5/22/96 DHC-1244

RECT RED.

100 EC / 641 8 52

March 4, 1996

New Mexico Oil Conservation Division Attention: Mr. William LeMay P.O. Box 2088 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

RE: San Juan 10 SW/4, Section 10, T30N, R10W San Juan County, New Mexico **Downhole Commingling Request**

Dear Mr. LeMay:

Meridian Oil Inc. is applying for administrative approval to downhole commingle the above referenced well in the Blanco Mesaverde and Aztec Pictured Cliffs intervals during the proposed workover. The zones to be commingled have common ownership. Meridian Oil operates all the acreage surrounding the referenced well. (See attached offset operator / owner plat.) We therefore wave the offset operator notice requirement and request that the NMOCD consider this application as expeditiously as possible. The Bureau of Land Management will receive notification of this proposed downhole commingling application.

This well has produced since 1970 as a dual well from the Mesaverde and Pictured Cliffs. The well is presently not a good producer due to poor producing efficiency. It had a producing capacity in 1995 of 66 mcf/d and 46 mcf/d, respectively. The commingling of the subject well will result in better producing efficiency for both intervals. A possible future artificial lift system, such as a plunger will be more efficient with the intervals commingled. Granting this application will be in the best interest of conservation, the prevention of waste, and the protection of correlative rights.

The proposed project is to sidetrack and recomplete in the Mesaverde formation. Commingling of the Mesaverde and Pictured Cliffs should enhance this well's producing life and provide an economical means of recovering reserves from both zones. We plan to commingle this well during the proposed workover by pulling the Pictured Cliffs tubing and the Mesaverde tubing and packer seal assembly. The permanent packer will be extracted and a single string of tubing will be landed in the lower producing interval after sidetrack operations.

The reservoir characteristics of each of the subject zones are such that underground waste would not be caused by the proposed downhole commingling. The compatibility analysis of fluids from two offset wells (Sunray J #1A and Sunray J #2A) in the Pictured Cliffs and Mesaverde indicate that the fluids from each zone are compatible and no precipitates will be formed to cause damage to either reservoir. (See attachment.) Shut in pressures for the two formations are within a 50% variance. (Surface pressures for the Mesaverde and Pictured Cliffs are 303 psi and 196 psi, respectively.)

New Mexico Oil Conservation Division Mr. William LeMay San Juan 10 Downhole Commingling Request Page Two

The allocation of the commingled production will be calculated using production history and flow tests obtained from the Pictured Cliffs and Mesaverde during workover operations. Meridian Oil Inc., will consult with the District Supervisor of the Aztec District Office of the Division for approval of the allocation.

Approval of this commingling application will prevent resources from being wasted and protect correlative rights. Attached with this letter are plats showing ownership of the offsetting leases for both the Mesaverde and Pictured Cliffs, a copy of the letter sent to the Bureau of Land Management, fluid compatibility analysis, a wellbore diagram, pertinent data sheet, and a workover procedure.

Sincerely,

Mary Ellen Lutey

Mary Ellen Lutey Production Engineer

MEL:mel

Attachments

cc: Frank T. Chavez - NMOCD/Aztec Peggy Bradfield - MOI Regulatory Bureau of Land Management Well File

MERIDIAN OIL INC

SAN JUAN #10

OFFSET OPERATOR \ OWNER PLAT

Mesaverde / Pictured Cliffs Formations Commingle Well

Township 30 North, Range 10 West

1) Meridian Oil Inc

.

2) Amoco Production Company

PO Box 800, Denver, CO 80201

MERIDIAN OIL INC

SAN JUAN #10

OFFSET OPERATOR \ OWNER PLAT

Mesaverde / Pictured Cliffs Formations Commingle Well

Township 30 North, Range 10 West

Pictured Cliffs Formation

MERIDIAN OIL

.

March 4, 1996

Bureau of Land Management 1235 La Plata Highway Farmington, New Mexico 87401

RE: San Juan 10 SW/4, Section 10, T30N, R10W San Juan County, New Mexico Downhole Commingling Request

Gentlemen:

Meridian Oil Inc. is in the process of applying for a downhole commingling order from the New Mexico Oil Conservation Division (NMOCD) for the referenced well located in San Juan County, New Mexico. The approved application will commingle the Mesaverde and the Pictured Cliffs fields.

The purpose of this letter is to notify you of Meridian's application. If you have no objections to the NMOCD issuing a commingling order, we would appreciate your signing this letter and returning the original to Mr. LeMay at the following address with a copy to this office:

New Mexico Oil Conservation Division Mr. William LeMay P.O. Box 2088 Santa Fe, New Mexico 87501

Your prompt attention to this matter would be appreciated.

Sincerely,

Mary Eller Latery

Mary Ellen Lutey Production Engineer

MEL:mel

The undersigned hereby waives objection to the referenced Downhole Commingle Request.

Company/Owner:_____

Title:_____

Date:_____

E

Meridian oil inc. P.O. Box 4289 Farmington, NM 87499

Subject: Sun Ray comingled water tests

Four samples were received from the Sun Ray #D-1-A and D-2-A for comingled water tests to ensure no incompatabilities would exist between the water and oil from the producing zones from the Sun Ray lease.

The following samples were received, Mesa Verde oil & water From the D-1-A (only enough water API tests) Pictured Cliffs oil & water from the D-1-A Pictured Cliffs oil from the D-2-A (no water) Mesa Verde oil & water from the D-2-A

API water analysis were performed on the individual waters then mixed equally and another API water test was done on the comingled sample. Nothing on the comingled test appeared out of the ordinary. Please see the attached reports.

API oil gravities were performed on the individual oils, then a combined gravity and compatability tests were done.

D-1-A MV oil = 40^* D-2-A MV oil = 48.8^* D-2-A PC oil = 55.2^* A combined gravity of 47.4^* was noted

The oils were combined and mixed at high speed then allowed to sit static to see if any incompatabilities could be noticed. The oils mixed well with no visable precipatations or emulsions.

The oils were also combined with formation waters and mixed at high speed to see if any emulsions could be generated. These results showed the oils breaking out clean with no interfaceing or emulsions.

CONCLUSION

Based on the tests performed on the oil & waters in question, no precipatants, emulsionsor other undesireable reactions occoured that could otherwise have damaging effects from the comingling of these fluids.

API WATER ANALYSIS

Company:	MERIDIAN OIL	INC.	W.C.N.A. Sample No.:	
Field:			Legal Description:	
Well:	SUNRAY D-2-A		Lease or Unit:	
Depth:			Water.B/D:	
Formation:	PC		Sampling Point:	
State:	NM		Sampled By:	MOI
County:	SAN JUAN		Date Sampled:	03/11/96
*		Type of	Water(Produced, Supply, ect.):	PROD.

PROPERTIES

pH:	5.56	<pre>Iron, Fe(total):</pre>	3
Specific Gravity:	1.004	Sulfide as H2S:	0
Resistivity (ohm-meter):	10.00	Total Hardness:	
Tempature:	78F	(see below)	

DISSOLVED SOLIDS

	CATIONS	mg/l		me/l						
	Sodium, Na:	184	:	8						
	Calcium, Ca:	12	:	1	Sample(ml):	10.0	ml	of	EDTA:	.30
	Magnesium, Mg:	2	:	0	Sample(ml):	10.0	ml	of	EDTA:	.10
	Barium, Ba:	N/A	:	N/A						
	Potassium, K:	16	:	0						
	ANIONS	mg/l		me/l						
N:	.500 Chloride, Cl:	177	:	5	Sample(ml):	10.0	ml	of	AgNO3:	.10
	Sulfate, SO4:	80	:	2						
	Carbonate, CO3:		:		Sample(ml):	1.0	ml	of	H2SO4:	
	Bicarbonate, HCO3:	122	:	2	Sample(ml):	25.0	ml	of	H2SO4:	.50
T	otal Dissolved									
S	olids (calculated):	593								
	Total Hardness:	40			Sample(ml):	10.0	m.	l of	EDTA:	.40

REMARKS AND RECOMMENDATIONS:

•

API WATER ANALYSIS

Company:	MERIDIAN OIL	INC.	W.C.N.A. Sample No.:	
Field:			Legal Description:	
Well:	SUNRAY D-1-A		Lease or Unit:	
Depth:			Water.B/D:	
Formation:	PC		Sampling Point:	
State:	NM		Sampled By:	MOI
County:	SAN JUAN		Date Sampled:	03/11/96
-		Type of	Water(Produced, Supply, ect.):	PROD.

PROPERTIES

7,50	Iron, Fe(total):	1
1.010	Sulfide as H2S:	0
.76	Total Hardness:	
78F	(see below)	
	7.50 1.010 .76 78F	7.50Iron, Fe(total):1.010Sulfide as H2S:.76Total Hardness:78F(see below)

DISSOLVED SOLIDS

	CATIONS	mg/l		me/l						
	Sodium, Na:	2323	:	101						
	Calcium, Ca:	40	:	2	Sample(ml):	10.0	ml	of	EDTA:	1.00
	Magnesium, Mg:	2	:	0	Sample(ml):	10.0	ml	of	EDTA:	.10
	Barium, Ba:	N/A	:	N/A	-					
	Potassium, K:	410	:	11						
	ANIONS	mg/l		me/l						
N:	.500 Chloride, Cl:	3722	:	105	Sample(ml):	10.0	ml	of	AgNO3:	2.10
	Sulfate, SO4:	30	:	1					_	
	Carbonate, CO3:		:		Sample(ml):	1.0	ml	of	H2SO4:	
	Bicarbonate, HCO3:	488	:	8	Sample(ml):	25.0	ml	of	H2SO4:	2.00
T	otal Dissolved									
S	olids (calculated):	7015								
	Total Hardness:	100			Sample(ml):	10.0	m.	l of	E EDTA:	1.00

REMARKS AND RECOMMENDATIONS:

•

٠

API WATER ANALYSIS

Company:	MERIDIAN OIL	INC.	W.C.N.A. Sample No.:	
Field:			Legal Description:	
Well:	SUNRAY D-2-A		Lease or Unit:	
Depth:			Water.B/D:	
Formation:	MV		Sampling Point:	
State:	NM		Sampled By:	MOI
County:	SAN JUAN		Date Sampled:	03/11/96
-		Type of	Water(Produced, Supply, ect.):	PROD.

PROPERTIES

pH: Specific Gravity: Resistivity (ohm-meter):	5.87 1.005 10.00 78F	Iron, Fe(total): Sulfide as H2S: Total Hardness: (see below)	3 0
Tempature:	78F	(see below)	

DISSOLVED SOLIDS

CATIONS	mg/l		me/l						
Sodium, Na:	184	:	8						
Calcium, Ca:	4	:	0	Sample(ml):	10.0	ml	of	EDTA:	.10
Magnesium, Mg:	2	:	0	Sample(ml):	10.0	ml	of	EDTA:	.10
Barium, Ba:	N/A	:	N/A						
Potassium, K:	6	:	0						
ANIONS	mg/l		me/l						
500 Chloride, Cl:	177	:	5	Sample(ml):	10.0	ml	of	AgNO3:	.10
Sulfate, SO4:	30	:	1						
Carbonate, CO3:		:		Sample(ml):	1.0	ml	of	H2SO4:	
icarbonate, HCO3:	122	:	2	Sample(ml):	25.0	ml	of	H2SO4:	.50
al Dissolved									
ids (calculated):	525								
Total Hardness:	20			Sample(ml):	10.0	m.	1 01	E EDTA:	.20
	CATIONS Sodium, Na: Calcium, Ca: Magnesium, Mg: Barium, Ba: Potassium, K: ANIONS 500 Chloride, Cl: Sulfate, SO4: Carbonate, CO3: icarbonate, HCO3: al Dissolved ids (calculated): Total Hardness:	CATIONS mg/l Sodium, Na: 184 Calcium, Ca: 4 Magnesium, Mg: 2 Barium, Ba: N/A Potassium, K: 6 ANIONS mg/l 500 Chloride, Cl: 177 Sulfate, SO4: 30 Carbonate, CO3: icarbonate, HCO3: 122 al Dissolved ids (calculated): 525 Total Hardness: 20	CATIONS mg/l Sodium, Na: 184 : Calcium, Ca: 4 : Magnesium, Mg: 2 : Barium, Ba: N/A : Potassium, K: 6 : ANIONS mg/l 500 Chloride, Cl: 177 : Sulfate, SO4: 30 : Carbonate, CO3: : icarbonate, HCO3: 122 : al Dissolved ids (calculated): 525 Total Hardness: 20	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Magnesium, Mg: 2 : 0 Barium, Ba: N/A : N/A Potassium, K: 6 : 0 ANIONS mg/l me/l 500 Chloride, Cl: 177 : 5 Sulfate, SO4: 30 : 1 Carbonate, CO3: : icarbonate, HCO3: 122 : 2 al Dissolved ids (calculated): 525 Total Hardness: 20	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Magnesium, Mg: 2 : 0 Barium, Ba: N/A : N/A Potassium, K: 6 : 0 ANIONS mg/l me/l 500 Chloride, Cl: 177 : 5 Sulfate, SO4: 30 : 1 Carbonate, CO3: : Sample(ml): icarbonate, HCO3: 122 : 2 Sample(ml): al Dissolved ids (calculated): 525 Total Hardness: 20 Sample(ml):	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Sample(ml): 10.0 Magnesium, Mg: 2 : 0 Sample(ml): 10.0 Barium, Ba: N/A : N/A Potassium, K: 6 : 0 ANIONS mg/l me/l 500 Chloride, Cl: 177 : 5 Sample(ml): 10.0 Sulfate, SO4: 30 : 1 Carbonate, CO3: : Sample(ml): 1.0 icarbonate, HCO3: 122 : 2 Sample(ml): 25.0 al Dissolved ids (calculated): 525 Total Hardness: 20 Sample(ml): 10.0	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Magnesium, Mg: 2 : 0 Barium, Ba: N/A : N/A Potassium, K: 6 : 0 ANIONS mg/l me/l 500 Chloride, Cl: 177 : 5 Sulfate, SO4: 30 : 1 Carbonate, CO3: : Sample(ml): 10.0 ml icarbonate, HCO3: 122 : 2 Sample(ml): 25.0 ml al Dissolved ids (calculated): 525 Total Hardness: 20 Sample(ml): 10.0 ml	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Magnesium, Mg: 2 : 0 Barium, Ba: N/A : N/A Potassium, K: 6 : 0 ANIONS mg/l me/l 500 Chloride, Cl: 177 : 5 Sulfate, SO4: 30 : 1 Carbonate, CO3: : Sample(ml): 10.0 ml of icarbonate, HCO3: 122 : 2 Sample(ml): 25.0 ml of al Dissolved ids (calculated): 525 Total Hardness: 20 Sample(ml): 10.0 ml of	CATIONS mg/l me/l Sodium, Na: 184 : 8 Calcium, Ca: 4 : 0 Sample(ml): 10.0 ml of EDTA: Magnesium, Mg: 2 : 0 Sample(ml): 10.0 ml of EDTA: Barium, Ba: N/A : N/A Potassium, K: 6 : ANIONS mg/l me/l sample(ml): 10.0 ml of AgNO3: : Sulfate, SO4: 30 : 1 : : Carbonate, CO3: : : Sample(ml): 1.0 ml of H2SO4: : icarbonate, HCO3: 122 : 2 Sample(ml): 25.0 ml of H2SO4: al Dissolved : 525 : Sample(ml): 10.0 ml of EDTA:

REMARKS AND RECOMMENDATIONS:

•

API WATER ANALYSIS

Company:	MERIDIAN OIL INC.	l i i i i i i i i i i i i i i i i i i i	W.C.N.A. Sample No.:	
Field:			Legal Description:	
Well:	SUNRAY COMINGLED	WATERS	Lease or Unit:	
Depth:			Water.B/D:	
Formation:	MV/PC	i -	Sampling Point:	
State:	NM		Sampled By:	MOI
County:	SAN JUAN		Date Sampled:	03/11/96
-	Туре	e of Water(Pro	duced, Supply, ect.):	PROD.

PROPERTIES

pH:	7.63	Iron, Fe(total):	0
Specific Gravity:	1.005	Sulfide as H2S:	0
Resistivity (ohm-meter):	1.50	Total Hardness:	
Tempature:	78F	(see below)	

DISSOLVED SOLIDS

	CATIONS	mg/l		me/l						
	Sodium, Na:	1380	:	60						
	Calcium, Ca:	24	:	1	Sample(ml):	10.0	ml	of	EDTA:	.60
	Magnesium, Mg:	2	:	0	Sample(ml):	10.0	ml	of	EDTA:	.10
	Barium, Ba:	N/A	:	N/A	- · ·					
	Potassium, K:	230	:	6						
	ANIONS	mg/l		me/l						
N:	.500 Chloride, Cl:	2127	:	60	Sample(ml):	10.0	ml	of	AgNO3:	1.20
	Sulfate, SO4:	30	:	1	- · ·				-	
	Carbonate, CO3:		:		Sample(ml):	1.0	ml	of	H2SO4:	
	Bicarbonate, HCO3:	342	:	6	Sample(ml):	25.0	ml	of	H2SO4:	1.40
T	otal Dissolved									
S	olids (calculated):	4135								
	Total Hardness:	70			Sample(ml):	10.0	ml	L o:	f EDTA:	.70

REMARKS AND RECOMMENDATIONS:

.

-

,

Analysis	No .
Date	

Oil Analysis

Operator MERIDIAN UI INC	Date Sampled		
WellSWRay D-Z-A	Date Received 3-12-96		
J Field	Submitted By MOJ		
Formation Retured Cliffs	Worked By D. Shephera		
Depth	Sample Description		
County Ser JUAN	· ·		
State NM			
API Gravity <u>55</u> ° at 60°F			
*Paraffin Content% by weight	••		
*Asphaltene Content % by weight			
Pour Point °F			
Cloud Point °F			
<u>Comments</u> : 0,1 15 Clear Condensate			

Analys

Analysis	No.	
Date		

.

Oil Analysis

OPERATOR MERIDIAN OIL INC	Date Sampled		
WellSUNTAY D-Z-A	Date Received 3-12-96		
Field	Submitted By MOI		
Formation MESA Verde	Worked By D. Shepherd		
Depth	Sample Description		
County SAN JUAN	· · · · · · · · · · · · · · · · · · ·		
State NM			
API Gravity 44.4 ° at 60°F *Paraffin Content % by weight	• * * * * * * * * * * * * * * * * * * *		
*Asphaltene Content % by weight			
Pour Point°F			
Cloud Point°F			
<u>Comments</u> : Oil 15 Clear to	, light Green with a Solds		
And Emulsion P	hase.		

Δ.	
$\sim (1)$	
Analyst	

Analysis	No.
Date	

Oil Analysis

Operator MERIDIAN OIL INC.	Date Sampled
Well SUNKay D-1-A	Date Received 3-12-96
Field	Submitted By MOI
Formation MESA VERDE	Worked By D. Shepherd
Depth	Sample Description
County San Juan	
State NM	
API Gravity <u>4D</u> ° at 60°F *Paraffin Content <u>%</u> by weight *Asphaltene Content <u>%</u> by weig Pour Point <u>°</u> F Cloud Point <u>°</u> F	ht
Comments: 01/ 15 Amber (oboried. Emulsified with
Solids. AND Parraf.	N
*Paraffin Content% by weight *Asphaltene Content% by weig Pour Point°F Cloud Point°F <u>Comments</u> : 01/ 15 Amber (Solichs. AND Parrafi	obored, Emulsified Wi N

Analysis	No
Date	

Oil Analysis

OPERATOR MERIDIAN OIL INC.	Date Sampled
Well SUN Ray Mixed oils	Date Received 3-12-96
Field	Submitted By
Formation PC/MU.	Worked By D. Shephevel
Depth	Sample Description
County	Combined D-1-A+D-2-A
State	oil samples
API Gravity 47.4° at 60°F	
*Paraffin Content% by weight	····
*Asphaltene Content% by weig	ht
Pour Point°F	
Cloud Point°F	
	· · · · ·
•	· · ·

. . .

Analyst

Comments:

SAN JUAN #10 AS OF 7/12/95 **BLANCO MESAVERDE/PICTURED CLIFFS** UNIT M, SEC 10, T30N, R10W, SAN JUAN COUNTY, NM COMPLETED 9/17/51 10-3/4" 32.7# K-55 CSG SET @ 175' WORKOVER 8/7/60 CEMENT WITH 200 SX TO SURFACE PACKER REPL. 4/28/66 TOC UNKNOWN OJO ALAMO @ 1774' KIRTLAND @ 1863' 1-1/4" 2.4# J-55 PC TBG SET @ 3144' SEATING NIPPLE ABOVE PERFS 2-3/8" 4.7# J-55 MV TBG SET @ 5486' SEATING NIPPLE @ 5475' FRUITLAND @ 2490' PICTURED CLIFFS @ 3092' PC PERFS 3088'-3130' LEWIS @ 3205' FRAC W/40,000# SAND AND 35,280 GAL WATER BAKER MODEL "N" PACKER SET @ 3187' CLIFF HOUSE @ 4700' **MENEFEE @ 4910'** SQUEEZE LINER TOP WITH 100 SX 7" 23# J-55 CSG SET @ 5294' CEMENT WITH 150 SX PLUS 75 SX ON DV TOOL @ 3250' MV PERFS 5374'-5456' POINT LOOKOUT @ 5407' FRAC W/60.000# SAND AND 64,300 GAL WATER MANCOS @ 5600'

.

COTD 5614'

5-1/2" 15.5# J-55 LINER 5191'-5617"

CEMENT WITH 100 SX

Location: SW/4 760' FSL, 1050' FWL, Unit M, Section 10, T30N, R10W Lat. 36.822296, Long. 107.876602 by TDG San Juan County, New Mexico

<u>Field:</u>	Blanco Mesaverde, Blanco Picto	ured Cliffs	Elevation: 6481' K	B <u>TD:</u> 5614' <u>COTD:</u> 5614'
Comple	<u>ted:</u> 09-17-51	Spud Date: 06-2	28-51	
<u>DP No:</u>	53304A/53304B	Prop. No: 012599	600	Fed. No: NM 03202

Casing/Liner Record:

Csg Size	Wt. & Grade	Depth Set	<u>Cement</u>	Top/Cement
10 3⁄4"	32.7# K-55	175'	200 sxs	to surface
7"	23# J-55	5294'	150 sxs	TOC unknown
			75 sxs on DV Tool @ 3250'	TOC unknown
5 1⁄2" Liner	15. 5# J-55	5191'-5617'	100 sxs	Liner Top

Tubing Record: MV- 2 3/8" 4.7# J-55 tubing set at 5486'. Seating Nipple @ 5475'. Baker Model "N" Packer set @ 3187'. PC- 11/4" 2.4# J-55 tubing set at 3144'. Seating Nipple above perfs.

Formation Tops:

Ojo Alamo:	1774'	Cliff House:	4700'
Kirtland:	1863'	Menefee:	4910'
Fruitland:	2490'	Point Lookout:	5407'
Pictured Cliffs:	3092'	Mancos:	5600'
Lewis:	3205'		

Logging Record: I-ES, Temp. Survey

Sand water fractured Mesaverde intervals between 5374' and 5456' with 64,300 gallons of water and 60,000# of sand.

Sand water fractured Pictured Cliffs intervals between 3088' and 3130' with 35,280 gallons of water and 40,000# of sand.

Workover History:

08-07-60: Liner added, cemented with 100 sxs. Liner Top squeezed with 100 sxs. Perfed Mesaverde from 5374' - 5456', fractured with 64,300 gallons of water and 60,000# of sand; Pictured Cliffs perfed from 3088' - 3130', fractured with 32,800 gallons of water and 40,000# of sand.

04-28-66: Replaced packer.

CAPITAL WORKOVER WELL PROGRAM FARMINGTON REGION

San Juan #10 Mesa Verde Sidetrack 760' FSL, 1050' FWL Section 10, T-30-N, R-10-W San Juan County, New Mexico

Area Team 4&5 1996 Discretionary Budget

Special Considerations:

Casing and Cement Design Revisions.

Prepared:

Kurt A. Shipley

Drilling Engineer !

Approved:

Drilling Superintendent

Meridian Oil Operational Policies:

No Smoking within 150' of any major fuel source, designated smoking areas provided. Protective clothing must be worn at all times. Report any unsafe conditions or activities to the rig supervisor immediately.

Any accident regardless of severity should be reported to rig supervisor immediately. Notify rig supervisor immediately if abnormal conditions are encountered (kicks, lost circulation, tight hole, or unstable hole conditions).

All contractors must comply with all local, state, federal, and tribal rules and regulations.

Attachments:

Material / Service Requisition, Maps to Location, Cement Notification Form,

Distribution:

K.A. Shipley, P.W. Bent, W.S. Smithwick, J.C. Angvick, F.W. Seidel, BJ Services Well File (original), Purchasing and Materials (Materials Requisition only) Rig Supervisor's File (2 Copies)

Mesa Verde Sidetrack Program

San Juan #10

General Well Data

Well Name:	San Juan #10	Prepared:	1/29/96
Objective:	Mesa Verde Sidetrack	Revised:	
Location (Footage):	760' FSL, 1050' FWL	Sundry/BLM:	8/23/95
Section, Township, Range:	Section 10, T-30-N, R-10-W	Sundry/NM:	N/A
Field:	Blanco Mesa Verde	NSL/NM:	N/A
County:	San Juan County	WSR:	10/3/95
State:	New Mexico	AFE #:	1Q73
Authorized TD:	5850'	Authorized Cost	\$406,108 Workover
Rig:	Aztec #266 / Drake #17	Estimated Days:	13

Casing and Cement Program

		Hole	Casing	Casing	Casing		Burst	Collapse
Type	<u>Interval</u>	Size	<u>Size</u>	<u>Weight</u>	Type	<u>Threads</u>	<u>PSI</u>	<u>PSI</u>
Gas Drilled	0'-5850'	6-1/4"	4-1/2"	10.50#	K-55	ST&C	4790	4010
Mist Drilled	0'-5950'	6-1/4"	4-1/2"	10.50#	K-55	ST&C	4790	4010

Float Equipment

Production Casing

Run in order listed below:

Gas Drilled Hole (0' - 5850')

4-1/2"	Float shoe.		
4-1/2"	40' shoe joint above guide shoe.		
4-1/2"	Insert float collar.		
4-1/2"	2279' of 10.50#, K-55, STC casing.	Optimum Makeup torque:	1500 ft-lb.
4-1/2"	Baker Safety Joint at 3530'.	Optimum Makeup torque:	1200 ft-lb. (pre-set)
4-1/2"	3530' of 10.50#, K-55, STC casing to surface.	Optimum Makeup torque:	1500 ft-lb.

Mist Drilled Hole (0' - 5950')

4-1/2"	Float shoe.		
4-1/2"	40' shoe joint above guide shoe.		
4-1/2"	Insert float collar.		
4-1/2"	2379' of 10.50#, K-55, STC casing.	Optimum Makeup torque:	1500 ft-lb.
4-1/2"	Baker Safety Joint at 3530'.	Optimum Makeup torque:	1200 ft-lb. (pre-set)
4-1/2"	3530' of 10.50#, K-55, STC casing to surface.	Optimum Makeup torque:	1500 ft-lb.

No centralizers run in gas drilled hole.

Cementing

Production String of Casing Cement Job

Gas Drilled Hole (0'	- 5850')		
Lead - No Tail			
Cement: 50/50 C	lass B Pozmix w/ 2% gel, 0.5%	FL-62, 1/4 pps Cellophane, 3 pps Gils	sonite.
Sacks:	200 sacks	Excess Cement:	50 %
Volume:	249.0 cu. ft.	Calculated Gauge Hole Volume:	166.0 cu. ft.
Density:	13.5 ppg	Total Volume Pumped:	249.0 cu. ft.
Yield:	1.24 cu. ft. / sack		
Mix Water:	5.27 gal / sack	Cap. between 4-1/2" csg & 7", 23.0# csg:	0.1106 cu. fl/ft
		Cap. between 4-1/2" csg & 6-1/4" hole:	0.1026 cu. ft/ft
Displacement:	92.3 bbis	Capactiy of 4-1/2", 10.50# csg:	0.0159 bbls/ft
Additional Data			
Pictured Cliffs Perfor	ations:	30	88'-3130'
Baker Safety Joint:		35	30'
Estimated TOC insid	le 7", 23.0# casing (assuming n	o loss): 34	96'
Estimated TOC inside 7", 23.0# casing (actual):			47'
Kick-Off Point:		44	47'
Total Depth:		58	50'

Mist Drilled	l Hole (0' - 5950')			
Lead - No T	ail			
Cement:	50/50 Class B Pozmix	w/ 2% gel, 0.5%	FL-62, 1/4 pps Cellophane, 3 pps Gi	lsonite.
Sacks:	23	34 sacks	Excess Cement:	65 %
Volume:	290	.9 cu. ft.	Calculated Gauge Hole Volume:	176.3 cu. ft.
Density:	13	.5 ppg	Total Volume Pumped:	290.9 cu. ft.
Yield:	1.:	24 cu. ft. / sack		
Mix Water:	5.3	27 gal / sack	Cap. between 4-1/2" csg & 7", 23.0# csg:	0.1106 cu. ft/ft
			Cap. between 4-1/2" csg & 6-1/4" hole:	0.1026 cu. ft/ft
Displaceme	nt: 93	.9 bbls	Capactiy of 4-1/2", 10.50# csg:	0.0159 bbis/ft
Additional C	<u>)ata</u>			
Pictured Cli	ffs Perforations:		3	088'-3130'
Baker Safet	y Joint:		3	530'
Estimated T	OC inside 7", 23.0# ca	sing (assuming r	io loss): 3	211'
Estimated TOC inside 7", 23.0# casing (actual):			4	247'
Kick-Off Poi	int:		4	447'
Total Depth			5	950'

Cementing Instructions: 4-1/2", 10.50# Production Liner.

Notify BLM of Cementing Operations.

Do not change any cement volumes. Volumes based on statistical data of offset wells. Must avoid pumping cement up into Pictured Cliffs perforations.

- 1. Drill to New TD (5850'). Drill and extra 100' to 5950' if mist drilling was required for OH logs. Gauge well at designated depths per geologist. Circulate wellbore clean at TD and TOOH.
- 2. Run open hole logs per Geologist. Send copy to MOI immediately Production Engineer will provide completion procedure. After logging, TIH with 6-1/4" bit and clean out. Circulate wellbore clean with gas. TOOH and lay down drillpipe.

- 3. Change pipe rams to 4-1/2", install 4-1/2" stripper rubber. Run casing and float equipment as specified. Threadlock all connections to insert float valve. Tag TD with 4-1/2" casing. Pull off bottom and circulate well clean with gas until returns are clean at least 1 hour.
- 4. **Re-calculate all cement volumes Check all volumes on location with service company.** Hold a safety meeting with all personnel on location in attendance. Monitor returns continuously.
- Precede cement w/ 20 bbls gel water (2 sxs gel) followed by 10 bbls fresh water.
 Mix and pump cement at 4 6 BPM. Drop displacement plug. Displace cement with calculated volume of fresh water. Anticipated displacement pressure is 700 PSI. Do not exceed 2000 PSI. Bump plug to 500 PSI over displacement pressure. Check float for integrity.
 Note: Do not shut down to wash pumps and lines on displacement in a gas drilled hole.
- 6. Set minimum of 50,000# on slips and cut off casing. WOC 24 hours prior to perforating. Production Engineering will provide completion procedure after open hole log evaluation.

CAPITAL WORKOVER WELL PROGRAM FARMINGTON REGION

San Juan #10 Mesa Verde Sidetrack 760' FSL, 1050' FWL Section 10, T-30-N, R-11-W San Juan County, New Mexico

Area Team 4&5 1996 Discretionary Budget

Special Considerations:

Existing Pictured Cliff perforations will remain open throughout sidetrack. This well will be plugged back with cement by Aztec Rig #266. Aztec #266 will also drill out cement to Kick-off Point. Whipstock will be used for Kick-Off. Gas drilling for sidetrack portion of well. Cliff House formation may be water wet.

Prepared:

Kurt A. Shipley 6

1.1/2/5/96

Drilling Engineer II

Approved: <u>*JC*</u> <u>*Drilling* Superintendent</u>

Reviewed:

Meridian Oil Operational Policies:

No Smoking within 150' of any major fuel source, designated smoking areas provided. Protective clothing must be worn at all times.

Report any unsafe conditions or activities to the rig supervisor immediately.

Any accident regardless of severity should be reported to rig supervisor immediately.

Notify rig supervisor immediately if abnormal conditions are encountered (kicks, lost circulation, tight hole, or unstable hole conditions).

All contractors must comply with all local, state, federal, and tribal rules and regulations.

Attachments:

Material / Service Requisition, Maps to Location, Cement Notification Form,

Distribution:

KA Shipley DW Dept WO Smithuish 10 Apprint DW O that

K.A. Shipley, P.W. Bent, W.S. Smithwick, J.C. Angvick, F. Area 4&5 Team, Well File (original), Purchasing and Materials (Materials Requisition only) Rig Supervisor's File (2 Copies)

Air Care 1 Instructions

In Case of Major Emergency requiring Air Care 1:

- 1. Call 911.
- 2. Give Location to Operator.

Well Name: San Juan #10

Latitude:36 Degrees, 49 Minutes, 12 Seconds.Longitude:107 Degrees, 10 Minutes, 31 Seconds.

3. Locate and prepare a location for helicopter to land.

Additional Information:

760' FSL, 1050' FWL Section 10, T-30-N, R-11-W

Road Directions:

From Aztec: Highway 550 (North). Turn right on Navajo Dam Road (Highway 173 East). Turn left at mile marker #6. 2 miles to location.

MERIDIAN OIL INC. FARMINGTON REGION MAJOR ACCIDENT CONTINGENCY PLAN

General Well Data

Well Name:	San Juan #10	Prepared:	1/29/96	
Objective:	Mesa Verde Sidetrack	Revised:		
Location (Footage):	760' FSL, 1050' FWL	Sundry/BLM:	8/23/95	
Section, Township, Range:	Section 10, T-30-N, R-11-W	Sundry/NM:	N/A	
Field:	Blanco Mesa Verde	NSL/NM:	N/A	
County:	San Juan County	WSR:	10/3/95	
State:	New Mexico	AFE #:	1Q73	
Authorized TD:	5850'	Authorized Cost	\$406,108	Workover
Rig:	Aztec #266 / Drake #17	Estimated Days:	13	

Approximate Directions to Location

Latitude: 36 Degrees, 49 Minutes, 12 Seconds. Longitude: 107 Degrees, 10 Minutes, 31 Seconds. From Aztec: Highway 550 (North). Turn right on Navajo Dam Road (Highway 173 East). Turn left at mile marker #6. 2 miles to location.

Production Data					
<u>Mesa Verde</u>			Pictured Cliffs		
Current Rate	93	MCF/D	Current Rate	37	MCF/D
Cumulative Production	2,736	MMCF	Cumulative Production	2,736	MMCF
Estimated BHP	500	PSI	Estimated BHP	200	PSI
Remaining Reserves	806	MMCF	Remaining Reserves	173	MMCF
Geology		·····			
Elevation	6473'	GL	6486' KB		
Markar	Denths	Notes	Marker	Donthe	Natas
Surface	Deptilis	Notes		<u>Deptits</u>	NOLES
Oin Alamo	1750'		Kick-Off Point	4130	
Kirtland	1890'		Upper Cliff House	4300	
Fruitland	2710'		Massive Cliff House	4700'	
Pictured Cliffs	3094'		Menefee	4910'	
Lewis	3260'		Massive Point Lookout	5407'	
Huerfanito Bentonite	3821'		Lower Point Lookout	5500'	
Navajo City	3828'		Mancos	N/A	
-			Current TD	5614'	
			New TD	5850'	

Evaluation

Mudlogging

None. Per G. E. Christiansen, Operations Geologist (1/26/96).

Wireline Logs

Stack tools if possible. Repeat minimum 200' on all logs. Merge deepest GR onto all logs. APS / GR from TD to Surface. AIT / LDS / Temp / Cal from TD to Surface.

Cores None.

Gauges While Drilling Kick-off Point, 4450', 4680', 4900', 5390', 5500', TD. Note: 20 minute minimum on all gauges. Schlumberger

San Juan #10

٤

Existing C	Casing and Cer	nent						
-	_	Hole	Casing	Casing	Casing			Cement
Туре	Interval	Size	Size	Weight	Туре	Cement	<u>TOC</u>	<u>Notes</u>
SCP	0'-175'	13-3/4"	10-3/4"	32.75#	H-40	200 sx	Surface	1.
ICP	0'-5294'	8-3/4"	7"	23.00#	J-55	225 sx	4470'	2.
Liner	5191'-5617'	6-1/4"	5-1/2"	15. 50#	J-55	200 sx	Liner Top	3.

Cement Notes

1. 200 sx regular cement. Cemented to surface.

- 2. Estimated TOC: 1st Stage @ 4470', 2nd Stage @ 2838' (70% Efficiency).
- 2 Stage Cement Job. 1st stage: 150 sx regular cement. 2nd stage: 75 sx regular cement.
 Cement liner w/ 100 sx regular cement w/ 4% gel, 1/4 pps gilsonite, 1/4 pps flocele under
 - cement retainer @ 5602'. Cement top of liner under packer @ 5105' w/ 100 sx regular cement.

Existing Tubing

	Tubing	ubing Tubing Tubing			Depth		
	<u>Size</u>	<u>Weight</u>	Type	<u>Threads</u>	<u>Set</u>	<u>Joints</u>	<u>Notes</u>
Mesa Verde	2-3/8"	4.70#	J-55	8rd	5486'	177	1.
Pictured Cliffs	1-1/4"	2.40#	J-55	10rd	3144'	99	2.

Tubing Notes

 Baker Model N packer set @ 3186'. 103 jts above packer, 74 jts below packer. Bull plug on bottom w/ perfs from 5476'-5479'. Otis Type X S.N. @ 5475' above perfs. Tubing has locator type seal assembly and is not latched in Model "N" packer. Tubing has turned down N-80 collars.

2. Bull plug on bottom w/ perfs from 3142'-3144'. PSI S.N. @ 3141'.

Workover History

(4/28/66) Replaced packer. Ran Baker Model "N" Permanent Packer.

Sidetrack	Well Program								
	•	Hole	Casing	Casing	Casing	Mud	Mud		Hazards &
Туре	<u>Interval</u>	<u>Size</u>	<u>Size</u>	<u>Weight</u>	Type	Туре	<u>Weight</u>	<u>Viscosity</u>	<u>Notes</u>
PROD	4380'-5850'	6-1/4"	4-1/2"	10.50#	K-55, STC	Gas	N/A	N/A	1 5.

Hazards and Notes

1.	Notify BLM prior to workover and all casing cement jobs.
2.	Cliff House formation may be wet.
3.	Pictured Cliffs perforations will remain open throughout entire job.
4.	A 4-1/2" liner will be run in the sidetracked portion of the well.
5.	The well will be dual completed.

Whipstock

Weatherford 5-1/2" Whipstock for 7", 20.0# or 23.0# casing (Bottom Trip - must have base). Mills and service Turnkey operation provided by Weatherford.

Liner Hanger

4-1/2" X 7" Baker High-Flow-3 Liner Hanger without pack-off assembly.

Gas / Air F	Program							
		Hole	Drilling			Foamer		
Туре	<u>Intervai</u>	Size	<u>Medium</u>	<u>Rate</u>	<u>Mist</u>	per 20 bbls	<u>Notes</u>	
PROD	4380'-5850'	6-1/4"	Gas	1500 cfm	5-10 bph	5-10 gal	1., 2.	

<u>Notes</u>

1. Refer to Gas - Air / Mist Drilling Operational and Safety Compliance Checklist

2. Cliff House Formation may be water wet.

3. Pump stiff foam sweeps as necessary to clean hole with open Pictured Cliffs perforations.

BOP / Testing

Туре

7-1/16" - 3000 psi working pressure double gate BOP equipped with blind and pipe rams.

Testing

Pressure test BOP stack to 200 psi for 10 minutes and 1500 psi for 30 minutes using pipe rams, pup joint and tubing hanger. Pipe rams shall be function tested at least once each day for proper operation.

Blind rams shall be function tested at least once each trip.

Plug-Back Procedure

- 1. Move rig on location and rig up. Lay flow lines and relief lines. Spot 1 x 400 bbl frac tank on location and fill with water. Kill well with water.
- Pull top section of wellhead. Rig up 7-1/16" (3M psi) BOP's. Pressure test BOP stack to 200 psi for 10 minutes and 1500 psi for 30 minutes with 1-1/4" offset pipe rams, blanking plug in 2-3/8" tubing, and 1-1/4" OD pup joint.
 Maximum allowable pressure: 1500 psi.

 TOOH and lay down on float 99 jts of 1-1/4", 2.40# EUE 10rd tubing. See attached tubing talley for tubing details. Send float to Meridian Oil yard for inspection and storage.

- 4. Release packer by picking up on 2-3/8" tubing and pulling locator type seal assembly out of Baker Model "N" Permanent Packer (seal assembly is not latched into permanent packer). TOOH w/ 177 jts of 2-3/8"
 4.70# EUE tubing and stand back in derrick, if usable. See attached tubing tally for tubing details. Inspect tubing for any unusable joints. Lay down any unusable joints of tubing on float and call for Meridian Oil District Tools for workstring, if needed. Do Not mix old tubing with Meridian Oil Workstring.
- PU Baker Oil tools 7" CJ Milling Tool (Packer Plucker) and 2-3/8" workstring. TIH to Baker Model "N" Packer @ 3186'. Sting through packer with Milling Tool and pull up on tubing. This should verify that catch assembly is under packer. Establish circulation with gas-mist (approximately 5 - 10 bph mist) and begin mill top section of packer. When packer assembly is free, TOOH and lay down packer.
- 6. TIH with tubing (inspect all pins and boxes for wear) and 7" casing scraper to liner top @ 5191'. TOOH.
- 7. PU 7" cement retainer and 2-3/8" tubing and TIH to 5186' (5' above liner top) and set 7" cement retainer.
- 8. Load tubing with water and pressure test to 2000 PSI for 15 minues. Sting into cement retainer and establish circulation through cement retainer into 5-1/2" liner with water Squeeze 5-1/2" liner below cement retainer to 1000 PSI as listed below.

DO NOT ATTEMPT TO REVERSE OUT CEMENT WITH OPEN PICTURED CLIFFS PERFORATIONS.

5-1/2" Liner sque	eze cement job)		
Cement:	Class "B	" Neat	Capacity of 5-1/2", 15.50# casing:	0.1336 cu. ft. / ft.
Sacks:	96	sacks		
Volume:	113.8	cu. ft.		
Density:	15.6	ppg	Excess Cement:	100 %
Yield:	1.18	cu ft/sk	Calculated Hole Volume:	56.9 cu. ft.
Mix Water:	5.2	gal/sk	Total Volume Pumped:	113.8 cu. ft.

Sting out of cement retainer. Leave 1 bbl of cement on top of retainer. Flush tubing clean with water. Spot 80 bbls of water in 7", 23.00# casing for cement bond log. TOOH and lay down stinger.

9. Run CBL/CCL/GR to TOC. Approximate location for TOC is 4470' (calculated @ 70% efficiency). Send a copy of logs to MOI immediately. Ensure good cement bond at whipstock location, approximately 4380'. If TOC is not sufficient, perforate 2 squeeze holes just above current TOC and attempt to establish and injection rate. Mix and pump Class "B" cement w/ 2% CaCl2, as necessary under a 7" cement retainer. Cement should be sufficient behind 7" casing for a good kick-off.

- 10. If TOC is sufficient for good Kick-Off, RIH with 7" CIBP and collar locator. Locate 7" casing collars above and below Kick-Off Point @ 4380'. Set CIBP 2' above collar near 4380'. Allow for a full 40' joint of casing for window to be cut for sidetrack (Weatherford 7" Mechanical Whipstock must have a base to be set).
- 11. TIH w/ 7" Fullbore packer and 2-3/8" workstring. Set packer below Pictured Cliffs perforations @ 3200'. Pressure test 7" casing below Pictured Cliffs perforations to 1000 PSI for 15 minutes. Release packer. Pull up in hole and reset packer @ 3000'. Pressure test 7" casing X 2-3/8" tubing annulus to 1000 PSI for 15 minutes. If casing pressure tested and CBL shows TOC above whipstock location, then GO TO STEP 12. If casing did not pressure test, locate holes with packer and tubing. Record location of holes in casing, injection rate and pressure. Notifiy Meridian Oil personnel. At this time a decision will be made to squeeze the holes with cement and / or complete the well as a single Pictured Cliffs completion. If a squeeze job is required, it will be provided at this time.
- TOOH. If squeeze work was performed above Kick-Off Point, PU 6-1/4" bit and 2-3/8" tubing.
 PU 6-1/4" bit and 2-3/8" tubing. Drill out cement to Kick-Off Point @ 4380'. Do Not Drill CIBP @ 4380'.
- 13. TOOH and lay down tubing and / or work string on float and send to MOI Pipe Yard with Field Transfer Ticket.
- 14. ND BOP's. NU Wellhead. RD and move off location. Well should now be ready for Sidetrack Rig to move in, pick up 7" Whipstock, 3-1/2" Drillpipe, and TIH to 4380' (Kick-off Point) for sidetrack portion of project.

Sidetrack Procedure

- 1. Move drilling/completion rig on location and rig up. Lay flow lines, relief lines, and blooie line.
- Rig up 7-1/16" (5M psi) BOP's. Pressure test BOP stack to 200 psi for 10 minutes and 2500 psi for 30 minutes using pipe rams, pup joint and tubing hanger.
 Maximum allowable pressure = 1500 PSI
- 3. Read previous well file and note work performed. The intent of their work will be to prepare the well for the sidetrack well to the point where the first operation will be to pick up a whipstock or motor, whichever is required. If well is not prepared for some reason, it may be necessary to drill out cement and test casing.
- 4. TIH w/ 7" whipstock on 3-1/2" drill pipe. Set whipstock @ 4380'. Mill window in 7" casing. The window cutting operation will be turnkeyed providing whipstock, starting mill, window mill, watermelon mill, and ditch magnets as required. Mill window with gas mist. See gas-mist requirements below.
- 5. Once window is dressed off, circulate hole until metal cuttings are removed from the system. Unload hole with gas and dry up wellbore.
- 6. TIH with Drilling Assembly w/ near bit reamer and 6-1/4" insert button bit. Take deviation survey after drilling 60' (should be between between 5 8 degrees). Drop reamer if angle is sufficient, if not drill another 30' and re-survey. It is important to invest time early in the sidetrack to assure a good kick-off. This means use maximum weight of drill collars and minimum RPM's to allow bit to build angle.

Kick-Off / Drilling Assembly		Gas - Air / Mist Rates
6-1/4" insert button bit	Medium:	Gas
6-1/4" 3-Point Roller Reamer (1/8" under gauge)	Rate:	1500 cfm
(14) 4-3/4" drill collars	Mist:	10 - 15 bbls/hr
3-1/2" drill pipe to surface	Foamer:	10 - 15 bbls/hr
10 - 12K WOB, 20 - 25 RPM (for Kick-Off)		
10 - 12K WOB, 50 - 55 RPM (while Drilling)		

7. Drill to New TD (5850'). Drill and extra 100' if mist drilling was required for OH logs. Gauge well at designated depths per geologist. Circulate wellbore clean at TD and TOOH. 8. Run open hole logs per Geologist. Send copy to MOI immediately Production Engineer will provide completion procedure. After logging, TIH with 6-1/4" bit and clean out. Circulate wellbore clean with gas. TOOH and stand back drillpipe. Lay down drill collars.

Casing and	Cement Pro	ogram									
-		Hole	Casing	Casing	Casing		Burst	Collapse			
Type	<u>Interval</u>	<u>Size</u>	Size	<u>Weight</u>	<u>Type</u>	Threads	<u>PSI</u>	<u>PSI</u>			
Liner	4180'-5850'	6-1/4"	4-1/2"	10.50#	K-55	ST&C	4790	4010			
	Float Equipr	<u>nent</u>		<i>,</i>							
	Duriduritien	D = = i= =:	(4400)	50501		Dun in order	listed holow	,			
	Production (Jasing	(4180-	5850')		Run in order	listed below				
	4-1/2	float shoe.	chovo qui	da abaa				,			
	4-1/2	40 shoe joini	above gui	de shoe.							
	4-1/2		STC Cool	20							
	4-1/2	4-1/2" X 7" Baker High-Flow-3 Liner Hanger without pack-off assembly w/ setting tool									
	3-1/2" 15-50# drilloine										
	3-1/2	13.30 13.30	pe.	م ما بينا م م							
		No centralize	rs run in ga	as armed note).						
	Cementing										
	oementing										
	Production \$	String of Casir	ng Cement	Job	(4180'-	- 5850')					
		-	-								
	Lead - No T	ail									
	Cement:	50/50 Class I	B Pozmix v	// 0.3% Halad	1-344, 1/4 p	ps Cellophane	, 3 pps Gilso	onite.			
	Sacks:		203	sacks		Exce	ss Cement:	55 %			
	Volume:		265.5	cu. ft.	Calcula	ated Gauge Ho	ole Volume:	171.3 cu. ft.			
	Density:		13.5	ppg		Total Volum	ne Pumped:	265.5 cu. ft.			
	Yield:		1.31	cu. ft. / saci	< C						
	Mix Water:		5.7	gal / sack							
					Cap.	between 4-1/2" cs	g & 6-1/4" hole:	0.1026 cu. fl/ft			
	Displaceme	nt:	53.4	bbls		Capactiy of 4-1/	2", 10.50# csg:	0.0159 bbis/ft			
						Capactiy of 3-1	/2", 15.50# DP:	0.00658 bbls/ft			
	Additional F	ata									
	Pictured Clit	<u>rala</u> ffs Derforation	e.					2099' 2120'			
	Estimated T		is. Mineido 7"	23.0# casin				2000-3130			
	Estimated T	OC with 3-1/2	" inside 7"	23.0# casing	y (assuming	110 1055).		3052'			
	Kick-Off Poi	int [.]		20.0# 04311				1380'			
								4000			
	Recalculate	displacement	volume or	location.							
	Cementing	Instructions:	<u>4-1/2", 10.5</u>	0# Productio	n Liner.						
		of Cementin	g Operatio	ons.							
	Do not cha	nge any cem	ent volum	es. Volumes	based on	statistical dat	ta of offset	wells. Must avoid			
	pumping co	ement up into	rictured	Units perfor	ations.						

- 1. Change pipe rams to 4-1/2", install 4-1/2" stripper rubber. Run casing and float equipment as specified. Threadlock all connections to float valve.
- 2. Make up liner and setting tool on the first joint of 3-1/2" drill pipe. Make up 4-1/2" casing and RIH. Make up first stand, open pipe rams, and TIH with tool joint below pipe rams. Close pipe rams. Install 3-1/2" stripping rubber in rotating head.

ì

- 3. Open pipe rams. TIH with liner on 3-1/2" drill pipe to TD. Break circulation on last joint of drillpipe. Tag TD with 4-1/2" liner. Pull off bottom and circulate well clean with gas for 1 hour. Circulate well until returns are clean.
- 4. **Re-calculate all cement volumes Check all volumes on location with service company.** Hold a safety meeting with all personnel on location in attendance. Monitor returns continuously.
- Precede cement w/ 20 bbls gel water (2 sxs gel) followed by 20 bbls fresh water. Mix and pump cement at 4 - 6 BPM. Drop displacement plug. Displace cement with calculated volume of fresh water. Anticipated displacement pressure is 700 PSI. Do not exceed 2000 PSI. Bump plug to 500 PSI over displacement pressure. Check float for integrity. Sting out of liner hanger. DO NOT ATTEMPT TO REVERSE OUT CEMENT WITH OPEN PICTURED CLIFFS PERFORATIONS. Note: Do not shut down to wash pumps and lines on displacement in a gas drilled hole.
- 6. WOC 24 hrs prior to perforating. Production Engineering will provide completion procedure after open hole log evaluation.

San Juan #10 - Mesaverde Sidetrack Completion Procedure Lat-Long by TDG: 36.821671 - 107.876434 SW/4 Section 10, T30N-R10W March 1, 1996

Below is the completion procedure for the San Juan #10. The frac design is for a cross link gel with 12% resin coated sand. The average days for cleaning up sidetracks completed in Area 45 in 1995 was 9 days. These sidetracks were completed with 30# linear gel and slickwater. Due to the continual efforts to reduce costs, a completion method has been identified for savings in the overall completion cost. The amount of gelled water necessary to pump the same amount of sand is significantly less with a cross link fluid. In addition, the high viscosity cross link fluid will minimize banking of sand which will allow resin coated sand to set up near the wellbore. In 1995, Area 45 was successful in reducing costs by decreasing amount of water and clean up time. Since there is not an indication that the linear gel or slickwater completion has better reserves than a cross link gel, it is recommended that the San Juan #10 be completed with a cross link fluid and resin coated sand.

- 1. Hold safety meeting. Comply with all MOI, BLM and NMOCD rules and regulations. Install 10 frac tanks and 1x400 bbl rig tank. Fill each frac tank with 3#'s of biocide and filtered (25 micron) 1% KCI water.
- 2. TIH with 2-3/8" tubing and 3-7/8" bit. CO to PBTD, circ. hole clean, role w/ 1% KCL water. TOOH.
- 3. RU wireline and PU 4-1/2" (10.5#) gauge ring. Run gauge ring to PBTD.
- 4. RU wireline and run CBL-GR-CCL from PBTD to 150' above free pipe.
- 5. TIH w/ 4-1/2 " fullbore packer and two joints of 2-7/8" N-80 buttress frac string. Pressure test casing to 3800 psi. TOOH w/ packer.
- 6. Perforate the following Point Lookout interval using 3-1/8" HSC guns with 12 gram charges and 0.31" diameter holes: (25 holes total)

5372		
5381	5460	5624
5388	5467	5630
5404	5484	5656
5407	5504	5785
5413	5570	5796
5428	5577	5750
5445	5600	5782
5451	5618	5794

7. Inspect guns to ensure all perforations fired.

- 8. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 buttress frac string.
- Balloff Point Lookout perforations with 2000 gallons of 15% HCL acid and RCN balls (2 balls per perforation hole). Maximum allowable treating pressure is 3800 psi. TOOH. RU wireline, retrieve balls w/ 4-1/2" junk basket and report number of hits.
- 10. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 buttress frac string.

San Juan #10 Mesaverde Sidetrack Completion March 1, 1996

- 11. RU frac company. Hold safety meeting. Pressure test surface lines to 4800 psi. (Maximum allowable treating pressure is 3800 psi). Fracture Stimulate Point Lookout interval at 40 BPM using 30# cross link gel and 160,000 #'s of 20/40 Arizona sand (12% resin coated). (See attached procedure.) Do not over displace during flush. Shut in well immediately after completion of the stimulation until pressure falls to zero.
- 12. Release packer and TOOH standing back frac string. Check and inspect packer.
- 13. TIH w/ 4-1/2" CIBP and set @ ± 5300'. TIH w/ 4-1/2" fullbore packer, load hole with 1% KCL water and pressure test CIBP to 3800 psi. TOOH.
- 14. Perforate Menefee interval using 3-1/8" HSC guns with 10 gram charges and 0.29" diameter holes: (19 holes total)

4994	5114
5000	5164
5021	5190
5036	5196
5054	5230
5074	5238
5085	5246
5092	5260
5099	5266
	5278

Inspect guns to ensure all perforations fired.

- 15. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 buttress frac string.
- 16. Balloff Menefee perforations with 1500 gallons of 15% HCL acid and RCN balls (2 balls per perforation hole). Maximum allowable treating pressure is 3800 psi. TOOH. RU wireline, retrieve balls w/ 4-1/2" junk basket and report number of hits.
- 17. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 buttress frac string.
- 18. RU frac company. Hold safety meeting. Test surface lines to 4800 psi. (Maximum allowable treating pressure is 3800 psi). Fracture stimulate Menefee @ 30 BPM using 30# cross link gel and 60,000 #'s of 20/40 Arizona sand (12% resin coated). Do not over displace during flush. Shut in well immediately after completion of the stimulation until pressure falls to zero.
- 19. Release packer and TOOH standing back frac string. Check and inspect packer.
- 20. Wireline set a 4-1/2" RBP @ <u>+</u> 4940'. TIH w/ 4-1/2" fullbore packer, load hole with 1% KCL water and pressure test RBP to 3800 psi. TOOH. Dump sand on top of RBP w/ dump bailer.

San Juan #10 Mesaverde Sidetrack Completion March 1, 1996

21. Perforate the Cliffhouse interval using 3-1/8" HSC guns with 10 gram charges and 0.29" diameter holes: (25 holes total)

4795
4805
4834
4841
4850
4861
4873
4891
4905
4913
4919
4922

Inspect guns to ensure all perforations fired.

- 22. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 frac string. Balloff Cliffhouse perforations with 1500 gallons of 15% HCL acid and RCN balls (2 balls per perforation hole). Maximum allowable treating pressure is 3800 psi. TOOH. RU wireline, retrieve balls w/ 4-1/2" junk basket and record number of hits.
- 23. TIH w/ 4-1/2" fullbore packer and two joints of 2-7/8" N-80 buttress frac string.
- 24. RU frac company. Hold safety meeting. Pressure test surface lines to 4800 psi. (Maximum allowable treating pressure is 3800 psi.) Fracture Cliffhouse @ 40 BPM with 30# cross link gel and 60,000 #'s of 20/40 Arizona sand (12% resin coated). Do not over displace during flush. Shut in well immediately after completion of the stimulation until pressure falls to zero.
- 25. Release packer and TOOH laying down frac string.
- 26. TIH w/ 2-3/8" tubing w/ notched collar and CO to RBP @ <u>+</u> 4940'. Obtain pitot gauge for Cliffhouse interval. TOOH. TIH w/ retrieving head and release RBP @ <u>+</u> 4940'. TOOH.
- 27. TIH w/ 3-7/8" mill and CO to CIBP @ 5300'. Obtain pitot gauge for Cliffhouse / Menefee interval. TOOH. Drill out CIBP @ <u>+</u> 5300'. TOOH.
- 28. TIH with 2-3/8" tubing w/ notched collar and CO to PBTD. PU above the Mesaverde perforations and flow the well naturally, making short trips for clean up when necessary. Obtain pitot gauge for Mesaverde after clean up.
- 29. When sand production has diminished, TOOH.
- 30. RU wireline company. Run After Frac GR from 5794' to top of tracer activity. RD wireline.
- 31. TIH with one joint of 2-3/8", 4.7#, J-55 tubing w/ expendable check, an F-nipple, then the remaining 2-3/8" tubing. CO to PBTD. Land tubing near bottom perforation (5794').
- 32. ND BOP's, NU WH. Pump off expendable check. Obtain final pitot up the tubing if possible. If well will not flow on it's own, make swab run to FN. If a swab run is not necessary, run a broach on slickline to ensure that the tubing is clear. RD and MOL. Return well to production.

STATE OF NEW MEXICO ENERGY and MINERALS DEPARTMENT This form is not to he used for reporting packer leakage tests in Southeast New Mexico

Hour. date shut-in

Lower Consplction

۹

٦

۴

OIL CONSERVATION DIVISION

Page 1 Revised 10/01/78

NORTHWEST NEW MEXICO PACKER-LEAKAGE TEST

								Well	
perator	MERIDIAN OIL INC.			Lease	SAN JUAN			No.	10
ocation				-					
ť Well:	Unit M S	et 10 Twp	. 30N	Rge.	10W	County		SAN JUA	ŧ
<u>}</u>	NAME OF	RESERVOIR OR POOL		TYI	PE OF PROD.	METHO	D OF PROD.	PROD.	MEDIUM
					Oil or Gas)	(Flo	w or Art. Lift)	(Tbg. o	r Csg.)
Upper				Γ					
Completion	PICTURED CLIFFS				GAS		FLOW	T	BG
Lower				}					
Completion	MESAVERDE				GAS		FLOW	1	BG
		PRE	-FLOW SHUT	IN PRE	SSURE DATA				
Upper	Hour. date shut-in	Length of time shut-i	n	SI press	. psig		Stabilized? (Ye	s or No)	
Completion	6-2-95	7 DA	YS		196				
Lower				ł					
Completion	6-2-95	5 DA	YS	<u> </u>	303				
		· · · · · · · · · · · · · · · · · · ·	FLOW TEST	NO. 1					
Commenced a	at (hour.date)* 6	7.95			Zone producing	(Upper or	r Lower)	LOWER	
TIME	LAPSED TIME	PRE	SSURE		PROD. ZONE	1			
(hour,date)	SINCE*	Upper Completion	Lower Compi	etion	TEMP		REMAR	KS	
	1					1			
<u>5-Jun</u>		191	30	1	<u> </u>	 			
	1	4	1			1			
<u>6-Jun</u>				2	<u> </u>	ļ			
						1			
7-Jun		196		3	<u> </u>				
								-	
8-Jun	<u> </u>	199	25	2	<u> </u>	┼			
a-Jnu	+	201		4					
					1				
						I			
roduction	rate during test								
						-			
~	RESPIT based	on Bbl	s. in	Hours	•	_Grav.		_GOR .	
Oil:									
Oil:						,			
Oil: Gas:		MCFPD; Tested t	thru (Orifice or	Meter):				*	
Oil: Ges:		MCFPD; Tested t	thru (Orifice or	Meter):				<u></u>	
<u>Oil:</u> <u>Gas:</u>		MCFPD; Tested t	hru (Orifice or D-TEST SHUT	Meter): -IN PRE	SSURE DATA				

(Continue on reverse side)

SI press. psig

Stabilized? (Yes or No)

Length of time shut-in