Remediation Plan

Į

金一百

8

Prepared for Oxy USA

US 13 Federal # 2 Flowline Leak Eddy County, NM

2RP# <u>726</u>

Prepared by *Elke Environmental, Inc.*

P.O. Box 14167 Odessa, TX 79768 Phone (432) 366-0043 Fax (432) 366-0884 State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

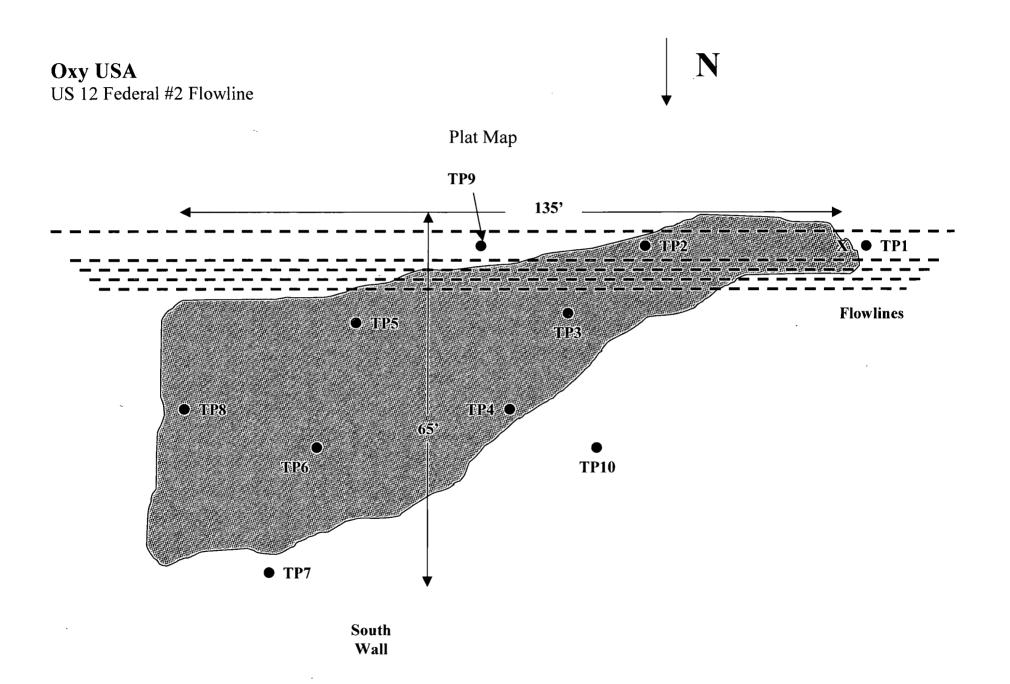
Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company – Oxy USA	Contact – Kelton Beaird		
Address – 1502 W. Commerce Carlsbad, NM 88220	Telephone No. – 575-628-4121		
Facility Name – US 13 Fed #2 Flowline	Facility Type – Flowline from We	11	

Surface Owner - BLM	Mineral Owner	Lease No. 30-015-34272

LOCATION OF RELEASE


Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Н	13	22S	24E					Eddy

Latitude <u>32° 23.597' N</u> Longitude <u>104° 27.393' W</u>

NATURE OF RELEASE

Type of Release – Produced Water	Volume of Release – 80 bbls	Volume Re	ecovered – 0 bbls
Source of Release – Steel Flowline	Date and Hour of Occurrence	Date and H	lour of Discovery
		2-6-10 @	7:00am
Was Immediate Notice Given?	If YES, To Whom?		
🛛 Yes 🗌 No 🔲 Not Required	Randy Dade – NMOCD, Bob Ball	ard – BLM	
By Whom? Rick Kerby (HES – Oxy)	Date and Hour -see above		
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	atercourse.	
🗌 Yes 🖾 No			
Watanagunga ung Immediad Describe Fully *			
Watercourse was Impacted, Describe Fully.*			
Describe Cause of Problem and Remedial Action Taken.* Steel flowline	developed a hole. Area affected was	on and off the	c location to the East approx
600 feet. Site Ranking for this site is as follows: Wellhead Protection Ar			
points. Total ranking for the site is 0 points. The RAL's for the site are a			
field vapor headspace reading). A delineation was performed using a bac			
at 6" at TP1, TP6, TP7 and TP8; impenetrable rock was encountered at 1			
TP4.			
Describe Area Affected and Cleanup Action Taken.* Due to the deep de			
USA proposes leave the spill area un-disturbed. This area will be monito	red for growth to assure that the vege	tation does no	t die off by this release.
I hereby certify that the information given above is true and complete to t			
regulations all operators are required to report and/or file certain release r			
public health or the environment. The acceptance of a C-141 report by the			
should their operations have failed to adequately investigate and remedial or the environment. In addition, NMOCD acceptance of a C-141 report of			
federal, state, or local laws and/or regulations.	loes not reneve the operator of respor	isininy for co	mphance with any other
reaction, state, or rocal laws and/or regulations.	OUL CONCEPT	VATIONI	DIVICIONI
	OIL CONSER	VAIIONI	JIVISION
Signature:			
<u> </u>	A manager of the Directory Companying and		
Printed Name: Kelton Beaird	Approved by District Supervisor:		
			VIII
Title: HES Specialist	Approval Date:	Expiration D	ate:
ail Address: kelton_beaird@oxy.com	Conditions of Approval:		American D
			Attached
Late: 3-25-10 Phone: 575-628-4121			

* Attach Additional Sheets If Necessary

Elke Environmental, Inc. P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Oxy USA

Analyst Bobby Steadham

1

Site US 13 Federal #2 Flowline

Sample ID	Date	Depth	418.1 TPH / PPM	Cl / PPM	PID / PPM	GPS
TP1	3/12/10	3"	18	217	11.3	32°23.597' N
						<u>104°27.393' W</u>
TP1	3/12/10	6"	23	245	9.5	32°23.597' N
	5,12,10			213		104°27.393' W
TP2	3/12/10	1'	11	532	13.6	32°23.594' N
						104°27.384' W
TP2	3/12/10	2'	26	295	5.2	32°23.594' N
						104°27.384'_W
TP3	3/12/10	3"	16	171	7.2	32°23.589' N
					,.2	104°27.369' W
TP3	3/12/10	1'		549	2.3	32°23.589' N
115	5/12/10			547	2.5	104°27.369' W
TP3	3/12/10	2'	7	279	0.9	32°23.589' N
11.5	3/12/10	2	/	219	0.9	104°27.369' W
TP4	3/12/10	3"	23	289	8.5	32°23.586' N
	5/12/10	3	23	289	0.5	104°27.365' W
TP4	3/12/10	1'		532	5.2	32°23.586' N
1174	3/12/10	1		552	3.2	104°27.365' W
TP4	3/12/10	2'	1	369	2.0	32°23.586' N
1174	5/12/10	2	1	309	2.0	104°27.365' W
TP5	3/12/10	3"	11	297	1.9	32°23.586' N
1175	5/12/10	3	11	297	1.9	<u>104°27.365' W</u>
TP5	3/12/10	6"		347	1.0	32°23.579' N
IFS	5/12/10	0		347	1.0	104°27.354' W
TP5	3/12/10	1'	4	486	0.4	32°23.579' N
	5/12/10	1	4	480	0.4	104°27.354' W
TP6	3/12/10	3"	26	567	2.1	32°23.582' N
	3/12/10	5	20	307	2.1	
TP6	3/12/10	6"	14	262	1.0	32°23.582' N
110	3/12/10	0	14	262	1.0	104°27.346' W
TD7	2/12/10	3"	17	140	0.0	32°23.586' N
TP7	3/12/10	3	17	149	0.8	104°27.365' W
	2/12/10	(1)	0	200		32°23.586' N
TP7	3/12/10	6"	8	209	1.2	104°27.365' W
· · · · · · · · · · · · · · · · · · ·	Fact Doints	1 2 8 0	Dolinaatad		ock at approv	

Test Points 1, 2 & 9, Delineated w/shovel, rock at approximately 1'

Test Points 5, 6 & 7 Encountered Rock between 6" and 1', dug w/backhoe Analyst Notes_

Elke Environmental, Inc.

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Oxy USA

Analyst ____Bobby Steadham

Site US 13 Federal #2 Flowline

Sample ID	Date	Depth	418.1 TPH / PPM	Cl / PPM	PID / PPM	GPS
TP8	3/12/10	3"	27	409	3.6	32°23.579' N 104°27.340' W
TP8	3/12/10	6"	17	489		32°23.579' N 104°27.340' W
TP9	3/12/10	3"	31	269	7.1	32°23.594' N 104°27.360' W
TP9	3/12/10	6"		213	2.9	32°23.594' N 104°27.360' W
TP9	3/12/10	1'	6	189	1.3	32°23.594' N 104°27.360' W
TP10	3/12/10	3"	19	171	0.7	32°23.582' N 104°27.384' W
TP10	3/12/10	1'	8	109	0.2	32°23.582' N 104°27.384' W
·						

Analyst Notes Test Points 8 & 10, Dug With backhoe, impenetrable rock at 1'

Analytical Report 366347

for

Elke Environmental, Inc.

Project Manager: Logan Anderson

Oxy USA

US 13 Fed # 2 Flow Line

25-MAR-10

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295)

25-MAR-10

Project Manager: Logan Anderson Elke Environmental, Inc. P.O. Box 14167 Odessa, TX 79768

Reference: XENCO Report No: 366347 Oxy USA Project Address: US 13 Fed # 2 Flow Line

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 366347. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 366347 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 366347

Elke Environmental, Inc., Odessa, TX

Oxy USA

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TP 1 @ 6"	S	Mar-12-10 12:30	6 In	366347-001
TP 2 @ 2'	S	Mar-12-10 13:00	2 ft	366347-002
TP 5 @ 1'	S	Mar-12-10 14:00	1 ft	366347-003
TP 8 @ 6"	S	Mar-12-10 14:30	6 In	366347-004
TP 6 @ 6"	S	Mar-12-10 13:45	6 In	366347-005

CASE NARRATIVE

Client Name: Elke Environmental, Inc. Project Name: Oxy USA

Project ID:US 13 Fed # 2 Flow LineWork Order Number:366347

Report Date: 25-MAR-10 Date Received: 03/19/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-799362 Percent Moisture None

Batch: LBA-799390 TPH By SW8015 Mod None

Batch: LBA-799515 Inorganic Anions by EPA 300 None

Certificate of Anal Summary 366347

Elke Environmental, Inc., Odessa, TX Project Name: Oxy USA

Project Id: US 13 Fed # 2 Flow LineContact: Logan AndersonProject Location: US 13 Fed # 2 Flow Line

Date Received in Lab: Fri Mar-19-10 04:55 pm

Report Date: 25-MAR-10

oject Location: OS 13 Fed # 2 Flow Line								Project Mai	nager:	Brent Barron,	II	
	Lab Id:	366347-0	01	366347-0	002	366347-0	003	366347-0	04	366347-0	005	
Analysis Beausstad	Field Id:	TP 1 @	6"	TP 2 @	2'	TP 5 @	1'	TP 8 @	6"	TP 6 @	6"	
Analysis Requested	Depth:	6 In		2 ft		1 ft		6 In		6 In		
	Matrix:	SOIL		SOIL		SOIL	:	SOIL		SOIL		
	Sampled:	Mar-12-10	12:30	Mar-12-10	13:00	Mar-12-10	14:00	Mar-12-10	14:30	Mar-12-10	13:45	
Anions by E300	Extracted:											
	Analyzed:	Mar-23-10	10:46	Mar-23-10	10:46	Mar-23-10	10:46	Mar-23-10	10:46	Mar-23-10	10:46	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		224	9.40	518	9.09	55.6	4.91	489	9.95	57.9	4.91	
Percent Moisture	Extracted:											
	Analyzed:	Mar-22-10	15:10	Mar-22-10	15:10	Mar-22-10	15:10	Mar-22-10	15:10	Mar-22-10	15:10	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	
Percent Moisture		10.6	1.00	7.57	1.00	14.4	1.00	15.6	1.00	14.4	1.00	
TPH By SW8015 Mod	Extracted:	Mar-22-10	15:00	Mar-22-10	15:00	Mar-22-10	15:00	Mar-22-10	15:00	Mar-22-10	15:00	
	Analyzed:	Mar-23-10	13:26	Mar-23-10	13:57	Mar-23-10	14:28	Mar-23-10	14:58	Mar-23-10	15:28	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
C6-C12 Gasoline Range Hydrocarbons		ND	16.7	ND	16.2	ND	17.5	ND	17.8	ND	17.5	
C12-C28 Diesel Range Hydrocarbons		ND	16.7	ND	16.2	ND	17.5	ND	17.8	ND	17.5	
C28-C35 Oil Range Hydrocarbons		ND	16.7	ND	16.2	ND	17.5	ND	17.8	ND	17.5	
Fotal TPH		ND	16.7	ND	16.2	ND	17.5	ND	17.8	ND	17.5	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Final Ver. 1.000

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West J-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Final Ver. 1.000

Form 2 - Surrogate Recoveries

Project Name: Oxy USA

Work Orders : 366347 Lab Batch #: 799390	, Sample: 558807-1-BKS / B	BKS Batch		D: US 13 Fed Solid	l # 2 Flow I	Line
Units: mg/kg	Date Analyzed: 03/22/10 18:26	SUI	RROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		108	100	108	70-135	
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	51.6	50.0	103	70-135	
Lab Batch #: 799390	Sample: 558807-1-BSD / B	BSD Batch	: 1 Matrix	Solid		
Units: mg/kg	Date Analyzed: 03/22/10 18:57	SUI	RROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		106	100	106	70-135	
o-Terphenyl	t	50.8	50.2	101	70-135	
Lab Batch #: 799390	Sample: 558807-1-BLK / E	BLK Batch	: 1 Matrix	Solid	1	<u> </u>
Units: mg/kg	Date Analyzed: 03/22/10 19:28		RROGATE RI	ECOVERY	STUDY	
TPH 1	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		94.8	99.5	95	70-135	
o-Terphenyl		53.7	49.8	108	70-135	
Lab Batch #: 799390	Sample: 366347-001 / SMF	Batch	: I Matrix	Soil		
Units: mg/kg	Date Analyzed: 03/23/10 13:26	SUI	RROGATE RI	ECOVERY S	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctanc o-Terphenyl		40.7	100	1	70-135	
		<u> </u>		0.1	70-135	
Lab Batch #: 799390	Sample: 366347-002 / SMF		: 1 Matrix RROGATE RI		STUDY	
Units: mg/kg	Date Analyzed: 03/23/10 13:57 By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		70.5	100		70-135	
o-Terphenyl		37.7	50.0		70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Oxy USA

Work Orders: 366347		Project ID: US 13 Fed # 2 Flow Line							
Lab Batch #: 799390	Sample: 366347-003 / SMP	Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY							
Units: mg/kg	Date Analyzed: 03/23/10 14:28	501	RRUGATE RE			·····			
TPH 1	By SW8015 Mod Analytes	Amount Found {A}	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctanc	Anaryus	96.5	100		70-135				
o-Terphenyl		53.5	50.0		70-135				
Lab Batch #: 799390	Sample: 366347-004 / SMP	Batch		Soil					
Units: mg/kg	Date Analyzed: 03/23/10 14:58		RROGATE RE		STUDY				
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags			
1-Chlorooctane		80.7	100		70-135				
o-Tcrphcnyl		44.9	50.0		70-135				
Lab Batch #: 799390	Sample: 366347-005 / SMP	Batcl	n: 1 Matrix:	Soil	<u> </u>				
Units: mg/kg	Date Analyzed: 03/23/10 15:28		RROGATE RE		STUDY				
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		90.8	100		70-135				
o-Terphenyl		50.7	50.0		70-135				
Lab Batch #: 799390	Sample: 366352-002 S / MS	Batch	h: 1 Matrix:	:Soil					
Units: mg/kg	Date Analyzed: 03/23/10 17:17	SU	RROGATE RE	COVERY	STUDY				
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		124	99.5	125	70-135				
o-Terphenyl		57.9	49.8	116	70-135				
Lab Batch #: 799390	Sample: 366352-002 SD / M	ISD Batcl	h: 1 Matrix:	:Soil					
Units: mg/kg	Date Analyzed: 03/23/10 17:47	SU	RROGATE RI	ECOVERY	STUDY	- 4-			
TPH .	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		108	99.7	108	70-135				
o-Terphenyl		51.6	49.9	103	70-135				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

1

Project Name: Oxy USA

/ork Order #: 366347

Project ID: US 13 Fed # 2 Flow Line

Lab Batch #: 799515 Date Analyzed: 03/23/2010	Sample: 799515 Date Prepared: 03/23/2		Matrix: Solid Analyst: LATCOR				
Reporting Units: mg/kg	Batch #: 1 BLANK /BLANK SPIKE RECOVERY STU						
Anions by E300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags	
Analytes	[A]	[B]	Result [C]	%R D]	%R		
Chloride	ND	10.0	10.7	107	75-125		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

~

.

BS / BSD Re

Project Name: Oxy USA

F.

-

Work Order #: 366347					
Analyst: BEV		Da	ate Prepared:	03/22/20	10
Lab Batch ID: 799390	Sample: 558807-1-BKS		Batch #:	1	ļ
Units: mg/kg			BLANK /I	BLANK	SPIKE
TPH By SW8015	Mod Sar	Blank mple Result [A]	Spike Added	Blank Spike Result	Blar Sţ %F
Analytes			[B]	[C]	(D)
C6-C12 Gasoline Range Hydrocarbo	ins	ND	1000	1030	10
C12-C28 Diesel Range Hydrocarbon	ſS	ND	1000	722	7:

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

coveries

Project ID: US 13 Fed # 2 Flow Line **Date Analyzed:** 03/22/2010

Matrix: Solid

	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
╎	1000	1020	102	1	70-135	35	
1	1000	725	73	0	70-135	35	

Form 3 - MS Recoveries

Project Name: Oxy USA

Work Order #: 366347 Project ID: US 13 Fed # 2 Flow Line Lab Batch #: 799515 vate Analyzed: 03/23/2010 Date Prepared: 03/23/2010 Analyst: LATCOR QC- Sample ID: 366170-001 S Batch #: 1 Matrix: Soil Reporting Units: mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] **|B**] Analytes Chloride ND 105 114 109 75-125

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - / MSD Recoveries

Project Name: Oxy USA

Work Order # : 366347						Project II): US 13	Fed # 2 Fl	low Line		
Lab Batch ID: 799390 Date Analyzed: 03/23/2010	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix BEV	c: Soil				
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1120	1300	116	1120	1160	104	11	70-135	35	· ·
C12-C28 Diesel Range Hydrocarbons	ND	1120	935	83	1120	818	73	13	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C+F)/(C+F)]

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

/

<

Work Order #: 366347

Sample Duplicate Recovery

Project Name: Oxy USA

Lab Batch #: 799515			Project I	D: US 13 Fe	ed # 2 Flow
Date Analyzed: 03/23/2010	Date Prepared: 03/23/2010) Ana	lyst:LATC	COR	
QC- Sample ID: 366170-001 D	Batch #: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	CATE REC	OVERY
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	ND	ND	NC	20	
Lab Batch #: 799362					
Date Analyzed: 03/22/2010	Date Prepared: 03/22/2010) Ana	lyst: WRU		
QC- Sample ID: 366344-001 D	Batch #: 1	Mat	rix: Soil		
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	4.97	5.00	1	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

	vironment • Laboratories Compar	al Lab of T	exa	15						Wes	t I-2	AIN (0 Eac 0 797 (st	CUS	TOD	Y RE	CO	RÐ	AN	D Al	Pho	. YS/ one: ¤:	432	-663	-180	00				
	Project Manager:	Logan Anderson														Proj	ect N	lame	»: <u>(</u>	<u>yxc</u>	Ų:	5A		_			-			
	Company Name	Elke Environmenta	al					-									Proj	oct (k											
	Company Address:	P O Box 14167														Pn	ojeci	Loc	<u>; </u>	ڪز	13	FER	s#:	2.	Fu	ow L	<u>ترمد</u>			
	City/State/Zip:	Odessa, TX 79768	3	-														PO á												
	Telephone No:	432-366-0043				Fax No:	4	132	-366	3-08	84				Re	port f	form	et:	[Ste	anda	rd		<u>П</u> т	RRF	р		NPD	ES	
	Sampler Signature:	75 x				- e-mail:	- k	a_e	lkee	env@	₫y	ahoo).CO	m																
(tab use	·					-			_							- F		ين مردين مركز الرزي		TCLP	100	halyzi	e Fo	r:	<u> </u>		1	F	[
ORDE	••	0347						Г	Pres	ervatio	nåi	of Cor	ntainer	7 F	Mat		<u>.</u>	- -	Т	TAL	8		-	7					¥ 2	
2010 10 10 10 10 10 10 10 10 10 10 10 10	TPI TP TP	D CODE e 6" 2 e 2' 5 e 1' 8 e 6"	Beginning Depth	5 - 2 6 Ending Depth	2/12/12 3/12/12 3/12/10 3/12/10 3/12/10	Addis Addis Time Sampled Addis I addis Addis	Field Fittered		((₽ ₽	H2504	Naction 1	None	Other (Specify)	M M M CW - Grundwater S-Source	NPNon-Possible Specify Citra	$(\Box$	Cations (Ca. Mo. No. No.	X X X X		Metals: As Ag Ba Cd Cr Pb Hg	Voteties	Semivolutites	61 EX 802 18/5030 or 81 EX 82200	NORM				KUSH TAT Proceeding 24	
62	TP	6° 6'		6"	3/12/10	1:45Pm	+	ÌΫ	4			+			5	<u> </u>	4	+	X				-	+	╇	+-	┢┼┥	+	T	X
												\pm			•	1	╈		†	╞				╈	+	\pm	╞─┼		+	
<u> </u>			<u> </u>	ļ				╀	+		+	+-	\square	-		+	╋	+	-		Н		╉	┿	╇	╇	┝╌┥	╉	+	-
<u> </u>		· · · · · · · · · · · · · · · · ·	+				-+-	╈	╋	┝╌╋	+	╋	+			·†	╈	╈	╀─	+	\square		╉	╀	╋	╋	┢╍╊	+	+	-
	Instructions:	Dette Alla		me	Received by:	· · · · · · · · · · · · · · · · · · ·	L			•••••••		·····	 	Date)		me	D 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 数 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	bon Ce	rton Cito Free Cito See	of H	leads bio	nto: Here pecc	 27 3? er(s)				N N N N		2 2
Relinqui	shed by:	B/19/1 Date Date	TT TT	55FA me me	Received by: Repenyed by EL	or: In Lin		<u> </u>						Date		П	me		- biv	Sam	olec/(cliver Client 9/9 50n R	Reo	2		(Fed		N	l Star	

CANADA SA CANADA CAN

Page 14 of 15

Final Ver. 1.000

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Elke Env.	
Date/ Time:	3.19.10 16:55	
Lab ID # :	366347	
Initials:	AL.	

Sample Receipt Checklist

				Clie	ent Initials
#1	Temperature of container/ cooler?	(Yes)	No	-4 °C	
#2	Shipping container in good condition?	(Yes)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present)	
#4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present	
#5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	(Yes)	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11	Containers supplied by ELOT?	(Tes)	No		
#12	Samples in proper container/ bottle?	(Yes)	No	See Below	
#13	Samples properly preserved?	(Yes)	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	(Yes)	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	(Not Applicable)	
#20	VOC samples have zero headspace?	Nes	No	Not Applicable	

Variance Documentation

Contact:

Contacted by:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Final Ver. 1.000

.

Date/ Time: