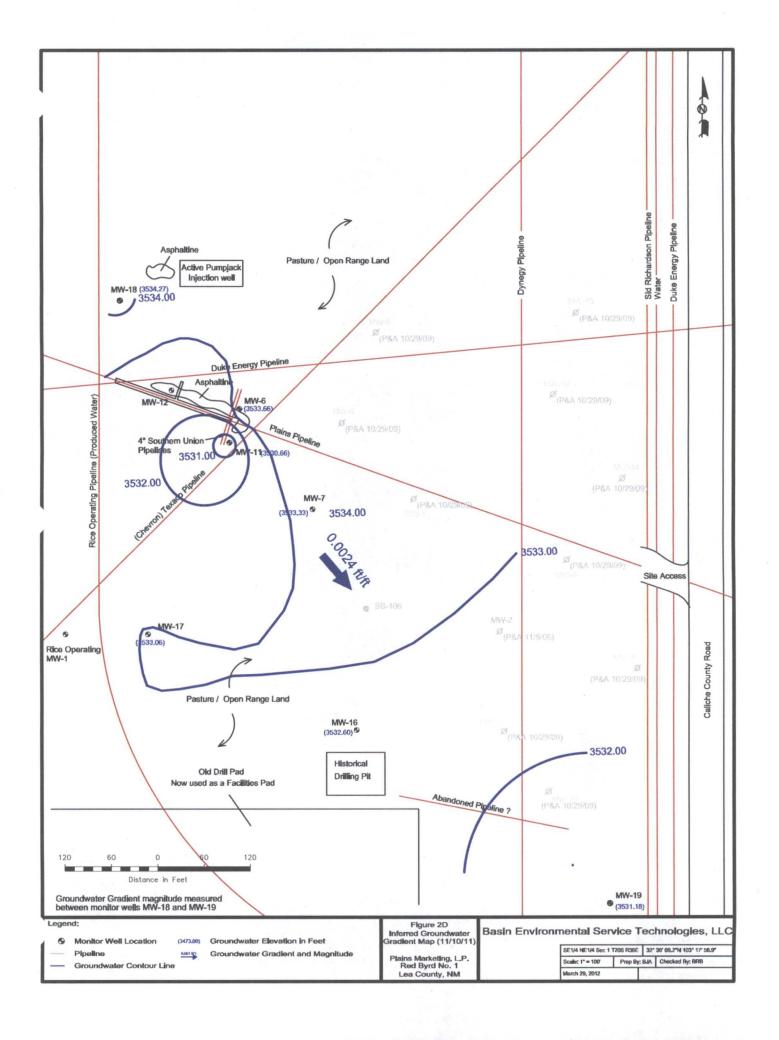
jhenry@paalp.com


Copy 5: Basin Environmental Service Technologies, LLC

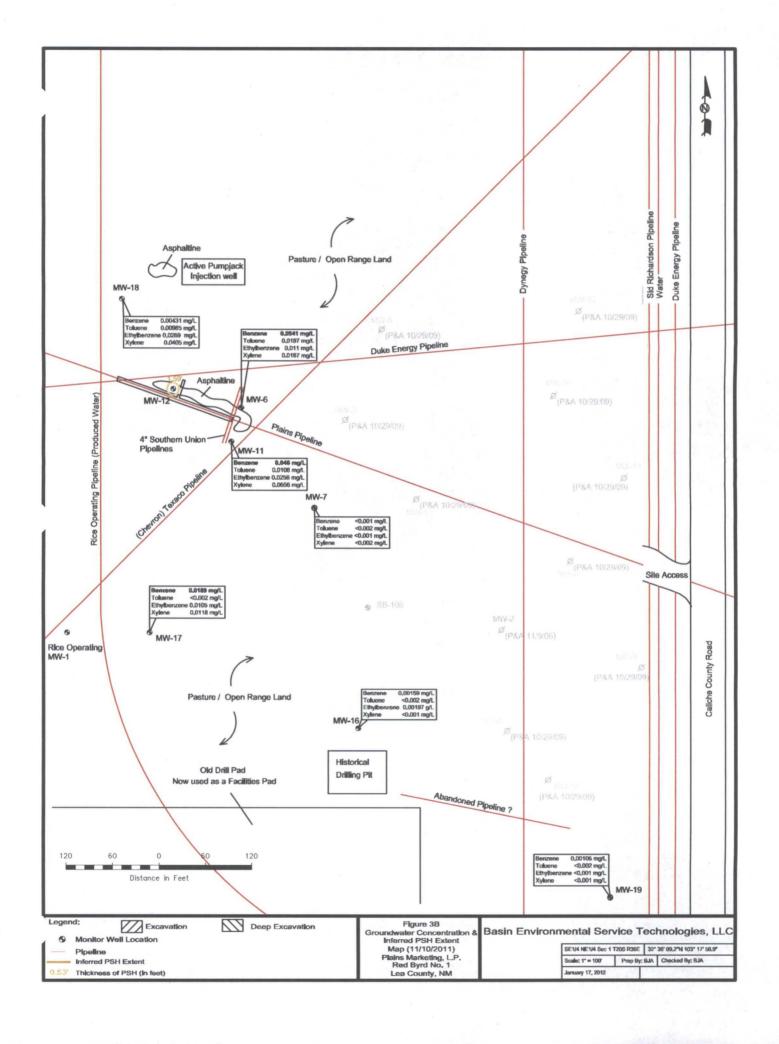

P. O. Box 301


Lovington, New Mexico 88260


bjarguijo@basinenv.com


Figures





Tables

TABLE 1 GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. RED BYRD #1 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1R-0085

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW-1	10/29/2009		Pl	ugged and Aba	ndoned	
5 1			an range of the	and the second	3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	The state of the s
MW-2	11/9/2006	·	Plu	ugged and Aba		
The second second					1	
MW-3	10/29/2009		Plu	ugged and Aba	ndoned	
		10000000000000000000000000000000000000				
MW-4	10/29/2009		Plu	ugged and Aba	ndoned	
	Jan A garages and The Control					
MW-5	10/29/2009		Plu	ugged and Aba		
	in the second		A Company of the Company			
MW-6	2/25/2011	3,570.91		36.69	0.00	3,534.22
	5/11/2011	3,570.91	-	36.61	0.00	3,534.30
	8/16/2011	3,570.91	-	36.93	0.00	3,533.98
	11/10/2011	3,570.91	-	37.25	0.00	3,533.66
					AN WOULD BE	
MW-7	2/25/2011	3,567.53	4	33.59	0.00	3,533.94
	5/11/2011	3,567.53		33.51	0.00	3,534.02
	8/16/2011	3,567.53	-	33.86	0.00	3,533.68
	11/10/2011	3,567.53	- .	34.20	0.00	3,533.33
						Contraction of the Contraction
MW-8	10/29/2009	,	Plu	ugged and Aba	ndoned	
17 18 18 18 18 18	A STATE OF THE STA	Motor Williams				
MW-9	10/29/2009		Plu	ugged and Aba	ndoned	
	SARAH SALO	· · · · · · · · · · · · · · · · · · ·			A SHOP THE SALES	GOVERNMENT TO THE
MW-10	10/29/2009		. Plu	ugged and Aba	ndoned	
53. T. J. J.		er and a constant				CANCEL PROPERTY.
MW-11	2/25/2011	3,567.96	-	33.70	0.00	3,534.26
	5/11/2011	3,567.96	-	33.64	0.00	3,534.32
	8/16/2011	3,567.96	-	35.47	0.00	3,532.49
	11/10/2011	3,567.96	-	37.30	0.00	3,530.66
Rad Park	GENERAL STATES	AM25% W.A	TATE BUILDING		A CONTRACTOR OF THE PARTY	
MW-12	2/25/2011	3,570.95	36.48	37.17	0.69	3,534.37
	5/11/2011	3,570.95	36.41	36.98	0.57	3,534.45
	8/16/2011	3,570.95	36.65	36.70	0.05	3,534.29
	11/10/2011	3,570.95	36.86	38.45	1.59	3,533.85
	1944 C. S.					

TABLE 1 GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. RED BYRD #1 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1R-0085

WELL	DATE	TOP OF CASING	DEPTH TO	DEPTH TO	PSH	CORRECTED GROUND WATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW-13	10/29/2009		Plu	ugged and Abar	ndoned	
		A Miles				
MW-14	10/29/2009		Plı	ugged and Abar	ndoned	
国数型编纂		a programme and the				
MW-15	10/29/2009		Plu	ugged and Abar	ndoned	
TYTE AND ME		WALLAND TO I			都是 从"大"。为	12 (23 (24 (24 (24 (24 (24 (24 (2
MW-16	2/25/2011	3,568.89	-	36.30	0.00	3,532.59
	5/11/2011	3,568.89	-	36.28	0.00	3,532.61
	8/16/2011	3,568.89		36.29	0.00	3,532.60
	11/10/2011	3,568.89	-	36.30	0.00	3,532.60
1、100000000000000000000000000000000000						and the state of the state of
MW-17	2/25/2011	3,569.66	-	36.03	0.00	3,533.63
	5/11/2011	3,569.66	-	36.05	0.00	3,533.61
	8/16/2011	3,569.66	<u>-</u>	36.33	0.00	3,533.34
	11/10/2011	3,569.66	-	36.60	0.00	3,533.06
(EM 1919)					ATTACK TO THE	
MW-18	2/25/2011	3,571.17	· -	36.13	0.00	3,535.04
	5/11/2011	3,571.17	-	36.12	0.00	3,535.05
	8/16/2011	3,571.17	-	36.51	0.00	3,534.66
	11/10/2011	3,571.17	-	36.90	0.00	. 3,534.27
					And the second	11.20至秦季之日以
MW-19	2/25/2011	3,569.78	-	38.01	0.00	3,531.77
	5/11/2011	3,569.78		37.90	0.00	3,531.88
	8/16/2011	3,569.78	-	38.25	0.00	3,531.53
	11/10/2011	3,569.78	-	38.60	0.00	3,531.18
A A THE AND	gangan dan kecamatan dan k Kecamatan dan kecamatan da		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Compression of the second	

Elevations based on the North American Vertical Datum of 1929.

2011 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER PLAINS MARKETING, L.P. RED BYRD #1

LEA COUNTY, NEW MEXICO PLAINS SRS NO: TNM-RED BYRD #1

NMOCD REF NO: 1RP-0085

				METHODS:	EPA SW 846 -	8021B, 5030		
SAMPLE SAMPLE LOCATION DATE		BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)
MW-1	05/11/11				ged and Aband	lonod		
	. 11/10/11				ged and Aband	ionea		
		" "	14.300 Feb. 18		47 次年基础。		多四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	が必ずい
MW-2	05/11/11	·		Plug	ged and Aband	loned		
	11/10/11			ı idg	·	ioneu		
						15.184 21.875		
MW-3	05/11/11		<i>:</i>	Plug	ged and Aband	loned		
	11/10/11			,	-	ionea	<u>.</u> .	
· + ********	(1) 12 (1) (1)		A CONTRACTOR	活起語的方式			ながらない。	建筑的特别 。
MW-4	05/11/11		•	Plug	ged and Aband	loned		
	11/10/11			1 109	ged dild / lbdile	101104		
	رز موان پو		3.4				, in .	
MW-5	05/11/11		•	Plug	ged and Aband	loned		
	11/10/11				_			
	2000年度							IN F
MW-6	05/11/11	0.200	0.295	<0.100	<0.200	0.108	0.108	0.603
	11/10/11	0.0541	0.0197	0.0110	0.0128	0.00594	0.0187	0.104
A Section of the second			100 A				±s ² , ²	
MW-7	05/11/11	0.00165	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00165
	11/10/11	<0.0010	<0.0020	<0.0010	<0:0020	<0.0010	<0.0020	<0.0020
		ST. S. Carrier	数数、数据					
MW-8	05/11/11			Plug	ged and Aband	loned		
	11/10/11							
4.25	The ward ASA							***

2011 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER PLAINS MARKETING, L.P. RED BYRD #1

LEA COUNTY, NEW MEXICO PLAINS SRS NO: TNM-RED BYRD #1

NMOCD REF NO: 1RP-0085

				METHODS:	EPA SW 846 -	-8021B, 5030		
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)
MW-9	05/11/11			Dlug	ged and Aband	loned		
	11/10/11			Flug	ged and Aband	Joned		
				战争的必须		MARCH CAS		
MW-10	05/11/11			Dlug	ged and Aband	lonad		
•	11/10/11	·	•	Flug	jeu anu Abanc	ionea		
								2000年
MW-11	05/11/11	0.0371	<0.0020	0.0159	0.00745	<0.0010	0.00745	0.0605
	11/10/11	0.0460	0.0108	0.0256	0.0381	0.0275	0.0656	0.148
224		THE STATE OF	View Line	成是400年特殊	Maria Charles	March 7		CHAMBER !
MW-12	05/11/11			Not Sample	d Due to Pres	ones of DCH		
	11/10/11	•		Not Sample	d Due to Flesi	ence of PSH		
	45			第5年,2000章				1. 18. 18. 1
MW-13	05/11/11			Dlug	ged and Aband	lanad		
	11/10/11			Flug	ged and Aband	ionea		
COMPANY A			治, 竹橋發	数据100mm 1000	國家主持心态的	SEATON TO L		NORWALL.
MW-14	05/11/11			Dlum	rad and Ahana	lanad		
	11/10/11			Plugg	ged and Aband	ionea	•	
	- 生產學其實					\$75 . : · · · · ·		
MW-15	05/11/11			Dlug	ged and Aband	loned		
	11/10/11			Flug	ged and Aband	ioneu	•	
	7.7			Received.	基础			10 4 2 E 1 E 1 E
MW-16	05/11/11	0.0349	<0.0010	0.0336	0.0213	<0.0050	0.0213	0.0898
	11/11/11	0.00159	<0.0020	0.00197	<0.0020	<0.0010	<0.0020	0.00356
	6 - 5 pm					200		
MW-17	05/11/11	0.0693	<0.0100	0.0313	0.0319	<0.0050	0.0319	0.133
	11/10/11	0.0189	<0.0020	0.0105	0.00969	0.00214	0.0118	0.0412
				第 位至10年20年			Salar Salar	

2011 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER PLAINS MARKETING, L.P. RED BYRD #1

LEA COUNTY, NEW MEXICO PLAINS SRS NO: TNM-RED BYRD #1

NMOCD REF NO: 1RP-0085

				METHODS:	EPA SW 846	-8021B, 5030		
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)
MW-18	05/11/11	0.0134	0.0184	0.0541	0.0417	<0.0050	0.0417	0.128
	11/10/11	0.00431	0.00985	0.0269	0.0282	0.0123	0.0405	0.0816
				100000				*13
MW-19	05/11/11	0.00359	<0.0020	0.0100	0.00316	0.00246	0.00562	0.0192
	11/10/11	0.00106	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00106
		and the second		3.50				830 S. C. (2014)
IMOCD CRITERIA		0.01	0.75	0.75		AL XYLENES		

CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER

PLAINS PIPELINE, L.P.

RED BYRD #1

LEA COUNTY, NEW MEXICO

PLAINS SRS NO: TNM-RED BYRD #1

NMOCD REF NO: 1RP-0085

Ill water concentrations are reported in ma/L

			EPA SW846-8270C, 3510														
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzofalpyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW-16	12/16/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
MW-19	12/16/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
		100		2 (1997)		garden ,	ي د	$\{i_{i}, i_{i}\}$					SHALL STATE	$\mathcal{F}_{i,j}$			- 3 1
MW-18	12/21/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
The State of the S		15.14			٠, .						是是是智慧		The Lake		26 min C	(李) 医全	3 PM 2 3

Analytical Report 416380

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Red Byrd #1

TNM Red Byrd #1

19-MAY-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL01273):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):

Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

19-MAY-11

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 416380

Red Byrd # 1

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 416380. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 416380 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 416380

PLAINS ALL AMERICAN EH&S, Midland, TX

Red Byrd # 1

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-6	W	May-11-11 15:00		416380-001
MW-7	W	May-11-11 15:20		416380-002
MW-11	\mathbf{w}	May-11-11 14:50		416380-003
MW-16	W	May-11-11 14:20		416380-004
MW-17	· W	May-11-11 14:40	•	416380-005
MW-18	W	May-11-11 15:10		416380-006
MW-19	\cdot W	May-11-11 14:10		416380-007
Travel Blank	· W	May-11-11.15:15	•	416380-008

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Red Byrd # 1

Project ID:

TNM Red Byrd # 1

Work Order Number: 416380

Report Date: 19-MAY-11 Date Received: 05/12/2011

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-856663 BTEX by EPA 8021

SW8021BM

Batch 856663, Benzene, Ethylbenzene, Toluene, m_p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 416380-002.

The Laboratory Control Sample for Toluene, Benzene, Ethylbenzene, m_p-Xylenes, o-Xylene is

within laboratory Control Limits

SW8021BM

Batch 856663, 4-Bromofluorobenzene recovered below QC limits . Matrix interferences is suspected; data not confirmed by re-analysis

Samples affected are: 416510-006 S,416510-006 SD.

1,4-Difluorobenzene recovered above QC limits . Matrix interferences is suspected; data not

confirmed by re-analysis

Samples affected are: 416510-006 S,416510-006 SD.

Batch: LBA-856745 BTEX by EPA 8021

SW8021BM

Batch 856745, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 416380-003.

Final 1.000

Certificate of Analys PLAINS ALL AMERICA LH&S, Midland, TX

ummary 416380

Project Id: TNM Red Byrd #1

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: Red Byrd #1

Date Received in Lab: Thu May-12-11 02:10 pm

Report Date: 19-MAY-11

Project Manager: Brent Barron, II

								110ject Ma	uuger.	Dient Darron,	**		
	Lab Id:	416380-0	01	416380-0	002	416380-0	003	416380-0	004	416380-0	005	416380-0	006
Analysis Requested	Field Id:	MW-6		MW-7	,	MW-11 ·		MW-1	5	MW-1	7	MW-1	. 8
Analysis Requesieu	Depth:	•											
•	Matrix:	WATER	₹ .	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R .
	Sampled:	May-11-11	15:00	May-11-11	15:20	May-11-11	14:50	May-11-11	14:20	May-11-11	14:40	May-11-11	15:10
BTEX by EPA 8021	Extracted:	May-17-11	14:30	May-18-11	15:15	May-18-11	08:18	May-18-11	08:18	May-17-11	14:30	May-18-11	08:18
·	Analyzed:	May-18-11	14:02	May-18-11	23:06	May-19-11	13:02	May-19-11	13:47	May-18-11	15:32	May-19-11	14:09
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.200	0.100	0.00165	0.0010	0.0371	0.0010	0.0349	0.0050	0.0693	0.0050	0.0134	0.0050
Toluene		0.295	0.200	ND	0.0020	ND	0.0020	ND	0.0100	ND	0.0100	0.0184	0.0100
Ethylbenzene		ND	0.100	ND	0.0010	0.0159	0.0010	0.0336	0.0050	0.0313	0.0050	0.0541	0.0050
m_p-Xylenes		ND	0.200	ND	0.0020	0.00745	0.0020	0.0213	0.0100	0.0319	0.0100	0.0417	0.0100
o-Xylene		0.108	0.100	ND	0.0010	ND.	0.0010	ND	0.0050	· ND	0.0050	ND	0.0050
Xylenes, Total		0.108	0.100	ND	0.0010	0.00745	0.0010	0.0213	0.0050	0.0319	0.0050	0.0417	0.0050
Total BTEX	·	0.603	0.100	0.00165	0.0010	0.0605	0.0010	0.0898	0.0050	0.133	0.0050	0.128	0.0050

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Certificate of Analysis Summary 416380 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: TNM Red Byrd # 1

Project Location: Lea County, NM

Contact: Jason Henry

Project Name: Red Byrd # 1

Date Received in Lab: Thu May-12-11 02:10 pm

Report Date: 19-MAY-11

Project Manager: Brent Barron, II

	Lab Id:	416380-0	07	416380-0	08	 		
Analysis Requested	Field Id:	MW-19		Travel Blank				
Analysis Requested	Depth:							
	Matrix:	WATE	R	WATER	١ ا			
	Sampled:	May-11-11	14:10	May-11-11	5:15			
BTEX by EPA 8021	Extracted:	May-17-11	14:30	May-17-11	14:30			
	Analyzed:	May-18-11	17:28	May-18-11 (08:48			
	Units/RL:	mg/L	RL	mg/L	RL			
Benzene		0.00359	0.0010	ND	0.0010			
Toluene		ND	0.0020	ND	0.0020			
Ethylbenzene		0.0100	0.0010	ND	0.0010			
m_p-Xylenes		0.00316	0.0020	ND	0.0020			
o-Xylene		0.00246	0.0010	ND	0.0010	 ,		
Xylenes, Total		0.00562	0.0010	ND	0.0010			
Total BTEX		0.0192	0.0010	ND	0.0010			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- **DL** Method Detection Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(361) 884-0371	(361) 884-9116
	(214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500 (432) 563-1800

Form 2 - Surrogate Recoveries

Project Name: Red Byrd # 1

Work Orders: 416380,

Project ID: TNM Red Byrd # 1

Lab Batch #: 856647

Sample: 603135-1-BKS / BKS

Matrix: Water Batch: 1

Units: mg/L Date Analyzed: 05/18/11 06:49	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		(2)	[D]	, ,,,,,,		
1,4-Difluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0299	0.0300	100	80-120		

Lab Batch #: 856647

Sample: 603135-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 05/18/11 07:12	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021		Amount Found [A]	True Amount [B]	Recovery %R	· Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluorobenzene		0.0298	0.0300	99	80-120			
4-Bromofluorobenzene		0.0309	0.0300	103	80-120			

Lab Batch #: 856647

Sample: 603135-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 08		SURROGATE RECOVERY STUDY						
вті	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	<u> </u>		
4-Bromofluorobenzene		0.0278	0.0300	93	80-120			

Lab Batch #: 856647

Sample: 416380-008 / SMP

Batch: 1

Matrix: Water

SU	ECOVERY S	STUDY		
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	0.0200		90.120	
	Amount Found	Amount True Found Amount [A] [B] 0.0277 0.0300	Amount True Recovery %R [D]	Amount True Recovery Limits %R [D]

Lab Batch #: 856647

Sample: 416354-004 S / MS

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 12:32	SU	RROGATE R	ECOVERY	STUDY	UDY					
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1,4-Difluorobenzene	0.0276	0.0300	92	80-120						
4-Bromofluorobenzene	0.0280	0.0300	93	80-120						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Red Byrd #1

rk Orders: 416380,

Project ID: TNM Red Byrd # 1

Lab Batch #: 856647

Sample: 416354-004 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 12:55	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	·		[D]			
1,4-Difluorobenzene	0.0302	0.0300	101	80-120		
4-Bromofluorobenzene	0.0325	0.0300	108	80-120		

Lab Batch #: 856647

Sample: 416380-001 / SMP

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 14:02	SU	RROGATE R	ECOVERY S	RY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0277	0.0300	92	80-120					
4-Bromofluorobenzene	0.0283	0.0300	94	80-120					

Lab Batch #: 856647

Sample: 416380-005 / SMP

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 15:32	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Difluorobenzene	0.0259	0.0300	86	80-120	
4-Bromofluorobenzene	0.0319	0.0300	106	80-120	

Lab Batch #: 856647

Sample: 416380-007 / SMP

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 05/18/11 17:28	SUI	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0281	0.0300	94	80-120	•
4-Bromofluorobenzene	0.0276	0.0300	92	80-120	

Lab Batch #: 856663

Sample: 603143-1-BKS/BKS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 05/18/11 18:35	SURROGATE RECOVERY STUDY				
вті	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes.			[D]		
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	
4-Bromofluorobenzene		0.0318	0.0300	106	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

results are based on MDL and validated for QC purposes.

Project Name: Red Byrd #1

Work Orders: 416380,

Project ID: TNM Red Byrd # 1

Lab Batch #: 856663

Sample: 603143-1-BSD / BSD

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 05/18/11 18:58	SURROGATE RECOVERY STUDY			Recovery Limits Flag			
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Limits	Flags		
	Analytes			. [D]				
1,4-Difluorobenzene		0.0320	0.0300	107	80-120			
4-Bromofluorobenzene		0.0327	0.0300	109	80-120			

Lab Batch #: 856663

Sample: 603143-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 05/18/11 20:05	SU	RROGATE RI	ECOVERY	OVERY STUDY					
вт	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
	Analytes			[2]						
1,4-Difluorobenzene		0.0276	0.0300	92	80-120					
4-Bromofluorobenzene		0.0277	0.0300	92	80-120					

Lab Batch #: 856663

Sample: 416380-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L									
ВТЕ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1,4-Difluorobenzene		0.0279	0.0300	93	80-120				
4-Bromofluorobenzene		0.0354	0.0300	118	80-120				

Lab Batch #: 856663

Sample: 416510-006 S / MS

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 05/19/11 00:14	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0362	0.0300	121	80-120	*		
4-Bromofluorobenzene	0.0228	0.0300	76	80-120	*		

Lab Batch #: 856663.

Sample: 416510-006 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 05/19/11 00:36	SURROGATE RECOVERY STUDY						
ВТЕ	CX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R · [D]	Control Limits %R	Flags		
	Analytes			[27]				
1,4-Difluorobenzene		0.0377	0.0300	126	80-120	*		
4-Bromofluorobenzene		0.0236	0.0300	79	80-120	1 k		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Red Byrd #1

rk Orders: 416380,

Lab Batch #: 856745

Project ID: TNM Red Byrd # 1

Sample: 603190-1-BKS/BKS

Matrix: Water Batch:

Units: mg/L Date Analyzed: 05/19/11 08:53	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	0.0304	0.0300	101	80-120	

Lab Batch #: 856745

Sample: 603190-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 05/19/11 09:15	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	· True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			, [D]			
1,4-Difluorobenzene	0,0303	0.0300	101	80-120	,	
4-Bromofluorobenzene	0.0296	0.0300	99	80-120		

Lab Batch #: 856745

Sample: 603190-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 05/19/11 10:23	SURROGATE RECOVERY STUDY							
ВТІ	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Difluorobenzene		0.0281	0.0300	94	80-120				
4-Bromofluorobenzene		0.0279	0.0300	93	80-120				

Lab Batch #: 856745

Sample: 416380-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 05/19/11 13:02	SURROGATE RECOVERY STUDY						
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluorobenzene		0.0237	0.0300	79	80-120	**		
4-Bromofluorobenzene		0.0245	0.0300	82	80-120			

Lab Batch #: 856745

Sample: 416380-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 05/19/11 13:47	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			נשו			
1,4-Difluorobenzene	0.0259	0.0300	. 86	80-120		
4-Bromofluorobenzene	0.0300	0.0300	100	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

[&]quot;results are based on MDL and validated for QC purposes.

Project Name: Red Byrd #1

Work Orders: 416380,

Project ID: TNM Red Byrd # 1

Lab Batch #: 856745

Sample: 416380-006 / SMP

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 05/19/11 14:09	SU	RROGATE R	ECOVERY :	STUDY	
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0252	0.0300	84	80-120	
4-Bromofluorobenzene		0.0279	0.0300	93	80-120	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD-Recoveries

Project Name: Red Byrd # 1

Work Order #: 416380

Analyst: ASA

Date Prepared: 05/17/2011

Project ID: TNM Red Byrd # 1

Date Analyzed: 05/18/2011

 Batch #: 1

Matrix: Water

Units: mg/L

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0851	85	0.100	0.0904	90	6	70-125	25	:
Toluene	<0.00200	0.100	0.0865	87	0.100	0.0931	93	7	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0824	82	0.100	0.0881	88	7	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.168	84	0.200	0.179	90	6	70-131	25	
o-Xylene	<0.00100	0.100	0.0887	89	0.100	0.0935	94	5	71-133	25 .	

Analyst: ASA

Date Prepared: 05/18/2011

Date Analyzed: 05/18/2011

Lab Batch ID: 856663

Sample: 603143-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L		BLAN	K/BLANK	SPIKE / I	BLANK S	PIKE DUPI	LICATE I	RECOVE	ERY STUD	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	<0.00100	0.100	0.0882	88	0.100	0.106	106	18	70-125	25	
Toluene	<0.00200	0.100	0.0898	90	0.100	0.109	109	19	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0841	84	0.100	0.103	103	20 ·	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.171	86	0.200	0.209	105	20	70-131	25	
o-Xylene	< 0.00100	0.100	0.0887	89	0.100	0.108	108	20	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Red Byrd # 1

Work Order #: 416380

Analyst: ASA

Date Prepared: 05/18/2011

Project ID: TNM Red Byrd # 1

Date Analyzed: 05/19/2011

Lab Batch ID: 856745

Sample: 603190-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUI	ΟY	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	{D}	[E]	Result [F]	[G]				
Benzene	<0.00100	0.100	0.0891	89	0.100	0.0911	91	2 · ·	70-125	25	
Toluene	<0.00200	0.100	0.0909	91	0.100	0.0939	94	3	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0873	87	0.100	0.0897	90	3	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.179	90	0.200	0.183	92	2	70-131	25	
o-Xylene	<0.00100	0.100	0.0912	91	0.100	0.0932	93	2	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

17

Form 3 - M MSD Recoveries

Project Name: Red Byrd #1

Work Order #: 416380

Project ID: TNM Red Byrd # 1

Lab Batch ID: 856647

QC- Sample ID: 416354-004 S

Batch #:

Matrix: Water

Date Analyzed: 05/18/2011

Date Prepared: 05/17/2011

Analyst: ASA

Departing United mg/I

Reporting Units: mg/L		IV	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0814	· 81	0.100	0.0910	91	11	70-125	25	
Toluene	<0.00200	0.100	0.0812	81	0.100	0.0913	91	12	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0762	76	0.100	0.0866	87	13	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.152	76	0.200	0.172	86	12	70-131	25	,
o-Xylene	<0.00100	0.100	0.0801	80	0.100	0.0938	94.	16	71-133	25	

Lab Batch ID: 856663

QC-Sample ID: 416510-006 S

Batch #:

Matrix: Water

Date Analyzed: 05/19/2011

Date Prepared: 05/18/2011

Analyst: ASA

Reporting Units: mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	' %R	%RPD	
Benzene	1.29	0.100	1.21	0 .	0.100	1.29	0	· 6	70-125	25	X
Toluene	0.680	0.100	0.678	0	0.100	0.723	43	6	70-125	25	Х
Ethylbenzene	0.201	0.100	0.244	43	0.100	0.259	- 58	6	71-129	25	Х
m_p-Xylenes	1.02	0.200	1.06	20	0.200	1.13	55	. 6	70-131	25	Х
o-Xylene	0.491	0.100	0.505	14	0.100	0.543	52	7	71-133	25	Х

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben Arguljo															. Pr	ojec	t Na	me:	Red	Byr	d #1								
	Company Name	Basin Environm	nental Ser	vice T	echnol	ogies, LLC											-	Pr	ojec	t#:_	TNM	Re	d By	/rd	#1						
	Company Address:	P. O. Box 301															. 1	Proje	ect L	.oc: <u> </u>	Lea (oun	ty, N	<u>M_</u>							
	City/State/Zip:	Lovington, NM 8	88260																P) #: <u> </u>	PAA	J. F	lenry	<u></u>							
	Telephone No:	(575)396-2378	, ,				Fax No:		(57	5)39	96-14	29					Repor	t For	mat	: [x s	tanda	ard	•		TRE	ŖΡ		□ N	IPDE:	Ś
	Sampler Signature	Min	frage/	<u> </u>			e-mail:		pm	@b	asine	nv.c	om					_													•
lab use	only)		–				•											┝			TCL		naly:	ze F	or:	\neg	\neg	一		٦,	
ORDEF	1111	380	`				•			_	Preser	vation	& # of	Cont	ainers		Matrix				TOTA	L:								48, 72 hrs	ĺ
		· · · · · ·			Ī	I			П		1030	T	T	T				80158	9			4g Se			826			ł		4	┢
LAB # (lab use only)	FIF	LD CODE	-	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Fillered	Total #. of Containers	lce	HNO3	HC1 1010/100	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soit/Solid NP=Non-Potable Speofy Other	418.1 8015M	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semivolatiles	BTEX 8021B/5030 pr BTEX 8260	RCI	N.O.R.M.	Chloride E 300		USH TAT (Pre-Schedule)	Standard TAT 4 DAY
0,	 	MW-6			<u> </u>	5/11/2011	1500	11.	3	_	T	x	+-	Ī	-	_	GW		-	+	<u>₹</u> <i>σ</i>	1 2	>	s	X	#	7	4	+	۳	X
02	 	MW-7				5/11/2011	1520		3	х	-	x	丁				GW	П		寸					X	\forall	\top	\top	1	1	X
03		/W-11				5/11/2011	1450		3	X		x					GW								X	T	\top	\top	T	T	х
04	N.	AW-16				5/11/2011	1420		3	X		X					GW								х	\Box	\Box	\Box	floor		X
05	N	AW-17				5/11/2011	1440		3	х		x					GW								X	\prod			$oxed{\mathbb{I}}$		X
06		AW-18				5/11/2011	1510		3	X		x					GW								х		\Box		\perp		X
10		AW-19				5/11/2011	1410	ļ	3	х		x				_	GW				\perp	1	Ŀ	_	X	\dashv	\bot	\bot	1	$oldsymbol{\perp}$	X
<u> </u>	<u> </u>			ļ				H			\dashv	+	+-	\vdash	\dashv	4		Н		+	+	╀	Н	\dashv	\dashv	\dashv	\dashv	\dashv	+	╇	
<u>ල</u> ි	Trav	vel Blank	<u> </u>	-		5/11/2011	1515		3	X		×	+	Н	\dashv	\dashv	GW	Н	\dashv	\dashv	+	╀	Н	\dashv	X	\dashv	\dashv	+	+	╀┦	Х
Special I	Instructions:			<u> </u>	Ц			<u> </u>	ш					Ш		1		L1	-	Labo	rato	v Co	mm	 ents		Ц	Щ			Ш	\dashv
	· · ·						· ·						• •			_				Sam VOC	ple C s Fre	ontai e of l	ners Head	Intak spak	ct?		,	, K	3	N N	
Relinquis Relinquis PUICUI Relinquis	hed by:		Date	07.	, reγγγγ ‡ 0	Received by:	h war	<u>.</u>							0.	S/ Dat	13/11 o	71 Time	5	Custo Custo Samp	Is on ody s ody s ole Ha y San y Cou	eals eals and [nple#	on co on co Delive Clien	ontal poler ered	r(s) ∣ ≱.?	s) DHL	. F	S C C C C C C C C C C C C C C C C C C C	が シ × Lo	N N N N N ene Sta	ar)
telinquisi	hed by:		Date	l lir	ne	Received by ELC	ot: Use E'	· ,	n	7					5	Dat	1	Time 	- 1	Tem	erati	ure U	pon	Rece	eipt:		}}	. (۵	°C	

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: BOSSIN	o tow	1 Plai	ns		·			•
Date/Time: 5.17	7 11 1	4.10	· · · · · · · · · · · · · · · · · · ·					
Lab ID#:	4163							•
Initials:	AF	<u> </u>						
muais.	/		Is Da		l-lin4			
•		5	sample Rec	eipt Cnec	KIIST			
1. Samples on ice?					Blue	(Water)	No	
2. Shipping container	in good cond	ition?			Yes	No	None	
3. Custody seals intac	ct on shipping	container (c	ooler) and bo	ttles?	Yes	No	N/A	
4. Chain of Custody p	resent?				Yes	No		
5. Sample instruction		chain of cus	tody?		Yes	No		
6. Any missing / extra	samples?				Yes	(No.)		
7. Chain of custody s	igned when re	linquished / 1	received?		(Yes)	No		
8. Chain of custody a	grees with sar	nple label(s)?	?		(Yes)	No		
9. Container labels le					(Yes)	No		
10. Sample matrix / pr	roperties agre	e with chain	of custody?		(Yes)	No		
11. Samples in prope	r container / b	ottle?			Yes	No		
12. Samples property	preserved?				(Yes)	No	N/A	
13. Sample container					Yes	No		
14. Sufficient sample	amount for in	dicated test(s	s)?		Yes	No		
15. All samples receiv	· · · · · · · · · · · · · · · · · · ·			······································	Yes	No		
16. Subcontract of sa					Yes	No	(ÑÃ)	
17. VOC sample have		ace?			(Yes)	No	N/A	
18. Cooler 1 No.	Cooler 2 N		Cooler 3 No.		Cooler 4 No		Cooler 5 No) <u>.</u>
lbs /.(0					C lbs	°(T
								, ,
		None	conforman	ce Docum	entation			
Contact:	 	Contacted b	y:	<u> </u>		Date/Time:		
Regarding:								
								
Corrective Action Tal	ken:							
	 ·						•	
		·						
		·	 -	 	 			
Check all that apply:	□ Cooling p	rocess has b	egun shortly	after samplin	ng event and o	ut of tempe	rature	,

Final 1.000

condition acceptable by NELAC 5.5.8.3.1.a.1.

□ Client understands and would like to proceed with analysis

□ Initial and Backup Temperature confirm out of temperature conditions

Analytical Report 431400

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Red Byrd #1

TNM Red Byrd #1

22-NOV-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002)
Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)
New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610)
Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

22-NOV-11

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 431400

Red Byrd #1

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 431400. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 431400 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 431400

PLAINS ALL AMERICAN EH&S, Midland, TX

Red Byrd #1

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-6	W	11-10-11 13:15	•	431400-001
MW-7	. W	11-10-11 13:35		431400-002
MW-11	W	11-10-11 13:10		431400-003
MW-17	. W	11-10-11 15:05		431400-004
MW-18	W	11-10-11 14:25		431400-005
.MW-19	. W	11-10-11 15:40		431400-006

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Red Byrd #1

Project ID:

TNM Red Byrd #1

Work Order Number: 431400

Report Date: 22-NOV-11 Date Received: 11/11/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-875271 BTEX by EPA 8021

SW8021BM

Batch 875271, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data not confirmed by re-analysis

Samples affected are: 431400-003.

SW8021BM

Batch 875271, Benzene recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 431400-001, -004, -006, -005, -002, -003.

The Laboratory Control Sample for Benzene is within laboratory Control Limits

Certificate of Analys PLAINS ALL AMERICA

ummary 431400 LH&S, Midland, TX

Project Id: TNM Red Byrd #1

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: Red Byrd #1

Date Received in Lab: Fri Nov-11-11 01:15 pm

Report Date: 22-NOV-11

oject Education: 200 County, 1111							-	Project Ma	ınager:	Brent Barron	II		
	Lab Id:	431400-	-001	431400-	002	431400-	003	. 431400-	004	431400-	005	431400-	-006
Anglusis Daguested	Field Id:	MW-	6	MW-	7	MW-1	1	MW-1	7	MW-1	.8	MW-1	19
Analysis Requested	Depth:											•	
	Matrix:	WATI	E R	WATE	R	WATE	R	WATE	R	WATE	ER.	WATE	ER
	Sampled:	Nov-10-11	13:15	Nov-10-11	13:35	Nov-10-11	13:10	Nov-10-11	15:05	Nov-10-11	14:25	Nov-10-11	15:40
BTEX by EPA 8021	Extracted:	Nov-18-11	15:00	Nov-18-11	15:00	Nov-18-11	15:00	Nov-18-11	15:00	Nov-18-11	15:00	Nov-18-11	15:00
	Analyzed:	Nov-20-11	1 21:36	Nov-20-11	21:59	Nov-20-11	22:21	Nov-20-11	22:44	Nov-20-11	23:07	Nov-20-11	23:30
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.0541	00100.0	ND	0.00100	0.0460	0.00100	0.0189	0.00100	0.00431	0.00100	0.00106	0.00100
Toluene		0.0197	0.00200	ND	0.00200	0.0108	0.00200	ND	0.00200	0.00985	0.00200	ND	0.00200
Ethylbenzene		0.0110	0.00100	ND	0.00100	0.0256	0.00100	0.0105	0.00100	0.0269	0.00100	ND	0.00100
m_p-Xylenes		0.0128	0.00200	ND	0.00200	0.0381	0.00200	0.00969	0.00200	0.0282	0.00200	ND	0.00200
o-Xylene		0.00594	0.00100	ND	0.00100	0.0275	0.00100	0.00214	0.00100	0.0123	0.00100	ND	- 0.00100
Xylenes, Total		0.0187.	0.00100	ND	0.00100	0.0656	0.00100	0.0118	0.00100	0.0405	0.00100	ND	0.00100
Total BTEX		0.104	0.00100	ND	0.00100	0.148	0.00100	0.0412	0.00100	0.0816	0.00100	0.00106	0.00100

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit

MQL Method Quantitation Limit

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

Fax (281) 240-4280 4143 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330

Project Name: Red Byrd #1

rk Orders: 431400,

Lab Batch #: 875271

Sample: 431400-001 / SMP

Project ID: TNM Red Byrd #1

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 11/20/11	21:36 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0275	. 0.0300	92	80-120	
4-Bromofluorobenzene	0.0283	0.0300	94	80-120	

Lab Batch #: 875271

Sample: 431400-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyze	ed: 11/20/11 21:59	SU	IRROGATE RI	ECOVERY S	STUDY	*
BTEX by EPA 802 Analytes	1	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0273	. 0.0300	91	80-120	
4-Bromofluorobenzene		0.0265	0.0300	88	80-120	

Lab Batch #: 875271

Sample: 431400-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 11/20/11 22:21	SU	RROGATE R	ECOVERY S	STUDY	
BT	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1	Analytes			[D]		
4-Difluorobenzene		0.0219	0.0300	73	80-120	*
4-Bromofluorobenzene		0.0310	0.0300	103	80-120	

Lab Batch #: 875271

Sample: 431400-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 11/20/11 22:44	SU	RROGATE RI	ECOVERY	STUDY	
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		. 0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	

Lab Batch #: 875271

Sample: 431400-005 / SMP

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 11/20/11 23:07	SU	SURROGATE RECOVERY STUDY											
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1,4-Difluorobenzene	0.0239	0.0300	80	80-120									
4-Bromofluorobenzene	0.0282	0.0300	94	80-120									

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

results are based on MDL and validated for QC purposes.

Project Name: Red Byrd #1

Work Orders: 431400,

Project ID: TNM Red Byrd #1

Lab Batch #: 875271

Sample: 431400-006 / SMP

Matrix: Water Batch: 1

Units: mg/L Date Analyzed: 11/20/11 23:30	SURROGATE RECOVERY STUDY											
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags							
Analytes	()	i-,	· [D]									
1,4-Difluorobenzene	0.0264	0.0300	88	80-120								
4-Bromofluorobenzene	0.0275	0.0300	92	80-120								

Lab Batch #: 875271

Sample: 614388-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 11/20/11 21:13	SURROGATE RECOVERY STUDY												
BTEX by EPA 8021		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
	Analytes			[D]										
1,4-Difluorobenzene		0.0273	0.0300	91	80-120	,								
4-Bromofluorobenzene		0.0256	0.0300	85	80-120	,,								

Lab Batch #: 875271

Sample: 614388-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 11/20/11 19:42	SURROGATE RECOVERY STUDY												
вт	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
	Analytes			1-3										
1,4-Difluorobenzene		0.0288	0.0300	96	80-120									
4-Bromofluorobenzene		0.0285	0.0300	95	80-120									

Lab Batch #: 875271

Sample: 614388-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 11/20/11 20:05	SURROGATE RECOVERY STUDY											
BTEX by EPA 8021		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags							
	Analytes			[D]									
1,4-Difluorobenzene		0.0293	0.0300	. 98	80-120								
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	,							

Lab Batch #: 875271

Sample: 431400-001 S / MS

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 11/21/11 01:23	SURROGATE RECOVERY STUDY											
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene	0.0292	0.0300	97	80-120								
4-Bromofluorobenzene	0.0320	0.0300	107	80-120	"							

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Red Byrd #1

rk Orders: 431400,

Lab Batch #: 875271

Project ID: TNM Red Byrd #1

Sample: 431400-001 SD / MSD

Matrix: Water Batch: 1

Units: mg/L Date Analyzed: 11/21/11 01:46	SURROGATE RECOVERY STUDY											
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene	0.0287	0.0300	96	80-120								
4-Bromofluorobenzene	0.0286	0.0300	95	80-120								

Surrogate Recovery [D] = 100 * A / B

results are based on MDL and validated for QC purposes.

Version: 1.%

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Red Byrd #1

Work Order #: 431400

Analyst: ASA

Date Prepared: 11/18/2011

Project ID: TNM Red Byrd #1

Date Analyzed: 11/20/2011

Lab Batch ID: 875271

Sample: 614388-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY														
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]								
Benzene	<0.00100	0.100	0.104	104	0.100	0.111	111	7	70-125	25					
Toluene .	<0.00200	0.100	0.103	103	0.100	0.112	112	8	70-125	25					
Ethylbenzene	<0.00100	0.100	0.106	106	0.100	0.115	115	8	71-129	25					
m_p-Xylenes	<0.00200	0.200	0.204	102	0.200	0.222	111	8	70-131	25					
o-Xylene	<0.00100	0.100	0.105	105	0.100	0.114	114	8	71-133	25					

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - M MSD Recoveries

Project Name: Red Byrd #1

Work Order #: 431400

Project ID: TNM Red Byrd #1

Lab Batch ID: 875271

QC- Sample ID: 431400-001 S

Batch #:

Matrix: Water

Date Analyzed: 11/21/2011

Date Prepared: 11/18/2011

Analyst: ASA

Reporting Units: mo/L

Analyst: ASA

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	0.0541	0.100	0.190	136	0.100	0.188	134	1	70-125	25	X
Toluene	0.0197	0.100	0.144	124	0.100	0.144	124	.0	70-125	25	
Ethylbenzene	0.0110	0.100	0.133	122	0.100	0.136	125	2	71-129	25	
m_p-Xylenes	0.0128	0.200	0.241	114	0.200	0.250	119	4.	70-131	25	
o-Xylene	0.00594	0.100	0.126	120	0.100	0.127	121	1	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, I = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit

11.000

Page 12 of 13

Xenc Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben Arguijo																Pro	ojec	Nan	ne: <u>R</u>	ed	Byr	d #1					·		
	Company Name	Basin Enviro	nmental Ser	vice T	echnol	ogies, LLC											-		Pr	oject	#: <u>T</u>	NM	Re	d By	rd#	<u> </u>				·	
	Company Address:	P. O. Box 30	1		·								_					F	Proj∈	ct L	ж: <u>L</u>	ea C	oun	ty, NI	М						
	City/State/Zip:	Lovington, N	M 88260										_						ر	РО	#: <u>P</u>	AA -	J. H	lenry	·						
	Telephone No:	(575)396-237	8				Fax No:		(575	5)39	6-14	29	_				R	eport	For	mat:	X	St	anda	ard		 	RRP			NPDES	s
	Sampler Signature:	Dakotoh	ward				e-mail:		bjar	gui	jo@l	oasin	env	.com				_													_
(lab use	only)					•													-	_		TCLF	_	nalyz	e Fo	r:	_			7.	
ORDER	ilando)							Г	F	reser	vation	8.#	of Cor	ntaine	's	. Ma	trix	28 28			OTAL	+	\Box	7				,]	48, 72 hrz	
AB # (lab use only)		LD CODE	•	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers			HCI		03		Other (Specify)	_	Specify Other	TPH: 418.1 8015M 8015	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K) Anions (Cl. SQ4, Alkalinity)	Ğ,	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semivolatiles	BTEX 80218/5030 or BTEX 8260 RCI	N.O.R.M.	Chloride E.300		RUSH TAT (Pre-Schedule) 24, 4	Standard TAT 4 DAY
001		MW-6	/		_	11/10/2011	13:15		_	x	-	X	I				_	W			+	T		\Box		x	† <u> </u>	Ħ	\top	+	x
	ı	VIW-7	/			11/10/2011	13135		3	x		x	floor				G	w			T					X	Τ	П	\top	1	x
(02 003	N	IW-11	/			11/10/2011	13:10		3	х		x					G	W			\mathbf{I}				\Box	x	$oxed{\mathbb{I}}$	\prod			x
	6	1W-16-				11/10/2011			3	X		X	工				G	₩			L	_			\perp	X	\perp		\pm		X
004	N	IW-17	/			11/10/2011	15:05		3	x		x					G	w			\perp			Ш		X					X
004 (05	N	IW-18	/			11/10/2011	14:35		3	X		X		\perp		Ц	G	w				L		Ц	\perp	x_					Х
CO	N	IW-19	,			11/10/2011	10 The	14	3	x		x	\downarrow	_			G	w		_	1	_	ļ	\sqcup	4	X.	 	\sqcup	\bot		х
·					 		15:40	\sqcup	_	\dashv	_	4	4	+	igspace				Ц	4	\bot	\downarrow	-	\sqcup	4	4	1	\sqcup	\bot	4	Ш
	<u></u>				-	 		┝╌┤	4	\dashv	-	-	4	+	-	Н			Н	+	+	\bot	-	┯	4	+	+	\dashv	\dashv	44	Ш
Special	Instructions:				i			<u> </u>							<u>. </u>		<u></u>				amp	le Co	ontai	omme ners Head:	Intac	:1?		ـــــا څ	닭 고	N N	
Relinquis Pg /c Relinquis	stah wakd		Date [/ /	07	me	Received by: Shamme Received by:	n Bur				_				//	Da //// Da	/11_		Time	\(\frac{1}{2}\)	abels Susto Susto Sampl	s on dy sa dy sa de Ha	cont eals eals and (ainer	(s) ontain ooler(ered	ner(s) (s)			100 × 000	N N N N N N N N N N N N N N N N N N N	
Relinquis	unnon Brownshed by:	•	Date		me me	Received by EL	OT:								_	Da		ļ	Time	- 1-	by	Cou	rier?		UPS	Dł					ar
						(broke	ea Ela	m	7						111	11-	<u> </u>	13	3.6	5	emp	51 A (L		ponr	vere.	η υ ι.	,	5.5)	°C	1

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1

Prelogin / Nonconformance Report - Sample Log-In

client Basin Env. / Plains	•	÷		
Date/Time:				
IN ILLOO				
Initials: 7.3/TUU AE				
			•	
Sample Receipt C	hecklist			
1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	(Yee)	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Yes	No	N/A	
4. Chain of Custody present?	ĆŸø8	No		
5. Sample instructions complete on chain of custody?	CYES	No		
6. Any missing / extra samples?	Yes	No		
7. Chain of custody signed when relinquished / received?	(Tes)	No		
8. Chain of custody agrees with sample label(s)?	(Yés)	No		
9. Container labels legible and intact?	Yes	No	·	
10. Sample matrix / properties agree with chain of custody?	Yes	No		
11. Samples in proper container / bottle?	Yes	No		
12. Samples properly preserved?	Yes	No	N/A	
13. Sample container intact?	Yee	No No		
14. Sufficient sample amount for indicated test(s)?	YES	No		
15. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	(N/A)	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No)	Cooler 5 No.	
ibs 5,5 °C ibs °C ibs	°C lbs	· °C	lbs	°C
Nonconformance Doc	umentation			
Contact: Contacted by:		Date/Time:		
	•			
Regarding:			· .	
				· · · · · · · · · · · · · · · · · · ·
Corrective Action Taken:				
		·		
Check all that apply: Cooling process has begun shortly after sar condition acceptable by NELAC 5.6.8.3	3.1.a.1.	-	rature	
☐ Initial and Backup Temperature confirm out	of temperature cor	nditions		

Page 13 of 13

☐ Client understands and would like to proceed with analysis

Final 1.000

Analytical Report 431838

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry Red Byrd #1 TNM Red Byrd #1

Collected By: Client

30-NOV-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

30-NOV-11

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 431838

Red Byrd #1

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 431838. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 431838 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 431838

PLAINS ALL AMERICAN EH&S, Midland, TX

Red Byrd #1

Sample IdMatrixDate CollectedSample DepthLab Sample IdMW-16W11-11-11 09:10431838-001

XENCO

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Red Byrd #1

Project ID:

TNM Red Byrd #1

Work Order Number: 431838

Report Date: 30-NOV-11 Date Received: 11/18/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Certificate of Analys

ummary 431838 PLAINS ALL AMERICA _H&S, Midland, TX

Project Id: TNM Red Byrd #1

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: Red Byrd #1

Date Received in Lab: Fri Nov-18-11 11:25 am

Report Date: 30-NOV-11

			·	Project Manager:	Brent Barron II-	
	Lab Id:	431838-001		_		
Analysis Requested	Field Id:	MW-16				
Anutysis Requesteu	Depth:					
	Matrix:	WATER				
	Sampled:	Nov-11-11 09:10				
BTEX by EPA 8021B	Extracted:	Nov-22-11 15:15				
•	Analyzed:	Nov-23-11 12:21				
	Units/RL:	mg/L RL				
Benzene		0.00159 0.00100				
Toluene		ND 0.00200				
Ethylbenzene		0.00197 0.00100				
m_p-Xylenes		ND 0.00200				
o-Xylene		ND 0.00100		·		
Total Xylenes		ND 0.00100				
Total BTEX		0.00356 0.00100				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and OA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

POL Practical Quantitation Limit MQL Method Quantitation Limit

LOO Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

(281) 240-4200 (281) 240-4280 4143 Greenbriar Dr, Stafford, TX 77477 (214) 351-9139 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (210) 509-3334 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3335 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 6017 Financial Drive, Norcross, GA 30071 (770) 449-8800 (770) 449-5477 3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330

Project Name: Red Byrd #1

rk Orders: 431838,

Lab Batch #: 875908

Sample: 431838-001 / SMP

Project ID: TNM Red Byrd #1

Batch: 1

Matrix: Water

Units: mg/L Date Anal	SURROGATE RECOVERY STUDY												
BTEX by EPA 80 Analytes	21B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene		0.0264	0.0300	88	80-120								
4-Bromofluorobenzene		0.0256	0.0300	85	80-120								

Lab Batch #: 875908

Sample: 614751-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 11/23/11 01:22	St	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		·	[D]		
1,4-Difluorobenzene	0.0282	0.0300	94	80-120	
4-Bromofluorobenzene	0.0257	0.0300	86	80-120	

Lab Batch #: 875908

Sample: 614751-1-BKS/BKS

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 11/22/11 23:52	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
4-Difluorobenzene	0.0292	0.0300	. 97	80-120	
4-Bromofluorobenzene	0.0283	0.0300	94	80-120	

Lab Batch #: 875908

Sample: 614751-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 1	1/23/11 00:14 S	URROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	!		[D]		
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	

Lab Batch #: 875908

Sample: 431711-001 S/MS

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 11/23/11 05:29	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.000	0.0000			
77	0.0293	0,0300	98	80-120	
4-Bromofluorobenzene	0.0299	0.0300	100	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

[&]quot;results are based on MDL and validated for QC purposes.

Project Name: Red Byrd #1

Work Orders: 431838,

Project ID: TNM Red Byrd #1

Lab Batch #: 875908

Sample: 431711-001 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 11/23/11 05:51	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0300	0.0300	100	80-120	
4-Bromofluorobenzene	0.0289	0.0300	96	80-120	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BS.

.ecoveries

Project Name: Red Byrd #1

Work Order #: 431838

Analyst: ASA

Date Prepared: 11/22/2011

Project ID: TNM Red Byrd #1

Date Analyzed: 11/22/2011

Lab Batch ID: 875908

Sample: 614751-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	<0.00100	0.100	0.112	112	0.100	0.107	107	5	70-125	25	
Toluene	<0.00200	0.100	0.112	112	0.100	0.107	107	5	70-125	25	
Ethylbenzene	<0.00100	0.100	0.117	117	0.100	0.111	111	5	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.231	116	0.200	0.218	109	6	70-131	25	
o-Xylene	<0.00100	0.100	0.116	116	0.100	0.110	110	5	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Red Byrd #1

Work Order #: 431838

Project ID: TNM Red Byrd #1

Lab Batch ID: 875908

QC- Sample ID: 431711-001 S

Batch #:

Matrix: Water

Date Analyzed: 11/23/2011

Date Prepared: 11/22/2011

Analyst: ASA

Reporting Units: mg/L		M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY	
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result C	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Contro Limit %RP
Analytes	[A]	[B]	[-]	[D]	[E]		[G]			

BTEX by EPA 8021B	Sample	Spike	Spiked Sample Result	Sample	• .	Spiked Sample	•	RPD	Limits	Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	<0.00100	0.100	0.111	111	0.100	0.107	107 .	4 ·	70-125	25	
Toluene	<0.00200	0.100	0.112	112	0.100	0.107	107	5	70-125	25	
Ethylbenzene	<0.00100	0.100	0.113	113	0.100	0.110	110	3	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.222	111	0.200	0.215	108	3	70-131	25	
o-Xylene	<0.00100	0.100	0.112	112	0.100	0.108	108	4	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben Arguijo				· · · · · · · · · · · · · · · · · · ·													Pr	ojec	t Na	me:	Rec	Ву	<u>rd #</u>	<u>:1</u>							
	Company Name	Basin Environmen	ntal Ser	vice T	echnol	ogles, LLC														Pr	ojec	:t #:	TN	A Re	ed B	yrd	#1						
	Company Address:	P. O. Box 301				·													ı	roje	ect L	.oc:	Lea	Cour	nty, l	NM_				<u>.</u>			
	City/State/Zip:	Lovington, NM 88	260																		P) #: _.	PAA	<u> J.</u>	Heni	ry							
	Telephone No:	(575)396-2378					Fax No:		(5	75)3	96-1	429						R	epor	t Fo	rmat	:	X ,	Stand	Jard			TRE	RP			PDE!	т s
	Sampler Signature:	Dakotah Ware	1				e-mail:		bj	argu	ijo@	bas	iner	IV.C	om												•						
lab use	only)						•			,			٠.								·		TCI		Anal	/ze F	or:	$\overline{}$		$\overline{}$	_	T .	1
ORDEF	11-1-70	7	1							_	Pres	Desti	ion 8	# 05	Contr	ainem	_	M	itrix			_	TOTA	AL:	#	#						, 72 h	ļ
AB # (lab use only)	,	_D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Filtered	Total #. of Containers		ONH			#OEN .			cify)	r St.=Studge	NP=Non-Potable Specify Other	TPH: 418.1 8015M . 8015B	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	Metals: As Ao Ba Cd Cr Pb Ho Se	Volatiles	Semivolatiles	BTEX 80216/5030 or BTEX 8260	RCI	N.O.R.M.	JNONGE E SUU		RUSH TAT (Pre-Schedule) 24, 48,	Γ
		IW-16				11/11/2011	0910	-	3	+-	+-	Х							W	1		٦		7	+	۳	x	٦	315	+	+-	٣	X
																								I			П			1	T		
	,																							\perp	$ m oxedsymbol{oxed}$	\prod				I		П	Γ
	·			<u> </u>					L	L						\bot								\perp	\perp					T		П	Г
					<u> </u>				L							\sqcup								\perp					$oxed{T}$	1	\prod	П	Γ
					<u> </u>					L					_									\perp	$oldsymbol{\perp}$					\prod		\Box	Γ
									L															\perp	\perp			\Box		\prod		П	Γ
									L	L					_									丄	丄				\perp	Ι	\prod	\Box	
	<u></u>			·						<u> </u>					_	_	_	-					Ц.	丄					\perp	\perp			
	<u> </u>	·				<u> </u>			L.,	<u> </u>						╝						\perp		丄		$oxed{oxed}$							
Special	Instructions:															•						Sam	ple C	conta	omm iners Head	Inta	ct?			8)	N N .	
Relinquis	shed by: ah Ward	n/ /g	Pate	l	me 200	Received, by:	on Bra									il	Date	e ///		Time		Labe Cust	ls on odv s	cont	taine	r(s) conta	iner(s)				N N	
Relinquis	shed by: annuan Brown Shed by:	11/	Pate 18/11	11:	me 25	Received by:	· .				-:			<u>.</u>			Date	e		Time		Sa <u>m</u>	ple H	land	on c Deliv r/Clie ?	ered	j sp. ?	DHL	Fe	A CANCESCANO	- Lone	N N N e Sta	ar
Relinquis	snea by:		74(8	''		Received by ELC	n;									///	Date 18/	,		Time 25	ŀ	Tem	perat	ure l	Upon	Rec	eipt:		,	ک	~	°Ç	

XENCO Laboratories

Attanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Preiogin / Nonconformance Report - Sample Log-in

Client: Phins						•		
	11/11:25							
Lab ID#: 43/8	B						•	
Initials: 73								4
		S	ample Receipt C	hecki	ist			
1. Samples on ice?		· · ·			Blue	Wester	No	
2. Shipping container i	n good condition?		·		Yes	No	None	
3. Custody seals intact	on shipping contain	ner (co	oler) and bottles?		(Yes)	No	N/A	
4. Chain of Custody pr	esent?				Yes	No		
5. Sample instructions	complete on chain	of cust	ody?		YES	No		
6. Any missing / extra	samples?				Yes	(P)		
7. Chain of custody sig	ned when relinquis	hed / n	eceived?		Y	No		
8. Chain of custody ag	rees with sample lat	bel(s)?	<u> </u>		(Yes)	No		
9. Container labels leg	ible and intact?				Yes	No		
10. Sample matrix / pro	operties agree with o	hain o	f custody?		₹	No		
11. Samples in proper	container / bottle?		 		Yes	No		
12. Samples property	preserved?				Nes .	No	N/A	
13. Sample container i	ntact?		- 		YES	No	· · · · · · · · · · · · · · · · · · ·	
14. Sufficient sample a	mount for indicated	test(s)?		₹	No		
15. All samples receive	ed within sufficient l	hold tir	me?		₹	No		
16. Subcontract of san	nple(s)?				Yes	No	N/A	
17. VOC sample have :	zero head space?	·			₹	No	N/A	
18. Cooler 1 No.	Cooler 2 No.		Cooler 3 No.		Cooler 4 No).	Cooler 5 No.	
lbs /. 5	°C lbs	℃	lbs	ა	ibs	°C	lbs	°c
		Nonc	onformance Do	cume	ntation			
Contact:	Conta	cted by	/:			Date/Time:_		
		_			·.			
Regarding:						·	·	
			,					
Corrective Action Tak	en:							
Check all that apply:	Cooling process	has b	egun shortly after sa	malina	event and e	ut of tampo	estrino.	
oneck an diat apply:	condition a	ccept	able by NELAC 5.5.8.	3.1.a.1.	•			•
			perature confirm out I would like to proce			nditions		

Analytical Report 433650

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Red Byrd # 1

TNM Red Byrd # 1

27-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

27-DEC-11

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 433650

Red Byrd # 1

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433650. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433650 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 433650

PLAINS ALL AMERICAN EH&S, Midland, TX

Red Byrd # 1

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-16	W	12-16-11 10:00		433650-001
MW-19	. W	12-16-11 09:30		433650-003

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Red Byrd # 1

Project ID:

TNM Red Byrd # 1

Work Order Number: 433650

Report Date: 27-DEC-11 Date Received: 12/19/2011

Sample receipt non conformances and comments:

Sample -002 (MW-18) was broken during shipment to Houston office, client will resample.

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-877812 SVOA PAHs List by SW-846 8270C

SW8270C

Batch 877812, Nitrobenzene-d5 recovered above QC limits Data confirmed by re-analysis.

Samples affected are: 615639-1-BKS.

Terphenyl-D14 recovered above QC limits Data confirmed by re-analysis. Samples affected are:

615639-1-BLK,433650-003,433650-001.

SW8270C

Batch 877812, Acenaphthylene recovered above QC limits in the laboratory control sample. Samples affected are: 433650-001, -003.

Surrogates recovered high, however all analytes were non-detect. Compounds in QC recovered high, however all samples were non-detect. Samples reported as is

Certificate of Analy Jummary 433650 PLAINS ALL AMERIC.

∠H&S, Midland, TX

Project Id: TNM Red Byrd # 1

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: Red Byrd #1

Date Received in Lab: Mon Dec-19-11 10:50 am

Report Date: 27-DEC-11 Project Manager: Brent Barron II

							Project Manager:	Dient Danion ii	
- 	Lab Id:	433650-0	001	433650-0	003				,
Analysis Requested	Field Id:	MW-16	6	MW-19	9				
Anulysis Nequesieu	Depth:								
·	Matrix:	WATE	R	WATE	R				
•	Sampled:	Dec-16-11	10:00	Dec-16-11	09:30				-
SVOA PAHs List	Extracted:	Dec-20-11	15:18	Dec-20-11	15:21				
SUB: TX104704215	Analyzed:	Dec-23-11	12:18	Dec-23-11	12:42				
<u> </u>	Units/RL:	mg/L	RL	mg/L	RL	•	•		
Acenaphthene		ND	0.0111	ND	0.0110				
Acenaphthylene		ND	0.0111	ND	0.0110				
Anthracene		ND	0.0111	ND	0.0110				
Benzo(a)anthracene		ND	0.0111	ND	0.0110				
Benzo(a)pyrene		.ND	0.0111	ND	0.0110				
Benzo(b)fluoranthene	.	ND	0.0111	ND	0.0110				
Benzo(k)fluoranthene		ND	0.0111	ND	0.0110				
Benzo(g,h,i)perylene		ND	0.0111	ND	0.0110		,		
Chrysene		ND	0.0111	ND	0.0110				
Dibenz(a,h)anthracene		ND	0.0111	ND	0.0110			•	
Fluoranthene		ND	0.0111	ND	0.0110				
Fluorene		ND	0.0111	ND	0.0110		•		
Indeno(1,2,3-c,d)Pyrene		ND	0.0111	ND	0.0110				
1-Methylnaphthalene		ND	0.00556	ND	0.00549				
2-Methylnaphthalene		ND	0.0111	ND	0.0110	•			
Naphthalene		ND	0.0111	. ND	0.0110				
Phenanthrene		ND	0.0111	ND	0.0110				
Pyrene		ND	0.0111	ND	0.0110				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and OA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

POL Practical Quantitation Limit MOL Method Quantitation Limit

LOO Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

(281) 240-4200 (281) 240-4280 4143 Greenbriar Dr, Stafford, TX 77477 (214) 351-9139 (214) 902 0300 9701 Harry Hines Blvd , Dallas, TX 75220 (210) 509-3334 (210) 509-3335 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 6017 Financial Drive, Norcross, GA 30071 (770) 449-8800 (770) 449-5477 (602) 437-0330 3725 E. Atlanta Ave, Phoenix, AZ 85040

Form 2 - Surrogate Recoveries

Project Name: Red Byrd #1

vrk Orders: 433650,

_ab Batch #: 877812

Sample: 433650-001 / SMP

Project ID: TNM Red Byrd # 1

Ratch:

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/23/11 12:18	St	RROGATE R	ECOVERY	STUDY	
SV	OA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes			(6)		
2-Fluorobiphenyl		0.0624	0.0556	112	44-117	
2-Fluorophenol		0.0312	0.0556	56	30-100	
Nitrobenzene-d5		0.0602	0.0556	108	46-111	
Phenol-d6		0.0174	0.0556	31	15-94	
Terphenyl-D14		0.0752	0.0556	135	46-126	**
2,4,6-Tribromophenol		0.0627	. 0.0556	113	. 48-117	

Lab Batch #: 877812

Sample: 433650-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/23/11 12:42	SU	RROGATE R	ECOVERY :	STUDY	
SVOA PAHs List	Amount Found [A]	True Amount . [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
2-Fluorobiphenyl	0.0584	0.0549	106	44-117	
2-Fluorophenol	0.0298	0.0549	54	30-100	
Nitrobenzene-d5	0.0587	0.0549	· 107	46-111	
Phenol-d6	0.0169	0.0549	31	15-94	
`erphenyl-D14	0.0702	0.0549	128	46-126	**
∠,4,6-Tribromophenol	0.0596	0.0549	109	48-117	

Lab Batch #: 877812

Sample: 615639-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/23/11 08:25	SURROGATE RECOVERY STUDY										
S	VOA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
,	Analytes			[D]	:							
2-Fluorobiphenyl		0.0538	0.0500	108	44-117	;						
2-Fluorophenol		0.0460	0.0500	92	30-100							
Nitrobenzene-d5		0.0539	0.0500	108	46-111							
Phenol-d6		0.0424	0.0500	85	15-94							
Terphenyl-D14		0.0654	0.0500	131	46-126	**						
2,4,6-Tribromophenol		0.0445	0.0500	89	48-117							

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Red Byrd #1

Work Orders: 433650,

Project ID: TNM Red Byrd # 1

Lab Batch #: 877812

Sample: 615639-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/23/11 08:48	SU	RROGATE RI	ECOVERY S	STUDY	
SV	OA PAHs List	Amount , Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	-		[D]		
2-Fluorobiphenyl		0.0572	0.0500	114	44-117	
2-Fluorophenol		0.0476	. 0.0500	95	30-100	
Nitrobenzene-d5		0.0558	0.0500	112	46-111	**
Phenol-d6		0.0472	0.0500	94	15-94	
Terphenyl-D14	. "	0.0580	0.0500	. 116	46-126	
2,4,6-Tribromophenol		0.0518	0.0500	104	48-117	

Lab Batch #: 877812

Sample: 615639-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/23/11 09:12	SU	RROGATE R	ECOVERY S	STUDY	
svo	A PAHs List	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			· [D]		
2-Fluorobiphenyl		0.0540	0.0500	108	44-117	•
2-Fluorophenol		0.0451	0.0500	90	30-100	
Nitrobenzene-d5		0.0530	0.0500	106	46-111	
Phenol-d6		0.0450	0.0500	90	. 15-94	
Terphenyl-D14		0.0557	0.0500	111	46-126	
2.4.6-Tribromophenol		0.0495	0.0500	99	48-117	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BS. Accoveries

Project Name: Red Byrd # 1

Work Order #: 433650

Analyst: MCH

Date Prepared: 12/20/2011

Project ID: TNM Red Byrd # 1

Date Analyzed: 12/23/2011

Lab Batch ID: 877812

Sample: 615639-1-BKS

Batch #: 1

Matrix: Water

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L

SVOA PAHs List Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Acenaphthene	<0.0100	0.0500	0.0548	110	0.0500	0.0537	107	2	27-132	31	
Acenaphthylene	< 0.0100	0.0500	0.0549	110	0.0500	0.0533	107	3	46-108	25	Н
Anthracene	<0.0100	0.0500	0.0504	101	0.0500	0.0494	99	2	47-145	25	
Benzo(a)anthracene	< 0.0100	0.0500	0.0515	103	0.0500	0.0506	101	2	33-143	25	-
Benzo(a)pyrene	<0.0100	0.0500	0.0510	102	0.0500	0.0510	102	0	65-135	25	
Benzo(b)fluoranthene	<0.0100	0.0500	0.0506	101	0.0500	0.0479	- 96	5	24-159	25	
Benzo(k)fluoranthene	<0.0100	0.0500	0.0478	96	0.0500	0.0494	99	3	25-125	25	
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0472	94	0.0500	0.0464	93	2	65-135	25	
Chrysene	<0.0100	0.0500	0.0542	108	0.0500	0.0530	106	2	65-135	25	
Dibenz(a,h)anthracene	< 0.0100	0.0500	0.0538	108	0.0500	0.0533	107	1	50-125	25	
Fluoranthene	<0.0100	0.0500	0.0523	105	0.0500	0.0513	103	2	47-125	25	
Fluorene	<0.0100	0.0500	0.0540	108	0.0500	0.0525	105	3	48-139	25	
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0541	108	0.0500	0.0535	107	1	27-160	25	
Naphthalene	<0.0100	0.0500	0.0504	101	0.0500	0.0490	- 98	3	26-175	25	
Phenanthrene	<0.0100	0.0500	0.0476	95	0.0500	0.0464	93	3	65-135	25	
Pyrene	<0.0100	0.0500	0.0524	105	, 0.0500	0.0513	103	2 .	23-152	31	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager: Ben Argui	jo										<u> </u>				. Р	rojec	t Na	me:	Kea	Byr	ra #	<u> </u>							
	Company Name Basin Env	ironmental Se	rvice T	echno	logles, LLC	,											. P	rojec	t#:	TNN	i Re	d B	yrd i	#1						
	Company Address: P. O. Box	301														_	Proj	ect L	.oc:	Lea (Coun	nty, N	NM							
	City/State/Zip: Lovington	, NM 88260									•							P) # :	PAA	- J. I	Henr	γ							
	Telephone No: (575)396-2	2378		•		Fax No:		(57	5)39	96-14	129					Repo	nt Fo	rma	t:	X s	tand	lard			TRF	٦P	ļ	□n	PDES	\$
	Sampler Signature: 4/10	syl/h	en	24		· e-mail:		bja	rgul	jo@	bas	inen	v.cor	n										<u>. </u>						
(lab use	only)			7		•							_				F			TCL	_	Analy	yze F	or:			\neg		ٰ ۽ إ	
ORDEI	433650							1	_	Prese		on & #	of Co	ntaine	rs	Matrix	- a	_		TOTA		,	#					İ	48, 72 hrs	
	1	J	T				Π	П						T				1006			S 品) 		¢ 8260			ļ		z	
_AB # (lab use only)	FIELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO3	HCI .	1 ,50,	NaOH Na S.O.	None	Other (Specify)	Ē Ē	NP=Non-Potable Specify Uthe TPH: 418.1 8015M	TX 1005 TX	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semivolatiles	BTEX 8021 BV 5030 or BTEX 8260	RCI	РАН	Chloride E 300		RUSH TAT (Pre-Schedule)	Standard TAT 4 DAY
	MW-16		<u> </u>		12/16/2011	1000	<u> </u>	1	x						T	GW	1	 -	Ĭ		7	+	1 7			x	Ť	十	1	X
03	MW-18				12/16/2011	0850		1	х							GW										х				x
03	MW-19				12/16/2011	0930		1	х							GW						\perp				x	_		┷	X
			<u> </u>	<u> </u>									\bot				\bot	_		_	\bot	1				\sqcup	_	_	4	<u> </u>
			·		· .				L				\perp		ļ		1	1		\bot	1	4			Ш	\vdash	\dashv	\dashv	+	↓_
			↓				_		_		Ш		_	4	$oxed{oxed}$		1	1_	:	\dashv	_	4	4_	\sqcup	Ш	$\vdash \downarrow$		+	+	ــ
	· · · · · · · · · · · · · · · · · · ·	·	ļ	ļ				_	_			\dashv	_		-		4	↓_			+	\bot	—	 	\vdash	\vdash	\dashv	\dashv	+	-
			 			· · · · · · · · · · · · · · · · · · ·	L			Н	Щ		+		-	ļ	╀	-	Н	+	+	+	╁┙		\vdash	\vdash	-+	+	+-	\vdash
			 	·			-	\vdash			Ш		_	+	-	-	╀	╁		\dashv	+	+	+'	\vdash	\vdash	H	\dashv	+	╁	-
Special	Instructions:		<u>. </u>	l		<u> </u>	•		<u> </u>		لـــا		L_	_ [<u></u>			Lab	orate	ory C	omr	mente] s:	Ш				ــــــ	1
		•																	San	nple (Conta	ainer	rs Inta adspa	act?				D	R	Þ
Relinquis	hed by:	Date 12/14/11	10:	me 58	Received by:								,		Da	ite	Tin	ne	Cus	tody	seals		er(s) conta coole		(s)		ر پو	D - D - D - D - D - D - D - D - D - D -	= = = = = = = = = = = = = = = = = = =	-
Relinquia	fied by:	Date	<u></u>	me	Received by:										·Da	ite	Tin	ne	San	nple l	tand mple	d Deli er/Clie	ivered ent Re	d ep. ?	DHL	ı	C C FedF	P D X	N N one S	
Relinquis	γ' 'yy:	Date	Ti	me	Received by ELC	liea.	-	· ~	n	1	***************************************			10	Da L- <i>[</i> *	ite 9.11	Tin	-		-	1 1		n Red	200		•	, cor	>	°C	

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010

Prelogin / Nonconformance Report - Sample Log-In

Client:	yk ² SX	21P	<u> </u>	3					
Date/Time:	13	11.01.5	10.	50					
Lab ID#:		433	usu		_	**			
Initials:		fr							
			9	Sample Rece	ipt Check	list		÷	
1. Samples	on ice?					Blue	Water	No	
2. Shipping	container i	n good cond	ition?			GeY)	No	None	
3. Custody s	eals intac	on shipping	container (c	ooler) and bottle	es?	(Yes)	No	N/A	
4. Chain of C	Custody pr	esent?				Yes-	No		
5. Sample in	structions	complete or	chain of cus	stody?		Y96	No		
6. Any missi	ing / extra	samples?				Yes	(No)		
7. Chain of c	ustody sig	ned when re	linquished /	received?		Yes	No		
8. Chain of c	ustody ag	rees with sai	nple label(s)	?		(Yes)	No		
9. Container	labels leg	ible and inta	ct?			Yes	No		. •
10. Sample i	matrix / pro	perties agre	e with chain	of custody?		Yes	No		
11. Samples	in proper	container / b	ottle?			Yes	No		
12. Samples	properly p	reserved?				(Y98)	No	N/A	
13. Sample o	container i	ntact?			- 	Yes	No		
			dicated test(s	s)?		Yes	No		
15. All samp	les receive	ed within suf	ficient hold ti	me?		(Yes)	No		
16. Subcont	ract of san	nple(s)?				Yes	No	· N/A	
17. VOC san	nple have a	zero head sp	ace?			Yes	No	(NA)	
18. Cooler 1	No.	Cooler 2 N	lo.	Cooler 3 No.		Cooler 4 No		Cooler 5 No.	
lbs	500	C lbs	°c		s °C	T	°C		°C
		2 12 10 11	None	conformance	Docume	ntation			
Contact:					Docume				
Contact		· · · · · · · · · · · · · · · · · · ·	Contacted b	y:	·		Date/Time:_		
Regarding:	· .				-				
Corrective A	otion Take	en:							
							.		
Check all the	at apply:	□ Cooling p	rocess has b	egun shortly aft	er sampling	event and or	ut of temper	ature	

- condition acceptable by NELAC 5.5.8.3.1.a.1.
 □ Initial and Backup Temperature confirm out of temperature conditions
- ☐ Client understands and would like to proceed with analysis

Analytical Report 433838

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Red Byrd #1

TNM Red Byrd #1

03-JAN-12

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

03-JAN-12

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 433838

Red Byrd #1

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433838. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433838 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 433838

PLAINS ALL AMERICAN EH&S, Midland, TX

Red Byrd #1

Sample Id			Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-18		•	W	12-21-11 08:35		433838-001

XENCO Laboratories

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Red Byrd #1

Project ID:

TNM Red Byrd #1

Work Order Number: 433838

Report Date: 03-JAN-12 Date Received: 12/21/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Certificate of Analys Summary 433838 PLAINS ALL AMERICS LH&S, Midland, TX

Project Id: TNM Red Byrd #1

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: Red Byrd #1

Date Received in Lab: Wed Dec-21-11 01:20 pm

Report Date: 03-JAN-12
Project Manager: Brent Barron II

					 	Froject Manager:	Dicht Duron II	
	Lab Id:	433838-0	01		 			
Analysis Requested	Field Id:	MW-18	3 .					
Anuiysis Requesieu	Depth:							·
	Matrix:	WATE	R		•	· ·		
	Sampled:	Dec-21-11 (08:35	•				·
SVOA PAHs List by EPA 8270C	Extracted:	Dec-28-11	16:00		 			
SUB: E871002	Analyzed:	Dec-30-11	11:25					
•	Units/RL:	mg/L	RL					
Acenaphthene		ND	0.0500					
Acenaphthylene		ND	0.0500					
Anthracene		ND	0.0500					**
Benzo(a)anthracene		ND	0.0500					
Benzo(a)pyrene		ND	0.0500					
Benzo(b)fluoranthene		ND	0.0500					
Benzo(k)fluoranthene		ND	0.0500		.			
Benzo(g,h,i)perylene		ND	0.0500					
Chrysene		ND	0.0500			:		
Dibenz(a,h)Anthracene		ND	0.0500					
Fluoranthene		ND	0.0500					
Fluorene		ND	0.0500					
indeno(1,2,3-c,d)Pyrene		ND	0.0500	·				
1-Methylnaphthalene		ND	0.0250					
2-Methylnaphthalene		ND	0.0500					
Naphthalene		ND	0.0500					
Phenanthrene		ND	0.0500				,	
Pyrene		ND	0.0500					

Page 5 of 11

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout his analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F. RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit

MOL Method Quantitation Limit

LOO Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 9701 Harry Hines Blvd, Dallas, TX 75220 (210) 509-3334 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3335 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 6017 Financial Drive, Norcross, GA 30071 (770) 449-8800 (770) 449-5477 3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330

Form 2 - Surrogate Recoveries

Project Name: Red Byrd #1

rk Orders: 433838,

Lab Batch #: 878168

Sample: 433838-001 / SMP

Project ID: TNM Red Byrd #1

Batch:

1 Matrix: Water

Units: ug/L Date Analyzed: 12/30/1	1 11:25	SURROGATE R	RECOVERY	STUDY	
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl ·	28.2	50.0	56	44-117	
2-Fluorophenol	17.3	50.0	35	30-100	
Nitrobenzene-d5	29.1	50.0	58	46-111	
Phenol-d6	10.7	50.0	21	15-94	
Terphenyl-D14	31.6	50.0	63	46-126	
2,4,6-Tribromophenol	32.6	50.0	65	48-117	

Lab Batch #: 878168

Sample: 615966-1-BLK / BLK

Batch: 1

Matrix: Water

SU	RROGATE R	ECOVERY	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		נטו		
46.0	50.0	92	44-117	
39.6	50.0	79 ·	30-100	
46.8	50.0	94	46-111	
30.6	50.0	61	15-94	
58.8	50.0	118	46-126	
42.5	50.0	85	48-117	
	Amount Found [A] 46.0 39.6 46.8 30.6 58.8	Amount Found [A] True Amount [B] 46.0 50.0 39.6 50.0 46.8 50.0 30.6 50.0 58.8 50.0	Amount Found [A] True Amount [B] Recovery %R [D] 46.0 50.0 92 39.6 50.0 79 46.8 50.0 94 30.6 50.0 61 58.8 50.0 118	Found [A] Amount [B] Recovery %R [D] Limits %R 46.0 50.0 92 44-117 39.6 50.0 79 30-100 46.8 50.0 94 46-111 30.6 50.0 61 15-94 58.8 50.0 118 46-126

Lab Batch #: 878168

Sample: 615966-1-BKS/BKS

Batch: 1

Matrix: Water

Units: ug/L Date Analyzed: 12/29/11 12:37	SU	RROGATE R	ECOVERY	STUDY	
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	48.0	50.0	96	44-117	
2-Fluorophenol	39.0	50.0	.78	30-100	
Nitrobenzene-d5	47.4	50.0	95	46-111	
Phenol-d6	33.1	50.0	66	15-94	
Terphenyl-D14	50.1	50.0	100	46-126	
2,4,6-Tribromophenol	51.4	50.0	103	48-117	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

¹¹ results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Red Byrd #1

Work Orders: 433838,

Project ID: TNM Red Byrd #1

Lab Batch #: 878168

Sample: 615966-1-BSD / BSD

Batch: 1 Matrix: Water

Units: ug/L	Date Analyzed: 12/29/11 13:01	SU	RROGATE R	ECOVERY	STUDY	
SVOA PA	.Hs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		46.8	50.0	94	44-117	
2-Fluorophenol		39.1	50.0	78	30-100	
Nitrobenzene-d5		48.0	50.0	96 -	46-111	
Phenol-d6		33.1	50.0	66	15-94	
Terphenyl-D14		48.4	50.0	97	46-126	
2,4,6-Tribromophenol		50.6	50.0	101	48-117	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BS. Recoveries

Project Name: Red Byrd #1

Work Order #: 433838

Analyst: MCH

Date Prepared: 12/28/2011

Project ID: TNM Red Byrd #1

Date Analyzed: 12/29/2011

Matrix: Water

Lab Batch ID: 878168

Sample: 615966-1-BKS

Batch #: 1

Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
SVOA PAHs List by EPA 8270C Analytes	Blank Sample Result	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Acenaphthene	<0.0100	0.0500	0.0489	98	0.0500	0.0480	96	2	54-114	25		
Acenaphthylene	<0.0100	0.0500	0.0490	98	0.0500	0.0477	95	3	53-113	25		
Anthracene	<0.0100	0.0500	0.0483	97	0.0500	0.0489	98	1	56-116	25	†	
Benzo(a)anthracene	<0.0100	0.0500	0.0487	97	0.0500	0.0481	96	1	59-116	25		
Benzo(a)pyrene	<0.0100	0.0500	0.0499	100	0.0500	0.0503	101	1.	58-118	25		
Benzo(b)fluoranthene	<0.0100	0.0500	0.0454	91	0.0500	0.0472	94	4	54-123	25		
Benzo(k)fluoranthene	<0.0100	0.0500	0.0517	103	0.0500	0.0502	· 100	3	52-122	25		
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0516	103	0.0500	0.0497	99	4	47-129	25		
Chrysene	<0.0100	0.0500	0.0482	96	0.0500	0.0469	94	3	58-116	25		
Dibenz(a,h)Anthracene	<0.0100	0.0500	0.0483	97	0.0500	0.0474	95	2	46-131	25	1	
Fluoranthene	<0.0100	0.0500	0.0481	96	0.0500	0.0491	98	2	55-120	25	Ť –	
Fluorene	<0.0100	0.0500	0.0482	96	0.0500	0.0479	96	1	56-114	25		
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0513	103	0.0500	0.0508	. 102	1	.44-132	25		
1-Methylnaphthalene	<0.00500	0.0500	0.0465	93	0.0500	0.0468	94	1	47-113	25		
2-Methylnaphthalene	<0.0100	0.0500	0.0468	94	0.0500	0.0475	95	1	57-106	25		
Naphthalene	< 0.0100	0.0500	0.0463	93	0.0500	0.0463	93	0	53-110	25		
Phenanthrene	<0.0100	0.0500	0.0484	97	0.0500	0.0489	98	ī	56-116	25		
Pyrene	<0.0100	0.0500	0.0500	100	0.0500	0.0472	94	6	57-119	25		

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

inal 1.000

age 10 of 11

Xenco _aboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben Arguijo			·····		_											•	Proj	ect	Nam	ю: <u>R</u>	led	Byr	'd #			-					
	Company Name	Basin Enviro	nmental Ser	vice T	echnol	logies, LLC	, LLC c P								Project #: TNM Red Byrd #1																		
	Company Address: P. O. Box 301 Project								Project Loc: Lea County, NM																								
	City/State/Zip:	Lovington, Ni	M 88260			, .							•								PO	#: <u>P</u>	AA ·	J. I	lenr	y							
	Telephone No:	(575)396-2378	3 0				Fax No:		(57	5)39	6-14	29						Rep	ort í	Forr	nat:	X	s	and	ard			TRR	 ₹₽		NF	PDE!	s
	Sampler Signature:	1/2		vuh			e-mail:		bja	rgulj	0@	oasi	nen	v.co	m		· ·		_														_
lab use o	only)	0	- {)												•	ŀ				TCL		inaly	ze F	or:	一	一	$\overline{}$	T	- [
ORDER		,			_				1	· F	rese	vatio	n & #	of C	ontair	ners	TN	/atrix	, [e l		T	OTA	—	F	\Box						48, 72 hn	
AB # (lab use only)		_D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers		HNO ₃				Na ₂ S ₂ O ₃	(Specify)	r SL≂Sludge	ler S≃Soit/Solid	on-Potable Specify Other	418.1 8015M	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K) Anions (Cl. SO4 Alkalinin)	SAR / ESP / CFC	Metals: As Aq Ba Cd Cr Pb Hq Se	Volatiles	Semivolatiles	BTEX 8021B/5030 or BTEX 8260	RCI ,	PAH	Chlonde E 300		RUSH TAT (Pre-Schedule) 24, 40	Standard TAT 4 DAY
	N	IW-18				12/21/2011	08:35		1	x								GW						Ĺ					Х			П	х
							ye .							\perp					1	\perp	\perp		┸	L	\perp	Ц		\prod					
·								Ш			_	4	4	4	\perp	\bot	1		4	4	4	\bot	\bot	1	1	Ц	Ц	4	\bot	4	\perp	Ш	Ц
				ļ	<u> </u>			Н	_			-	\dashv	4	4	+	╀		\downarrow	4	4	4	4-	+	+	\sqcup	$\vdash \vdash$	4	+	4	↓_	igspace	Ц
		_ . :						Н	-	\dashv	-{	\dashv	\dashv	4	+	+	╀		4	4	+	╬	+	+	+-	\sqcup	\vdash	\dashv	+	4	+	Ш	Н
				<u> </u>	-			\vdash	4	\dashv		\dashv	\dashv	4	+	-	╁┈		+	+	+		+	+	+	Н	\vdash	\dashv	\dashv	+	┼-	\vdash	Н
				├—			j	Н	-			\dashv	\dashv	+	+	+	+		╀	+	+	+	╁	+	┼-	$oldsymbol{H}$	\vdash	+	+	+	+-	╂╌┤	\dashv
				<u> </u>				\vdash		\dashv		-	\dashv	+	+	+	╁		+	+	+	+	+	╁	╁╌	┼╌┨	\vdash	+	+	+	+	╂═┤	
								\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	╁	+		╁	\dashv	+	+	+	+	╁	Н	\dashv	+	+	+	+-	H	-
Special	Instructions:			t	L				i		1	1				1_	1				s	amp	le C	onta	iners	ents Inta	ct?			A (3)	<u>—</u>)	N N	
Relinquis	mel Karm		Date Date	13	me 20	Received by:											ate			ime		usto	dy s dy s	eals eals	on c	r(s) contai cooler vered	r(s)	s)		88 88 B		2222	
Relinquis	ried by.	ノー	2010	'												_		_				by	Sar	npler rrier?	e ijei	nt Re	ججو	DHL	F	Y edEx		N Ne Sta	ar
Relinquisi	hed by:		Date	Ti	me	Received by EL	OT:									126	9te ?///	/		ime :	7					Rec			2			°C	

XENCO Laboratories

1 1

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

•	
•	
No No	
None	,
N/A	1.
	· .
)	
N/A	
N/A	
N/A -	
Cooler 5 N	No.
°C II	bs °C
me:	 .
	
·	
•	
······································	
	,
	mperature

condition acceptable by NELAC 5.5.8.3.1.a.1.

☐ Client understands and would like to proceed with analysis

□ Initial and Backup Temperature confirm out of temperature conditions

Page 11 of 11 Final 1.000

Appendix B Release Notification & Corrective Action (Form C-141)

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
Rio Brazos Road, Aztec, NM 87410
Lict IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Final Report

x Initial Report

Release Notification and Corrective Action

OPERATOR

Name of Company		Pipeline,			Contact: Camille Reynolds									
	3705 E. Hwy 15		d, TX 79706		Telephone No. 505-441-0965									
Facility Name:	Red By	yrd #1		F	Facility Type: Steel Pipeline									
Cumfa as Oumani	. Dad Dd		os NI											
Surface Owner:	Red Byrd		Mineral Owr	пег	r Lease No.									
LOCATION OF RELEASE														
Unit Letter Secti		Range	Feet from the N	Iorth/S	South Line	Feet from the	East/West Li	ne	County					
H 1	20S	36E	• •				l		Lea					
		La	atitude <u>32° 36' 09.</u>	.8" N	Longitude	103° 17' 58.5'	<u>, M</u>							
			NATU	RE (E OF RELEASE									
Type of Release:	Crude Oil				Volume of	Release: Unknov	vn Volu	me R	ecovered					
Source of Release:	Steel Pipeline	е			Date and H	our of Occurrenc	e Date	and I	lour of Discovery					
Was Immediate Not	ion Civan?				If YES, To	Whom?								
was ininediate Not		es 🗆 N	No Not Require	d	11 165, 10	whom:	•							
By Whom?					Date and H	our								
Was a Watercourse	Reached?		· · · · · · · · · · · · · · · · · · ·		1	lume Impacting t	he Watercours	e.						
		Yes [] No		Í									
If a Watercourse wa	s Impacted, Descr	ibe Fully.	*		<u>l</u>									
•														
		•	•											
Describe Cause of P	roblem and Reme	dial Actio	n Taken.*											
Describe Area Affec	etad and Cleanup	Action Tal	ran *											
	•			ne pip	eline system	at the time of th	ne release, init	ial re	sponse information is					
unavailable.				F-F										
						 								
									uant to NMOCD rules and					
									ases which may endanger eve the operator of liability					
									surface water, human health					
									mpliance with any other					
federal, state, or loca	al laws and/or regi	ulations.												
						OIL CON	SERVATION	NC	DIVISION					
Signature:														
				┨╻	Approved by	District Supervis	or:							
Printed Name:	Camille Reynole	ds		_		•								
Title:	Remediation Co	ordinator		A	Approval Dat	e:	Expira	tion E	Date:					
E-mail Address:	cjreynolds@paa	ln com			Conditions of	Approval:								
E-man Address.	cjicynoius@paa	ip.com		\dashv	Conditions of Approval:				Attached 🔲					
Date: 3/21/2005		Phone:	(505)441-0965											

^{*} Attach Additional Sheets If Necessary