1R- 1/9

REPORTS

DATE:

-17-2

AMARILLO 921 North Bivins Amarillo, Texas 79107 Phone 806.467.0607 Fax 806.467.0622

AUSTIN 3003 Tom Gary Cove Building C-100 Round Rock, Texas 78664 Phone 512.989.3428 Fax 512.989.3487

MIDLAND 2901 State Highway 349 Midland, Texas 79706 Phone 432.522.2133 Fax 432.522.2180

SAN ANTONIO 17170 Jordan Road Suite 102 Selma, Texas 78154 Phone 210.579.0235 Fax 210.568.2191

TULSA 9906 East 43rd Street Suite G Tulsa, Oklahoma 74146 Phone 918.742.0871 Fax 918.742.0876

HOBBS 318 East Taylor Street Hobbs, New Mexico 88241 Phone 505.393.4261 Fax 505.393.4658

> TYLER 719 West Front Street Suite 255 Tyler, Texas 75702 Phone 903:531.9971 Fax 903:531.9979

HOUSTON 3233 West 11th Street Suite 400 Houston, Texas 77008 Phone 713.861.0081 Fax 713.868.3208

ENVIRONMENTAL CONSULTING ENGINEERING DRILLING CONSTRUCTION EMERGENCY RESPONSE

> Toll Free: 866:742.0742 www.talonipe.com

MOBILE DUAL PHASE EXTRACTION REPORT TNM MONUMENT 10 PIPELINE RELEASE MONUMENT, LEA COUNTY, NEW MEXICO SRS # TNM MONUMENT 10 NMOCD# 1R-0119

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

TALON/LPE

921 N. BIVINS

AMARILLO, TEXAS 79107

DISTRIBUTION:

FION: $(107)^{-1}$

FB

26

TALON/LPE (F-6302)

COPY 1 - PLAINS MARKETING, L.P. – DENVER CITY COPY 2 - PLAINS MARKETING, L.P. - HOUSTON COPY 3 – NMOCD – SANTA FE COPY 4 – NOVA COPY 5 - TALON/LPE

JANUARY 17, 2013

TABLE OF CONTENTS

Section	<u>Page</u>
 I. MDPE SUMMARY REPORT AND WASTE DISPOSITION A. MDPE Results B. Air Quality C. Waste Management and Disposition	1 2
II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS	2
Table 1	3

i

Attachments:

Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results Attachment 3 – Oxidizer Charts Attachment 4 – Waste Ticket

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

i

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted from November 14, 2012, to November 15, 2012, at the TNM Monument 10 Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-SCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed. MW2 & MW3 for 12 hours.

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Two influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. Both influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by ASTM method D 1945. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of 15.96 equivalent gallons of PSH (Total) were removed during the event. The combined volume of PSH was comprised of approximately 6 gallons of PSH (liquid phase) and approximately 9.96 gallons as off-gas vapor. The calculations used to estimate the off-gas vapor mass recovered reflect the mass of total hydrocarbons recovered and does not necessarily equate to an equal mass of the product released. The mass recovery calculations may be affected by variations in the specific gravity of hydrocarbon released, age of release, activity of aerobic and/or anaerobic processes, and site specific geochemical factors.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 254.40 SCFM during the event.

1

A portion of the extracted air flow rates measured is attributable to compressed air, which was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Two influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum influent concentration was recorded as 10,244 ppmv for Hydrocarbon Composition. Laboratory analytical results can be found in Attachment 2.

C. Waste Management and Disposition

A cumulative total of 415 gallons of fluid were generated during this event. The fluids were temporarily transferred to an on-site storage tank prior to being transferred to an authorized disposal facility. A copy of the waste ticket can be found in Attachment 4.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration (C_mg/l) =	C_ppmv x Mol. wt. in mg(estimated) x 1000 x 0.000001
	0.0821 x Temp (K)
Recovery Rate (lbs/hr) =	<u>(C_mg/l) x 2.2 x (Flowrate) x 60 x 28.32</u> 1,000,000

Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) =

<u>FID Reading(ppmv)</u> FID Reading at Time of Laboratory Analysis

 $\frac{8.34 \text{ lbs}}{\text{gallon water}} \times 0.845 \text{ measured specific gravity of light crude} = \frac{7.047 \text{ lbs light crude}}{\text{gallon}}$

Table 1						
System	Operation	Data	and	Mass	Recovery	Calculations

Time	Period (hours)	Influent Temp. (°1)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppm)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (Ibs/hr)	Recovery in Period (lbs)	Total Recovery (lbs)
7:15	0.5	50	12.5	170.11	90.4	258.63	1873		5749.00	0.91	5230	6.53	6.31	3.16	3.16
7:45	0.5	58	12.5	170.11	92.9	260.15	2059	5749.00	5749.00	1.00	5749	7.06	6.87	3.43	6.59
8:45	1	62	12.5	170.11	93.1	259.43	2314		5749.00	1.12	6461	7.88	7.64	7.64	14.23
9:45	1	66	12.5	170.11	95.3	261.47	1999	-	5749.00	0.97	5581	6.75	6.60	6.60	20.83
10:45	1	70	12.5	170.11	96.4	261.98	2165		5749.00	1.05	6045	7.26	7.11	7.11	27.94
11:45	1	76	12.5	170.11	96.9	261.19	1935		5749.00	0.94	5403	6.42	6.26	6.26	34.21
12:45	1	76	12.5	170.11	97.8	262.40	1332		5749.00	0.65	3719	4.42	4.33	4.33	38.54
13:45	1	76	12.5	170.11	98.4	263.20	2869		5749.00	1.39	8011	9.51	9.36	9.36	47.90
8:30	1	52	15	204.14	89.1	237.20	794	1. 14 1.	10244.00	0.05	499	0.62	0.55	0.55	48.44
9:30	1	74	14.5	197.33	93.2	241.49	1237	-	10244.00	0.08	778	0.92	0.83	0.83	49.28
10:30	1	80	14	190.53	93.9	244.91	1876		10244.00	0.12	1180	1.38	1.27	1.27	50.55
11:30	1	84	13.5	183.72	94.4	248.46	16290	10244.00	10244.00	1.00	10244	11.93	11.08	11.08	61.63
12:30	1	84	13.5	183.72	93.1	246.74	12641	-	10244.00	0.78	7949	9.26	8.54	8.54	70.17
verages:		69.85	13.12	178.49	94.22	254.40	3798.77						Total	70.17	
										PSH Mass Re	covered in Var	or Phase =		9.96	gallons

FID maximum Concentration = 50,000 PPM

Ex: Conversion from ppmv to mg/L (influent 1)						
Measured Conc.	Molecular Wt.	Pressure	Gas Constant	Temp.	Temp.	Conc.
(ppmv)	(Grams)	(atm)	(atm.liter/K.mole)	(F)	(K)	(C_mg/l)
5230	28.9976	1	0.0821	50	283	6.526891263

Inputs are the green values.

Calculated values are yellow. Constants are purple values.

Outpus are the blue values.

Total Hydrocarbon Recovery 70.17 PSH Mass Recovered in Vapor Phase = 9.96 gallons PSH Mass Recovered in Liquid Phase = 42.28 lbs 6.00 alons TOTAL = 112.45 lbs 15.96 gallons

Liquid-phase Hydrocarbon Recovery ∏ * r2 * h = volume

(% Vol. Hydrocarbon to ppr	Molecular Weight Calculations					
		nv - miluent			component	Molecular Weight (g/mol)	mol%
Compound	Molecular Weight (g/mol)	% Vol	=	ppmv	Nitrogen (N2)	28.016	94.1381
Methane (CH4)	16.04	0.0869		869.00	Methane (CH4)	16.0425	0.0584
Ethane (C2H6)	30.07	0.0029		29.00	Carbon Dioxide (CO2)	44.011	5.6570
Propane (C3H8)	44.10	0.0087		87.00	Ethane (C2H6)	30.069	0.0012
Iso-Butane (C4H10)	58.12	0.0301		301.00	Propane (C3H8)	44.0956	0.0036
N-Butane (C4H10)	58.12	0.0333		333.00	Iso-Butane (C4H10)	58.1222	0.0105
Iso-Pentane (C4H12)	72.15	0.0442		442.00	N-Butane (C4H10)	58.1222	0.0120
N-Pentane (C5H12)	72.15	0.0358		358.00	Iso-Pentane (C4H12)	72.1488	0.0138
Hexane+ (C6H14)	97.40	0.333		3330.00	N-Pentane (C5H12)	72.1488	0.0112
		5749.00	Hexane+	97.3966	0.0942		
			Total	100			
*Hexane+ is treate	ed as 60% hexanes, 30 % heptan	es, and 10 % oc	tanes, as suc	chits		Total	
	ed as 60% hexanes, 30 % heptan *93.1887)+(0.3*100.2019)+(0.1*1			ch its		Calculated MW	
(0.6	*93.1887)+(0.3*100.2019)+(0.1*1	14.2285) = 97.3	966	ch its	Molecula	Calculated MW	28.997
(0.6		14.2285) = 97.3	966	in its	Molecula		28.997
(0.6	*93.1887)+(0.3*100.2019)+(0.1*1	14.2285) = 97.3	966	ppmv		Calculated MW	28.997 mol%
(0.6	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr	14.2285) = 97.3	966 2		component	Calculated MW r Weight Calculations Molecular Weight (g/mol)	
(0.6 Compound	*93.1887)+(0.3*100.2019)+(0.1*1 Vol. Hydrocarbon to ppr Molecular Weight (g/mol)	14.2285) = 97.3	966 2	ppmv	component Nitrogen (N2)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016	28.997 mol% 94.015
(0.6 Compound Methane (CH4)	*93.1887)+(0.3*100.2019)+(0.1*1 Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04	14.2285) = 97.3 nv - Influent 3 % Vol 0.6738	966 2	ppmv 6738.00	component Nitrogen (N2) Methane (CH4)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425	28.9970 mol% 94.0154 0.4523
(0.6 Compound Methane (CH4) Ethane (C2H6)	*93.1887)+(0.3*100.2019)+(0.1*1 Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07	14.2285) = 97.3 nv - Influent % Vol 0.6738 0.0202	966 2	ppmv 6738.00 202.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011	28.9970 mol% 94.0154 0.4523 5.4164
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8)	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07 44.10	14.2285) = 97.3 nv - Influent 0.6738 0.0202 0.0266	966 2	ppmv 6738.00 202.00 266.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069	28.997 mol% 94.015 0.4523 5.4164 0.0086
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10)	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07 44.10 58.12	14.2285) = 97.3 nv - Influent 2 0.6738 0.0202 0.0266 0.0495	966 2	ppmv 6738.00 202.00 266.00 495.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956	28.997 mol% 94.015 0.4523 5.4164 0.0086 0.0110
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10)	*93.1887)+(0.3*100.2019)+(0.1*1 Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07 44.10 58.12 58.12	14.2285) = 97.3 nv - Influent : 0.6738 0.0202 0.0266 0.0495 0.0568	966 2	ppmv 6738.00 202.00 266.00 495.00 568.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956 58.1222	28.997 mol% 94.015 0.4523 5.4164 0.0086 0.0110 0.0172
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) So-Pentane (C4H12)	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr Molecular Weight (g/moi) 16.04 30.07 44.10 58.12 58.12 72.15	14.2285) = 97.3 nv - Influent : 0.6738 0.0202 0.0266 0.0495 0.0568 0.0552	966 2	ppmv 6738.00 202.00 266.00 495.00 568.00 552.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10)	Calculated MW r Weight Calculations 28.016 16.0425 44.011 30.069 44.0956 58.1222 58.122 59.122 58.12 58.	28.997 mol% 94.015 0.4523 5.4164 0.0086 0.0110 0.0172 0.0205
(0.6 Compound Methane (CH4) Ethane (CH4) Iso-Butane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) N-Butane (C4H12) N-Pentane (C5H12)	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07 44.10 58.12 58.12 72.15 72.15	14.2285) = 97.3 nv - Influent : % Vol 0.6738 0.0202 0.0266 0.0495 0.0568 0.0552 0.0379	966 2	ppmv 6738.00 202.00 266.00 495.00 568.00 552.00 379.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) Iso-Pentane (C4H12)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956 58.1222 58.1222 72.1488	28.997 mol% 94.015 0.4523 5.4164 0.0086 0.0110 0.0172 0.0205 0.0172
(0.6 Compound Methane (CH4) Ethane (CH4) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) Iso-Pentane (C4H12) N-Pentane (C5H12) Hexane+ (C6H14)	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to ppr Molecular Weight (g/mol) 16.04 30.07 44.10 58.12 58.12 72.15 72.15	14.2285) = 97.3 nv - Influent : % Vol 0.6738 0.0202 0.0266 0.0495 0.0552 0.0552 0.0379 0.1044	966 2 = Total	ppmv 6738.00 202.00 266.00 495.00 568.00 552.00 379.00 1044.00 10244.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H12) N-Pentane (C5H12)	Calculated MW r Weight Calculations 28.016 16.0425 44.011 30.069 44.0956 58.1222 58.1222 72.1488 72.1488 72.1488	28.997 mol% 94.015 0.4523 5.4164 0.0086 0.0112 0.0205 0.0172 0.0205 0.0172

__sum (individual component MW x their reported mol%) 100 Calculated MW=

ppmv=

% Vol x 10,000

ATTACHMENT 1 MDPE Field Logs

<u></u>						LD NOTES	·		•
Site Name	:	Monument						Event #:	4
Location:		S. of Monu						Arrive at site:	11/14/2012 6:15
Date:		11/14-15/2				1			
Job#:		700376.08	2.04		SRS:	TNM Mon	ument 10	Start Vac:	11/14/2012 6:45
Phase:		MDPE4			Unit:	1107		Stop Vac:	11/15/2012 12:30
Onsite Pe	rsonnel:	L. Bridges	& B. Hunti	ngton	-			Leave Site:	11/15/2012 13:00
					GAUGIN	G DATA			. <u>.</u>
WELL#		BEFORE		AFTER	<u> </u>	4	COMMEN	TS	
	PSH	GW	PSH-T	PSH	GW	PSH-T			
MW-1	-	21.84	•	<u>۲</u>	lot gauged	I			
MW-2	22.64	23.07	0.43		22.91	-	Stinger set @		
MW-3	22.55	24.15	1.60	-	23.42	-	Stinger set @) 24'	
MW-7		22.86	-		lot Gaugeo				
MW-6	-	24.21	-		lot Gaugeo		· · · · ·		
MW-4	-	20.46	-		lot Gaugeo		<u> </u>		
MW-5	-	21.38	-	<u> </u>	lot Gaugeo	1 T ·			
						ļ	ļ		
							ļ		
				-					
						ļ			
								<u>.</u>	
WASTE:	H2O:	409		PSH:	6		TOTAL (GAL	.): 415	
Sample	Name	Anal	ysis	Date:	. Tiı	ne:	Comments:		
INFL		ASTM	D1945	14-Nov-12	7:	45		FID = 205	59
INFLU	JENT	ASTM	D1945	15-Nov-12	11	:30		FID = 162	90
		-		-		-		· -	
-		<u> </u>		-		-		-	
-		-		-		-		-	

Notes:

× K · ·

Transfer pump failed @ 13:45 on 11/14/12. Event resumed on 11/15/12 @07:30

.

Start Date:	14-Nov-12	2						MDPE FIEL				
	Well Flow									Well Data		
TIME	SAMPLE	Inflent temp.	Diff.	Vac	FID	Propane	EXHAUST		·	COMMENTS:		
	TAKEN	(°f)	Pressure	(In.Hg)	Composite	Tank	TEMP F	MW-2	MW-3	\geq	\geq	\geq
			(INH20)		(PPM)	(%-size)		VAC (INH2O)	VAC (INH2O)	VAC (INH2O)	VAC (INH2O)	VAC (INH2O)
	*		2" Preso			500 Gal.						
7:15		50	90.4	12.5	1873	68	1413	50.3	60	\geq	\geq	\geq
7:45	*	58	92.9	12.5	2059	66	1411	51.7	60.5	\geq		
8:45		62	93.1	12.5	2314	64	1412	51.6	60.8	\geq	\geq	
9:45		66	95.3	12.5	1999	62	1410	51.1	61.1	\geq	\geq	
10:45		70	96.4	12.5	2165	60	1408	52.3	60.3	\geq	\geq	
11:45		76	96.9	12.5_	1935	. 60	1409	52.2	60.1	\geq	\geq	
12:45		76	97.8	12.5	1332	58	1411	51.1	58.4	\geq	\geq	
13:45		76	98.4	12.5	2869	56	1406	51.3	57.8	\searrow		
		· · · · · · · · · · · · · · · · · · ·			Event stor	oped at 13:	45 due to trar	nsfer pump failure. Re	sumed at 07:30 on 11/	15/12		
8:30		52	89.1	15	794	56	1411	38.2	64.3	\geq	\geq	
9:30		74	93.2	14.5	1237	55	1412	47.3	60.1	\geq	\geq	\geq
10:30		80	93.9	14	1876	53	1409	45.6	59.4	\geq	\geq	\geq
11:30	*	84	94.4	13.5	16290	52	1410	49.4	56.5	\geq	\searrow	
12:30		84	93.1	13.5	12641	51	1409	43.7	54.4	\searrow	\square	

- ---

Soil Vacuum Influence						
Observation Well	MW-1					
Extraction Well (EW)	MW-2					
Time:	In.H2O					
11/14/2012 7:45	0					
11/14/2012 12:45	0.09					
11/15/2012 11:30	0.07					

· .

ATTACHMENT 2 Laboratory Analytical Results

Simon Walshe Talon LPE-Amarillo 921 North Bivins Amarillo, TX, 79107

Report Date: December 3, 2012

Work Order: 12111621

Project Location:Monument, NMProject Name:TNM Monument #10Project Number:700376.082.04SRS #:TNM Monument #10

Enclosed are t	he Analytical Report and	Quality Control Rep	ort for the following sam	ple(s) submitted to	TraceAnalysis, Inc.
			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
314422	Influent #1	air	2012-11-14	07:45	2012-11-16

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

7

Case Narrative	3
Analytical Report Sample 314422 (Influent #1)	4 4
Appendix	5
Report Definitions	5
Laboratory Certifications	5
Standard Flags	5
Attachments	5

Case Narrative

Samples for project TNM Monument #10 were received by TraceAnalysis, Inc. on 2012-11-16 and assigned to work order 12111621. Samples for work order 12111621 were received intact at a temperature of 23.0 C.

Samples were analyzed for the following tests using their respective methods.

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 12111621 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: December 3, 2012 700376.082.04 Work Order: 12111621 TNM Monument #10 Page Number: 4 of 5 Monument, NM

...

Analytical Report

Page Number: 5 of 5 Monument, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis

Standard Flags

F Description

B Analyte detected in the corresponding method blank above the method detection limit

- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

LAB Orde	er ID # 12/11/62																												Pag	je_	[, 	of _	_/		
	TraceA	•				nc	•			670	Lub	bock	(, Te)	venue, kas 79 94-129 94-129 8-1296	96	5002 Ba Midla Tel Fax	nd, (432		s 797 -630	7 03 1		E	l Pa Tel (Fax	Suns so, To (915) (915) 388) (exas 585 585	5 7 99 -344 5-494	3 3	E		25 C	501 M arroll	layes Iton,	tic Te Rd., Texa: 242-	Ste 10 s 7500)0 1 6	
Company Na	ame:							Pho	one #	ŧ:							Γ																			
Tail	ame: (Street, City, Zip) L K L''_{-} son: c_{-} M_{a} (L_{b} C from above) $f(a_{i}, s)$ T_{b} , $g(a_{i}, s)$ T_{b} , $g(a_{i}$							80	64	67	7:26	,07)																	EST	J	N				
Address:	(Street, City, Zip)	Δ	•					Fax	#:		_											irc	ie	or	3	pe	CII	I.Y	NIE	etho	20	NC).)			
Contact Per	son:	Ther	11.		<u>×</u>			F-n	nail:								4				2							ł			lity				-	
Sin	or Walshe																		2		1/200	ĝ									kali				dan	
Invoice to:	, Ar								~	1 -	-						1		<u>ଞ</u>		6010	le l									A				stan	
(If different I Project #:	rom above)	()	<u>, 1. j</u>	H	\mathcal{D}	$\overline{\gamma}$	2 <	<u></u>	571	<u> </u>	N	ħ,	ho	<u>.~~</u> Z	-1+	<u>10</u>	12		ΔĹ		Ę	â	ĺ								74-1				E	
Rov S	76, 182.04	-					V	۳۲٥ ۸.	ject An s	Nan	ne:		r	ŁI	ħ		/ 8260 / 624	624	100	Ę	Se	5					625				ď				1 fr	İ
Project Loca	ation (including state):						10	<u>ји</u> San	nple	r Siç	<u>ynat</u>	ure:	<u> </u>	~ (<u> </u>		ဖြ	/ 00	Ē١	-	首	8					9/0				ې مار				erer	
Hon	Low met Nith				·						_	2		<u>~</u>				826	202	2	B	Ba		,		624	3270		2		2 L	الم			Ħ	
	,									PF	RES		ATI\	/E		PLING	8021 / 602	/ 602 /	TX100	325 U	As Ba	Ag As	SS /olatile	des		8260 / 1	i. Vol. 8	608	191/181	itent	O ₃ -N,	278			Time if	
LAB # (LAB USE) ONLY	EVIENT #1 FIELD CODE In DPF		# Containers	Volume / Amount	WATER	SOIL	AIR	SLUUGE	HCI	HNO ₃	H₂SO₄	NaOH	ICE	NONE	DATE	TIME	MTBE 802	õ	TPH 418.1 /	PAH 8270 / 625	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010/200.7	TCLP Metals	TCLP Volatiles	TCLP Pesticides	RCI	GC/MS Vol. 8260 / 624	GC/MS Semi. Vol. 8270 /	PCB's 8082 /	Pesticides 8081 / 608 BOD_TSS_nH	Moisture Cor	Cl, F, SO ₄ , NO ₃ -N, NO ₂ -N, PO ₄ -P, Alkalinity Na_Ca_Mo_K_TDS_FC	ASTA D	1 1		Turn Around Time if different from standard	Lold Lold
34422 423	Enfluent #1		1	1			ノ	\uparrow						~	11-14	OPES	╞	\uparrow		+-			-	1		-										+
422	N - 4		1	1			/									1130		\square		\top						_			-			17	11			\uparrow
		<u> </u>		_(<u> </u>					-				-	11 15	1130	+	+			┝─┼		+	+			-+-	+	-	┿			+	-+	<u> </u>	┾
						-	\rightarrow		+								-	+		+				-			_	-		\downarrow					<u> </u>	1
										ļ	ļ					_		Ш																		
									1		1			1			1			+-		-	+	1			-	+	-		-	-		-+	-	+
					-		-	+-	+								┢	+			\vdash		+						-+	╉╌╂			++			+
·									ــــ		<u> </u>							\square									_		_							
11																																				
																		\mathbf{T}						1						$\uparrow \uparrow$		1-				+-
							+	+	┢		<u> </u>		- +				+	+		-+	$\left \right $			+				-		┿╾┥			+			+-
					{	\vdash		+	╞			$\left - \right $					-	┼╌┼			┼╌┤			_			\rightarrow	\rightarrow	_	+			\downarrow			+
					-	Ļ				L							L																			
Relinquishe	ed by: Company:	Date:		me: 45 c	Re 11	ceiv	ed b	y: / ,		omp A-	bany	r: f	Da 	ate:	Time	OBS	<u>;</u>	<u>34°</u>	C	LAI O	3 U NL			RE	EMA	RK	S:		_							_
Relinquishe		Date:		me:	Re	<u>(()</u> ceiv	eop	⊆~{_ y:	<u>//</u> C	omp	bany	<u>μ[]</u> /:	Di Di	<u>/2_</u> ate:	<u>/245</u> Time	COR INST OBS COR	r	c	, in)/ N	~														
Relinquishe	ed by: Company:	Date:	Tii	me:	Re	ceiv	ed b	y:	C	omp	bany	<i>ı</i> :	Di	ate:	Time		Γ	0		ıg-in-R	eviev	AL .			RP I ieck	Rep If Sp	ort R becia	tequ I Re	equin ired portir							
Submittal of	samples constitutes agree	ement to Ter	ms an	d Con	dition	ns lis	ted c	n rev	erse	e sid	ie of	i C. (D. C	;,		COR	_	arrier	<u> </u>	\bigcap		μ. 		Lin	nits A	Are I	Need	led						<u> </u>	-	_

 π

.

0 flice: 806-665-07-50 Fax: 806-665-0745

The following analytical results were produced using the strictest quality control and most current methods:

COC #: N/A

Lab #: 16665-16666

Quality Control #: 2335

Approved by:

Λ.

Neil Ray

Date: $11/29/1\gamma$

Office: 806-665-07-50 Fax: 806-665-0745

615 N. Price Rd. Painpa, TX 79065

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent Air #1 Trace: 314422-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 11/14/12 Time: N/A Sampled By: N/A Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Lab #: 16665 Quality Control Report: 2335

Gas Composition					
	<u>Mol %</u>	GPM	Vol %	ppm vol.	Wt. %
Nitrogen (N2):	94.1381	10.3023	90.9477	909477	91.0030
Carbon Dioxide (CO2):	5.6570	0.9540	8.4774	84774	8.5727
Hydrocarbon					
Composition	<u>Mol %</u>	<u>GPM</u>	<u>Vol. %</u>		<u>Wt. %</u>
Methane (CH4):	0.0584	0.0099	0.0869	869	0.0322
Ethane (C2H6):	0.0012	0.0003	0.0029	29	0.0013
Propane (C3H8):	0.0036	0.0010	0.0087	87	0.0055
Iso-Butane (C4H10):	0.0105	0.0034	0.0301	301	0.0210
N-Butane (C4H10):	0.0120	0.0038	0.0333	333	0.0240
Iso-Pentane (C5H12):	0.0138	0.0050	0.0442	442	0.0341
N-Pentane (C5H12):	0.0112	0.0041	0.0358	358	0.0280
Hexanes+ (C6H14):	0.0942	0.0407	0.3330	3330	0.2783
Totals	100.000	11.3245	100.000		100.000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	7.2	Z-Comp. Factor-dry:	0.99958
BTU -water vapor sat.(BTU/ft ³):	8.0	Z-Comp. Factor-water vapor sat.:	0.99473
Specific Gravity -dry:	1.0011	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9993	Molecular Weight	28.9976

0 flice: 806-665-07-50 Fax: 806-665-0745

615 N. Price Rd. Pampa, TX 79065

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent Air #2 Trace: 314423-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 11/15/12 Time: N/A Sampled By: N/A Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Lab #: 16666 Quality Control Report: 2335

Gas Composition					
	Mol %	GPM	Vol %	ppm vol.	Wt. %
Nitrogen (N2):	94.0154	10.2888	90.8564	908564	91.2470
Carbon Dioxide (CO2):	5.4164	0.9134	8.1193	81193	8.2408
Hydrocarbon Composition	Mol %	GPM	Vol. %		Wt. %
Methane (CH4):	0.4523	0.0768	0.6738	6738	0.2508
Ethane (C2H6):	0.0086	0.0023	0.0202	202	0.0089
Propane (C3H8):	0.0110	0.0030	0.0266	266	0.0167
Iso-Butane (C4H10):	0.0172	0.0056	0.0495	495	0.0346
N-Butane (C4H10):	0.0205	0.0064	0.0568	568	0.0411
Iso-Pentane (C5H12):	0.0172	0.0063	0.0552	552	0.0428
N-Pentane (C5H12):	0.0119	0.0043	0.0379	379	0.0297
Hexanes+ (C6H14):	0.0295	0.0128	0.1044	1044	0.0876
Totals	100.000	11.3196	100.000		100.000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	8.9	Z-Comp. Factor-dry:	0.99958
BTU -water vapor sat.(BTU/ft ³):	9.7	Z-Comp. Factor-water vapor sat.:	0.99478
Specific Gravity -dry:	0.9969	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:		Molecular Weight	28.8748

0 flice: 806-665-07-50 Fax: 806-665-0745

615 N. Price Rd. Pampa, TX 79065

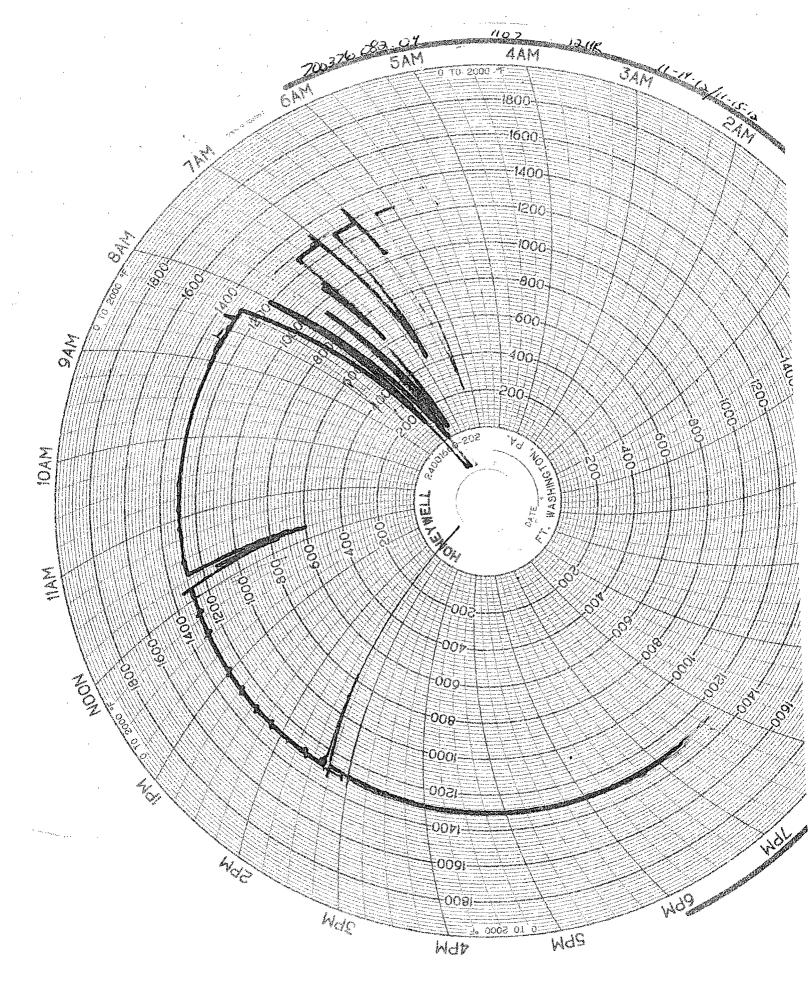
Sample Type: Standard Preservative: N/A Sample Container: Industrial Cylinder Sample Id.: DCG Reference Std. 53619AW Sample Temp.: 120° F Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography

Quality Control Report#: 2335

Analytical Results

RESULTS	ACTUAL	ANALYSIS			1
Gas Composition			MDL	RL	% Deviation
	<u>Mol %</u>	Mol %	Mol %	ppm mol	(90-100%)
Nitrogen (N2):	4.918	4.7667	0.0010	10	96.9
Carbon Dioxide (CO2):	1.499	1.4981	0.0010	10	99.9
			MDL	RL	% Deviation
Hydrocarbon Composition	<u>Mol %</u>	<u>Mol %</u>	Mol %	ppm mol	(90-100%)
Methane (CH4):	69.891	70.1327	0.0001	1	99.7
Ethane (C2H6):	9.111	9.1284	0.0001	1	99.8
Propane (C3H8):	5.984	5.8562	0.0001	1	97.9
Iso-Butane (C4H10):	3.024	2.9837	0.0001	1	98.7
N-Butane (C4H10):	3.040	3.0366	0.0001	1	99.9
Iso-Pentane (C5H12):	1.012	1.0151	0.0001	1	99.7
N-Pentane (C5H12):	1.018	1.0613	0.0001	1	95.7
Hexane+ (C6H14):	0.503	0.5211	0.0001	1	96.4
Totals	100.000	100.000			


Comments - Additional Data

ACTUAL		ANALYSIS	
BTU -dry (BTU/ft3):	1324.0	BTU -dry (BTU/ft ³):	1324.9
BTU -water vapor sat. (BTU/ft3):	1318.4	BTU -water vapor sat. (BTU/ft ³):	1319.3
Specific Gravity -dry:	0.8349	Specific Gravity -dry:	0.8339
Specific Gravity -water vapor sat .:	0.8419	Specific Gravity -water vapor sat.:	0.8408
Z-Comp. Factor -dry:	0.99564	Z-Comp. Factor -dry:	0.99563
Z-Comp. Factor -water vapor sat.:	0.98306	Z-Comp. Factor -water vapor sat.:	0.98306

ATTACHMENT 3 Oxidizer Charts

q

1

ATTACHMENT 4 Waste Ticket

24-HOUR SERVICE, CALL LOVINGTON 396-4948 TATUM 396-4960 - KILL TRUCKS - VAC TANK CLEAN		WINCH TRUC			DX 2140 W MEXICO 88260 905
Date 1 20.12 Company PLAIRS PIPELINE From THM MUNINEVE # 10	Truck No Purchase Order No Rig No		_Location	Invoice Number	
To Lease SPRINKLE	Well No		_Location	۱	
A.M.		A.M.	TIME	RATE	AMOUNT
A.M. Time Out P.M. Time In Diesel Brine Water Fresh Water	1/3	P.M.			•
	Hauled	<u> </u>	_	1.10	11.00
Driver, Operator or Pusher (NNN) HAROPS			3	102.00	306.00
Helper	<u></u>	· · · · · · · · · · · · · · · · · · ·			
Helper					, , . ,
Helper					
Other Charges				•	
Description of Work: EMPLICO OUT POLY A	YC DR	78	_		
				Sub Total	317.00
Sprink's SUP ties + CSGM				Sales Tax	17.94
Authorized by:				TOTAL	344.44
Superior Printing Service, Inc 101	and a second to be the second second	na indi ustan tradiciana	March Science and the outline within	a de la contra de la	34.44

رد هر